

Lecture Notes in Computer Science 5837
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Axel Polleres Terrance Swift (Eds.)

Web Reasoning
and Rule Systems
Third International Conference, RR 2009
Chantilly, VA, USA, October 25-26, 2009
Proceedings

13

Volume Editors

Axel Polleres
National University of Ireland
Digital Enterprise Research Institute (DERI)
IDA Business Park, Lower Dangan - Galway, Ireland
E-mail: axel.polleres@deri.org

Terrance Swift
Centre for Artificial Intelligence (CENTRIA)
Departamento de Informatica, FCT/UNL
Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: tswift@cs.sunysb.edu

Library of Congress Control Number: 2009936484

CR Subject Classification (1998): D.4, H.2.4, I.2.4, H.3.5, H.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-05081-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-05081-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12778508 06/3180 5 4 3 2 1 0

Preface

The promise of the Semantic Web, at its most expansive, is to allow knowledge
to be freely accessed and exchanged by software. It is now recognized that if the
Semantic Web is to contain deep knowledge, the need for new representation and
reasoning techniques is going to be critical. These techniques need to find the
right trade-off between expressiveness, scalability and robustness to deal with the
inherently incomplete, contradictory and uncertain nature of knowledge on the
Web. The International Conference on Web Reasoning and Rule Systems (RR)
was founded to address these needs and has grown into a major international
forum in this area. The third RR conference was held during October 25–26,
2009 in Chantilly, Virginia, co-located with the International Semantic Web
Conference (ISWC 2009).

This year 41 papers were submitted from authors in 21 countries. The Pro-
gram Committee performed outstandingly to ensure that each paper submitted
to RR 2009 was thoroughly reviewed by at least three referees in a short pe-
riod of time. The resulting conference presented papers of high quality on many
of the key issues for reasoning on the Semantic Web. RR 2009 was fortunate
to have two distinguished invited speakers. Robert Kowalski, in his talk “In-
tegrating Logic Programming and Production Systems with Abductive Logic
Programming Agents” addressed some of the fundamental considerations be-
hind reasoning about evolving systems. Benjamin Grossof’s talk “SILK: Higher
Level Rules with Defaults and Semantic Scalability” described the design of a
major next-generation rule system. The invited tutorial “Uncertainty Reason-
ing for the Semantic Web” by Thomas Lukasiewicz provided perspectives on a
central issue in this area.

Regular papers addressed fundamental issues of reasoning with topics includ-
ing deduction procedures for ontologies with defaults and for conceptual logic
programs, evaluation procedures for path query languages, analysis of produc-
tion systems using fixed-point logic, and general perspectives on control in rule
engines. The importance of scalability was reflected by papers on distributed
resolution for ontologies, parallel logic programming techniques for Abox query-
ing, and the separation of terminological from assertional data. The topic of
knowledge amalgamation was studied by papers on alignment, modularity and
paraconsistency for ontologies. Uncertainty was explored by papers on semantics
and inference procedures for fuzzy reasoning, and a paper on inference proce-
dures for a logic of belief.

The results of Web Reasoning and Rule Systems are not confined only to
foundational issues, but are being applied to Web standards and real-world ap-
plications. Papers considered paraconsistent and fuzzy extensions to the RDF
standard, which just celebrated its 10th anniversary and is becoming widely used.
Another paper explored scalability of the OWL-2 standard, which is soon to be

VI Preface

published by W3C. Finally, one paper described how Semantic Web techniques
were applied in a risk-assessment system for elective surgery.
We thank the following sponsors for supporting RR 2009:

– BBN Technologies, USA

– Logic Programming Associates Ltd., UK

– Kno.e.sis Center, USA

– IOS Press

– The LarKC - Large Knowledge Collider Project

– Clark&Parsia LLC, USA

– Digital Enterprise Research Institute (DERI) at the National

University of Ireland, Galway

– Vulcan Inc., USA

– The NeOn project

We are particularly thankful also to the authors, the invited speakers, and
attendees for contributing and discussing the latest results in relevant areas to
this conference, as well as to all members of the Program Committee, and the
external reviewers for their critical reviews of submissions.

October 2009 Terrance Swift
Axel Polleres

Organization

General Chair

Michael Kifer SUNY Stony Brook, NY, USA

Program Co-chairs

Terrance Swift CENTRIA, Universidade Nova de Lisboa,
Portugal

Axel Polleres Digital Enterprise Research Institute
National University of Ireland, Galway

Local Arrangements Chair

Guilin Qir Universität Karlsruhe, Germany

Sponsorship Chair

Pascal Hitzler Universität Karlsruhe, Germany

Program Committee

Grigoris Antoniou
Marcelo Arenas
Leopoldo Bertossi
Piero Bonatti
Carlos Damásio
Wlodek Drabent
Bernardo Cuenca Grau
Volker Haarslev
Giovambattista Ianni
Manolis Koubarakis
Domenico Lembo
Thomas Lukasiewicz
Francesca Alessandra Lisi

Wolfgang May
David Pearce
Enrico Pontelli
Guilin Qi
Marie-Christine Rousset
Sebastian Rudolph
Sebastian Schaffert
Michael Sintek
Heiner Stuckenschmidt
Péter Szeredi
Sergio Tessaris
Hans Tompits
Dirk Vermeir

Additional Reviewers

Anne Schlicht
Johannes Oetsch
Luigi Sauro

Francesco Ricca
Gergely Lukácsy
Zsolt Zombori

VIII Organization

Arash Shaban-Nejad
Jörg Pührer
Héctor Pérez-Urbina
Christian Meilicke
Jun Fang
Antoine Zimmermann

Ratnesh Sahay
Jianfeng Du
Jeroen Janssen
Irini Fundulaki
Manuel Möller

Table of Contents

Invited Papers and Tutorial

Integrating Logic Programming and Production Systems in Abductive
Logic Programming Agents . 1

Robert Kowalski and Fariba Sadri

SILK: Higher Level Rules with Defaults and Semantic Scalability
(Abstract of Invited Talk) . 24

Benjamin N. Grosof

Uncertainty Reasoning for the Semantic Web . 26
Thomas Lukasiewicz

Proof/Deduction Procedures

A Preferential Tableaux Calculus for Circumscriptive ALCO 40
Stephan Grimm and Pascal Hitzler

A Reasoner for Simple Conceptual Logic Programs 55
Stijn Heymans, Cristina Feier, and Thomas Eiter

Search for More Declarativity: Backward Reasoning for Rule Languages
Reconsidered . 71

Simon Brodt, François Bry, and Norbert Eisinger

Scalability

Distributed Resolution for Expressive Ontology Networks 87
Anne Schlicht and Heiner Stuckenschmidt

Scalable Web Reasoning Using Logic Programming Techniques 102
Gergely Lukácsy and Péter Szeredi

On the Ostensibly Silent ‘W’ in OWL 2 RL . 118
Aidan Hogan and Stefan Decker

Uncertainty

Answer Sets in a Fuzzy Equilibrium Logic . 135
Steven Schockaert, Jeroen Janssen, Dirk Vermeir, and
Martine De Cock

X Table of Contents

Belief Logic Programming with Cyclic Dependencies 150
Hui Wan

A Minimal Deductive System for General Fuzzy RDF 166
Umberto Straccia

Knowledge Amalgamation and Querying

An Efficient Method for Computing Alignment Diagnoses 182
Christian Meilicke and Heiner Stuckenschmidt

Paraconsistent Reasoning for OWL 2 . 197
Yue Ma and Pascal Hitzler

A Formal Theory for Modular ERDF Ontologies . 212
Anastasia Analyti, Grigoris Antoniou, and Carlos Viegas Damásio

The Perfect Match: RPL and RDF Rule Languages 227
François Bry, Tim Furche, and Benedikt Linse

Rules for Decision Support and Production Systems

A Hybrid Architecture for a Preoperative Decision Support System
Using a Rule Engine and a Reasoner on a Clinical Ontology 242

Matt-Mouley Bouamrane, Alan Rector, and Martin Hurrell

A Logic Based Approach to the Static Analysis of Production
Systems . 254

Jos de Bruijn and Mart́ın Rezk

Author Index . 269

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 1–23, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Integrating Logic Programming and Production Systems
in Abductive Logic Programming Agents

Robert Kowalski and Fariba Sadri

Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ
{rak,fs}@doc.ic.ac.uk

Abstract. In this paper we argue the case for integrating the distinctive func-
tionalities of logic programs and production systems within an abductive logic
programming agent framework. In this framework, logic programs function as
an agent’s beliefs and production rules function as the agent’s goals. The se-
mantics and proof procedures are based on abductive logic programming, in
which logic programs are integrated with integrity constraints that behave like
production rules.

Similarly to production systems, the proof procedure is an operational se-
mantics, which manipulates the current state of a database, which is modified
by actions implemented by destructive assignment. The semantics can be
viewed as generating a model, based on the sequence of database states and
logic program, which makes the production rules true.

Keywords: Abductive logic programming, Production systems, Integrity con-
straints, agents.

1 Introduction

Rules are the basic form of knowledge representation in many areas of Artificial Intel-
ligence, including both production systems and logic programming, and more recently
in BDI (Belief Desire Intentions) agent languages. Despite their wide-spread use,
there is a great deal of confusion between the different kinds of rules, and little
agreement about the relationship between them.

In this paper we argue that production rules and logic programming rules have
complementary characters and that one cannot usefully be reduced to the other. We
show how abductive logic programming (ALP) combines the two kinds of rules in a
single unified framework. The ALP framework gives a model-theoretic semantics to
both kinds of rules and provides them with powerful proof procedures, combining
both backward and forward reasoning. We present evidence from BDI agents, deduc-
tive databases and psychological experiments to support the distinct nature of the two
kinds of rules.

We discuss the impact of including the two kinds of rules in a production system or
agent cycle, which embeds the rules in a destructively changing environment, which is
like a production system working memory. In this embedding, the environment can be
viewed as the semantic structure that gives meaning to the two kinds of rules. Although
the rules themselves need to be understood as explicitly or implicitly representing

2 R. Kowalski and F. Sadri

change of state, the fact that the environment changes destructively and exists at any
given time only in its current state gives an efficient solution to the frame problem.

We assume the reader is familiar with the basic concepts of logic programming
and production systems, although not necessarily with all of their technicalities.

1.1 Confusions

The most popular textbook on Artificial Intelligence Russell and Norvig [45] views
production rules as just logical conditionals used to reason forward (page 286). In
contrast, in one of the main textbooks on Cognitive Science, Thagard [50] argues that
“Rules are if-then structures …very similar to the conditionals…, but they have dif-
ferent representational and computational properties.” (page 43). “Unlike logic, rule-
based systems can also easily represent strategic information about what to do. Rules
often contain actions that represent goals, such as IF you want to go home for the
weekend and you have bus fare, THEN you can catch a bus.” (page 45).

Thagard [50] characterizes Prolog as “a programming language that uses logic rep-
resentations and deductive techniques”. Simon [48], on the other hand, includes
Prolog “among the production systems widely used in cognitive simulation.”

There is a similar confusion in the field of agents. Rao [41], for example, charac-
terises AgentSpeak as similar to logic programming. But in his comparison, he con-
siders only the similarities between the operational semantics of plans in AgentSpeak
and the execution of clauses in logic programming. He ignores the declarative seman-
tics of logic programs (LPs).

1.2 Production Systems and Logic Programs in Practice

There have been many theoretical studies of the relationship between production rules
and logic programs, which we discuss below in Section 2. Most of this work has been
focussed on giving a declarative semantics to production systems by translating them
into logic programs. However, there seems to have been little attention paid to the
way in which logic programs and production rules are used in practice, and conse-
quently little attempt to use this practice to guide the theoretical analysis. We argue
that in practice, the two kinds of rules have both distinct and overlapping functional-
ities, and that the distinct functionalities are lost by translating one kind of rule into
the other. We will show that abductive logic programming (ALP) both capitalises on
the distinct functionalities and eliminates the overlap.

We argue that, in addition to the production rule (PR) cycle and destructively
changing database, which are absent in LP, PRs offer three distinct functionalities:
reactive rules that implement stimulus-response associations; forward chaining logic
rules; and goal-reduction rules.

Reactive rules are, arguably, the most distinctive type of production rules, which
are responsible for their general characterisation as condition-action rules. This kind
of rule typically has implicit or emergent goals. For example, the rule if a car coming
towards you then get out of its way has the implicit goal to stay safe. Reactive rules
provide a functionality that is not directly available in logic programming.

The second kind of rule, for example if X is a cat then X is an animal uses forward
chaining to implement forward reasoning with a logical conditional. It is probably this

 Integrating Logic Programming and Production Systems 3

kind of rule that gives the impression that production rules are just conditionals used
to reason forward.

It is the third kind of rule, exemplified by Thagard’s example of the goal-reduction
rule “IF you want to go home for the weekend and you have bus fare, THEN you can
catch a bus.”, that overlaps the most with logic programming. In logic programming,
such strategic rules would be obtained by reasoning backward with the clause you go
home for the weekend if you have bus fare and you catch a bus. The two best known
cognitive models of human thinking, SOAR [34] and ACT-R [3], are based on pro-
duction systems and focus on the use of production rules for goal-reduction.

Logic programming has its own confusions, mostly about whether clauses are to be
understood declaratively or procedurally. The purely declarative interpretation of
clauses, which is neutral about reasoning method, is probably the one that is most
attractive to its admirers. It is well-suited for high-level program specifications and
for certain applications where efficiency is not a major concern.

However, it is probably the procedural interpretation, in which clauses are used to
obtain goal-reduction by backward reasoning, that is the main way in which logic
programs are used in practice. This is also where there is the greatest overlap with
production rules. Arguably, logic programs with backward reasoning are more suit-
able for this purpose than production rules with forward reasoning, because logic pro-
grams can also be interpreted declaratively. The declarative interpretation of logic
programs makes it possible to give goal-reduction procedures the declarative seman-
tics that is missing with production rules.

The confusion between the declarative and procedural uses of logic programs and
how best to combine them is well-known even though it is not very well solved.
However, there is another use of logic programs that has received less attention, and
is perhaps even more confusing. It is the use of logic programs for forward reasoning.
This use is not very common in practice, but is prevalent in theoretical investigations
of logic programming. We will see that in ALP, clauses can be used to reason both
backward and forward.

1.3 Combining Production Systems and Logic Programs

Broadly speaking, there are four motivations for combining PRs and LPs:

1. To eliminate the overlap between forward logic rules in PRs and for-

ward/declarative clauses in LP. For example, one very simple combination of PRs and
LPs is to use LPs to define ramifications of the working memory/database. Then exist-
ing PRs could simply query a deductive database rather than a relational database. This
would hand over the forward reasoning logic rules from the PR to the LP component.
Moreover, it would allow the decision about how to execute the ramifications to be
taken by the implementation. The declarative semantics of ramifications would be com-
patible with executing them forward, backward, or any combination of the two.

2. To eliminate the overlap for goal-reduction, by using LPs for this purpose. Us-
ing LP for goal-reduction provides system support for managing goals as and-or trees,
which is missing in production systems. Whereas most production systems just treat
goals as ordinary facts in the working memory, SOAR and ACT-R manipulate them
in goal stacks. Using LP for goal-reduction allows the declarative nature of LP

4 R. Kowalski and F. Sadri

clauses to be exploited, so they can be used either for goal-reduction or for forward
reasoning, as the context requires.

3. To provide a declarative semantics for PRs and for the combination of LP and
PRs. Declarative semantics provides an independent specification for implementa-
tions, as illustrated by the discussion above about the implementation of ramifica-
tions. Declarative semantics also clarifies the nature of PRs as a representation
language. Without a declarative semantics, which establishes a relationship between
syntactic expressions and semantic structures, of the kind provided by the model
theory of logic, the term “representation” has no meaning.

Our proposal is to combine LP and PR in the same way that ALP combines LP and
integrity constraints (ICs), and to use the model-theoretic semantics of ALP to give a
model-theoretic semantics to the combination of LP and PR. We will show that integ-
rity constraints in ALP, especially when embedded in ALP agents, generalise produc-
tion rules to include condition-goal rules, where the goal is like the body of a plan in
BDI agents.

4. To provide a cycle and destructive database of facts, missing in LP. Without a
cycle, LP is both closed and passive – closed because logic programs cannot be up-
dated by the environment, and passive because they cannot perform updates on the
environment. Without a destructive database of facts, LP suffers from the inefficien-
cies of the frame problem.

2 Other Approaches

Typically PRs, as well as event-condition-action (ECA) rules and active integrity con-
straints are defined by means of an operational semantics based on state transitions.
However several authors have studied the relationship between these various kinds of
rules and LP, with the aim of providing the rules with a declarative LP-based seman-
tics. In the majority of these approaches PRs, ECA rules or active integrity constraints
are mapped into LP to provide them with LP-based semantics. To our knowledge,
there has been no proposal that would accommodate both LP and PR (or ECA rules or
active integrity constraints) side-by-side with an integrated semantics or proof proce-
dure that would exploit the strengths of both paradigms.

Raschid [52] combines LPs and ICs, but focuses on only two functionalities of
PRs, namely on their use as reactive rules and as forward logic rules. She represents
rules that add facts as LPs, and rules that delete facts as ICs. She then transforms their
combination into LP, and uses the fixed point semantics of LP to chain forward and
thereby simulate the production system cycle.

Ceri and Widom [7] and Ceri et al. [6] implement ICs by PRs. Dung and Man-
carella [14] use an argumentation theoretic framework to provide semantics for PRs
with negation as failure.

Caroprese et al. [5] transform active integrity constraints into LPs. They character-
ise the set of “founded” repairs for the database as the stable model of the database
augmented by the LP representation of the active integrity constraints. Fraternali and
Tanca [17] also consider active databases but provide a logic-based core syntax for
representing low-level, procedural features of active database rules. They provide
procedural semantics for core rules and show how this can capture the procedural
semantics of known active database systems.

 Integrating Logic Programming and Production Systems 5

Most other work regards the cycle and actions in condition-action rules and ECA
rules declaratively as performing a change of state. Zaniolo [54], for example, uses a
situation calculus-like representation with frame axioms, and reduces PRs and ECA
rules to LPs. Statelog [53] also uses a situation-calculus-like representation for the
succession of database states. Like Zaniolo, Statelog represents PRs and ECAs as
LPs, and gives them LP-based semantics. Neither is concerned with the role of ICs or
with the use of LPs and PRs for goal-reduction.

Fernandes et al. [16] also view ECAs in terms of change of state, but use the event
calculus as the basis for an ECA language coupled with a deductive database. The
event calculus is used to evaluate the condition part of the ECA rules and to provide a
specification for the effects of executing the action part. The ECA language also
allows the recognition of complex events from an event history.

ERA (Evolving Reactive Algebraic Programs), developed by Alferes et al. [1], ex-
tends the dynamic logic programming system EVOLP [2] by adding complex events
and actions as well as external actions. ERA combines ECA and LP rules, and the
firing of the ECA rules can generate actions that add or delete ECA or LP rules, as
well as external actions. In the operational semantics the ECA and LP rules maintain
their distinct characteristics, but in the declarative semantics the ECA rules are trans-
lated to LP. The declarative semantics is based on a variant of stable models devel-
oped for EVOLP.

3 The Selection Task

Psychological evidence from the selection task suggests that people reason differently
with two kinds of conditionals. One school of thought is that the difference depends,
at least in part, on whether conditionals are interpreted descriptively or deontically.
We will argue that descriptive conditionals are like logic programs, and deontic con-
ditionals are like integrity constraints in abductive logic programming.

In Wason’s original selection task, there are four cards, with letters on one side and
numbers on the other. The cards are lying on a table, and only one side of each card is
visible, showing the letters D and F, and the numbers 3 and 7.

The task is to select those and only those cards that need to be turned over, to
determine whether the following conditional is true:

If there is a D on one side,
then there is a 3 on the other side.

Variations of this experiment have been performed numerous times. The surprising
result is that only about 10% of the subjects give the correct answer according to the
norms of classical logic.

Almost everyone recognizes, correctly, that the card showing D needs to be turned
over, to make sure there is a 3 on the other side. Most people also recognize, cor-
rectly, that the card showing F does not need to be turned over. But many subjects
also think, incorrectly, that it is necessary to turn over the card showing 3, to make
sure there is a D on the other side. This is logically incorrect, because the implication
does not claim that conversely:

6 R. Kowalski and F. Sadri

If there is a 3 on one side,
then there is a D on the other side.

Only a few subjects realise that it is necessary to turn over the card showing 7, to
make sure that D is not on the other side. It is necessary to turn over the 7, because the
original implication is logically equivalent to its contrapositive:

If the number on one side is not 3 (e.g. 7),
then the letter on the other side is not D.

It has been shown that people perform far better, according to the norms of classical
logic, when the selection task experiment is conducted with certain other formulations
of the problem that are formally equivalent to the card version of the task. The classic
experiment of this kind considers the situation in which people are drinking in a bar,
and the subject is asked to check whether the following conditional holds:

If a person is drinking alcohol in a bar,
then the person is at least eighteen years old.

Again the subject is presented with four cases to consider, but this time instead of four
cards there are four people. We can see what two people are drinking, but cannot see
how old they are; and we can see how old two people are, but not what they are drink-
ing. In contrast with the card version of the selection task, most people solve the bar
version correctly. They realise that it is necessary to check the person drinking alco-
hol to make sure that he is at least eighteen years old, and to check the person under
eighteen to make sure that she is not drinking alcohol. They also realise that it is not
necessary to check the person who is eighteen years old or older, nor the person who
is drinking a non-alcoholic beverage.

Cognitive psychologists have proposed a bewildering number of theories to ex-
plain why people are so much better at solving such versions of the selection task
compared with the original card version. One of the most influential of these is the
theory put forward by Cheng and Holyoak [8] that people tend to reason in accor-
dance with classical logic when conditionals involve deontic notions concerned with
permission, obligation and prohibition. However, except for [49] and [25], there has
been little attempt to explain why people reason as they do with descriptive variants
of the selection task, such as the card version.

 Stenning and van Lambalgen [49] propose that understanding and solving the se-
lection task is a two stage process: interpreting the conditional and then reasoning
with the interpretation. They argue that people interpret conditionals of the kind in-
volved in the card version of the task as logic programs. Interpreted as a logic pro-
gramming clause, a conditional is understood, according to the completion semantics,
as the if-half of a definition in if-and-only-if form [9]. The completion semantics en-
tails the converse of conditionals in the selection task and inhibits the application of
reasoning with contrapositives. This is exactly the kind of reasoning most people dis-
play in the card version of the selection task.

Stenning and vanLambalgen also argue that it is natural to interpret conditionals of
the kind involved in the bar version of the task in deontic logic. However, Kowalski
[25] has argued that the deontic interpretation can be obtained more simply by inter-
preting conditionals as integrity constraints.

 Integrating Logic Programming and Production Systems 7

It is curious that, although production systems, such as SOAR and ACT-R, are
widely used in cognitive psychology as a model of human thinking, it seems that con-
ditionals in the form of condition-action rules have not been studied in relation to the
selection task.

4 Intelligent Agents

The psychological evidence that people reason differently with descriptive and deon-
tic conditionals is mirrored by the notion that the mental state of an intelligent agent is
best understood as having separate goals and beliefs. An agent’s beliefs represent the
way things are, and its goals represent the way the agent would like them to be. Thus
beliefs have a descriptive character, whereas goals have a prescriptive or deontic
character. The BDI (Belief, Desire, Intention) [4] model of agents adds to beliefs and
desires (or goals) the notion of intention, which is an agent’s plan of actions for
achieving its goals. Intentions are derived from goals using beliefs to reduce goals to
subgoals.

Arguably, the most influential of the BDI agent models is that of Rao and Geor-
geff [42] and its successors dMARS [13] and AgentSpeak [41]. The abstract agent
intermediate language AIL of Dennis et al. [12] is an abstraction of these languages,
based mainly on AgentSpeak and its successors.

The earliest BDI agent systems were specified in multi-modal logics, with separate
modal operators for goals, beliefs and intentions. However, their procedural imple-
mentations bore little resemblance to their logical specifications. AgentSpeak aban-
doned the attempt to relate the modal logic specifications with their procedural
implementations, observing instead that “…one can view agent programs as multi-
threaded interruptible logic programming clauses”. This abandonment of modal logic
specifications is inherited by AgentSpeak’s successors and their abstraction AIL.

However, this view of AgentSpeak in logic programming terms applies only to the
procedural interpretation of clauses. In fact, programs in AgentSpeak are better
viewed as a generalisation of production rules than as variant of logic programming.
AgentSpeak programs, also called plans, have the form:

 Event E: conditions C goals G and actions A.

AgentSpeak plans manipulate a “declarative” database, like the working memory in
production systems. The database contains both belief literals (atoms and negations of
atoms) and goal atoms. The belief literals represent the current state of the environ-
ment and are added and deleted destructively, simulating the execution of atomic ac-
tions. Goal atoms are added when they are generated as sub-goals, and deleted when
they are solved.

The event E in the head of a plan can be the addition or deletion of a belief or of a
goal. Plans are embedded in a cycle similar to the production system cycle, and are
executed in the direction in which they are written. With the arrow written backwards,
the execution of plans can be viewed as backward chaining. However, if the arrow is
reversed, their execution can be viewed as forward chaining. No matter how their
execution is viewed, plans have only an operational semantics.

8 R. Kowalski and F. Sadri

The following are examples of possible AgentSpeak plans:

 + there is a fire: true +there is an emergency.
 +?there is an emergency: true ? there is a fire.
 +! there is an emergency: true ! there is a fire.

Observations and actions do not have associated times, and the database provides only
a snapshot of the current state of the world. To compensate for this lack of a temporal
representation, the prefixes +,-, !, and ? are used to stand for add, delete, achieve, and
test, respectively.

Notice that the first plan behaves like a logical conditional used to reason for-
wards, but in the opposite direction of the arrow, to conclude there is an emergency if
it is observed that there is a fire. The other two plans are goal-reduction rules, one for
testing whether there is an emergency and the other for creating an emergency.

In general, in the case where a plan has the form:

 Goal E: conditions C goals G and actions A

and the triggering event E is the addition of a goal, the plan can be reformulated as a
logic programming clause:

 E’ if C’ and G’ and A’and temporal constraints

where the prefixed predicates of AgentSpeak are replaced by predicates with explicit
associated times. The corresponding clause subsumes the behaviour of the plan, but
also has a declarative reading.

In the simple example of the three plans above, the corresponding clause is:

 there is an emergency at time T if there is a fire at time T.

Represented in this way, the clause can be viewed as defining a ramification, which
views fires more abstractly as emergencies.

Thus, although BDI agent models were inspired by the modal logic representation
of goals and beliefs, this inspiration has largely been lost in recent years. Most agent
systems today represent goals as facts, mixed with belief facts in database or repre-
sented in a separate stack, as in ACT-R and SOAR. Belief facts and goal facts are
manipulated uniformly by procedures, often called plans, which generalise production
rules.

The only kind of goal that can easily be represented as a fact in a database or in a
goal stack, in this way, is an achievement goal, which is a one-off problem to be
solved, including the problem of achieving some desired future state of the world. The
higher-level notion of maintenance goal, which persists over all states of the world, is
lost in the process.

In ALP agents, as we will see below, maintenance goals are integrity constraints,
which have the form of universally quantified conditionals with existentially quanti-
fied conclusions. Thus maintenance goals are higher-level than achievement goals in
ALP, because an achievement goal is derived as an instance of the conclusion of a
maintenance goal, whenever an instance of the conditions of the maintenance goal are
satisfied. For example, given the maintenance goal:

 Integrating Logic Programming and Production Systems 9

 For all times T1
 If there is an emergency at time T1 then there exists a time T2 such that
 I get help at time T2 and T1 < T2

and an emergency at some specific time t1, forward reasoning in ALP would derive
the achievement goal of getting help at some later time. The later time could be
bounded by an additional conjunct in the conclusion, or it could be left to the deci-
sion-making component of the agent cycle to take into account how urgently the
achievement goal needs to be accomplished.

In AgentSpeak and its successors, maintenance goals and goal-reduction rules are
just different kinds of plans. Our aim is to restore the high level distinction between
goals and beliefs, to recognise the importance of maintenance goals in particular, to
combine the distinctive forms of reasoning appropriate to the distinction between
goals and beliefs, and to give their combination a logical, model-theoretic semantics.
For this purpose we interpret beliefs as logic programs, goals as integrity constraints,
and combine goals and beliefs in the way that logic programs and integrity constraints
are combined in abductive logic programming.

5 Deductive Databases

The combination of logic programs and integrity constraints in ALP evolved from
their relationship in deductive databases. The semantics of integrity constraints and
the development of proof procedures for constraint satisfaction were active research
areas in deductive databases in the 1980s.

The distinction between a database and its integrity constraints is intuitively clear
in database systems, where integrity constraints have the same semantics as database
queries. But, whereas ad hoc queries are concerned with properties that hold in a
given state of the database, integrity constraints are persistent queries that are in-
tended to hold in all states of the database. Ad hoc queries can be viewed as achieve-
ment goals, and integrity constraints can be viewed as maintenance goals and include
prohibitions as a special case. The database itself can be thought of as a set of beliefs.
Thus conventional database systems can be viewed as passive agents, which are open
to updates from the environment, but are unable to perform actions themselves.

In relational databases, there is a clear distinction between the syntax of beliefs in
the database and the syntax of goals. Beliefs are simple, ground, atomic sentences.
Goals, both ad hoc queries and persistent integrity constraints, are sentences of first-
order logic. However, the syntactic distinction is less clear in deductive databases,
where the database consists of both ground facts and more general logic programs
(also called deduction rules). The distinction is complicated by the fact that it is often
natural to express both deduction rules and integrity constraints in a similar condi-
tional form. Informal criteria for distinguishing between deduction rules and integrity
constraints were proposed by Nicolas and Gallaire [37]. Consider, for example, the
two conditionals:

 The bus leaves at time X:00 if X is an integer and 9 ≤ X ≤ 18.

 If the bus leaves at time X:00, then for some integer Y,
 the bus arrives at its destination at time X:Y and 20 ≤ Y ≤ 30

10 R. Kowalski and F. Sadri

The first conditional defines bus departure times constructively and therefore can
function as a general rule in a deductive database. However, the second conditional
has an existential quantifier in the conclusion, which means that it cannot be used to
define data, but can only be used to constrain data, as an integrity constraint. In a pas-
sive database, the integrity constraint can be used to check updates to the database.
But in an agent, the integrity constraint can be used as a maintenance goal, to generate
achievement goals, which can then be reduced to plans of action. Thus an agent can
be thought of as an active database, and its maintenance goals can be regarded as
active database rules.

Several competing views of the semantics of integrity constraints were intensively
investigated in the 1980s. The two main views, to begin with, were the consistency
view and the theorem-hood view, both of which were defined relative to the comple-
tion of the database. In the consistency view, an integrity constraint is satisfied if it is
consistent with the completion of the database. In the theorem-hood view, it is satis-
fied if it is a theorem, logically entailed by the completion.

Reiter [44] proposed an epistemic view of integrity constraints, according to which
integrity constraints are statements about what the database knows. For example, the
integrity constraint:

 If X is an employee then for some integer Y
 X has social security number Y

would be interpreted as:

 If the database knows that X is an employee then for some integer Y
 the database knows that X has social security number Y

However, Reiter [44] also showed that all three views are equivalent in many cases
for databases augmented with the closed world assumption [43] which is the set of all
the negations of atomic sentences that are not entailed by the database. For relational
databases, the three views are also equivalent to the standard view in relational data-
bases that a database satisfies an integrity constraint if it is true in the database
regarded as a Herband model.

More generally, the four views of integrity satisfaction (consistency, theorem-
hood, epistemic and truth-theoretic) coincide for any database whose closure has a
single model, In the case of Horn clause databases, the four views are equivalent to
the view that an integrity constraint is satisfied if (and only if) it is true in the unique
minimal model of the set of Horn clauses.

 However, whether or not the different views of integrity satisfaction are equivalent
for a given database, it is generally accepted that queries and integrity constraints
have the same semantics. Therefore, the most obvious way to check integrity satisfac-
tion is to treat each integrity constraint as a query, using the same procedure for integ-
rity checking as for query evaluation. The problem with this approach, is that in a
dynamic setting, where the current database state is largely identical to the previous
state, much of the work involved in processing the constraints in a new state dupli-
cates the work performed in the previous state.

To alleviate this problem, the vast majority of integrity checking procedures
developed in the 1980s incrementally checked the integrity of a new state of the data-
base, assuming that the integrity constraints already hold in the previous state. As a

 Integrating Logic Programming and Production Systems 11

consequence any new violation of integrity must be due to the update itself, and integ-
rity checking can be focused on the update and its consequences. This focus can be
achieved by using resolution to perform forward reasoning.

The combination of a sequence of updates to a database and forward reasoning
triggered by updates can be viewed in terms that resemble the production system cy-
cle. Early work on such an approach for integrity checking in deductive databases
includes the integrity checking procedure of Sadri and Kowalski [46, 47, 30]. In this
approach integrity constraints are formalised as denials (clauses with conclusion
false), for example:

If X is an employee and not X has a social security number then false

Transactions are sets of literals, in which the positive atoms represent requested addi-
tions, and the negated atoms represent requested deletions. In the simple case where
all the requested updates are additions:

 If an update matches one of the conditions of a clause or integrity constraint,
 forward reasoning (via resolution) is performed to generate the resolvent.
 SLDNF is used to try to verify the remaining conditions of the resolvent.
 If the conditions are verified, then
 the instantiated conclusion is added as a new update.
 If the new update is false, the procedure terminates,
 and integrity has been violated.
 Otherwise, the procedure is repeated, and
 the new update is treated as an (implicit) update in the same transaction.
 If the procedure terminates without generating false
 then the transaction satisfies the integrity constraints.

If any of the updates is a deletion, a similar procedure is applied with an extended
resolution step that allows resolution with negative literals. Here is an example with-
out deletions:

ICs: If P and not R then false If S and Q then false
Database: S if M Q if T R if T
Updates: {P, T}

Forward reasoning from the two updates produces two resolvents:

 if not R then false
 if S then false.

Forward reasoning from the update P produces the first resolvent, using the first IC.
Forward reasoning from the update T produces the second resolvent, using the second
database clause to derive Q and then using the second IC.

The SLDNF evaluation of the two conditions not R and S terminates unsuccessfully,
and therefore the integrity checking procedure terminates successfully.

12 R. Kowalski and F. Sadri

In the Sadri Kowalski (SK) integrity checking procedure sketched above, ICs are
represented as denials, which conceptually represent prohibitions. However, the pro-
cedure can be modified easily to deal with ICs in conditional form. Integrity checking
with ICs in conditional form highlights their relationship with production rules, and
was introduced in the IFF proof procedure for ALP.

6 Abductive Logic Programming

Deductive databases and the closely related Datalog were sidelined in the late 1980s
with the arrival of object-oriented and active databases. As we have seen in section 2,
some of the attention of the Datalog community turned to the problem of providing a
declarative semantics for active database rules. In the meanwhile, some of the work
on integrity checking in deductive databases contributed to the development of abduc-
tive logic programming (ALP) [19].

ALP can be viewed as a variant of deductive databases in which integrity con-
straints are used actively to generate new facts that are candidates for addition to the
database. However, ALP is normally viewed as an extension of logic programming,
combining closed predicates that are defined in the conclusions of clauses with ab-
ducible (or open) predicates that occur in the conditions, but not in the conclusions of
clauses. Abducible predicates are like extensional predicates in deductive databases,
and closed predicates are like intensional predicates.

The classical application of abduction is to generate hypotheses, which are atomic
sentences in the abducible predicates, to explain observations. The best known exam-
ple of this is the use of abduction to explain the observation that the grass is wet, us-
ing the clauses:

 the grass is wet if it rained.
 the grass is wet if the sprinkler was on.

Abduction generates the two alternative hypotheses, it rained and the sprinkler was
on. Assuming that the state of the environment is stored in a database, the hypotheses
are alternative candidates for adding to the database. We will argue in the next section
that deciding which of the alternatives to add is like conflict resolution in production
systems.

ALP extends classical abduction in two ways: First, it not only generates abduc-
tive hypotheses to explain observations, but also it generates hypothetical actions to
achieve goals; and second it constrains hypothetical explanations so that they do not
violate integrity constraints.

Suppose that, in addition to the two clauses in the example above, we have:

Fact: the sun was shining.
Integrity constraint: not (it rained and the sun was shining)
or equivalently: if it rained and the sun was shining then false.

Then the hypothesis it rained violates the integrity constraint, leaving the alternative
hypothesis the sprinkler was on as the only acceptable explanation of the observation
that the grass is wet.

 Integrating Logic Programming and Production Systems 13

In general, given a logic program LP, integrity constraints IC and a problem
G, which is either an achievement goal or an observation to be explained, a set
Δ of atomic sentences in the abducible predicates is an abductive explanation
or a solution of G if and only if both IC and G hold with respect to the ex-
tended logic program LP Δ.

This characterisation of ALP is compatible with different semantics specifying what it
means for a goal or integrity constraint to hold with respect to a logic program. It is
also compatible with different proof procedures.

The most straight-forward proof procedures for ALP [15, 11, 20] are simple exten-
sions of SLD or SLDNF in which the integrity constraints IC are represented as deni-
als. The constraints IC and problem G are conjoined together and transformed into the
form of a normal logic programming goal clause. The set Δ is constructed incremen-
tally, adding new hypotheses to Δ to solve sub-goals in the abducible predicates that
would otherwise fail. The incremental construction of Δ is interleaved with checking
that the new hypotheses added to Δ satisfy the integrity constraints. Checking the in-
tegrity constraints may cause further updates to Δ.

For the sake of simplicity, these proof procedures avoid general-purpose integrity
checking, and instead perform only one step of forward reasoning to match a newly
added abductive hypothesis with a condition of an integrity constraint. For this pur-
pose, the integrity constraints are preprocessed into a form in which at least one con-
dition is abducible. The resulting preprocessed integrity constraints are similar to
event-condition-action rules where the event and action predicates are abducible.

These approaches all use backward reasoning with SLD or SLDNF resolution, to
reduce goals to sub-goals and to generate abductive hypotheses. An alternative ap-
proach, developed originally by Console, Dupre and Torasso [10] and extended by
Fung and Kowalski [18] is to reason instead with the completions of the logic pro-
gramming clauses defining the non-abducible predicates.

The completions in [28] all have the form of if-and-only-if (IFF) definitions:

 atomic formula iff disjunction of conjunctions

where the conjunctions (also called disjuncts) are conjunctions of atomic formulae or
conditionals. Negative literals not p are written as conditionals if p then false. The
atomic formula is called the head, and the disjunction of conjunctions is called the
body of the definition. Integrity constraints are represented as conditionals of the
form:

 if conditions then disjunction of conjunctions

where the conditions are a conjunction of atomic formulae and the conclusion has the
same form as the body of a definition.

 Because the conclusions of integrity constraints have the same form as the bodies
of definitions, they can contain existentially quantified variables, and the quantifica-
tion of the constraints can be implicit, as in the example:

 If X is an employee then X has social security number Y.

14 R. Kowalski and F. Sadri

Here X is universally quantified and Y is existentially quantified.
 Because disjuncts in the bodies of definitions can contain conditionals, these con-

ditionals can have the same form as integrity constraints with the same implicit quan-
tification of variables, for example:

 The banking department gets a 5 % bonus starting tomorrow iff
 if X is an employee in the banking department today and X has salary S today
then X has salary S + .05S tomorrow.

Given an initial problem G and integrity constraints IC, IFF conjoins G and IC in an
initial goal, and rewrites it as a disjunction of conjunctions. Starting from the initial
goal, equivalence-preserving inferences transform one state of the goal into another,
equivalent state, also represented in the form of a disjunction of conjunctions. Each
disjunct corresponds to a branch of the search space of abductive proof procedures
based on SLD and SLDNF.

The inference rules of IFF include both backward and forward reasoning. Back-
ward reasoning (also called unfolding) replaces an atomic formulae by the body of its
definition. Forward reasoning (also called propagation) performs resolution between
an atomic formula and a conditional in the same disjunct. The resolvent is added to
the disjunct. An abductive explanation is generated, when a disjunct contains only
atoms or negative literals in the abducible predicates (or equalities) and no further
inferences can be performed within that disjunct.

The fact that every disjunct in the search space contains a copy of all the ICs is a
potential source of inefficiency. This inefficiency can be avoided, simply by factoring
out the ICs, representing them explicitly only once, but treating them as though they
belong to every disjunct.

The IFF proof procedure was developed with the theorem-hood view of integrity
satisfaction in mind. It is sound and, with certain modest restrictions on the form of
clauses and integrity constraints, complete with respect to the completion of the pro-
gram in the Kunen [33] three-valued semantics. The SLP proof procedure [32] is a
refinement of IFF, in which integrity constraints are also used for constraint handling
rules in constraint logic programming, but with the consistency view of integrity satis-
faction. SLP is not complete in the general case, because consistency is not semi-
decidable. CIFF [36], which is a successor of SLP, reverts to the theorem-hood
semantics, and is complete in certain cases.

Compared with proof procedures that extend SLD or SLDNF, which represent in-
tegrity constraints as denials, the main attraction of the IFF proof procedure and its
successors is that they include forward reasoning with integrity constraints repre-
sented explicitly as conditionals. Forward reasoning can also be used to derive conse-
quences of abducible hypotheses, to help in choosing between them. This is important
in ALP agents, as we will discuss in the next section.

Another useful feature of these proof procedures is that their representation of
negative literals in the conditional form if p then false means that negative conditions
can be unfolded even if they contain variables, and the IFF selection function, which
is the analogue of the SLDNF selection function, can be much more liberal compared
with SLDNF.

 Integrating Logic Programming and Production Systems 15

The completeness of IFF means that ICs can be satisfied, not only, like condition-
action rules, by satisfying their conclusions when their conditions are satisfied, but
also by making their conditions fail. For example, the integrity constraint if you com-
mit a mortal sin and don’t go to confession then you will go to hell can be satisfied
either by not committing a mortal sin, committing a mortal sin and going to confes-
sion, or committing a mortal sin, not going to confession and going to hell. Here is a
symbolic example:

G: p
IC: if p and not q then a
LP: q if b

where p is an observation, and a and b represent actions. IFF derives not q then a by for-
ward reasoning, which it then rewrites as q or a. It unfolds q to obtain b or a. Thus the
problem has two solutions, either do b or do a.

 In the informally described abductive agent proof procedures of [23, 24], the for-
ward reasoning integrity checking method of SK is combined with the IFF representa-
tion of integrity constraints as conditionals within an SLD-style framework. A variant
of this is formalised in LPS [29]. Here is an example from [24, 26].

Integrity constraint: If there is an emergency then I get help.

Logic program:
 A person gets help if the person alerts the driver.
 A person alerts the driver if the person presses the alarm signal button.
 There is an emergency if there is a fire.
 There is an emergency if one person attacks another.
 There is an emergency if someone becomes suddenly ill.
 There is an emergency if there is an accident.
 There is a fire if there are flames.
 There is a fire if there is smoke.

Abducible predicates: there are flames, there is smoke, a person presses the

 alarm signal button

Observation: There is smoke.
Forward reasoning: There is a fire.
Forward reasoning: There is an emergency.
Forward reasoning, Goal: I get help
Backward reasoning, Goal: I alert the driver
Backward reasoning, Solution: I press the alarm signal button.

Notice that the example integrates the behaviour of the three kinds of production rules
identified in section 1.2. The first two steps of forward reasoning use clauses of the
logic program as forward reasoning logic rules; the third step of forward reasoning
uses the integrity constraint as a reactive rule, and the two steps of backward reason-
ing use clauses of the logic program as goal-reduction rules.

16 R. Kowalski and F. Sadri

An alternative to using forward reasoning with logic programs in the first two steps in
this example is to preprocess the integrity constraint (by unfolding the definitions of
there is an emergency and there is a fire) into several separate integrity constraints:

If there are flames then I get help.
If there is smoke then I get help.
If one person attacks another then I get help.
If someone becomes suddenly ill then I get help.
If there is an accident then I get help.

The use of a single integrity constraint and forward reasoning with logic programs
simulates forward chaining with production rules, and is arguably more natural. (No-
tice that these integrity constraints could be further pre-processed into condition-
action rules, by unfolding the conclusion I get help, replacing it by the action I press
the alarm signal button.)

Following the lead of other abductive proof procedures, the proof procedure illus-
trated in this example can be given a variety of logical semantics. To achieve our
desired combination of logic programs, production systems and agents, it remains
only to:

• represent actions by abducible predicates,
• embed the abductive proof procedure in an agent cycle, and
• justify the use of a destructively changing database of facts.

7 ALP Agents

The notion of ALP agent, in which ALP is embedded as the thinking component of an
observation-thought-decision-action cycle, was introduced in [22] and developed in
[27, 28, 23, 24]. It is the basis of the KGP (Knowledge, Goals and Plans) agent model
of [21]. The ALP agent proof procedure of [28] is the IFF proof procedure. The proof
procedure of KGP is the CIFF proof procedure [36] which extends IFF with constraint
handling procedures.

The observation-thought-decision-action cycle of an ALP agent is similar to other
agent cycles. However, in ALP agents, an agent’s beliefs are represented by logic
programs, its goals are represented by integrity constraints, and its actions are repre-
sented by abducible predicates.

7.1 Observations

In the original ALP agent model, observations are added incrementally to the goals,
and the IFF proof procedure generates explanations of observations as well as actions
to achieve goals. However, in production systems and BDI agents, observations con-
tribute to the current state of the database of facts. In the KGP agent model, observa-
tions are added to a separate database of facts, similar to the production system/BDI
agent database. But whereas in PR/BDI systems the database represents only the cur-
rent state of the environment, in KGP the database is a monotonically increasing rep-
resentation of both the current state and all past states.

 Integrating Logic Programming and Production Systems 17

The ALP agent and KGP beliefs include the event calculus axioms [31] to derive
new time-stamped facts from previous observations. However, the agent can bypass
reasoning with the event calculus, by directly observing the environment instead. In
both the ALP agent and KGP proof procedures, facts, whether directly observed or
derived by the event calculus, are used both to solve atomic goals and to propagate
with integrity constraints.

In both the ALP and the KGP agent models, in the routine use of the agent cycle,
forward reasoning derives consequences of observations and triggers integrity con-
straints; and backward reasoning reduces goals to plans of action. Reasoning can be
interrupted both by incoming observations and by outgoing actions. An incoming
observation, in particular, might trigger an integrity constraint and derive an action
that needs to be performed immediately, interrupting the derivation of plans and the
execution of actions that need to be performed only later in the future.

However, in more demanding situations, backward reasoning can also be used to
generate explanations of observations, and forward reasoning can also be used to de-
rive consequences of explanations, to help in choosing between alternative explana-
tions. For example, if it rained and the sprinkler was on are alternative explanations for
the observation the grass is wet, then forward reasoning might derive the street is wet
from the hypothesis that it rained, and derive the water meter reading is high from the
hypothesis that the sprinkler was on. Checking these consequences by attempting to
observe them in the environment can help to prefer one explanation to the other.

A similar kind of reasoning forward from alternative candidate actions, to derive
and evaluate their possible outcomes, can also help with decision-making and conflict
resolution.

7.2 Decision-Making and Conflict Resolution

The easy part of the extension of ALP to ALP agents is making ALP open to observa-
tions, and embedding ALP in a down-sized observation-thought cycle, in which the
agent passively thinks about alternative plans of actions, but doesn’t make any com-
mitments to perform any actions. The hard part is to decide among the alternatives,
and actually do something. To choose between different actions, an extended cycle
can incorporate a decision making component, which generalises conflict resolution
in production systems.

Consider the following “rules”:

 If someone attacks me then I attack them back
 If someone attacks me then I run away

and suppose I observe someone attacks me. Treated as condition-action rules in a
production system, both rules would be triggered, and conflict resolution would be
needed to fire only one of them. However, in ALP and ALP agents, both rules and
both conclusions I attack them back and I run away would need to be satisfied, which
might not be possible. To avoid this problem and to have a logical semantics, the
rules need to be re-formulated:

Maintenance goal: If X attacks me then I protect myself against X
Beliefs: I protect myself against X if I attack X back
 I protect myself against X if I run away.

18 R. Kowalski and F. Sadri

In ALP, given this re-formulation and the observation someone attacks me, it suf-
fices to satisfy only one of I attack them back or I run away. But this still involves
making a choice between the two alternatives, and then successfully performing one
or more actions to make that choice succeed, and thereby to make the given instance
of the goal become true. In the IFF syntax and proof procedure, the goal and the be-
liefs could be pre-processed, by unfolding the conclusion I protect myself into the
still simpler form of a single maintenance goal:

Maintenance goal: If someone attacks me
 then (I attack them back or I run away).

Viewed in this way, conflict resolution in production systems is partly a compensation
for the restricted syntax of production rules (no disjunction in conclusions of rules)
and partly a form of Decision Theory. ALP agents do not suffer from the same restric-
tions on syntax; but, like production systems, they need to be augmented with a deci-
sion-making component.

In classical Decision Theory, actions are chosen to optimise expected outcomes.
ALP can help with this, because it can be used, not only to generate alternative ac-
tions, but also to reason forward from candidate actions to derive their likely out-
comes – for example to reason forward from the candidate action we go for a picnic,
to derive the following outcome from the following belief:

Belief: We will have a whale of a good time
 if we go for a picnic and the weather is good.
Outcome: We will have a whale of a good time if the weather is good.

To fit into a full-fledged decision-making procedure, outcomes (e.g. We will have a
whale of a good time) need to be evaluated for their utility, and abducible conditions
beyond the agent’s control (e.g. the weather is good) need to be assigned a probabil-
ity. ALP is particularly well-suited to this, as Poole [39, 40] has shown, because it is
very natural and very easy to associate probabilities with abducible predicates. The
resulting Decision Theoretic analysis, or some computationally less expensive ap-
proximation to it, fits comfortably into an ALP agent cycle [24, 38]

Having done the analysis and made the decision, the agent must still commit to
performing an action. The action may be part of a plan; and even if the action suc-
ceeds the plan might fail, because for some reason or other the agent might not be
able to perform the other actions in the plan. For example the preconditions of later
actions might not hold or the actions might get timed out. The upshot of all these
complications is that it may not be possible to commit to only one alternative plan for
achieving a higher level goal. It might be necessary to embark upon one plan, and
then switch to another plan if the first plan fails. It may also be necessary to re-
perform an action in the same plan. The ALP agent cycle allows all these options.

7.3 Semantics

The semantics of ALP agents can be understood in ALP terms. The fact that observa-
tions and actions occur in a temporal order can be dealt with simply by including the
time or state of observations and actions as explicit parameters of predicates. The

 Integrating Logic Programming and Production Systems 19

effect of executing actions can be taken into account by including an action theory,
such as the situation calculus or event calculus in the agent’s set of beliefs B. With
these assumptions, and the further assumption that the observations do not include
any post-conditions (effects) of the agent’s own actions, the semantics of the ALP
agent cycle is a special case of the ALP semantics.

Given beliefs B, goals G, initial database state S0 and possibly an infinite set
O = {O1 , O2 ,…, On, … } of input (external) observations, an ALP agent solution
is a possibly infinite set ∆ = {A1, A2 ,…., Am ,…} of actions such that G is satis-
fied by the logic program B ∪ O ∪ ∆ .

Theorem 7.1 of [28] establishes a correspondence between the static behaviour of the
IFF proof procedure and the dynamic behaviour of ALP agents with observations.
The soundness of the ALP agent cycle follows from that theorem.

8 The Representation of State Change and the Frame Problem

For the ALP agent semantics to work, observations and actions need to have an ex-
plicit representation of time or state. This gives rise to the frame problem of how to
represent and reason about change of state correctly and efficiency. It is generally
held that the frame problem can be solved by means of an appropriate action theory
such as situation calculus or event calculus. These and similar calculi all include some
form of frame axiom, such as:

 fact F holds in state S+1 if fact F holds in state S
 and S+1 is obtained from S by action/event A
 and A does not terminate F.

Given an appropriate semantics, including the various semantics developed for logic
programming, it has been argued that these formulations of the frame axiom solve the
frame problem.

 However, all of these solutions reason explicitly, whether forward or backward,
that a fact holds in a state S+1 if it held in state S and was not terminated in the state
transition. Reasoning in the forward direction, for example, every unterminated fact
holding in state S needs to be explicitly copied to the new state S+1. Moreover, with-
out sophisticated optimisations and garbage collection, the same unterminated facts
need to be duplicated in both states S and S+1, and indeed in all states from the initial
state to the current state. Backward reasoning does not store unterminated facts re-
dundantly, but requires a potentially expensive calculation instead. Thus it can be
argued that that aspect of the frame problem that is concerned with efficiently reason-
ing about change of state has no solution within a purely logical representation.

 It is probably for such reasons of efficiency that production systems and BDI
agents store only the current state, use destructive assignment to generate a new cur-
rent state from the previous state, and do not employ an explicit representation of
states or time at all.

20 R. Kowalski and F. Sadri

It can be argued that the ALP agent model with its event calculus representation
of change also suffers from the inefficiencies associated with the frame problem.
However, in ALP agents, to determine whether a fact holds in the current state, these
inefficiencies can be avoided, by directly observing whether the fact holds in the envi-
ronment instead. In such a case, the environment serves as an auxiliary, external data-
base, which contains a complete record of the current state. To test these ideas, we
have developed LPS (Logic-based Production System) [29], which is a variant of
ALP agents without frame axioms, but with an operational semantics that incorpo-
rates a destructively changing database. For simplicity, as is common in production
systems, we assume that there are no external observations, once the initial state of
the database has been given as input.

 The LPS operational semantics maintains the current state of a deductive database,
with facts (atomic sentences) defining the extensional predicates and logic programs
(or deduction rules) defining intensional predicates. The actions that change the cur-
rent state affect only the extensional predicates, which are represented without
explicit state parameters. As a consequence, to execute an action and to change the
current state, it suffices to delete the facts terminated by the action and to add the facts
initiated by the action. Facts that are not affected by the action persist without the
need to reason that they persist, simply because they do not change. Intentional predi-
cates change implicitly as ramifications of changes to the extensional predicates.

 In contrast with the operational semantics, which maintains only the current state,
the LPS declarative semantics is based on the sequence of database states with the
implicit state parameter of the operational semantics made explicit. The semantics
also requires that the sequence of states conforms to a logical representation of
change, such as the event calculus EC represented in logic programming form:

Given beliefs B in the form of a logic program, goals G in the form of a set
of integrity constraints, and an initial database state S0, a possibly infinite set
∆ = {A1, A2 ,…., Am ,…} of actions is an LPS solution if and only if G is satis-
fied by the logic program B ∪ S0 ∪ ∆ ∪ EC.

As shown in [29], LPS is sound, but is not complete for the same reason that condi-
tion-action rules are not complete (because they cannot make their conditions false).

9 Conclusions

We have argued for combining the functionalities of production systems and logic
programs, while retaining their individual contributions and eliminating their overlap.
To defend our thesis that the two kinds of rules provide distinct functionalities and
need to be combined, we have appealed to the distinctions

• in psychology between descriptive and deontic conditionals,
• in intelligent agents between beliefs and goals,
• in deductive databases between deduction rules and integrity constraints, and
• in ALP between logic programs and integrity constraints.

 Integrating Logic Programming and Production Systems 21

We have advocated an approach that combines the two kinds of rules in an observa-
tion-thought-decision-action cycle, along the lines of ALP agents, and sketched an
approach that combines a declarative, logic-based semantics with an operational se-
mantics that operates with the current state of a destructively changing database.

References

1. Alferes, J.J., Banti, F., Brogi, A.: An Event-Condition-Action Logic Programming Lan-
guage. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS
(LNAI), vol. 4160, pp. 29–42. Springer, Heidelberg (2006)

2. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving Logic Programs. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61.
Springer, Heidelberg (2002)

3. Anderson, J., Bower, G.: Human Associative Memory. Winston, Washington (1973)
4. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and Resource-bounded Practical Reason-

ing. Computational Intelligence 4, 349–355 (1988)
5. Caroprese, L., Greco, S., Sirangelo, C., Zumpano, E.: Declarative Semantics of Production

Rules for Integrity Maintenance. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 26–40. Springer, Heidelberg (2006)

6. Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Automatic Generation of Production
Rules for Integrity Maintenance. ACM Transactions on Database Systems (TODS) 19(3),
367–422 (1994)

7. Ceri, S., Widom, J.: Deriving production rules for constant maintenance. In: 16th Interna-
tional Conference on Very Large Data Bases, pp. 566–577 (1990)

8. Cheng, P.W., Holyoak, K.J.: Pragmatic Reasoning Schemas. Cognitive Psychology 17,
391–416 (1985)

9. Clark, K.: Negation as Failure. In: Readings in Nonmonotonic Reasoning, pp. 311–325.
Morgan Kaufmann, San Francisco (1978)

10. Console, L., Theseider Dupre, D., Torasso, P.: On the Relationship Between Abduction
and Deduction. Journal of Logic and Computation 1(5), 661–690 (1991)

11. Denecker, M., De Schreye, D.: SLDNFA: An Abductive Procedure for Normal Abductive
Programs. J. Logic Programming 34(2), 111–167 (1998)

12. Dennis, L.A., Bordini, R.H., Farwer, B., Fisher, M.: A Common Semantic Basis for BDI
Languages. In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.)
PROMAS 2007. LNCS (LNAI), vol. 4908, pp. 124–139. Springer, Heidelberg (2008)

13. d’Inverno, M., Luck, M., Georgeff, M.P., Kinny, D., Wooldridge, M.: A Formal Specifica-
tion of dMARS. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS
(LNAI), vol. 1365, pp. 155–176. Springer, Heidelberg (1998)

14. Dung, P.M., Mancarella, P.: Production Systems with Negation as Failure. IEEE Transac-
tions on Knowledge and Data Engineering 14(2), 336–352 (2002)

15. Eshghi, K., Kowalski, R.: Abduction Compared with Negation by Failure. In: Levi, G.,
Martelli, M. (eds.) 6th International Conference on Logic Programming, pp. 234–254.
MIT Press, Cambridge (1989)

16. Fernandes, A.A.A., Williams, M.H., Paton, N.: A Logic-Based Integration of Active and
Deductive Databases. New Generation Computing 15(2), 205–244 (1997)

17. Fraternali, P., Tanca, L.: A Structured Approach for the Definition of the Semantics of Ac-
tive Databases. ACM Transactions on Database Systems (TODS) 20(4), 414–471 (1995)

22 R. Kowalski and F. Sadri

18. Fung, T.H., Kowalski, R.: The IFF Proof Procedure for Abductive Logic Programming.
Journal of Logic Programming 33(2), 151–164 (1997)

19. Kakas, A., Kowalski, R., Toni, F.: The Role of Logic Programming in Abduction.
In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intel-
ligence and Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

20. Kakas, A.C., Mancarella, P.: Abduction and Abductive Logic Programming. In: 11th In-
ternational Conference on Logic Programming, pp. 18–19 (1994)

21. Kakas, A., Mancarella, P., Sadri, S., Stathis, K., Toni, F.: Computational Logic Founda-
tions of KGP Agents. Journal of Artificial Intelligence Research (2009)

22. Kowalski, R.: Using Metalogic to Reconcile Reactive with Rational Agents. In: Apt, K.,
Turini, F. (eds.) Meta-Logics and Logic Programming. MIT Press, Cambridge (1995)

23. Kowalski, R.: Artificial Intelligence and the Natural World. Cognitive Processing 4,
547–573 (2001)

24. Kowalski, R.: The Logical Way to be Artificially Intelligent. In: Toni, F., Torroni, P. (eds.)
CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 1–22. Springer, Heidelberg (2006)

25. Kowalski, R.: Reasoning with Conditionals in Artificial Intelligence. In: Oaksford, M.
(ed.) The Psychology of Conditionals. Oxford University Press, Oxford (to appear, 2009)

26. Kowalski, R.: How to be Artificially Intelligence. Cambridge University Press, Cambridge
(2010) (to be published),
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html

27. Kowalski, R., Sadri, F.: Towards a Unified Agent Architecture that Combines Rationality with
Reactivity. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 131–150.
Springer, Heidelberg (1996)

28. Kowalski, R., Sadri, F.: From Logic Programming towards Multi-agent Systems. Annals
of Mathematics and Artificial Intelligence 25, 391–419 (1999)

29. Kowalski, R., Sadri, F.: LPS - a Logic-Based Production System Framework. Department
of Computing, Imperial College (2009)

30. Kowalski, R., Sadri, F., Soper, P.: Integrity Checking in Deductive Databases. In: 13th
VLDB, pp. 61–69. Morgan Kaufmann, Los Altos (1987)

31. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation Comput-
ing 4(1), 67–95 (1986); also In: Mani, I., Pustejovsky, J., Gaizauskas, R. (eds.): The Lan-
guage of Time: A Reader. Oxford University Press, Oxford (2005)

32. Kowalski, R., Toni, F., Wetzel, G.: Executing Suspended Logic Programs. Fundamenta In-
formatica 34(3), 1–22 (1998)

33. Kunen, K.: Negation in Logic Programming. Journal of Logic Programming 4(4), 289–308
(1987)

34. Laird, J.E., Newell, A., Rosenblum, P.S.: SOAR: an Architecture for General Intelligence.
Artificial Intelligence 33(1), 1–64 (1987)

35. Lloyd, J.W., Topor, R.W.: A Basis for Deductive Database Systems. J. Logic Program-
ming 2, 93–109 (1985)

36. Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF Proof Procedure for
Abductive Logic Programming with Constraints: Theory, Implementation and Experi-
ments. Theory and Parctice of Logic Programming (to appear, 2009)

37. Nicolas, J.M., Gallaire, H.: Database: Theory vs. Interpretation. In: Gallaire, H., Minker, J.
(eds.) Logic and Databases. Plenum, New York (1978)

38. Pereira, L.M., Anh, H.T.: Evolution Prospection. In: Nakamatsu, K., et al. (eds.) KES-IDT
2009. SCI, vol. 199, pp. 51–64. Springer, Heidelberg (2009)

39. Poole, D.: Probabilistic Horn Abduction and Bayesian Networks. Artificial Intelli-
gence 64(1), 81–129 (1993)

 Integrating Logic Programming and Production Systems 23

40. Poole, D.: The Independent Choice Logic for Modeling Multiple Agents Under Uncer-
tainty. Artificial Intelligence 94, 7–56 (1997)

41. Rao, A.S.: Agents Breaking Away. In: Perram, J., Van de Velde, W. (eds.) MAAMAW
1996. LNCS, vol. 1038. Springer, Heidelberg (1996)

42. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents with a BDI-Architecture. In: 2nd In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 473–484 (1991)

43. Reiter, R.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 55–76. Plenum Press, New York (1978)

44. Reiter, R.: On Integrity Constraints. In: 2nd Conference on Theoretical Aspects of Reason-
ing about Knowledge, pp. 97–111 (1988)

45. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice
Hall, Upper Saddle River (2003)

46. Sadri, F.: A Theorem-Proving Approach to Database Integrity. PhD Thesis, Imperial
College (1988)

47. Sadri, F., Kowalski, R.: A Theorem-Proving Approach to Database Integrity. In: Minker,
J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 313–362. Mor-
gan Kaufmann, San Francisco (1988)

48. Simon, H.: Production Systems. In: Wilson, R., Keil, F. (eds.) The MIT Encyclopedia of
the Cognitive Sciences, pp. 676–677. The MIT Press, Cambridge (1999)

49. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT Press,
Cambridge (2008)

50. Thagard, P.: Mind: Introduction to Cognitive Science, 2nd edn. MIT Press, Cambridge
(2005)

51. Wason, P.C.: Reasoning About a Rule. The Quarterly Journal of Experimental Psychol-
ogy 20(3), 273–281 (1968)

52. Raschid, L.: A Semantics for a Class of Stratified Production System Programs. J. Log.
Program. 21(1), 31–57 (1994)

53. Lausen, G., Ludäscher, B., May, W.: On Active Deductive Databases: The Statelog
Approach. In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Seminar
1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, pp. 69–106. Springer,
Heidelberg (1998)

54. Zaniolo, C.: On the Unification of Active Databases and Deductive databases. In:
Worboys, M.F., Grundy, A.F. (eds.) BNCOD 1993. LNCS, vol. 696, pp. 23–39. Springer,
Heidelberg (1993)

SILK: Higher Level Rules
with Defaults and Semantic Scalability

(Abstract of Invited Talk)

Benjamin N. Grosof

Vulcan Inc., 505 Fifth Ave. S., Suite 900, Seattle, WA 98104, USA
BenjaminG@vulcan.com,

http://www.mit.edu/~bgrosof

1 SILK and Its KR Overall

We overview the technical approach and motivations of the SILK system for
semantic rules and ontologies, that radically extends the knowledge represen-
tation (KR) power of currently commercially important business rule systems,
including not only Prologs but also production rules and event-condition-action
rules, database systems, and semantic web.

The newest part of Vulcan Inc.’s Project Halo, SILK is a new, highly ambi-
tious effort that aims to provide key infrastructure for widely-authored VLKBs
(Very Large Knowledge Bases) for business and science that answer questions,
proactively supply information, and reason powerfully.

Practical semantic rules and ontologies KR today is based primarily on declar-
ative logic programs.

SILK’s KR is *hyper* logic programs, which adds:

– prioritized defaults and robust conflict handling;
– higher-order and flexible meta-reasoning;
– sound interchange with classical logic (including OWL, Common Logic, and

SBVR); and
– actions and events, cf. production rules and process models.

SILK thus provides a significantly higher expressive abstraction level than pre-
vious approaches to semantic rules.

The SILK system includes components for:

– large-scale reasoning;
– web knowledge interchange; and
– (in future) collaborative knowledge acquisition.

We survey use cases for SILK in business and science. We discuss prospects for
the SILK approach to effectively interchange and integrate a high percentage of
the world’s structured knowledge starting from today’s legacy forms.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 24–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

SILK: Higher Level Rules with Defaults and Semantic Scalability 25

2 Defaults for Semantic Scalability

We focus particularly on how SILK can overcome previous fundamental obstacles
to semantic scalability, not just inferencing performance scalability, of semantic
rules and ontologies on web scale. To do so, SILK newly combines Courteous
style defaults, HiLog style higher-order, well founded semantics, and sound in-
terchange with first-order logic via a hypermonotonic mapping from Courteous.

“SILK” stands for “Semantic Inferencing on Large Knowledge”. It hopes to
be what much of the next generation Web will be spun from.

For More Info

For more info about SILK, please see: http://silk.semwebcentral.org.
For more info about Project Halo and Vulcan Inc., please see
http://www.projecthalo.com and http://www.vulcan.com, respectively.

Uncertainty Reasoning for the Semantic Web

Thomas Lukasiewicz�

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
thomas.lukasiewicz@comlab.ox.ac.uk

Abstract. Significant research activities have recently been directed towards the
Semantic Web as a potential future substitute of the current World Wide Web.
Many experts predict that the next huge step forward in Web information tech-
nology will be achieved by adding semantics to Web data. An important role
in research towards the Semantic Web is played by formalisms and technolo-
gies for handling uncertainty and/or vagueness. In this paper, I first provide some
motivating examples for handling uncertainty and/or vagueness in the Semantic
Web. I then give an overview of some own recent formalisms for handling uncer-
tainty and/or vagueness in the Semantic Web.

1 Introduction

During the recent decade, the Semantic Web [1,2,3,4] has attracted much attention, both
from academia and industry, and is commonly regarded as the next step in the evo-
lution of the World Wide Web. It aims at an extension of the current Web by stan-
dards and technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and automation of
tasks. The main ideas behind it are to add a machine-understandable “meaning” to Web
pages, to use ontologies for a precise definition of shared terms in Web resources, to use
KR technology for automated reasoning from Web resources, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web is divided into several hierarchical layers, where the Ontology
layer, in the form of the OWL Web Ontology Language [5], is currently the highest layer
of sufficient maturity. OWL consists of three increasingly expressive sublanguages,
namely, OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially
very expressive description logics with an RDF syntax. As shown in [6], ontology en-
tailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability
in the description logic SHIF(D) (resp., SHOIN (D)). On top of the Ontology
layer, sophisticated representation and reasoning capabilities for the Rules, Logic, and
Proof layers of the Semantic Web are currently being developed next.

A key requirement of the layered architecture of the Semantic Web is in particular
to integrate the Rules and the Ontology layer. Here, it is crucial to allow for building
rules on top of ontologies, that is, for rule-based systems that use vocabulary from

� Alternative address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, 1040 Wien, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 26–39, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Uncertainty Reasoning for the Semantic Web 27

ontology knowledge bases. Another type of combination is to build ontologies on top of
rules, where ontological definitions are supplemented by rules or imported from rules.
Both types of integration have been realized in recent hybrid integrations of rules and
ontologies, called description logic programs (or dl-programs), which are of the form
KB =(L, P), where L is a description logic knowledge base, and P is a finite set of
rules involving either queries to L in a loose integration (see, e.g., [7,8]) or concepts
and roles from L as unary resp. binary predicates in a tight integration (see, e.g., [9]).

However, classical ontology languages and description logics as well as formalisms
integrating rules and ontologies are less suitable in all those domains where the informa-
tion to be represented comes along with (quantitative) uncertainty and/or vagueness (or
imprecision). For this reason, during the recent years, handling uncertainty and vague-
ness has started to play an important role in research towards the Semantic Web. A re-
cent forum for approaches to uncertainty reasoning in the Semantic Web is the annual
International Workshop on Uncertainty Reasoning for the Semantic Web (URSW) at the
International Semantic Web Conference (ISWC). There has also been a W3C Incubator
Group on Uncertainty Reasoning for the World Wide Web. The research focuses espe-
cially on probabilistic and fuzzy extensions of description logics, ontology languages,
and formalisms integrating rules and ontologies. Note that probabilistic formalisms al-
low to encode ambiguous information, such as “John is a student with the probability
0.7 and a teacher with the probability 0.3” (roughly, John is either a teacher or a student,
but more likely a student), while fuzzy approaches allow to encode vague or imprecise
information, such as “John is tall with the degree of truth 0.7” (roughly, John is quite
tall). Formalisms for dealing with uncertainty and vagueness are especially applied in
ontology mapping, data integration, information retrieval, and database querying. For
example, some of the most prominent technologies for dealing with uncertainty are
probably the ranking algorithms standing behind Web search engines. Other impor-
tant applications are belief fusion and opinion pooling, recommendation systems, user
preference modeling, trust and reputation modeling, and shopping agents. Vagueness
and imprecision also abound in multimedia information processing and retrieval, and
are an important aspect of natural language interfaces to the Web.

In this paper, I give an overview of some own recent extensions of description
logics and description logic programs by probabilistic uncertainty and fuzzy vague-
ness. The rest of this paper is organized as follows. Section 2 provides some mo-
tivating examples. In Section 3, I describe an approach to probabilistic description
logics for the Semantic Web. Sections 4 and 5 focus on approaches to probabilistic
and fuzzy description logic programs for the Semantic Web, respectively, while Sec-
tion 6 describes an approach to description logic programs for handling both uncer-
tainty and vagueness in a uniform framework for the Semantic Web. For a more detailed
overview of extensions of description logics for handling uncertainty and vagueness in
the Semantic Web, I also refer the reader to the recent survey [10].

2 Motivating Examples

We now provide some examples for the use of probabilistic ontologies and of proba-
bilistic and vague extensions of formalisms integrating rules and ontologies.

28 T. Lukasiewicz

In order to illustrate probabilistic ontologies, consider some medical knowledge
about patients. In such knowledge, we often encounter terminological probabilistic and
terminological default knowledge about classes of individuals, as well as assertional
probabilistic knowledge about individuals. It is often advantageous to share such med-
ical knowledge between hospitals and/or medical centers, for example, to follow up
patients, to track medical history, for case studies research, and to get information on
rare diseases and/or rare cures to diseases. The need for sharing medical knowledge is
also at the core of the W3C Semantic Web Health Care and Life Sciences Interest Group,
who state that the “key to the success of Life Science Research and Health Care is the
implementation of new informatics models that will unite many forms of biological and
medical information across all institutions” (see http://www.w3.org/2001/sw/hcls/).

Example 2.1 (Medical Example [11]). Consider patient records related to cardiologi-
cal illnesses. We distinguish between heart patients (who have any kind of cardiological
illness), pacemaker patients, male pacemaker patients, and female pacemaker patients,
who all are associated with illnesses, illness statuses, symptoms of illnesses, and health
insurances. Furthermore, we have the patients Tom, John, and Mary, where Tom is a
heart patient, while John and Mary are male and female pacemaker patients, respec-
tively, and John has the symptoms arrhythmia (abnormal heart beat), chest pain, and
breathing difficulties, and the illness status advanced.

Then, terminological default knowledge is of the form “generally (or typically / in
nearly all cases), heart patients suffer from high blood pressure” and “generally,
pacemaker patients do not suffer from high blood pressure”, while terminological prob-
abilistic knowledge has the form “generally, pacemaker patients are male with a prob-
ability of at least 0.4” (that is, “generally, a randomly chosen pacemaker patient is
male with a probability of at least 0.4”), “generally, heart patients have a private in-
surance with a probability of at least 0.9”, and “generally, pacemaker patients have
the symptoms arrhythmia, chest pain, and breathing difficulties with probabilities of
at least 0.98, 0.9, and 0.6, respectively”. Finally, assertional probabilistic knowledge
is of the form “Tom is a pacemaker patient with a probability of at least 0.8”, “Mary
has the symptom breathing difficulties with a probability of at least 0.6”, “Mary has the
symptom chest pain with a probability of at least 0.9”, and “Mary’s illness status is final
with a probability between 0.2 and 0.8”.

Uncertain medical knowledge may also be collected by a medical company from own
databases and public sources (e.g., client data, web pages, web inquiries, blogs, and
mailing lists) and be used in an advertising campaign for a new product.

Example 2.2 (Medical Example cont’d [11]). Suppose that a medical company wants
to carry out a targeted advertising campaign about a new pacemaker product. The com-
pany may then first collect all potential addressees of such a campaign (e.g., pharmacies,
hospitals, doctors, and heart patients) by probabilistic data integration from different
data and web sources (e.g., own databases with data of clients and their shopping his-
tories; and web listings of pharmacies, hospitals, and doctors along with their product
portfolio resp. fields of expertise). The result of this process is a collection of individu-
als with probabilistic memberships to a collection of concepts in a medical ontology as
the one above. The terminological probabilistic and terminological default knowledge

Uncertainty Reasoning for the Semantic Web 29

of this ontology can then be used to derive probabilistic concept memberships that are
relevant for a potential addressee of the advertising campaign. For example, for per-
sons that are known to be heart patients with certain probabilities, we may derive the
probabilities with which they are also pacemaker patients.

The next example illustrates the use of probabilistic ontologies in information retrieval
for an increased recall (which has especially been explored in [12,13]).

Example 2.3 (Literature Search [11]). Suppose that we want to obtain a list of research
papers in the area of “logic programming”. Then, we should not only collect those pa-
pers that are classified as “logic programming” papers, but we should also search for
papers in closely related areas, such as “rule-based systems” or “deductive databases”,
as well as in more general areas, such as “knowledge representation and reasoning” or
“artificial intelligence” (since a paper may very well belong to the area of “logic pro-
gramming”, but is classified only with a closely related or a more general area). This
expansion of the search can be done automatically using a probabilistic ontology, which
has the papers as individuals, the areas as concepts, and the explicit paper classifications
as concept memberships. The probabilistic degrees of overlap between the concepts in
such a probabilistic ontology then provide a means of deriving a probabilistic member-
ship to the concept “logic programming” and so a probabilistic estimation for the rele-
vance to our search query.

We finally describe a shopping agent example, where we encounter both probabilistic
uncertainty (in resource selection, ontology mapping / query transformation, and data
integration) and fuzzy vagueness (in query matching with vague concepts).

Example 2.4 (Shopping Agent [37,38]). Suppose a person would like to buy “a sports
car that costs at most about 22 000 C and that has a power of around 150 HP”.

In todays Web, the buyer has to manually (i) search for car selling sites, e.g., using
Google, (ii) select the most promising sites (e.g., http://www.autos.com), (iii) browse
through them, query them to see the cars that they sell, and match the cars with our
requirements, (iv) select the offers in each web site that match our requirements, and
(v) eventually merge all the best offers from each site and select the best ones.

It is obvious that the whole process is rather tedious and time consuming, since, e.g.,
(i) the buyer has to visit many sites, (ii) the browsing in each site is very time consuming,
(iii) finding the right information in a site (which has to match the requirements) is not
simple, and (iv) the way of browsing and querying may differ from site to site.

A shopping agent may now support us as follows, automatizing the whole selection
process once it receives the request / query q from the buyer:

– Probabilistic Resource Selection. The agent selects some sites / resources S that it
considers as promising for the buyer’s request. The agent has to select a subset of
some relevant resources, since it is not reasonable to assume that it will access and
query all the resources known to him. The relevance of a resource S to a query is
usually (automatically) estimated as the probability Pr(q|S) (the probability that
the information need represented by the query q is satisfied by the searching re-
source S; see, e.g., [14,15]). It is not difficult to see that such probabilities can be
represented by probabilistic rules.

30 T. Lukasiewicz

– Probabilistic Ontology Mapping / Query Reformulation. For the top-k selected
sites, the agent has to reformulate the buyer’s query using the terminology / onto-
logy of the specific car selling site. For this task, the agent relies on so-called trans-
formation rules, which say how to translate a concept or property of the agent’s
ontology into the ontology of the information resource (which is called ontology
mapping in the Semantic Web). To relate a concept B of the buyer’s ontology to
a concept S of the seller’s ontology, one often automatically estimates the proba-
bility P (B|S) that an instance of S is also an instance of B, which can then be
represented as a probabilistic rule [16,17].

– Vague Query Matching. Once the agent has translated the buyer’s request for the
specific site’s terminology, the agent submits the query. But the buyer’s request
often contains many so-called vague / fuzzy concepts such as “the price is around
22 000 C or less”, rather than strict conditions, and thus a car may match the buyer’s
condition to a degree. As a consequence, a site / resource / web service may return
a ranked list of cars, where the ranks depend on the degrees to which the sold items
match the buyer’s requests q.

– Probabilistic Data Integration. Eventually, the agent has to combine the ranked lists
by considering the involved matching (or truth) degrees (vagueness) and probability
degrees (uncertainty) and show the top-n items to the buyer.

3 Probabilistic Description Logics

In this section, we briefly describe the probabilistic description logic P-SHOIN (D),
which is a probabilistic generalization of the description logic SHOIN (D) behind
OWL DL towards sophisticated formalisms for reasoning under probabilistic uncer-
tainty in the Semantic Web [11]. Closely related probabilistic generalizations of the
DL-Lite family of tractable description logics (which lies between the Semantic Web
languages RDFS and OWL Lite) and the description logics SHIF(D) and SHOQ(D)
(which stand behind OWL Lite and DAML+OIL, respectively) have been introduced
in [11,18]. A companion paper [19] combines DL-Lite with Bayesian networks.

Probabilistic description logics allow for representing probabilistic ontologies and
for reasoning about them. There is a plethora of applications with an urgent need for
handling probabilistic knowledge in ontologies, especially in areas like medicine, biol-
ogy, defense, and astronomy. Moreover, probabilistic ontologies allow for quantifying
the degrees of overlap between the ontological concepts in the Semantic Web, reason-
ing about them, and using them in Semantic Web applications and systems, such as
information retrieval, personalization tasks, and recommender systems. Furthermore,
probabilistic ontologies can be used to align the concepts of different ontologies (called
ontology mapping) and for handling inconsistencies in Semantic Web data.

The syntax of P-SHOIN (D) uses the notion of a conditional constraint from [20]
to express probabilistic knowledge in addition to the axioms of SHOIN (D). Its
semantics is based on the notion of lexicographic entailment in probabilistic default
reasoning [21,22], which is a probabilistic generalization of the sophisticated notion
of lexicographic entailment by Lehmann [23] in default reasoning from conditional
knowledge bases. Due to this semantics, P-SHOIN (D) allows for expressing both

Uncertainty Reasoning for the Semantic Web 31

terminological probabilistic knowledge about concepts and roles, and also assertional
probabilistic knowledge about instances of concepts and roles. It naturally interprets
terminological and assertional probabilistic knowledge as statistical knowledge about
concepts and roles, and as degrees of belief about instances of concepts and roles, re-
spectively, and allows for deriving both statistical knowledge and degrees of belief. As
an important additional feature, it also allows for expressing default knowledge about
concepts (as a special case of terminological probabilistic knowledge), which is seman-
tically interpreted as in Lehmann’s lexicographic default entailment [23].

Example 3.1. Suppose a classical description logic knowledge base T is used to en-
code knowledge about cars and their properties (e.g., that sports cars and roadsters are
cars). A probabilistic knowledge base KB =(T, P, (Po)o∈IP) in P-SHOIN (D) then
extends T by terminological default and terminological probabilistic knowledge in P
as well as by assertional probabilistic knowledge in Po for certain objects o ∈ IP . For
example, the terminological default knowledge (1) “generally, cars do not have a red
color” and (2) “generally, sports cars have a red color”, and the terminological proba-
bilistic knowledge (3) “cars have four wheels with a probability of at least 0.9”, can be
expressed by the following conditional constraints in P :

(1) (¬∃HasColor.{red} |Car)[1, 1],
(2) (∃HasColor.{red} | SportsCar)[1, 1],
(3) (HasFourWheels |Car)[0.9, 1] .

Suppose we want to encode some probabilistic information about John’s car (which
we have not seen so far). Then, the set of probabilistic individuals IP contains the
individual John’s car, and the assertional probabilistic knowledge (4) “John’s car is a
sports car with a probability of at least 0.8” (we know that John likes sports cars) can
be expressed by the following conditional constraint in PJohn’s car:

(4) (SportsCar | �)[0.8, 1] .

Then, the following are some (terminological default and terminological probabilistic)
tight lexicographic consequences of PT =(T, P):

(¬∃HasColor.{red} |Car)[1, 1],
(∃HasColor.{red} | SportsCar)[1, 1],
(HasFourWheels |Car)[0.9, 1],
(¬∃HasColor.{red} |Roadster)[1, 1],
(HasFourWheels | SportsCar)[0.9, 1],
(HasFourWheels |Roadster)[0.9, 1] .

Hence, in addition to the sentences (1) to (3) directly encoded in P , we also conclude
“generally, roadsters do not have a red color”, “sports cars have four wheels with a
probability of at least 0.9”, and “roadsters have four wheels with a probability of at
least 0.9”. Observe here that the default property of not having a red color and the
probabilistic property of having four wheels with a probability of at least 0.9 are in-
herited from cars down to roadsters. Roughly, the tight lexicographic consequences
of PT = (T, P) are given by all those conditional constraints that (a) are either in P ,

32 T. Lukasiewicz

or (b) can be constructed by inheritance along subconcept relationships from the ones
in P and are not overridden by more specific pieces of knowledge in P .

The following conditional constraints for the probabilistic individual John’s car are
some (assertional probabilistic) tight lexicographic consequences of KB , which infor-
mally say that John’s car is a sports car, has a red color, and has four wheels with
probabilities of at least 0.8, 0.8, and 0.72, respectively:

(SportsCar | �)[0.8, 1],
(∃HasColor.{red} |�)[0.8, 1],
(HasFourWheels | �)[0.72, 1] .

4 Probabilistic Description Logic Programs

We now summarize the main ideas behind loosely and tightly coupled probabilistic dl-
programs, introduced in [24,25,26,27] and [28,29,30,31,32], respectively. For further
details on the syntax and semantics of these programs, their background, and their se-
mantic and computational properties, we refer to the above works.

Loosely coupled probabilistic dl-programs [24,25,26] are a combination of loosely
coupled dl-programs under the answer set and the well-founded semantics with proba-
bilistic uncertainty as in Bayesian networks. Roughly, they consist of a loosely coupled
dl-program (L, P) under different “total choices” B (they are the full joint instantia-
tions of a set of random variables, and they serve as pairwise exclusive and exhaustive
possible worlds), and a probability distribution μ over the set of total choices B. One
then obtains a probability distribution over Herbrand models, since every total choice B
along with the loosely coupled dl-program produces a set of Herbrand models of which
the probabilities sum up to μ(B). As in the classical case, the answer set semantics of
loosely coupled probabilistic dl-programs is a refinement of the well-founded semantics
of loosely coupled probabilistic dl-programs. Consistency checking and tight query pro-
cessing (i.e., computing the entailed tight interval for the probability of a conditional or
unconditional event) in such probabilistic dl-programs under the answer set semantics
can be reduced to consistency checking and query processing in loosely coupled dl-
programs under the answer set semantics, while tight query processing under the well-
founded semantics can be done in an anytime fashion by reduction to loosely coupled
dl-programs under the well-founded semantics. For suitably restricted description logic
components, the latter can be done in polynomial time in the data complexity. Query
processing for stratified loosely coupled probabilistic dl-programs can be reduced to
computing the canonical model of stratified loosely coupled dl-programs. Loosely cou-
pled probabilistic dl-programs can especially be used for (database-oriented) proba-
bilistic data integration in the Semantic Web, where probabilistic uncertainty is used
to handle inconsistencies between different data sources [27].

Example 4.1. A university database may use a loosely coupled dl-program (L, P) to
encode ontological and rule-based knowledge about students and exams. A probabilis-
tic dl-program KB =(L, P ′, C, μ) then additionally allows for encoding probabilis-
tic knowledge. For example, the following two probabilistic rules in P ′ along with a
probability distribution on a set of random variables may express that if two master

Uncertainty Reasoning for the Semantic Web 33

(resp., bachelor) students have given the same exam, then there is a probability of 0.9
(resp., 0.7) that they are friends:

friends(X, Y) ← given same exam(X, Y),DL[master student(X)],
DL[master student(Y)], choicem ;

friends(X, Y) ← given same exam(X, Y),DL[bachelor student(X)],
DL[bachelor student(Y)], choiceb .

Here, we assume the set C = {Vm, Vb} of value sets Vm = {choicem,not choicem}
and Vb = {choiceb,not choiceb} of two random variables Xm resp. Xb and the proba-
bility distribution μ on all their joint instantiations, given by μ : choicem,not choicem,
choiceb,not choiceb �→ 0.9, 0.1, 0.7, 0.3 under probabilistic independence. For exam-
ple, the joint instantiation choicem, choiceb is associated with the probability 0.9 ×
0.7 = 0.63. Asking about the entailed tight interval for the probability that john and bill
are friends can then be expressed by a probabilistic query ∃(friends(john , bill))[R, S],
whose answer depends on the available concrete knowledge about john and bill (name-
ly, whether they have given the same exams, and are both master or bachelor students).

Tightly coupled probabilistic dl-programs [28,29] are a tight combination of disjunctive
logic programs under the answer set semantics with description logics and Bayesian
probabilities. They are a logic-based representation formalism that naturally fits into
the landscape of Semantic Web languages. Tightly coupled probabilistic dl-programs
can especially be used for representing mappings between ontologies [30,31], which
are a common way of approaching the semantic heterogeneity problem on the Seman-
tic Web. Here, they allow in particular for resolving inconsistencies and for merging
mappings from different matchers based on the level of confidence assigned to different
rules (see below). Furthermore, tightly coupled probabilistic description logic programs
also provide a natural integration of ontologies, action languages, and Bayesian prob-
abilities towards Web Services. Consistency checking and query processing in tightly
coupled probabilistic dl-programs can be reduced to consistency checking and cau-
tious/brave reasoning, respectively, in tightly coupled disjunctive dl-programs. Under
certain restrictions, these problems have a polynomial data complexity.

Example 4.2. The two correspondences between two ontologies O1 and O2 that (i) an
element of Collection in O1 is an element of Book in O2 with the probability 0.62,
and (ii) an element of Proceedings in O1 is an element of Proceedings in O2 with
the probability 0.73 (found by the matching system hmatch) can be expressed by the
following two probabilistic rules:

O2 : Book (X) ← O1 : Collection(X) ∧ hmatch1;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ hmatch2.

Here, we assume the set C= {{hmatchi,not hmatch i} | i ∈ {1, 2}} of values of two
random variables and the probability distribution μ on all joint instantiations of these
variables, given by μ : hmatch1,not hmatch1, hmatch2,not hmatch2 �→ 0.62, 0.38,
0.73, 0.27 under probabilistic independence.

34 T. Lukasiewicz

Similarly, two other correspondences between O1 and O2 (found by the matching
system falcon) are expressed by the following two probabilistic rules:

O2 : InCollection(X) ← O1 : Collection(X) ∧ falcon1;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ falcon2,

where we assume the set C′= {{falcon i,not falcon i} | i∈{1, 2}} of values of two
random variables and the probability distribution μ′ on all joint instantiations of these
variables, given by μ′ : falcon1,not falcon1, falcon2,not falcon2 �→ 0.94, 0.06, 0.96,
0.04 under probabilistic independence.

Using the trust probabilities 0.55 and 0.45 for hmatch and falcon, respectively, for
resolving inconsistencies between rules, we can now define a merged mapping set that
consists of the following probabilistic rules:

O2 : Book (X) ← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;
O2 : InCollection(X) ← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ hmatch2;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ falcon2.

Here, we assume the set C′′ of values of random variables and the probability distri-
bution μ′′ on all joint instantiations of these variables, which are obtained from C ∪C′
and μ · μ′ (defined as (μ · μ′)(B B′)= μ(B) · μ′(B′), for all joint instantiations B of C
and B′ of C′), respectively, by adding the values {sel hmatch1, sel falcon1} of a new
random variable, with the probabilities sel hmatch1, sel falcon1 �→ 0.55, 0.45 under
probabilistic independence, for resolving the inconsistency between the first two rules.

A companion approach to probabilistic description logic programs [32] combines prob-
abilistic logic programs, probabilistic default theories, and the description logics be-
hind OWL Lite and OWL DL. It is based on new notions of entailment for reasoning
with conditional constraints, which realize the principle of inheritance with overriding
for both classical and purely probabilistic knowledge. They are obtained by generaliz-
ing previous formalisms for probabilistic default reasoning with conditional constraints
(similarly as for P-SHOIN (D) in Section 3). In addition to dealing with probabilistic
knowledge, these notions of entailment thus also allow for handling default knowledge.

5 Fuzzy Description Logic Programs

We next briefly describe loosely and tightly coupled fuzzy dl-programs, which have
been introduced in [33,34] and [35,36], respectively, and extended by a top-k retrieval
technique in [39]. All these fuzzy dl-programs have natural special cases where query
processing can be done in polynomial time in the data complexity. For further details
on their syntax and semantics, background, and properties, we refer to the above works.

Towards dealing with vagueness and imprecision in the reasoning layers of the Se-
mantic Web, loosely coupled (normal) fuzzy dl-programs under the answer set seman-
tics [33,34] generalize normal dl-programs under the answer set semantics by fuzzy
vagueness and imprecision in both the description logic and the logic program compo-
nent. This is the first approach to fuzzy dl-programs that may contain default negations

Uncertainty Reasoning for the Semantic Web 35

in rule bodies. Query processing in such fuzzy dl-programs can be done by reduction to
normal dl-programs under the answer set semantics. In the special cases of positive and
stratified loosely coupled fuzzy dl-programs, the answer set semantics coincides with
a canonical least model and an iterative least model semantics, respectively, and has a
characterization in terms of a fixpoint and an iterative fixpoint semantics, respectively.

Example 5.1. Consider the fuzzy description logic knowledge base L of a car shopping
Web site, which defines especially (i) the fuzzy concepts of sports cars (SportsCar), “at
most 22 000 C” (LeqAbout22000), and “around 150 horse power” (Around150HP),
(ii) the attributes of the price and of the horse power of a car (hasInvoice resp. hasHP),
and (iii) the properties of some concrete cars (such as a MazdaMX5Miata and a
MitsubishiES). Then, a loosely coupled fuzzy dl-program KB =(L, P) is given by the
set of fuzzy dl-rules P , which contains only the following fuzzy dl-rule encoding the re-
quest of a buyer (asking for a sports car costing at most 22 000 C and having around 150
horse power), where ⊗ may be the conjunction strategy of, e.g., Gödel Logic (that is,
x⊗ y = min(x, y), for all x, y ∈ [0, 1], is used to evaluate ∧ and ← on truth values):

query(x) ←⊗ DL[SportsCar](x) ∧⊗ DL[∃hasInvoice .LeqAbout22000](x)∧⊗
DL[∃hasHP .Around150HP](x) � 1 .

The above fuzzy dl-program KB =(L, P) is positive, and has a minimal model MKB ,
which defines the degree to which some concrete cars in the description logic knowl-
edge base L match the buyer’s request, for example,

MKB(query(MazdaMX5Miata)) = 0.36 , MKB(query(MitsubishiES)) = 0.32 .

That is, the car MazdaMX5Miata is ranked top with the degree 0.36, while the car
MitsubishiES is ranked second with the degree 0.32.

Tightly coupled fuzzy dl-programs under the answer set semantics [35,36] are a tight
integration of fuzzy disjunctive logic programs under the answer set semantics with
fuzzy description logics. They are also a generalization of tightly coupled disjunctive
dl-programs by fuzzy vagueness in both the description logic and the logic program
component. This is the first approach to fuzzy dl-programs that may contain disjunc-
tions in rule heads. Query processing in such programs can essentially be done by a
reduction to tightly coupled disjunctive dl-programs. A closely related work [39] ex-
plores the evaluation of ranked top-k queries. It shows in particular how to compute the
top-k answers in data-complexity tractable tightly coupled fuzzy dl-programs.

Example 5.2. A tightly coupled fuzzy dl-program KB =(L, P) is given by a suitable
fuzzy description logic knowledge base L and the set of fuzzy rules P , which contains
only the following fuzzy rule (where x⊗ y = min(x, y)):

query(x) ←⊗ SportyCar (x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower (x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) � 1 .

Informally, query collects all sports cars, and ranks them according to whether they cost
at most around 22 000 C and have around 150 HP. Another fuzzy rule involving also a

36 T. Lukasiewicz

negation in its body and a disjunction in its head is given as follows (where� x= 1−x
and x⊕ y = max(x, y)):

Small (x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y)∧⊗
not�GeqAbout15000 (y) � 0.7 .

This rule says that a car costing at most around 15 000 C is either small or old. Notice
here that Small and Old may be two concepts in the fuzzy description logic knowledge
base L. That is, the tightly coupled approach to fuzzy dl-programs under the answer
set semantics also allows for using the rules in P to express relationships between the
concepts and roles in L. This is not possible in the loosely coupled approach to fuzzy
dl-programs under the answer set semantics in [33,34], since the dl-queries there can
only occur in rule bodies, but not in rule heads.

6 Probabilistic Fuzzy Description Logic Programs

We finally describe (loosely coupled) probabilistic fuzzy dl-programs [37,38], which
combine fuzzy description logics, fuzzy logic programs (with stratified default-nega-
tion), and probabilistic uncertainty in a uniform framework for the Semantic Web. Intu-
itively, they allow for defining several rankings on ground atoms using fuzzy vagueness,
and then for merging these rankings using probabilistic uncertainty (by associating with
each ranking a probabilistic weight and building the weighted sum of all rankings).
Such programs also give rise to important concepts dealing with both probabilistic un-
certainty and fuzzy vagueness, such as the expected truth value of a crisp sentence
and the probability of a vague sentence. Probabilistic fuzzy dl-programs can be used to
model a shopping agent as described in Example 2.4.

Example 6.1. A (loosely coupled) probabilistic fuzzy dl-program is given by a suitable
fuzzy description logic knowledge base L and the following set of fuzzy dl-rules P ,
modeling some query reformulation / retrieval steps using ontology mapping rules:

query(x) ←⊗ SportyCar (x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower (x, y2) ∧⊗
DL[LeqAbout22000](y1) ∧⊗ DL[Around150HP](y2) � 1 , (1)

SportyCar (x) ←⊗ DL[SportsCar](x) ∧⊗ scpos � 0.9 , (2)

hasPrice(x, y) ←⊗ DL[hasInvoice](x, y) ∧⊗ hipos � 0.8 , (3)

hasPower (x, y) ←⊗ DL[hasHP](x, y) ∧⊗ hhppos � 0.8 , (4)

where we assume the set C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}
of values of random variables and the probability distribution μ on all joint instan-
tiations of these variables, given by μ : scpos, scneg , hipos, hineg, hhppos, hhpneg �→
0.91, 0.09, 0.78, 0.22, 0.83, 0.17 under probabilistic independence. Here, rule (1) is the
buyer’s request, but in a “different” terminology than the one of the car selling site.
Rules (2)–(4) are so-called ontology alignment mapping rules. For example, rule (2)
states that the predicate “SportyCar” of the buyer’s terminology refers to the concept
“SportsCar” of the selected site with probability 0.91.

Uncertainty Reasoning for the Semantic Web 37

The following may be some tight consequences of the above probabilistic fuzzy dl-
program (where for ground atoms q, we use (E[q])[L, U] to denote that the expected
truth value of q lies in the interval [L, U]):

(E[query(MazdaMX5Miata)])[0.21, 0.21], (E[query(MitsubishiES)])[0.19, 0.19] .

That is, the car MazdaMX5Miata is ranked first with the degree 0.21, while the car
MitsubishiES is ranked second with the degree 0.19.

Acknowledgments. This work has been supported by the German Research Founda-
tion (DFG) under the Heisenberg Programme.

References

1. Berners-Lee, T.: Weaving the Web. Harper, San Francisco (1999)
2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Amer. 284(5), 34–43 (2001)
3. Fensel, D., Wahlster, W., Lieberman, H., Hendler, J. (eds.): Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge (2002)
4. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The

making of a web ontology language. J. Web Sem. 1(1), 7–26 (2003)
5. W3C: OWL web ontology language overview. W3C Recommendation, February 10 (2004),

http://www.w3.org/TR/2004/REC-owl-features-20040210/
6. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfia-

bility. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
17–29. Springer, Heidelberg (2003)

7. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–
1539 (2008)

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for descrip-
tion logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004.
LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

9. Lukasiewicz, T.: A novel combination of answer set programming with description logics for
the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 384–398. Springer, Heidelberg (2007)

10. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for
the Semantic Web. J. Web Sem. 6(4), 291–308 (2008)

11. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883
(2008)

12. Udrea, O., Deng, Y., Hung, E., Subrahmanian, V.S.: Probabilistic ontologies and relational
databases. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 1–17. Springer,
Heidelberg (2005)

13. Hung, E., Deng, Y., Subrahmanian, V.S.: TOSS: An extension of TAX with ontologies and
similarity queries. In: Proceedings ACM SIGMOD 2004, pp. 719–730. ACM Press, New
York (2004)

14. Callan, J.: Distributed information retrieval. In: Croft, W.B. (ed.) Advances in Information
Retrieval, pp. 127–150. Kluwer, Dordrecht (2000)

15. Fuhr, N.: A decision-theoretic approach to database selection in networked IR. ACM Trans.
Inf. Syst. 3(17), 229–249 (1999)

http://www.w3.org/TR/2004/REC-owl-features-20040210/

38 T. Lukasiewicz

16. Straccia, U., Troncy, R.: Towards distributed information retrieval in the Semantic Web. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 378–392. Springer, Heidel-
berg (2006)

17. Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic
schema matching. Inf. Process. Manage. 43(3), 552–576 (2007)

18. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for
probabilistic ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G.
(eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)

19. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian description
logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–
159. Springer, Heidelberg (2008)

20. Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. J.
Artif. Intell. Res. 10, 199–241 (1999)

21. Lukasiewicz, T.: Probabilistic logic programming under inheritance with overriding. In: Pro-
ceedings UAI 2001, pp. 329–336. Morgan Kaufmann, San Francisco (2001)

22. Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math.
Artif. Intell. 34(1–3), 35–88 (2002)

23. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–
82 (1995)

24. Lukasiewicz, T.: Probabilistic description logic programs. In: Godo, L. (ed.) ECSQARU
2005. LNCS (LNAI), vol. 3571, pp. 737–749. Springer, Heidelberg (2005)

25. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2),
288–307 (2007)

26. Lukasiewicz, T.: Tractable probabilistic description logic programs. In: Prade, H., Subrah-
manian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 143–156. Springer, Heidelberg
(2007)

27. Calı̀, A., Lukasiewicz, T.: An approach to probabilistic data integration for the Semantic Web.
In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T.,
Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 52–65.
Springer, Heidelberg (2008)

28. Calı̀, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the
Semantic Web. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429.
Springer, Heidelberg (2007)

29. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic
description logic programs for the Semantic Web. J. Data Sem. 12, 95–130 (2009)

30. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Rule-based approaches for rep-
resenting probabilistic ontology mappings. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N.,
Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 -
2007. LNCS (LNAI), vol. 5327, pp. 66–87. Springer, Heidelberg (2008)

31. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilis-
tic description logic programs for representing ontology mappings. In: Hartmann, S., Kern-
Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 178–198. Springer, Heidelberg (2008)

32. Lukasiewicz, T.: Probabilistic description logic programs under inheritance with overriding
for the Semantic Web. Int. J. Approx. Reasoning 49(1), 18–34 (2008)

33. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the Se-
mantic Web. In: Proceedings RuleML 2006, pp. 89–96. IEEE Computer Society, Los Alami-
tos (2006)

34. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the
Semantic Web. Fundam. Inform. 82(3), 289–310 (2008)

Uncertainty Reasoning for the Semantic Web 39

35. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the
answer set semantics for the Semantic Web. In: Marchiori, M., Pan, J.Z., de Marie, C.S. (eds.)
RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)

36. Lukasiewicz, T., Straccia, U.: Tightly coupled fuzzy description logic programs under the
answer set semantics for the Semantic Web. Int. J. Semantic Web Inf. Syst. 4(3), 68–89
(2008)

37. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and
fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 187–
198. Springer, Heidelberg (2007)

38. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and
fuzzy vagueness. Int. J. Approx. Reasoning 50(6), 837–853 (2009)

39. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness
for the Semantic Web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI),
vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

A Preferential Tableaux Calculus for
Circumscriptive ALCO�

Stephan Grimm1 and Pascal Hitzler2

1 FZI Research Center for Information Technologies, Univ. of Karlsruhe, Germany
2 Institute AIFB, University of Karlsruhe, Germany

Abstract. Nonmonotonic extensions of description logics (DLs) allow
for default and local closed-world reasoning and are an acknowledged
desired feature for applications, e.g. in the Semantic Web. A recent ap-
proach to such an extension is based on McCarthy’s circumscription,
which rests on the principle of minimising the extension of selected pred-
icates to close off dedicated parts of a domain model. While decidabil-
ity and complexity results have been established in the literature, no
practical algorithmisation for circumscriptive DLs has been proposed so
far. In this paper, we present a tableaux calculus that can be used as
a decision procedure for concept satisfiability with respect to concept-
circumscribed ALCO knowledge bases. The calculus builds on existing
tableaux for classical DLs, extended by the notion of a preference clash
to detect the non-minimality of constructed models.

1 Introduction

Modern description logics (DLs) [10] are formalisations of semantic networks
and frame-based knowledge representation systems that build on classical logic
and are the foundation of the W3C Web Ontology Language OWL [18]. To also
capture non-classical features, such as default and local closed-world reasoning,
nonmonotonic extensions to DLs have been investigated. While in the past such
extensions were primarily devised using autoepistemic operators [5,14,12] and
default inclusions [1], a recent proposal [2] is to extend DLs by circumscription
and to perform nonmonotonic reasoning on circumscribed DL knowledge bases.
In circumscription, the extension of selected predicates – i.e. concepts or roles
in the DL case – can be explicitly minimised to close off dedicated parts of a
domain model, resulting in a default reasoning behaviour. In contrast to the
former approaches, nonmonotonic reasoning in circumscriptive DLs also applies
to “unknown individuals” that are not explicitly mentioned in a knowledge base,
but whose existence is guaranteed due to existential quantification (see also [8]).

The proposal in [2] presents a semantics for circumscriptive DLs together with
decidability and complexity results, in particular for fragments of the logic
ALCQIO. However, a practical algorithmisation for reasoning in circumscrip-
tive DLs has not been addressed so far. In this paper, we present an algorithm
that builds on existing DL tableaux methods for guided model construction.
� This work is partially supported by the German Federal Ministry of Economics

(BMWi) under the project THESEUS (number 01MQ07019).

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 40–54, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Preferential Tableaux Calculus for Circumscriptive ALCO 41

In particular, we present a tableaux calculus that supports reasoningwith concept-
circumscribed knowledge bases in the logicALCO. We focus on the reasoning task
of concept satisfiability, which is motivated by an application of nonmonotonic
reasoning in a Semantic Web setting, described in [9]. While typical examples in
the circumscription literature deal with defeasible conclusions of circumscriptive
abnormality theories, in this setting we use minimisation of concepts to realise
a local closed-world assumption for the matchmaking of semantically annotated
resources.

The reason for our choice of ALCO as the underlying DL is twofold. First, we
want to present the circumscriptive extensions for the simplest expressive DL
ALC for sake of a clear and concise description of the tableaux modifications.
Second, there is the necessity to deal with nominals within the calculus in order
to keep track of extensions of minimised concepts, so we include O.

The basic idea behind our calculus is to detect the non-minimality of candidate
models, produced by a tableaux procedure for classical DLs, via the notion of
a preference clash, and based on the construction of a classical DL knowledge
base that has a model if and only if the original candidate model produced
is not minimal. This check can be realised by reasoning in classical DLs with
nominals. We formally prove this calculus to be sound and complete. A similar
idea has been applied in [15] for circumscriptive reasoning in first-order logic. As
presented in the pure first-order setting, however, that calculus does not directly
yield a decision procedure for DL reasoning as it is only decidable if function
symbols are disallowed, which correspond to existential restrictions in DLs.

The paper is structured as follows. In Section 2 we recall circumscriptive DLs
from [2] for the case of ALCO. In Section 3, we present our tableaux calculus
and prove it to be a decision procedure for circumscriptive concept satisfiability.
We conclude in Section 4. Full proofs, partly omitted here, can be found in [7].

2 Description Logics and Circumscription

Description Logics (DLs) [10] are typically fragments of first-order predicate logic
that provide a well-studied formalisation for knowledge representation systems.
Circumscription [13], on the other hand, is an approach to nonmonotonic rea-
soning based on the explicit minimisation of selected predicates. In this section,
we present the description logic ALCO extended with circumscription according
to [2], which allows for nonmonotonic reasoning with DL knowledge bases.

2.1 Circumscriptive ALCO
The basic elements to represent knowledge in DLs are individuals, which repre-
sent objects in a domain of discourse, concepts, which group together individuals
with common properties, and roles, which put individuals in relation. The count-
ably infinite sets NI , NC and Nr of individual, concept and role names, respec-
tively, form the basis to construct the syntactic elements of ALCO according to
the following grammar, in which A ∈ NC denotes an atomic concept, C(i) denote
complex concepts, r ∈ Nr denotes a role and ai ∈ NI denote individuals.

C(i) −→ ⊥ | � | A | ¬C | C1 � C2 | C1 C2 | ∃ r .C | ∀ r .C | {a1, . . . , an}

42 S. Grimm and P. Hitzler

The negation normal form of a concept C, which we denote by ‖C‖, is obtained
from pushing negation symbols ¬ into concept expressions to occur in front of
atomic concepts only, as described in [17].

The semantics of the syntactic elements of ALCO is defined in terms of an
interpretation I = (ΔI , ·I) with a non-empty set ΔI as the domain and an
interpretation function ·I that maps each individual a ∈ NI to a distinct element
aI ∈ ΔI and that interprets (possibly) complex concepts and roles as follows.

�I = ΔI , ⊥I = ∅ , AI ⊆ ΔI , rI ⊆ ΔI ×ΔI

(C1 � C2)I = CI
1 ∩ CI

2
(C1 C2)I = CI

1 ∪ CI
2

(¬C)I = ΔI \ CI

(∀ r .C)I = {x ∈ ΔI | ∀y.(x, y) ∈ rI → y ∈ CI}
(∃ r .C)I = {x ∈ ΔI | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

({a1, . . . , an})I = {aI1 , . . . , aIn}

Notice that we assume unique names for individuals, i.e. aI1 �= aI2 for any inter-
pretation I and any pair a1, a2 ∈ NI .

An ALCO knowledge base KB is a finite set of axioms formed by concepts,
roles and individuals. A concept assertion is an axiom of the form C(a) that
assigns membership of an individual a to a concept C. A role assertion is an
axiom of the form r(a1, a2) that assigns a directed relation between two individ-
uals a1, a2 by the role r. A concept inclusion is an axiom of the form C1 � C2
that states the subsumption of the concept C1 by the concept C2, while a con-
cept equivalence axiom C1 ≡ C2 is a shortcut for two inclusions C1 � C2 and
C2 � C1. An interpretation I satisfies a concept assertion C(a) if aI ∈ CI , a
role assertion r(a1, a2) if (aI1 , aI2) ∈ rI , a concept inclusion C1 � C2 if CI

1 ⊆ CI
2

and a concept equivalence C1 ≡ C2 if CI
1 = CI

2 . An interpretation that satisfies
all axioms of a knowledge base KB is called a model of KB . A concept C is called
satisfiable with respect to KB if KB has a model in which CI �= ∅ holds.

We now turn to the circumscription part of the formalism, which allows for
nonmonotonic reasoning by explicit minimisation of selected ALCO concepts.
We adopt a slightly simplified form of the circumscriptive DLs presented in
[2] by restricting our formalism to parallel concept circumscription (without
prioritisation among minimised concepts). For this purpose we define the notion
of a circumscription pattern as follows.

Definition 1 (circumscription pattern, <CP). A circumscription pattern1

CP is a tuple (M, F, V) of sets of atomic concepts called the minimised, fixed and
varying concepts. Based on CP, a preference relation on interpretations is defined
by setting J <CP I if and only if the following conditions hold:

1 The notion of circumscription pattern introduced in [2] is more general and allows
the sets M , F and V to also contain roles. There, a circumscription pattern according
to Definition 1 is called a concept circumscription pattern. However, in the general
case role circumscription leads to undecidability, which was also shown in [2]. As
our calculus does not allow for role circumscription, we use the term circumscription
pattern to denote a concept circumscription pattern in the sense of [2].

A Preferential Tableaux Calculus for Circumscriptive ALCO 43

(i) ΔJ = ΔI and aJ = aI for all aJ ∈ ΔJ

(ii) ĀJ = ĀI for all Ā ∈ F
(iii) ÃJ ⊆ ÃI for all Ã ∈M
(iv) there is an Ã ∈ M such that ÃJ ⊂ ÃI

For nonmonotonic reasoning, a classical ALCO knowledge base is circumscribed
with a circumscription pattern and reasoning is performed by means of the
resulting circumscribed knowledge base, defined as follows.

Definition 2 (circumscribed knowledge base). A circumscribed knowledge
base circCP(KB) is a knowledge base KB together with a circumscription pattern
CP = (M, F, V), such that the sets M , F and V partition the atomic concepts
that occur in KB. An interpretation I is a model of circCP(KB) if I is a model
of KB and there exists no model J of KB with J <CP I.

The intuition behind the preference relation is to identify interpretations that are
“smaller” in the extensions of minimised concepts than others, to select only the
“smallest” ones as the preferred models. Fixed concepts can be used to restrict
this selection and to prevent certain models from being preferred.

2.2 Reasoning with Circumscribed Knowledge Bases

The typical DL reasoning tasks are defined as expected (see [2]) with respect
to the models of a circumscribed knowledge base circCP(KB), which are just the
preferred models of KB with respect to CP. For our calculus, we focus on concept
satisfiability, which we define next. Other reasoning tasks can be reduced to
concept satisfiability, as described in [2].

Definition 3 (circumscriptive concept satisfiability). A concept C is sat-
isfiable with respect to a circumscribed knowledge base circCP(KB) if some model
I of circCP(KB) satisfies CI �= ∅.

Observe that in classical DLs an atomic concept A is satisfiable with respect to
a knowledge base KB “by default” if there is no evidence for its unsatisfiability
in KB , i.e. any A is satisfiable with respect to the empty knowledge base. Now
suppose that A is a minimised concept in a circumscription pattern CP by which
KB is circumscribed. Then, A is unsatisfiable with respect to circCP(KB) for
KB = ∅. Only if we explicitly assure that the extension of A is non-empty, e.g.
by setting KB = {A(a)}, A becomes satisfiable.

A known result in circumscription is that there is a close relation between
fixed and minimised predicates. Namely, fixed predicates can be simulated by
minimising them together with their complements. In case of concept circum-
scription this is achieved by introducing additional concept names and respective
equivalence axioms, as reflected by the following proposition (see [2,4,7]).

Proposition 1 (simulation of concept fixation). Let C be a concept, let
KB be a knowledge base and let CP = (M, F, V) be a circumscription pattern with
F = {Ā1, . . . , Ān}. Furthermore, let

44 S. Grimm and P. Hitzler

KB ′ = KB ∪ {Ãi ≡ ¬Āi | 1 ≤ i ≤ n}
and let CP

′ = (M ∪ {Ã1, . . . , Ãn, Ā1, . . . , Ān}, ∅, V) ,

where Ã1, . . . , Ãn are atomic concepts that do not occur in KB, CP or C. Then, C
is satisfiable with respect to circCP(KB) if and only if it is satisfiable with respect
to circCP′(KB ′).

To illustrate the reasoning task of checking concept satisfiability with respect to
circumscribed knowledge bases we present the following example.

Example 1. The following knowledge base describes species of the arctic sea.

KB1 = { Bears(PolarBear), ¬Bears(BlueWhale), EndangeredSpecies(BlueWhale) }

According to KB1, the polar bear is a kind of bear, while the blue whale is not.
Moreover, the blue whale is explicitly listed to be an endangered species, while
the polar bear does not occur on this list. The following circumscription pattern
allows to “switch off” the open-world assumption for the list of endangered
species by minimising the extension of the concept EndangeredSpecies.

CP = (M = {EndangeredSpecies}, F = ∅, V = {Bears})

The concept Bears�EndangeredSpecies is unsatisfiable with respect to the circum-
scribed knowledge base circCP(KB1), reflecting that there cannot be an individ-
ual that is both an endangered species and a kind of bear. The only endangered
species in the preferred models of KB1 is the blue whale, which is explicitly said
to be no kind of bear.

Recently, however, the polar bear unfortunately had to be included in the list
of endangered species, which is reflected by the following update of KB1.

KB2 = KB1 ∪ { EndangeredSpecies(PolarBear) }

With respect to circCP(KB2), the concept Bears�EndangeredSpecies is satisfiable,
as the polar bear is a kind of bear and at the same time an endangered species
in the preferred models of KB2.

Instead of using a concept assertion for the explicitly mentioned individual
PolarBear, we could alternatively update KB1 by introducing an existentially
quantified object through an inclusion axiom stating that the arctic sea is a
habitat for an endangered bear species, as follows.

KB3 = KB1 ∪ { ∃ isHabitatFor .(Bears � EndangeredSpecies)(ArcticSea) }

The conceptBears�EndangeredSpecies is also satisfiablewith respect to circCP(KB3).
Observe that in any preferred model of KB3 the extension of EndangeredSpecies con-
tains an unknown individual whose existence is propagated from the known indi-
vidual ArcticSea via the role isHabitatFor. Alternative approaches to nonmonotonic
reasoning in DL, such as [6,1], typically treat unknown objects differently and do
not allow for their defeating of conclusions (see also [8]).

A Preferential Tableaux Calculus for Circumscriptive ALCO 45

3 Tableaux Calculus for Circumscriptive ALCO

In this section, we introduce a preferential tableaux calculus that decides the
satisfiability of a concept with respect to a circumscribed knowledge base. We
build on the notion of constraint systems, which map to tableaux branches in
tableaux calculi, and we keep the presentation similar to that in [3,5].

3.1 Constraint Systems and Their Solvability

In addition to the alphabet of individuals NI , we introduce a set NV of variable
symbols. We denote elements of NI by a, elements of NV by x and elements of
NI ∪ NV by o, all possibly with an index. A constraint is a syntactic entity of
one of the forms o : C or (o1, o2) : r or ∀x.x : C, where C is an ALCO concept,
r is a role and the o’s are objects in NI ∪ NV . A constraint system, denoted by
S, is a finite set of constraints. By NS

I we denote the individuals and by NS
V the

variables that occur in a constraint system S.
Given an interpretation I, we define an I-assignment as a function αI :

NI ∪ NV �→ ΔI , that maps every variable of NV to an element of ΔI and every
individual a to aI , i.e. αI(a) = aI for all a ∈ NI .

A pair (I, αI) of an interpretation I and an I-assignment αI satisfies a
constraint o : C if αI(o) ∈ CI , a constraint (o1, o2) : r if (αI(o1), αI(o2)) ∈ rI

and a constraint ∀x.x : C if CI = ΔI . A solution for a constraint system S is a
pair (I, αI) that satisfies all constraints in S.

We denote by S[o1/o2] the constraint system that is obtained by replacing any
occurrence of object o1 by object o2 in every constraint in S. Furthermore, we
define the constraint system SKB to be obtained from an ALCO knowledge base
KB by including one constraint of the form a : ‖C‖ for each concept assertion
C(a) ∈ KB , one constraint (a1, a2) : r for each role assertion r(a1, a2) ∈ KB and
one constraint ∀x.x : ‖¬C1 C2‖ for each concept inclusion C1 � C2 ∈ KB , such
that SKB captures all the information in KB .

To ensure termination of our calculus in the presence of general inclusion ax-
ioms, we need to introduce the notion of blocking (see e.g. [11]). Given constraint
systems S and S∗ ⊆ S, we say that an object o1 is a direct predecessor of an ob-
ject o2, if S∗ contains a role constraint (o1, o2) : r for some role r. We denote by
predecessor the transitive closure in S∗ of the direct predecessor relation. More-
over, we say that, in a constraint system S with S∗ ⊆ S, an object o2 is blocked by
an object o1 if o1 is a predecessor of o2 and if {C | o2 : C ∈ S} ⊆ {C | o1 : C ∈ S}
holds. The set S∗ is maintained by the tableaux calculus and used to control
which role constraints in S shall be taken into consideration for blocking.

Due to the analogy between a constraint system and a knowledge base the
following Lemma holds.

Lemma 1. Let KB be an ALCO knowledge base, S be a constraint system with
SKB ⊆ S and I be an interpretation. If I is a model of KB then, for any I-
assignment αI , (I, αI) is a solution for SKB . Furthermore, for any solution
(I, αI) for S, I is a model of KB.

46 S. Grimm and P. Hitzler

Our calculus is based on finding a solution for constraint systems the interpre-
tation of which is a preferred model of an initial knowledge base with respect to
a circumscription pattern. For this purpose we define the notion of solvability.

Definition 4 (CP-solvability). A constraint system S is CP-solvable with re-
spect to KB if there is a model I of KB and an I-assignment αI such that
(I, αI) is a solution for S and there is no model J of KB with J <CP I.

By the next proposition, we reduce circumscriptive concept satisfiability to
checking a constraint system for its solvability.

Proposition 2 (satisfiability reduction). Let KB be a knowledge base, CP be
a circumscription pattern and C be a concept. C is satisfiable with respect to
circCP(KB) if and only if SKB ∪ {x : C} is CP-solvable with respect to KB.

Proof. ⇒: Since C is satisfiable with respect to circCP(KB), there is a model I
of circCP(KB) in which CI is nonempty. Let a be an individual with aI ∈ CI .
Since I is also a model of KB and due to Lemma 1, (I, αI) is a solution for
SKB for any I-assignment αI . Let αIx,a be an I-assignment with αIx,a(x) = aI .
Then, (I, αIx,a) satisfies, besides the constraints in SKB , also the constraint x : C,
because of αIx,a(x) ∈ CI , and is therefore a solution for SKB ∪ {x : C}. Since
there is no other model J of KB with J <CP I, SKB ∪ {x : C} is CP-solvable
with respect to KB .
⇐: Since SKB ∪ {x : C} is CP-solvable with respect to KB , there is a model I of
KB and an I-assignment αI such that (I, αI) is a solution for SKB ∪ {x : C}.
Moreover, there exists an element aI ∈ ΔI with αI(x) = aI ∈ CI because
(I, αI) satisfies the constraint x : C. By definition of CP-solvability, there is no
model J of KB with J <CP I, and thus, I is a model of circCP(KB) in which
CI is non-empty. Hence, C is satisfiable with respect to circCP(KB). �

3.2 Tableaux Expansion Rules

Constraint systems are manipulated by tableaux expansion rules, which decom-
pose the structure of complex logical constructs or replace variables by concrete
individuals. By expanding a constraint system with the resulting constraints, our
calculus tries to build a model for the initial knowledge base that is represented
by the constraint system. To decide the satisfiability of a concept C with re-
spect to a circumscribed knowledge base circCP(KB) according to Proposition 2,
we initialise the calculus with the constraint system S = SKB ∪ {x : ‖C‖} and
S∗ = ∅. Without loss of generality, we assume all fixed predicates to be simu-
lated according to Proposition 1, and thus, the set F in CP to be empty. The
algorithm exhaustively performs the tableau rules given in Table 1, however,
the −→<CP

-rule must not be applied if any of the other rules is applicable,
i.e. the −→<CP

-rule has a lower precedence than the other rules. The notion of
predecessor is evaluated with respect to S∗.

Observe that the rules are parametric with respect to KB and CP. The rules
−→∀x , −→
, −→∃ and −→∀ are deterministic and their application yields a

A Preferential Tableaux Calculus for Circumscriptive ALCO 47

Table 1. Tableau Expansion Rules for Circumscriptive ALCO. The −→<CP
-rule must

not be executed if any of the other rules is applicable. Blocking is evaluated with respect
to S∗.

−→∀x : if ∀x.x : C ∈ S and o : C �∈ S
then S← S ∪ {o : C}

−→� : if o : C1 � C2 ∈ S and {o : C1, o : C2} �⊆ S
then S← S ∪ {o : C1, o : C2}

−→� : if o : C1
 C2 ∈ S and {o : C1, o : C2} ∩ S = ∅
then S ← S ∪ {o : C1} or S ← {o : C2}

−→∃ : if o1 : ∃ r .C ∈ S and {(o1, o2) : r, o2 : C} �⊆ S and o1 is not blocked
then S ← S ∪ {(o1, x) : r, x : C}, with x a new variable

and (o1, x) : r is added to S∗

−→∀ : if o1 : ∀ r .C ∈ S and (o1, o2) : r ∈ S and o2 : C �∈ S
then S ← S ∪ {o2 : C}

−→O : if x : {a1, . . . , ak} ∈ S
then S ← S[x/ai] for any i ∈ {1, . . . , k} ⊂ N

and all (o, x) : r are removed from S∗

−→<CP
: if x : Ã ∈ S and Ã ∈ M

then S ← S[x/a] for any a ∈ NS
I ∪ {ι}, with ι a new individual

and S∗ ← S∗[x/ι] if a = ι

single constraint system. Contrarily, the rules −→�, −→O and −→<CP
are non-

deterministic, meaning that they can be applied in multiple ways that yield dif-
ferent constraint systems. Any such non-deterministic choice produces a
branching point for backtracking. In the −→�-rule, the disjunction leads to the
choice of expanding on either of the disjuncts, while in the −→O- and −→<CP

-
rules the presence of several individuals leads to a choice of selecting one for
replacement of the variable x. Moreover, the −→<CP

-rule introduces new indi-
viduals into the constraint system whenever ι is selected for replacement,2 while
the −→∃-rule introduces new variables whenever an object lacks a role filler.

Definition 5 (completion). A completion of a constraint system S with regard
to CP and KB is any constraint system that results from the application of the
algorithm to S, using CP and KB, and to which none of the rules is applicable.

The algorithm finally leads to a completion of the initial constraint system that
contains the exhaustive decomposition of complex constraints, which is estab-
lished by the following lemma.

Lemma 2 (termination). For any constraint system S, the algorithm always
terminates, and yields a completion of S.

Proof (Sketch). Note that the top part of Table 1 (without the −→<CP
-rule)

and corresponding algorithm coincides with that of [11] for ALCO. In fact, the
termination proof from [11], can easily be adapted to our setting.
2 The idea of including a new individual ι as a representative for the infinitely many

remaining objects in NI \ NS
I in the domain is taken from [5].

48 S. Grimm and P. Hitzler

Moreover, we establish the result that the tableaux expansion rules of our cal-
culus preserve the solvability of constraint systems as follows.

Proposition 3 (solvability preservation). Let KB be an ALCO knowledge
base, CP be a circumscription pattern and S, S′ be two constraint systems.
1. If S′ results from S by application of a deterministic rule then S is CP-solvable

with respect to KB if and only if S′ is CP-solvable with respect to KB.
2. If S′ results from S by application of a non-deterministic rule then S is

CP-solvable with respect to KB if S′ is CP-solvable with respect to KB. Fur-
thermore, if S is CP-solvable with respect to KB and a non-deterministic rule
applies to S then it can be applied in such a way that the resulting constraint
system S′ is also CP-solvable with respect to KB.

Proof. The claim 1. for the rules −→
, −→∃, −→∀, −→� and −→O follows from
the results in [11]. (See also [7] for a full proof.) Therefore, we concentrate on
the claim 2. for the −→<CP

-rule.
⇐: Assume that S′ is obtained from S by application of the −→<CP

-rule and S′

is CP-solvable with respect to KB . Let (I, αI) be a solution for S′ such that I is a
model of KB and there is no model J of KB with J <CP I. As the −→<CP

-rule
has been applied, S′ = S[x/a] for some individual a ∈ NI . As a solution for S′,
(I, αI) satisfies all the constraints in S[x/a], in particular those in which x has
been replaced by a. Let αIx,a be the I-assignment that coincides with αI except
that αIx,a(x) = aI . Then, (I, αIx,a) satisfies all the constraints in S in which x
occurs, and since S and S′ differ only by these, also all remaining constraints in
S. Hence, (I, αIx,a) is a solution for S, and since there is no model J of KB with
J <CP I by assumption, S is CP-solvable with respect to KB .
⇒: Assume that S′ is obtained from S by application of the −→<CP

-rule and
that S is CP-solvable with respect to KB . Let (I, αI) be a solution for S such
that I is a model of KB and there is no model J of KB with J <CP I. As the
−→<CP

-rule has been applied, S contains a constraint of the form x : Ã with
Ã ∈ M . As a solution for S, (I, αI) satisfies this constraint and there is some
individual a ∈ NI with αI(x) = aI . We distinguish the two cases in which a) a
is in NS

I and b) a is a new individual not in NS
I :

– a) In case a ∈ NS
I , a can be picked for the application of the −→<CP-rule

and it directly follows that (I, αI) is a solution for the resulting constraint
system S′ = S[x/a].

– b) In case a ∈ NI \ NS
I , ι ∈ NI \ NS

I can be picked for the application of
the −→<CP-rule as a representative for any new individual. Then, S[x/a]
and S[x/ι] differ only by the naming of an individual new to S and are in
this sense isomorphic3. Hence, as (I, αI) is a solution for S[x/a] it is also a
solution for the resulting constraint system S′ = S[x/ι].

Finally, since (I, αI) is a solution for S′ and there is no model J of KB with
J <CP I by assumption, the −→<CP-rule can be applied to S in such a way that
S′ is CP-solvable with respect to KB . �
3 See also the analogous argument in [5, Lemma 3.6].

A Preferential Tableaux Calculus for Circumscriptive ALCO 49

Algorithm 1. Construct a knowledge base KB ′

Require: a constraint system S produced for an initial ALCO knowledge base KB
circumscribed with a circumscription pattern CP = (M, F, V)

KB ′ ← KB , D ← {⊥}
for all Ã ∈ MKB do

EÃ := {a | a : Ã ∈ S}
if #EÃ > 0 then

KB ′ ← KB ′ ∪ {Ã � {a1, . . . , an}}, a1, . . . an ∈ EÃ

D ← D ∪ {{a1, . . . , an} � ¬Ã}, a1, . . . an ∈ EÃ

else
KB ′ ← KB ′ ∪ {Ã � ⊥}

end if
end for
KB ′ ← KB ′ ∪ {(⊔D

Ã
∈D DÃ)(ι)}, with ι a new individual

3.3 Notions of Clash and Detection of Inconsistencies

Once a completion of an initial constraint system has been produced, its solv-
ability can be verified by using the notion of a clash. In addition to the clashes
defined in [5,16], which represent obvious contradictions in a knowledge base, we
introduce the notion of a preference clash, which reflects non-minimality of the
respective model with regard to the preference relation <CP.

Definition 6 (Clashes). Let S be a constraint system.
S contains an inconsistency clash if at least one of the following holds:
(i) S contains a constraint of the form o : ⊥.
(ii) S contains two constraints of the form o : A, o : ¬A.
S contains an individual clash if at least one of the following holds:
(iii) S contains a constraint of the form a : {a1, . . . , ak}.

with a �= ai for all i ∈ {1, . . . , k} ⊂ N.
(vi) S contains a constraint of the form a : ¬{a1, . . . , ak}.

with a = ai for some i ∈ {1, . . . , k} ⊂ N.
S contains a preference clash, parameterised with a circumscription pattern

CP and an ALCO knowledge base KB, if the following condition holds:
(v) the constraint system SKB ′ [ι/x] has a completion, with regard to

CP
′ = (∅, ∅, F ∪M ∪ V) and KB ′, that does neither contain an

inconsistency clash nor an individual clash, while the ALCO
knowledge base KB ′ is constructed according to Algorithm 1.

The idea behind the construction of KB ′ in Algorithm 1 is to freeze the instance
situation for minimised concepts as asserted in the current constraint system
perceived as reflecting some model I of the original knowledge base KB . Then,
KB ′ is constructed such that for any of its models J it holds that J <CP I,
and thus, checking KB ′ for unsatisfiability verifies minimality of I. By inclusion
axioms for minimised concepts Ã the conditions (iii) (and indirectly also (ii))
of Definition 1 are assured to hold for each model of KB ′. Moreover, by the
disjunctive concept assertion condition (iv) of Definition 1 is assured to hold,

50 S. Grimm and P. Hitzler

such that any model of KB ′ is actually “smaller” than I in some minimised
concept, which is achieved by mapping the not uniquely named individual ι to
one that already occurs in the extension of a minimised concept. Although in
general we assume unique names in the formalism, the replacement of the new
individual ι by the variable x within SKB ′[ι/x] in condition (v) of Definition 6
allows ι to be (indirectly) identified with some other individual.

We illustrate the detection of clashes in our calculus by means of an example.

Example 2. Consider the circumscribed knowledge base circCP(KB) with the fol-
lowing ALCO knowledge base KB and circumscription pattern CP.

KB = { ¬Bears(BlueWhale) , EndangeredSpecies(BlueWhale) }
CP = (M = {EndangeredSpecies}, F = ∅, V = {Bears})

We perform our calculus to check whether the concept Bears�EndangeredSpecies

is satisfiable with respect to circCP(KB).
We start with the constraint system initialised as follows.

SKB ∪ {x : Bears � EndangeredSpecies} = { BlueWhale : ¬Bears ,
BlueWhale : EndangeredSpecies , x : Bears � EndangeredSpecies }

From the application of the −→
-rule and subsequently of the −→<CP
-rule, the

following two resulting completions are produced.
S1 = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies , BlueWhale : Bears }
S2 = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies ,

ι0 : Bears , ι0 : EndangeredSpecies }
The completion S1 obviously contains an inconsistency clash, since it contains
both the constraints BlueWhale : Bears and BlueWhale : ¬Bears.

For the completion S2, we construct KB ′ according to Algorithm 1 as follows.

KB ′ = { ¬Bears(BlueWhale) , EndangeredSpecies(BlueWhale) ,
EndangeredSpecies � {BlueWhale , ι0} ,
¬EndangeredSpecies � {BlueWhale , ι0}(ι) }

It can be verified by classical reasoning techniques that KB ′ has a model when
the new individual ι is not uniquely named serving as a variable, and thus, the
completion S2 contains a preference clash.

Since both S1 and S2 contain some clash, the initial constraint system SKB ∪
{x : Bears � EndangeredSpecies} has no clash-free completion. Hence, the concept
Bears � EndangeredSpecies is unsatisfiable with respect to circCP(KB).

In the description logic literature, tableaux methods for sound and complete
reasoning have been proposed for various DL variants including ALCO. They
detect inconsistencies in DL knowledge bases by checking completions of con-
straint systems for the occurrence of a clash. We include this result adapted to
our setting in form of the following proposition.

Proposition 4 (ALCO correctness). Let KB be an ALCO knowledge base and
S be the completion of a constraint system containing at least the constraints of
SKB , with regard to any circumscription pattern and KB. Then S has a solution
if and only if it contains neither an inconsistency clash nor an individual clash.

A Preferential Tableaux Calculus for Circumscriptive ALCO 51

Proof (Sketch). The top part of Table 1 (without the −→<CP
-rule) captures the

algorithm from [11], which is known to be correct. In fact, the proof from [11]
essentially carries over.

Based on this correspondence between clash-free completions and their solutions,
we can establish the correlation between solvability of constraint systems and
the absence of preference clashes in their completions as the main result of this
paper by the following proposition.

Proposition 5 (circumscriptive ALCO correctness). Let KB be an ALCO
knowledge base, CP be a circumscription pattern and S be the completion of a
constraint system containing at least the constraints of SKB , with regard to CP and
KB. S is CP-solvable with respect to KB if and only if it contains no inconsistency
clash, no individual clash and no preference clash with respect to CP and KB.

Proof
⇒: Assume that S is CP-solvable with respect to KB . According to Definition 4
there is a solution (I, αI) for S, such that I is a model of KB and there is no
model J of KB with J <CP I. From Proposition 4, we know that S does neither
contain an inconsistency clash nor an individual clash. We show by contradiction
that S does also not contain a preference clash.

Assume that S contains a preference clash with respect to CP and KB . Then,
SKB ′ [ι/x] has a completion S′ with regard to CP = (∅, ∅, M∪F ∪V) and KB ′ that
contains no inconsistency and no individual clash, where the knowledge base KB ′

is constructed based on CP and KB according to Algorithm 1. Observe that, by
construction, KB ⊂ KB ′ and that ι is a new individual in KB ′ that cannot occur
in KB . Hence, we have that SKB ⊂ SKB ′ [ι/x] ⊆ S′. Proposition 4(⇐) implies
that there is a solution (J , αJ) for S′, since S′ is clash-free. Due to Lemma 1,
and since SKB ⊆ S′, it follows that J is a model of both KB ′ and KB . It remains
to show that J <CP I, to contradict the containment of a preference clash in S.
Without loss of generality, we can assume that ΔI = ΔJ and that aI = aJ for
all individuals a ∈ NI . Moreover, we assumed F = ∅ due to Proposition 1, such
that ĀJ = ĀI for all Ā ∈ F vacuously holds. We prove the following claims: a)
ÃJ ⊆ ÃI for all Ã ∈ M , and b) ÃJ ⊂ ÃI for some Ã ∈M .

– a) Due to the inclusion axioms for minimised concepts inserted into KB ′

by Algorithm 1, and since J is a model of KB ′, J has the property ÃJ ⊆
{αJ (a) | a : Ã ∈ S} for each Ã ∈ M . For every Ã ∈ M , all the constraints
a : Ã ∈ S are satisfied by (I, αI), i.e. αI(a) ∈ ÃI , and therefore we have
that {αI(a) | a : Ã ∈ S} ⊆ ÃI . Since αI and αJ coincide on individuals, it
follows that ÃJ ⊆ ÃI for all Ã ∈M .

– b) By construction of KB ′, SKB ′ [ι/x] contains a constraint x :
⊔

Ã DÃ, and for
one of the disjuncts DÃ its completion S′ contains a constraint of the form
x : {a1, . . . , an} � ¬Ã with ai : Ã ∈ S for i = 1 . . .n. Since S′ is a completion
to which none of the tableaux rules apply, the −→
- and the −→O-rule
have produced the constraints a : {a1, . . . , an} and a : ¬Ã in S′ in which the
variable x has been replaced by an individual a. As a solution for S′, (J , αJ)
satisfies these two constraints and we have that both αJ (a) ∈ (ΔJ \ ÃJ)

52 S. Grimm and P. Hitzler

and αJ (a) ∈ {αJ (a) | a : Ã ∈ S} hold. This implies that αJ (a) �∈ ÃJ and,
since (I, αI) satisfies the constraint a : Ã, that αJ (x) = αI(a) ∈ ÃI . From
the arguments under b) we already know that ÃJ ⊆ ÃI , and since we have
an element aI which is in ÃI but not in ÃJ , it follows that ÃJ ⊂ ÃI .

⇐: Let S contain no clash. From Proposition 4 we know that there is a solution
(I, αI) for S. (We assume here that this solution is directly obtained from S by
construction, in analogy to the notion of a canonical interpretation; see e.g. [3].)
We show by contradiction that there is no model J of KB such that J <CP I.

Assume that there is a model J of KB with J <CP I. First we show that for
some J -assignment αJ , (J , αJ) is a solution for SKB ′ [ι/x], where the knowledge
base KB ′ is constructed according to Algorithm 1. Due to J <CP I we know
that ΔJ = ΔI and aJ = aI for all individuals a ∈ ΔI , and that for some
Ã ∈ M there is an element ιJ ∈ ΔJ which is in ÃI but not in ÃJ . Let αJx,ι

be a J -assignment with αJx,ι(x) = ιJ . Since J is a model of KB , (J , αJx,ι) is a
solution for SKB due to Lemma 1. Moreover, as the individual ι is new to KB ′ and
KB ⊂ KB ′ by construction of KB ′, the replacement of ι by x does not affect any
constraint in SKB and we have that SKB ⊂ SKB ′ [ι/x]. Hence, it suffices to show
that the constraints in SKB ′ [ι/x]\SKB are satisfied by (J , αJx,ι). For this purpose,
we consider the axioms in KB ′ \ KB that are inserted into KB ′ by Algorithm 1,
and that can be a) concept inclusion axioms of the form Ã � {a1, . . . , an},
or b) the concept assertion axiom (

⊔
Ã DÃ)(ι) with disjuncts DÃ of the form

¬Ã � {a1, . . . , an}, for individuals {ai | ai : Ã ∈ S} with i ∈ {1, . . . , n}.

– a) For every Ã ∈ M , KB ′ contains an axiom Ã � {a1, . . . , an} with indi-
viduals ai that occur in concept constraints of the form ai : Ã within S.
Since S is a completion, in any constraint of the form x : Ã the variable
x has been replaced by an individual a ∈ NS

I in S due to the −→<CP
-

rule, such that for any constraint o : Ã ∈ S we have that o = ai for some
i ∈ {1, . . . , n}. Since I is obtained by construction from S, we have that
ÃI = {αI(a1), . . . , αI(an)} = {aI1 , . . . , aIn}. Since ÃJ ⊆ ÃI holds by as-
sumption and aIi = aJi for all individuals ai, J satisfies ÃJ ⊆ {aJ1 , . . . , aJn },
and thus, the axiom Ã � {a1, . . . , an} for every Ã ∈ M . If there are no con-
straints ai : Ã in S′ then ÃI = ∅ and the respective axiom has the form
Ã � ⊥. Hence, (J , αJx,ι) satisfies all the constraints ∀x.x : C that result
from these inclusion axioms in SKB ′[ι/x].

– b) Furthermore, due to the concept assertion (
⊔

Ã DÃ)(ι) in KB ′, SKB ′[ι/x]
contains the constraint x :

⊔
Ã DÃ with disjuncts DÃ of the form ¬Ã �

{a1, . . . , an}. As in a), we know that ÃI = {aJ1 , . . . , aJn }. As for some Ã ∈M

the element ιJ is in ÃI but not in ÃJ , we have that αJx,ι(x) ∈ ÃI \ ÃJ , and
thus, αJx,ι(x) ∈ ({aJ1 , . . . , aJk } \ ÃJ) = (ΔJ \ ÃJ)∩{αJx,ι(a1), . . . , αJx,ι(an)}.
Hence, the pair (J , αJx,ι) satisfies the constraint x :

⊔
Ã DÃ for some Ã ∈M

with ÃJ ⊂ ÃI , as one of its disjuncts is satisfied.

Having shown that (J , αJx,ι) is a solution for SKB ′ [ι/x], from Proposition 3(⇒)
and from Proposition 4(⇒) it follows that there is a clash-free completion of

A Preferential Tableaux Calculus for Circumscriptive ALCO 53

SKB ′ [ι/x]. Hence, S must contain a preference clash, which contradicts the exis-
tence of J . �

As a direct result of the propositions 2, 3, 5 and Lemma 2, we obtain that the pre-
sented calculus provides an effective procedure for reasoning with circumscribed
knowledge bases, reflected by the following theorem.

Theorem 1 (soundness/completeness). Let KB be an ALCO knowledge base,
CP be a circumscription pattern and C be an ALCO concept. C is satisfiable with
respect to circCP(KB) if and only if the algorithm based on Table 1 results in a
clash-free completion of the constraint system SKB ∪ {x : C}.

By Theorem 1, the proposed tableaux calculus is a decision procedure for rea-
soning in ALCO with concept circumscription.

Although we did not perform a complexity analysis of our calculus, we want to
report that in [2] the theoretical runtime complexity for reasoning with concept-
circumscribed knowledge bases was shown to be NEXPNP for the cases ofALCIO
and ALCQO.

4 Conclusion

We have presented a tableaux calculus for concept satisfiability with respect
to circumscribed DL knowledge bases in the logic ALCO. Building on tableaux
procedures for classical DLs, the calculus checks a constraint system not only for
clashes due to inconsistent concept assertion and individual naming, but also for
preference clashes, which occur whenever the model associated with the produced
constraint system is not minimal with respect to the preference relation <CP.
This check is performed by testing a specifically constructed classical ALCO
knowledge base for satisfiability, which requires reasoning in classical DL with
nominals and equality between individuals.

We have proved that the presented calculus is sound and complete for ver-
ifying concept satisfiability in circumscriptive ALCO. By this we have devised
a first guided algorithmisation for description logic with circumscription that
integrates well with state of the art tableaux methods for DL reasoning. This
lays a basis for further investigations on optimisation of the calculus within the
framework of tableaux procedures as a guided way for model construction. We
have implemented a first prototype4 of the calculus in Java that works together
with ontology development tools, such as Protégé, via the DIG interface.

As future work we see the update of the calculus to support more expressive
features, such as prioritisation between minimised concepts or the remaining
constructs of the Web Ontology Language OWL [18]. Moreover, optimisation
issues need to be addressed to obtain a more efficient reasoning procedure. First
ideas for specific optimisations would be to employ model caching techniques for
the inner classical tableaux step as KB ′ might be identical in multiple cases, to
postpone assertions of individuals to minimised predicates in order to avoid con-
structing non-minimal models, and to exploit early closing of tableaux branches
4 Available at http://www.fzi.de/downloads/wim/sgr/CircDL.zip

http://www.fzi.de/downloads/wim/sgr/CircDL.zip

54 S. Grimm and P. Hitzler

through preference clash detection. Besides these, it would be interesting to see
how well preferential tableaux performs when included in optimised state-of-the-
art DL reasoners.

References

1. Baader, F., Hollunder, B.: Embedding Defaults into Terminological Knowledge
Representation Formalisms. Journal of Automated Reasoning 14(1), 149–180
(1995)

2. Bonatti, P., Lutz, C., Wolter, F.: Expressive Non-Monotonic Description Logics
Based on Circumscription. In: Proc. of the Tenth Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR 2006), pp. 400–410 (2006)

3. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable Reasoning in Terminological
Knowledge Representation Systems. J. Artif. Intell. Res (JAIR) 1, 109–138 (1993)

4. de Kleer, J., Konolige, K.: Eliminating the Fixed Predicates from a Circumscrip-
tion. Artif. Intell. 39(3), 391–398 (1989)

5. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An Epistemic Op-
erator for Description Logics. Artificial Intelligence 100(1-2), 225–274 (1998)

6. Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and
Negation as Failure. ACM Trans. on Computational Logic 3(2), 177–225 (2002)

7. Grimm, S.: Semantic Matchmaking with Nonmonotonic Description Logics. IOS
Press, Amsterdam (2008)

8. Grimm, S., Hitzler, P.: Defeasible Inference with OWL Ontologies. In: Proceedings
of the ESWC 2007 Workshop on Advancing Reasoning on the Web: Scalability and
Commonsense, ARea 2008 (June 2008)

9. Grimm, S., Hitzler, P.: Semantic Matchmaking of Resources with Local Closed-
World Reasoning. Int. Journal of eCommerce (IJEC) 12(2), 89–126 (2008)

10. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

11. Horrocks, I., Sattler, U.: Ontology Reasoning in the SHOQ(D) Description Logic.
In: Proc. IJCAI 2001, pp. 199–204 (2001)

12. Knorr, M., Alferes, J.J., Hitzler, P.: A Coherent Well-founded Model for Hybrid
MKNF Knowledge Bases. In: Proceedings of the 18th European Conference on
Artificial Intelligence, ECAI 2008, pp. 99–103. IOS Press, Amsterdam (2008)

13. McCarthy, J.: Circumscription – A Form of Non-Monotonic Reasoning. Artificial
Intelligence 13(1–2), 27–39 (1980)

14. Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic Pro-
gramming. In: Proc. of the 20th Intern. Joint Conference on Artificial Intelligence
(IJCAI 2007), Hyderabad, India, January 2007, pp. 477–482. AAAI Press, Stanford
(2007)

15. Niemelä, I.: Implementing Circumscription Using a Tableau Method. In: Proc. of
the 12th Europ. Conf. on Artificial Intelligence (ECAI 1996). J. Wiley & Sons,
Chichester (1996)

16. Schaerf, A.: Reasoning with Individuals in Concept Languages. Data Knowl.
Eng. 13(2), 141–176 (1994)

17. Schmidt-Schauß, M., Smolka, G.: Attributive Concept Descriptions with Comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

18. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview
(2009), http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

A Reasoner for Simple Conceptual Logic
Programs�

Stijn Heymans, Cristina Feier, and Thomas Eiter

Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 9-11, A-1040 Vienna, Austria
{heymans,feier,eiter}@kr.tuwien.ac.at

Abstract. Open Answer Set Programming (OASP) can be seen as a
framework to represent tightly integrated combined knowledge bases of
ontologies and rules that are not necessarily DL-safe. The framework
makes the open-domain assumption and has a rule-based syntax sup-
porting negation under a stable model semantics. Although decidability
of different fragments of OASP has been identified, reasoning and effec-
tive algorithms remained largely unexplored. In this paper, we describe
an algorithm for satisfiability checking of the fragment of simple Con-
ceptual Logic Programs and provide a BProlog implementation. To the
best of our knowledge, this is the first implementation of a (fragment) of
a framework that can tightly integrate ontologies and non-DL-safe rules
under an expressive nonmonotonic semantics.

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has re-
ceived considerable attention over the past years with tightly-coupled approaches
such as Description Logic Programs [7,13]1, DL-safe rules [14], r-hybrid knowl-
edge bases [16], DL+log [15], and Description Logic Rules [12], as well as loosely-
coupled approaches such as dl-programs [4]. In [8], we proposed a tightly-coupled
approach to combine knowledge bases using a similar semantics as Rosati’s r-
hybrid knowledge bases. However, instead of syntactically restricting the rule set
to DL-safe2 rules, we required the rule set to fall into a decidable fragment of
Open Answer Set Programming (OASP) [11].

OASP is a language that combines attractive features from both the DL and
the Logic Programming (LP) world: an open domain semantics from the DL
side allows for stating generic knowledge, without mentioning actual constants,
� A preliminary version of this work, without the implementation, was presented at

the 3rd Int. Workshop on Applications of Logic Programming to the (Semantic) Web
and Web Services (ALPSWS 2008) for a limited audience.

1 Note that even though the approaches of [7] and [13] carry the same name, they are
different.

2 A rule is DL-safe if each variable appears positively in a non-DL atom, where a
non-DL atom is an atom that is not formed using a DL concept as predicate.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 55–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

56 S. Heymans, C. Feier, and T. Eiter

and a rule-based syntax from the LP side supports nonmonotonic reasoning via
negation as failure. Decidability of several fragments of OASP was identified
by syntactically restricting the shape of logic programs, while carefully safe-
guarding expressiveness, e.g., Conceptual Logic Programs (CoLPs) [9] and Forest
Logic Programs (FoLPs) [10].

Decidability of combined knowledge bases KB = 〈Φ, P 〉, where Φ is a theory
in a DL DL and P is a program in a decidable fragment L′ of OASP, can then be
shown whenever DL is reducible to L′. For example, if Φ is a SHIQ DL theory
and P is a CoLP, KB can be translated to a CoLP P ′ such that satisfiability is
preserved. Relying on such OASP fragments, rules can then deduce results about
anonymous individuals, in contrast with (weakly) DL-safe rules where deductions
are only taking into account the instances in the knowledge base. OASP is thus
a suitable alternative integrative formalism for both ontologies and rules. To
make it a suitable implementation vehicle though, the lack of effective reasoning
procedures for decidable fragments of OASP has to be overcome.

In this paper, we describe a terminating, sound and complete algorithm for
satisfiability checking in a fragment of Conceptual Logic Programs, and report
on a prototype implementation.

The major contributions of the paper can be summarized as follows:

– We identify a fragment of Conceptual Logic Programs (CoLPs), called simple
CoLPs, that are expressive enough to simulate the DL ALCH.

– We define an algorithm for deciding satisfiability, inspired by tableaux-based
methods from DLs, that constructs a finite representation of an open answer
set. We show that this algorithm is terminating, sound, complete, and runs
in nondeterministic exponential time.

– We provide a prototypical implementation in BProlog [2]. Note that, to
date, this provides the basis for the first implementation of a non-trivial
tightly-coupled approach that supports a minimal model semantics and is
not depending on (a variant of) DL-safeness.

Detailed proofs and discussion of related work can be found in [5].

2 Preliminaries

We recall the open answer set semantics from [11]. Constants a, b, c, . . ., variables
X, Y, . . ., terms s, t, . . ., and atoms p(t) are defined as usual. A literal is an
atom p(t) or a naf-atom not p(t). For a set α of literals or (possibly negated)
predicates, α+ = {l | l ∈ α, l an atom or a predicate} and α− = {l | not l ∈
α, l an atom or a predicate}. For a set X of atoms, not X = {not l | l ∈ X}.
For a set of (possibly negated) predicates α, we will often write α(x) for {a(x) |
a ∈ α} and α(x, y) for {a(x, y) | a ∈ α}.

A program is a countable set of rules α ← β, where α and β are finite sets
of literals. The set α is the head of the rule and represents a disjunction, while
β is called the body and represents a conjunction. If α = ∅, the rule is called a
constraint. Free rules are rules q(X) ∨ not q(X) ← for variables X; they enable

A Reasoner for Simple Conceptual Logic Programs 57

a choice for the inclusion of atoms. We call a predicate q free in a program if
there is a free rule q(X) ∨ not q(X) ← in the program. Atoms, literals, rules,
and programs that do not contain variables are ground. For a rule or a program
χ, let C(χ) be the constants in χ, V(χ) its variables, and P(χ) its predicates with
P1(χ) the unary and P2(χ) the binary predicates. A universe U for a program P
is a non-empty countable set U ⊇ C(P). We denote by PU the ground program
obtained from P by substituting every variable in P by every possible element in
U . Let BP (LP) be the set of atoms (literals) that can be formed from a ground
program P . An interpretation I of a ground P is any subset of BP and it is an
answer set of P if the usual definition holds, see, e.g., [6].

In the following, programs are assumed to be finite; infinite programs only
appear as byproducts of grounding a finite program with an infinite universe.
An open interpretation of a program P is a pair (U, M) where U is a universe for
P and M is an interpretation of PU . An open answer set of P is an open inter-
pretation (U, M) of P with M an answer set of PU . For example, an open answer
set of the rules p ← not q(X), p ← not p, and q(a) ← is ({a, b}, {q(a), p}).
Note that if the universe U is constrained to {a}, the set of constants appearing
in the rules, the set of rules is inconsistent, i.e., there is no answer set. An n-ary
predicate p in P is satisfiable, if there is an open answer set (U, M) of P and a
x ∈ Un such that p(x) ∈M .

We define trees as tuples T = (NT , AT), with NT the set of nodes of the T ,
and AT the set of edges of T . We denote the root of T with ε. For a node x ∈ NT ,
we denote with succT (x) the successors of x. The arity of T is the maximum
number of successors any node has in T . For x, y ∈ NT , x ≤ y iff x is an ancestor
of y (possibly x = y). As usual, x < y if x ≤ y and y �≤ x.

3 Simple Conceptual Logic Programs

In [9], Conceptual Logic Programs (CoLPs), were defined as a syntactical frag-
ment of logic programs for which satisfiability checking under the open answer
set semantics is decidable. We restrict this fragment by disallowing the occur-
rence of inequalities and inverse predicates, and by restricting the dependencies
between predicate symbols which appear in the program.

Definition 1. A simple conceptual logic program (simple CoLP) is a program
with only unary and binary predicates, without constants, and such that any rule
is either (i) a free rule, (ii) a unary rule

a(X) ← β(X),
(
γm(X ,Ym), δm(Ym)

)
1≤m≤k

(1)

where for all m, γ+
m �= ∅, or (iii) a binary rule

f (X ,Y) ← β(X), γ(X ,Y), δ(Y) (2)

with γ+ �= ∅.

58 S. Heymans, C. Feier, and T. Eiter

Furthermore, for such a set of rules P , let D(P) be the marked predicate
dependency graph: D(P) has as nodes the predicates from P and as edges tuples
(p, q) if there is either a rule (1) or a rule (2) with a head predicate p and a
positive body predicate q. An edge (p, q) is marked, if q is a predicate in some δm

for rules (1), respectively δ for rules (2). In order for P to be a simple CoLP,
D(P) must not contain any cycle that has a marked edge.

Intuitively, the free rules allow for a free introduction of atoms (in a first-order
way) in answer sets; unary rules consist of a root atom a(X) that is motivated
by a syntactically tree-shaped body, and binary rules motivate f(X, Y) for x and
its ‘successor’ Y by a body that only considers literals involving Y and Y . The
restriction on D(P) ensures that there is no path from some p(x) to some p(y)
in the positive atom dependency graph of PU , where p ∈ P1(P), and x, y are
from an arbitrary universe U . Indeed, observe that any marked cycle in D(P)
contains a unary predicate and thus corresponds to a path from some p(x) to
some p(y) in the atom dependency graph of PU . Consider the program P :

r1 : a(X) ← b(X), f (X ,Y),not a(Y)
r2 : b(X) ← a(X)
r3 : f (X ,Y) ← g(X ,Y), b(Y)

The marked dependency graph is depicted in Figure 1.

a b

f g

*

Fig. 1. Marked dependency graph of a CoLP P

There is a single marked edge in D(P), viz. the edge (f, b). Although the
cycle (a, b, a) does not contain any marked edge, the cycle (a, f, b, a) contains
the marked edge (f, b) and thus P is not a simple CoLP. If we leave r3 out, the
remaining program is a simple CoLP . Intuitively, simple CoLPs allow for local
recursion (through X) and non-local negative recursion (through Y , see r1), but
not for non-local positive recursion.

As satisfiability checking of CoLPs is exptime-complete [9], checking satis-
fiability of simple CoLPs is in exptime. Moreover, using a similar simulation
of DLs as in [9], one can show that satisfiability checking of ALCH3 concepts
w.r.t. a ALCH TBox can be reduced to satisfiability checking of a unary predi-
cate w.r.t. a simple CoLP. Thus, satisfiability checking of unary predicates w.r.t.
simple CoLPs is exptime-complete.
3 For a definition of ALCH, we refer the reader to [3].

A Reasoner for Simple Conceptual Logic Programs 59

4 Illustration of the Algorithm

Before formally defining the algorithm for satisfiability checking of a unary pred-
icate p w.r.t a simple CoLP P , we show an example run of the algorithm.

As in tableaux algorithms for Description Logics, the algorithm’s basic data
structure is a labeled tree where the labels are sets of positive and negative
predicates. Indeed, the algorithm essentially tries to construct a tableau for the
predicate and the program, thus representing an open answer set by a finite
structure. Additionally – to take care of minimality – we keep track of the
dependencies between atoms by means of a dependency graph.

Expansion rules expand the labeled tree in accordance with the simple CoLP,
to construct a partial open answer set, based on the following principles.

1. The occurrence of a positive predicate p in a label has to be motivated by
making the body of a rule with head predicate p true in the labeled tree.
This principle is similar to the principle of foundedness in ordinary Answer
Set Programming. We keep track of those dependencies in a positive atom
dependency graph that must be acyclic (no atom can motivate itself).

2. The occurrence of a negative predicate not p has to be justified by showing
that no body of a rule with head predicate p is true in the labeled tree. This
ensures satisfaction of rules.

Applicability rules constrain the use of expansion rules:

– We can only expand nodes that have a saturated parent node, i.e., the parent
node has to be fully expanded: it should contain either positive or negative
information about all unary predicates in its label and about all binary
predicates in its outgoing edges, and no expansion rules are applicable on
that parent node.

– Similarly as in DL tableaux, we have a blocking rule, that takes care of
stopping an expansion on a node x if the label of an ancestor y of x, y < x,
subsumes the label of x. We thus avoid infinite expansions, and represent a
possibly infinite open answer set by a finite structure.

– Additionally, the caching rule prohibits to expand a node if the label of a
node somewhere else in the tree (thus, not necessarily an ancestor) subsumes
the current label. They are not necessary to make the algorithm sound,
complete, and terminating, but they make the completion tree smaller.

The algorithm succeeds (p is satisfiable w.r.t. to P), if a labeled tree T and a
dependency graph G can be built such that the tree does not contain labels with
contradiction (for example, not p and p in one label) and the dependency graph
is not cyclic.

As an example we take the simple CoLP P and check satisfiability of a ∈
P1(P):

r1 : a(X) ← f (X ,Y1), b(Y1),not f (X ,Y2), g(X ,Y2), b(Y2)
r2 : b(X) ← f (X ,Y),not c(Y)
r3 : c(X) ← not b(X)

60 S. Heymans, C. Feier, and T. Eiter

with f and g free.
The initially labeled tree consists of a single node ε with label a:

ε {au}

The dependency graph G contains the corresponding atom a(ε). Note that we
draw the tree with each predicate in the label superscripted with an indication
of its expansion status – au means a is unexpanded.

Recall that we want to construct a (partial) open answer set. As in ordinary
ASP, an atom that is in an (open) answer set has to be motivated by a rule, i.e.,
there has to be a rule with head predicate a that has a true body. The Expand
Unary Positive rule does exactly this (see (i) in Section 5.1): it selects a rule
with head predicate a and expands the labeled tree according to the body of
the rule. In the example, the only relevant rule is r1. To make its body true, we
extend the tree with 2 successors (corresponding to Y1 and Y2), such that both
successors are labeled with b and its edges with f , and not f and g respectively:

ε

1

{fu}

2

{not fu, gu}

{ae}

{bu} {bu}

The predicate a is now expanded; the root has two children, 1 and 2, with the
unexpanded b in their label as well as unexpanded binary predicates on the
outgoing edges.

The root node is not saturated yet (see (vii) in Section 5.2), i.e., there are
unary predicates in P of which we do not have a positive or negative occurrence
in the label, neither have all choices been made for ε’s outgoing edges and the
binary predicates in P . Moreover, there are predicates in the successors of the
root that are not expanded yet. Thus, we cannot start expanding the root’s
children.

Note that all binary positive predicates in the outgoing edges from ε are free
such that they are trivially minimally motivated (we do not need to make any
bodies true to motivate the presence of either f or g). Remains the negative
predicate not f on the edge (ε, 2). In order to justify the presence of not f , one
has to negate the bodies of all binary rules that have f as head predicate. As
there are no such rules, not f can be set to expanded and considered justified.

The root is still not saturated after the above operations (it does not contain
all positive or negative versions of the unary predicates). In order to mend this,
we choose a unary predicate (see (iii) in Section 5.1). The algorithm picks a
predicate, b for example, and adds its negation to the content of ε. Note that
the algorithm can pick either b or not b. Currently, we use the naive heuristics,
though, that it is more likely that something is not in a node.

Additionally to its unexpanded superscript u, we keep track of all the rules
with head b (in this case only r2). Recall that we are trying to construct a

A Reasoner for Simple Conceptual Logic Programs 61

partial open answer set with as a universe (part of) the tree we are constructing.
In the example, the universe is currently ε, 1, and 2. Intuitively, the negative
presence of b has to be justified by making sure all bodies, ground with this
universe, of rules that have head predicate b are made false. Otherwise, there
would be a rule that has a true body and thus forces us to introduce b instead
of not b. In the example program, the body of r2 is f(X, Y),not c(Y) which
becomes true for the current tree, if there is a successor of ε that connects with
ε via f and where not c holds. Thus, in order to make sure that this body
does not become true, we have to enforce that for each successor of ε either it
is not connected via f or its label contains c. The example is simplistic: if the
body would be f(X, Y1), c(Y1), g(X, Y2), d(Y2) one would need to show for each
2 successors y1, y2 of ε (the node with which X is unified) that f is not present
on the outgoing edge to y1 or that c is not in the label of y1 or that g is not
present on the outgoing edge to y2 or that d is not in the label of y2.

Note that in order to justify a negative unary predicate, we need knowledge of
all possible successors of a node. We only obtain this knowledge after all positive
unary predicates that are or will be appearing in this node have been expanded
(recall that positive unary predicates might introduce new successors, as did
a). The algorithm thus tries to complete the node first with either negative or
positive predicates, and only starts expanding negative predicates if all positive
ones have been expanded. In the current tree, we are thus still missing a choice
for c. By default, we again choose not c which has to be justified by r3.

ε

1

{fe}

2

{not fe, ge}

{ae,not bu,r2 ,not cu,r3}

{bu} {bu}

Now, all unary predicates are present in ε and all positive ones (a) are expanded,
i.e., with the current label no more successors can be introduced, such that we
can start expanding the negative predicates. We choose to justify not c in the
root ε by making the body of r3 false, i.e., b has to be in ε. Clearly, this would
cause a contradiction, such that we backtrack on the choice for c and include c in
ε. Now, there is a positive predicate c that is not yet expanded, such that before
expanding not bu,r2 , we have to expand c as c might introduce new successors
that influence the justification of not b. Clearly, c can be motivated, using r2, as
not b is present in ε.

Thus, we can now justify not bu,r2 , i.e., for each successor of ε we need that
either f is not present in the outgoing edge or c has to be present in the label
of that successor (see rule (ii) in Section 5.1). Thus, as not f is already in the
label of the edge from ε to 2 and f is in the label of the edge from ε to 1 , we
only have to add the unexpanded c to 1. We have the following tree:

62 S. Heymans, C. Feier, and T. Eiter

ε

1

{fe}

2

{not fe,ge}

{ae,not be, ce}

{bu, cu} {bu}

To finally saturate ε one can see that either g or not g is missing in the edge
(ε, 1). The Choose a Binary Predicate rule (see (vi) in Section 5.1) adds not g.

ε

1

{fe,not ge}

2

{not fe,ge}

{ae,not be, ce}

{bu, cu} {bu}

Now, one can see that to expand cu in node 1 one needs not b in 1, by r3.
However, bu is already present. The algorithm backtracks, i.e., removes not ge

again, removes ce again, up until the wrong choice of the Choose a unary predi-
cate rule, to introduce bu instead of not bu,r2 .4 Expanding this bu using rule r2
introduces not cu in node 1, and choosing not c in ε and 1 and not g in the edge
(ε, 1), leads to

ε

1

{fe,not ge}

2

{not fe,ge}

{ae, be,not ce}

{bu,not cu,r3} {bu}

Now that ε is saturated, one can consider node 1. One sees that the label of
1 is a subset of the label of ε (not taking into account the expansion status),
and, intuitively, one can use the expansions used on ε to further expand 1 simi-
larly. This technique is called blocking and is similar to the blocking used in DL
tableaux methods: node 1 is blocked by ε.

Due to the condition on simple CoLPs that D(P) does not contain cycles
with marked edges, one can construct an open answer set by rolling out at 1 the
subtree that resides at ε. Similarly, one can see that node 2 is blocked by ε as
well.

The constructed dependency graph G is

{(a(ε), f(ε, 1)), (a(ε), b(1)), (a(ε), f(ε, 2)), (a(ε), b(2)), (b(ε), f(ε, 1))}

i.e., the graph that keeps track of the positive dependencies. We thus have con-
structed a labeled tree where no rules are applicable anymore, that does not

4 Note that if we would have picked not c before not b above, we could have avoided
this backtracking. It is future work to investigate how to optimize backtracking.

A Reasoner for Simple Conceptual Logic Programs 63

contain contradictions, and where the dependency graph is acyclic. The algo-
rithm concludes that a is satisfiable w.r.t. P . This is indeed correct.

If we replace in P the rule r1 with

r ′1 : a(X) ← a(X), f (X ,Y1), b(Y1),
not f(X, Y2), g(X, Y2), b(Y2)

we end up with the same labeled tree; however, the dependency graph G′ is
G∪ {(a(ε), a(ε))} and thus cyclic. One can check that a is indeed not satisfiable
w.r.t. P , as no open answer set exists that contains some a(x).

Note that we make extensive use of the choose rules and the concept of satu-
ration to complete the labels of nodes such that they contain either the negative
or positive versions of all unary predicates in the program (and similarly for
binary predicates in the edges). Assume we would not do such a completion, i.e.,
we would drive the expansion of the nodes purely on what is entailed by the
predicate p to satisfy and would not choose predicates that we apparently do
not need to satisfy p.

Such a driven computation would not guarantee the global satisfaction of
the program. Instead, it explores a partial solution pattern that would be able
to satisfy a predicate. To make sure that this partial solution pattern can be
extended to an open answer set, we have to complete it repeatedly. For example,
if in the example program, we would add a rule d(X) ← not d(X) the program
would not have any open answer sets. However, an expansion that starts with
a and does not make choices for the “non-relevant” predicate d would wrongly
succeed. Thus, we need to make a choice for d or not d in every node. Once we
do, one would not be able to construct a labeled tree without contradictions.

In tableaux methods for DLs, one does not have this problem. The TBox
(the program in our setting) is usually internalized and the satisfiability of the
resulting concept is checked. There is no need to make extensive nondeterministic
choices for each concept name in this concept expression.

5 Algorithm

In this section, we define a sound, complete, and terminating algorithm for sat-
isfiability checking w.r.t. simple CoLPs.

For every non-free predicate q and a simple CoLP P , let Pq be the rules of P
that have q as a head predicate. For a predicate p, ±p denotes p or not p, whereby
multiple occurrences of ±p in the same context refer to the same symbol (either
p or not p). The negation of ±p (in a given context) is ∓p, that is, ∓p = not p
if ±p = p and ∓p = p if ±p = not p.

The basic data structure for our algorithm is a completion structure.

Definition 2. A completion structure for a simple CoLP P is a tuple 〈T, G,
ct, st〉 where T = (NT , AT) is a tree, G = 〈V, A〉 is a directed graph with
nodes V ⊆ BPNT

and edges A ⊆ V × V , and ct : NT ∪ AT → 2P(P)∪not(P(P))

and st : {(x,±q) | ±q ∈ ct(x), x ∈ AT } ∪ {(x, q) | q ∈ ct(x), x ∈ NT } ∪

64 S. Heymans, C. Feier, and T. Eiter

{(x,not q, r) | not q ∈ ct(x), x ∈ NT , r ∈ Pq} → {exp, unexp} are labeling
functions.

The tree T together with the labeling functions is used to represent/construct
a tentative tree-shaped open answer set, where NT represents the tentative uni-
verse. G = 〈V, A〉 is a directed graph which helps to keep track of dependencies
between atoms in the constructed model, where V represents the tentative model
(such a structure enables checking of the minimality requirement: no atom should
depend on itself). The role of the labeling functions is as follows:

– The content function ct maps a node of the tree to a set of (possibly negated)
unary predicates and an edge of the tree to a set of (possibly negated) binary
predicates such that ct(x) ⊆ P1(P) ∪ not(P1(P)) if x ∈ NT , and ct(x) ⊆
P2(P) ∪ not(P2(P)) if x ∈ AT . The presence of a predicate symbol p (resp.
negated predicate symbol not p) in the content of some node/edge x of T
indicates that p(x) is part (resp. not part) of the tentative model represented
by T .

– The status function st attaches to every (possibly negated) predicate which
appears in the content of an edge x and every positive predicate in the
content of a node x a status value which indicates whether the predicate
has already been expanded in that node/edge. As indicated in Section 4,
for negative predicates in nodes, we additionally keep track of the rule that
justifies the negative occurrence.

The algorithm starts with defining an initial completion structure which basically
captures the constraint that p, the predicate checked to be satisfiable is in the
content of some node x, or in other words p(x) is in the open answer set for some
individual x.

Definition 3. An initial completion structure given a unary predicate p and a
simple CoLP P is a completion structure 〈T, G, ct, st〉 with T = (NT , AT),
NT = {ε}, AT = ∅, G = 〈V, A〉, V = {p(ε)}, A = ∅, ct(ε) = {p}, and
st(ε, p) = unexp.

Next, we show how to evolve by means of expansion rules an initial completion
structure of p and P to an expanded clash-free structure that corresponds to
a finite representation of an open answer set in case p is satisfiable w.r.t. P .
Applicability rules state the necessary conditions to to apply these expansion
rules. Note that when multiple expansion rules can be applied, one is chosen
non-deterministically.

5.1 Expansion Rules

The expansion rules update the completion structure by making explicit what
is needed for justifying the presence or absence of a certain atom in the par-
tial model represented by the current completion. We first define a recurring
operation in the expansion rules which describes the necessary updates in the

A Reasoner for Simple Conceptual Logic Programs 65

completion structure whenever justifying a literal l in the current model imposes
the presence of a new literal ±p(z) in the model. In such a case ±p is inserted
in the content of z if it is not already there and marked as unexpanded, and in
case ±p(z) is an atom, it should be a node in G. Moreover, if l is also an atom,
a new edge from l to ±p(z) should be created to indicate the dependency of l
on ±p(z) in the model. Formally:

– if ±p /∈ ct(z), then ct(z) = ct(z) ∪ {±p} and st(z,±p) = unexp,
– if ±p = p and ±p(z) /∈ V , then V = V ∪ {±p(z)},
– if l ∈ BPNT

and ±p = p, then A = A ∪ {(l,±p(z))}.

As a shorthand, we denote this sequence of operations as update(l,±p, z); more
general, update(l, β, z) for a set of (possibly negated) predicates β, denotes ∀±a ∈
β, update(l,±a, z).

In the following, for a completion structure 〈T, G, ct, st〉, let x ∈ NT and
(x, y) ∈ AT be the node, resp. edge, under consideration.
(i) Expand unary positive. For a unary positive (non-free) p ∈ ct(x) such
that st(x, p) = unexp,

– nondeterministically choose a rule r ∈ Pp of the form (1). The rule will
motivate the presence of p(x) in the tentative open answer set. To this end
we continue by enforcing the body of this rule to be true in the constructed
completion structure.

– for the β in the body of r, update(p(x), β, x),
– nondeterministically pick up (or define when needed) k successors for x,

(ym)1≤m≤k, such that for every 1 ≤ m ≤ k: ym ∈ succT (x) or ym is a new
successor of x and T is updated: NT = NT ∪ {ym}, AT = AT ∪ {x, ym},

– for every successor ym of x, 1 ≤ m ≤ k: update(p(x), γm, (x, ym)) and
update(p(x), δm, ym),

– set st(x, p) = exp.

(ii) Expand unary negative. Justifying a negative unary predicate not p ∈
ct(x) (the absence of p(x) in the constructed model) means refuting the body
of every ground rule which defines p(x) (a body that is true in the constructed
model would otherwise enforce the presence of p(x), a contradiction with the
fact that not p ∈ ct(x)). Formally, for a unary negative not p ∈ ct(x) and a
rule r ∈ Pp of the form (1) and st(x,not p, r) = unexp do one of:

– choose some ±q ∈ β, update(not p(x),∓q, x), and set st(x,not p, r) = exp,
or

– if for all p ∈ P1(P), p ∈ ct(x) or not p ∈ ct(x), and for all p ∈ ct(x),
st(x, p) = exp, then for all yi1 , . . . , yik

such that (1 ≤ ij ≤ n)1≤j≤k, where
succT (x) = {y1, . . . yn}, do one of the following:
• for some m, 1 ≤ m ≤ k, pick up a binary (possibly negated) predicate

symbol ±f from γm and update(not p(x),∓f, (x, yim)), or
• for some m, 1 ≤ m ≤ k, pick up a unary negated predicate symbol not q

from δm and update(not p(x), q, yim).

66 S. Heymans, C. Feier, and T. Eiter

Set st(x,not p, r) = exp.

One can see that once the body of a ground version of a unary rule r ∈ Pp, for
which the head term X is substituted with the current node x, is locally refuted,
the bodies of all ground versions of this rule, for which X is substituted with x,
are locally refuted, too. For the other refutation case, all possible groundings of
a rule have to be considered and this is not possible until all successors of x are
known. This is the case when all positive predicates in the content of the current
node have been expanded and no positive predicate will be further inserted in
ct(x). If this condition is met, an iteration over all possible groundings of the
rule r is triggered. For every possible grounding, one of the body literals from
the non-local part of the rule (γs or δs) has to refuted.
(iii) Choose a unary predicate. If for all q ∈ ct(x), st(x, q) = exp, and for
all (x, y) ∈ AT , and for all ±f ∈ ct(x, y), st((x, y),±f) = exp, and there is a
p ∈ P1(()P) such that p /∈ ct(x), and not p /∈ ct(x), then either add p to ct(x)
with st(x, p) = unexp, or add not p to ct(x) with st(x,not p, r) = unexp, for
every rule r ∈ Pp.

In other words, if there is a node x for which all positive predicates in its con-
tent and all predicates in the contents of its outgoing edges have been expanded,
but there are still unary predicates p which do not appear in ct(x), one has to
pick such a p and inject either p or not p in ct(x). This is needed for consistency:
it does not suffice to find a justification for the predicate to satisfy, but one also
has to show that this justification is part of an actual open answer set, which
is done by effectively constructing it (cf. end of section 4). We do not impose
that all negative predicate symbols are expanded as that would constrain all the
ensuing literals to be locally refuted.

Similarly to rules (i), (ii), and (iii) one can define the expansion rules for
binary predicates: (iv) Expand binary positive, (v) Expand binary negative, and
(vi) Choose binary.

5.2 Applicability Rules

The applicability rules restrict the use of the expansion rules.
(vii) Saturation. A node x ∈ NT is saturated, if for all p ∈ P1(P), p ∈ ct(x)
or not p ∈ ct(x), and no ±q ∈ ct(x) can be expanded with rules (i-iii), and
for all (x, y) ∈ AT and f ∈ P2(()P), f ∈ ct(x, y) or not f ∈ ct(x, y), and no
±f ∈ ct(x, y) can be expanded with (iv-vi). No expansions should be performed
on a node from T until its predecessor is saturated.
(viii) Blocking. A node x ∈ NT is blocked, if its predecessor is saturated and
there is an ancestor y of x, y < x, s.t. ct(x) ⊆ ct(y).

No expansions can be performed on a blocked node. Intuitively, if there is
an ancestor y of x whose content includes the content of x one can reuse the
justification for y when dealing with x.
(ix) Caching. A node x ∈ NT is cached, if its predecessor is saturated and there
is a non-cached node y ∈ NT such that y � x, x � y, and ct(x) ⊆ ct(y).

No expansions can be performed on a cached node. Intuitively, x is not further
expanded, as one can reuse the (cached) justification for y when dealing with x.

A Reasoner for Simple Conceptual Logic Programs 67

5.3 Termination, Soundness, and Completeness

A completion structure is contradictory if either (i) for some x ∈ NT and
a ∈ P1(P), {a,not a} ⊆ ct(x) or (ii) for some (x, y) ∈ AT and f ∈ P2(P),
{f,not f} ⊆ ct(x, y). An expanded completion structure for a simple CoLP P
and p ∈ P1(P), is a completion structure that results from applying the expan-
sion rules to the initial completion structure for p and P , taking into account
the applicability rules, s.t. no expansion rules can be further applied. An ex-
panded completion structure CS = 〈T, G, ct, st〉 is clash-free if: (1) CS is not
contradictory, (2) G does not contain cycles.

One can show that an initial completion structure for a unary predicate p and
a simple CoLP P can always be expanded to an expanded completion structure
(termination), such that, if p is satisfiable w.r.t. P , there is a clash-free expanded
completion structure (completeness), and, finally, that, if there is a clash-free
expanded completion structure, p is satisfiable w.r.t. P (soundness).

Theorem 1. Let P be simple CoLP and p ∈ P1(P). Then, (1) one can con-
struct a finite expanded completion structure by a finite number of applications
of the expansion rules to the initial completion structure for p w.r.t. P , taking
into account the applicability rules, and (2) there exists a clash-free expanded
completion structure for p w.r.t. P iff p is satisfiable w.r.t. P .

The OASP-R system implements the above algorithm in BProlog [2]. The source
code for the program together with some example input programs is available
at http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/.

The implementation is a straightforward translation of the algorithm into
BProlog, using BProlog’s backtracking mechanism to take care of the nondeter-
ministic choices in our algorithm. We chose a Prolog engine for its fast prototype
capabilities and BProlog in particular for it being one of the fastest performing
Prolog engines currently available.5

6 Complexity Results

Let CS = 〈T, G, ct, st〉 be a completion structure and let CS ′ be the com-
pletion structure from CS by removing from NT all blocked and cached nodes
y. There are at most k × l such nodes, where k is bound by |P1(P)| and the
number of non-empty γm (resp. γ) of rules of the form (1) (resp. (2)) and l is
the number of nodes in CS ′. If CS ′ has more than 2n nodes, then there must
be two nodes x �= y such that ct(x) = ct(y); if x < y or y < x, either x or
y is blocked, which contradicts the construction of CS ′. If x �< y and y �< x,
x or y is cached, again a contradiction. Thus, CS ′ contains at most 2n nodes,
so l ≤ 2n. Since CS ′ resulted from CS by removing at most k × l nodes, the
number of nodes in CS is at most (k + 1)2n, and the algorithm has to visit a
number of nodes that is exponential in the size of P . At each visit, executing
an expansion rule or checking an applicability rule can be done in exponential
5 http://probp.com/performance.htm

http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/

68 S. Heymans, C. Feier, and T. Eiter

time. The graph G has as well a number of nodes that is exponential in the size
of P . Since checking for cycles in a directed graph can be done in linear time, we
obtain the following result: the algorithm runs in nondeterministic exponential
time, a nondeterministic variant of the worst-case complexity characterization.
Note that such an increase in complexity is expected. For example, although
satisfiability checking in SHIQ is exptime-complete, practical algorithms run
in double nondeterministic exponential time [17].

6.1 Experimental Evaluation

We investigated the performance of our BProlog implementation on some ex-
ample programs: a set of rules describing family relations and a set of rules
describing a game environment.6

The family program contains 64 rules and 88 predicates; the game program
contains 265 rules and 544 predicates. A run of 1000 satisfiability checks results
in an average of 0.131 seconds for the family program and 15.919 seconds for
the game program, where each satisfiability check resulted in a positive answer.
Time spent goes significantly up when more rules/predicates are present. This
is not surprising as the number of nondeterministic choices increases with the
rules/predicates present. In case predicates are not satisfiable, the location of
the rules that cause the inconsistency is vital. If the inconsistency arises within
the rules high up in the program, satisfiability checking stays under 0.2 seconds
for both example programs; if the inconsistency arises within rules low in the
program, our reasoner does not return within 300 seconds. This difference in
behavior depending on the location of the inconsistency is due to the BProlog
backtracking mechanism and the order in which it solves goals.

Note that adding more rules can actually lead to better results in OASP-R.
For example, using the rules from game+ which extends game by adding rules
in the beginning, one gets an average of 13.686 seconds per satisfiability check,
i.e., 2 seconds better than without those extra rules.

7 Outlook

We intend to investigate several optimizations of the algorithm originating from
both the DL tableaux as well as ASP reasoning algorithms. For example,
dependency-directed backtracking will allow to backtrack on the choices that
caused an inconsistency instead of backtracking on the last choice the BProlog
engine made. Similar to DL tableaux, we will investigate whether we can in-
ternalize a program to a form that reduces the amount of nondeterminism in
the algorithm. A Java implementation will allow us to more flexibly implement
optimization strategies.
6 Experiments were done on a QuadCore Intel(R) Xeon(R) CPU E5450 at 3GHz

under Linux (openSUSE 11.0 (X86-64)). All example programs can be found at
http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/ and originated from
ontologies that accompanied the RacerPro DL reasoner [1].

http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/

A Reasoner for Simple Conceptual Logic Programs 69

Acknowledgement

This work is partially supported by the Austrian Science Fund (FWF) under
the projects P20305 and P20840, and by the European Commission under the
project OntoRule (IST-2009-231875). We would like to thank Uwe Keller for his
valuable comments.

References

1. RacerPro 1.9.0. Racer Systems GmbH & Co. KG,
http://www.racer-systems.com/index.phtml

2. BProlog 7.1. Afany software, http://www.probp.com/
3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.

(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

4. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence 172(12-13), 1495–1539 (2008)

5. Feier, C., Heymans, S.: A sound and complete algorithm for simple conceptual
logic programs. Technical Report INFSYS Research Report 184-08-10, KBS
Group, Technical University Vienna, Austria (October 2008),
http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-doasp/

alpsws2008-tr.pdf

6. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Proc. of ICLP 1988, Cambridge, Massachusetts, pp. 1070–1080 (1988)

7. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proc. of the World Wide Web
Conference (WWW), pp. 48–57. ACM, New York (2003)

8. Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Van Nieuwenborgh, D.: Guarded
hybrid knowledge bases. Theory and Practice of Logic Programming 8(3), 411–429
(2008)

9. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Conceptual logic programs.
Annals of Mathematics and Artificial Intelligence (Special Issue on Answer Set
Programming) 47(1–2), 103–137 (2006)

10. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Open answer set programming
for the semantic web. Journal of Applied Logic 5(1), 144–169 (2007)

11. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Open answer set programming
with guarded programs. ACM Transactions on Computational Logic (TOCL) 9(4)
(October 2008)

12. Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. In: Proc. 18th Eu-
ropean Conf. on Artificial Intelligence (ECAI 2008), pp. 80–84. IOS Press, Ams-
terdam (2008)

13. Lukasiewicz, T.: A novel combination of answer set programming with description
logics for the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 384–398. Springer, Heidelberg (2007)

http://www.racer-systems.com/index.phtml
http://www.probp.com/
http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-doasp/alpsws2008-tr.pdf
http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-doasp/alpsws2008-tr.pdf

70 S. Heymans, C. Feier, and T. Eiter

14. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal
of Web Semantics 3(1), 41–60 (2005)

15. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Proc. KR, pp. 68–78 (2006)

16. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics 3(1), 61–73 (2005)

17. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis (2001)

Search for More Declarativity
Backward Reasoning for Rule Languages Reconsidered

Simon Brodt, François Bry, and Norbert Eisinger

Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/

Abstract. Good tree search algorithms are a key requirement for infer-
ence engines of rule languages. As Prolog exemplifies, inference engines
based on traditional uninformed search methods with their well-known
deficiencies are prone to compromise declarativity, the primary concern
of rule languages. The paper presents a new family of uninformed search
algorithms that combine the advantages of the traditional ones while
avoiding their shortcomings. Moreover, the paper introduces a formal
framework based on partial orderings, which allows precise and elegant
analysis of such algorithms.

1 Introduction

The foremost advantage of rule languages is their declarativity. It allows problem-
solving by specifying a problem’s “what” without bothering about its “how”.
This separation of concerns makes it easy for rule authors to add or modify rules,
thus supporting rapid prototyping, stepwise refinement, adaptation and evolu-
tion in application areas with unknown solution algorithms and/or frequently
changing prerequisites.

Such unburdening of rule authors from control issues depends on a well-designed
inference engine. Assuming that the underlying logical system features reasonable
soundness and completeness properties, which it usually does, the most tricky de-
sign decision is to combine it with a search method that preserves all or most of
these properties while still ensuring an adequate degree of efficiency.

The exact criteria for such design decisions are subject to several fundamental
assumptions about the reasoning process, such as tuple-oriented vs. set-oriented
or forward vs. backward reasoning. But we need not place special emphasis
on those assumptions for the purpose of this paper. Although our motivation
examples will use backward reasoning with definite rules, our concern is not the
evaluation of this particular kind of rules, but a complete and space-efficient
search method for rule engines in general. Such a search method is not only
applicable to backward reasoning with and without memoization [13,15], but
also to forward reasoning approaches using some goal guidance [3,4,6].

Given the wealth of research results on search [1,10,11,12,16, among many oth-
ers], soberingly few actually come into consideration as candidates for rule infer-
ence engines. Their bulk has been on informed search methods, on incorporating

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 71–86, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.pms.ifi.lmu.de/

72 S. Brodt, F. Bry, and N. Eisinger

domain-specific knowledge into the search. But this is at odds with the very idea
of rule-based systems: rules may represent domain-specific knowledge, but the
inference engine evaluating them needs to be applicable to arbitrary rule sets
and is therefore, for better or worse, generic and domain-independent. The same
holds all the more for rules used in reasoning on the Web, where domain-specific
knowledge is hardly available.

This narrows down the choice to uninformed search methods, of which there
are barely a handful: breadth-first and depth-first search [7], iterative-deepening,
[8], iterative broadening [5]. All of them have weak points: storage requirements
for breadth-first search can become prohibitive already for medium-size prob-
lems, depth-first search is incomplete in search spaces with infinite branches, the
iterative variants re-evaluate parts of the search space over and over again.

Under these circumstances a sensible compromise seems to be the one chosen
for Prolog: to use depth-first search and to give rule authors some control to avoid
infinite dead ends, for example by ordering the rules. However, this compromise
wreaks havoc on declarativity.

Assume a term representation for natural numbers where zero represents 0
and succ(X,Y) can provide the predecessor X to any Y representing a nonzero nat-
ural number. Consider the straightforward rules defining for this representation
the predicates nat, nat2 and less, together with four queries:

nat(zero) ←
nat(Y) ← succ(X,Y) ∧ nat(X)
nat2(X,Y) ← nat(X) ∧ nat(Y)
less(X,Y) ← "reasonably defined"

1 ← nat(X)
2 ← nat2(X,Y)
3 ← less(zero ,X) ∧ nat2(X,Y)
4 ← nat2(X,Y) ∧ less(zero ,X)

Problem 1: Incomplete Enumeration. Query 1 results in an enumeration of �,
which is fine. One would expect query 2 to result in an enumeration of �×�, but
it only enumerates {0} × �. The reason is that depth-first backtracking search
never reaches branches to the right of the first infinite one. Note that reorderings
of rules or literals would not affect the problem.

Problem 2: Non-Commutativity of Logical Connectives. Assume single-answer
mode1 for queries 3 and 4. Then both queries ask about the existence of an
X > 0 with (X, Y) ∈ �×� for some Y . The two queries are logically equivalent,
but query 3 results in an affirmative answer and query 4 in a nonterminating
evaluation giving no answer at all.

Such blatant infringements on declarativity are sometimes wrongly attributed
to SLD-resolution, although it is perfectly sound and complete with any literal
selection function [9]. The only cause of the problems is depth-first backtracking
search. With a complete search method the problems would not arise.

Consequently, one way to avoid them is to replace depth-first search by
iterative-deepening [14]. Unfortunately, this approach introduces a new problem.

even(zero) ←
even(Y) ← succ(X,Y) ∧ odd(X)
odd(Y) ← succ(X,Y) ∧ even(X) 5 ← constant(X) ∧ even(X)

1 Single-answer mode in Prolog can be achieved by a cut at the end of each query.

Search for More Declarativity 73

Problem 3: Inefficiency on Functional Rule Sets. Let constant(X) bind X to
the term representation of some fixed, large number n ∈ �. The rules define
relations that are functions. Evaluation of query 5 ought to require O(n) steps,
and so it does with depth-first backtracking search. Iterative-deepening, on the
other hand, needs O(n2) steps.

Search should not slow down the evaluation of functional rules, which do not
need any search in the first place. Some functional rules escape being slowed down
thanks to the compiler’s tail recursion optimisation. But this sidestepping the
problem fails in “quasi tail recursive” cases like the above, which do not match
typical tail recursion patterns but nevertheless induce almost linear search trees.

Desiderata for Search Methods. A search method for rule inference engines
usually has to be uninformed, as discussed earlier. It ought to meet the following
requirements, which are essentially a collection of all advantageous properties
from traditional methods.

– Completeness (or exhaustiveness/fairness) on both finite and infinite search
trees. It visits every node in the search space after finitely many steps. Recall
that we want to apply it also for finding all solutions to a query, and if there
are infinitely many, the method must be capable of a fair enumeration.
Depth-first search and iterative broadening violate this requirement on infi-
nite trees. Depth-bounded backtrack search and credit search [1] violate it
even on finite trees.

– Polynomial space complexity O(dc) where c is a constant and d the maximum
depth currently reached during the search (or of the entire tree, if it is finite).
Breadth-first search has exponential worst-case space complexity O(2d).

– Linear time complexity O(n) where n is the current number of nodes that
have been visited at least once (or of the entire tree, if it is finite).
Note that any non-repetitive method, which visits every node at most once,
meets this requirement. Iterative-deepening does not, see problem 3 above.

Note that space and time complexity here depend on different variables. The
desired space complexity O(dc) is polynomial in depth d. The desired time com-
plexity O(n) is linear in size n, and often O(n) = O(bd) for an upper bound b of
the branching factor. Linear in size bd is much larger than polynomial in depth d.

This paper introduces D&B-search, a new uninformed search method, which
integrates depth-first and breadth-first search. It meets these desiderata, the
basic algorithm even with space complexity linear in depth. D&B-search can
be parameterised to turn it into a family of algorithms with breadth-first and
depth-first search as its extremal cases. The parameter also allows to control the
amount of storage provided for completeness.

The paper is organised as follows. Section 2 presents D&B-search. A formal
framework for the analysis of search methods follows in Section 3. Then Section 4
analyses D&B-search with this framework showing that it meets the desiderata
above. Finally, Section 5 reports about the current state of development and
plans for improvements.

74 S. Brodt, F. Bry, and N. Eisinger

2 D&B-Search and Its Family of Algorithms

Let us abbreviate depth-first and breadth-first search by D-search and B-search,
respectively. The idea of D&B-search is to alternate D-search with B-search,
controlling their rotation by a sequence f0, f1, f2, . . . of depth bounds. These are
defined by a function �→ �, i �→ fi with i < fi < fi+1 for i ∈ �.

D-search starts, but may expand nodes at depth fi+1 or beyond only if all
nodes at depth ≤ i have been expanded. If they haven’t, B-search takes over.
It may expand nodes at depth i + 1 only if some node at depth fi+1 has been
expanded before. If none has, D-search takes over again. And so on.

In this way no node is ever re-expanded, D&B-search is non-repetitive. Its
principle bears some resemblance to the principle of A∗-search [10,11], which
combines a heuristic estimate for fast advances into promising parts of the search
space with a path-cost function ensuring a minimum degree of B-search be-
haviour and thus completeness. Likewise, D&B-search, which is uninformed and
has no heuristics for “promising”, combines fast D-search advancement with a
minimum degree of B-search behaviour to ensure completeness. The following
diagrams illustrate how D-search and B-search interact for fi = 2i.

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

f0

f1

f2

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

f0

f1

f2

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

f0

f1

f2

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

f0

f1

f2

D-search advances exponentially faster than B-search. Hence the total number
of nodes to be stored at any time (those on the branch traversed by D-search
together with those at the deepest level reached by B-search) depends polyno-
mially (for fi = 2i even linearly) on the maximal depth reached up to that time.
More details on space complexity will follow on page 76.

From an algorithm-oriented point of view it is better to focus not on the
depth-bounds fi, but on the nodes that serve as synchronisation points between
D-search and B-search. Let us call a node “earlier” than a given one, if (unre-
stricted) D-search would expand it before expanding the given one.

For each depth-bound fi its pivot-node si is the earliest (i. e., left-most) node
at depth fi. It is undefined if there are no nodes at depth fi.

All other nodes are partitioned into finite sets. The pre-pivot-set S0 is the set
of nodes earlier than the pivot-node s0. For each other pivot-node si+1 let Di be
the set of nodes earlier than si+1 and Bi the set of nodes at depth i. All nodes
in these two sets must be expanded before expanding the pivot-node si+1, but
some have already been expanded before earlier pivot-nodes. So the inter-pivot-
set, i. e., the set of nodes expanded in-between si and si+1, is Si+1 = (Di∪Bi)\Xi

where X0 = S0 ∪{s0} and Xi+1 = Xi ∪Si+1 ∪{si+1}. Finally, the post-pivot-set
R is empty if the tree is infinite. Otherwise there is a maximal imax for which
simax is defined, and R is the set of all remaining nodes of the tree except Ximax .

Search for More Declarativity 75

Using these notions, reconsider the behaviour of D&B-search2 for fi = 2i:

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

S0

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s0

{s0} ∪ S1

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s1

{s1} ∪ S2

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s2

{s2} ∪ S3

The general pattern is best seen for the last transition (the others are some-
what special). The third diagram shows the snapshot where all nodes in X1∪S2 =
S0∪{s0}∪S1∪{s1}∪S2 have been expanded (indicated by shading) and D-search
is ready to expand the pivot-node s2.

Next, D-search expands s2, at which point the set of expanded nodes is X2,
and then continues until its next step would be to expand the pivot-node s3.
During this continuation it expands all nodes in D2\X2 ⊆ S3. At this point
control passes to B-search for expanding the remaining nodes in B2\X2 ⊆ S3,
the as-yet unexpanded nodes at depth 2. When done, all nodes in S3 have been
expanded and control passes back to D-search, which is now ready to expand
the pivot-node s3. This is the snapshot in the last diagram, the darkest shade
indicating X2\{s2}, the medium shade indicating S3 with D2\X2 on the left-
most branch and B2\X2 at depth 2.

Let us now turn to the initial stages. D&B-search starts with D-search ex-
panding all nodes in the pre-pivot-set S0 (which contains only the root node for
f0 = 1, but would contain more for f0 > 1). D-search is ready to continue with
pivot-node s0. The first diagram shows the snapshot at this point.

Then D-search expands s0, then all nodes in D0\X0 ⊆ S1 (of which there
aren’t any for f1 − f0 = 1). Its next step would be to expand s1. Now control
passes to B-search for expanding the remaining nodes in B0\X0 ⊆ S1 (of which
at depth 0 there aren’t any). D-search is ready to continue with pivot-node s1.
This is the snapshot in the second diagram.

Altogether, D&B-search expands the nodes of the search tree in the order
S0, s0, . . . , Si, si, . . . , R. For finite trees this has interesting consequences:

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s2

R

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32
0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32
0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

R

2 The pivot-nodes explain the behaviour of D&B-search, but not its implementation,
where they are not directly available. They play an important role indirectly, though.

76 S. Brodt, F. Bry, and N. Eisinger

In a finite tree there are imax pivot-nodes and imax− 1 inter-pivot-sets as well
as sets Bi, part of whose nodes is all B-search ever expands. But imax is small
(O(log d) for fi = 2i) compared to the maximum depth d. So B-search stops quite
soon. The overall behaviour is dominated by D-search in the post-pivot-set R.

In an infinite tree D-search cannot leave the left-most infinite branch. Ev-
erything “to the right” of this branch, the largest part of the search tree as it
increases in size much faster than in depth, is therefore handled by B-search.

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s1

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s1

{s1} ∪ S2

0
1
2
3
4
5
6
7
8

-32-8 -2 0 2 8 32

s2

{s2} ∪ S3

Although the merits of B-search for infinite trees are debatable, it is at least
complete. So D&B-search has a kind of built-in adaptivity. Depending on the
search tree it behaves essentially like the uninformed search method that best
suits the tree, taking “best” with a pinch of salt.

This adaptivity effect would also apply to D&I-search (Section 5), a suggested
combination of D-search with iterative-deepening search instead of B-search.

The D&B Family. Furthermore we can parameterise the function fi with
c ∈ � ∪ {∞} to define a family of algorithms.

Assume3 that the tree’s branching factor is bounded by b ∈ �. An obvious
idea is to let fc,i := �b i

c � with i
∞ := 0, i

0 := ∞ and b∞ := ∞. However, these
functions do not satisfy i < fc,i < fc,i+1 for c �= 1. Therefore4 let fc,i := �b i

c �+ i.
For this family of functions and algorithms we get:
– For 1 ≤ c ≤∞ the algorithm is complete (for c = 0 it is not).
– For 1 ≤ c < ∞ its space complexity is O(dc), which is polynomial in depth.
– For c = 0 it corresponds to D-search because f0,0 = ∞.

The pre-pivot-set S0 contains all nodes of the whole tree.
– For c = ∞ it corresponds to B-search because f∞,i = i + 1, the slowest

function with i < fi. All sets Di\Xi are empty, thus Si+1 = Bi\{si}.
The parameter c is a means to express how much storage one is willing to invest
into completeness. Between the two extremes “none” (c = 0, D-search) and “un-
limited” (c = ∞, B-search) we now have available an almost arbitrary gradation
of algorithms in-between, each of them with space complexity polynomial in
depth and time complexity linear in size (since the algorithm is non-repetitive).

Moreover, the parameter c can easily be turned into a parameter of a single
implementation for the whole family. It is even possible to adapt the parameter
dynamically, i. e., during the traversal of the search tree.
3 This assumption can be dropped for the implementation [2, Sec. 5.2].
4 Alternatively, the requirement could be weakened to non-strict monotonicity. While

possible in principle, this would make the formal analysis more complex.

Search for More Declarativity 77

3 A Framework for Analysing Tree Traversal Algorithms

Most of the definitions and theorems below refer to their counterparts in a techni-
cal report [2, http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7],
which works out the formal framework in full detail.

An uninformed search algorithm cannot anticipate which parts of the search
space contain or don’t contain solutions. In order to be able to find all solutions it
has to visit all nodes in the search tree, just like a traversal algorithm. Therefore
our framework formalises traversal algorithms, gaining the advantage that it
does not need to consider whether or not a node is a solution.

Let b be an upper bound for the out degree of trees under consideration. Let
Σ = {0, . . . , b− 1} and Σ∗ the set of all words over Σ.

Definition 1 (Traversability [2, Def. 2.1.1])
A set Ω ⊆ Σ∗ is called traversable, iff u ∈ Ω holds for all uv ∈ Ω. The set of all
traversable Ω ⊆ Σ∗ is denoted by TravΣ .

Definition 2 (Tree [2, Def. 2.1.2])
Let E := {(w, wi) | w ∈ Σ∗, i ∈ Σ}. Then (Σ∗, E) is a complete infinite tree with
out degree b. Any tree with maximum out degree b can be obtained by choosing
a traversable Ω ⊆ Σ∗ and restricting the edge set E to Ω. The resulting tree
(Ω, E|Ω) = (Ω, {(w, w′) ∈ E | w, w′ ∈ Ω}) is simply written Ω from now on.

Notation 3. Ωk := {w ∈ Ω | |w| = k} = Ω ∩Σk

ΩN := {w ∈ Ω | |w| ∈ N} =
⋃

i∈N

Ωi for N ⊆ �

Ω≥k := Ω{≥k} where {≥ k} := {i ∈ � | i ≥ k}

Notation 4. In the following we often talk about an α with α � ω. Such an
ordinal number α may be considered just the set � in the infinite case (α = ω)
and some set of the form {0, 1, . . . , n} or ∅ in the finite case (α ≺ ω), each
together with the common (well-)ordering on natural numbers.5

The next three definitions model tree traversals at different levels of abstraction,
each building on the former. A traversal-sequence assigns to each number cor-
responding to a “time point” the node of the tree visited at that time point. A
traversal-run enriches a traversal-sequence by associating with each time point a
subset of the nodes of the tree. This subset represents the nodes kept in memory
at this point for later processing (one can reasonably assume this to be almost
the only use of memory by a tree traversing algorithm). A traversal-algorithm
can then be specified by assigning a traversal-run to each tree Ω ∈ TravΣ.

Definition 5 (Traversal-sequence [2, Def. 2.2.3])
Let a : α → Ω be a finite or infinite sequence of nodes in Ω. Then a is called
traversal-sequence iff for each w occurring in a also its parent occurs in a and
the first occurrence of its parent is located before the first occurrence of w.
5 The notation was chosen for two reasons: (1) it calls attention to the “succession”

of the numbers and (2) it covers finite and infinite cases in a uniform way.

http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7

78 S. Brodt, F. Bry, and N. Eisinger

Definition 6 (Traversal-run6 [2, Def. 2.2.4])
A traversal-run is a sequence A : α → Ω×P (Ω) of pairs (node, node set) with:
1. The first node set contains exactly the root of the tree Ω.
2. For each pair the node is a member of the corresponding node set.

For all successive pairs (noden, setn) and (noden+1, setn+1)
3. the children of noden are included in setn+1 (modelling expansion of noden).
4. from setn to setn+1 an arbitrary number of nodes may be dropped.
5. for any node w in setn+1, either it is member of setn or its parent is noden.

A traversal-run induces the traversal-sequence obtained by omitting the sets.

Definition 7 (Traversal-algorithm6 [2, Def. 2.2.4])
A traversal-algorithm is a family (AΩ)Ω∈TravΣ

of traversal-runs. In other words,
the algorithm assigns to each tree Ω ∈ TravΣ a traversal-run over this tree.

As an example of a traversal-run, consider a typical queue-based implementation
of B-search. For each time point n and pair (noden, setn) the setn consists of
all nodes in the queue at this time point (they are the nodes needed for future
expansion) and noden is the first in the queue (the node to be expanded in the
step from n to n + 1). This node is not a member of setn+1 because B-search
removes the expanded node from the queue when inserting its children.

Modelling a stack-based implementation of iterative-deepening, each setn con-
sists of all nodes in the stack at this time point and noden is the top of stack.
This node is not a member of setn+1 unless it is the root ε, which needs to be
kept in the stack as the bottom element for later re-expansion when starting
another iteration.

Definition 8 (Completeness [2, Def. 2.2.9])
– A traversal-sequence a : α → Ω is called complete, iff it is surjective.
– A traversal-run is complete, iff its induced traversal-sequence is.
– A traversal-algorithm is complete, iff its runs AΩ are for all Ω ∈ TravΣ .

Definition 9 (Weak completeness [2, Def. 2.2.14])
A traversal-sequence a : α → Ω is called weakly complete, iff |a [α]| = |Ω|.
The definition of weak completeness for traversal-runs and traversal-algorithms
is analogous to the definition of their completeness.

Obviously completeness implies weak completeness, but conversely only in the
finite case. In the infinite case weak completeness intuitively means that traversal
does not artificially stop when there are still unexpanded nodes in the search
space. Weak completeness follows from some simple criteria [2, Lem. 2.2.16 &
3.3.3], which are easier to test than the condition defining (full) completeness.

When analysing tree traversals, it is in most cases sufficient to know whether
some node is visited earlier than another one, comparing only their first visits.
Time points of revisits, though represented in traversal-sequences, are usually
irrelevant. This observation leads to the final abstraction level in our framework.
6 The definition does not depend on any computability requirements. They are not

needed for the framework and would not simplify anything either.

Search for More Declarativity 79

Definition 10 (Representing ordering [2, Def. 2.2.12])
A partial ordering � on Ω is called representing ordering of a traversal-sequence
a, iff all nodes occurring in a are
1. ordered by their first occurrence.
2. smaller than any node that does not occur in a, but is �-comparable to the

root ε of Ω.7

If the representing ordering of a is unique, it is referred to as �a.

Definition 11 (Traversal-ordering8 [2, Def. 2.3.2])
A partial ordering � on traversable Ω ⊆ Σ∗ is called traversal-ordering, iff

1. it is compatible with the tree structure of Ω, i. e., for all uvw ∈ Ω
u � uvw and u � uvw ⇒ u � uv � uvw hold.

2. all nodes �-comparable to the root ε are totally ordered by �.7

3. no node not �-comparable to ε is smaller than any node �-comparable to ε.7

At least one of the representing orderings of any traversal-sequence is a traversal-
ordering. Those that are not, can be disregarded. [2, Rem. 2.3.3]

Notation 12. For a partial ordering (Ω, �), sets M, N ⊆ Ω and w ∈ Ω define
M � N :⇔ ∀m ∈M ∀n ∈ N : m � n

� (w) := {w′ ∈ Ω | w′ � w}

Definition 13 (Completeness of an ordering [2, Def. 2.3.1])
A partial ordering � on Ω ⊆ Σ∗ is called complete, iff (Ω, �) ∼= α for some α � ω.

Theorem 14 (Characterisation of completeness [2, Thm. 2.3.5])
A total ordering (Ω, �) is complete iff ∃f : �→ � with Ωk � Ω≥f(k).

Theorem 15 (Characterisation of completeness [2, Thm. 2.3.8])
A partial ordering (Ω, �) is complete, iff it is isomorphic to a finite sum of com-
plete ordinal numbers, where only the last9 summand may be infinite (i. e., = ω).
Equivalently, (Ω, �) is complete iff (Ω, �) is isomorphic to a countably infinite
sum of finite ordinal numbers.

The main result now is that these criteria essentially characterise also the com-
pleteness of traversal-sequences and thus of traversal-algorithms.

Theorem 16 (Equivalence of completeness definitions [2, Thm. 2.3.13])

1. A traversal-sequence is complete in the sense of Definition 8 iff all its (travers-
able) representing orderings are complete according to Definition 13.

2. A weakly complete traversal-sequence is complete in the sense of Definition 8
iff its representing ordering is complete according to Definition 13.

7 This requirement is mainly due to technical reasons. It excludes irrelevant but po-
tentially troublesome cases that could otherwise be formally construed.

8 A total traversal-ordering is a topological ordering of Ω.
9 Recall that addition is generally not commutative in ordinal number arithmetic.

80 S. Brodt, F. Bry, and N. Eisinger

4 Analysis of Tree Traversal Algorithms

In this section we first analyse some well-known algorithms in order to illustrate
that the proofs of their (in)completeness are significantly more concise when
based on our framework than the proofs found in the literature. The main part
of the section is then devoted to the analysis of D&B-search, which would be
hardly possible without the framework.

4.1 Known Algorithms

This subsection demonstrates the expressive and analytic power of our frame-
work and the degree to which it makes (in)completeness proofs more concise. It
shows by the example of D-search and of B/A∗-search how Theorem 14 and 15
may be used to prove (in-)completeness.

In both cases we define some total traversal-ordering characterising the desired
algorithm. Then we show the (in-)completeness of the traversal-ordering. The
algorithm itself can be obtained by means of the induced algorithm of the order-
ing, which mainly traverses the nodes in order, i. e., starting with the minimum
of the ordering and then moving to the next greater node each step.10

D-Search. In the representation introduced by Definition 2 each node w of a
tree Ω can be considered a word over the alphabet Σ. Seen this way D-search
traverses the nodes of Ω in lexicographical order. So we define �depth := �lex.

Obviously D-search is incomplete on most infinite trees. This can be shown
easily even without the framework by some counterexample. But if you want to
explain why D-search is incomplete, things become more complicated. Probably
one would say something like “D-Search will never return from the first infinite
branch”. This statement is based on the reader’s common understanding of an
algorithm’s behaviour. How to make it more precise beyond intuition, however,
is not obvious. Our framework allows to formulate the statement precisely.

Let Ω contain an infinite number of nodes and thus an infinite branch (lemma
by König). Let t ∈ Σω be the lexicographically first infinite branch in Ω.
The set of prefixes T ⊆ Ω of t is just the set of nodes on t. Define S :=
{w ∈ Ω | T �depth w} and U := {w ∈ Ω | T �depth w}. Intuitively, S consists
of all nodes “to the left” of the first infinite branch T and U of all nodes “to the
right” of T . If U �= ∅ then �depth is incomplete on Ω:

Possibility 1: ∃w ∈ Ω∀n ∈ �∃w′ ∈ Ωn : w′ �depth w since ∃w ∈ Ω : T �depth w
and T ∩Ωn �= ∅ for all n ∈ �. Consequently ∃k ∈ �∀n ∈ � : Ωk �depth Ωn holds
(set k = |w|). Incompleteness follows by Theorem 14.
Possibility 2: S �depth T �depth U holds. The smallest β that fulfils this
condition11 is β = |S|

∼=k≺ω

+ |T |
∼=ω

+ |U |
∼=α�0

" ω. Incomplete12 by Theorem 15.

10 “minimum” and “next greater node” are well-defined, see [2, Def. 2.3.9, Proof].
11 An ordinal number β fulfils the condition S �depth T �depth U , if there is an

isomorphic well-ordering (Ω, �) that fulfils the condition.
12 �lex is generally not a well-ordering. Particularly (Ω, �depth) � β in general. But

even if (Ω, �depth) were well-ordered it would still be incomplete as shown above.

Search for More Declarativity 81

B-Search and A∗-Search. The informed A∗-search uses an optimistic cost
estimation function13 F (w) = G (w)+H (w) to prioritise more promising nodes.
With G (w) = |w| and H (w) = 1 we obtain B-search as special-case.

A∗-search prefers nodes with smaller estimated costs and takes the lexi-
cographically smaller one first if the estimated costs are equal. Consequently
w �A∗ w′ :⇔ F (w) < F (w′) or F (w) = F (w′)∧w �lex w′ defines the order
in which A∗-search traverses the nodes.

To prove the completeness of A∗-search we apply Theorem 14 using the func-
tion k �→ max< (F [Ωk]) + 1. We must show that Ωk �A∗ Ω(max<(F [Ωk]) + 1) ,
meaning w �A∗ w′ for w ∈ Ωk and w′ ∈ Ω(max<(F [Ωk]) + 1) . This is true because
F (w′) ≥ G (w′) ≥ |w′| = max< (F [Ωk]) + 1 > max< (F [Ωk]) ≥ F (w) .

In the special case of B-search completeness can be proved even faster us-
ing Theorem 15. One only has to convince oneself that the following is true:

�breadth
∼= |Ω0|+ |Ω1|+ |Ω2|+ . . . ∼=

+∞∑
i=0
|Ωi| � ω

Compared to the proofs in [10,11] the argumentation above is extremely short
and precise. Due to its formal character it doesn’t even need a deeper under-
standing of the concrete procedure of A∗-search. At this point we benefit from
the abstract level of our analytic framework.

4.2 D&B-Search

The analysis of D&B-search is based on its traversal-ordering �d&b too. First
we give a constructive definition of �d&b which corresponds directly to the de-
scription of D&B-search in Section 2. Second an alternative axiomatic definition
of �d&b is presented. We show the equivalence of the two definitions and then
alternate between them when proving completeness and space complexity.

Definition 17 (pivot-nodes & pre/inter/post-pivot-sets [2, Def. 4.1.1])

imax :=

⎧⎨⎩
−1 if Ω = ∅
max ({i | Ωfi �= ∅}) if |Ω| < ∞
∞ if |Ω| = ∞

si := minlex (Ωfi) for 0 ≤ i ≤ imax

Di := �lex (si+1)
Bi := Ωi

S0 := �lex (s0) X0 := S0 ∪ {s0}
Si+1 := (Di ∪Bi) \Xi Xi+1 := Xi ∪ Si+1 ∪ {si+1}

R := Ω\Ximax Ximax :=
imax⋃
j=0

Xj

The pivot-nodes and pre/inter/post-pivot-sets should look familiar from page 74.
By means of these nodes and sets the next definition constructs �d&b.

13 G denotes the cost incurred so far on the path to w, and H denotes the optimistically
estimated cost remaining for the path from w to a goal.

82 S. Brodt, F. Bry, and N. Eisinger

Definition 18 (D&B-ordering, constructive [2, Def. 4.3.1])
1. S0 �d&b s0 �d&b S1 �d&b s1 �d&b · · · �d&b Simax �d&b simax �d&b R
2. ∀w, w′ ∈ S0 : w �d&b w′ ⇔ w �lex w′

3. ∀w, w′ ∈ Si+1 ∩Ωi : w �d&b w′ ⇔ w �lex w′

4. ∀w, w′ ∈ Si+1\Ωi : w �d&b w′ ⇔ w �lex w′

5. ∀w, w′ ∈ R ∩Ωimax : w �d&b w′ ⇔ w �lex w′

6. ∀w, w′ ∈ R\Ωimax : w �d&b w′ ⇔ w �lex w′

Condition 1 already appeared on page 75. It defines the order between the pivot-
nodes and sets and can be read as D&B-search expands all members of the
pre-pivot-set S0 before expanding the pivot-node s0, and it expands s0 before
expanding all members of the inter-pivot-set S1, and so on.

The rest affects the inner order of the sets. All equivalences can be read
as D&B-search expands w before w′ iff depth-first search would. Condition 2
matches exactly the description of D&B-search on page 75. Conditions 3 to 6
are a little bit less restrictive than the informal description. There D-search
always had to finish work on some inter- or post-pivot-set before B-search could
start, the nodes in the subset Si+1\Ωi had to be expanded before the nodes in
the subset Si+1 ∩Ωi. Here the two may interleave their work on such a set, the
order between the two subsets is not restricted by the conditions above.

Recall the original view of D&B-search as introduced at the very beginning
of Section 2. It was the view of alternating D-search and B-search, controlling
their rotation by a sequence f0, f1, f2, . . . of depth bounds. For the axiomatic
definition of �d&b we reuse this view.

Definition 19 (D&B-ordering, axiomatic [2, Sec. 4.3 (D&B)])

(Ax1) Ωk �d&b Ωfk+1

(Ax2) ∀w, w′ ∈ Ωk : w �d&b w′ ⇔ w �lex w′

(Ax3) ∀w ∈ Ωk : �lex (w) �d&b w︸ ︷︷ ︸
(Ax3a)

∨ ∃w′ ∈ Ωfk
: w′ �d&b w︸ ︷︷ ︸

(Ax3b)

(D&B)

(Ax1) signifies that none of the nodes in Ωfk+1 is expanded before all nodes of Ωk

have been expanded. Therefore it limits the depth of the depth-first-traversal.
(Ax3b) disjunction concerns the breadth-first-traversal. It means that a node

may only be expanded if some node at sufficient depth has been expanded (by
depth-first-traversal) before. This implies a depth limit for breadth-first-traversal
because (Ax3) requires (Ax3b) or (Ax3a) to hold for each node.

(Ax2) and (Ax3a) are less interesting. (Ax3a) says that a node may be ex-
panded if all lexicographically smaller nodes have been expanded before. This is
the specification of D-search. If at some time (Ax3a) becomes false because of
(Ax1), i. e., (Ax3b) is true, (Ax2) enforces exactly B-search because it requires
every level to be traversed in lexicographical order.

We have to show that the two definitions of �d&b are equivalent. Though our
framework is a great help when formulating the arguments, the proof is still
more extensive than can be presented within the space limitations of this paper.
Without the framework it would be quite impossible. The results are as follows.

Search for More Declarativity 83

Theorem 20 (D&B-ordering, constructive ⇒ axiomatic [2, Thm. 4.3.8])
If � satisfies Definition 17 and 18 then � is a model of (D&B).

Theorem 21 (D&B-ordering, axiomatic ⇒ constructive [2, Thm. 4.3.9])
If � is a model of (D&B) then it satisfies Definition 17 and 18.

Thus, the two definitions are equivalent. But what does this help? In particular,
why do we need the axiomatic definition? We will see one reason14 in the next
theorem. Moreover the theorem emphasises again the power of our framework
for completeness proofs as the proof uses one of its main results.

Theorem 22 (D&B-ordering, completeness [2, Thm. 4.3.10]). If � satisfies
Definition 17 and 18 or is a model of (D&B), then � is complete.

Proof. Follows immediately from (Ax1) and Theorems 14 and 20. �

Finally, we are interested in the space complexity of D&B-search. In this context
we find the constructive definition to be very helpful. Let us start with the general
result for any function f with i < fi < fi+1. This result is independent from the
family defined in Section 2.

Theorem 23 (D&B-search, general space complexity [2, Cor. 4.3.15])
The space complexity M(d) at depth d ∈ � of the algorithm induced by �d&b is

M (d) ≤
{

b · (d + 1) if d < f0

b ·
(
d + 1 + bi

)
else

where i := argmax
j
{fj | fj ≤ d}.

But of course we are most interested in the space complexity of the family defined
in Section 2. We obtain their complexity from Theorem 23 by specialising fi to
the corresponding functions:

Theorem 24 (D&B family c=0, linear space complexity [2, Thm. 4.3.17])
Let c = 0, fi = f0,i = �b i

0 �+ i = ∞ and �0 be the corresponding ordering. The
space complexity of the induced algorithm is M0 (d) ≤ b · (d + 1) .

Theorem 25 (D&Bfamily, polynomial space complexity [2, Thm. 4.3.16])
Let 1 ≤ c < ∞, fi = fc,i = �b i

c �+ i and �c be the corresponding ordering. The
space complexity of the induced algorithm is Mc (d) ≤ b · (d + 1 + dc) .

5 Conclusion

In this paper we have presented D&B-search, a new uninformed search method
based on integrating depth-first and breadth-first search into one. We have shown
that the ratio of depth-first to breadth-first search can be balanced by a param-
eter, thus defining a family of search methods with depth-first and breadth-first
search as its borderline cases.
14 The second reason is that the axiomatic definitions provide the invariants for our

implementation [2, Sec. 5.1].

84 S. Brodt, F. Bry, and N. Eisinger

We have also introduced a formal framework for analysing informed or unin-
formed search methods, which is based on partial orderings and uniformly covers
finite and infinite search trees. We have illustrated its analytic power by giving
very concise, yet formally precise proofs for well-known (in)completeness results
on depth-first search, breadth-first search, and A∗-search.

Finally, we have analysed D&B-search using the formal framework. In the
borderline cases the results are the known ones for depth-first and breadth-
first search. In all non-borderline cases D&B-search is complete (exhaustive),
it is non-repetitive and thus its time complexity is linear in size, and its space
complexity is polynomial in depth. The polynomial is of degree c for the very
parameter defining the D&B family, which therefore allows to control the amount
of storage to be spent for the sake of completeness.

It should be noted that D&B-search is intrinsically better than running depth-
first and breadth-first search in parallel, be it by round robin scheduling or more
advanced time-sharing techniques or physically parallel on different processors.
With all of these approaches the space complexity is exponential in depth for
the process running breadth-first search. In contrast to that, D&B-search has
space complexity polynomial in depth. It is this property that made necessary
the somewhat involved form of integrating depth-first with breadth-first search.

In this paper we have not addressed implementation issues. The technical
report [2] on which the paper is based also presents two implementation ap-
proaches to the level of detail of pseudo code showing that the required data
structures are essentially a doubly-linked list of doubly-linked lists. Coding this
pseudo code in a real programming language is rather straightforward.

We are about to start work on a prototype implementation of one of these
approaches and plan to use it for empirical comparisons with other uninformed
search methods. We intend to focus especially on logic programming applications
using backward reasoning approaches without and with memoization [15,13].

At the conceptual level, we plan to follow-up the observation that the form
of integrating depth-first with breadth-first search results in a kind of built-in
adaptivity as explained in Section 2. The predominant behaviour of D&B-search
corresponds to depth-first search if the search tree is finite and to breadth-first
search if the search tree is infinite. This effect can be maintained if depth-first
search is integrated with other complete search methods in the same way.

Its space complexity being exponential in depth, breadth-first search, although
theoretically complete on infinite trees, cannot advance to very deep levels in
practice. Iterative-deepening usually does better and is also complete. However,
as pointed out in Section 1, iterative-deepening deteriorates time complexity
in those cases in which depth-first search is complete. It would therefore be
alluring if there was a possibility to use depth-first search whenever it is complete
and iterative-deepening only when needed to ensure completeness. Alas, these
conditions are not decidable as they stand.

But we can come very close to such a combination by transferring the princi-
ple of integration used for D&B-search to a combination of depth-first search and

Search for More Declarativity 85

iterative-deepening. The result, called D&I-search, behaves predominantly like
depth-first search if the search tree is finite and like iterative-deepening if the
search tree is infinite.

Technically, this can be achieved by the same depth bounds fi as with D&B-
search. D&I-search even has the same representing ordering as D&B-search, so
its completeness is just a corollary. In order to make sure that iterative-deepening
does not expand any nodes that have already been expanded by depth-first
search, iterative-deepening’s algorithm needs to be slightly modified and the
underlying data structure becomes slightly more complicated. This optimisation
even results in the converse effect: with D&I-search, iterative-deepening can to
some extent also prune the search space of depth-first search.

We plan to investigate D&I-search and also, using the same principle, other
promising combinations of search methods.

Acknowledgements. We are grateful to Tim Furche, who read a draft of this
paper and gave many valuable hints for its improvement. We thank all of our col-
leagues in the group for stimulating discussions about the work presented here.

References

1. Barták, R.: Incomplete depth-first search techniques: A short survey. In: Proceed-
ings of 6th Workshop on Constraint Programming for Decision and Control (CPDC
2004), pp. 7–14 (2004)

2. Brodt, S.: Tree-search, partial orderings, and a new family of uninformed algo-
rithms. Research report PMS-FB-2009-7, Institute for Informatics, University of
Munich, Oettingenstraße 67, D-80538, München, Germany (2009),
http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7

3. Bry, F.: Query evaluation in recursive databases: Bottom-up and top-down recon-
ciled. Data and Knowledge Engineering 5(4), 289–312 (1990)

4. Debray, S., Ramakrishnan, R.: Abstract interpretation of logic programs using
magic transformations. Journal of Logic Programming 18, 149–176 (1994)

5. Ginsberg, M.L., Harvey, W.D.: Iterative broadening. In: Proc. Eighth National
Conference on Artificial Intelligence (AAAI 1990), pp. 216–220 (1990)

6. Kerisit, J.-M.: A relational approach to logic programming: the extended Alexander
method. Theoretical Computer Science 69, 55–68 (1989)

7. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 1. Addison-Wesley
Publishing Co., Reading (1997)

8. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence 27(1), 97–109 (1985)

9. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

10. Nilsson, N.J.: Principles of Artificial Intelligence. Springer, Heidelberg (1982)
11. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Publishing Co., Reading (1984)
12. Ruml, W.: Heuristic search in bounded-depth trees: Best-leaf-first search. Technical

report, Harvard University (2002)

http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7

86 S. Brodt, F. Bry, and N. Eisinger

13. Shen, Y.-D., Yuan, L.-Y., You, J.-H.: SLT-resolution for the well-founded seman-
tics. Journal of Automated Reasoning 28, 53–97 (2002)

14. Stickel, M.E.: A Prolog technology theorem prover: Implementation by an extended
Prolog compiler. Journal of Automated Reasoning 4(4), 353–380 (1988)

15. Tamaki, H., Sato, T.: OLDT resolution with tablulation. In: Wada, E. (ed.) Logic
Programming 1986. LNCS, vol. 264, pp. 84–98. Springer, Heidelberg (1987)

16. Winston, P.H.: Artificial Intelligence, 3rd edn. Addison-Wesley Publishing Co.,
Reading (1992)

Distributed Resolution
for Expressive Ontology Networks

Anne Schlicht and Heiner Stuckenschmidt

Knowledge Representation and Knowledge Management Research Group
Computer Science Institute

University of Mannheim
{anne,heiner}@informatik.uni-mannheim.de

Abstract. The Semantic Web is commonly perceived as a web of partially inter-
linked machine readable data. This data is inherently distributed and resembles
the structure of the web in terms of resources being provided by different par-
ties at different physical locations. A number of infrastructures for storing and
querying distributed semantic web data, primarily encoded in RDF have been
developed but almost all the work on description logic reasoning as a basis for
implementing inference in the Web Ontology Language OWL still assumes a cen-
tralized approach where the complete terminology has to be present on a single
system and all inference steps are carried out on this system.

We propose a distributed reasoning method that preserves soundness and com-
pleteness of reasoning under the original OWL import semantics. The method is
based on resolution methods for ALCHIQ ontologies that we modify to work
in a distributed setting. Results show a promising runtime decrease compared to
centralized reasoning and indicate that benefits from parallel computation trade
off the overhead caused by communication between the local reasoners.

1 Introduction

Almost all the work on description logic reasoning as a basis for implementing infer-
ence in the Web Ontology Language OWL still assumes a centralized approach where
the complete terminology has to be present on a single system and all inference steps
are carried out on this system. This approach has a number of severe drawbacks. First of
all, the complete, possibly very large data sets have to be transferred to the central rea-
soning system creating a lot of network traffic. Furthermore, transferring the complete
models to a single reasoner also makes this a major bottleneck in the system. This can
go as far as reaching the limit of processable data of the reasoning system. A number of
approaches for distributed reasoning about interlinked ontologies have been proposed
that do not require the models to be sent to a central reasoner [5,7,10]. All these ap-
proaches rely on strong restrictions on the types of links between ontologies or the way
concepts defined in another ontology may be used and refined and thus introduce spe-
cial kinds of links between data sets stored in different locations. In particular, none
of these approaches supports the standard definition of logical import from the OWL
specification, limiting their usefulness on real data sets. We illustrate these problems
using a small example.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 87–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

88 A. Schlicht and H. Stuckenschmidt

Example 1. We assume the two small ontologies depicted below are connected by an
owl:imports statement in ontology B.

Ontology A

A:Car � A:V ehicle
A:Car � ∃≤1A:hasEngine

Ontology B

B:HybridCar � A:V ehicle
B:HybridCar � ∃≥2A:hasEngine

As we can easily see, A:Car � ¬B:HybridCar, and hence adding the assertion
”A:Car �B:HybridCar(a)” would yield an inconsistency.

Our goal is to have a distributed reasoning method that performs local reasoning
on the two ontologies and that is still able to detect the inconsistency. Looking at
the previous proposals for distributed reasoning mentioned above, we notice that none
of them meets these requirements. The framework of ε-connections[7] does not ap-
ply in this scenario as it does not allow the specification of subsumption relationships
between interlinked ontologies. Using the framework of conservative extensions[10]
does not provide any advantages in terms of local reasoning. In particular, the over-
all model is neither a conservative extension of ontology A nor of ontology B as in
both cases, the additional information in the other parts can be used to derive new
information concerning the signature of ontology A or ontology B, respectively. En-
coding the ontology network in distributed description logics, finally, the domains of A
and B are disjoint by definition and the assertion ”A:Car � B:HybridCar(a)” is not
expressible.

Note that a set of ontologies linked by mapping axioms can also be represented in
terms of OWL imports. In this case, the mapping axioms would be part of any of the
two ontologies and and the other ontology would be imported by the one containing the
mapping axioms.

Our aim is to develop a method for reasoning about description logic ontologies that
overcomes the disadvantages of existing methods. We have designed and implemented
a distributed reasoning method that 1) preserves soundness and completeness of rea-
soning under the original OWL import semantics 2) avoids restrictions on the use of
definitions from remote models in local definitions or on the way knowledge is dis-
tributed a priori 3) decreases runtime by parallel computation, trading off the overhead
caused by communication.

In previous work [15] we proposed a distributed resolution method for ALC. The
extension toALCHIQ is complex because the ordered resolution calculus we used for
ALC cannot handle the equality literals introduced by number restrictions. A resolu-
tion calculus that decides ALCHIQ is much more sophisticated and requires a more
involved strategy for exchanging axioms between reasoning peers. The paper is struc-
tured as follows: In the next section we address the distribution principles and dis-
tributed resolution in general. Section 3 reviews the idea proposed in [15] and presents
the details of our distributed reasoning method. In Section 4 we investigate the prop-
erties of the method with respect to number of derivations, communication effort and
degree of parallelization and show that these parameters are promising.

Distributed Resolution for Expressive Ontology Networks 89

2 Distributing Logical Resolution

2.1 Distribution Principles

There are various options for distributing the process of logical reasoning. Many of
these options have been investigated in the field of automated theorem proving for first-
order logics [4,3]. In the following we discuss these options and their pros and cons
with respect to the requirements and goals defined in the introduction. In particular, we
have to make two choices:

1. We have to choose a reasoning method that is sound and complete for description
logics and permits distribution.

2. We have to choose a distribution principle that supports local reasoning and mini-
mizes reasoning and communication costs.

Concerning the reasoning method, analytic tableaux are the dominant method for im-
plementing sound and complete inference systems for description logics [8]. It has been
shown, however, that sound and complete resolution methods for expressive description
logics can be defined [16,9]. We exclude other existing methods such as a reduction of
DL reasoning to logic programming from our investigation because these approaches
are not sound and complete for the languages we are interested in. Because tableaux-
based as well as resolution-based methods meet our requirements with respect to lan-
guage coverage and completeness, the decisive factor is their suitability for distributed
reasoning.

The survey [3] discusses different strategies for parallelizing logical inference. In
particular, the authors distinguish between parallelism at the term-, clause and the
search level where paralellism at the search level is further distinguished into multi-
search and distributed search approaches. Parallelism at the term- and clause level is not
suitable for our purposes as it speeds up basic reasoning functions such as matching or
unification using a shared memory. The idea of multi-search approaches is to try differ-
ent heuristics or starting points in parallel and require the complete logical model to be
available to all reasoners. The distributed search paradigm naturally fits the distributed
storage of parts of the model and therefore represents a paradigm that fits the goals of
our research as it allows to assign the part of the search space relevant for a specific
model to a local reasoner instance that interacts with other local reasoners if necessary.
The choice of the distributed search paradigm has consequences for the choice of the
reasoning method. In particular, it has been shown that distributed search can be used in
combination with ordering-based methods [6,2] to support parallel execution of logical
reasoning. We build on top of these results by proposing distributed reasoning methods
based on the principles of resolution. Our proposal extends beyond the state of the art
in distributed theorem proving as it addresses specific decidable subsets of first-order
logics that have not yet been investigated in the context of distributed theorem proving.
Furthermore, existing strategies for assigning inference steps to reasoners such as the
ancestor-graph criterion [2] cannot avoid redundancy. We propose a method based on
ordered resolution that takes advantage of the special structure of clauses in the descrip-
tion logic ALCHIQ for efficiently deciding satisfiability in a distributed setting.

90 A. Schlicht and H. Stuckenschmidt

2.2 Resolution Theorem Proving

Before describing our distributed resolution method for ontologies, we first briefly re-
view standard resolution reasoning and present the basic idea for distributed resolution.
Resolution is a very popular reasoning method for first order logic (FOL) provers. As
description logics are a strict subset of first order logic, resolution can be applied to de-
scription logic ontologies as well [17]. For this purpose the DL ontology is transformed
into a set of first order clauses as defined in Section 3.2. This translation can be done
on a per axiom basis independently of other parts of the model. It can be shown that the
ontology is satisfiable if and only if the set of clauses is satisfiable. The set of clauses is
satisfiable iff exhaustive application of the rule standard resolution with factoring does
not derive an empty clause.

Definition 1 (Standard Resolution). For clauses C and D and literals A and ¬B,
standard resolution with factoring is defined by the rule

Standard Resolution with Factoring
C ∨A1 ∨ · · · ∨An D ∨ ¬B

Cσ ∨Dσ

where the substitution σ is the most general unifier of A1, . . . , An and B.

2.3 Distributed Resolution

The implementation of a resolution algorithm is described in [18]. For an input set of
clauses, it systematically applies resolution rules to appropriate pairs of clauses and
adds the derived new clauses to the clause set. If an empty clause is derived or no new
and non-redundant clause can be derived, the algorithm terminates. An essential part of
a resolution prover and the most time consuming component [18] are reduction rules
that delete clauses that are not necessary for the decision process. Without reduction,
the number of clauses generally increases infinitely and it may be impossible to saturate
even a small set of clauses.

As described in [15], a standard resolution algorithm can be modified to support
distributed reasoning. In particular, the inferences can be distributed across different
reasoners by separating the set of input clauses and running provers on separate parts
of the set:

– Every reasoner separately saturates the clause set assigned to it.
– Newly derived clauses are propagated to other reasoners if necessary.

Instead of adding every clause that is derived to the local set of clauses, some new
clauses are propagated to other reasoners and deleted locally.

Definition 2 (Allocation). An allocation for a set C of clauses and a set of ontology
modules M is a relation a ∈ (C ×M) such that

∀c ∈ C : ∃m ∈M : a(c, m)

The set of modules a clause c is allocated to by the allocation a is defined by

a(c) := {m ∈ M | a(c, m)}

If the allocation relation is functional we may omit the parenthesis and write a(c) = m.

Distributed Resolution for Expressive Ontology Networks 91

In addition to the propagation of clauses we have to add a second modification to the
algorithm to turn it into a distributed resolution algorithm. In contrast to the centralized
case, a reasoner that has saturated the local clause set may have to continue reasoning
once a new clause is received from another reasoner. The whole system of connected
reasoners stops if the empty clause is derived by one of the reasoners or all are saturated.

After this intuitive description of a distributed resolution algorithm, we define dis-
tributed resolution formally:

Definition 3 (Distributed Resolution Calculus). A distributed resolution calculus
R(a) is a resolution calculus that depends on an allocation relation a : C → M such
that each rule r of R(a) is restricted to premises P ⊂ C with

∃m ∈M : ∀c ∈ P : a(c, m)

We call this restriction allocation restriction.

Hence, the rules of a distributed resolution calculus are restricted to premises allocated
to the same module. A distributed calculus can be obtained from any resolution calculus
by defining an allocation relation and adding the allocation restriction to each rule of
the calculus.

Obviously, termination of the underlying calculus is preserved by distribution if it
does not depend on reduction rules. In the worst case, each inference of the original
calculus is performed once in every module of the distributed calculus. The results
presented in Section 4 also indicate that local reduction (i.e. deleting clauses that are
redundant with respect to the reasoner they are processed by) is sufficient in practice.

Preserving completeness without allocating each clause to every reasoner is more
difficult, we have to make sure the allocation restriction never excludes inferences that
are possible in the original calculus. For standard resolution, a given clause C has to be
propagated to any reasoner whose clause set contains a clause with a literal that matches
(i.e. is unifiable and of opposite polarity) any of the literals in C. This would lead to a
substantial communication overhead and potentially redundant inference steps.

To avoid redundancy, we aim at allocating every clause to only a single reasoner.
A functional allocation guarantees that the same resolution step is never carried out
twice, because equivalent clauses are always assigned to the same unique reasoner
which takes care of avoiding local redundancy.

3 Distributed Resolution for Description Logic

As we have seen above, the ability to define a sound and complete distributed reasoning
method relies on two requirements: (1) the existence of a sound and complete resolution
calculus and (2) the ability to find a corresponding allocation that satisfies the allocation
restriction. In this section, we show that for the case of ontologies defined inALCHIQ
both of these requirements can be satisfied leading to a sound and complete distributed
resolution method. We do not address reduction rules in this section because reduction is
not necessary to guarantee the theoretical properties of the proposed calculus. However,
for efficient reasoning reduction is essential and hence the practical effects distribution
has on reduction are discussed in the experimental section.

92 A. Schlicht and H. Stuckenschmidt

Ontology A Ontology B

(1) ¬A:C(x)∨A:V (x) ¬B:Hy(x)∨A:V (x) (1)
(2) ¬A:C(x)∨¬A:e(x, y1)∨¬A:e(x, y2)∨y1 = y2 ¬B:Hy(x)∨f1(x) �= f2(x) (2)
(3B3) ¬B:Hy(x)∨A:e(x, f1(x)) ← ¬B:Hy(x)∨A:e(x, f1(x)) (3)
(4B4) ¬B:Hy(x)∨A:e(x, f2(x)) ← ¬B:Hy(x)∨A:e(x, f2(x)) (4)

Query: B:Hy(a) (5)
(5B6) A:C(a) ← A:C(a) (6)

- -
(62,3,4) ¬A:C(x) ∨ ¬B:Hy(x)∨f1(x) = f2(x) →¬A:C(x) ∨ ¬B:Hy(x)∨f1(x) = f2(x) (7A6)

¬A:C(x)∨¬B:Hy(x) (82,7)
(7B7) ¬A:C(a) ← ¬A:C(a) (95,8)
(85,7) �

Fig. 1. Distributed refutation example. The designer of ontology B from Example 1 wants to
check satisfiability of the concept ”B:HybridCar�A:Car” and adds the the appropriate query.
Since the concept is unsatisfiable, an empty clause is derived. Predicates are abbreviated to sim-
plify presentation, derived clauses are noted below the dashed line, arrows denote propagation
of a clause. Literals that are not resolvable literals are grayed out (assuming predicates from B
precede predicates from A and A:V > A:C). Clauses that are striked out are locally deleted on
propagation.

3.1 Distribution Principle

The idea for our distributed reasoning approach is to take advantage of the restrictions
description logic imposes on first order logic. In particular, we identify a property that
holds for many efficient resolution calculi and use it for defining a distribution principle.
The important property of a resolution calculus is, that each clause contains only one
resolvable literal. I.e. for every possible inference the resolvable literal (or a subterm
of it) is unified with a literal of another premise, the other literals are (possible with
substituted variables) passed to the conclusion. Formally, the resolvable literal and its
uniqueness are defined as follows:

Definition 4 (Resolvable Literal). A literal lit of a clause C ∨ lit is a resolvable literal
of C ∨ lit with respect to a calculus R and logical language L iff there is a clause
D ∨ lit′ ∈ L, such that R can be applied to the premises C ∨ lit and D ∨ lit′ deriving
the clause (C ∨D ∨ lit′′)σ with appropriate substitution σ and literal lit′′1.

In standard resolution all literals of a clause are resolvable literals, but more advanced
calculi restrict the applicability of resolution rules such that there is only one resolvable
literal in each clause. In particular, for the ordered resolution calculus defined in [11] for
ALC description logic, each clause contains an unique resolvable literal [15]. Based on
the uniqueness of the resolvable literal and an allocation of symbols to reasoners we can
define an allocation function that allocates every clause to one module of the networked
ontology. Note that for ontologies linked by import statements, the namespaces define
the allocation of symbols. For distributed reasoning on a single ontology, the ontology
is first partitioned into linked modules as described in [14].

1 For ordered resolution lit′′ is false and may be omitted.

Distributed Resolution for Expressive Ontology Networks 93

Definition 5 (Allocation a(c))

a(c) := {alloc(topSymbol(lit)) | lit is resolvable literal of c}

where topSymbol of a possibly negated predicate literal (¬)P (t1, ..., tn) is P .

If all clauses have unique resolvable literals, then the allocation a is functional, too.
For determining where (and if) a derived clauses is propagated, we first pick the unique
resolvable literal of the clause, then the top symbol of this literal and finally the reasoner
this symbol is allocated to. If a symbol s is allocated to a module m we say that module
m is responsible for s. Figure 1 illustrates distributed resolution on the ontologies from
Example 1. In [15] we showed that ordered resolution with this allocation function is
a complete distributed method for deciding ALC satisfiability because the inferences
are the same for distributed and centralized resolution. However, for supporting more
expressive ontologies, a more complex calculus is required and the allocation function
defined above is not sufficient to guarantee completeness.

3.2 Preliminaries

Before presenting the calculus our distributed method is based on, we define the descrip-
tion logic we use and the translation of description logic axioms to first order clauses.

The Description Logic SHIQ. A SHIQ ontology is a set O of axioms α of the
following syntax in BNF:

α ::=C � C|C ≡ C|C(x)|R(x, x)

|Trans(R)|R � R

C ::=�| ⊥ |A|¬C|C � C|∃R.C|∀R.C

|∃≤nR.C|∃≥nR.C

n ::=number

A ::=concept name

R ::=role name|Inv(role name)

x ::=individual name

The signature of an ontology Sig(O) is the disjoint union of concept names, role names
and individual names.

Normalization. The resolution calculus we apply requires first order clauses as input,
hence the first order formulas obtained from an ontology are translated to clauses. To
guarantee termination of the applied resolution calculus, the ontology has to be nor-
malized prior to clausification. This ensures that only certain types of axioms and cor-
responding clauses occur in the reasoning procedure. For simplicity, we assume the on-
tology contains only subsumption axioms A � C where A is not a complex concept and
no equivalence axioms. Complex subsumptions C � D are equivalent to � � ¬C D
and equivalences C ≡ D can be replaced by two subsumptions C � D and D � C.
The definitorial form normalization we use replaces complex concepts C in the right
hand side of an axiom by a new concept name A and adds the axiom A � C to the on-
tology. Thus, it splits up nested axioms into simple ones by introducing new concepts.

Definition 6 (Definitorial Form). For simple subsumptions A � D with atomic con-
cept A the Definitorial Form is defined by

94 A. Schlicht and H. Stuckenschmidt

Def(A � D) :=
{
{A � D} if all subterms of D are literal concepts
{Q � D|p} ∪Def(A � D[Q]p) if D|p is not a literal concept

where D|p denotes a certain2 subterm of D and D[Q]p is the term obtained by replacing
this subterm with Q.

Clausification. After normalization, the ontology contains only simple axioms that can
be translated to first order clauses as follows:

A � B ¬A(x) ∨ B(x)

A � B
C ¬A(x) ∨ B(x)

¬A(x) ∨ C(x)

A � B �C ¬A(x) ∨ B(x) ∨ C(x)

A � ∃r.B ¬A(x) ∨ r(x, f(x))

¬A(x) ∨ B(f(x))

A � ∀r.B ¬A(x) ∨ ¬r(x, y) ∨ B(y)

A � ∃≤nr.B ¬A(x) ∨ ¬r(x, yi) ∨ yi = yj ∨ ¬B(yi)

i = 1..n+1 j = 1..i−1

A � ∃≥nr.B ¬A(x) ∨ r(x, fi(x)) i = 1..n

¬A(x) ∨ fi(x) �= fj(x) j = 1..i−1

¬A(x) ∨ B(fi(x))

r � s ¬r(x, y) ∨ s(x, y)

r ≡ Inv(s) ¬r(x, y) ∨ s(y, x)

¬s(x, y) ∨ r(y, x)

The clauses resulting from the ontologies of Example 1 are depicted in Figure 1.

3.3 Distributed Resolution for ALCHIQ

When an ontology contains qualified(Q) or unqualified(N) number restrictions or func-
tional properties (F), the translation to clauses contains equalities. To deal with these
equalities, a much more sophisticated calculus than ordered resolution is required which
in turn requires a more involved allocation of clauses to ontology modules. Before we
present the necessary adaptions and extensions to the distributed resolution method, we
briefly describe the calculus our method is based on. The DL expressivity that can be
covered with this calculus isALCHIQ− which is SHIQ without transitive properties
with the additional restriction that number restrictions are only allowed on roles that do
not have subroles. Extension of the method for supporting SHOIQ(D) is discussed in
the next subsection.

Resolution Calculus for ALCHIQ−. A complete calculus that terminates on clauses
obtained from ontologies that contain number restrictions is basic superposition [1,9],
an extension of ordered resolution. Like ordered resolution, basic superposition uses two
parameters, a selection function and ordering of literals that restrict applicability of the
resolution rules.

As usual for theories containing equalities, we assume a translation of predicates
to general function symbols such that all literals are equalities (e.g. the literal P (x)
translates to P (x) ≈ �), we may still write P (x) for readability purpose and call
these literals predicate literals. Clauses are split into skeleton clause C and substitution
σ representing all substitutions introduced by previous unifications. The clause Cσ is

2 The exact definition of |p (position) is not relevant in this paper, please refer to [11] for detail.

Distributed Resolution for Expressive Ontology Networks 95

denoted as closure C · σ or alternatively a closure is denoted by enclosing non-variable
subterms of Cσ that correspond to variables in C in brackets (e.g. P ([f(y)]) for P (x) ·
{x �→ f(y)}). For distributing basic superposition, the rules we have to take care of are
positive and negative superposition, the other rules contain only one premise and hence
distribution of the input clauses into separate sets does not restrict application of these
rules.

Definition 7 (Superposition)

Positive superposition
(C ∨ s ≈ t) · ρ D ∨ (w ≈ v) · ρ

(C ∨D ∨ w[t]p ≈ v) · θ

where

1. σ is the most general unifier of sρ and wρ|p and θ = ρσ
2. tθ � sθ and vθ � wθ
3. in (C ∨ s ≈ t) · θ nothing is selected and (s ≈ t) · θ is strictly maximal
4. in D ∨ (w ≈ v) · θ nothing is selected and (w ≈ v) · θ is strictly maximal
5. w|p is not a variable.
6. sθ ≈ tθ � wθ ≈ vθ

Negative superposition
(C ∨ s ≈ t) · ρ D ∨ (w �≈ v) · ρ

(C ∨D ∨w[t]p �≈ v) · θ
where

1. σ is the most general unifier of sρ and wρ|p and θ = ρσ
2. tθ � sθ and vθ � wθ
3. in (C ∨ s ≈ t) · θ nothing is selected and (s ≈ t) · θ is strictly maximal
4. (w �≈ v) ·θ is selected or maximal and no other literal is selected in D∨(w �≈ v) ·θ
5. w|p is not a variable.

In addition to the superposition rules, two rules with only one premise are necessary to
deal with equalities (see [9] for details). Ordered resolution is a special case of positive
superposition, where w|p = w, i.e. p is the root position. A sequence of ordered reso-
lution inferences can be combined into a ordered hyperresolution inference by deleting
intermediate conclusions. We assume that ordered hyperresolution and not ordered res-
olution is applied to clauses containing multiple resolvable literals (see derivation of
clause A6 in Figure 1).

Definition 8 (Resolution Calculus RQ [9])
RQ is the calculus with 1) rules positive and negative superposition, reflexivity reso-
lution and equality factoring, 2) selection of every negative binary literal, 3) the term
ordering"Q is a lexicographic path ordering (LPO, [12]) based on a total precedence
> of function, constant and predicate symbols with f > c > P > � for every function
f constant c and predicate P .

Literals containing different variables are "Q-incomparable because otherwise the or-
dering would depend on the substitution. Literals that contain a function symbol are

96 A. Schlicht and H. Stuckenschmidt

Table 1. The 8 types of ALCHIQ closures [9]

1 ¬R(x, y) ∨ Inv(R)(x, y)
2 ¬R(x, y) ∨ S(x, y)
3 Pf (x) ∨ R(x, 〈f(x)〉)
4 Pf (x) ∨ R([f(x)], x)
5 P1(x) ∨ P2(〈f(x)〉) ∨ ∨〈fi(x)〉 ≈/�≈ 〈fj(x)〉
6 P1(x) ∨ P2([g(x)]) ∨ P3(〈f [g(x)]〉) ∨ ∨〈ti〉 ≈/�≈ 〈tj〉
7 P1(x) ∨ ∨n

i=1 ¬R(x, yi)
∨n

i=1 P2(yi) ∨ ∨n
i=1

n

j=i+1
yi ≈ yj

8 R(〈a〉, 〈b〉) ∨ P(〈t〉) ∨ ∨〈ti〉 ≈/�≈ 〈tj〉
P(t), where t is a term, denotes a possibly empty disjunction of the form (¬)P1(t)∨ · · · ∨ (¬)Pn(t).
P(f(x)) denotes a disjunction of the form P1(f1(x))∨ · · · ∨Pm(fm(x)). Note that this definition allows
each Pi(fi(x)) to contain positive and negative literals. 〈t〉 denotes that term t may but need not be marked
(i.e. has been introduced by a previous unification), ≈/�≈ denotes a positive or negative equality predicate. For
clauses of type 6 ti and tj are either of the form f([g(x)]) or of the form x and the clause contains at least one
term f(g(x)).

ordered first to avoid substituting the arguments of functions with function terms. Lim-
ited nesting depth of literal terms is necessary to guarantee termination of the calculus, it
makes sure only the types of clauses depicted in Table 1 occur when basic superposition
is applied to clauses obtained from an ALCHIQ ontology (i.e. the set of ALCHIQ
closures is closed under basic superposition).

Because the set of clause types is finite and the set of symbols is finite for every
given ontology, the number of clauses that can be derived is finite, too and hence basic
superposition terminates forALCHIQ input[9].

Allocation for ALCHIQ. The first consideration for distributing basic superposi-
tion is the number of resolvable literals. A close look to Definition 7 reveals that the
resolvable literals s ≈ t · ρ and w ≈/�≈ v · ρ are necessarily either selected or maximal.
Furthermore, the ALCHIQ closures of types 3-6 and 8 are totally ordered and types 1
and 2 contain exactly one selected literal. Only closures of type 7 may contain multiple
resolvable literals, but since all resolvable literals have the same top symbol, the allo-
cation from Definition 5 is still functional. Before allocating ALCHIQ closures, we
have to extend the definition of topSymbol to equality literals:

Definition 9 (Top Symbol)
The top Symbol of an equality literal f(t1) ≈/�≈ g(t2) is f if f(t1) " g(t2).

Note that arguments of equalities that are resolvable literal of an ALCHIQ clause are
always comparable. With this extended definition, we could use the allocation func-
tion a for distributed resolution on ALCHIQ. Unfortunately, this calculus would not
be complete, because some inferences of basic superposition are prevented in the dis-
tributed setting. We illustrate this problem on an example inference:

Positive superposition
C ∨ f(x) ≈ g(x) D ∨ P (f(y))

C ∨D ∨ P (g(x))

Here, f(x) is unified with f(y) but f is not the top symbol of the resolvable literal
P (f(y)). Hence, if f and P are allocated to different ontology modules, the rule is not

Distributed Resolution for Expressive Ontology Networks 97

applied and the clause C ∨ D ∨ P (g(x)) is missing in the reasoning process. Due to
superposition of equalities into predicate literals, we have to extend the allocation to
guarantee completeness of the decision procedure.

Definition 10 (Allocation for ALCHIQ). The clause allocation a+(c) for the dis-
tributed calculus RQ(a+) is defined by a+(c) := a(c) ∪ af (c) with

af (c) := {alloc(funSymbol(lit)) | lit is resolvable literal of c}

where

– funSymbol(lit) := f for every literal lit = (¬)P (f(t)) or lit = (¬)P (f(x), x) or
lit = (¬)P (x, f(x)) with unary or binary predicate symbol P . For other literals
funSymbol(lit) is null.

– alloc : Sig(O) → M is an allocation of the signature symbols of the input on-
tology O, including concepts introduced by the definitorial form transformation.
alloc(null) := ∅

Note that resolvable literals of closures of type 7 never contain function symbols, hence
for allALCHIQ closures c the allocation af (c) is a function and the set a+(c) consists
of at most two modules. The allocation a+ solves the problem of the example depicted
above. But, it remains to be proved that no other pair of premises that could be resolved
in a basic superposition inference is allocated to different ontology modules and hence
completeness of the calculus forALCHIQ is preserved by distribution.

Theorem 1 (Completeness of Distributed Resolution forALCHIQ). The distributed
resolution calculus RQ(a+) decidesALCHIQ satisfiability.

Since RQ decides ALCHIQ, it remains to be shown that every inference in the origi-
nal calculus is performed in the distributed calculus, too. Let us first consider superpo-
sition into root position (i.e. w|p = w). In this case, basic superposition is equivalent
to ordered resolution, both premises are allocated to the same module because the two
resolvable literals have the same top symbol. Superposition at other positions is only
possible for function equalities into predicate literals i.e. s ≈ t is an equality literal
f(x) ≈/ �≈ g(x) and w ≈/ �≈ v is a predicate literal (¬)P (f(x)) or (¬)R(x, f(x)).
Variable equations are never selected or maximal and hence no resolvable literals. If
s ≈ t is a predicate literal or w ≈/�≈ v is an equality, superposition is only possible at
root position, otherwise unification is impossible or w would be a variable which is not
allowed according to Definition 7.

Hence, for every application of a rule in RQ, the allocation a+ ensures all premises
meet in one module. A clause is allocated to at most two modules, local saturation of
the local clause sets is enough to guarantee completeness of the method. Note that only
clauses are duplicated, duplication of inferences can be avoided by restricting basic
superposition such that only the module responsible for the top symbol of s ≈ t in
Definition 7 performs the inference.

3.4 Extension to SHOIQ(D)

The expressivity that can be handled by basic superposition while guaranteeing termi-
nation is ALCHIQ− which is ALCQ plus role hierarchies and inverse roles, with the

98 A. Schlicht and H. Stuckenschmidt

restriction that number restrictions are only allowed on roles that do not have subroles.
For extending the expressivity to ALCHIQ the decomposition rule has to be added
to the calculus[9]. Decomposition is an reduction rule that is applied to newly derived
clauses eagerly. Since the decomposition rule has only one premise, it can be added to
our approach without restricting the possible inferences.

Transitivity axioms contained in a SHIQ ontology can be eliminated by a well
known transformation, reducing the expressivity to ALCHIQ. Hence, with some pre-
processing we can decide satisfiability of a SHIQ ontology. The transformation is
polynomial in the size of the input, but the adaption to the distributed setting is not triv-
ial. In contrast to the transformation of description logic axioms to first order clauses
mentioned so far, the translation of transitivity depends on the whole ontology and not
only on the transitivity axioms. Hence, the linked ontologies cannot be transformed in-
dependently. Nominals are concepts with a single instance, e.g. the concept {Erdös}
with instance Erdös is used in the concept description ∃coauthorOf{Erdös}. Nomi-
nals are replaced by common concepts for many applications: Each nominal {nom} is
replaced by a new concept Nom and the axiom Nom(nom) is added to the ontology.
The restriction that Nom may not contain another instance is not expressible in de-
scription logic without nominals. However, it can be expressed by the first order clause
¬Nom(x) ∨ x = nom.

Datatypes (D) can be eliminated without changing the semantics by moving the
datatypes into the abstract domain. In practice, sorts (datatype and abstract) are handled
different from the other predicates to speed up reasoning. Built-in datatype predicates
can be added to support e.g. the greater relation between integers.

4 Experiments

Our distributed resolution implementation is based on the first order prover SPASS3

[19]. A number of different resolution strategies including ordered resolution and ba-
sic superposition are supported, precedence and selection are specified in the input file.
We implemented definitorial form normalization and clausification in a separate tool.
Clauses are stored in separate files for each ontology and include precedence and selec-
tion in every input file. Apart from compliance to the requirements of RQ (Definition 8)
the precedence was random. The applied reduction rules include forward and backward
subsumption reduction4. For turning SPASS into a distributed reasoner (i.e. adding the
”Distributed” option) we added support for sending and receiving clauses. A set of re-
ceived clauses is treated like a set derived from a given clause, i.e. it is forward and
backward reduced with respect to the local worked off clause list before adding the
non redundant received clauses to the usable list. All reasoners are connected at startup,
clause communication is performed in separate processes to avoid the local reasoning
being blocked on sending a clause. The priority of the reasoning and communication

3 http://www.spass-prover.org
4 The complete configuration for Spass is: Distributed=1 Auto=0 Splits=0 Ordering=1 Sorts=0

Select=3 FullRed=1 IORe=1 IOFc=1 IEmS=0 ISoR=0 IOHy=0 RFSub=1 RBSub=1 RInput=0
RSSi=0 RObv=1 RCon=1 RTaut=1 RUnC=1 RSST=0 RBMRR=1 RFMRR=1.

http://www.spass-prover.org

Distributed Resolution for Expressive Ontology Networks 99

Table 2. Results of tests on the chem ontology from SWEET project

Query # Parts Runtime/ms # Derivations # Propagations Busy Factor
Satisfiability 1 230 608 - 100%

13 146 610 432 20%
Subsumption 1 132 154 - 100%
(positive) 13 36 578 252 60%

processes is adjusted such that while not saturated locally, a clause is only send to an-
other reasoner if this destination reasoner messages that it is idle. New clauses are only
received when the local clause set is completely saturated. Startup and shutdown of the
system is initialized by a central control process. In a fully decentralized P2P system
this job is performed by the peer that receives a query. The control process starts the
separate machines on their respective input clauses files. Apart from passing clauses
between each other, the reasoners send status messages whenever they are locally sat-
urated, when they continue reasoning on newly received clauses and when they derive
an empty clause. When one reasoner finds a proof or all reasoners are saturated for
an interval longer than the maximal time necessary for clause propagation the query is
answered and the reasoners are shut down.

Dataset. Our implementation is tested on the Semantic Web for Earth and Environ-
mental Terminology (SWEET [13]), a set of linked ontologies published by the NASA
Jet Propulsion Laboratory. We used the chemical ontology chem5 and the ontologies
that are directly or indirectly imported by chem. In total, our dataset consists of 13 on-
tologies liked by 34 import statements. The ontology network describes 480 classes and
99 individuals, translation to first order logic yields 930 clauses. We replaced datatype
properties by object properties and nominals by common concepts because the current
version of our system does not support them. The expressivity of the obtained test on-
tology network is SHIN .

Results. For comparing the runtimes in the centralized and distributed setting, we ran
a satisfiability check and tested all 456 positive subsumption queries (i.e. axioms A1 �
A2 derivable from the ontology network). The runtime of negative queries is in general
similar to the runtime of a satisfiability check [15]. We used standard 1.6GHz desktop
machines with 3GB RAM, the denoted runtimes do not include the time needed for
establishing the TCP connections. For simplicity, we connect all reasoners prior to the
distributed reasoning process, it would be much more efficient to connect the peers
only on demand. The connection time is not relevant for our investigations because it
can be expected to increase only linear with the number of ontologies if the network is
sparsely connected. The source code and original and preprocessed dataset is available
online6. The most important result is that distributed resolution is considerably faster
than conventional resolution. The runtime for checking satisfiability of the knowledge
base is decreased by one third. Answering a positive subsumption query took only about
a quarter of the runtime when computed in the distributed setting.

5 http://sweet.jpl.nasa.gov/2.0/chem.owl
6 http://ki.informatik.uni-mannheim.de/dire.html

http://sweet.jpl.nasa.gov/2.0/chem.owl
http://ki.informatik.uni-mannheim.de/dire.html

100 A. Schlicht and H. Stuckenschmidt

The number of derived clauses shows the effect of distribution on application of
reduction rules. For the satisfiability query, almost all redundant clauses are detected
and deleted also in the distributed setting. However, positive queries cause much more
derivations than necessary. Runtime is not affected by the redundant derivations because
they are performed by reasoners that would have been idle otherwise. The number of
propagation is important when the network connection is slow e.g. due to physical dis-
tance between the reasoning peers.

The most important factor for scalability of our approach is the amount of computa-
tion that is actually performed in parallel. In the worst case, only one reasoning peer is
active at the same time while the others are idle and waiting for new input. For technical
reasons, the timer for computing the busy factor starts when all reasoners are connected.
The busy factor depicted in table 2 is the average (weighted by runtime) percentage of
the runtime each reasoner is active. The first couple of milliseconds all reasoners are
busy, but after local saturation only those that received new clauses continue reasoning.
For some positive queries the busy factor reached 100% because the empty clause is
derived in one reasoner before one of the others is locally saturated.

5 Conclusions

In this paper, we have shown that the principle of distributed resolution as a basis for
reasoning about interlinked ontologies that has been proposed in previous work [15]
can be extended to expressive ontology languages. This result is non-trivial, because
ordered resolution, that has been used as a basis for previous work cannot be applied to
expressive ontology languages due to the existence of equality induced by number re-
strictions. Our work extends previous results both on a theoretical and a practical level.
On the theoretical level, we have developed a distributed version of the basic super-
position calculus presented by [9] and have shown that the distributed version of the
calculus decides satisfiability for ALCHIQ. On the practical level, we have extended
the implementation of our distributed reasoning engine with this new calculus and have
tested it on a set of expressive real world ontologies. By conducting experiments, we
have shown that the distributed version of the algorithm significantly outperforms cen-
tralized reasoning. Further, we have investigated the ability of the method to support
parallelization with promising results. In summary, we have shown that the principle
of distributed resolution can be applied to expressive ontologies and that distributed
resolution is a real alternative to tableaux-based methods when it comes to distributed
reasoning in the presence of OWL ontologies. In the future, we will investigate opti-
mizations of the methods, primarily in terms of advanced redundancy checking. Further,
we plan to exploit the advantages of resolution being a bottom-up reasoning method by
investigating the use of our method for supporting incremental reasoning.

References

1. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf. Com-
put. 121(2), 172–192 (1995)

2. Bonacina, M.P.: The clause-diffusion theorem prover peers-mcd (system description). In:
McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 53–56. Springer, Heidelberg (1997)

Distributed Resolution for Expressive Ontology Networks 101

3. Bonacina, M.P.: A taxonomy of parallel strategies for deduction. Annals of Mathematics and
Artificial Intelligence 29(1–4), 223–257 (2001) (Published in February 2001)

4. Bonacina, M.P., Hsiang, J.: Parallelization of deduction strategies: An analytical study.
J. Autom. Reasoning 13(1), 1–33 (1994)

5. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. Journal of Data Semantics 1, 153–184 (2003)

6. Conry, S.E., MacIntosh, D.J., Meyer, R.A.: Dares: A distributed automated reasoning system.
In: Proc. AAAI 1990, pp. 78–85 (1990)

7. Grau, B.C., Parsia, B., Sirin, E.: Combining owl ontologies using e-connections. Journal of
Web Semantics 4(1) (2005)

8. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description logics. In: Brewka,
G. (ed.) Principles of Knowledge Representation and Reasoning. Studies in Logic, Language
and Information, pp. 193–238. CLSI Publications, Stanford (1996)

9. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction to Dis-
junctive Datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

10. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics.
In: Twentieth International Joint Conference on Artificial Intelligence IJCAI 2007 (2007)

11. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Universität Karlsruhe (TH), Karlsruhe, Germany (January 2006)

12. Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained
clauses. Journal of Symbolic Computation 19, 321–351 (1995)

13. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for Earth and envi-
ronmental terminology SWEET. Computers & Geosciences 31(9), 1119–1125 (2005)

14. Schlicht, A., Stuckenschmidt, H.: A flexible partitioning tool for large ontologies. In: Inter-
national Conference on Web Intelligence and Intelligent Agent Technology, WI/IAT (2008)

15. Schlicht, A., Stuckenschmidt, H.: Peer-to-peer reasoning for interlinked ontologies. Interna-
tional Journal of Semantic Computing, Special Issue on Web Scale Reasoning (2010) (to be
published)

16. Tammet, T.: Resolution methods for Decision Problems and Finite Model Building. PhD
thesis, Chalmers University of Technology and University of Göteborg (1992)

17. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using vampire to reason with OWL.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 471–485. Springer, Heidelberg (2004)

18. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, ch. 27, vol. II. Elsevier, Amsterdam (2001)

19. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS Ver-
sion 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, p. 275. Springer,
Heidelberg (2002)

Scalable Web Reasoning Using Logic
Programming Techniques�

Gergely Lukácsy1 and Péter Szeredi2

1 Digital Enterprise Research Institute, Galway, Ireland
2 Budapest University of Technology and Economics, Budapest, Hungary

gergely.lukacsy@deri.org, szeredi@cs.bme.hu

Abstract. One of the key issues for the uptake of the Semantic Web
idea is the availability of reasoning techniques that are usable on a large
scale and that offer rich modelling capabilities by providing comprehen-
sive coverage of the OWL language. In this paper we present a scalable
extension of our ABox reasoning framework called DLog.

DLog performs query-driven execution whereby the terminological part
of the description logic knowledge base is converted into a Logic Program
and the assertional facts are accessed dynamically from a database. The
problem of instance retrieval is reduced to a series of instance checks over
a set of individuals containing all solutions for the query. Such a superset
is calculated by using static-code analysis on the generated program.

We identify two kinds of parallelism within DLog execution: (1) the
instances in the superset can be independently checked in parallel and
(2) a specific instance check can be executed in parallel by specialising
well-established techniques from Logic Programming. Moreover, for effi-
ciency reasons, we propose to use a specialised abstract machine rather
than relying on the more generic WAM execution model. We describe the
architecture of a distributed framework in which the above mentioned
techniques are integrated. We compare our results to existing approaches.

Keywords: Scalability, Parallelism, OWL, DL, Logic Programming.

1 Introduction

In this paper we describe extensions of DLog, a SHIQ Description Logic (DL)
ABox reasoner [1], using the unique name assumption. We are interested in sce-
narios that have large numbers of individuals and a relatively small terminology
and where query answering is the most important reasoning task. This is in line
with the aims of the upcoming OWL 2 QL profile. In this setup, DLog already
proved to be very efficient thanks to its query-oriented top down execution model
that ensures that only those parts of the ABox are accessed that are relevant to
� This work has been funded in part by Science Foundation Ireland under Grant No.

SFI/08/CE/I1380 (Lion-2) and by the Irish Research Council for Science, Engineer-
ing and Technology (IRCSET). Earlier development work on the DLog system was
supported by the Hungarian NKFP programme under Grant No. 2/052/2004.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 102–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Scalable Web Reasoning Using Logic Programming Techniques 103

the given query. However, the DLog execution is sequential which turns out to
be a bottleneck when working with really large datasets, as DLog is simply not
able to feed the underlying database with queries fast enough.

The contributions of the present paper include a new abstract machine de-
signed to efficiently execute logic programs generated by the DLog system as
well as a new parallel architecture of DLog.

We acknowledge that having a scalable DL reasoner does not solve all the
problems of the Semantic Web. Specifically, we still need solutions for handling
the heterogeneity of web ontologies, to provide support for ontology evolution
and time management and to create a solid foundation of trust. We also acknowl-
edge that data complexity results on the SHIQ language suggest [2] that sound
and complete query answering is unlikely to be efficient on really large amounts
of data. However, we believe that by providing the basis of a scalable reasoning
framework on an expressive but still decidable OWL fragment we make a step
towards turning the Semantic Web idea into reality.

The paper is structured as follows. In Section 2 we introduce the DLog system
in a nutshell and summarise those features that are relevant for the rest of the
paper. Section 3 discusses the design of the abstract machine for the execution
of simple logic programs generated from DL knowledge bases. Section 4 presents
the workflow and the architecture of the parallel DLog system. Section 5 gives a
brief overview of related work, while in Section 6 we conclude with the discussion
of future work and the summary of our results. Throughout the paper we assume
basic level knowledge on Description Logics [3] and Prolog [4].

2 Overview of the DLog Approach

In this section we give a brief overview of the DLog reasoning process using
an example (see [1] for formal details). The main idea is to transform the DL
knowledge base to a Prolog program and use normal Prolog execution on it to
answer instance retrieval queries. Let us consider the following knowledge base.

1 ∃hasFriend. Alcoholic � ¬Alcoholic
2 ∃hasParent.¬Alcoholic � ¬Alcoholic

3 hasParent(joe, bill). hasParent(joe, eva). hasFriend(bill, eva).

This TBox states that if someone has a friend who is alcoholic then she is not
alcoholic (line 1). Furthermore, if someone has a non-alcoholic parent then she
is not alcoholic either (line 2). The ABox contains several role assertions, but
nothing about someone being alcoholic or non-alcoholic. Thus, in the database
world, looking for non-alcoholic people would yield no results. In DL however, we
can conclude that joe is non-alcoholic as one of his parents is bound to be non-
alcoholic (as at least one of two people who are friends has to be non-alcoholic).

The common property of such problems is that solving them requires case
analysis and therefore the trivial Prolog translation usually does not work. There

104 G. Lukácsy and P. Szeredi

are many other examples showing how incomplete knowledge is handled during
DL reasoning, some of them do not even require a TBox [5].

The first step in the sound and complete DLog reasoning process is to convert
a SHIQ TBox to a set of first order clauses containing no function symbols,
called DL clauses [6]. This allows us to break the reasoning into two parts: an
ABox independent TBox transformation followed by the actual data reasoning.

The second step deals with the transformation of DL clauses to a Prolog
program. This is based on the Prolog Technology Theorem Proving (PTTP)
approach, which provides a generic first-order theorem prover on top of Prolog
[7]. PTTP uses contrapositives to compensate for the simple literal selection rule
of Prolog; ancestor resolution for implementing the factoring resolution rule;
and iterative deepening to ensure termination. For efficiency reasons in DLog we
specialised this approach for the case of DL clauses. Specifically, for the simple
function-free Prolog code generated from DL clauses, normal Prolog execution
extended with loop elimination can be used instead of iterative deepening.

DL clauses are transformed to a DL predicate format by generating certain
contrapositives and grouping these into predicates according to the functor of
the clause head. Negations are eliminated by introducing new predicate names.
DL predicates can be executed by an interpreter or, alternatively, DL predicates
can be compiled into directly executable Prolog code, by adding an argument
for storing the list of ancestors and including loop elimination and ancestor
resolution in the DL predicates themselves. As an example, the DL predicate
format of the above alcoholic problem is shown below:

1 alcoholic(A) :- hasParent(B, A), alcoholic(B). −→ contrapositive

2 not_alcoholic(A) :- hasParent(A, B), not_alcoholic(B). −→ original clause
3 not_alcoholic(A) :- hasFriend(A, B), alcoholic(B). −→ original clause
4 not_alcoholic(A) :- hasFriend(B, A), alcoholic(B). −→ contrapositive

We now present the Prolog code generated for the DL predicate not_alcoholic,
as shown in lines 2-4 above (we use the abbreviation not_alc for compactness).

1 not_alc(A, L0) :- member(B, L0), B == not_alc(A), !, fail.
2 not_alc(A, L0) :- member(alcoholic(A), L0), !.
3 not_alc(A, L0) :- L1=[not_alc(A)|L0], hasParent(A, B), not_alc(B, L1).
4 not_alc(A, L0) :- L1=[not_alc(A)|L0], hasFriend(A, B), alcoholic(B, L1).
5 not_alc(A, L0) :- L1=[not_alc(A)|L0], hasFriend(B, A), alcoholic(B, L1).

Lines 1 and 2 implement loop elimination and ancestor resolution, respectively.
Lines 3-5 are derived from the clauses of not_alcoholic, by extending the head
and appropriate body calls with an additional argument, storing the ancestor
list (variables L0 and L1). Similar code is generated for predicate alcoholic.
Although we proved that the translation exemplified above is complete it is not
efficient. In DLog we use a series of optimisations that result in more efficient
(and more complex) Prolog translation; these are described in detail in [1].

Scalable Web Reasoning Using Logic Programming Techniques 105

Here we only mention two optimisations, decomposition and superset. The
goal of decomposition is to split a body into independent components and make
sure that the truth value of each component is only calculated once. Decomposi-
tion is achieved by a recursive process that uncovers the dependencies between
the goals of the body. This optimisation results in clause bodies where indepen-
dent components are separated using conditional Prolog structures. For example,
the axiom that “someone is happy if she has a child having both a clever and a
pretty child” results in the following translation (excluding the management of
ancestor lists).

1 Happy(A) :-
2 hasChild(A, B),
3 (hasChild(B, C),
4 Clever(C) -> true −→ first component
5),
6 (hasChild(B, D),
7 Pretty(D) -> true −→ second component
8).

The idea of superset is to determine for each predicate P a set of instances S for
which I(P) ⊆ S holds, where I(P) denotes the set of solutions of P . If the size of
S is not significantly greater than the size of I(P), then we can use S to efficiently
reduce the initial instance retrieval problem to a finite number of deterministic
instance checks. Technically this generic schema can be implemented by creating
a “choice” predicate for each concept Concept that invokes the deterministic
variant of Concept for each individual in the superset.

1 choice_Concept(A, AL) :-
2 (nonvar(A) -> deterministic_Concept(A, AL)
3 ; member_of_superset_Concept(A),
4 deterministic_Concept(A, AL)
5).

6 deterministic_Concept(A, AL) :- ..., !. −→ A is a specific instance
7 ...

Note that the deterministic translation of a DL concept has Prolog cuts (!) at
the end of each of its clauses. This results in pruning the rest of the search space
after a successful execution of any of the clauses.

A superset of predicate P is calculated by applying static program analysis as
described in detail in [1]. For example, the superset of predicate not_Alcoholic
includes all individuals having a parent or a friend, or being a friend of someone.

The optimisations applied in the DLog system guarantee that ancestor goals
are always ground. This opens up the possibility to use hash tables rather than
lists for managing ancestor resolution and loop elimination. For this purpose we
have implemented in C a backtrackable hash table [8]. This, besides the obvious
efficiency advantage, also makes DLog programs structure free.

106 G. Lukácsy and P. Szeredi

3 The DLog Abstract Machine

The Warren Abstract Machine (WAM) [9] has become a de facto target platform
for Prolog compilers. Most sequential and parallel implementations of Prolog rely
directly on WAM, or on a variant of it. For efficiency reasons we suggest to use
a much simpler abstract machine, called the DLog Abstract Machine (DAM), to
execute Prolog programs generated using the DLog approach. In the following
we sketch the main design principles of DAM.

Compared to generic Prolog, DLog programs for instance checking are con-
siderably simpler as: (1) predicates can only be unary or binary; (2) there are no
compound data structures – unification is trivial; (3) predicate invocations are
ground; (4) concept predicates are deterministic – no need for deep backtracking
into concept predicates; (5) no need for the heap and the trail stack; (6) no need
for cell tagging, as all constants are numeric.

3.1 Architecture of DAM

The DAM is a three-stack machine. It has a control stack containing frames of
fixed size. A frame is created when entering a predicate and is used to store the
local environment of the predicate and return address information. A predicate
can be viewed as a function which receives its arguments implicitly in a frame
and returns a Boolean value. The second stack, the choice point stack, is used to
support deep backtracking in cases related to role predicates and also to ensure
efficient communication with the database/triple store1. The third stack is used
as a backtrackable hash table according to the principles discussed in [8].

Four pieces of information are stored in a frame of the DAM control stack:

1. the return address of the predicate (virtual register R);
2. the actual instance being checked, represented by a URI (virtual register A);
3. the ancestor list, represented as an index in the backtrackable hash table

(virtual register H);
4. a pointer to the corresponding choice stack frame (virtual register P).

The fields of the current frame serve as (virtual) registers of the DAM. As the
frames are of fixed size, accessing a field of e.g. the frame preceding or following
the current one incurs no overhead.

The following information is stored in a frame of the choice point stack:

1. a counter used in implementing number restrictions (virtual register C);
2. a handle used for interfacing with the triple store;
3. a buffer for instances returned by the triple store.

Further to the virtual registers on the stacks, DAM has the following (global)
registers: V – the Boolean return value of a procedure invocation; PC – the
program counter variable; T – the current frame of the control stack.
1 Triple stores are specialised databases for storing semantic web metadata. In the

following we use the phrases “triple store” and “database” as synonyms.

Scalable Web Reasoning Using Logic Programming Techniques 107

DAM operates only with three control structures: conjunction, disjunction and
loops (used for counting instances in a qualified number restriction, including
existential restrictions as a special case). In discussing the DAM we assume that
each predicate contains exactly one of the three control structures; this can be
achieved by introducing auxiliary predicates. As an example we show below how
the Happy example from Section 2 can be transformed to satisfy this assumption.

1 Happy(A) :-
2 aux_1(A). −→ a conjunction with a single member
3 ... −→ possible other clauses of Happy

4 aux_1(A) :- −→ existential restriction
5 hasChild(A, B),
6 aux_2(A).

7 aux_2(A) :- −→ a conjunction with two members
8 aux_3(A),
9 aux_4(A).

10 aux_3(A) :- −→ existential restr. aux_4(A) :- −→ existential restr.
11 hasChild(A, B), hasChild(A, B),
12 Clever(B), !. Pretty(B), !.

3.2 The Instruction Set

The instruction set of the DAM is fairly limited. Each instruction consists of
an operation code with typically zero, one, or two operands. For example, the
instruction call pred invokes predicate pred, while exit_on_failure (with no
arguments) exits the given predicate if register V contains the value FAILURE.
The set of instructions of the DAM is summarised in Table 1.

In Figure 1 we give the operational semantics of the DAM instructions using
pseudo-code with C syntax. Here we use capitals to refer to DAM registers, lower
case names for parameters and local variables, while the keywords previous and
next refer to the frames preceding and following the current one, respectively.
A register reference can be used on its own (e.g. A), referring to the appropriate
field of the current control frame; or it can be used together with the keyword
previous or next, to refer to the appropriate field of a neighbouring frame. The
instruction exit_with is invoked within other instructions: this is considered as
a macro to be expanded, i.e. the invocation should be replaced by the definition.

To simplify the presentation we do not deal with memory management issues,
assuming that the stacks have enough memory allocated to perform the compu-
tation. Thus creating or removing a stack frame is simply done by incrementing
or decrementing register T (which points to the current control frame).

We assume that the DAM-triple store interface works as follows. Once a query
has been posed to the triple store it returns a handle which is stored in the
actual choice-stack frame. Using this handle the DAM can ask for the first batch
of solutions, which is then stored in the buffer part of the relevant choice-stack

108 G. Lukácsy and P. Szeredi

Table 1. The instruction set of the DAM

Instruction Arguments Description
put_ancestor N extend the ancestor list in the local frame by the

term with name N and argument A
check_ancestor N succeeds if the ancestor list contains a term with

name N and argument A
fail_on_loop N fails if a loop occurred, i.e. the term with name N

and argument A is present on the ancestor list
call P invokes procedure P in a new control frame
execute P invokes procedure P in the existing control frame
exit_with S returns from a procedure with status S, continues

execution according to register R
exit_on_failure – returns from procedure if V = FAILURE
exit_on_success – returns from procedure if V = SUCCESS
jump L jumps to label L
has_n_successors R, n checks if instance A has at least n R successors;

creates a choice point; loads the first choice to A
count_and_exit – decreases counter C if the previous instruction was

successful; returns with success if C is 0
next_choice – loads the next solution from the choice stack to A
abox_query Q returns success if A is a solution of query Q

frame. The buffer involves a header specifying the buffer length and the number
of solutions not yet processed. This setup makes it possible to return query
solutions one by one to the DAM code which issued the given query. When a
solution is requested and the buffer is empty, a request is sent to the triple store
(using the query handle) to provide the next batch of solutions.

We now describe the auxiliary procedures used in Figure 1. Procedures
add_to_hash and hash_search perform the extension and search of the
backtrackable hash table [8], representing the ancestor list. The procedure
cardinality_check(i, r, n) returns true if the triple store contains at least
n r-successors for the instance i. The procedure create_choice(i, r) issues a
query to the triple store to find all r-successors of the individual i, and returns
the first solution found. The procedure has_choice returns true if the current
choice frame has more solutions, while next_choice returns the next solution.

Finally, the procedure abox_query(i, q) checks if instance i belongs to
query predicate q according to the triple store. Query predicates are defined
in terms of ABox predicates using conjunction and disjunction only; they can be
thought of as complex database queries. In its most simple case a query predicate
corresponds to a simple ABox concept predicate.

3.3 Transforming into DAM

Now we turn our attention to discuss how certain parts of the DLog programs
are transformed into DAM code.

Scalable Web Reasoning Using Logic Programming Techniques 109

1 put_ancestor n: −→ inserts term n(A) into the hash table
2 H = add_to_hash(A, n, H);

3 check_ancestor n: −→ checks if term n(A) is in the hash table
4 if (hash_search(A, n, H)) exit_with SUCCESS;

5 fail_on_loop n: −→ checks if term n(A) is in the hash table
6 if (hash_search(A, n, H)) exit_with FAILURE;

7 call p:
8 T++; A = previous->A; H = previous->H; R = PC + 1;
9 PC = &p; −→ invokes procedure in new frame

10 execute p:
11 PC = &p; −→ invokes procedure in the current frame

12 exit_with s:
13 T--; V = s; PC = next->R; −→ drops frame; jumps to return address

14 exit_on_failure:
15 if (V == FAILURE) exit_with V;

16 exit_on_success:
17 if (V == SUCCESS) exit_with V;

18 jump l: −→ jumps to label l
19 PC = l;

20 has_n_successors r n: −→ loads successors of A to the choice stack
21 if (!cardinality_check(A, r, n)) exit_with FAILURE;
22 A = create_choice(A, r);

23 count_and_exit: −→ counts and exists if counter reaches zero
24 if (V == SUCCESS) P->C--;
25 if (P->C == 0) exit_with SUCCESS

26 next_choice:
27 if (!has_choice()) exit_with FAILURE;
28 A = next_choice(); −→ sets the next solution instance to A

29 abox_query q:
30 V = abox_query(A, q); −→ executes a (complex) database query

Fig. 1. Operational semantics of the DAM instructions

Role axioms are handled partly by the DLog framework (the transitivity
axioms are eliminated) and partly by the underlying triple store. Namely, we
assume that the database “understands” the notion of role hierarchy and is able

110 G. Lukácsy and P. Szeredi

to answer queries such as hasSpouse(bill, Y) (Y is the spouse of bill) based
on hierarchical relation between hasSpouse and hasWife, for example.

Conjunctions of concept predicates are transformed into a series of call and
exit_on_failure instructions. That is, a conjunction consisting of goals. . .

1 g1(X), ..., gk−1(X), gk(X)

. . . is directly transformed into the following DAM form:

1 call g1

2 exit_on_failure
3 ...
4 call gk−1

5 exit_on_failure
6 execute gk

Note that the last goal of the conjunction is invoked using the execute instruc-
tion rather than the call instruction. This is an optimisation which allows us
to use the current frame to invoke gk rather than creating a new one. For recur-
sive predicates this is known as the tail-recursion optimisation which basically
transforms a recursive call into an iteration.

Analogously to conjunctions, disjunctions of concept predicates are trans-
formed into a series of call and exit_on_success instructions, with execute
for the last goal. Note that both transformation schemata use the fact that we
work with deterministic predicates, e.g. a disjunction immediately succeeds if
one of its members completes successfully. Alternatively, one could use an even
more compact schema, where each pair of call and exit_on_success instruc-
tions is replaced by a single one, similar to the try instruction of the WAM [9].
However, this would require that two separate return addresses – one for success
and one for failure – were stored on the control stack for each predicate.

Finally, a qualified number restriction (≥ nRC) is transformed into a loop,
where we first check if the instance at hand has at least n R-successors, then we
enumerate the successors until we find at-least n successors belonging to concept
C. Specifically, (≥ nRC) is transformed into the following DAM program.

1 has_n_successors R n −→ fails if A has not enough successors, sets A, C
2 label1:
3 call C −→ returns with success or failure
4 count_and_exit −→ if success : C--, returns success if C = 0
5 next_choice −→ set A to next successor, return fail if no more
6 jump label1

Note that this technique handles the only case where deep backtracking is needed
in the Prolog code. As an optimisation for the above schema we can use tech-
niques that allow us to reuse a frame rather than repeatedly build it with call
C in each iteration.

Scalable Web Reasoning Using Logic Programming Techniques 111

As an example for the DLog to DAM translation, let us show below parts of
the DAM code for the predicate not_alc from Section 2.

1 predicate(not_alc): −→ A contains the instance to check
2 fail_on_loop not_alc −→ return fail if within not_alc(A)
3 check_ancestor alcoholic −→ return success if within alcoholic(A)
4 call aux_1
5 exit_on_success
6 call aux_3
7 exit_on_success
8 execute aux_4

9 predicate(aux_1):
10 put_ancestor not_alc −→ uses A, sets H
11 has_n_successors has_parent 1 −→ return fail if A has no parent at all
12 label(1):
13 call not_alc,
14 count_and_exit −→ returns if we found a not_alc parent
15 next_choice −→ return fail if no parent belongs to not_alc
16 jump 1

4 The Parallel DLog Architecture

We now identify several parallelisation possibilities in executing DLog programs.
First, we briefly summarise the main ideas behind how to turn the DAM into a
parallel execution engine – this is a very high level discussion and its purpose is
to give an insight to the possibilities. Next, we introduce in detail a new parallel
architecture for the DLog system.

4.1 Kinds of Parallelism Available in DLog

The DLog Abstract Machine, discussed in the previous section, can be viewed as
a simplification of the WAM for the case of special Prolog programs, produced
by the DLog transformation. Analogously, we can simplify well-studied paralleli-
sation techniques for DLog programs. Combining these two ideas produces the
Parallel DLog Abstract Machine (PADAM).

Logic programming offers an excellent ground for parallel execution. On
one hand, the operational semantics of Logic Programming includes non-
determinism which leads to a very natural parallelisation. On the other hand,
logic programs use single assignments for variables, which makes it possible to
avoid the problems of certain types of flow dependencies present in more tradi-
tional languages.

There are two main kinds of parallelism applicable for Logic Programs: AND-
and OR- parallelism. The former consists of the simultaneous computation of
several goals in a body, while the latter relies on executing the clauses of a

112 G. Lukácsy and P. Szeredi

predicate in parallel. Because of the decomposition DLog applies at compile
time we already have the independent components of a clause body allowing us
to apply independent AND-parallelism (IAP) techniques directly.

An interesting feature of DLog programs is that each clause contains a cut
operation at the very end: thus once a clause succeeds we can terminate the
computation of all the other clauses being executed in parallel. This means that
exploiting OR-parallelism within a single instance check involves speculative work
[10], i.e. wasted computer efforts, which may be lost because of being on a branch
of computation pruned by a cut operation.

As OR-parallelism is easier to exploit, our initial efforts go in this direction.
Because of the speculative nature of fine grained OR-parallelism, we decided
to first address the issue of coarse grained parallelism, by executing multiple
instance check problems in parallel.

4.2 An Initial Coarse-Grained Model of Parallelism

We now focus on exploiting coarse-grained parallelism, which does not require
the modification of the sequential DAM engine, and still seems to promise good
scalability. The proposed architecture of the parallel DLog system is presented
in Figure 2. We explain the workflow of the system, which starts with the receipt
of the input and completes with producing the answer to the instance retrieval
query. We refer to certain parts of the architecture by using the numbers and
letters in Figure 2.

The content of the ABox is stored either in a triple store or in a relational
database (arrow 1). As a general consideration, we assume that the ABox is
extensionally reduced, i.e. beside roles, it contains only atomic concepts and
their negations. When using a database we need to create appropriate tables for
the concept and role assertions, taking care that tables should also be created for
negated concepts (to properly model incomplete knowledge). If we use the DLog
system over an existing database we need to create links between the concept
and role names in the TBox and the database tables [11].

The content of the TBox is first transformed into DL clauses (arrow 2). These
clauses are then further transformed into DAM byte code (arrow A) using the
specialised PTTP techniques and optimisations outlined in Section 2. Specif-
ically, the DAM code contains the component clause bodies and the superset
expressions (i.e. an expression whose evaluation gives the superset) for each
predicate. The DAM programs are stored in a repository (arrow B) allowing us
to re-use them without performing the transformation steps again.

The conjunctive query, i.e. a conjunction of possibly negated atomic concepts
and unnegated (positive) binary roles, first undergoes an optimisation phase
(arrow 3) inspired by database join optimisations and [12]. Here, using heuristics,
the conjunctions can be re-ordered and grouped in order to avoid cross product
computations and ensure efficient execution.

As the last step of the ABox independent transformations, the generated DAM
program is simplified/partially evaluated with respect to the given query (arrow
C). Practically this means that we leave out those parts of the DAM program

Scalable Web Reasoning Using Logic Programming Techniques 113

Triple Store

Conjunctive query

Terminology Box (TBox)

Factual triples (ABox)

Input knowledge base

Superset builder

Transformer

DL
translator

DAM
translator

Query
optimiser

Dynamic
Linker

PADAM
engine

PADAM
engine

PADAM
engine

PADAM
engine

...

1
2

3

4

6

7

5

Answer

8

DAM
programs

A

B

C

Fig. 2. The architecture of the Parallel DLog system

that do not play any role when executing the specific query, thus reducing the
size of the byte code that needs to be transferred between workers in a later stage
of the execution. We also “pack” the query itself into the DAM code together
with a newly constructed superset expression belonging to it.

In the next step, the Superset Builder receives the simplified byte code (arrow
4) and calculates the superset for the given query. One of the key ideas here is
that (i) the superset expression is evaluated in parallel and (ii) the instances
in the superset are checked in parallel. Note that this scheme can be used for
supersets which do not fit into memory: the Superset Builder basically acts
as a mediator in the producer-consumer setup between the database and the
PADAM execution engines (arrows 5 and 6). The parallel DAM engines also use
the database when checking particular individuals (arrow 7).

114 G. Lukácsy and P. Szeredi

During the execution the Superset Builder receives notifications from the
PADAM engines about whether particular individuals are solutions or not. This
information is forwarded to the output of the reasoning process (arrow 8) where
another consumer can pick it up and use it for various purposes.

5 Related Work

Because of the separation of the TBox and ABox reasoning and the usage of
a database to store ABox facts, the suggested parallel DLog architecture can
be considered as a Deductive Database system. Here we heavily rely on the
scalability capabilities of the underlying relational databases/triple stores. We
argue that this is the right way to do as there are decades long expertise and
proved implementations for databases and triple stores that scale up to several
billions of records [13]. Note that this setup is actually suggested by the database
literature as well. For example, [14] discusses the problem of handling massive
amounts of data in a relational database with support for recursive queries.
The suggested solution exploits optimisation techniques both from the relational
database as well as from the deductive database theory – much like the parallel
DLog architecture.

From the DL point of view, several techniques have emerged for dealing with
large scale ABox-reasoning. We can divide these into two main groups, based
on whether they support some full-featured DL subset or whether they pose
restrictions on the terminology axioms in order to retain even better scalability.

Full reasoners. To make traditional tableau-based reasoning more efficient on
large data sets, several techniques have been developed in recent years [12]. These
are used by the state-of-the-art DL reasoners, such as RacerPro or Pellet.

In [15], a resolution-based inference algorithm is described, which is not as
sensitive to the increase of the ABox size as the tableau-based methods. However,
this approach still requires the input of the whole content of the ABox before
attempting to answer any queries. The KAON2 system implements this method
and provides reasoning services over the description logic language SHIQ by
transforming the knowledge base into a disjunctive datalog program.

Article [16] introduces the notion of distributed ordered resolution which is
a parallelised variant of ordered resolution usable for reasoning over already
distributed ALC knowledge bases.

DLog belongs to this first group: it provides SHIQ support while retains as
much scalability as possible. The original DLog system was evaluated in depth
in [1]. There we compared the performance of DLog with that of the RacerPro,
Pellet and KAON2 systems on publicly available benchmark ontologies. The test
results showed that DLog is significantly faster than traditional tableau-based
reasoners and it also outperforms KAON2 in most of the test cases.

Restricted reasoners. Extreme cases involve serious restrictions on the knowledge
base to ensure efficient execution with large amounts of instances. For example,

Scalable Web Reasoning Using Logic Programming Techniques 115

[17] suggests a solution called the instance store, where the ABox is stored ex-
ternally, and is accessed in a very efficient way. The drawback is that the ABox
may contain only axioms of form C(a), i.e. we cannot make role assertions.

The YARS2 framework [13] aims to provide efficient support for the upcoming
OWL2 QL profile that is based on a DL-Lite variant. DL-Lite [18] is a family of
Description Logics that allows the separation of TBox and ABox during reason-
ing and provides polynomial-time data complexity for query answering. On the
other hand, DL-Lite poses restrictions on the terminology axioms, e.g. cardinal-
ity constraints are not allowed.

Article [19] introduces the term Description Logic Programming (DLP). This
idea uses a direct transformation of ALC description logic concepts into def-
inite Horn-clauses, and poses some restrictions on the form of the knowledge
base, which disallow axioms requiring disjunctive reasoning. As an extension,
[20] introduces a fragment of the SHIQ language that can be transformed into
Horn-clauses where queries can be answered with polynomial data complexity.

Work in [21] presents the DLDB2 system based on the DLP idea that delegates
certain reasoning tasks to an external TBox reasoner. Similarly to our approach,
DLDB2 takes advantage of the scalability of the underlying relational database.
However it poses serious restrictions on the supported language (e.g. universal
restrictions are not allowed).

6 Conclusion and Future Work

In this paper we have presented the design of the scalable extension of the
description logic SHIQ reasoning system DLog. Unlike the traditional tableau-
based approach, we answer conjunctive queries by transforming the knowledge
base into a logic program that is executed in a distributed fashion. This technique
allows us to use top-down query execution and to store the content of the ABox
externally in a scalable/distributed database.

Following an overview of the DLog system we presented the design consider-
ations of an abstract machine aimed to execute DLog programs. Based on this
we then proposed a parallel architecture that introduces parallelism at several
stages of the execution process. The key ideas were to calculate the superset of
a query in parallel and to check the individuals in the superset using instances
of our proposed abstract machine communicating in a peer-to-peer fashion.

Future work involves designing the details of the communication between
DLog and the triple store, the implementation and the performance evaluation
of our initial parallel DLog model. Building on these results the model should be
further refined, including the exploration of parallelism within a single instance
check reasoning task (cf. Section 4.1).

As an overall conclusion, we argue that resolution-based techniques are very
promising in practical applications, with relatively small TBox, but large ABox.
Specifically, we believe that translating to Logic Programs and using the parallel
DLog architecture provides a viable framework for scalable DL reasoning.

116 G. Lukácsy and P. Szeredi

References

1. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: The DLog
system. Theory and Practice of Logic Programming 09(03), 343–414 (2009)

2. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Ex-
pressive Description Logics. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. of the
19th Int. Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK,
pp. 466–471. Morgan Kaufmann Publishers, San Francisco (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2004)

4. Nilsson, U., Maluszynski, J. (eds.): Logic, Programming and Prolog. John Wiley
and Sons Ltd., Chichester (1990)

5. Nagy, Z., Lukácsy, G., Szeredi, P.: Translating description logic queries to Prolog.
In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 168–182. Springer,
Heidelberg (2005)

6. Zombori, Z.: Efficient two-phase data reasoning for description logics. In: Bramer,
M. (ed.) IFIP AI. IFIP, vol. 276, pp. 393–402. Springer, Heidelberg (2008)

7. Stickel, M.E.: A Prolog technology theorem prover: A new exposition and imple-
mentation in Prolog. Theoretical Computer Science 104(1), 109–128 (1992)

8. Kádár, B.: Architectural extensions of the dlog description logic reasoning system
MSc Thesis, http://sintagma.szit.bme.hu/lukacsy/docs/kadarMSc.pdf

9. Warren, D.H.D.: An abstract Prolog instruction set. Technical Note 309, SRI In-
ternational, Menlo Park, CA (October 1983)

10. Gupta, G., Pontelli, E., Ali, K.A., Carlsson, M., Hermenegildo, M.V.: Parallel
execution of Prolog programs: A survey. ACM Trans. Program. Lang. Syst. 23(4),
472–602 (2001)

11. Kádár, B., Lukácsy, G., Szeredi, P.: Large scale semantic web reasoning. In: Pro-
ceedings of the 3rd International Workshop on Applications of Logic Programming
to the Web, Semantic Web and Semantic Web Services (ALPSWS 2008), Udine,
Italy, December 2008, pp. 57–70 (2008)

12. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
Journal of Automated Reasoning 41(2), 99–142 (2008)

13. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository for
querying graph structured data from the web. In: Aberer, K., Choi, K.-S., Noy,
N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

14. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. Theory Practice of Logic Program-
ming 8(2), 129–165 (2008)

15. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

16. Schlicht, A., Stuckenschmidt, H.: Towards distributed ontology reasoning for the
web. In: International Conference on Web Intelligence and Intelligent Agent Tech-
nology (WI-IAT 2008), December 2008, vol. 1, pp. 536–539 (2008)

17. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning
with large numbers of individuals. In: Proceedings of DL 2004, British Columbia,
Canada (2004)

http://sintagma.szit.bme.hu/lukacsy/docs/kadarMSc.pdf

Scalable Web Reasoning Using Logic Programming Techniques 117

18. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: The dl-lite family. J.
Autom. Reason. 39(3), 385–429 (2007)

19. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of the Twelth International
World Wide Web Conference (WWW 2003), pp. 48–57. ACM, New York (2003)

20. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI 2005), International Joint Conferences on Artificial
Intelligence, pp. 466–471 (2005)

21. Pan, Z., Zhang, X., Heflin, J.: DLDB2: A scalable multi-perspective semantic web
repository. In: ACM International Conference on Web Intelligence, pp. 489–495.
IEEE, Los Alamitos (2008)

On the Ostensibly Silent ‘W’ in OWL 2 RL�

Aidan Hogan and Stefan Decker

Digital Enterprise Research Institute,
National University of Ireland, Galway

firstname.lastname@deri.org

Abstract. In this paper, we discuss the draft OWL 2 RL profile from
the perspective of applying the constituent rules over Web data. In par-
ticular, borrowing from previous work, we discuss (i) optimisations based
on a separation of terminological data from assertional data and (ii) the
application of authoritative analysis to constrain third party interference
with popular ontology terms. We also provide discussion relating to the
applicability of new OWL 2 constructs for two popular Semantic Web
ontologies – namely FOAF and SIOC – and provide some evaluation
of the proposed use-cases based on reasoning over a representative Web
dataset of approx. 12 million statements.

1 Introduction

As more and more data becomes available on the Web, the Semantic Web move-
ment aims to provide technologies which enable greater data-integration and
query answering capabilities than the keyword/document centric models preva-
lent today. The core of these technologies is the Resource Description Frame-
work (RDF) for publishing data in a machine-readable format, wherein there
now exist millions of RDF data sources on the Web contributing billions of
statements [9]. The Semantic Web technology stack also includes means to
supplement instance (assertional) data being published in RDF with ontolo-
gies described in RDF Schema (RDFS) [3] and the Web Ontology Language
(OWL) [23] (terminological data) providing machines a more sapient under-
standing of the information – in particular enabling deductive reasoning to be
performed.

Reasoning over aggregated Web data is useful, for example, (i) to infer implicit
knowledge and thus provide query-answering over a more complete dataset, (ii)
to assert equality between equivalent resources resident in remote documents,
(iii) to flag inconsistencies wherein conflicting data is provided by one or more
parties; and (iv) to execute mappings, where they exist, between different data-
models concerned with the same domain. However, reasoning over Web data is
indeed an ambitious goal with many inherent difficulties, the most overt of which
� The work presented in this paper has been funded in part by Science Foundation

Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) and by an IRCSET Scholarship.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 118–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Ostensibly Silent ‘W’ in OWL 2 RL 119

are (i) the requirement for near-linear scale in execution and (ii) the requirement
to be tolerant with respect to noisy and conflicting data (for a detailed treatment
of noise in RDF Web data, we refer the interested reader to [15]).

With these requirements in mind, in previous work we introduced Scalable
Authoritative OWL Reasoner (SAOR) [16]; we discussed the formulation and
suitability of a set of rules inspired by pD* [24] – to cover a significant fragment
of OWL Full reasoning – for forward-chaining materialisation over Web data.
We gave particular focus to scalability and tolerance against noisy Web data
showing that, by applying certain practical restrictions, materialisation over a
diverse Web dataset – in the order of a billion statements – is feasible.

From the scalability perspective, we introduced a separation of terminological
data from assertional data in our rule execution model, based on the premise that
terminological data is the most frequently accessed segment of the knowledge
base and represents only a small fraction of the overall data.

From the Web tolerance perspective, we presented many issues relating to the
effects of noise – which is present in abundance on the Web – on reasoning. We
particularly focused on the introduced problem of “ontology hijacking” wherein
third-party sources redefine or subsume popular Web ontology terms. Our solu-
tion was to include consideration of the source or “context” of data, and provide
“authoritative analysis” to curtail the privileges of third-parties.

Drawing on our experiences in reasoning over Web data, in this paper we
discuss the new OWL 2 RL draft profile [18]. OWL 2 RL is a fragment of the
new OWL 2 language for implementation within rule-based applications; hith-
erto, there existed only non-standard rule-implementable fragments of OWL rea-
soning, the mostly prominent thereof being Description Logic Programs (DLP)
[11] and pD* [24]. OWL 2 RL extends upon both with a more complete list
of rules, including support for a significant fragment of OWL 2 RDF-based
semantics [21].

We subsequently present a number of Web use-cases for new OWL 2 terms
in the context of two popular Web ontologies: Friend Of A Friend (FOAF) [4]
and Semantically Interlinked Online Communities (SIOC) [1,2]; we evaluate our
proposed use-cases based on reasoning over a 12m statement Web dataset.

Specifically, in this paper we: (i) discuss a separation of terminological data
from assertional data in executing OWL 2 RL/RDF rules; (ii) discuss author-
itative reasoning over OWL 2 RL/RDF rules; and (iii) present insights and
evaluation on possible deployment of new OWL 2 constructs within two popular
Web ontologies – viz.: SIOC and FOAF.

2 OWL 2 RL vs. SAOR

Before we continue, we recall pertinent high-level discussion relating to our pre-
vious work on SAOR, and draw parallels to OWL 2 RL (for a more extensive
treatment of SAOR, we refer the interested reader to [16]; a full list of SAOR

120 A. Hogan and S. Decker

rules is available in [16, Table 2]). In doing so, we provide insights into possible
obstacles and optimisations relating to applying OWL 2 RL for materialisation
over an RDF dataset collected from the Web.1 Please note that in Appendix A,
we replicate the OWL 2 RL/RDF rules from [18] and denote certain character-
istics which we will refer to in this section.

SAOR is designed to accept as input a Web knowledge-base in the form of a
large body of statements collected by means of a Web crawl, and to output in-
ferred statements by forward-chaining reasoning according to a tailored fragment
of OWL; input and inferred statements can then be exploited by a consumer ap-
plication, such as for query answering. We identified three main aspects around
which our system and ruleset is designed and implemented: computational feasi-
bility for scalability, reduced output statements such that consumer applications
are not over-burdened, and finally Web tolerance for avoiding undesirable and
potentially expensive “inflationary” inferences caused by noisy Web data.

In this section, we will introduce how our ruleset and implementation is de-
signed to adhere to these requirements for Web reasoning, and contrast our
approach with the OWL 2 RL ruleset; we begin by discussing general issues.

2.1 High-Level Issues

Firstly, SAOR ignores inconsistencies in the data; in OWL 2 RL, inconsistencies
are flagged by means of a false inference which indicates that the original input
graph is inconsistent – such rules could additionally be supported in SAOR. In
both cases, the explosive nature of reasoning upon inconsistent data is avoided;
i.e., inconsistencies do not lead to the inference of all possible triples.

Secondly, in SAOR we avoid inventing new anonymous individuals. Such in-
vention breaks the upper bound on possible inferable statements from an input
graph – |T |3 where T is the union of the set of RDF terms in the input and
the set of ‘built-in’ terms that appear in the rule consequents – and allows for
the inference of infinite statements. For example, in [24], pD*sv was introduced
which extended pD* with an additional rule based on owl:someValuesFrom:2

?v someValuesFrom ?w ; onProperty ?p . ?u a ?v . ⇒ ?u ?p :b . :b a ?w .

Here, :b is a unique blank-node created for each set of variable bindings from
the rule body. Now, given an input graph where a binding for ?w is a subclass of
the respective binding for ?v, this rule will infer infinite statements; such rules are
excluded from pD*, SAOR and OWL 2 RL due to such effects on termination.

In a related matter, in pD*, blank nodes are allowed in all positions in a form
of partially-generalised triples; literals are not allowed in subject or predicate
positions. Thus, and following RDFS entailment practices [13, Section 7.1], pD*
includes rules which invent so called “surrogate blank nodes” to represent literals
in subject and predicate positions where they would otherwise be disallowed.

1 Although we focus on forward-chaining applications of OWL 2 RL, much of our
discussion has a more general appeal.

2 In this paper, we use prefixed names as prevalent in the literature and, following
Turtle syntax, use ‘a’ as a shortcut for rdf:type and ‘(...)’ for RDF lists.

On the Ostensibly Silent ‘W’ in OWL 2 RL 121

Although these blank nodes are formed by a direct mapping from a finite set
of literals, they still create new terms and thus in SAOR, we opted to allow
literals and blank-nodes in all positions of a triple. This is analogous to the Rule
Interchange Format (RIF) [6] and the OWL 2 RL notion of a generalised triple.

Thus far, OWL 2 RL maintains an upper bound of |T |3 inferred generalised
statements. However, rules dt-type2, dt-eq and dt-diff (Table 1) are based
on an infinite set of literals independent of the input graph. Thus, materialisa-
tion according to these rules (which are clearly intended for backward-chaining)
would lead to inference of infinite triples. One could curtail such inferences by
omitting the rules or only applying the rules over literals which appear in the
input graph: either would maintain the |T |3 upper bound. Also, rule dt-eq could
be used to infer equivalence between literals and their canonical versions, in-
troducing at most |CL| terms where CL is the set of literals in the input with
lexically distinct canons: the upper bound would then be (|CL|+ |T |)3.

Continuing, in SAOR we also aim to omit inference of what we term “extended
axiomatic” statements. These include: (i) the set of RDF(S) axiomatic triples [13,
Section 4.1]; (ii) the set of additional OWL axiomatic triples listed for pD* [24,
Table 6]; and (iii) inferences which apply to every RDF term in the graph. For
the latter, we firstly omit rules which assert membership of rdfs:Resource for
all terms, viz.: RDFS/pD* rules rdfs4a/rdfs4b [13, Section 7.3]. Secondly, we
omit rules which mandate symmetric owl:sameAs inferences for all terms, viz:
OWL 2 RL rule eq-ref (Table 3)3 and pD* rules rdfp5a/rdfp5b [24, Table 6].
Such rules immediately add |T | statements to the graph and could be considered
inflationary; they are, perhaps, better suited to backward-chaining support (in
an approach such as [17]) than materialisation.

Indeed, reasoning involving owl:sameAs relations is problematic on the Web:
in [14] we found 85,803 equivalent individuals to be inferable from a Web dataset
through the incongruous values 08445a31a78661b5c746feff39a9db6e4e2cc5cf and
da39a3ee5e6b4b0d3255bfef95601890afd80709 for the prominent inverse-functional
property foaf:mbox sha1sum – the former value is the sha1-sum of an empty string
and the latter is the sha1-sum of the ‘mailto:’ string, both of which are erro-
neously published by online FOAF exporters.4 Thus, in SAOR, we cross-check
the values of inverse-functional properties against a black-list of known noisy
values. Also, we disallow owl:sameAs inferences from travelling to the predicate
position of a triple or to the object position of an rdf:type triple: this is contrary
to rule eq-rep-p in OWL 2 RL, and to the lack of a restriction on rule eq-rep-o

where rdf:type predicates are allowed (Table 5).
Aside from noisy data, näıve materialisation over OWL 2 RL equality rules

eq-ref, eq-sym (Table 3) and eq-trans (Table 6) – which axiomatise the reflexive,
symmetric, and transitive nature of owl:sameAs resp. – leads to quadratic growth
in inferences. Again, take for example the 85,803 equivalent individuals we had

3 One important note: rule eq-diff1 requires reflexive owl:sameAs statements to flag
inconsistent reflexive owl:differentFrom statements; in the absence of the former,
one should support the following rule: ?x :differentFrom ?x . ⇒ false.

4 See, for example http://blog.livedoor.jp/nkgw/foaf.rdf

http://blog.livedoor.jp/nkgw/foaf.rdf

122 A. Hogan and S. Decker

previously found; näıvely, the OWL 2 RL rules would mandate 85,8032=7.362b
statements to represent the pair-wise equivalences. Also, assuming that each
individual was mentioned in, on average, eight unique statements5, the eq-rep-*

rules would infer 7.362b * 8 = 59b statements, with massive repetition.
Although the above example again relies on noisy Web data, there do exist

valid examples on the Web of large “equivalence chains” of individuals. Again
in [14] we discovered a resource representing a “global user” on the vox.com

blogging platform which exports FOAF data; this global user was identified by
a blank node and was mentioned in the FOAF profiles of all users.6 Thus, in our
crawl we found 32,390 unique resources, in different documents, with the valid
value http://team.vox.com/ for inverse-functional property foaf:weblog. Again,
such would lead to the inference of over a billion owl:sameAs statements and
billions more statements in duplicative data.

Taking such considerations into account, in order to avoid an explosion of
repetitious inferences in [14,16] we instead choose a single ‘pivot’ identifier for
identifying equivalent individuals. Thus, we compress repetitive entries into one
single entry; we also store equivalence relations from the pivot element to all
other identifiers such that the fully expanded view can be realised by the con-
sumer application using backward-chaining techniques.

Finally, there are two cardinality-related rules supported in SAOR for which
no equivalent rule exists in OWL 2 RL; namely rdfc2 (Table 9) and an exact-
cardinality version of cls-maxc2 (Table 6). Their omission relates to the con-
straint that OWL 2 RL documents must also be valid OWL 2 DL documents [22,
Section 2.1] which enforces certain computational guarantees, e.g., for entailment
checking. Thus, the OWL 2 RL ruleset omits exact-cardinality versions of rules
for cls-maxc* and cls-maxqc* (Table 6) and support for minimum-cardinality;
also missing are rules relating to disjoint-union expressions, which could be sup-
ported analogously to union-of and disjoint-class expressions (resp. cls-duni1
and cls-duni2 in Table 9). More puzzlingly, the ruleset omits support for self-
restriction expressions which are supported by OWL 2 DL/EL; the omitted rules
(cls-hs* in Table 9) are reciprocal of those for has-value expressions (cls-hv*
in Table 4); motivation for the omission is missing from the draft documents.7

In terms of Web reasoning, one other notable consequence of enforcing OWL 2
DL restrictions in OWL 2 RL documents is the forbiddance of inverse-functional
datatype-properties [19, Section 9.2.8]: the definition of such properties is com-
mon on the Web; examples include foaf:mbox sha1sum and various FOAF chat
ID properties whereby the former is commonly used as a primary means of
identifying foaf:Person members without using URIs.

5 Here, perhaps assuming uniqueness which also considers context.
6 See http://team.vox.com/profile/foaf.rdf for the RDF description of the re-

source with foaf:nick "Team Vox" and, e.g.,
http://danbri.vox.com/profile/foaf.rdf as an example of a user profile, all of
which reference the Team Vox user.

7 We can only conjecture that this is perhaps related to a possible owl:hasSelf em-
ulation of an owl:ReflexiveProperty expression which is not supported.

http://team.vox.com/profile/foaf.rdf
http://danbri.vox.com/profile/foaf.rdf

On the Ostensibly Silent ‘W’ in OWL 2 RL 123

In summary, although the OWL 2 RL profile does not introduce new in-
dividuals, and although sound and complete when applied to a valid OWL 2
RL document, the profile is not immediately suited to application over Web
data. Indeed, a Web reasoner should perhaps consider abandoning completeness
guarantees for a more syntactically permissive, semantically inclusive and prac-
ticable (albeit, possibly incomplete) approach: e.g., allowing inverse-functional
datatype-properties, including omitted rules as exemplified in Table 9 and cur-
tailing quadratic equivalence inferencing on the Web.

2.2 Separating Terminological Data

The main optimisation of SAOR, and indeed the main divergence from tradi-
tional rules engines, is in considering a distinction between terminological data
and assertional data. Herein, we refer to terminological data as the segment of
the Web crawl which deals with class and property descriptions – using RDF(S)
and OWL terms – that are supported by the given ruleset.

In [16], we showed that <1% of data in our large Web dataset represented ter-
minological data; however, this small segment of data is the most frequently ac-
cessed for reasoning, with most rules including terminological expressions in their
antecedents. For example, the FOAF ontology currently contains 559 triples, the
majority of which we would consider to be terminological; however, there exists
hundreds of millions8 of statements on the Web which use the properties and
classes defined by the former 559 triples. Based on such observations, we opti-
mise access to the terminological data; we perform an initial scan of the dataset
and extract terminological statements while building an in-memory hashtable
representation of this information which we call our “TBox”.

In creating an in-memory TBox, for which the terminological information
required by each rule can be accessed in O(1) (in practical terms, considering our
hashtable-based implementation), we significantly reduce the implementational
complexity of all rules requiring terminological knowledge. Also, since we only
index <1% of the data, the cost of building the hashtable is relatively low.
In [16], we categorised our rules according to their terminological and assertional
arity; i.e., the amount of patterns in the rule that could be answered by the
TBox and the amount that could not. In particular, we identified eighteen rules
which required zero or one assertional patterns and thus, could be serviced by
statement-wise scan of the entire (possibly unsorted) dataset.

Take for example the following rule:
?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ⇒ ?x a ?c1, ..., ?cn .

Herein, the terminological patterns serviceable by the TBox are underlined.
To execute this rule, the dataset can be scanned statement-by-statement, with
triples satisfying the ?x a ?c . pattern joined with the TBox; inferred state-
ments can be recursively joined with the TBox in the same fashion. Thus, we
can execute such rules using two scans of the unsorted data; the first builds the
TBox and the second executes the rules (again, cf. [16] for more detail).

8 E.g., see http://vmlion25.deri.ie/; the figure could however be in the billions.

http://vmlion25.deri.ie/

124 A. Hogan and S. Decker

However, there exist a number of rules which contain more than one purely
assertional pattern in the antecedent, and thus require execution of joins on the
arbitrarily large ABox – and even worse – exhaustive application on all inferred
ABox triples. Such rules are more expensive to compute and require indexing of a
much larger portion of the data; in [16], we presented means to execute such rules
using static sorted indices; however, such an approach encountered difficulties in
achieving termination and is better suited to approximative reasoning. In any
case, we showed that the majority of inferences for our Web dataset were covered
by the set of rules with zero or one assertional pattern (<0.3% of inferences were
found through rules with more than one assertional pattern9). Subsequently,
using the rules with a low assertional arity, we demonstrating reasoning over
1.1b statements, crawled from 665k Web documents, in <16.5 hours.

Following from this, Appendix A lists OWL 2 RL rules in order of increasing
complexity, starting with rules with no antecedent (R0) and ending with rules
with a variable number of assertional patterns (R6-7). In practical terms, rules
in R0-3 present an opportunity for near-linear scale with respect to Web reason-
ing in a system such as SAOR (at least, given observable trends in Web data);
rules in R4-5 require assertional joins (with an upper-bound of five conjunctive
patterns for rule cls-maxqc4), which are more expensive to compute at Web
scale; rules in R6-7 may present Web reasoners with the daunting task of com-
puting arbitrarily-large conjunctive- assertional-patterns – Web reasoners would
probably have to enforce maximally supported lengths for such expressions.

2.3 Authoritative Reasoning

In preliminary work on SAOR, we encountered a puzzling deluge of inferences
from näıve reasoning over a Web dataset. For example, we found that reason-
ing on a single membership assertion of owl:Thing – apparently the “top-level”
concept – caused 4,251 inferences when näıve reasoning was applied to the Web
dataset.10 Again for example, the document http://www.eiao.net/rdf/1.0 de-
fines 9 properties to be in the domain of rdf:type [15].11

The problem is more widespread than core RDF(S)/OWL terms; for one mem-
bership assertion of foaf:Person, näıve reasoning created 4,631 inferences (an
additional 380 inferences on top of owl:Thing) as opposed to the six inferences
mandated by the FOAF ontology. As another example, there are multiple doc-
uments which declare the class foaf:Image to be an owl:ObjectProperty [15].12

In [16], we termed such third party redefinition of ontology terms “ontology hi-
jacking” and proposed a solution to counter such behaviour based upon analysis
of “authoritative sources” for terminological data:

9 This figure is, however, increasing with popular usage of transitive properties.
10 E.g., the document

http://lsdis.cs.uga.edu/~{}oldham/ontology/wsag/wsag.owl accounts for 55
such inferences where owl:Thing is a member of 55 union class descriptions.

11 Such usage of owl:Thing is prohibited by the structural syntax of OWL 2 RL [19].
12 E.g., see

http://wiki.sembase.at/index.php/Special:ExportRDF/Dieter_Fensel

http://www.eiao.net/rdf/1.0
http://lsdis.cs.uga.edu/~{}oldham/ontology/wsag/wsag.owl
http://wiki.sembase.at/index.php/Special:ExportRDF/Dieter_Fensel

On the Ostensibly Silent ‘W’ in OWL 2 RL 125

Definition 1 (Authoritative Source). A Web document from source (con-
text) c speaks authoritatively about an RDF term n iff:

1. n is a blank node; or
2. n is a URI and c coincides with, or is redirected to by, the namespace of n.

We then defined our notion of an “authoritative rule application” whereby, here
paraphrasing, each Web document satisfying a terminological pattern in the
antecedent must speak authoritatively for at least one term appearing in both
the assertional and terminological parts of the antecedent; e.g., take the rule:

?p rdfs:domain ?c . ?x ?p ?y . ⇒ ?x a ?c .

Here, the term matched by ?p must be authoritatively spoken for by the doc-
ument serving the rdfs:domain triple. Therefore, taking the previous example
where nine domains for rdf:type are non-authoritatively defined, the document
http://www.eiao.net/rdf/1.0 does not speak authoritatively for rdf:type, which
is bound by ?p: thus, no inference takes place.

Of course, we still allow extension of external ontologies, whereby member-
ships of local terms are translated into memberships of remote terms, but not
vice-versa; e.g., for the above rule, authoritative reasoning will still permit a
triple such as ex:sibling rdfs:domain foaf:Person . when served in a loca-
tion authoritative for the ex: namespace, facilitating translation from subject-
members of the local property ex:sibling to the remote class foaf:Person.

Along these lines, Tables 4-9 indicate authoritative variables for the OWL 2
RL rules in bold-face; when enforced, the document(s) serving the terminological
statements must speak authoritatively for at least one binding of an authoritative
variable for the rule to fire.

3 Web Use-Cases

The OWL 2 New Features and Rationale document [10] is intended to pro-
vide rationale and use-cases for novel OWL 2 features; in particular, the docu-
ment defines 19 use-cases which motivate new features. However, the document
focuses largely on domain-specific use-cases, with, e.g., nine use-cases tied to
the Health Care and Life Sciences (HCLS) domain. In this section, we briefly
look at how new OWL 2 features could be exploited on the Web by investi-
gating possible pragmatic extensions of two prominent Web ontologies; namely
Friend Of A Friend (FOAF) and Semantically Interlinked Online Communities
(SIOC).

FOAF is a lightweight ontology providing classes and properties for describing
personal information and resources; these terms are amongst the most commonly
instantiated on the Web [9, Table 1&2], with many blogging platforms and social
networks providing automatic exports of user profiles in FOAF. SIOC [2], sim-
ilarly, is a lightweight ontology for describing and connecting resources relating

http://www.eiao.net/rdf/1.0

126 A. Hogan and S. Decker

to online social communities and the various platforms for information dissem-
ination on the Web; SIOC reuses terms from other Web ontologies, including
FOAF. SIOC terms have more recently seen a large growth in popularity as
large-volume exporters have become available.13

Both ontologies are pragmatically lightweight to foster uptake amongst non-
expert communities; we follow such precedent – e.g., we ignore the new disjoint-
union qualified-cardinality and self-restriction constructs since both FOAF and
SIOC have previously avoided complex class descriptions from the original OWL
specification – and select the following novel OWL 2 constructs as possible tar-
gets for use in FOAF and/or SIOC: (i) IrreflexiveProperty/AsymmetricProperty;
(ii) propertyChainAxiom; and (iii) hasKey.

In order to provide insights into the fecundity of our proposed extensions, we
perform reasoning over a representative Web dataset. We retrieved this dataset
from the Web in April 2009 by means of a Web crawl using MultiCrawler [12]; be-
ginning with Tim Berners-Lee’s FOAF file14, we performed a seven-hop breadth
first crawl for RDF/XML files; after each hop, we extracted all URIs from the
crawled data as input for the next hop. Finally, we restricted the crawl ac-
cording to pay-level-domains; we enforced a maximum of 5,000 crawled docu-
ments from each domain so as to ensure a diverse and representative dataset.
The crawl consisted of access to 149,057 URIs, and acquired 54,836 (36.8%)
valid RDF/XML documents containing 12,534,481 RDF statements; of these,
3,751,617 statements (29.9%) contain a URI in the FOAF namespace and 782,188
(6.2%) contain a URI in a SIOC namespace.

Property constraints. We now look at asymmetrical/irreflexive property con-
straints: we take precedent from the current owl:disjointWith assertions in
FOAF and SIOC which analogously provide simple means of consistency check-
ing. Firstly, please note that all asymmetric properties are irreflexive. Also,
we only select properties whose irreflexivity was not already implicitly con-
strained by disjoint domain/range assertions; we exclude datatype properties,
and, e.g., we exclude workplaceHomepage since the domain (Person) and range
(Document) are disjoint and symmetric or reflexive relations thereof would already
be flagged. We chose 6 FOAF properties and 17 SIOC properties as being im-
plicitly assymetric/irreflexive and one SIOC property as being irreflexive alone:
sibling.

Applying these constraints to our Web dataset, we found 319 sioc:link15, 2
foaf:holdsAcccount and 1 foaf:mbox reflexive statements. We found no examples
of symmetric statements for the asymmetric properties. Although the results are
less than convincing, the asymmetric/irreflexive constraints would constitute a
straightforward extension of the FOAF/SIOC ontologies; please note that for
13 See http://vmlion25.deri.ie/ for a recent survey of the terms in a >1bn statement

Web dataset.
14 http://www.w3.org/People/Berners-Lee/card
15 The textual description of the link property recommends irreflexive use [1]. Most

such reflexive statements are produced by the SIOC WordPress exporter; e.g., see
http://dowhatimean.net/?sioc_type=site

http://vmlion25.deri.ie/
http://www.w3.org/People/Berners-Lee/card
http://dowhatimean.net/?sioc_type=site

On the Ostensibly Silent ‘W’ in OWL 2 RL 127

foaf:Agent

foaf:OnlineAccount
(inc. sioc:User)

foaf:holdsAccount

Thing Literalsioc:name
sioc:email_sha1

foaf:nick
foaf:mbox_sha1sum

foaf:depiction
foaf:mbox
foaf:made
sioc:avatar
sioc:email

sioc:creator_of

sioc:Item sioc:Container Thingsioc:topicsioc:has_container

sioc:topic

Fig. 1. FOAF/SIOC property chain translations

authoritative reasoning, these constraints should be provided in the FOAF/SIOC
ontologies for the FOAF/SIOC terms respectively.

Property chains. The owl:propertyChainAxiom allows for defining arbitrarily
long paths which, when present, succinctly infer membership of a single property.

The main use-case we envisage for this construct relates to translating SIOC
attributes attached to an instance of sioc:User into FOAF attributes attached
to foaf:Agent. The FOAF profile defines a class foaf:OnlineAccount intended to
represent the online presence of a foaf:Agent through the foaf:holdsAccount re-
lation; SIOC defines sioc:User, a subclass of foaf:OnlineAccount, and provides a
more expressive vocabulary for defining and connecting the sioc:User with online
services. Thus, we can translate from the SIOC attributes for sioc:User/foaf:On-
lineAccount to equivalent FOAF properties with a domain of foaf:Agent or an
encompassing class thereof.

Another possible use-case is to formally realise the informal semantics of
sioc:topic which state that “...a Container will have an associated topic or set
of topics that can be propagated to the Items it contains” [1]: this propagation
can be implemented using OWL 2 property chains.

Figure 1 depicts the envisaged translations.; to take an example, the assertion
foaf:nick :propertyChainAxiom (foaf:holdsAccount, sioc:name) . made in the
FOAF or SIOC ontology would allow for authoritative translation of sioc:name
values attached to sioc:Users into foaf:nick values attached to foaf:Agents.16

Applying the above chains to our dataset, we found 29,617 inferences; viz.:
29,373 foaf:nick, 216 foaf:depiction, 20 foaf:mbox and 8 foaf:mbox sha1sum

statements respectively. Here it seems, the only practically convincing use-case
is the translation of sioc:name values into foaf:nick values, although perhaps
with the growth of online SIOC data, the above figures may begin to increase.

Complex keys. We examine one last use-case for the new OWL 2 constructs;
namely the owl:hasKey construct which is used to define a set of properties

16 This translation seems a neat fit: the informal description of foaf:nick states that
it is for values “such as those use [sic.] in IRC chat, online accounts, and computer
logins” [4].

128 A. Hogan and S. Decker

whose values together uniquely identify a member of the specified class. We
foresee one possible use-case which again lies on the intersection of FOAF and
SIOC: members of foaf:OnlineAccount, and thereby of sioc:User, are uniquely
defined by the properties foaf:accountName and foaf:accountServiceHomepage

together.
Applying the above key to our dataset, we found 4,576,310 non-reflexive

:sameAs inferences (only includes inferences from application of prp-key and not
of, e.g., eq-trans) mentioning 78,534 individuals, with the longest equivalence
chain containing 723 individuals. Due to rare usage of URIs for OnlineAccount

members, complex keys are the only solution currently available to uniquely
identify and aggregate such resources.

4 Related Work

Several rule expressible non-standard OWL fragments; namely OWL-DLP [11],
OWL− [7] (which is a slight extension of OWL-DLP), OWLPrime [25] and
pD* [24]; have been defined in the literature and enable incomplete but sound
RDFS and OWL Full inferences.

Some existing systems already implement a separation of TBox and ABox
for scalable reasoning, where in particular, assertional data are stored in some
RDBMS; e.g., Hawkeye [20] demonstrates reasoning over a 166m triple Web
dataset – however, they use a prescribed TBox. Also, like us, they internally
choose pivot identifiers to represent equivalent sets of individuals.

Work presented in [5] introduced the notion of an authoritative description
which is very similar to ours; however, we provide much more extensive treatment
of the issue, supporting a much more varied range of RDF(S)/OWL constructs.

One promising alternative to authoritative reasoning for the Web is the notion
of “context-dependant” or “quarantined reasoning” introduced in [8], whereby
inference results are only considered valid (quarantined) within the given context
of a document.

5 Conclusion

In this paper, we have presented discussion relating to applying OWL 2 RL over
Web data. In particular, we discussed a separation of terminological data from
purely assertional data wherein terminological data represents a small fraction
of an overall Web dataset and is the most frequently accessed during reason-
ing. We presented a categorisation of OWL 2 RL rules based on terminological/
assertional arity and discussed the implementational feasibility of said categories.
We also discussed authoritative reasoning, which heeds the source of information
when making inferences, thus countering unwanted third-party contributions. We
identified those variable positions present in the OWL 2 RL/RDF rules which
should be authoritatively restricted to counter-act ontology hijacking. Finally,
motivated by a lack of Web reasoning discussion in the official specifications, we

On the Ostensibly Silent ‘W’ in OWL 2 RL 129

presented a number of Web use-cases for OWL 2 terms based on two popular
Web ontologies: viz. SIOC and FOAF. Although some of the use-cases were not
convincing when presented with a real Web dataset, we found some practical
deployment for the owl:propertyChainAxiom and owl:hasKey constructs. In any
case, our purview was limited to that of SIOC and FOAF, and we conclude that
new OWL 2 terms may find more productive application in other/future Web
ontologies.

References

1. Bojārs, U., Breslin, J.G.: SIOC Core Ontology Specification (January 2009),
http://rdfs.org/sioc/spec/

2. Breslin, J.G., Harth, A., Bojars, U., Decker, S.: Towards semantically-interlinked
online communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 500–514. Springer, Heidelberg (2005)

3. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF Schema.
W3C Recommendation (February 2004), http://www.w3.org/TR/rdf-schema/

4. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91 (November 2007),
http://xmlns.com/foaf/spec/

5. Cheng, G., Ge, W., Wu, H., Qu, Y.: Searching semantic web objects based on class
hierarchies. In: Proceedings of Linked Data on the Web Workshop (2008)

6. de Bruijn, J.: RIF RDF and OWL Compatibility, W3C Working Draft (July 2009),
http://www.w3.org/TR/rif-rdf-owl/

7. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL−. Technical Report WSML
d20.1v0.2 (2005)

8. Delbru, R., Polleres, A., Tummarello, G., Decker, S.: Context dependent reasoning
for semantic documents in Sindice. In: Proc. of the 4th Int. Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2008) (October 2008)

9. Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg
(2006)

10. Golbreich, C., Wallace, E.K.: OWL 2 New Features and Rationale. W3C Working
Draft (2009), http://www.w3.org/TR/owl2-new-features/

11. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: 13th International Conference on
World Wide Web (2004)

12. Harth, A., Umbrich, J., Decker, S.: Multicrawler: A pipelined architecture for crawl-
ing and indexing semantic web data. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 258–271. Springer, Heidelberg (2006)

13. Hayes, P.: RDF semantics. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-mt/

14. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic
web data graph. In: I3: Identity, Identifiers, Identification Workshop (2007)

15. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic
Web. Technical report, DERI Galway (2009),
http://www.deri.ie/fileadmin/documents/DERI-TR-2009-07-28.pdf

http://rdfs.org/sioc/spec/
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/rif-rdf-owl/
http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/rdf-mt/
http://www.deri.ie/fileadmin/documents/DERI-TR-2009-07-28.pdf

130 A. Hogan and S. Decker

16. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the
Web. Int. Journal on Semantic Web and Information Systems 5(2) (2009)

17. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in prolog: The dlog
system. CoRR, abs/0904.0578 (2009)

18. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
Web Ontology Language Profiles, W3C Candidate Recommendation (June 2009),
http://www.w3.org/TR/owl2-profiles/

19. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax, W3C Candidate Recommendation
(June 2009),
http://www.w3.org/TR/owl2-syntax/

20. Pan, Z., Qasem, A., Kanitkar, S., Prabhakar, F., Heflin, J.: Hawkeye: A practical
large scale demonstration of semantic web integration. In: Meersman, R., Tari,
Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1115–1124.
Springer, Heidelberg (2007)

21. Schneider, M.: OWL 2 RDF-Based Semantics. W3C Candidate Recommendation
(June 2009), http://www.w3.org/TR/owl2-rdf-based-semantics/

22. Smith, M., Horrocks, I., Krötzsch, M.: OWL 2 Web Ontology Language Confor-
mance, W3C Candidate Recommendation (June 2009),
http://www.w3.org/TR/owl2-conformance/

23. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide.
W3C Recommendation (February 2004), http://www.w3.org/TR/owl-guide/

24. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics 3, 79–115 (2005)

25. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srini-
vasan, J.: Implementing an Inference Engine for RDFS/OWL Constructs and
User-Defined Rules in Oracle. In: 24th Int. Conf. on Data Engineering. IEEE,
Los Alamitos (2008)

A Rule Tables

In this Section, we provide Tables 1-9 for reference (which include all OWL
2 RL rules) presented in Turtle-like syntax; the default namespace refers to
owl:. Rules are categorised according to increasing terminological/assertional
antecedent arity; authoritative variable positions are denoted using bold-face.

Table 1. Rules with no antecedent

R0 : no antecedent
OWL2RL SAOR Consequent Notes
prp-ap - ?ap a :AnnotationProperty . For each built-in annotation property
cls-thing - :Thing a :Class . -
cls-nothing - :Nothing a :Class . -
dt-type1 - ?dt a rdfs:Datatype . For each built-in datatype
dt-type2 - ?l a ?dt . For all ?l in the value space of datatype ?dt
dt-eq - ?l1 :sameAs ?l2 . For all ?l1 and ?l2 with the same data value
dt-diff - ?l1 :differentFrom ?l2 . For all ?l1 and ?l2 with different data values

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-conformance/
http://www.w3.org/TR/owl-guide/

On the Ostensibly Silent ‘W’ in OWL 2 RL 131

Table 2. Only terminological antecedent patterns

R1 : only terminological patterns in antecedent
OWL2RL SAOR Antecedent (terminological) Consequent
cls-00 rdfc0 ?c :oneOf (?x1 ... ?xn) . ?x1 ... ?xn a ?c .

scm-cls - ?c a :Class .
?c rdfs:subClassOf ?c , :Thing ;
:equivalentClass ?c .
:Nothing rdfs:subClassOf ?c .

scm-sco - ?c1 rdfs:subClassOf ?c2 . ?c1 rdfs:subClassOf ?c3 .?c2 rdfs:subClassOf ?c3 .

scm-eqc1 - ?c1 :equivalentClass ?c2 . ?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c1 .

scm-eqc2 - ?c1 rdfs:subClassOf ?c2 . ?c1 :equivalentClass ?c2 .?c2 rdfs:subClassOf ?c1 .

scm-op - ?p a :ObjectProperty . ?p rdfs:subPropertyOf ?p .
?p :equivalentProperty ?p .

scm-dp - ?p a :DatatypeProperty . ?p rdfs:subPropertyOf ?p .
?p :equivalentProperty ?p .

scm-spo - ?p1 rdfs:subPropertyOf ?p2 . ?p1 rdfs:subPropertyOf ?p3 .?p2 rdfs:subPropertyOf ?p3 .

scm-eqp1 - ?p1 :equivalentProperty ?p2 . ?p1 rdfs:subPropertyOf ?p2 .
?p2 rdfs:subPropertyOf ?p1 .

scm-eqp2 - ?p1 rdfs:subPropertyOf ?p2 . ?p1 :equivalentProperty ?p2 .?p2 rdfs:subPropertyOf ?p1 .
scm-dom1 - ?p rdfs:domain ?c1 . ?c1 rdfs:subClassOf ?c2 . ?p rdfs:domain ?c2 .

scm-dom2 - ?p2 rdfs:domain ?c . ?p1 rdfs:domain ?c .?p1 rdfs:subPropertyOf ?p2 .
scm-rng1 - ?p rdfs:range ?c1 . ?c1 rdfs:subClassOf ?c2 . ?p rdfs:range ?c2 .

scm-rng2 - ?p2 rdfs:range ?c . ?p1 rdfs:range ?c .?p1 rdfs:subPropertyOf ?p2 .

scm-hv -
?c1 :hasValue ?i ; :onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 :hasValue ?i ; :onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-svf1 -
?c1 :someValuesFrom ?y1 ; :onProperty ?p .

?c1 rdfs:subClassOf ?c2 .?c2 :someValuesFrom ?y2 ; :onProperty ?p .
?y1 rdfs:subClassOf ?y2 .

scm-svf2 -
?c1 :someValuesFrom ?y ; :onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 :someValuesFrom ?y ; :onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-avf1 -
?c1 :allValuesFrom ?y1 ; :onProperty ?p .

?c1 rdfs:subClassOf ?c2 .?c2 :allValuesFrom ?y2 ; :onProperty ?p .
?y1 rdfs:subClassOf ?y2 .

scm-avf2 -
?c1 :allValuesFrom ?y ; :onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 :allValuesFrom ?y ; :onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-int - ?c :intersectionOf (?c1 ... ?cn) . ?c rdfs:subClassOf ?c1...?cn .
scm-uni - ?c :unionOf (?c1 ... ?cn) . ?c1...?cn rdfs:subClassOf ?c .

Table 3. No terminological, but one assertional antecedent pattern

R2 : one assertional antecedent pattern
OWL2RL SAOR Antecedent Consequent Notes

eq-ref - ?s ?p ?o .
?s :sameAs ?s .
?p :sameAs ?p .
?o :sameAs ?o .

eq-sym rdfp6′ ?x :sameAs ?y . ?y :sameAs ?x .
cls-nothing2 - ?x a :Nothing . false
dt-not-type - ?l a ?dt . false Where ?l is not in the value space of ?dt

132 A. Hogan and S. Decker

Table 4. At least one terminological and exactly one assertional pattern

R3 : at least one terminological/only one assertional pattern in antecedent

OWL2RL SAOR Antecedent Consequent
terminological assertional

prp-dom rdfs2 ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng rdfs3′ ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-irp - ?p a :IrreflexiveProperty . ?x ?p ?x . false
prp-symp rdfp3′ ?p a :SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 rdfs7′ ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 rdfp13a′ ?p1 :equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 rdfp13b′ ?p1 :equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 rdfp8a′ ?p1 :inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
cls-int2 rdfc3a′ ?c :intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1...?cn .
cls-uni rdfc1′ ?c :unionOf (?c1 ... ?ci ... ?cn) . ?x a ?ci ?x a ?c .
cls-svf2 rdfp15′* ?x :someValuesFrom :Thing ; :onProperty ?p . ?u ?p ?v . ?u a ?x .
cls-hv1 rdfp14b′ ?x :hasValue ?y ; :onProperty ?p . ?u a ?x . ?u ?p ?y .
cls-hv2 rdfp14a′ ?x :hasValue ?y ; :onProperty ?p . ?u ?p ?y . ?u a ?x .
cax-sco rdfs9 ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 rdfp12a′ ?c1 :equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 rdfp12b′ ?c1 :equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

Table 5. No terminological, but multiple assertional patterns

R4 : no terminological pattern/multiple assertional patterns
OWL2RL SAOR Antecedent Consequent
eq-trans rdfp7 ?x :sameAs ?y . ?y :sameAs ?z . ?x :sameAs ?z .
eq-rep-s rdfp11′* ?s :sameAs ?s′. ?s ?p ?o . ?s′?p ?o .
eq-rep-p - ?p :sameAs ?p′. ?s ?p ?o . ?s ?p′?o .
eq-rep-o rdfp11′′* ?o :sameAs ?o′. ?s ?p ?o . ?s ?p ?o′.
eq-diff1 - ?x :sameAs ?y ; :differentFrom ?y . false

prp-npa1 - ?x :sourceIndividual ?i1 ; :assertionProperty ?p ; false:targetIndividual ?i2 . ?i1 ?p ?i2 .

prp-npa2 - ?x :sourceIndividual ?i1 ; :assertionProperty ?p ; false:targetValue ?lt . ?i1 ?p ?lt .

On the Ostensibly Silent ‘W’ in OWL 2 RL 133

Table 6. At least one terminological and mulitple assertional patterns

R5 : at least one terminological/multiple assertional patterns in antecedent

OWL2RL SAOR Antecedent Consequent
terminological assertional

prp-fp rdfp1′ ?p a :FunctionalProperty . ?x ?p ?y1 , ?y2 . ?y1 :sameAs ?y2 .
prp-ifp rdfp2 ?p a :InverseFunctionalProperty . ?x1 ?p ?z . ?x2 ?p ?z . ?x1 :sameAs ?x2 .
prp-asyp - ?p a :AsymmetricProperty . ?x ?p ?y . ?y ?p ?x . false
prp-trp rdfp4 ?p a :TransitiveProperty . ?x ?p ?y . ?y ?p ?z . ?x ?p ?z .
prp-pdw - ?p1 :disjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y . false

prp-adp - ?x a :AllDisjointProperties ; ?u ?pi ?y ; ?pj ?y . false
owl:members (?p1 ... pn) .

cls-com - ?c1 :complementOf ?c2 . ?x a ?c1, ?c2 . false

cls-svf1 rdfp15′ ?x :someValuesFrom ?y ; ?u ?p ?v . ?v a ?y . ?u a ?x .:onProperty ?p .

cls-avf rdfp16′ ?x :allValuesFrom ?y ; ?u a ?x ; ?p ?v . ?v a ?y .:onProperty ?p .

cls-maxc1 - ?x :maxCardinality 0 ; ?u a ?x ; ?p ?y . false:onProperty ?p .

cls-maxc2 rdfc4b ?x :maxCardinality 1 ; ?u a ?x ; ?p ?y1 , ?y2 . ?y1 :sameAs ?y2 .:onProperty ?p .

cls-maxqc1 - ?x :maxQualilifedCardinality 0 ; ?u a ?x ; ?p ?y . false:onProperty ?p ; :onClass ?c . ?y a ?c .

cls-maxqc2 - ?x :maxQualifiedCardinality 0 ; ?u a ?x ; ?p ?y . false:onProperty ?p ; :onClass :Thing .

cls-maxqc3 - ?x :maxQualifiedCardinality 1 ; ?u a ?x ; ?p ?y1 , ?y2 . ?y1 :sameAs ?y2 .:onProperty ?p ; :onClass ?c . ?y1 a ?c . ?y2 a ?c .

cls-maxqc4 - ?x :maxQualifiedCardinality 1 ; ?u a ?x ; ?p ?y1 , ?y2 . ?y1 :sameAs ?y2 .:onProperty ?p ; :onClass :Thing .
cax-dw - ?c1 :disjointWith ?c2 . ?x a ?c1 , ?c2 . false

cax-adc - ?x a :AllDisjointClasses ; ?z a ?ci , ?cj . false:members (?c1 ... ?cn) .

Table 7. No terminological, but a variable number of assertional patterns

R6 : no terminological pattern/variable assertional patterns
OWL2RL SAOR Antecedent Consequent

eq-diff2 - ?x a :AllDifferent ; :members (z1 ... zn) . false?zi :sameAs ?zj .

eq-diff3 - ?x a :AllDifferent ; :distinctMembers (z1 ... zn) . false?zi :sameAs ?zj .

Table 8. At least one terminological and variable assertional patterns

R7 : at least one terminological/variable assertional patterns in antecedent

OWL2RL SAOR Antecedent Consequent
terminological assertional

prp-spo2 - ?p :propertyChainAxiom (?p1 ... ?pn) .
?u1 ?p1 ?u2 .

?u1 ?p ?un+1
?un ?pn ?un+1 .

prp-key - ?c :hasKey (?p1 ... pn) .

?x a ?c .

?x :sameAs ?y .

?x ?p1 ?z1 .
...
?x ?pn ?zn .
?y a ?c .
?y ?p1 ?z1 .
...
?y ?pn ?zn .

cls-int1 rdfc3c ?c :intersectionOf (?c1 ... ?cn) . ?y a ?c1 ... ?cn . ?y a ?c .

134 A. Hogan and S. Decker

Table 9. Rules not in OWL 2 RL

Rules not in OWL 2 RL

ID SAOR Antecedent Consequent R
terminological assertional

cls-minc1 rdfc2 ?x :minCardinality 1 ; :onProperty ?p . ?u ?p ?y . ?u a ?x . R3
cls-hs1 - ?x :hasSelf true ; :onProperty ?p . ?u ?a ?x . ?u ?p ?u . R3
cls-hs2 - ?x :hasSelf true ; :onProperty ?p . ?u ?p ?u . ?u a ?c . R3
cls-duni1 - ?x :disjointUnionOf (?c1 ... ?ci ... ?cn) . ?y a ?ci . ?y a ?x . R3
cls-duni2 - ?x :disjointUnionOf (... ?ci ... ?cj ...) . ?y a ?ci , ?cj . false R5

Answer Sets in a Fuzzy Equilibrium Logic

Steven Schockaert1, Jeroen Janssen2, Dirk Vermeir2, and Martine De Cock1,3

1 Dept. of Applied Mathematics and Computer Science,
Ghent University, Belgium

{steven.schockaert,martine.decock}@ugent.be
2 Dept. of Computer Science, Vrije Universiteit Brussel, Belgium

{jeroen.janssen,dvermeir}@vub.ac.be
3 Institute of Technology, University of Washington, Tacoma, WA, USA

mdecock@u.washington.edu

Abstract. Since its introduction, answer set programming has been
generalized in many directions, to cater to the needs of real-world ap-
plications. As one of the most general “classical” approaches, answer
sets of arbitrary propositional theories can be defined as models in the
equilibrium logic of Pearce. Fuzzy answer set programming, on the other
hand, extends answer set programming with the capability of model-
ing continuous systems. In this paper, we combine the expressiveness of
both approaches, and define answer sets of arbitrary fuzzy propositional
theories as models in a fuzzification of equilibrium logic. We show that
the resulting notion of answer set is compatible with existing definitions,
when the syntactic restrictions of the corresponding approaches are met.
We furthermore locate the complexity of the main reasoning tasks at the
second level of the polynomial hierarchy. Finally, as an illustration of its
modeling power, we show how fuzzy equilibrium logic can be used to find
strong Nash equilibria.

1 Introduction

Answer set programming (ASP) is a widely used framework for non-monotonic
reasoning [2], in which knowledge is represented as a set of rules of the form
α ← β. Intuitively, such a rule indicates that its head α should be assumed,
whenever its body β is known to hold. Essentially, the expressions α and β
are propositional expressions in negation-normal form, although two types of
negation may occur in front of atoms, viz. strong negation ¬ and negation-
as-failure not . The former corresponds to classical negation whereas the latter
models lack of evidence, e.g. a ← not b means that a should be assumed, unless it
has been established that b holds. In contrast to other forms of logic programming
such as traditional Prologs, ASP offers an elegant declarative semantics for both
types of negations. In practice, an answer set program P , i.e. a set of rules,
represents a problem instance, whose solutions correspond to the answer sets
of the program. When no negations occur in P , the answer sets correspond to
minimal models of the rules in P . The semantics of strong negation can be
defined by treating ¬a as an atom (which implies that an answer set can at the

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 135–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 S. Schockaert et al.

same time contain a and ¬a, in which case it is inconsistent). The semantics of
negation-as-failure is usually defined in terms of the Gelfond-Lifschitz reduct [9];
an interpretation I is then an answer set of P if it is an answer set of the reduct
P I , a particular program without negation-as-failure.

The syntax and semantics of answer set programs has been generalized in
many directions. An interesting example is [23], where the notion of answer set
is extended to arbitrary propositional theories, among others allowing programs
with nested rules, or with occurrences of not in front of complex expressions.
Answer sets are defined as models in a particular logic called equilibrium logic,
whose most important characteristics are recalled in Section 2. Due to its gener-
ality, this theory has proven useful in defining the semantics of various practical
extensions to ASP [8]. Moreover, due to the elegant definition of answer sets, in
logical terms, equilibrium logic has also proven fundamental in obtaining impor-
tant theoretical results on ASP [17].

Since classical ASP is based on boolean logic, it can only model discrete sys-
tems. Fuzzy answer set programming (FASP) is a quite different generalization
of ASP, which allows to model continuous systems by using a (typically) infinite
domain of truth values such as the unit interval [0, 1] (e.g. [13,26,27]). In FASP,
atoms correspond to gradations or intensities rather than boolean propositions,
and operators from fuzzy logic are used to encode relationships between them.
An obvious application of FASP is knowledge representation in the presence of
vagueness. In this case, atoms correspond to statements whose truth is inher-
ently gradual (e.g. “today is a rainy day”). Another example are optimization
problems involving continuous quantities, e.g. a FASP program can be spec-
ified to assign papers to reviewers, by taking a continuous form of similarity
between reviewers and authors into account to avoid conflicts of interest [14].
As a last example, FASP can be used as an elegant vehicle to specify quantities
that are defined in terms of fixpoints, such as the well known PageRank mea-
sure [22]. FASP should not be confused with extensions to ASP that consider
possibilistic [21] or probabilistic [18] uncertainty, even though to some extent,
probabilistic uncertainty in ASP can be simulated in FASP [4]. Neither should
FASP be confused with fuzzy logic based approaches to commonsense reasoning
about continuous systems [11]. Essentially, fuzzy answer set programs specify a
continuous function in a way that highlights causal relations between variables.

The aim of this paper is to combine the equilibrium logic approach from [23]
with the ideas of FASP. To this end, we introduce a fuzzy equilibrium logic, and
define a notion of answer sets which is analogous to answer sets in regular (or
crisp) equilibrium logic. The resulting framework is useful in many ways. First,
due to the generality of (fuzzy) equilibrium logic, many constructs from ASP that
have not been generalized yet to FASP can easily be defined using fuzzy equilib-
rium logic, i.e. our approach increases the expressivity of FASP in a substantial
way. Second, even restricted to (fuzzy) logic programs, the fuzzy equilibrium
approach offers more flexibility than existing methods (e.g. regarding the choice
of implicator, see Section 2.2). Third, answer sets in fuzzy equilibrium logic are
defined in a way which is very different from existing approaches to FASP, which

Answer Sets in a Fuzzy Equilibrium Logic 137

either generalize the Gelfond-Lifschitz definition [9], or generalize an equivalent
definition based on unfounded sets [24]. Having different definitions of answer
sets is desirable, as it may lead to different insights, implementations of different
reasoners, or facilitate the derivation of new theoretical results [16]. While this
is already true for classical ASP, it becomes even more important for FASP. In-
deed, it is well known that “fuzzifying” concepts that are classically equivalent
may lead to generalizations that are no longer equivalent. As an illustration, the
definition of answer sets in FASP from [27], which is based on a generalization
of unfounded sets, behaves quite different from the definition from [15], which is
based on a generalization of the Gelfond-Lifschitz reduct.

The paper is structured as follows. In the next section, we familiarize the
reader with the equilibrium logic of Pearce (Section 2.1) and with fuzzy an-
swer set programming (Section 2.2). The main body of the paper is presented
in Section 3 where we define fuzzy equilibrium models (Section 3.1), expose the
relationship both with equilibrium models in the sense of Pearce and with an-
swer sets in FASP (Section 3.2), and determine the computational complexity of
main reasoning tasks (Section 3.3). In addition, Section 3.3 presents a geometric
characterization of fuzzy equilibrium models in terms of polyhedra in a high-
dimensional space. Next, in Section 4, as an application example, we show how
the problem of finding strong Nash equilibria can be solved using fuzzy equilib-
rium logic. Finally, some connections with related work are discussed in Section
5. Proofs of the propositions in this paper are available as an online appendix1.

2 Background

2.1 Equilibrium Logic

In [23], equilibrium logic is introduced by Pearce with the aim of extending the
notion of answer set to general propositional theories. The formulation of this
logic is based on the logic N2, which in turn corresponds to an extension of the
logic of here-and-there with strong negation. Although these logics can be char-
acterized axiomatically and algebraically, it will be sufficient for us to consider
a model-theoretic characterization in terms of Kripke frames. In the following,
let A be a set of atoms (or propositions), and let formulas be defined recur-
sively as either atoms, or expressions of the form α ∨ β, α ∧ β, α → β, ¬α or
not α, where α and β are formulas. An (N2-) valuation V assigns a truth value
from {−1, 0, 1} to formulas in two different worlds, h (or here) and t (or there),
which are connected by the relation ≤= {(h, h), (t, t), (h, t)}; we write V (w, α)
to denote the truth value of formula α in world w. Furthermore, we have the
requirement that for each formula α, if V (h, α) �= 0 then V (t, α) = V (h, α).
Intuitively, −1 and 1 correspond to the classical truth degrees false and true,
whereas 0 corresponds to undecided, i.e. our knowledge about the truth of for-
mulas may be incomplete. The there-world corresponds to a refinement of the

1 http://users.ugent.be/~sschocka/fuzzyEquilibriumProofs.pdf

http://users.ugent.be/~sschocka/fuzzyEquilibriumProofs.pdf

138 S. Schockaert et al.

knowledge in the here-world. Furthermore, the valuation of complex formulas
is obtained from the valuation of atoms as follows (w ∈ {h, t}, α and β are
formulas):

V (w,¬α) = −V (w, α)
V (w, α ∧ β) = min(V (w, α), V (w, β))
V (w, α ∨ β) = max(V (w, α), V (w, β))

V (w, α → β) =

⎧⎪⎨⎪⎩
1 if ∀w′ ≥ w . (V (w′, α) = 1) ⇒ (V (w′, β) = 1)
−1 if V (w, α) = 1 and V (w, β) = −1
0 otherwise

V (w, not α) =

⎧⎪⎨⎪⎩
1 if ∀w′ ≥ w . V (w′, α) < 1
−1 if V (w, α) = 1
0 otherwise

The valuation V is called an (N2-) model of a set of formulas Θ if for each
α ∈ Θ, it holds that V (h, α) = V (t, α) = 1. Let Lit be the set of all literals, i.e.
Lit = A ∪ {¬a|a ∈ A}. For a valuation V , let Vh and Vt be the set of literals
that are true in worlds h and t:

Vh = {l ∈ Lit|V (h, l) = 1} Vt = {l ∈ Lit|V (t, l) = 1}

A model is called h-minimal if its here world is as little committing as possible,
given its particular there world.

Definition 1. [23] A model V of a set of formulas Θ is h-minimal if for every
other model V ′ of Θ it holds that either Vt �= V ′

t or Vh ⊆ V ′
h.

Note that minimality refers to the number of literals that are verified by a
valuation, and not the number of atoms as for minimality in classical logics.
Equilibrium models are h-minimal models whose valuation in h and t coincides.

Definition 2. [23] A h-minimal model V of a set of formulas Θ is an equilib-
rium model if Vh = Vt.

A set of formulas P is called a logic program when every formula α in P is of
the form

l1 ∧ ... ∧ lm ∧ not lm+1 ∧ ... ∧ not ln → ln+1 ∨ ... ∨ ls

where every li is either an atom or a strongly negated atom, i.e. li ∈ Lit. As the
following proposition reveals, for logic programs the equilibrium models coincide
with the answer sets. As common in logic programming, we will often reverse
the direction of the implication arrow and write α ← β for β → α.

Proposition 1. [23] Let P be a logic program and S a consistent set of literals
(i.e. a and ¬a cannot be both in S, for any atom in A). Then S is an answer
set of P iff there is an equilibrium model V of P such that S = Vt.

Answer Sets in a Fuzzy Equilibrium Logic 139

For clarity, we will sometimes talk about Pearce equilibrium models, to avoid
confusion with the fuzzy equilibrium models introduced below.

Example 1. Let Θ = {a ← not b, b ← not a}, then the model V defined by
Vt = Vh = {a, b} is not h-minimal, as witnessed by the model V ′ defined by
V ′

t = {a, b} and V ′
h = {}. Note that the absence of e.g. both a and ¬a in V ′

h

implies that V (h, a) = 0. However, V ′ is not an equilibrium model because
V ′

t �= V ′
h. It is easy to see that the only equilibrium models are V ′′ and V ′′′

defined by V ′′
t = V ′′

h = {a} and V ′′′
t = V ′′′

h = {b}.

2.2 Fuzzy Answer Set Programs

The core idea of FASP is to replace the boolean truth values by truth values
from an appropriate lattice L = (L,≤L), and to replace logical connectives by
operators from some multi-valued logic. In this paper, we restrict our attention
to fuzzy truth values, i.e. L = ([0, 1],≤). Furthermore, we will focus on the
variant of FASP introduced in [15]. In addition to the truth lattice L, we then
assume that a set F =

⋃
n Fn is given, where for each n ∈ N, Fn is a finite

set of acceptable [0, 1]n − [0, 1] functions. A function in Fn is called acceptable
if for all 1 ≤ i ≤ n it is either monotonically increasing or decreasing in its ith

argument. Note that such functions do not necessarily need to correspond to
generalizations of the classical logical connectives, although this will often be
the case in practice.

Logical conjunction is then, usually, generalized by a t-norm, i.e. a symmetric,
associative, increasing [0, 1]2 − [0, 1] mapping ⊗ satisfying the boundary condi-
tion 1 ⊗ u = u for all u ∈ [0, 1]. Similarly, logical disjunction is generalized by
a t-conorm, i.e. a symmetric, associative, increasing [0, 1]2 − [0, 1] mapping ⊕
satisfying the boundary condition 0⊕ u = u for all u ∈ [0, 1]. Typical examples
of t-norms and t-conorms are

u⊗m v = min(u, v) u⊗p v = u · v u⊗l v = max(0, u + v − 1)
u⊕m v = max(u, v) u⊕p v = u + v − u · v u⊕l v = min(1, u + v)

Negation is usually modeled as the complement w.r.t. 1, i.e. ¬u = 1 − u. To
generalize the notion of implication, several strategies are commonly used. One
possibility is to define an implicator → in terms of a negation operation ¬ and
t-conorm ⊕, as u → v = ¬u⊗v. Such operators are called S-implicators. For ex-
ample, the maximum ⊕m gives rise to the Kleene-Dienes implicator →kd defined
by u →kd v = max(1 − u, v). A less intuitive, but from a logical point of view
often more interesting alternative is to define an implicator as the residuum of
a left-continuous t-norm ⊗, i.e.

u → v = sup{λ ∈ [0, 1]|u⊗ λ ≤ v}

Such operators are called residual implicators. The residual implicator corre-
sponding with ⊗l is given by u →l v = min(1, 1 − u + v) and is often used
because of its excellent logical properties; note for instance that →l is at the

140 S. Schockaert et al.

same time a residual implicator and an S-implicator. The operators ⊗l, ⊕l and
→l are called the �Lukasiewicz t-norm, t-conorm and implicator.

Given the set F , a fuzzy formula is defined recursively as either a constant
from [0, 1], an atom from A, or the application of a function f from Fn to fuzzy
formulas e1, ..., en. An A − [0, 1] mapping I is called a (fuzzy) interpretation.
Given an interpretation I, the (fuzzy) valuation [α]I of a fuzzy formula is defined
recursively as [c]I = c, for any c ∈ [0, 1], [a]I = I(a) for any a ∈ A, and
[f(e1, ..., en)]I = f([e1]I , ..., [en]I) for any f ∈ Fn. A (fuzzy) rule is an expression
of the form α → a where the bodyα of the rule is a fuzzy formula, the head a of
the rule is either an atom from A or a constant from [0, 1], and → is a residual
implicator. Usually, in the context of logic programming, rules are written as
a ← α. When the head a is a constant, the rule is called a constraint.

A program P is then defined as a set of fuzzy rules. The program is called
positive if P does not contain constraints and only applications of functions
with increasing arguments. An interpretation I is called a (fuzzy) model of P if
I(r) = 1 for every r in P .

Definition 3. [15] The answer set of a positive program is defined as the (unique)
minimal model of that program.

To define answer sets of general programs, we also need the notion of negative
and positive occurrence of an atom. An atom a occurs positively in the formula
a. Furthermore, if a occurs positively (resp. negatively) in ei and f is increasing
(resp. decreasing) in its ith argument, then a occurs positively in the formula
f(e1, ..., ei, ..., en). Similarly, if a occurs positively (resp. negatively) in ei and f
is decreasing (resp. increasing) in its ith argument, then a occurs negatively in
f(e1, ..., ei, ..., en).

Definition 4. [15] If P contains functions with decreasing partial mappings, but
no constraints, a model I of P is an answer set of P iff it is an answer set of the
program P I, which is obtained from P by replacing all negative occurrences of a
by its interpretation I(a), for all atoms a ∈ A. Finally, if P contains constraints,
then a model I of P is called an answer set of P iff it is an answer set of P \C,
where C is the set of constraints from P .

Finally, a notion of approximate answer set can be defined by allowing that
some rules are only satisfied to a certain degree. Specifically, let ρ be a mapping
from rules to [0, 1]. An interpretation I is then called a (fuzzy) ρ-model of Θ if
I(r) ≥ ρ(r) for every rule r in Θ.

Definition 5. [15] Let ρ be a mapping from rules to [0, 1], and let P = {r1, ..., rm}.
A ρ-model I of Θ is called a ρ-answer set of P if it is the minimal ρ-model of P I \C,
where C and P I are as in Definition 4.

Example 2. Consider the program P defined by P = {a ←l not b, b ←l not a},
then for every λ in [0, 1], the fuzzy interpretation I defined by I(a) = λ and
I(b) = 1 − λ is an answer set. Indeed, I is easily seen to be the unique minimal
model of P I = {a ←l 1− (1− λ), b ←l 1− λ}.

Answer Sets in a Fuzzy Equilibrium Logic 141

3 Fuzzy Equilibrium Logic

3.1 Definition

In the equilibrium logic of Pearce, a third truth value, 0, is used to define un-
derspecified valuations. When moving from boolean to fuzzy truth degrees, un-
derspecified valuations can be defined by assigning an interval of truth degrees
to atoms, as opposed to a precise degree from [0, 1]. The restriction that the
valuation in the there-world should be more specific than the valuation in the
here-world then translates to the requirement that the interval assigned to an
atom in t should be contained in the interval assigned to it in h. Thus we define
a (fuzzy N2-) valuation V as a mapping from W × A to (possibly degenerate)
subintervals of [0, 1] such that V (h, a) ⊇ V (t, a), where W = {h, t} and A is a set
of atoms as before. For V (w, α) = [u, v], we write V −(w, α) to denote the lower
bound u and V +(w, α) to denote the upper bound v. We define the valuation of
complex fuzzy formulas as follows (w ∈ {h, t}):

V (w,¬α) = [1− V +(w, α), 1 − V −(w, α)]

V (w, α ⊗ β) = [V −(w, α) ⊗ V −(w, β), V +(w, α) ⊗ V +(w, β)]

V (w, α ⊕ β) = [V −(w, α) ⊕ V −(w, β), V +(w, α) ⊕ V +(w, β)]

To generalize the semantics of an implication α → β, note that (V (w′, α) =
1) ⇒ (V (w′, β) = 1) can be generalized as V −(w′, α) → V −(w′, β) = 1. Thus,
min

(
V −(h, α) → V −(h, β), V −(t, α) → V −(t, β)

)
naturally emerges as the lower

bound of the interval V (h, α → β). Similarly, for the upper bound, note that the
condition V (w, α) = 1 and V (w, β) = −1 from equilibrium logic can be gener-
alized as (V −(w, α) → V +(w, β)) < 1, which leads to V −(w, α) → V +(w, β) as
the upper bound of the interval V (h, α → β). We obtain:

V (h, α → β) = [min
(
V −(h, α) → V −(h, β), V −(t, α) → V −(t, β)

)
,

V −(h, α) → V +(h, β)]

V (t, α → β) = [V −(t, α) → V −(t, β), V −(t, α) → V +(t, β)]

Finally, to generalize the semantics of not , note that V (h, α) ⊇ V (t, α) for any
fuzzy formula α. Indeed, this follows easily by structural induction, since the
property is true by definition for atoms, and is conserved for each of the afore-
mentioned operators. Therefore, we have that min(1−V −(h, α), 1−V −(t, α)) =
1− V −(t, α). Following a similar strategy as for implications, we arrive at:

V (h, not α) = [1− V −(t, α), 1− V −(h, α)]

V (t, not α) = [1− V −(t, α), 1− V −(t, α)]

Above, we assumed that fuzzy formulas are composed of t-norms, t-conorms,
implicators, as well as strong and weak negation. It is easy however to extend
this definition to arbitrary functions; we omit the details. Also note that rules in
fuzzy equilibrium logic are not necessarily implemented by residual implicators.

142 S. Schockaert et al.

A valuation V is a (fuzzy N2-) model of a set of fuzzy formulas Θ if for every
α in Θ, V −(h, α) = 1, which also implies V +(h, α) = V −(t, α) = V +(t, α) = 1.
Analogous to models in crisp equilibrium logic, fuzzy equilibrium models are
models which are in some sense minimal, and which assign the same value to
literals in both worlds.

Definition 6. A fuzzy N2-model V of a set of fuzzy formulas Θ is h-minimal
if for every other fuzzy N2-model V ′ of Θ, it holds that either

1. V (t, a) �= V ′(t, a) for some a in A; or
2. V ′(h, a) ⊆ V (h, a) for all a in A.

Note that h-minimal fuzzy N2-models are those that are least committing, i.e.
those whose valuation in the here-world corresponds to the largest possible in-
terval.

Definition 7. A h-minimal fuzzy N2-model V of a set of fuzzy formulas Θ is
a fuzzy equilibrium model if V (h, a) = V (t, a) for all a in A.

Analogous to ρ-answer sets in FASP, we define the notion of fuzzy equilibrium
ρ-model. First we define a (fuzzy N2-) ρ-model of a set of fuzzy formulas Θ as
a valuation V satisfying V −(h, α) ≥ ρ(α) for every α in Θ.

Definition 8. Let ρ be a mapping from fuzzy formulas to [0, 1]. A fuzzy N2-ρ-
model of a set of fuzzy formulas Θ is h-minimal if for every other fuzzy N2-ρ-
model of Θ one of the two conditions from Definition 6 are satisfied. A h-minimal
fuzzy N2-ρ-model V is a fuzzy equilibrium ρ-model if V (h, a) = V (t, a) for all a
in A.

Example 3. Consider again the set of fuzzy formulas P from Example 2. A fuzzy
N2-valuation V is a fuzzy N2-model of P iff

(V −(h, a ←l not b) = 1) ∧ (V −(h, b ←l not a) = 1)

⇔ min(V −(h, a) ←l V −(h, not b), V −(t, a) ←l V −(t, not b)) = 1

∧min(V −(h, b) ←l V −(h, not a), V −(t, b) ←l V −(t, not a)) = 1

⇔ V −(h, a) ≥ V −(h, not b) ∧ V −(t, a) ≥ V −(t, not b)

∧ V −(h, b) ≥ V −(h, not a) ∧ V −(t, b) ≥ V −(t, not a)

⇔ V −(h, a) ≥ 1− V −(t, b) ∧ V −(t, a) ≥ 1− V −(t, b)

∧ V −(h, b) ≥ 1− V −(t, a) ∧ V −(t, b) ≥ 1− V −(t, a)

⇔ V −(h, a) ≥ 1− V −(t, b) ∧ V −(h, b) ≥ 1− V −(t, a)

We find that for every λ in [0, 1], the fuzzy N2-valuation V defined by V (t, a) =
V (h, a) = [λ, 1] and V (t, b) = V (h, b) = [1 − λ, 1] is a fuzzy equilibrium model.
Note that the fuzzy equilibrium models essentially correspond to the answer sets
from Example 2. In Propositions 3 and 4 below, we will clarify this connection.

Answer Sets in a Fuzzy Equilibrium Logic 143

3.2 Relationship to Existing Frameworks

The connection between fuzzy equilibrium models and Pearce equilibrium models
can be seen by observing that [0, 1] in fuzzy N2-valuations takes the role of 0
(undecided) in N2-valuations, whereas the degenerate intervals [0, 0] and [1, 1]
take the role of respectively −1 (false) and 1 (true).

Proposition 2. Let Θ1 be a set of (crisp) formulas, and let Θ2 be the set of
fuzzy formulas obtained from Θ1 by replacing classical conjunction, disjunction
and implication by respectively ⊗m, ⊕m and →kd. Furthermore, let V1 be an N2-
valuation, and let V2 be the fuzzy N2-valuation obtained from V1 by replacing
−1, 0 and 1 by respectively [0, 0], [0, 1] and [1, 1]. It holds that V1 is a Pearce
equilibrium model of Θ1 iff V2 is a fuzzy equilibrium model of Θ2.

The above proposition teaches us that Pearce equilibrium models of a set of
formulas coincide with a particular subset of its fuzzy equilibrium models, i.e.
those in which the valuation of atoms is restricted to [0, 0], [0, 1] and [1, 1]. Note
however, that translations of “crisp” logic programs can still have other fuzzy
equilibrium models. This was already illustrated in Example 3.

We can also show that fuzzy equilibrium models generalize the notion of
answer set from fuzzy answer set programs to arbitrary sets of fuzzy formulas.

Proposition 3. Let P be a set of fuzzy rules, and let V be a fuzzy N2-valuation.
Furthermore, let I be the fuzzy interpretation defined by I(a) = V −(t, a) for all
a ∈ A. If V is a fuzzy equilibrium model of P , then I is an answer set of P .
Similarly, if V is a fuzzy equilibrium ρ-model of P , for some P − [0, 1] mapping
ρ, it holds that I is a ρ-answer set of P .

Proposition 4. Let P be a set of fuzzy rules, and let I be a fuzzy interpretation.
Furthermore, let V be the fuzzy N2-valuation defined by V (h, a) = [I(a), 1] and
V (t, a) = [I(a), 1] for all a ∈ A. If I is an answer set of P then V is a fuzzy
equilibrium model of P . Similarly, if I is a ρ-answer set of P , for some P − [0, 1]
mapping ρ, it holds that V is a fuzzy equilibrium ρ-model.

3.3 Complexity and Geometrical Representation

To study aspects of reasoning with fuzzy equilibrium models, we limit the set of
connectives in F to ¬, not , ⊗l, ⊕l, →l, ⊗m, ⊕m and →kd, i.e. the connectives
from �Lukasiewicz logic, together with negation-as-failure. Let a linear relation
over a set of variables X be defined as an expression of the form a1x1+...+anxn$
b, where a1, ..., an, b ∈ R, x1, ..., xn are variables from X , and $ ∈ {≤, =,≥}.
Furthermore, let a disjunctive linear relation (DLR) be defined as an expression
of the form γ1 ∨ ... ∨ γm, where each γi is a linear relation. It is not hard to see
that, under the aforementioned restrictions on F , the requirements that should
be satisfied by a fuzzy N2-valuation V to be a model of a set of fuzzy formulas
Θ can be written as a set Γ of DLRs, in which the variables correspond to
expressions of the form V −(h, a), V +(h, a), V −(t, a) and V +(t, a); let us write

144 S. Schockaert et al.

these variables as a−h , a+
h , a−t and a+

t . For example, in the case of Example 3,
we have Γ = {a−h + b−t ≥ 1, b−h + a−t ≥ 1}. Geometrically, solutions of Γ , i.e.
instantiations of the variables verifying at least one disjunct of each DLR in Γ ,
correspond to points in the unit hypercube [0, 1]n, where n = 4|A| is the number
of variables in Γ . Moreover, the set of all solutions of Γ can be represented as the
union of a finite number of polyhedra; recall that a polyhedron is the intersection
of a finite number of half-spaces. Let us write p(a−h) to denote the value of
the coordinate of point p corresponding to variable a−h (and similar for a+

h , a−t
and a+

t).
Now consider the set of points M that correspond to h-minimal fuzzy N2-

models of Θ. Recall that a facet of a polyhedron is the intersection of the poly-
hedron with one of its bounding hyperplanes; a face of a polyhedron is defined
recursively as either the polyhedron itself or one of the faces of its facets [1].
When the solution space of Γ corresponds to a single polyhedron, the h-minimal
fuzzy N2-models correspond to the union of one or more faces of that polyhe-
dron. More in particular, it is not hard to show that whenever an interior point
of a face corresponds to a h-minimal fuzzy N2-model, then all points of that
face correspond to h-minimal fuzzy N2-models.

Next, we consider the case where the solution space of Γ corresponds to more
than one polyhedron. Let D(G) be the set of points that are dominated by a
face G, i.e.

p ∈ D(G) ⇔ ∃q ∈ G . ∀a ∈ A . p(a−h) ≥ q(a−h) ∧ p(a+
h) ≤ q(a+

h)

Clearly, the set D(G) corresponds to a polyhedron. In general, the set M of
h-minimal fuzzy N2-models corresponds to a finite union of sets of the form
G \

⋃
iD(Hi) where G is a face of one of the polyhedra, and each Hi is a face

of one of the other polyhedra. The fuzzy equilibrium models of Θ are then
geometrically characterized as the intersection of M with the polyhedron E
defined by

p ∈ E ⇔ ∀a ∈ A . p(a−h) = p(a−t) ∧ p(a+
h) = p(a+

t)

Note that M ∩ E can be represented as the finite union of polyhedra, whose
vertices are the intersection of 4|A| hyperplanes, each of which is defined in terms
of small integer coefficients. Hence, if M ∩ E �= ∅, we can guess the coordinates
of such a vertex in polynomial time on a non-deterministic Turing machine. In
other words, if Θ has at least one fuzzy equilibrium model, we can guess a fuzzy
equilibrium model V in NP. Moreover, we can verify that V is indeed a fuzzy
equilibrium model as follows. First, note that we can verify in polynomial time
that V is a fuzzy N2-model of Θ, and that V (t, a) = V (h, a) for all a in A.
Next, to verify that V is h-minimal, let Γ V be the set of DLRs obtained from
Γ by instantiating all variables of the form a−t and a+

t by respectively V −(t, a)
and V +(t, a), i.e. we restrict our attention to points that correspond to fuzzy
N2-models violating the first condition of Definition 6. The set of DLRs Γ V

can be converted to a mixed integer program Δ in polynomial time [12]. From
the theory of mixed integer programming, we know that a point p minimizing

Answer Sets in a Fuzzy Equilibrium Logic 145

∑
a p(a−h)−

∑
a p(a+

h) can be found in NP. Clearly V is h-minimal iff
∑

a p(a−h)−∑
a p(a+

h) =
∑

a V −(t, a) −
∑

a V +(t, a). Recall that ΣP
2 is the set of problems

that can be solved in NP with an NP oracle, i.e. ΣP
2 = NPNP, while ΠP

2 is
the set of problems whose complement is in ΣP

2 . The preceding discussion then
easily leads to the following results.

Proposition 5. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is in ΣP

2 .

Proposition 6. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [μ, λ], for 0 ≤ μ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is in ΣP

2 .

Proposition 7. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [μ, λ], for 0 ≤ μ ≤ λ ≤ 1 and a ∈ A, in all fuzzy equilib-
rium models V of Θ is in ΠP

2 .

Hence, the main reasoning tasks are in the same complexity class as their coun-
terparts in (disjunctive) answer set programming. We can also establish the
following hardness results.

Proposition 8. Let Θ be a set of fuzzy formulas. The problem of deciding
whether Θ has a fuzzy equilibrium model is ΣP

2 -hard.

Proposition 9. Let Θ be a set of fuzzy formulas. The problem of deciding
whether V (t, a) ⊆ [μ, λ], for 0 ≤ μ ≤ λ ≤ 1 and a ∈ A, in at least one fuzzy
equilibrium model V of Θ is ΣP

2 -hard.

Proposition 10. Let Θ be a set of fuzzy formulas. If [μ, λ] �= [0, 1], the problem
of deciding whether V (t, a) ⊆ [μ, λ], for 0 ≤ μ ≤ λ ≤ 1 and a ∈ A, in all fuzzy
equilibrium models V of Θ is ΠP

2 -hard.

Note that the above discussion can be generalized from the �Lukasiewicz con-
nectives to any operator whose semantics can be defined in terms of a mixed
integer program. This even holds when strict inequalities are allowed, hence we
may also use operators such as the Gödel and Rescher implicators →g and →rs,
defined by

u →g v =

{
1 if u ≤ v

v otherwise
u →rs v =

{
1 if u ≤ v

0 otherwise

for all u and v in [0, 1].

4 Example

As an illustration of how fuzzy equilibrium logic can be used in the context of
declarative problem solving, we present a technique to find strong Nash equilib-
ria, a problem which is known to be ΣP

2 -complete [10]. Nash equilibria are one

146 S. Schockaert et al.

of the most fundamental notions from game theory. Assume that a finite set of
players p1, ..., pn is given, and for each player pi a set of actions Ai. A choice of
actions (a1, ..., an) ∈ A1× ...×An is called a global strategy. Furthermore, let μi

be an A1× ...×An−R function representing the utility (or desirability) to player
pi of a certain global strategy. A global strategyA = (a1, ..., an) is called a (pure)
strong Nash equilibrium if there does not exist a non-empty K ⊆ {1, ..., n} and
a global strategy A′ = (a′1, ..., a

′
n) such that

1. for all i /∈ K it holds that ai = a′i; and
2. μi(A) < μi(A′) for each i in K.

In other words, a global strategy is a strong Nash equilibrium if there cannot be
a coalition of players that is able to (strictly) improve the current situation of
each of its members, without help of others.

Often, the set of actions is assumed to be finite. Here we allow an infinite num-
ber of actions, which can be encoded as a vector (a1, ..., ak), where ai ∈ [0, 1]. Es-
sentially, actions are thus specified by a finite number of continuous parameters.
For simplicity, we will only consider the case k = 1, although the results below
can easily be generalized to arbitrary values of k. Moreover, we assume that each
utility function μi can be represented as a fuzzy formula. Without loss of gener-
ality, we can then assume that μi(a1, ..., an) = 1−Ui(a1, ..., an; 1−a1, ..., 1−an)
where Ui is a function which is increasing in all of its arguments. In other words
μi is maximized when Ui is minimized. Minimizing, rather than maximizing Ui

makes the translation to fuzzy equilibrium logic easier and more intuitive.
Now we construct a set of fuzzy formulas Θ such that the fuzzy equilibrium

models of Θ are exactly the strong Nash equilibria that correspond to the given
utility functions. For each i in {1, ..., n}, Θ contains the following fuzzy formulas:

ai ⊕l ¬ai c−i ⊕m c+
i d−i ⊕l d+

i

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+
i) e−i ←l (¬ai ⊗m c−i)⊕m (d−i ⊗m c+

i)

Intuitively, on the first line a strong Nash equilibrium (a1, ..., an) is guessed.
The use of the �Lukasiewicz t-conorm ensures that in every fuzzy N2-model V ,
it holds that V (h, ai) = V (t, ai) = [λi, λi] for some λi ∈ [0, 1]. To verify that
we have indeed found a strong Nash equilibrium, a coalition is guessed, defined
by the indices c+

i and c−i ; the former intuitively means that player i belongs to
the coalition, and the latter that i does not. Note that c−i and c+

i correspond
to crisp properties. By using the maximum, V (h, c−i) and V (h, c+

i) will either
be [0, 1] or [1, 1] in all h-minimal fuzzy N2-models. Next, the strategies of the
users in the coalition are guessed: e+

i corresponds to the new strategy for player
i, whereas e−i corresponds intuitively to its negation (i.e. complement with 1).
For players outside the coalition this value e+

i is simply ai, whereas for players in
the coalition e+

i corresponds to a new value d+
i . To check whether the coalition

and strategies that have been guessed provide a counterexample of (a1, ..., an)
being a strong Nash equilibrium, the following fuzzy formulas are added:

wi ←l (Ui(e+
1 , ..., e+

n ; e−1 , ..., e−n) ←rs Ui(a1, ..., an;¬a1, ...,¬an))

w ←l ((c+
1 ⊗m w1)⊕m ...⊕m (c+

n ⊗m wn))⊕m (c−1 ⊗m ...⊗m c−n)

Answer Sets in a Fuzzy Equilibrium Logic 147

Note that for x and y in [0, 1], x ←rs y = 1 means that x ≥ y. Thus, wi

intuitively means that player i does not improve his utility when going from
(a1, ..., an) to (e+

1 , ..., e+
n), whereas w specifies whether this is the case for all

users, and whether the coalition that was guessed is indeed non-empty. Finally,
to ensure that all guesses of coalitions and corresponding strategies are tried,
rather than just one, the following fuzzy formulas need to be added:

d−i ←l w d+
i ←l w c−i ←l w

c+
i ←l w wi ←l w 0 ←l not w

Thus, when (e+
1 , ..., e+

n) does not correspond to a counterexample, all atoms
different from ai are intuitively made true. This ensures that any counterexample
to (a1, ..., an) being a Nash equilibrium corresponds to a fuzzy N2-model that
can only be h-minimal if there does not exist a single counterexample. A similar
technique to find minimal structures is commonly used in disjunctive answer
set programming; see [7] for examples on graph coloring, the traveling salesman
problem and eigenvalue problems. We can show the following proposition.

Proposition 11. A global strategy (λ1, ..., λn) is a strong Nash equilibrium iff
Θ has a fuzzy equilibrium model V such that V −(t, ai) = λi.

5 Related Work

A variety of approaches to multi-valued and fuzzy ASP have been proposed
in recent years, which differ mainly in terms of the types of connectives they
allow, the way in which they handle partial satisfaction of rules, and the truth
lattices that are used [3,5,6,15,19,26,27]. Most approaches generalize either the
fixpoint definition or the minimal model definition of answer sets (stable models),
although [27] generalizes a definition in terms of unfounded sets. Regarding
expressive power, typically only rules with literals in the head are considered. In
the case of the �Lukasiewicz connectives, this essentially corresponds to an NP-
complete time complexity, as can be easily derived from the translation of FASP
to mixed integer programming proposed in [13]. One exception is [19] which
allows disjunctions of literals in the head of a rule to define a hybridization of
FASP with fuzzy description logics. In a quite different context, multi-valued
ASP with disjunctions in the head are used in [25], as a vehicle to deal with
inconsistencies in classical ASP. To the best of our knowledge, the current paper
presents the first approach to fuzzy answer set programming which is sufficiently
general to cover arbitrary fuzzy propositional theories.

6 Concluding Remarks

We have proposed fuzzy equilibrium logic as a generalization of both equilibrium
logic and fuzzy answer set programming. The precise connections with these lat-
ter two formalisms have been established, and the overall computational com-
plexity of important reasoning tasks was shown to be ΣP

2 -complete, which is

148 S. Schockaert et al.

the same as for the original equilibrium logic as well as disjunctive ASP. We
furthermore presented a geometrical characterization of fuzzy equilibrium mod-
els, which can be used to implement fuzzy equilibrium logic reasoners. In future
work, we will examine the apparently close connection to bi-level mixed integer
programming [20] with the aim of obtaining more efficient implementations. As
illustrated for strong Nash equilibria, fuzzy equilibrium logic supports declara-
tive problem solving for computationally demanding problems in a continuous
domain. In addition to such practical uses, we mainly envision fuzzy equilibrium
logic as a vehicle to facilitate the proofs of theoretical properties of fuzzy answer
set programming (e.g. complexity of subfragments, strong equivalence, etc.).

Acknowledgments. Steven Schockaert was funded as a postdoctoral fellow
of the Research Foundation – Flanders. Jeroen Janssen was funded by a joint
Research Foundation – Flanders project.

References

1. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued �Lukasiewicz logic. Journal
of Logic, Language, and Information 9, 5–29 (2000)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs:
Termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 252–265. Springer, Heidelberg (2004)

4. Damásio, C.V., Pereira, L.M.: Hybrid probabilistic logic programs as residuated
logic programs. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán,
I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 57–72. Springer, Heidelberg
(2000)

5. Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–392.
Springer, Heidelberg (2001)

6. Damasio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent logic
programs. Journal of Applied Logic 3, 67–95 (2003)

7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on
Database Systems 22(3), 364–418 (1997)

8. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the Fifth International Conference and Symposium on Logic
Programming, pp. 1081–1086 (1988)

10. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games.
Journal of Artificial Intelligence Research 24, 357–406 (2005)

11. HadjAli, A., Dubois, D., Prade, H.: Qualitative reasoning based on fuzzy relative
orders of magnitude. IEEE Transactions on Fuzzy Systems 11(1), 9–23 (2003)

12. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathe-
matics and Artificial Intelligence 12, 231–264 (1994)

Answer Sets in a Fuzzy Equilibrium Logic 149

13. Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set
programs to fuzzy propositional theories. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 362–376. Springer, Heidelberg (2008)

14. Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: General fuzzy answer set
programming: The basic language (submitted)

15. Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: General fuzzy answer set
programs. In: Proceedings of the 8th International Workshop on Fuzzy Logic and
Applications (WILF), pp. 352–359 (2009)

16. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,
Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg
(2008)

17. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Logic 2(4), 526–541 (2001)

18. Lukasiewicz, T.: Probabilistic logic programming. In: Proceedings of the 13th Eu-
ropean Conference on Artificial Intelligence (ECAI 1998), pp. 388–392 (1998)

19. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z.,
de Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg
(2007)

20. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper-
ations Research 38(5), 911–921 (1990)

21. Nicolas, P., Garcia, L., Stéphan, I., Lefèvre, C.: Possibilistic uncertainty handling
for answer set programming. Ann. Math. Artif. Intell. 47(1-2), 139–181 (2006)

22. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

23. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix,
J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997)

24. Saccá, D., Zaniolo, C.: Stable models and non-determinism in logic programs with
negation. In: Proceedings of the ACM Symposium on Principles of Database Sys-
tems, pp. 205–217 (1990)

25. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive
programs. Journal of Logic and Computation 5, 265–285 (1995)

26. Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th In-
ternational Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, IPMU 2006 (2006)

27. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy an-
swer set programming. Annals of Mathematics and Artificial Intelligence 50(3-4),
363–388 (2007)

Belief Logic Programming
with Cyclic Dependencies

Hui Wan

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

Abstract. Our previous work [26] introduced Belief Logic Programming
(BLP), a novel form of quantitative logic programming with correlation
of evidence. Unlike other quantitative approaches to logic programming,
this new theory is able to provide accurate conclusions in the presence of
uncertainty when the sources of information are not independent. How-
ever, the semantics defined in [26] is not sufficiently general—it does
not allow cyclic dependencies among beliefs, which is a serious limita-
tion of expressive power. This paper extends the semantics of BLP to
allow cyclic dependencies. We show that the new semantics is backward
compatible with the semantics for acyclic BLP and has the expected
properties. The results are illustrated with examples of inference in a
simple diagnostic expert system.

1 Introduction

Quantitative reasoning has been widely used for dealing with uncertainty and
inconsistency in knowledge representation and management, and, more recently,
on the Semantic Web [14]. Among the various forms of quantitative reasoning,
quantitative logic programming is a very important one.

Based on the approaches of uncertainty deduction, Lakshmanan and Shiri
[11] classified the proposed quantitative logic programming frameworks into
annotation-based and implication-based as follows:

– In the annotation-based frameworks such as [2,9,10,16,15,17,24], a rule is
of the form A : f(β1, ..., βn) :- B1 : β1 ∧ ... ∧ Bn : βn which asserts “the
certainty of A is at least (or is in) f(β1, ..., βn), whenever the certainty of Bi

is at least (or is in) βi, 1 ≤ i ≤ n.”
– In the implication-based frameworks such as [1,11,8,12,13,20,22,5], a rule

is of the form β : A :- B1 ∧ ... ∧ Bn which asserts “ the certainty that
B1 ∧ ... ∧Bn implies A is at least (or is in) β.”

In the annotation-based frameworks, when function f in every rule is a constant
function, the certainty of the rule head does not depend on the certainty of
atoms in the rule body. Recursive loops are not a problem in such cases. When
function f is not a constant function, such as in [15], the certainty of the rule
head depends on the certainty of atoms in the rule body. Recursive loops are
looked on as feedback connections and may cause infinite feedback.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 150–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Belief Logic Programming with Cyclic Dependencies 151

Things are different when we look at implication-based frameworks. In some
cases, such as [13,11], certainty values are assigned to atoms, rules are treated as
constraints, and models of a program satisfy all the constraints in the program.
Recursive loops do not present a problem in such cases. In other frameworks,
such as [8,19,22], certainty values are assigned to possible worlds and certainty
of the head of a rule cannot be computed until certainty of atoms in the rule
body is established. Consequently recursive loops cause a problem: it becomes
impossible to compute certainty of the atoms involved in a recursive loop. Some
frameworks in this category [8,19] simply do not allow programs with recursive
loops. Some others, such as [6,22], eliminate recursive loops by introducing time
parameters into atoms involved in loops, either explicitly or implicitly.

In a vast open world like the Semantic Web, it is often impossible for an
application to acquire complete information from one information source, thus
combination and correlation of evidence from multiple sources are necessary. In
our previous work [26], we introduced a novel form of implication-based quan-
titative reasoning, called Belief Logic Programming (BLP) [26]. BLP can take
into account correlation of evidence obtained from different, but overlapping
and, possibly, contradicting information sources. This makes BLP very suitable
for Web reasoning. BLP’s semantics is based on belief combination functions
and is inspired by Dempster-Shafer theory of evidence [3,21]. In [26], we related
BLP semantics to Dempster-Shafer theory and also showed the connection with
certain forms of defeasible reasoning, such as Courteous Logic Programming [7]
and, more generally, Logic Programming with Courteous Argumentation Theo-
ries (LPDA) [25]. [26] also provides a detailed motivation of BLP and the argu-
ments showing limitations of the earlier logic programming approaches—those
based on probability theory, Fuzzy Logic, Dempster-Shafer theory, and other
approaches [1,2,9,10,11,13,15,17,18,19,24]. The same limitations apply to other
frameworks of uncertainty reasoning in the Semantic Web, e.g., [4,23]. In this
paper we will not rehash the detailed motivation of BLP but focus on how to
deal with recursive loops in BLP.

Like other quantitative logic programming frameworks, BLP faces the same
challenge from recursive loops, and the semantics defined in [26] was restricted
to belief logic programs without cyclic dependency among atoms. In the present
paper we extend the previous work to belief logic programs with cycles by adapt-
ing a novel approach: instead of introducing time parameters to eliminate loops,
we analyze the program structure and discard the support from unwanted loop
influence. We define a transformational semantics and a fixpoint semantics in
which self-supported beliefs are discarded. We also show that the proposed se-
mantics are reasonable and are backward compatible with the semantics defined
in [26]. The query answering algorithms proposed in [27] can also be adapted to
belief logic programs with cycles, but for reason of focus and space we will not
address query answering in this paper.

The paper is organized as follows. Section 2 explains the problem in detail by a
motivating example. Section 3 is an overview of the syntax and the semantics for
acyclic BLP programs. In Section 4, we introduce a transformational semantics

152 H. Wan

and a fixpoint semantics for general BLP programs, which may include cycles.
Section 5 concludes the paper. Proofs can be found in [28].

2 Motivating Example

Suppose that the rate of false positive test results for a certain disease is 20%.
Furthermore, suppose that the certainty that someone who had a contact with
a contagious person will also contract that same disease is 60%.

Now, let us assume that the tests for two persons, p1 and p2, came back
positive, but there is no evidence that p1 and p2 had a contact. An expert
system might then diagnose both p1 and p2 as having contracted the disease
with certainty 80%. Now, suppose that the test for two other persons, p3 and p4,
came back positive and p3 and p4 are known to have had a contact. Common
sense then suggests that p3 and p4 are more likely to have the disease compared
with p1 and p2.

The support (or dependence) relation with regard to p3 and p4 is shown in
Figure 1. We can see that there is a loop (a cyclic dependency) between “p3 has
disease” and “p4 has disease”.

Fig. 1. Support Relation w.r.t. p3 and p4 in disease example

Due to the cyclic dependency, the belief in “p3 has disease” pumps up the
certainty of “p4 has disease” and vice versa. In fact, this dependency is a self-
supporting feedback loop, and if we keep combining evidence produced by this
feedback loop, the belief in p3 and p4’s diagnoses will end up close to 1. Clearly
such inference is undesired. The problem, therefore, is: how can we discard loop
influence when combining all the supporting evidence?

Our method, described in Section 4, identifies and discards such self-supporting
feedback. After presenting the method, we will revisit the above example and show
that the new method produces inference that is in accord with intuition.

3 Preliminaries

3.1 Syntax of BLP

A belief logic program (or a blp, for short) is a set of annotated rules. Each
annotated rule has the following format:

Belief Logic Programming with Cyclic Dependencies 153

[v, w] X :- Body

where X is a positive atom and Body is a conjunction of literals, i.e., a conjunc-
tion of atoms and negation of atoms.1 An atom in BLP has the form p(t1, ..., tn),
where p is a predicate and ti is a constant or a variable, 1 ≤ i ≤ n. We will use
capital letters to denote positive atoms, e.g., A, and a bar over such a letter will
denote negation, e.g., A. The annotation [v, w] is called a belief factor, where
v and w are real numbers such that 0 ≤ v ≤ w ≤ 1.

The informal meaning of the above rule is that if Body is true, then this rule
supports X to the degree v and X to the degree 1−w. The difference, w− v, is
the information gap (or the degree of ignorance) with regard to X .

An annotated rule of the form [v, w] X :- true is called an annotated fact;
it is often written simply as [v, w] X . In the remainder of this paper we will deal
only with annotated rules and facts and refer to them simply as rules and facts.

Definition 1. Given a blp P, an atom X is said to depend on an atom Y

– directly, if X is the head of a rule R and Y occurs in the body of R;
– indirectly, if X is dependent on Z, and Z depends on Y . �

A blp P is said to be cyclic if there is an atom that depends on itself. Otherwise
P is said to be acyclic. In [26], we required that in a blp there can be no
circular dependency among atoms, i.e., [26] only considered acyclic blps. This is
a serious limitation of express power. In this paper we will remove this restriction
and allow circular dependency in Section 4.

3.2 Combination Functions

Definition 2. Let D be the set of all belief factors, Φ : D ×D → D is said to
be a belief combination function if Φ is associative and commutative. �

Due to the associativity of Φ, we can extend it from two arguments to nullary
case, single argument, and three and more arguments: Φ() = [0, 1], Φ([v, w]) =
[v, w], Φ([v1, w1], ..., [vk, wk])=Φ

(
Φ([v1, w1], ..., [vk−1, wk−1]), [vk, wk]

)
. Note that

the order of arguments in a belief combination function is immaterial, since such
functions are commutative, so we often write such functions as functions on
multisets of belief factors, e.g., Φ({[v1, w1], ..., [vk, wk]}).

Different types of beliefs might require different ways to combine them, so
predicates in the same blp might be using different combination functions. Here
are some popular combination functions:

– Dempster’s combination rule:
• ΦDS([0, 0], [1, 1]) = [0, 1].

1 In the BLP syntax and semantics in [26], rule bodies are Boolean combinations of
literals. Since every blp can be transformed into an equivalent blp without body-
disjunctions, as shown in [27], here we assume there is no disjunction in rule bodies.

154 H. Wan

• ΦDS([v1, w1], [v2, w2]) = [v, w] if {[v1, w1], [v2, w2]} �= {[0, 0], [1, 1]}, where
v = v1·w2+v2·w1−v1·v2

K , w = w1·w2
K , and K = 1+ v1 ·w2 + v2 ·w1− v1− v2.

In this case, K �= 0 and thus v and w are well-defined.
– Maximum: Φmax([v1, w1], [v2, w2]) = [max(v1, v2), max(w1, w2)].
– Minimum: Φmin([v1, w1], [v2, w2]) = [min(v1, v2), min(w1, w2)].

3.3 Semantics of Acyclic BLP

Given a blp P, the definitions of Herbrand Universe UP and Herbrand Base BP

of P are the same as in the classical case. As usual in logic programming, the
easiest way to define a semantics is by considering ground (i.e., variable-free)
rules. We assume that each atom X ∈ BP has an associated belief combination
function, denoted ΦX .2 Intuitively, ΦX is used to help determine the combined
belief in X accorded by the rules in P that support X .

Definition 3. A truth valuation over a set of atoms α is a mapping from α
to {t, f ,u}. The set of all possible valuations over α is denoted as T Val(α).

A truth valuation I for a blp P is a truth valuation over BP. Let T Val(P)
denote the set of all the truth valuations for P, so T Val(P) = T Val(BP). �
Definition 4. A support function for a set of atoms α is a mapping mα from
T Val(α) to [0, 1] such that

∑
I∈T Val(α) mα(I) = 1.

The atom-set α is called the base of mα. A support function for a blp P is
a mapping m from T Val(P) to [0, 1] such that

∑
I∈T Val(P) m(I) = 1. �

If α is a set of atoms, we will use Bool(α) to denote the set of all Boolean formulas
constructed out of these atoms (i.e., using ∧, ∨, and negation).

Definition 5. Given a truth valuation I over a set of atoms α and a formula
F ∈ Bool(α), I(F) is defined as in Lukasiewicz’s three-valued logic: I(A ∨B) =
max

(
I(A), I(B)

)
, I(A ∧ B) = min

(
I(A), I(B)

)
, and I(A) = ¬I(A), where f <

u < t and ¬t = f , ¬f = t, ¬u = u. We say that I |= F if I(F) = t. �
Definition 6. A mapping bel : Bool(BP) −→ [0, 1] is said to be a belief
function for P if there exists a support function m for P, so that for all F ∈
Bool(BP), bel(F) =

∑
I∈T Val(P) such that I|=F m(I). �

Belief functions can be thought of as interpretations of belief logic programs.
However, as usual in logic programming, we are interested not just in interpre-
tations, but in models. We define the model of an acyclic blp next.

Definition 7. Given an acyclic blp P and a truth valuation I, we define P’s
reduct under I to be PI = {R | R ∈ P, I |= Body(R)}, where Body(R)
denotes the body of the rule R.

Let P(X) denote the set of rules in P with the atom X in the head. P’s
reduct under I with X as head is defined as PI(X) = PI ∩ P(X). Thus,
PI(X) is simply that part of the reduct PI , which consists of the rules that have
X as their head. �
2 Separate belief combination functions can be associated to different predicates or

even ground atoms.

Belief Logic Programming with Cyclic Dependencies 155

We now define a measure for the degree by which I is supported by P(X).

Definition 8. Given an acyclic blp P and a truth valuation I for P, for any
X ∈ BP, we define sP(I, X), called the P-support for X in I, as follows.

1. If PI(X) = φ, then
– If I(X) = t or I(X) = f , then sP(I, X) = 0;
– If I(X) = u, then sP(I, X) = 1.

2. If PI(X) = {R1, . . . , Rn}, n > 0, let [v, w] be the result of applying ΦX to
the belief factors of the rules R1, . . . , Rn. Then
– If I(X) = t, then sP(I, X) = v;
– If I(X) = f , then sP(I, X) = 1− w;
– If I(X) = u, then sP(I, X) = w − v. �

Informally, I(X) represents what the truth valuation I believes about X . The
above interval [v, w] produced by the ΦX represents the combined support ac-
corded by the rule set PI(X) to that belief. sP(I, X) measures the degree by
which a truth valuation I is supported by P(X). If X is true in I, it is the com-
bined belief in X supported by P given the truth valuation I. If X is false in I,
sP(I, X) is the combined disbelief in X . Otherwise, it represents the combined
information gap about X .

We now introduce the notion of P-support for I as a whole. It is defined as a
cumulative P-support for all atoms in the Herbrand base.

Definition 9. If I is a truth valuation for an acyclic blp P, then

m̂P(I) =
∏

X∈BP

sP(I, X) �

Theorem 1. For any acyclic blp P,
∑

I∈T Val(P) m̂P(I) = 1. �

This theorem is crucial, as it makes the following definition well-founded.

Definition 10. The model of an acyclic blp P is the following belief function:

model(F) =
∑

I∈T Val(P) such that I|=F

m̂P(I), where F ∈ Bool(BP). �

In [26] we showed that model is a “correct” (and unique) belief functionthat one
should expect: it provides each atom in the Herbrand base with precisely the
right amount of support from all the applicable rules. Namely, if S is a suitable
set of the rules that support A (see [26] for a precise formulation) then

model
(
A ∧

∧
R∈S Body(R)

)
model

(∧
R∈S Body(R)

) = v
model

(
A ∧

∧
R∈S Body(R)

)
model

(∧
R∈S Body(R)

) = 1− w

where [v, w] = ΦX(BFS) and BFS is the multiset of belief factors of rules in S.

156 H. Wan

4 Semantics for General BLP

We introduce some necessary notions first.

Definition 11. Let P be a blp. BP can always be partitioned into disjoint atom
sets C1, . . . , Ck, such that two atoms are in the same set if and only if they depend
on each other. We call C1, . . . , Ck the atom cliques of P and use clique(A) to
denote the atom clique that contains atom A.

A clique ordering for P is a bijective function, Order : {C1, . . . , Ck} →
{1, . . . , k}, such that, for any pair of atoms X and Y , X does not depend on Y
if order(clique(X)) < order(clique(Y)). �

We can safely infer that every atom clique in an acyclic blp has size 1, but not
vice versa. Actually a blp can be cyclic even if there is only one atom in it – that
atom, A, can depend on itself via the rule [v, w] A :- A.

4.1 Transformational Semantics for General BLP

In this section, we define a semantics for general (i.e., possibly cyclic) blps.
We only consider ground blps in the semantics as usual. First, we transform a
cyclic blp P into an acyclic blp P′, which captures all the non-trivial and non-
redundant belief derivations. Then the minimal model of P is defined to be the
minimal model of the acyclic blp P′.

To simplify the description of the transformation, we assume that each rule,
R, has a unique identifier, denoted IDR — a new propositional constant.

Definition 12. The dependency graph, H, of a ground blp P is a directed
bipartite graph whose nodes are partitioned into a set of atom nodes (a-nodes,
for short) and rule nodes (r-nodes, for short). The nodes and edges are defined
as follows:
– For each atom A in P, H has an a-node labeled A.
– For each rule R in P, H has an r-node labeled with proposition IDR.
– For each rule R in P, an edge goes from the r-node labeled IDR to the a-node

labeled with R’s head.
– For each rule R in P and each atom A that appears in R’s body, an edge

goes from the a-node labeled A to the r-node labeled IDR. �

The dependency graph H describes the dependency relation over BP. Not only
does H stores the information whether an atom A depends on another atom
B, but also the structural information such as through which rules (or through
which path) A depends on B. The structural information will be useful for us
to split the undesired loop influence from the other supports.

Definition 13. Let P be a blp and H be P’s dependency graph. A directed graph
G is called a partial-proof DAG of P for the atom A (pp-DAG for A,
for short) if it has the following properties:

1. G is a maximal acyclic subgraph of H satisfying conditions 2-4, below.
2. Node A is the root of G, i.e., every node in G is on a path leading to A.

Belief Logic Programming with Cyclic Dependencies 157

3. Every a-node in G belongs to clique(A) and has exactly one child.
4. If an a-node D belongs to clique(A), and D’s parent is in G, then D itself is

also in G. �

It is clear that an atom A can have more than one pp-DAGs. Each of them
corresponds to a successful SLD-style derivation path for ? − A, starting from
outside of clique(A). The following example helps illustrate the observation.

Example 1. Returning to the example in Section 2. Suppose that the rate of false
positive test results for a certain disease is 20%. The certainty that someone who
had a contact with a contagious person will also contract the same disease is 60%.
An expert system uses the following BLP rules to generate possible diagnosis.

[0.8, 1] disease(?X) :- test pos(?X).
[0.6, 1] disease(?X) :- contact(?X, ?Y) ∧ disease(?Y).

Suppose that the test for two persons, p3 and p4, came back positive and p3 and
p4 are known to have had a contact. We get the following blp P1 after grounding.

P1 r1 : [0.8, 1] disease(p3) :- test pos(p3).
r2 : [0.8, 1] disease(p4) :- test pos(p4).
r3 : [0.6, 1] disease(p3) :- contact(p3, p4) ∧ disease(p4).
r4 : [0.6, 1] disease(p4) :- contact(p4, p3) ∧ disease(p3).
r5 : [1, 1] test pos(p3).
r6 : [1, 1] test pos(p4).
r7 : [1, 1] contact(p3, p4).
r8 : [1, 1] contact(p4, p3).

There are five atomcliques inP1: {test pos(p3)}, {test pos(p4)}, {contact(p3, p4)},
{contact(p4, p3)} and {disease(p3), disease(p4)}. The dependency graph and the
pp-DAGs are shown in Figure 2 and Figure 3, respectively. �

Fig. 2. The dependency graph for Example 1

158 H. Wan

Fig. 3. The pp-DAGs in Example 1: g1, g2 are for disease(p3), g3, g4 are for disease(p4)

Definition 14. Let G be a pp-DAG of P for the atom A. Another pp-DAG G′
of P is said to be a child pp-DAG of G if:
1. G′ is a subgraph of G; and
2. G′’s root, B, is a child of A’s child in G. �

In Example 1, g1 is a child pp-DAG of g4, while g3 is a child pp-DAG of g2.
Now we are ready to define the transformation that converts cyclic blps to

acyclic ones.

Definition 15. Decyclification of P, denoted acyclic(P), is obtained from P
as follows. Let S be the set of new atoms labeled with pp-DAGs of P:

S = {AG |A ∈ BP and G is a pp-DAG with root A}

For each rule R ∈ P of the form

[v, w] A0 :- A1, . . . , Ak, Ak+1, . . . , An, D1, . . . , Dl, Dl+1, . . . , Dm.

where Ai ∈ clique(A0), 1 ≤ i ≤ n, Dj �∈ clique(A0), 1 ≤ j ≤ m, replace R with
the rule

[v, w] A0 :- IDR

where IDR is the proposition that identifies R, plus, for every list G0, . . . ,Gn of
pp-DAGs such that

– Gi is a pp-DAG with the root Ai, 0 ≤ i ≤ n, and
– IDR is A0’s child in G0, and
– Gj is a child pp-DAG of G0, 1 ≤ j ≤ n,

we add the rules of the form

[v, w] AG0
0 :- AG1

1 , . . . , AGk

k , A
Gk+1
k+1 , . . . , AGn

n , D1, . . . , Dl, Dl+1, . . . , Dm.

[1, 1] IDR :- AG1
1 , . . . , AGk

k , A
Gk+1
k+1 , . . . , AGn

n , D1, . . . , Dl, Dl+1, . . . , Dm. �

Belief Logic Programming with Cyclic Dependencies 159

Intuitively, for each A, AG is defined in such a way that its degree of belief is
precisely that part of the belief in A, which is justified by the derivations that
correspond to the pp-DAG G. IDR is defined in such a way that its degree of
belief is the belief in R’s body being derived without any loop influence. And
the degree of belief in A0 is obtained by combining the support to A0 from all
the IDR’s such that R has A0 as head.

Note that in the resulting program, given any pair of atoms AGi

i and A
Gj

j , AGi

i

depends on A
Gj

j if and only if Gj is a child pp-DAG of Gi. Thus, it is clear that
the decyclification transformation eliminates all cycles.

Now we define the model of a general blp as follows.

Definition 16. For a (possibly cyclic) blp P, m̃P is a support function for P
such that for any I ∈ T Val(P),

m̃P(I) =
∑

I′∈T Val(acyclic(P)),I′|BP
=I

m̂acyclic(P)(I ′)

The model of P is a belief function for P, modelc(P), such that for any formula
F in Bool(BP), modelc(P)(F) = model

(
acyclic(P)

)
(F). (For acyclic blps, m̂

and model are defined in Definitions 9 and 10.) �

In other words, the semantics for acyclic BLP can be applied on acyclic(P) to
compute the model of P. In practice, the query answering algorithm in [27] can
be used on acyclic(P) to compute modelc(P)(F) for any F in Bool(BP).

Example 2. (Example 1 continued.) Applying the decyclification transformation
on P1, we get the following acyclic blp P′

1.

P′
1 [0.8, 1] disease(p3) :- r1.

[1, 1] r1 :- test pos(p3).
[0.8, 1] disease(p4) :- r2.

[1, 1] r2 :- test pos(p4).
[0.6, 1] disease(p3) :- r3.

[1, 1] r3 :- contact(p3, p4) ∧ diseaseg2(p4).
[0.6, 1] disease(p4) :- r4.

[1, 1] r4 :- contact(p4, p3) ∧ diseaseg1(p3).
[0.8, 1] diseaseg1(p3) :- test pos(p3).
[0.8, 1] diseaseg2(p4) :- test pos(p4).
[0.6, 1] diseaseg3(p3) :- contact(p3, p4) ∧ diseaseg2(p4).
[0.6, 1] diseaseg4(p4) :- contact(p4, p3) ∧ diseaseg1(p3).

[1, 1] test pos(p3).
[1, 1] test pos(p4).
[1, 1] contact(p3, p4).
[1, 1] contact(p4, p3).

If the combination function associated with disease is ΦDS , we get the following
conclusions: bel(disease(p3)) = bel(disease(p4)) = 0.896. Note that the support

160 H. Wan

for p3 having the disease is greater than 0.8 because p3 has positive test results
and the prior contact with p4 pumps up the confidence in the diagnosis. Note that
the decyclification transformation eliminates the self-supporting feedback loop
of disease(p3) and disease(p4). Otherwise, bel(disease(p3)) and bel(disease(p4))
would have ended up close to 1 via these self-supporting feedback loops. �

The following theorem shows that the semantics of general blps is an extension
of the semantics for acyclic blps.

Theorem 2 (Backward Compatibility). Let P be an acyclic blp, and F ∈
Bool(BP). Then m̃P = m̂P and modelc(P)(F) = model(P)(F). �

The following theorem shows that defining the semantics of BLP through the de-
cyclification is “reasonable” because it discards self-supported beliefs, i.e., belief
in A produced by the rules that contain A in their bodies.

Theorem 3 (Self-support). Let P be a (possibly cyclic) blp, and A an atom
in BP. Let P′

A be the blp obtained from P by deleting all the rules that contain
A in their bodies. Then modelc(P)(A) = modelc(P′

A)(A). �

Example 3. (Example 2 continued.) Let P2 be P1 − {R4} where P1 is the pro-
gram in Example 1 and R4 is the fourth rule of P1. In the BLP semantics, P2,
P1 and P′

1 (the decyclification of P1, as shown in Example 2) give the same
amount of support in disease(p3). �

4.2 Fixpoint Semantics and Modular Acyclicity

We now provide an alternative, fixpoint semantics for general blps, and show
that the fixpoint semantics can be simplified for a special class of cyclic blps,
called modularly acyclic blps.

First, for atom cliques we define some terms similar to those in Definition 7.

Definition 17. Let P be a blp, I a truth valuation, and C an atom clique in the
dependency graph of P. P(C) is defined as the set of rules in P that has an atom
from C in the head. P’s reduct under I with respect to C, denoted PI(C),3
is obtained from P(C) by

1. Replace a rule body with false if it contains an atom X �∈ C and I(X) �= t.
2. Deleting every atom X �∈ C such that I(X) = t.
3. If the combination ΦA is such that ∀v, w ΦA([v, w], [a, b]) = [a, b], and P has

a fact of the form [a, b] A, then delete all the other rules with A in head.

If PI(C) is acyclic, we say P is weakly cyclic with respect to I and C. �

Definition 18. Suppose I is a truth valuation over a set of atoms β and α ⊆ β.
We define the restriction of I to α, denoted I |α, to be the truth valuation over
α such that ∀X ∈ α, I |α (X) = I(X).

We write I |α= τ if I(X) = τ for all X ∈ α, where τ ∈ {t, f, u}. �
3 Note that the definitions of P(C) and PI(C) here is different from the definitions of
P(X) and PI(X) (in Definition 7): C is an atom clique, while X is an atom.

Belief Logic Programming with Cyclic Dependencies 161

Let I∅ be an empty truth valuation ∅ −→ {t, f ,u}, i.e., a trivial valuation
with an empty domain. Since I∅ is the only truth valuation over ∅, it follows
that T Val(∅) = {I∅} and ∀α∀I ∈ T Val(α) I |∅= I∅. We also define a special
support function m∅ : T Val(∅) → [0, 1] to be m∅(I∅) = 1; it is the only support
function for ∅.

Next we define a T̂P,Ord operator.

Definition 19. Let P be a blp with n atom cliques and a clique ordering Ord.
Let C1, . . . , Cn be the atom cliques of P, such that Ord(Ci) = i, 1 ≤ i ≤ n, and
let α0 = ∅, αi = C1 ∪ · · · ∪ Ci, 1 ≤ i ≤ n.

Given a support function m for αk, 0 ≤ k < n, T̂P,Ord(m) is a support function
for αk+1 such that for every truth valuation I ∈ T Val(αk+1),

T̂P,Ord(m)(I) = m(I |αk
) · m̃Q(I |Ck+1) (1)

where Q = PI|αk
(Ck+1). �

Theorem 4 (Equivalence of fixpoint and transformational semantics)
Let P be a blp with n atom cliques and Ord a clique ordering of P. Beginning
with m0 = m∅, let mk be T̂ ↑kP,Ord(m0), k = 0, 1, . . . , n. The support function mn

coincides with m̃P. �

The above theorem shows that the fixpoint semantics does not depend on the
choice of the clique ordering in P and that this semantics coincides with the
transformational semantics of Section 4.

Next, we will show that the computation in (1) can be simplified for a special
class of cyclic blps.

Definition 20. Let P be a blp with n atom cliques and a clique ordering Ord.
Let C1, . . . , Cn be the atom cliques of P, such that Ord(Ci) = i, 1 ≤ i ≤ n, and let
α0 = ∅, αi = C1∪· · ·∪Ci, 1 ≤ i ≤ n. Also let mk = T̂ ↑kP,Ord(m∅), k = 0, 1, . . . , n.

P is modularly acyclic if for every 0 ≤ k ≤ n−1 and for every I ∈ T Val(αk)
such that mk(I) �= 0, P is weakly cyclic with respect to I and Ck+1. �

If P is modularly acyclic, it follows from Theorem 2 that m̃Q(I |Ck+1) in (1) is
equivalent to m̂Q(I |Ck+1), where Q is PI|αk

(Ck+1), as defined in Definition 19.
(Indeed, it follows from Definition 20 that Q is acyclic if P is modularly acyclic.)
Since the computation of m̂ does not involve decyclification, the computation of
the model of a modularly acyclic blp can be greatly simplified.

Proposition 1. Let P be a blp. If in every cycle in P (i.e., in every cycle in
the dependency graph of P), there is a rule R such that some atom in R’s body
is not in the head of any rule, then P is modularly acyclic. �

Example 4. Let us return to the diagnosis case for p1 and p2 in Section 2. Sup-
pose that the test for two persons, p1 and p2, came back positive, but there is
no evidence that p1 and p2 had contact. The resulting blp P3 is

162 H. Wan

[0.8, 1] disease(p1) :- test pos(p1).
[0.8, 1] disease(p2) :- test pos(p2).
[0.6, 1] disease(p1) :- contact(p1, p2) ∧ disease(p2).
[0.6, 1] disease(p2) :- contact(p2, p1) ∧ disease(p1).

[1, 1] test pos(p1).
[1, 1] test pos(p2).

with atom cliques C1 ={test pos(p1)}, C2 ={test pos(p2)}, C3 ={contact(p1, p2)},
C4 = {contact(p2, p1)}, C5 = {disease(p1), disease(p2)}.

Since contact(p1, p2) and contact(p2, p1) are not supported by any rule, it
follows from Proposition 1 that P3 is modularly acyclic. The belief in disease(p1)
is 0.8 and so is the belief in disease(p2). �

More interestingly, a blp can be modularly acyclic even when the condition in
Proposition 1 is not satisfied, as shown in the following example.

Example 5. Consider a blp P4

[0.8, 1] a :- d. [1, 1] d.
[0.8, 1] b :- e. [1, 1] e.
[0.6, 1] a :- b ∧ c1. [0.5, 0.5] c1.
[0.6, 1] b :- a ∧ c2. [1, 1] c2 :- c1.

According to Definition 20, P4 is modularly acyclic. The underlying intuition
is as follows. The last rule is the only rule that supports c2, so we know that
c2 and c1 can not both be true in a truth valuation. Consequently, the rule
[0.6, 1] a :- b ∧ c1 and the rule [0.6, 1] b :- a ∧ c2 do not both fire in a truth
valuation. So, the cycle is “weak” and this program is modularly acyclic. �

4.3 Discussion

In this section, we will contrast our method with an alternative approach of
eliminating cycles by adding time parameters, which is utilized in [6] and im-
plicitly in [22]. Adopting a similar methodology, the program of Example 1 can
be transformed to the following blp:

[0.8, 1] disease(p3, T) :- test pos(p3).
[0.8, 1] disease(p4, T) :- test pos(p4).
[0.6, 1] disease(p3, T) :- contact(p3, p4) ∧ disease(p4, T − 1).
[0.6, 1] disease(p4, T) :- contact(p4, p3) ∧ disease(p3, T − 1).

[1, 1] disease(p3, T) :- disease(p3, T − 1).
[1, 1] disease(p4, T) :- disease(p4, T − 1).
[1, 1] test pos(p3). [1, 1] contact(p3, p4).
[1, 1] test pos(p4). [1, 1] contact(p4, p3).

As a consequence of adding time parameters, the fifth and sixth rules must be
added to ensure consistency. It is also worth noting that the first two rules assert
that the test results provide support for diagnoses at any time point.

Belief Logic Programming with Cyclic Dependencies 163

It is not difficult to observe the differences between the above transformed
program and P′

1 in Example 2 by our approach. One critical question in the
time parameter methodology in [6] is, for a query q(.), at which time point t
does q(., t) yield the correct answer. In [22], this problem is avoided by choosing
the stationary state. However, this is based on a restriction that only stationary
dynamic Bayesian networks can be modeled. Another assumption in the time
parameter methodology is that an atom without time parameter takes the same
value all the time. In this particular example, such an assumption translates
to that p3 and p4 are having contact at all the time points. Obviously, this
assumption may not hold in all applications. Our approach avoids the above
problems by providing an alternative method to eliminate cycles.

It is worth noting that, the fact that we do not use the time parameter method-
ology to eliminate cycles does not mean that we do not allow time parame-
ters. In the applications where time parameters are appropriate and feedbacks
over time are desirable, time parameters may also be encoded into blps, e.g.,
[0.9, 1] p(X, T) :- p(X, T − 1).

5 Conclusions

In [26] we introduced a novel logic theory, Belief Logic Programming, for rea-
soning with uncertainty, which can correlate structural information contained
in derivation paths for beliefs. In this paper we extended the previous work to
cyclic BLP by defining a transformational and a fixpoint semantics in which
self-supported belief is discarded. We also showed that the proposed semantics
are backward compatible with the semantics for acyclic BLP [26] and has the
expected properties.

For future work, we plan to lift the decyclification transformation to non-
ground level and extend the query answering algorithm proposed in [27] to cyclic
BLP.

Acknowledgement

This work is part of the SILK (Semantic Inference on Large Knowledge) project
sponsored by Vulcan, Inc. The author thanks Michael Kifer for the insightful
discussions.

References

1. Baldwin, J.F.: Evidential support logic programming. Fuzzy Sets and Sys-
tems 24(1), 1–26 (1987)

2. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. J. of Logic Pro-
gramming 43, 391–405 (1997)

3. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping.
Ann. Mathematical Statistics 38 (1967)

164 H. Wan

4. Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty modeling in semantic web
ontologies. Studies in Fuzziness and Soft Computing 204, 3–29 (2006)

5. Van Emden, M.H.: Quantitative deduction and its fixpoint theory. J. of Logic
Programming 3(1), 37–53 (1986)

6. Glesner, S., Koller, D.: Constructing flexible dynamic belief networks from
first-order probabilistic knowledge bases. In: Froidevaux, C., Kohlas, J. (eds.)
ECSQARU 1995. LNCS, vol. 946, pp. 217–226. Springer, Heidelberg (1995)

7. Grosof, B.N.: A courteous compiler from generalized courteous logic programs to
ordinary logic programs. Technical Report Supplementary Update Follow-On to
RC 21472, IBM (July 1999)

8. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical report, Albert-
Ludwigs University at Freiburg (2001)

9. Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty.
In: Gyssens, M., Van Gucht, D., Paredaens, J. (eds.) ICDT 1988. LNCS, vol. 326,
pp. 102–117. Springer, Heidelberg (1988)

10. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. J. of Logic Programming 12(3,4), 335–367 (1992)

11. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases
with uncertainty. IEEE Trans. on Knowledge and Data Engineering 13(4), 554–570
(2001)

12. Lukasiewicz, T.: Probabilistic logic programming under inheritance with overrid-
ing. In: Annual Conf. on Uncertainty in Artificial Intelligence (UAI 2001), pp.
329–336. Morgan Kaufmann Publishers, San Francisco (2001)

13. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints.
ACM Trans. on Computational Logic 2(3), 289–339 (2001)

14. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics 6(4), 291–308 (2008)

15. Ng, R.T.: Reasoning with uncertainty in deductive databases and logic programs.
Intl. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(3), 261–
316 (1997)

16. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and
Computation 101(2), 150–201 (1992)

17. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective
probabilities in deductive databases. J. of Automated Reasoning 10(2), 191–235
(1993)

18. Poole, D.: The Independent Choice Logic and Beyond. In: De Raedt, L., Frasconi,
P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Program-
ming. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008)

19. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

20. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

21. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

22. Shen, Y.: Reasoning with recursive loops under the plp framework. ACM Trans.
Comput. Logic 9(4), 1–31 (2008)

23. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL: Un-
certainty and the semantic web. In: Proc. of the International Workshop on OWL:
Experiences and Directions (2005)

Belief Logic Programming with Cyclic Dependencies 165

24. Subrahmanian, V.S.: On the semantics of quantitative logic programs. In: SLP, pp.
173–182 (1987)

25. Wan, H., Grosof, B.N., Kifer, M., Fodor, P., Liang, S.: Logic programming with
defaults and argumentation theories. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 432–448. Springer, Heidelberg (2009)

26. Wan, H., Kifer, M.: Belief logic programming: Uncertainty reasoning with corre-
lation of evidence. In: Erdem, E., Li, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 316–328. Springer, Heidelberg (2009)

27. Wan, H., Kifer, M.: Query answering in belief logic programming. In: Godo, L.,
Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 268–281. Springer, Heidelberg
(2009)

28. Wan, H., Kifer, M.: Technical report: Belief logic programming. Technical report,
Stony Brook University (2009), http://www.cs.sunysb.edu/~hwan/BLP_TR.html

http://www.cs.sunysb.edu/~hwan/BLP_TR.html

A Minimal Deductive System for General Fuzzy RDF

Umberto Straccia

Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy
straccia@isti.cnr.it

Abstract. It is well-known that crisp RDF is not suitable to represent vague in-
formation. Fuzzy RDF variants are emerging to overcome this limitations. In this
work we provide, under a very general semantics, a deductive system for a salient
fragment of fuzzy RDF. We then also show how we may compute the top-k an-
swers of the union of conjunctive queries in which answers may be scored by
means of a scoring function.

1 Introduction

RDF [17] has become a quite popular Semantic Web representation formalism. The
basic ingredients are triples of the form (s, p, o), such as (tom, likes, tomato), stating
that subject s has property p with value o.

However, under the classical semantics, RDF cannot represent vague information
and, to this purpose, some Fuzzy RDF variants have been proposed [12,13,14,21,22]: es-
sentially they allow to state that a triple is true to some degree, e.g., (tom, likes, tomato)
is true to degree at least 0.9.

Our main goal of this study is to provide, under a very general semantics, a minimal
deductive system for fuzzy RDF, along the lines described by [15]. The advantage is
that, (i) (unlike [12,13,14,22]) we abstract from the underlying XML representation;
(ii) the semantics is quite general, i.e. is based on a t-norm [9]; (iii) we get a clear
insight of the supported inference mechanism; and (iv) we concentrate on the main
ingredients of RDF from a reasoning point of view. We then also address the query
answering problem and show how effectively we may compute the top-k answers of the
union of conjunctive queries in which answers may be scored by means of a scoring
function.

Related work: The most general work so far and closest to our work is [14], to which
respect we provide additionally a more general semantics, correctness and completeness
and complexity results, add the notion of top-k answers of the union of conjunctive
queries in which answers may be scored by means of a scoring function, and show how
to compute the top-k answers. Another related work is [21], which allows to annotate
triples with truth values taken from a finite partial order, while we rely on [0, 1] instead1.
However, we provide some desired inference capabilities not provided by [21], e.g.,
from “a sport car is a fast car to degree 0.8” and “a fast car is an expensive car to degree

1 But we can extend the truth space to other truth-spaces as well, provided that we extend the
t-norm and residuated implication accordingly [9].

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 166–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Minimal Deductive System for General Fuzzy RDF 167

0.9” we may infer that “a sport car is an expensive car to degree 0.72” (under product t-
norm). Essentially, [21] does not provide a truth combination function to propagate the
truth in such inferences, while we consider a t-norm instead. Additionally, as for [14],
the top-k retrieval problem for the union of conjunctive queries is not addressed.

In the next section, we recall the main aspects of classical RDF as described in [15],
which we extend then to the fuzzy case.

2 Preliminaries

For the sake of our purposes, we will rely on a minimal, but significant RDF frag-
ment, called ρdf [15], that covers the essential features of RDF. According to [15], ρdf
(read rho-df, the ρ from restricted rdf) is defined as the following subset of the RDFS
vocabulary:

ρdf = {sp, sc, type, dom, range} .

Informally, the meaning of a triple (s, p, o) with p ∈ ρdf is:

– (p, sp, q) means that property p is a sub property of property q;
– (c, sc, d) means that class c is a sub class of class d;
– (a, type, b) means that a is of type b;
– (p, dom, c) means that the domain of property p is c;
– (p, range, c) means that the range of property p is c.

Syntax. Assume pairwise disjoint alphabets U (RDF URI references), B (Blank nodes),
and L (Literals). Through the paper we assume U,B, and L fixed, and for simplicity
we will denote unions of these sets simply concatenating their names. We call elements
in UBL terms (denoted t), and elements in B variables (denoted x)2.

An RDF triple (or RDF atom) is a triple (s, p, o) ∈ UBL × U × UBL. In this
tuple, s is the subject, p is the predicate, and o is the object. An RDF graph (or simply
a graph, or RDF Knowledge Base) is a set of RDF triples τ . A subgraph is a subset of
a graph. The universe of a graph G, denoted by universe(G) is the set of elements in
UBL that occur in the triples of G. The vocabulary of G, denoted by voc(G) is the set
universe(G) ∩UL. A graph is ground if it has no blank nodes, i.e. variables.

In what follows we will need some technical notions. A variable assignment is a
function μ : UBL → UBL preserving URIs and literals, i.e., μ(t) = t, for all t ∈ UL.
Given a graph G, we define μ(G) = {(μ(s), μ(p), μ(o)) | (s, p, o) ∈ G}. We speak
of a variable assignment μ from G1 to G2, and write μ : G1 → G2, if μ is such that
μ(G1) ⊆ G2.

Semantics. An RDF interpretation I over a vocabulary V is a tuple

I = 〈ΔR, ΔP , ΔC , ΔL, P [[·]], C[[·]], ·I〉 ,

where ΔR, ΔP , ΔC , ΔL are the interpretations domains of I, and P [[·]], C[[·]], ·I are the
interpretation functions of I. They have to satisfy:

1. ΔR is a nonempty set of resources, called the domain or universe of I;
2. ΔP is a set of property names (not necessarily disjoint from ΔR);

2 All symbols may have upper or lower script.

168 U. Straccia

3. ΔC ⊆ ΔR is a distinguished subset of ΔR identifying if a resource denotes a class
of resources;

4. ΔL ⊆ ΔR, the set of literal values, ΔL contains all plain literals in L ∩ V ;
5. P [[·]] maps each property name p ∈ ΔP into a subset P [[p]] ⊆ ΔR×ΔR, i.e. assigns

an extension to each property name;
6. C[[·]] maps each class c ∈ ΔC into a subset C[[c]] ⊆ ΔR, i.e. assigns a set of

resources to every resource denoting a class;
7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ΔR ∪ΔP , i.e. assigns a resource or

a property name to each element of UL in V , and such that ·I is the identity for
plain literals and assigns an element in ΔR to elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ΔR, i.e. assigns a resource to each
variable in B.

The notion entailment is defined using the idea of satisfaction of a graph under certain
interpretation. Intuitively a ground triple (s, p, o) in an RDF graph G will be true under
the interpretation I if p is interpreted as a property name, s and o are interpreted as re-
sources, and the interpretation of the pair (s, o) belongs to the extension of the property
assigned to p.

In RDF, blank nodes, i.e. variables, work as existential variables. Intuitively the triple
(x, p, o) with x ∈ B would be true under I if there exists a resource s such that (s, p, o)
is true under I.

Now, let G be a graph. An interpretation I is a model of G, denoted I |= G, iff I
is an interpretation over the vocabulary ρdf ∪ universe(G) that satisfies the following
conditions:

Simple:
1. for each (s, p, o) ∈ G, pI ∈ ΔP and (sI , oI) ∈ P [[pI]];

Subproperty:
1. P [[spI]] is transitive over ΔP ;
2. if (p, q) ∈ P [[spI]] then p, q ∈ ΔP and P [[p]] ⊆ P [[q]];

Subclass:
1. P [[scI]] is transitive over ΔC ;
2. if (c, d) ∈ P [[scI]] then c, d ∈ ΔC and C[[c]] ⊆ C[[d]];

Typing I:
1. x ∈ C[[c]] iff (x, c) ∈ P [[typeI]];
2. if (p, c) ∈ P [[domI]] and (x, y) ∈ P [[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P [[rangeI]] and (x, y) ∈ P [[p]] then y ∈ C[[c]];

Typing II:
1. For each e ∈ ρdf, eI ∈ ΔP

2. if (p, c) ∈ P [[domI]] then p ∈ ΔP and c ∈ ΔC

3. if (p, c) ∈ P [[rangeI]] then p ∈ ΔP and c ∈ ΔC

4. if (x, c) ∈ P [[typeI]] then c ∈ ΔC

We define G entails H under ρdf, denoted G |= H , iff every model under ρdf of G is
also a model under ρdf of H .

Please note that in [15], P [[spI]] (resp. C[[scI]]) besides being required to be transitive
over ΔP (resp. ΔC), is also reflexive over ΔP (resp. ΔC). We omit this requirement
and, thus, do not support inferences such as G |= (a, sp, a) and G |= (a, sc, a), which
anyway are of marginal interest (see [15] for a more in depth discussion on this issue).

A Minimal Deductive System for General Fuzzy RDF 169

Deductive system. In what follows, we recall the sound and complete deductive system
for the fragment of RDF presented in [15]. The system is arranged in groups of rules
that captures the semantic conditions of models. In every rule, A, B, C, X , and Y are
meta-variables representing elements in UBL. An instantiation of a rule is a uniform
replacement of the metavariables occurring in the triples of the rule by elements of
UBL, such that all the triples obtained after the replacement are well formed RDF
triples. The rules are as follows:

1. Simple:

(a) G
G′ for a map μ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C)

(b) (A,sp,B),(X,A,Y)
(X,B,Y)

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C)

(b) (A,sc,B),(X,type,A)
(X,type,B)

4. Typing:

(a) (A,dom,B),(X,A,Y)
(X,type,B)

(b) (A,range,B),(X,A,Y)
(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B),(C,sp,A),(X,C,Y)
(X,type,B)

(b) (A,range,B),(C,sp,A),(X,C,Y)
(Y,type,B)

A proof is defined in the usual way. Let G and H be graphs. Then G � H iff there is a sequence
of graphs P1, . . . , Pk with P1 = G and Pk = H , and for each j (2 � j � k) one of the
following holds:

1. there exists a map μ : Pj → Pj−1 (rule (1a));
2. Pj ⊆ Pj−1 (rule (1b));
3. there is an instantiation R

R′ of one of the rules (2)(5), such that R ⊆ Pj−1 and Pj =
Pj−1 ∪R′.

The sequence of rules used at each step (plus its instantiation or map), is called a proof
of H from G.

Proposition 1 (Soundness and completeness [15]). The proof system % is sound and
complete for |=, that is, G % H iff G |= H .

Let G be a ground graph and τ be a gound triple. The closure of G is defined as

cl(G) = {τ | τ ground and G � τ} .

Note that the size of the closure of G is O(|G|2) and, thus a naive method to an-
swer whether G |= τ consists in computing cl(G) and check whether τ is included in
cl(G) [15]. [15] provides also an alternative method to test G |= τ that runs in time
O(|G| log |G|).

170 U. Straccia

Query Answering. For the sake of our purpose, we get inspired by [6]3 and we assume
that a RDF graph G is ground and closed, i.e., G is closed under the application of the
rules (2)-(5). Then a conjunctive query is a Datalog-like rule of the form

q(x) ← ∃y.τ1, . . . , τn

where n � 1, τ1, . . . , τn are triples, x is a vector of variables occurring in τ1, . . . , τn,
called the distinguished variables, y are so-called non-distinguished variables and are
distinct from the variables in x, each variable occurring in τi is either a distinguished
variable or a non-distinguished variable. If clear from the context, we may omit the
exitential quantification ∃y. For instance, the query

q(x, y) ← (x, creates , y), (x, type,Flemish), (y, exhibited ,Uffizi)

has intended meaning to retrieve all the artifacts x created by Flemish artists y, being
exhibited at Uffizi Gallery.

We will also write a query as

q(x) ← ∃y.ϕ(x,y) ,

where ϕ(x,y) is τ1, . . . , τn. Furthermore, q(x) is called the head of the query, while
∃y.ϕ(x,y) is called the body of the query.

Finally, a disjunctive query (or, union of conjunctive queries) q is, as usual, a finite
set of conjunctive queries in which all the rules have the same head.

Given a graph G, a query q(x) ← ∃y.ϕ(x,y), and a vector t of terms in UL, we
say that q(t) is entailed by G, denoted G |= q(t), iff in any model I of G, there is a
vector t′ of terms in UL such that I is a model of ϕ(t, t′). If G |= q(t) then t is called
an answer to q. For a disjunctive query q = {q1, . . . , qm}, we say that q(t) is entailed
by G, denoted G |= q(t), iff G |= qi(t) for some qi ∈ q. The answer set of q w.r.t. G
is defined as

ans(G,q) = {t | G |= q(t)} .

A simple method to determine ans(G,q) is as follows. Compute the closure cl(G)
of G and store it into a database, e.g., using the method [1]. It is easily verified that
any disjunctive query can be mapped into union of SQL queries over the underlying
database schema. Hence, ans(G,q) is determined by issuing these SQL queries to the
database.

3 Fuzzy RDF

We now present fuzzy RDF in its general form, by extending [12,13,14]. To do so and
to make the paper self-contained, we first recall basic notions of mathematical fuzzy
logic [9].

3.1 Preliminaries: Mathematical Fuzzy Logic

In mathematical fuzzy logics, the convention prescribing that a statement is either true
or false is changed and is a matter of degree taken from a truth space S, usually [0, 1]
(in that case we speak about Mathematical Fuzzy Logic [9]) or { 0

n , 1
n , . . . , n

n} for an

3 Note that [15] does not address conjunctive query answering.

A Minimal Deductive System for General Fuzzy RDF 171

integer n � 1. Often S may also be a complete lattice or a bilattice [3,5] (often used
in logic programming [4]). In the sequel, we assume S = [0, 1]. This degree is called
degree of truth of the statement φ in the interpretation I.

In the illustrative fuzzy logic that we consider in this section, fuzzy statements have
the form φ[n], where n∈ [0, 1] [8,9] and φ is a statement, which encodes that the degree
of truth of φ is at least n. For example, ripe tomato[0.9] says that we have a rather ripe
tomato (the degree of truth of ripe tomato is at least 0.9). Semantically, a fuzzy inter-
pretation I maps each basic statement pi into [0, 1] and is then extended inductively to
all statements as follows:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ) I(φ ∨ ψ) = I(φ) ⊕ I(ψ),
I(φ → ψ) = I(φ) ⇒ I(ψ) I(¬φ) = �I(φ) ,
I(∃x.φ(x)) = supc∈ΔI I(φ(c)) I(∀x.φ(x)) = infc∈ΔI I(φ(c))

(1)

where ⊗, ⊕, ⇒, and � are so-called combination functions, namely, triangular norms
(or t-norms), triangular co-norms (or s-norms), implication functions, and negation
functions, respectively, which extend the classical Boolean conjunction, disjunction,
implication, and negation, respectively, to the fuzzy case.

Several t-norms, s-norms, implication functions, and negation functions have been
given in the literature. An important aspect of such functions is that they satisfy some
properties that one expects to hold for the connectives; see Tables 1 and 2. Note that in
Table 1, the two properties Tautology and Contradiction follow from Identity, Com-
mutativity, and Monotonicity. Usually, the implication function ⇒ is defined as r-
implication, that is, a ⇒ b = sup {c | a⊗ c � b}.

Some t-norms, s-norms, implication functions, and negation functions of various
fuzzy logics are shown in Table 3 [9]. In fuzzy logic, one usually distinguishes three
different logics, namely, Łukasiewicz, Gödel, and Product logic; the popular Zadeh
logic is a sublogic of Łukasiewicz logic as, min(x, y) = x∧(x ⇒ y) and max(x, y) =
(x ⇒ y) ⇒ y. Some salient properties of these logics are shown in Table 4. For
more properties, see especially [9,16]. Note also, that a fuzzy logic having all proper-
ties shown in Table 4, collapses to boolean logic, i.e. the truth-set can be {0, 1} only.
Also note that the importance of these three logics is due the fact that any t-norm can be
obtained as a combination of Łukasiewicz, Gödel, and Product t-norm. The implication
x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication in the fuzzy logic liter-
ature. Note that we have the following inferences: Let a � n and a ⇒ b � m. Then,
under Kleene-Dienes implication, we infer that “if n > 1 − m then b � m”. More
importantly, under an r-implication relative to a t-norm ⊗, we have that

from a � n and a ⇒ b � m, we infer b � n⊗m . (2)

To see this, as a � n and a ⇒ b = sup {c | a ⊗ c � b} = c̄ � m it follows that
b � a⊗ c̄ � n⊗m. In a similar way, under an r-implication relative to a t-norm⊗, we
have that

from a ⇒ b � n and b ⇒ c � m, we infer that a ⇒ c � n⊗m . (3)

As we will see later on, these are the main inference patterns we will rely on in this
paper.

172 U. Straccia

Table 1. Properties for t-norms and s-norms

Axiom Name T-norm S-norm
Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b ⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b) ⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a ⊕ (b⊕ c)
Monotonicity if b � c, then a⊗ b � a⊗ c if b � c, then a⊕ b � a⊕ c

Table 2. Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0 ⇒ b = 1, a ⇒ 1 = 1, 1 ⇒ 0 = 0 � 0 = 1, � 1 = 0
Antitonicity if a � b, then a ⇒ c � b ⇒ c if a � b, then � a � � b
Monotonicity if b � c, then a ⇒ b � a ⇒ c

Table 3. Combination functions of various fuzzy logics

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a ⇒ b min(1− a + b, 1)

{
1 if a � b

b otherwise
min(1, b/a) max(1− a, b)

� a 1− a

{
1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1− a

Table 4. Some additional properties of combination functions of various fuzzy logics

Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
x⊗�x = 0 + + + −
x⊕�x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
��x = x + − − +

x ⇒ y = �x⊕ y + − − +
� (x ⇒ y) = x⊗� y + − − +
� (x⊗ y) = �x⊕� y + + + +
� (x⊕ y) = �x⊗� y + + + +

Note that implication functions and t-norms are also used to define the degree of
subsumption between fuzzy sets and the composition of two (binary) fuzzy relations.
A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. The degree of
subsumption between two fuzzy sets A and B, denoted A � B, is defined as

inf
x∈X

A(x) ⇒ B(x) , (4)

where ⇒ is an implication function. Note that in First-Order-Logic terms, A is a sub-
class of B may be seen as the formula

∀x.A(x) ⇒ B(x) ,

A Minimal Deductive System for General Fuzzy RDF 173

and, as in fuzzy logic ∀ is the inf , we get equation above. Together with (2), these are
the two major notions we need later on.

Note that if A(x) � B(x), for all x∈ [0, 1], then A � B evaluates to 1. Of course,
A � B may evaluate to a value v ∈ (0, 1) as well. A (binary) fuzzy relation R over
two countable crisp sets X and Y is a function R : X × Y → [0, 1]. The composition
of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1] is defined as
(R1 ◦ R2)(x, z) = supy∈Y R1(x, y) ⊗ R2(y, z). A fuzzy relation R is transitive iff
R(x, z)� (R ◦R)(x, z).

A fuzzy interpretation I satisfies a fuzzy statement φ[n] or I is a model of φ[n],
denoted I |=φ[n], iff I(φ)� n. The notions of satisfiability and logical consequence
are defined in the standard way. We say φ[n] is a tight logical consequence of a set of
fuzzy statements KB iff n is the infimum of I(φ) subject to all models I of KB . Notice
that the latter is equivalent to n = sup {r |KB |= φ[r]}. We refer the reader to [7,8,9]
for reasoning algorithms for fuzzy propositional and First-Order Logics.

3.2 Generalized Fuzzy RDF

We are now ready to extend the notions introduced in the previous section to fuzzy
RDF. We start with the syntax and then define the semantics.

Syntax. A fuzzy RDF triple is an expression τ [n], where τ is a triple and n ∈ [0, 1].
The intended semantics is that the degree of truth of τ is not less than n. For instance,
(audiTT , type,SportsCar)[0.8] is a fuzzy triple, intending that AudiTT is almost a
sport car. In a fuzzy triple τ [n], the truth value n may be omitted and, in that case, the
value n = 1 is assumed. A fuzzy RDF graph G̃ (or simply a fuzzy graph, or fuzzy RDF
Knowledge Base) is a set of fuzzy RDF triples τ̃ . The notions of universe of a graph G̃,
the vocabulary of G̃, ground graph and variable assignment are as for the crisp case.
Without loss of generality we may assume that there are not two fuzzy triples τ [n] and
τ [m] in a fuzzy graph G̃. If this is the case, we may just remove the fuzzy triple with
the lower score.

Semantics. The fuzzy semantics is derived directly from the crisp one, where the exten-
sion functions are no longer sets, but functions assigning a truth in [0, 1]. So, let ⊗ be a
t-norm and let ⇒ be its r-implication. A fuzzy RDF interpretation I over a vocabulary
V is a tuple

I = 〈ΔR, ΔP , ΔC , ΔL, P [[·]], C[[·]], ·I〉,
where ΔR, ΔP , ΔC , ΔL are the interpretations domains of I, and P [[·]], C[[·]], ·I are the
interpretation functions of I. They have to satisfy:

1. ΔR is a nonempty set of resources, called the domain or universe of I;
2. ΔP is a set of property names (not necessarily disjoint from ΔR);
3. ΔC ⊆ ΔR is a distinguished subset of ΔR identifying if a resource denotes a class

of resources;
4. ΔL ⊆ ΔR, the set of literal values, ΔL contains all plain literals in L ∩ V ;
5. P [[·]] maps each property name p ∈ ΔP into a partial function P [[p]] : ΔR×ΔR →

[0, 1], i.e. assigns a degree to each pair of resources, denoting the degree of being
the pair an instance of the property p;

174 U. Straccia

6. C[[·]] maps each class c ∈ ΔC into a partial function C[[c]] : ΔR → [0, 1], i.e. as-
signs a degree to every resource, denoting the degree of of the resource being an
instance of class c;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ΔR ∪ΔP , i.e. assigns a resource or
a property name to each element of UL in V , and such that ·I is the identity for
plain literals and assigns an element in ΔR to elements in L;

8. ·I maps each variable x ∈ B into a value xI ∈ ΔR, i.e. assigns a resource to each
variable in B.

Note that the only difference so far relies on points 5. and 6., in which the extension
function become now fuzzy membership functions. Note also that C[[·]] (resp. P [[·]]) is a
partial function and, thus, is not defined on all arguments. Alternatively, we may define
it to be a total function. We use the former formulation to distinguish the case where a
tuple t may be an answer to a query, even though the score is 0, from the case where
a tuple is not retrieved, since it does not satisfy the query conditions. In particular, if a
triple does not belong to a fuzzy graph, then its truth is assumed to be undefined, while if
C[[·]] (resp. P [[·]]) is total, then its truth of this triple would be 0, which is a small though
fundamental difference. Please note that both [14,21] rely on total interpretations. We
prefer the partial semantics approach as we believe it is better suited for applications, as
it is more “database-like” in query answering. For instance, suppose we are looking for
a second-hand car, which is cheap and not too old, where cheap and old are functions of
the price and age, respectively, and the cheapness and oldness scores are aggregated via
weighted linear combination. Then under total semantics one may retrieve a car with
non zero score, despite its age is unknown (the tuple relating the car to its age is not
in the graph and, thus, the degree of oldness is 0, but there may be a tuple dictating
the price of the car), while under partial semantics, this car will not be retrieved (as
it would happen for a top-k database engine or using e.g. SPARQL [18] in which the
scoring component of the query is omitted).

The notion entailment is defined using the idea of satisfaction of a graph under cer-
tain interpretation. Intuitively a ground fuzzy triple (s, p, o)[n] in a fuzzy RDF graph
G̃ will be satisfied under the interpretation I if p is interpreted as a property name, s
and o are interpreted as resources, and the interpretation of the pair (s, o) belongs to the
extension of the property assigned to p to degree not less than n.

Now, let G̃ be a fuzzy graph over ρdf. A fuzzy interpretation I is a model of G̃
under ρdf, denoted I |= G̃, iff I is a fuzzy interpretation over the vocabulary ρdf ∪
universe(G̃) that satisfies the following conditions:

Simple:
1. for each (s, p, o)[n] ∈ G, pI ∈ ΔP and P [[pI]](sI , oI) � n;

Subproperty:
1. P [[spI]] is transitive over ΔP ;
2. if P [[spI]](p, q) is defined then p, q ∈ ΔP and

P [[spI]](p, q) = inf
(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ P [[q]](x, y) ;

Subclass:
1. P [[scI]] is transitive over ΔC ;

A Minimal Deductive System for General Fuzzy RDF 175

2. if P [[scI]](c, d) is defined then c, d ∈ ΔC and

P [[scI]](c, d) = inf
x∈ΔR

C[[c]](x) ⇒ C[[d]](x) ;

Typing I:
1. C[[c]](x) = P [[typeI]](x, c);
2. if P [[domI]](p, c) is defined then

P [[domI]](p, c) = inf
(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ C[[c]](x) ;

3. if P [[rangeI]](p, c) is defined then

P [[rangeI]](p, c) = inf
(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ C[[c]](y) ;

Typing II:
1. For each e ∈ ρdf, eI ∈ ΔP

2. if P [[domI]](p, c) is defined then p ∈ ΔP and c ∈ ΔC

3. if P [[rangeI]](p, c) is defined then p ∈ ΔP and c ∈ ΔC

4. if P [[typeI]](x, c) is defined then c ∈ ΔC

Some explanations about the above definitions are in place. To do so, let us keep in
mind Eq. (4). At first, let us explain condition 2 of the subclass condition. In the crisp
case if c is a sub-class of d then we impose that C[[c]] ⊆ C[[d]]. The fuzzyfication of this
subsumption condition yields the degree of subsumption and, thus, using Eq. (4), we
get immediately

P [[scI]](c, d) = inf
x∈ΔR

C[[c]](x) ⇒ C[[d]](x) .

i.e., P [[scI]](c, d) is evaluated as the degree of subsumption between class c and class
d. In First-Order-Logic terms, we recall that c is a sub-class of d may be seen as the
formula

∀x.c(x) ⇒ d(x) ,

and, thus, as in fuzzy logic ∀ is the inf , we get equation above. The argument for the
sub-property condition is similar. Concerning condition 2 of Typing I, we may write the
condition that property p has domain c in First-Order-Logic as

∀x∀y.p(x, y) ⇒ c(x) ,

which then gives us immediately the condition

P [[domI]](p, c) = inf
(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ C[[c]](x) .

The argument for condition 3 of Typing I is similar. We define G̃ entails H̃ under ρdf,
denoted G̃ |= H̃, iff every fuzzy model under ρdf of G̃ is also a model under ρdf of H̃ .

As for the crisp case, it can be shown that any fuzzy graph is consistent, i.e. has a
model.

Proposition 2 (Consistency). Any fuzzy RDF graph has a model.

Therefore, unlike [21], we do not have to care about consistency checking.

176 U. Straccia

Deductive system. In what follows, we present a sound and complete deductive system
for our fuzzy RDF fragment. As we will see, it is an extension of the one we have
seen for the crisp case. Indeed, for each crisp rule (except for group 1, which remains
identical) there is a fuzzy analogue. The rules are as follows4:

1. Simple:

(a) G̃

G̃′ for a map μ : G̃′ → G̃ (b) G
G′ for G̃′ ⊆ G̃

2. Subproperty:

(a) (A, sp, B)[n],(B, sp, C)[m]
(A, sp, C)[n⊗m] (b) (A, sp, B)[n],(X, A,Y)[m]

(X, B, Y)[n⊗m]

3. Subclass:

(a) (A, sc, B)[n],(B, sc, C)[m]
(A, sc, C)[n⊗m] (b) (A, sc, B)[n],(X, type, A)[m]

(X, type, B)[n⊗m]

4. Typing:

(a) (A, dom, B)[n],(X, A,Y)[m]
(X, type, B)[n⊗m] (b) (A, range, B)[n],(X, A, Y)[m]

(Y, type, B)[n⊗m]

5. Implicit Typing:

(a) (A, dom, B)[n],(C, sp, A)[m],(X, C, Y)[r]
(X, type, B)[n⊗m⊗ r]

(b) (A, range, B)[n],(C, sp, A)[m],(X, C, Y)[r]
(Y, type, B)[n⊗m⊗ r]

It suffices to explain the rules of the sub-class category, as all the rules of categories 2-5
follow the same schema. To do so, consider inference schemas (2) and (3).

Consider the rule
(A, sc, B)[n], (B, sc, C)[m]

(A, sc, C)[n⊗m]
.

Let us show that the rule is sound, i.e. for a fuzzy interpretation I, if I |= (A, sc, B)[n]
and I |= (B, sc, C)[m] then I |= (A, sc, C)[n⊗m]. Indeed,

1. As P [[scI]] is transitive over ΔC , we have that

P [[scI]](AI , CI) � P [[scI]](AI , BI)⊗ P [[scI]](BI , CI) .

2. As I |= (A, sc, B)[n], it follows that

P [[scI]](AI , BI) = inf
x∈ΔR

C[[AI]](x) ⇒ C[[BI]](x) � n ;

3. As I |= (B, sc, C)[m], it follows that

P [[scI]](BI , CI) = inf
x∈ΔR

C[[BI]](x) ⇒ C[[CI]](x) � m ;

4 An excerpt of them has been provided in [19].

A Minimal Deductive System for General Fuzzy RDF 177

4. From 1-3, it follows immediately that

P [[scI]](AI , CI) � n⊗m

and, thus I |= (A, sc, C)[n⊗m].

Next, let us show that
(A, sc, B)[n], (X, type, A)[m]

(X, type, B)[n⊗m]

is correct.

1. As I |= (A, sc, B)[n], it follows that

P [[scI]](AI , BI) = inf
x∈ΔR

C[[AI]](x) ⇒ C[[BI]](x) � n ;

2. As I |= (X, type, A)[m], it follows that

P [[typeI]](XI , AI) � m ;

3. But C[[AI]](XI) = P [[typeI]](XI , AI) and, thus, from 2. we get

C[[AI]](XI) � m .

4. Consider XI ∈ ΔR. As 1. holds for all x ∈ ΔR, we have that

C[[AI]](XI) ⇒ C[[BI]](x) � n .

5. By schema (2) and point 3. and 4., we get

C[[BI]]((XI) � n⊗m .

6. But, P [[typeI]](XI , BI) = C[[BI]](XI) and, thus, by 5. we get

P [[typeI]](XI , BI) � n⊗m

and, thus I |= (X, type, B)[n⊗m].

The notion of proof is as for the crisp case and we have:

Proposition 3 (Soundness and completeness). For fuzzy RDF, the proof system % is
sound and complete for |=, that is, G̃ % H̃ iff G̃ |= H̃ .

Query Answering. We extend the notion of conjunctive query to the case in which a
scoring function can be specified to score the answers similarly as in [11] (see also [20]).

For the sake of our purpose, we assume that a fuzzy RDF graph G̃ is ground and
closed, i.e., G̃ is closed under the application of the rules (2)-(5). Then a fuzzy conjunc-
tive query extends a crisp query and is of the form

q(x)[s] ← ∃y.τ1[s1], . . . , τn[sn], s = f(s1, . . . , sn, p1(z1), . . . , ph(zh))

where additionally

1. zi are tuples of terms in UL or variables in x or y;

178 U. Straccia

2. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple tj in UL a score
pj(tj) ∈ [0, 1]m. Such predicates are called expensive predicates in [2] as the score
is not pre-computed off-line, but is computed on query execution. We require that
an n-ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′

such that m < n and p = p′. Informally, all parameters are needed in the definition
of p;

3. f is a scoring function f : ([0, 1])n+h → [0, 1], which combines the scores si of
the n triples and the h fuzzy predicates into an overall score to be assigned to the
rule head. We assume that f is monotone, that is, for each v,v′ ∈ ([0, 1])n+h such
that v � v′, it holds f(v) � f(v′), where (v1, . . . , vn+h) � (v′1, . . . , v

′
n+h) iff

vi � v′i for all i;
4. the scoring variables s and si are distinct from those in x and y and s is distinct

from each si.

We may omit si and in that case si = 1 is assumed. s = f(s1, . . . , sn, p1(z1), . . . ,
ph(zh)) is called the scoring atom. We may also omit the scoring atom and in that case
s = 1 is assumed. For instance, the query

q(x)[s] ← (x, type,SportsCar)[s1], (x,hasPrice , y), s = s1 · cheap(y)

where e.g. cheap(p) = max(0, 1 − p
12000), has intended meaning to retrieve all cheap

sports car. Any answer is scored according to the product of being cheap and a sports
car.

The notion of disjunctive query is as for the crisp case. We will also write a query as

q(x)[s] ← ∃y.ϕ(x,y)[s] ,

where ϕ(x,y) is τ1[s1], . . . , τn[sn],s =f(s, p1(z1), . . . , ph(zh)) and s=〈s1, . . . , sn〉.
Consider a fuzzy graph G̃, a query q(x)[s] ← ∃y.ϕ(x,y)[s], a vector t of terms in

UL and s ∈ [0, 1]. We say that q(t)[s] is entailed by G̃, denoted G̃ |= q(t)[s], iff in any
model I of G̃, there is a vector t′ of terms in UL, a vector s of scores in [0, 1] such that
I is a model of ϕ(t, t′)[s] (the scoring atom is satisfied iff s is the value of the evaluation
of the score combination function). The definition is extended to a disjunctive query as
for the crisp case.

We say that s is tight iff s = sup{s′ | G̃ |= q(t)[s′]}. If G̃ |= q(t)[s] and s is tight
then t[s] is called an answer to q w.r.t. G̃. The answer set, ans(G̃,q) of q w.r.t. G̃, is
defined as the set of answers to q w.r.t. G̃.

As now each answer to a query has a degree of truth (i.e. score), the basic inference
problem that is of interest in is the top-k retrieval problem, formulated as follows.

Top-k Retrieval. Given a fuzzy graph G̃, and a disjunctive query q, retrieve k answers
t[s] with maximal scores and rank them in decreasing order relative to the score s,
denoted

ansk(G̃,q) = Topk ans(G̃,q) .

Next, we describe a method to determine ansk(G̃,q). So, let G̃ be a ground fuzzy
graph. similarly to the crisp case, the closure of G̃ is defined as

cl(G̃) = {τ [n] | τ ground, G̃ � τ [n] and n is tight}5.

5 Note that rule (Simple a) is not required to compute the closure.

A Minimal Deductive System for General Fuzzy RDF 179

Note that by definition of cl(G̃), there cannot bet two fuzzy triples τ [n] and τ [m] in
cl(G̃) such that n < m. The closure cl(G̃) can be computed by repeatedly applying the
fuzzy inference rules together with the redundancy elimination rule below:

– Redundancy Elimination Rule (RER):

τ [n], τ [m]
remove τ [n] if n < m

Essentially, each time we generate a tuple τ , we keep the one involving τ with high-
est degree. This rule is necessary in order to guarantee the termination of the closure
computation in case of cyclic graphs, such as e.g.

(A, sc, B)[n], (B, sc, C)[n], (C, sc, A)[n]

where the t-norm is e.g. product. Without (RER), we may generate an infinite sequence
of fuzzy triples (A, sc, A)[n3k] (k = 1, 2, . . .) and, thus, do not terminate. Please note
that with (RER), only (X, sc, X)[n3] ∈ cl(G̃), where X ∈ {A, B, C}.

Now, under the above closure computation, we have, as for the crisp case [15]:

Proposition 4 (Size of Closure)

1. The size of the closure of G̃ is O(|G̃|2).
2. The size of the closure of G̃ is in the worst case no smaller than Ω(|G̃|2).

Therefore, a method to determine ansk(G̃,q) is as follows.

1. Compute the closure cl(G̃) of G̃ and store it into a database that supports top-k
retrieval (e.g., RankSQL [10]6).

2. It can be verified that any fuzzy disjunctive query can be mapped into union of
top-k SQL queries [10] over the underlying database schema.

3. Hence, ansk(G̃,q) is determined by issuing these top-k SQL queries to the
database.

4 Summary and Outlook

We have presented fuzzy RDF under a generalized semantics based on t-norms and its r-
implication. We provided a minimal deductive system, top-k fuzzy disjunctive queries
and showed how these can be answered by relying on the closure computation and
state of the art top-k database engines. An implementation is under development, where
fuzzy triples are stored as RDF triples using reification and, thus, no change to RDF is
required. We follow the method [1] to store the closure in the database.

Concerning future research: so far, we considered the closure of the graph
(of quadratic size) to be stored into a database and then we submit top-k SQL queries to
it. While one may think of extending the method described in [15] to check entailment

6 But, e.g., Postgres http://www.postgresql.org/,
MonetDB http://monetdb.cwi.nl/
may work as well.

http://www.postgresql.org/
http://monetdb.cwi.nl/

180 U. Straccia

for ground fuzzy tuples in O(|G̃| log |G̃|), it remains to see whether similar methods
exist to determine the top-k answers. To this end we are looking to the techniques de-
veloped for top-k query answering in fuzzy logic programming (see, e.g. [11,20]).

Another topic concerns the extension and mapping of SPARQL to fuzzy disjunctive
queries.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Sw-store: a vertically partitioned
DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009)

2. Chang, K.C.-C., won Hwang, S.: Minimal probing: Supporting expensive predicates for top-
k queries. In: SIGMOD Conference, pp. 346–357 (2002)

3. Fitting, M.C.: Bilattices are nice things. In: Conference on Self-Reference, Copenhagen,
Denmark (2002)

4. Fitting, M.C.: Fixpoint semantics for logic programming - a survey. Theoretical Computer
Science 21(3), 25–51 (2002)

5. Ginsberg, M.L.: Multi-valued logics: a uniform approach to reasoning in artificial intelli-
gence. Computational Intelligence 4, 265–316 (1988)

6. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web databases. In:
Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS 2004). ACM Press, New York (2004)

7. Hähnle, R.: Many-valued logics and mixed integer programming. Annals of Mathematics
and Artificial Intelligence 3, 4(12), 231–264 (1994)

8. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook
of Philosophical Logic, 2nd edn., vol. 2. Kluwer, Dordrecht (2001)

9. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
10. Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization for re-

lational top-k queries. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data (SIGMOD 2005), pp. 131–142. ACM Press, New York (2005)

11. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness
for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI),
vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

12. Mazzieri, M.: A fuzzy RDF semantics to represent trust metadata. In: Proceedings of the 1st
Italian Semantic Web Workshop: Semantic Web Applications and Perspectives, SWAP 2004
(2004)

13. Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for semantic web languages. In: Proceedings
of the ISWC Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2005).
CEUR Workshop Proceedings (2005)

14. Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for the resource description framework. In:
da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T.,
Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 244–261.
Springer, Heidelberg (2008)

15. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg
(2007)

16. Novák, V.: Which logic is the real fuzzy logic? Fuzzy Sets and Systems, 635–641 (2005)
17. RDF, http://www.w3.org/RDF/
18. SPARQL, http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

A Minimal Deductive System for General Fuzzy RDF 181

19. Straccia, U.: Basic concepts and techniques for managing uncertainty and vagueness in se-
mantic web languages. In: Reasoning Web, 4th International Summer School (2007) (invited
Lecture)

20. Straccia, U.: Managing uncertainty and vagueness in description logics, logic programs and
description logic programs. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 54–103. Springer,
Heidelberg (2008)

21. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. In: Sure, Y., Domingue, J.
(eds.) ESWC 2006. LNCS, vol. 4011, pp. 487–501. Springer, Heidelberg (2006)

22. Vaneková, V., Bella, J., Gurský, P., Horváth, T.: Fuzzy rdf in the semantic web: Deduction
and induction. In: Proceedings of Workshop on Data Analysis, WDA 2005 (2005)

An Efficient Method for
Computing Alignment Diagnoses

Christian Meilicke and Heiner Stuckenschmidt

Computer Science Institute, University of Mannheim,
B6,26 68159 Mannheim, Germany

Abstract. Formal, logic-based semantics have long been neglected in ontology
matching. As a result, almost all matching systems produce incoherent align-
ments of ontologies. In this paper we propose a new method for repairing such
incoherent alignments that extends previous work on this subject. We describe
our approach within the theory of diagnosis and introduce the notion of a lo-
cal optimal diagnosis. We argue that computing a local optimal diagnosis is a
reasonable choice for resolving alignment incoherence and suggest an efficient
algorithm. This algorithm partially exploits incomplete reasoning techniques to
increase runtime performance. Nevertheless, the completeness and optimality of
the solution is still preserved. Finally, we test our approach in an experimental
study and discuss results with respect to runtime and diagnostic quality1.

1 Introduction

It has widely been acknowledged that logical semantics and reasoning are the basis of
intelligent applications on the semantic web. This is underlined by the design of stan-
dard languages, like the Web Ontology Language (OWL), which have a clearly defined
logical semantics. Contrary to this, in the area of ontology matching the use of logical
semantics as a guiding principle has long been neglected. Existing matching systems are
primarily based on lexical and heuristic methods [2] that often result in alignments that
contain logical contradictions. At first glimpse some systems seem to be an exception,
for example ASMOV and S-Match. ASMOV [5] has become a successful participant of
the OAEI over the last years. One of its constituents is a semantic verification compo-
nent used to filter out conflicting correspondence. In particular, a comprehensive set of
pattern is applied to detect certain kind of conflicts. However, ASMOV lacks a well de-
fined alignment semantics and notions as correctness or completeness are thus not appli-
cable. The S-Match system [4], on the contrary, employs sound and complete reasoning
procedures. Nevertheless, the underlying semantics is restricted to propositional logic
due to the fact that ontologies are interpreted as tree-like structures. S-Match can thus
not guarantee to generate a coherent alignment between expressive OWL-ontologies.
We have already argued that the problem of generating coherent alignments can best
be solved by applying principles of diagnostic reasoning [11]. In this paper, we extend
previous work on this topic in different directions.

1 An extended version of this paper is available as technical report at
http://webrum.uni-mannheim.de/math/lski/matching/lod/

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 182–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://webrum.uni-mannheim.de/math/lski/matching/lod/

An Efficient Method for Computing Alignment Diagnoses 183

– We define the general notion of a reductionistic alignment semantics and introduce
a natural interpretation as concrete specification. Contrary to previous work, we
support different alignment semantics within our framework.

– As extension of our previous work we do not only cover concept correspondences
but additionally support correspondences between properties.

– We describe the problem of repairing incoherent alignments in terms of Reiters
theory of diagnosis [14] and introduce the notion of a local optimal diagnosis.

– We present an algorithm for constructing a local optimal diagnosis - based on the
algorithm described in [12] - and show how this algorithm can be enhanced by
partially exploiting efficient but incomplete reasoning methods.

– We report on several experiments concerned with both the diagnostic quality as
well as the runtime of both algorithms.

In Section 2 we define our terminology and introduce some definitions centered around
the the notion of alignment incoherence. In Section 3 we argue that repairing an in-
coherent alignment can be understood as diagnosis task. In particular, we introduce the
notion of a local optimal diagnosis. In Section 4 we briefly introduce different reasoning
techniques and algorithms exploiting these reasoning techniques in order to compute a
local optimal diagnosis. These algorithms are applied on different datasets in Section
5 where we also discuss the results and compare them against other approaches. In
Section 6 we end with a short summary and some concluding remarks.

2 Preliminaries

The task of aligning two ontologies O1 and O2 (sets of axioms) can be understood
as detecting links between elements of O1 and O2. These links are referred to as cor-
respondences and express a semantic relation. According to Euzenat and Shvaiko [2]
we define a correspondence as follows and introduce an alignment as set of correspon-
dences.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and O2, let Q
be a function that defines sets of matchable elements Q(O1) and Q(O2). A corre-
spondence between O1 and O2 is a 4-tuple 〈e, e′, r, n〉 such that e ∈ Q(O1) and
e′ ∈ Q(O2), r is a semantic relation, and n ∈ [0, 1] is a confidence value. An alignment
A between O1 andO2 is a set of correspondences between O1 andO2.

Our approach is applicable to alignments between ontologies represented in Description
Logics, e.g. to alignments between OWL-DL ontologies. In this work the matchable el-
ements Q(O) are restricted to be atomic concepts or atomic properties. Further r is a
semantic relation expressing equivalence or subsumption. We use the symbols ↔

≡ ,
↔
�

and ↔
� to refer to these relations. The semantics of these symbols has not yet been spec-

ified, although we might have a rough idea about their interpretation. The confidence
value n describes the trust in the correctness of a correspondence. Given a correspon-
dence c, we use conf(c) = n to refer to the confidence of c. Additionally, we require that
in an alignmentA there exist no c �= c′ ∈ A such that conf(c) = conf(c′). We know that
most matching systems will not fullfill this requirement. Another source of evidence has

184 C. Meilicke and H. Stuckenschmidt

to decide which correspondence should be annoted with higher confidence. Thus, we
avoid an explicit treatment of different total orderings derivable from the partial order
of confidence values2. In the following we frequently need to talk about concepts or
properties of an ontologyOi. We use prefix notation i#e to uniquely determine that an
entity e belongs to the signature of Oi.

A concept i#C is defined to be unsatisfiable iff all models of Oi interpret i#C as
empty set. We use the notion of unsatisfiability in a wider sense and define it with
respect to both concepts and properties.

Definition 2 (Unsatisfiability). A concept or property i#e is unsatisfiable in ontology
Oi, iff for all models I of Oi we have i#eI = ∅. Otherwise i#e is satisfiable in Oi.

Usually, an ontology is referred to as incoherent whenever it contains an atomic unsat-
isfiable concept. We define ontology incoherence as follows.

Definition 3 (Ontology Incoherence). An ontology O is incoherent iff there exists an
atomic unsatisfiable concept or property in O. Otherwise O is coherent.

There are two ways to introduce the notion of alignment incoherence. The first approach
requires a specific model-theoretic alignment semantics. Distributed Description Logics
(DDL)[1] is an example for such a specific semantics, which we focused on in previous
work [11]. The second approach, already sketched in [7], is based on interpreting an
alignment as a set of axioms X in a merged ontology. Given an alignment A between
O1 and O2, the (in)coherence of A is reduced to the (in)coherenceO1 ∪ O2 ∪X . We
refer to such a semantics as reductionistic alignment semantics.

Definition 4 (Reductionistic Semantics). Given an alignment A between ontologies
O1 andO2. A reductionistic alignment semanticsS = 〈ext , trans〉 is a pair of functions
where ext maps an ontology to a set of axioms (extension function) and trans maps an
alignment to a set of axioms (translation function).

Considering its role in the context of a merged ontology, it becomes clear how to apply
such a reductionistic alignment semantics, abbreviated as alignment semantics in the
following.

Definition 5 (Merged ontology). Given an alignment A between ontologies O1 and
O2 and an alignment semantics S = 〈ext , trans〉. The merged ontology is defined as
O1 ∪SA O2 = O1 ∪ O2 ∪ ext(O1) ∪ ext(O2) ∪ trans(A).

The merged ontology is merely a technical means to treat different semantics within
a similar framework. Based on this framework we apply the definition of ontology in-
coherence in the context of a merged ontology resulting in the notion of alignment
incoherence.

Definition 6 (Alignment Incoherence). Given an alignmentA between ontologiesO1
and O2 and an alignment semantics S. A is incoherent with respect to O1 and O2
according to S, iff there exists an atomic concept or property i#C with i ∈ {1, 2} that
is satisfiable in Oi and unsatisfiable in O1 ∪SA O2. Otherwise A is coherent.

2 For the experiments reported on in Section 5 we derived a total order - given correspondences
with the same confidence value - from the lexicographical ordering of the URIs of the matched
entities. Experiments with different orderings resulted in insignificant differences.

An Efficient Method for Computing Alignment Diagnoses 185

We now introduce an example of a reductionistic alignment semantics, primarily de-
fined in [7] and [8] with respect to a less general framework.

Definition 7 (Natural Semantics). Given an alignment A and an ontology O. The
natural semantics Sn = 〈extn, transn〉 is defined by a specification of its components
extn (O) �→ ∅ and transn (A) �→ {tn(c)|c ∈ A} where tn is defined as

tn(c) �→

⎧⎨⎩
1#e ≡ 2#e ′ if r =↔

≡

1#e � 2#e ′ if r =↔
�

1#e ' 2#e ′ if r =↔
�

The natural alignment semantics consists of an empty extension function ext and a
translation function trans that maps correspondences one-to-one to axioms. It can be
seen as self-evident and straightforward way to interpret correspondences as axioms.

An example for an alignment semantics with ext (O) �= ∅ is given by DDL. DDL is
a formalism for supporting distributed reasoning based on a semantics where each on-
tology is interpreted within its own domain interrelated via bridge rules. Nevertheless,
it is also possible to reduce DDL to ordinary DL [1]. As a result we obtain a reduc-
tionistic alignment semantics where the extension function maps O1 and O2 to a non
empty set of additional axioms while the translation function differs significantly from
the translation function of the natural semantics.

3 Problem Statement

In this section we show that the problem of debugging alignments can be understood
as diagnostic problem and characterize a certain type of diagnosis. Throughout the re-
maining parts we use A to refer to an alignment, we use O with or without subscript to
refer to an ontology, and S to refer to some reductionistic alignment semantics.

In ontology debugging a minimal incoherency preserving sub-TBox (MIPS)M⊆ O
is an incoherent set of axioms while any proper subset M′ ⊂ M is coherent [15].
The same notion can be applied to the field of alignment debugging where we have to
consider sets of correspondences instead of axioms.

Definition 8 (MIPS Alignment). M ⊆ A is a minimal incoherence preserving sub-
alignment (MIPS alignment), iffM is incoherent with respect to O1 and O2 and there
exists noM′ ⊂M such thatM′ is coherent with respect toO1 andO2. The collection
of all MIPS alignments is referred to as MIPSS (A,O1,O2).

As already indicated in [11], the problem of debugging an incoherent alignment can be
understood in terms of Reiters theory of diagnosis [14]. Reiter describes a diagnostic
problem in terms of a system and its components. The need for a diagnosis arises, when
the observed system behavior differs from the expected behaviour. According to Reiter,
the diagnostic problem is to determine a set of those system components which, when
assumed to be functioning abnormally, explain the discrepancy between observed and
correct behaviour. If this set of components is minimal, it is referred to as diagnosis Δ.
In our context a system is a tuple 〈A,O1,O2,S〉. The discrepancies between observed

186 C. Meilicke and H. Stuckenschmidt

and correct behaviour are the terminological entities that were satisfiable in O1 andO2
and have become unsatisfiable in O1 ∪SA O2. The components of the system are the
axioms of O1 and O2 as well as the correspondences of A. Nevertheless, with respect
to alignment debugging the set of possibly erroneous components is restricted to the
correspondences of A. We conclude, that an alignment diagnosis should be defined as
a minimal set Δ ⊆ A such that A \Δ is coherent.

Definition 9 (Alignment Diagnosis). Δ ⊆ A is a diagnosis for A with respect to O1
and O2 iff A \ Δ is coherent with respect to O1 and O2 and for each Δ′ ⊂ Δ the
alignmentA \Δ′ is incoherent with respect to O1 and O2.

Reiter argues that a diagnosis is a minimal hitting set over the set of all minimal conflict
sets. A minimal conflict set in the general theory of diagnosis is equivalent to a MIPS in
the context of diagnosing ontology alignments. A diagnosis for an incoherent alignment
A is thus a minimal hitting set for MIPSS (A,O1,O2).

Proposition 1 (Diagnosis and Minimal Hitting Set). Given an alignmentA between
ontologiesO1 andO2. Δ ⊆ A is a diagnosis for A with respect to O1 andO2, iff Δ is
a minimal hitting set for MIPSS (A,O1,O2).

Proposition 1 is a special case of corollary 4.5 in [14] where an accordant proof is
given. In general there exist many different diagnosis for an incoherent alignment. Re-
iter proposes the hitting set tree algorithm for enumerating all minimal hitting sets.
With respect to our problem we will not be able to compute a complete hitting set tree
for large matching problems. Instead of that we focus on a specific type of diagnosis
explained by discussing the example alignmentsAI to AIV depicted in Figure 1.

d0.5

a0.9

b0.8

c0.7 d0.6 c0.7

a0.9

b0.8

a0.9

c0.7

a0.9

b0.8

d0.6 c0.7

a0.9

b0.8

c0.7

e0.5

d0.6

e0.5

d0.6

b0.8 b0.8

c0.7

a0.9a0.9 b0.8

c0.7 d0.5

I II III IV

f0.3e0.5

a0.9

f0.3ff

b0.8

c0.7d0.6

e0.5

Fig. 1. Four examples for an alignment and its MIPS alignments. Correspondences are denoted
by letters a, b, . . ., their confidence values are specified in upper script.

AI is an alignment that contains only one MIPS M = {a, b, c}. Thus, there are
exactly three diagnosis {a}, {b} and {c}. Taking the confidence values into account,
the most reasonable choice for fixing the incoherence is obviously the removal of the
’weakest correspondence’ in M, namely argminx∈Mconf(x). Therefore, we prefer
Δ = {c} as diagnosis. Does the naive strategy to remove the correspondence with
lowest confidence from each MIPS always result in a diagnosis? AII disproves this
assumption. Following the naive approach we would remove both c and d, although, it
is sufficient to remove c. The following recursive definition introduces the notion of an
accused correspondence to cope with this problem.

An Efficient Method for Computing Alignment Diagnoses 187

Definition 10 (Accused Correspondence). A correspondence c ∈ A is accused by A
with respect to O1 and O2, iff there exists someM ∈ MIPSS (A,O2,O2) with c ∈ M
such that for all c′ ∈ M \ {c} it holds that (1) conf(c′) > conf(c) and (2) c′ is not
accused by A with respect to O1 andO2.

We have chosen the term ’accused correspondence’ because the correspondence with
lowest confidence in a MIPS alignment M is ‘accused’ to cause the problem. This
charge will be rebuted if one of the other correspondences inM is already accused due
to the existence of another MIPS alignment. We can apply this definition on the example
alignmentAII . Correspondence c is an accused correspondence, while correspondence
d is not accused due to condidtion (2) in Definition 10. Obviously, the removal of the
accused correspondence seems to be the most reasonable decision. In particular, it can
be shown by induction that the set of accused correspondences is a diagnosis. Due to
the lack of space we have to refer the reader to [9] where an accordant proof is given.

Proposition 2. The alignment Δ ⊆ A which consists of all correspondences accused
by A with respect to O1 andO2 is a diagnosis forA with respect to O1 andO2.

The set of accused correspondences is defined in a way where the whole collection
MIPSS (A,O1,O2) is not taken into account from a global point of view. At the same
time each removal decision seems to be the optimal choice with respect to the MIPS
under discussion. Therefore, it is referred to as local optimal diagnosis in the following.

Definition 11 (Local Optimal Diagnosis). A diagnosis Δ such that all c ∈ Δ are
accused by A with respect to O1 andO2 is referred to as local optimal diagnosis.

For the third alignment depicted in Figure 1 the set Δ = {b, d, f} is a local optimal
diagnosis. The effects of a local removal decision can have strong effects on the whole
diagnosis. One of the MIPS ofA′ is depicted with dashed lines. Suppose that we would
not know this MIPS. As a result we would compute Δ = {b, e} as diagnosis. This
small example indicates that each decision might have effects on a chain of consequent
decisions. Thus, we need to construct an algorithm that is complete with respect to
the detection of incoherence, because missing out a reason for incoherence might have
significant effects on the whole diagnosis.

We discussed examples where the removal of the accused correspondences is a rea-
sonable choice, nevertheless, it is disputable whether a local optimal diagnosis is the
best choice among all diagnosis. Instead of comparing confidences within a MIPS, it is
e.g. also possible to aggregate (e.g. sum up) the confidences of Δ as proposed in [7].
In our framework we would refer to such a diagnosis as a global optimal diagnosis.
The fourth alignmentAIV is an example where local optimal diagnosis ΔL and global
optimal diagnosis ΔG differ, in particular we have ΔL = {b, c} and global optimal
diagnosis ΔG = {a, d}. We will see in Section 4 that a local optimal diagnosis can be
computed in polynomial time (leaving aside the complexity of the reasoning involved).
Opposed to this, we have to solve the weighted variant of the hitting set problem to
construct a global optimal solution, which is known to be a NP-complete problem [3].
The experimental results presented in Section 5 will also show that the removal of a
local optimal diagnosis has positive effects on the quality of the alignment.

188 C. Meilicke and H. Stuckenschmidt

4 Algorithms

A straightforward way to check the coherence of an alignment can be described as
follows. We have to iterate over the atomic entities i#ei∈{1,2} of both O1 and O2
each time checking whether i#e is unsatisfiable in O1 ∪SA O2 and satisfiable in Oi.
The (un)satisfiability of a property i#R is decided via checking the (un)satisfiability of
∃i#R.�. Given a coherent alignment A, we have to iterate over all atomic entities to
conclude that A is coherent. IfA is incoherent we can stop until we detect a first unsat-
isfiable class. Alternatively, we might also completely classify O1 ∪SA O2 and ask the
reasoner for unsatisfiable classes. In the following we refer to the application of such a
strategy by the procedure call ISCOHERENTALIGNMENT(A,O1, O2).

There exists an approach to decide the coherence for most dual-element alignments
which outperforms ISCOHERENTALIGNMENT by far. This approach and its application
requires to introduce the notion of a conflict pair. A conflict pair is an incoherent subset
of an alignment that contains exactly two correspondences. Moreover, it turns out that
most elements in MIPSSn (A,O1,O2) are conflict pairs of a certain type. We believe
that there exists a pattern based reasoning method for each alignment semantics that
detects a (large) fraction of all conflict pairs within an alignment. We present such
a reasoning method for the natural semantics Sn and argue finally how to develop a
similar method for other alignment semantics using the example of DDL.

i#A

i#C

j#B

j#D

j#E i#A

i#C

j#B

j#D

di
sj

oi
nt

j#E

di
sj

oi
nt

dis
joi

nt

Fig. 2. Subsumption and disjointness propagation pattern. Arrows represent correspondences,
solid lines represent axioms or entailed statements in Oi resp. Oj , and dashed lines represent
statements entailed by the merged ontology. Figure taken from [10], where these patterns have
been used to support manual mapping revision.

First, we focus on the pattern depicted on the left of Figure 2. Given correspondences〈
i#A, j#B ,

↔
� , n

〉
and

〈
i#C , j#D ,

↔
� , n′

〉
as well as axiom i#A � i#C we can con-

clude that Oi ∪Sn

A Oj |= j#B � j#D and thus Oi ∪Sn

A Oj |= j#E � j#D for each
subconcept j#E of j#B . Now we have Oi ∪Sn

A Oj |= ⊥ ' j#E whenever Oj en-
tails the disjointness of j#E and j#D . In such a case we detected a conflict pair given
the satisfiability of j#E in Oj . The disjointness propagation pattern works similar. We
abstain from a detailed description and refer the reader to the presentation in Figure 2.
If we combine both patterns and check their occurrence in all possible combinations
given a pair of correspondences, we end up with a sound but incomplete algorithm for
deciding the incoherence of an alignment that contains exactly two correspondences.
We will refer to this algorithm as POSSIBLYCOHERENT(c1, c2,Oi,Oj) with c1, c2 ∈ A.

An Efficient Method for Computing Alignment Diagnoses 189

Sn might in general induce complex interdependences between A, O1 and O2. There-
fore, neither are all conflict pairs detectable by the pattern-based approach, nor are all
MIPS conflict pairs.

We extend our algorithms (respectively the described pattern) to correspondences be-
tween properties by replacing i#A by ∃i#A.� in case that i#A is a property (the same
for i#B , i#C , and i#D). This allows us to consider dependencies between domain re-
strictions and the subsumption hierarchy within our pattern based reasoning approach.
The patterns depicted in Figure 2 are specific to the natural semantics Sn. Similar pat-
terns very likely exist for any reductionistic alignment semantics. For DLL e.g. it is
possible to construct corresponding patterns easily. The subsumption propagation pat-
tern is a specific case of (and in particular inspired by) the general propagation rule
used within the tableau algorithm proposed in [16], while the disjointness propagation
pattern does not hold in DDL.

In the following we need to enumerate the correspondences of an alignment to ac-
cess elements or subsets of the alignment by index or range. Thus, we sometimes treat
an alignment A as a field using a notation A[i] to refer to the i-th element of A and
A[j . . . k] to refer to {A[i] ∈ A | j ≤ i ≤ k}. For the sake of convenience we use
A[. . . k] to refer to A[0 . . . k], similar we use A[j . . .] to refer to A[j . . . |A| − 1]. Fur-
ther, let the index of an alignment start at 0.

Algorithm 1
BRUTEFORCELOD(A,O1, O2)

1: if ISCOHERENTALIGNMENT(A,O1, O2) then
2: return ∅
3: else
4: � sort A descending according to confidence values
5: A′ ← ∅
6: for all c ∈ A do
7: if ISCOHERENTALIGNMENT(A′ ∪ {c}, O1, O2) then
8: A′ ← A′ ∪ {c}
9: end if

10: end for
11: return A \A′

12: end if

We already argued that the set of accused correspondences forms a special kind of
diagnosis referred to as local optimal diagnosis. Algorithm 1, which has been proposed
in [12], is an iterative procedure that computes such a diagnosis. First, we check the
coherence of A and return ∅ as diagnosis for a coherent alignment. Given A’s incoher-
ence, we have to order A by descending confidence values. Then an empty alignment
A′ is step by step extended by adding correspondences c ∈ A. Whenever A′ ∪ c be-
comes incoherent, which is decided by reasoning in the merged ontology, c is not added.
Finally, we end up with a local optimal diagnosisA \ A′.

Proposition 3. BRUTEFORCELOD(A,O1, O2) is a local optimal diagnosis for A with
respect to O1 andO2.

190 C. Meilicke and H. Stuckenschmidt

Algorithm 1 is completely built on reasoning in the merged ontology and does not
exploit efficient reasoning techniques. A more efficient algorithm requires to solve the
following problem. Given an incoherent alignment A ordered descending according to
its confidences, we want to find an index i such thatA[. . . i−1] is coherent andA[. . . i]
is incoherent. Obviously, a binary search can be used to detect this index. The accor-
dant algorithm, referred to as SEARCHINDEXOFACCUSEDCORRESPONDENCE(A,O1,O2),
starts with an index m that splits the incoherent alignmentA in two parts of equal size.
Let now i be the index we are searching for. IfA[. . . m] is coherent we know that i > m,
otherwise i ≤ m. Based on this observation we can start a binary search which finally
requires log2(|A|) iterations to terminate.

Algorithm 2
EFFICIENTLOD(A,O1, O2)

1: � sort A descending according to confidence values
2: A′ ← A, k ← 0
3: loop
4: for i ← k to |A′| − 1 do
5: for j ← 0 to i− 1 do
6: if not POSSIBLYCOHERENT(A′[j], A′[i], O1, O2) then
7: A′ ← A′ \ {A′[i]}
8: i ← i− 1 � adjust i to continue with next element of A′

9: break � exit inner for-loop
10: end if
11: end for
12: end for
13: k ← SEARCHINDEXOFACCUSEDCORRESPONDENCE(A′, O1, O2)
14: if k = NIL then
15: return A \A′

16: end if
17: � let k∗ be the counterpart of k adjusted for A such that A[k∗] = A′[k]
18: A′ ← A′[. . . k − 1] ∪A[k∗ + 1 . . .]
19: end loop

We are now prepared to construct an efficient algorithm to compute a local optimal
diagnosis (LOD) (Algorithm 2). First we have to sort the input alignment A, prepare
a copy A′ of A, and init an index k = 0. Variable k works as a separator between
the part of A′ that has already been processed successfully and the part of A′ that has
not yet been processed or has not been processed successfully. More precisely, it holds
thatA[. . . k∗] \A′[. . . k] is a LOD forA[. . . k∗] where k∗ is an index such thatA′[k] =
A[k∗]. Within the main loop we have two nested loops. These are used to check whether
correspondenceA′[i]i≥k possibly conflicts with one of A′[j]j<i. In case a conflict has
been detected,A′[i] is removed fromA′. Notice that this approach would directly result
in a LOD if both (1) all M ∈ MIPSS (A,O1,O2) were conflict pairs, and all conflict
pairs were detectable by procedure POSSIBLYCOHERENT. Obviously, these assumptions
are not correct and thus we have to search for an index k such thatA[. . . k∗]\A′[. . . k] is
a LOD forA[. . . k∗]. Index k is determined by the binary search presented above. If no

An Efficient Method for Computing Alignment Diagnoses 191

such index could be detected, we know that A \ A′ is a LOD (line 14-16). Otherwise,
the value of A′ is readjusted to the union of A′[. . . k − 1], which can be understood
as the validated part of A′, and A[k∗ + 1 . . .], which is the remaining part of A to be
processed in the next iteration. A′[k] is removed from A′ and thus becomes a part of
the diagnosis returned finally.

Proposition 4. EFFICIENTLOD(A,O1, O2) is a local optimal diagnosis for A with re-
spect to O1 andO2.

Suppose now that Δ′ is a LOD for a subset of MIPSS (A,O1,O2), namely those that
are detected by our pattern based reasoning approach, while Δ is the LOD for the
complete set MIPSS (A,O1,O2). The correctness of Proposition 4 is based on the fact,
that Δ′ can be split in a correct and an incorrect part. The correspondence where the
correct part ends is exactly the correspondences that is detected by the binary search.
Due to the stable ordering, the correct part can be extended over several iterations until
we finally end up with a complete and correct local optimal diagnosis Δ.

5 Experiments

Our experiments are based on datasets used within two subtracks of the Ontology Align-
ment Evaluation Initiative (OAEI). These tracks are the benchmark track about the do-
main of publications and the conference track. In opposite to the other OAEI tracks, the
reference alignments of these tracks are open available.

The benchmark dataset consists of an ontology #101 and alignments to a set of arti-
ficial variations #1xx to #2xx. Furthermore, there are reference alignments to four real
ontologies known as #301 to #304. We have chosen these four ontologies for our ex-
periments to avoid any interdependencies between the specifics of the artificial test sets
and our approach. For our experimental study we had to apply some minor modifica-
tions. Neither ontology #101 nor ontologies #301 to #304 contain disjointness axioms;
even a highly incorrect alignment cannot introduce any incoherences. Therefore, we
decided to extend ontology #101 by disjointness axioms between sibling classes. In the
2008 evaluation 8 matching systems submitted results to the benchmark track that were
annotated with confidence values. In the following we refer to this dataset as Bd

08.
Our second dataset is based on the conference dataset. In 2008 for the first time ref-

erence alignments between five ontologies (= 10 alignments) have been used as part
of the official OAEI evaluation. We had to reduce this set four ontologies (= 6 align-
ments), since one ontology, namely the IASTED ontology, resulted in reasoning prob-
lems when merging this ontology with one of the other ontologies. In particular, the
runtime behaviour of our algorithms was strongly affected by underlying reasoning
problems with IASTED. Unfortunately, only three systems participated in the confer-
ence track in 2008, only two of them distinguishing between different degrees of con-
fidence. Therefore, we also used the submissions to the 2007 campaign were we also
had two matching systems producing meaningful confidence values. We refer to the
resulting dataset as C07, respectively C08. Disjointness is modeled in this dataset in-
completely depending on the specific ontology. Thus, we decided to apply our approach
to the official OAEI dataset as well as to a dataset enriched with obvious disjointness

192 C. Meilicke and H. Stuckenschmidt

statements between sibling concepts. These disjointness statements have been manually
added as part of the work reported in [12]. The resulting datasets are referred to as Cd

07,
respectively Cd

08.
In our experiments we used the reasoner Pellet [17], in particular version 2RC2

together with the OWL API on a 2.26 GHz standard laptop with 2GB RAM. The
complete dataset as well as a more detailed presentation of the results is available at
http://webrum.uni-mannheim.de/math/lski/matching/lod/. Due
to the lack of space we can only present aggregated results in the following paragraphs.

Runtimes. Results related to runtime efficiency are presented in Table 1. In each row we
aggregated the results of a specific matcher for one of the datasets explained above. For
both Algorithm 2 and its brute-force counterpart Algorithm 1 the total of runtimes is dis-
played in milliseconds. Obviously, Algorithm 2 outperforms the brute force approach.
Runtime performance increased by a coefficient of 1.8 to 9.3. To better understand un-
der which circumstances Algorithm 2 performs better, we added columns presenting
the size of the input alignment A, the size of the debugged alignment A′, and the size
of the diagnosis Δ = A\A′. Furthermore, the column captioned with ’k �= NIL’ refers
to the number of correspondences that have additionally been detected due to complete
reasoning techniques. In particular, it displays how often k �= NIL is evaluated as true
in line 14 of Algorithm 2. Finally, we analyze the fraction of those correspondences that
have been detected by efficient reasoning techniques.

Although we observe that absolute runtimes are affected by the alignment size (see
for example the C07-OLA row), the coefficient of runtimes seems not to be affected di-
rectly. The same holds for the size of the diagnosis Δ. Instead of that and in accordance
to our theoretical considerations the runtime coefficient correlates with the fraction of
conflicts that can be detected efficiently. While for the conference testcases results have
to be considered inconclusive, this pattern clearly emerges for the benchmark testcases.
The efficiency of Algorithm 2 is thus directly affected by the degree of completeness of
POSSIBLYCOHERENT invoked as subprocedure.

Diagnostic Quality. In previous work we already argued that the coherence of an align-
ment is a quality of its own [8]. An incoherent alignment causes specific problems
depending on the scenario in which the alignment is used. We now additionally investi-
gate in how far the removal of the diagnosis increases the quality of the input alignment
A by comparing it against reference alignment R. In particular, we compute for both
the input alignmentA and the repaired alignmentA′ = A\Δ the classical measures of
precision and recall. The precision of an alignment describes its degree of correctness,
while recall describes its degree of completeness. A definition of these measures with
respect to alignment evaluation can be found in [2].

The results of our measurements are presented in Table 2. The first two columns
identify datasets, followed by columns presenting the size of the input alignment A,
the size of the diagnosis Δ = A \ A′, and the number of removed correspondences
Δ \ R that are actually incorrect i.e. those correspondences that have been removed
correctly. The following three columns show how precision, recall and f-measure have
been affected by the application of our algorithm. In the Effect column the results are
aggregated as difference between the f-measure of the input alignment A and the f-
measure of the repaired alignmentA′.

http://webrum.uni-mannheim.de/math/lski/matching/lod/

An Efficient Method for Computing Alignment Diagnoses 193

Table 1. Aggregated Runtime of EFFICIENTLOD-Algorithm (Alg.2) and BRUTEFORCELOD-
Algorithm (Alg.1) and related characteristics

Testcase Runtime Comparison Alignment Size & Deleted Correspondences

DS Matcher Alg.2 Alg.1 Coeff. |A| |A′| |Δ| ’k �= NIL’ Frac.

Bd
08

Aroma 8656 71846 8.3 202 194 8 2 75%
ASMOV 6226 47714 7.7 222 218 4 1 75%
CIDER 7530 70028 9.3 195 181 14 1 93%
DSSim 3922 36343 9.3 184 179 5 0 100%
Lily 15468 74352 4.8 218 210 8 4 50%
RiMOM 15942 78219 4.9 235 221 14 5 64%
SAMBO 3800 28655 7.5 197 196 1 0 100%
SAMBOdtf 8586 59211 6.9 206 202 4 2 50%

C07
Falcon 6847 12414 1.8 70 56 14 4 71%
OLA 39830 73497 1.8 404 228 176 27 85%

C08
ASMOV 13289 23425 1.8 153 128 25 10 60%
Lily 4604 14609 3.2 78 63 15 3 80%

Based on the f-measure differences we conclude that in 13 of 16 testcases we in-
creased the overall quality of the alignment. Notice again that these results are aggre-
gated average values. Taking a closer look at the individual results for each generated
alignment (not depicted in Table 2), we observe that in 15 cases our approach has neg-
ative effects on the f-measure, in 14 cases we observed no effects at all, and in 51 cases
we measured an increased f-measure. Obviously, this effect is based on an increased
precision and a stable or only slightly decreased recall. Nevertheless, there are some
exceptions to this pattern.

On the one hand we have negative results for Bd
08-DSSim, C08-ASMOV and Cd

08-
ASMOV. Due to characteristics of a local optimal diagnosis an incorrect correspon-
dence might cause the removal of all conflicting correspondences with lower confidence
given that there exists no conflicting correspondence with higher confidence. An anal-
ysis of the individual results revealed that the negative effects are based on this pattern,
i.e. an incorrect correspondence has been annotated with very high confidence and no
’antagonist’ has been annotated with higher confidence.

On the other hand we measured strong positive effects for the OLA system on the
conference dataset. These effects are associated with the large size of the alignments
generated by OLA. It seems that, compared to the other submissions, the matching
results of OLA have not been filtered or thresholded in an appropriate way. OLA gen-
erated a total of 404 correspondences with respect to our C datasets. For the original
dataset C (no disjointness axioms added) 176 of these correspondences have been auto-
matically removed by our approach and only 2 of these removals were incorrect, which
raised the f-measure from 20.8% to 31.6% (from 20.8% to 38.1% for the Cd dataset).
Notice that our algorithm expects no parameter which corresponds to a threshold or an
estimated size of the reference alignment. Instead of that the algorithm automatically
adapts to the quality of the input due to the fact that a highly incorrect alignment will
be higly incoherent. Overall, the results indicate that our approach does not only ensure
the quality of the input alignment but even more has significant positive effects.

194 C. Meilicke and H. Stuckenschmidt

Table 2. Alignment size, size of diagnosis and number of correctly removed correspondences;
effects on precision, recall, and f-measure

DS Matcher |A| |Δ| |Δ \ R| Prec. A 	 A′ Rec. A 	 A′ F-m. A 	 A′ Effect

Bd
08

Aroma 202 8 7 80.2 	 83.0 70.1 	 69.7 74.8 	 75.8 +0.9
ASMOV 222 4 3 78.4 	 79.4 75.3 	 74.9 76.8 	 77.1 +0.2
CIDER 195 14 5 87.2 	 89.0 73.6 	 69.7 79.8 	 78.2 -1.7
DSSim 184 5 5 87.5 	 89.9 69.7 	 69.7 77.6 	 78.5 +0.9
Lily 218 8 8 83.0 	 86.2 78.4 	 78.4 80.6 	 82.1 +1.5
RiMOM 235 14 14 78.3 	 83.3 79.7 	 79.7 79.0 	 81.4 +2.4
SAMBO 197 1 1 91.9 	 92.3 78.4 	 78.4 84.6 	 84.8 +0.2
SAMBOdtf 206 4 4 88.3 	 90.1 78.8 	 78.8 83.3 	 84.1 +0.8

C07
Falcon 70 14 11 65.7 	 76.8 60.5 	 56.6 63.0 	 65.2 +2.1
OLA 404 176 174 12.4 	 21.1 65.8 	 63.2 20.8 	 31.6 +10.7

C08
ASMOV 153 25 20 22.9 	 23.4 46.1 	 39.5 30.6 	 29.4 -1.2
Lily 78 15 13 44.9 	 52.4 46.1 	 43.4 45.5 	 47.5 +2.0

Cd
07

Falcon 70 17 14 65.7 	 81.1 60.5 	 56.6 63.0 	 66.7 +3.7
OLA 404 228 226 12.4 	 27.3 65.8 	 63.2 20.8 	 38.1 +17.3

Cd
08

ASMOV 153 33 27 22.9 	 24.2 46.1 	 38.2 30.6 	 29.6 -1.0
Lily 78 21 17 44.9 	 54.4 46.1 	 40.8 45.5 	 46.6 +1.2

Related work. In [13] Qi et. al. propose a kernel revision operator for description logic-
based ontologies. A revision deals with the problem of incorporating newly received in-
formation into accepted information consistently. Within their experiments the authors
apply their approach amongst others to the revision of ontology alignments, where the
matched ontologies are accepted information and the alignment between them is new
and disputable information. Two of the algorithms proposed require to compute all
MIPSS (A,O1,O2) in order to construct a minimal hitting set, while their third and
most efficient algorithm cannot ensure the minimality of the constructed hitting set. We
conducted additional experiments with the alignments used in [13]. We did not include
these as part of the main experiments, because the datasets do not contain correspon-
dences between properties and are not as comprehensive as the datasets used within our
experiments. However, we observed runtimes between 50 and 250 milliseconds, while
in [13] runtimes between 6 and 51 seconds have been reported for the fastest algorithm.

An approach, which aims to explain logical consequences of an alignment, has been
proposed in [6]. Some of these consequences are unintended due to incorrect corre-
spondences inA and cannot be accepted. An example of an unintended consequence is
a concept becoming unsatisfiable due toA. Such an alignment is referred to as incoher-
ent within our framework. To generate plans for repairing a defect alignment, first, all
justifications for the unintended consequences are computed. While in [13] all MIPS are
used to compute a minimal hitting set, in [6] all justifications are used to compute min-
imal hitting sets referred to as a repair plans. The authors point out, that the bottleneck
of their approach is the computation of all justifications.

In summary, both approaches suffer from the incorrect assumption that a minimal
hitting set can only be constructed given complete knowledge about all MIPS respec-
tively all justifications. Contrary to this, we have shown that it is possible to compute a

An Efficient Method for Computing Alignment Diagnoses 195

specific hitting set, namely a local optimal diagnosis, that is not only minimal but also
takes into account confidence values in an appropriate manner.

6 Conclusion

We have presented a basic algorithm for computing a local optimal diagnosis as well
as an efficient variant, which makes use of an intertwined combination of incomplete
and complete reasoning techniques. These algorithms are based on precise logic-based
semantics of an alignment. Although, we only focused on specific type of semantics,
namely the natural semantics, there is some evidence that the principles of our approach
can be applied to each reductionistic alignment semantics.

It turned out that the efficient variant of our algorithm outperformed the basic algo-
rithm by a factor of ≈ 2 to 10. In particular, we observed that the runtime is first and
foremost determined by the fraction of conflicts detectable by the incomplete reasoning
procedures. In future work we will add additional reasoning patterns in order to detect
more conflicts by efficient reasoning strategies.

Our algorithm improves in most cases an alignments f-measure due to an increased
precision. However, we detected some outliers where a highly confident but incorrect
correspondence had negative impact on the repairing process. An approach that removes
a minimum number of correspondences would probably remove such a correspondence.
Generally, it is not clear whether the principle of minimal change is a good guideline
for repairing alignments. Experiments we conducted so far show inconclusive results
and require additional analysis.

We already pointed to some problems of other approaches. We believe that these
problems are based on not taking into account three specifics of the problem under dis-
cussion. First, correspondences are annotated with confidence values. Second, there are
significantly less correspondences in an alignment than axioms in the matched ontolo-
gies. Third, given the monotonicity of S, everything that holds in O1 and O2 holds
also in the merged ontologyO1 ∪SA O2. The first observation was taken into account in
the definition of a local optimal diagnosis, the second observation points to the possi-
bility of iterating over all correspondences (the main loop in both algorithms), and the
third observation is exploited within the combination of pattern-based reasoning and
reasoning in the merged ontology.

Acknowledgement. The work has been partially supported by the German Science
Foundation (DFG) under contract STU 266/3-1 and STU 266/5-1.

References

1. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. Journal on Data Semantics (2003)

2. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
3. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-

completeness. W. H. Freeman and Company, New York (1979)
4. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and implemen-

tation. Journal on Data Semantics (2007)

196 C. Meilicke and H. Stuckenschmidt

5. Jean-Mary, Y.R., Kabuka, M.R.: Asmov: Results for OAEI 2008. In: Proc. of the ISWC 2008
workshop on ontology matching, Karlsruhe, Germany (2008)

6. Jimenez-Ruiz, E., Grau, B.C., Horrocks, I., Berlanga, R.: Ontology integration using map-
pings: Towards getting the right logical consequences. In: Proc. of the 6th Annual European
Semantic Web Conference, Heraklion, Crete, Greece (2009)

7. Meilicke, C., Stuckenschmidt, H.: Applying logical constraints to ontology matching. In:
Proc. of the 30th German Conference on Artificial Intelligence, Osnabrück, Germany (2007)

8. Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of on-
tology mappings. In: Proc. of the ISWC 2008 Workshop on Ontology Matching, Karlsruhe,
Germany (2008)

9. Meilicke, C., Stuckenschmidt, H.: An efficient method for computing a local optimal align-
ment diagnosis. Technical report, University Mannheim, Computer Science Institute (2009)

10. Meilicke, C., Stuckenschmidt, H., Svab-Zamazal, O.: A reasoning-based support tool for on-
tology mapping evaluation. In: Proc. of the European Semantic Web Conference, Heraklion,
Greece (2009)

11. Meilicke, C., Tamilin, A., Stuckenschmidt, H.: Repairing ontology mappings. In: Proc. of
the Twenty-Second Conference on Artificial Intelligence, Vancouver, Canada (2007)

12. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings
between lightweight ontologies. In: Proc. of the 16th International Conference on Knowledge
Engineering and Knowledge Management, Acitrezza, Italy (2008)

13. Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A kernel revision operator for
terminologies - algorithms and evaluation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 419–434.
Springer, Heidelberg (2008)

14. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence (1987)
15. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description

logic terminologies. In: Proc. of 18th International Joint Conference on Artificial Intelli-
gence, Acapulco, Mexico (2003)

16. Serafini, L., Tamilin, A.: Local tableaux for reasoning in distributed description logics. In:
Proc. of the Int. Workshop on Description Logics, Whistler, Canada (2004)

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Journal of Web Semantics (2007)

Paraconsistent Reasoning for OWL 2

Yue Ma1 and Pascal Hitzler2,�

1 Institute LIPN, Université Paris-Nord (LIPN - UMR 7030), France
2 Institute AIFB, Universität Karlsruhe, Germany

yue.ma@lipn.univ-paris13.fr, pascal@pascal-hitzler.de

Abstract. A four-valued description logic has been proposed to reason with de-
scription logic based inconsistent knowledge bases. This approach has a distinct
advantage that it can be implemented by invoking classical reasoners to keep the
same complexity as under the classical semantics. However, this approach has
so far only been studied for the basic description logic ALC. In this paper, we
further study how to extend the four-valued semantics to the more expressive de-
scription logic SROIQ which underlies the forthcoming revision of the Web
Ontology Language, OWL 2, and also investigate how it fares when adapted to
tractable description logics including EL+ +, DL-Lite, and Horn-DLs. We de-
fine the four-valued semantics along the same lines as forALC and show that we
can retain most of the desired properties.

1 Introduction

Expressive and tractable description logics have been well-studied in the field of se-
mantic web methods and applications, see e.g. [22,6]. In particular, description logics
are the foundations of the Web Ontology Language OWL [7,17] and its forthcoming
revision, OWL 2 [24]. However, real knowledge bases and data for Semantic Web ap-
plications will rarely be perfect. They will be distributed and multi-authored. They will
be assembled from different sources and reused. It is unreasonable to expect such real-
istic knowledge bases to be always logically consistent, and it is therefore important to
study ways of dealing with inconsistencies in both expressive and tractable description
logic based ontologies, as classical description logics break down in the presence of
inconsistent knowledge.

About inconsistency handling of ontologies based on description logics, two funda-
mentally different approaches can be distinguished. The first is based on the assumption
that inconsistencies indicate erroneous data which is to be repaired in order to obtain
a consistent knowledge base, e.g. by selecting consistent subsets for the reasoning pro-
cess [21,8,5]. The other approach yields to the insight that inconsistencies are a natural
phenomenon in realistic data which are to be handled by a logic which tolerates it
[20,23,13]. Such logics are called paraconsistent, and the most prominent of them are
based on the use of additional truth values standing for underdefined (i.e. neither true
nor false) and overdefined (or contradictory, i.e. both true and false). Such logics are
appropriately called four-valued logics [1]. We believe that either of the approaches

� The second author is now at Kno.e.sis Center, Wright State University, Dayton, OH, USA.

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 197–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 Y. Ma and P. Hitzler

is useful, depending on the application scenario. Besides this, four-valued semantics
proves useful for measuring inconsistency of ontologies [16], which can provide con-
text information for facilitating inconsistency handling.

In this paper, we extend our study of paraconsistent semantics for ALC from [13].
This approach has the pleasing two properties that (1) reasoning under the paraconsis-
tent semantics can be reduced to reasoning under classical semantics and (2) the trans-
formations required for the reduction from the paraconsistent semantics to the classical
semantics is linear in the size of the knowledge base. In this paper, we will carry these
results over to SROIQ, which underlies OWL 2,1 and also study its impact for sev-
eral tractable description logics around OWL 2. We also present a slight modification
to the semantics presented in [13]. In more detail, the contributions of the paper are as
follows.

– The extension of four-valued semantics to SROIQ is defined. Specially, we show
that it still can be reduced to classical semantics regardless its high expressivity.

– The four-valued semantics is studied for the tractable description logics EL++,
Horn-DLs, and DL-Lite, for some of these adaptations of the semantics are made.
We show that under certain restrictions our approach retains tractability.

– Compared with our existing work on four-valued semantics forALC, in this paper,
we do not impose four-valued semantics on roles (with the exception of DL-Lite).
The reasons are: (1) Negative roles are not used as concept constructors in ALC,
SROIQ, EL++, or Horn-DLs2 such that contradiction caused directly by roles
can safely be ignored. (2) This modified four-valued semantics is more similar to
the classical semantics. (3) Four-valued semantics is semantically weaker than the
classical semantics which means that there are undesired missing conclusions under
the semantics from [13], which is not the case in our modified approach.

The paper is structured as follows. We first review briefly the four-valued semantics
forALC in Section 2. Then we study the four-valued semantics for expressive descrip-
tion logics in Section 3 and four-valued semantics for tractable description logics in
Section 4, respectively. We conclude and discuss future work in Section 5.

This paper is an extension and revision of the workshop paper [14].

2 Preliminaries

2.1 The Four-Valued Semantics for ALC – with a Slight Modification

We describe the syntax and semantics of four-valued description logicALC4 from [13]
with a slight modification. Syntactically, ALC4 hardly differs from ALC. Complex
concepts and assertions are defined in exactly the same way. For general class inclusion

1 We will actually not deal with aspects of OWL 2 which are not part of SROIQ, such as
datatypes, keys, etc. We also ignore disjoint roles.

2 Note that OWL 2 allows negative property assertions like ¬R(a, b) in the ABox; however
they can be considered syntactic sugar on top of SROIQ since they can be written as {a} �
∀R.¬{b}. In this paper, we assume that all negative property assertions have been rewritten in
this way.

Paraconsistent Reasoning for OWL 2 199

(GCI) axioms, however, significant effort has been devoted on the intuitions behind
these different implications in [13]. For the four-valued semantics, three different kinds
of inclusions can be used, as follows. They serve different underlying intuitions and
differ in inferential strength. A detailed discussion of this has been presented in [13]
which we will not repeat here.

C �→ D (material inclusion axiom),

C
 D (internal inclusion axiom),

C → D (strong inclusion axiom).

Semantically, interpretations map individuals to elements of the domain of the inter-
pretation, as usual. For concepts, however, modifications are made to the notion of
interpretation in order to allow for reasoning with inconsistencies.

Intuitively, in four-valued logic we need to consider four situations which can occur
in terms of containment of an individual in a concept: (1) we know it is contained, (2)
we know it is not contained, (3) we have no knowledge whether or not the individual
is contained, (4) we have contradictory information, namely that the individual is both
contained in the concept and not contained in the concept. There are several equivalent
ways how this intuition can be formalized, one of which is described in the following.

For a given domain ΔI and a concept C, an interpretation over ΔI assigns to C
a pair 〈P, N〉 of (not necessarily disjoint) subsets of ΔI . Intuitively, P is the set of
elements known to belong to the extension of C, while N is the set of elements known
to be not contained in the extension of C. For simplicity of notation, we define functions
proj+(·) and proj−(·) by proj+〈P, N〉 = P and proj−〈P, N〉 = N. If for some x ∈ ΔI

and some concept C, x ∈ proj+(CI) ∩ proj−(CI), then we write CI(x) = B, where
B is a truth value under four-valued semantics representing contradiction state.

Formally, a four-valued interpretation is a pair I = (ΔI , ·I) with ΔI as domain,
where ·I is a function assigning elements of ΔI to individuals, and subsets of (ΔI)2

to concepts, such that the conditions in Table 1 are satisfied. Note that the semantics of
roles here remains unchanged from the classical two-valued case, and in this point the
semantics presented here differs from that in [13]. Intuitively, inconsistencies always
arise on concepts, and not on roles, at least in the absence of role negation, which is
often assumed when studying DLs. We will see in this paper that this approach can be
used to tolerate inconsistency, not only forALC but also for more expressive description
logics. This is an improvement over [13] in the sense that we would like to make as few
changes as possible when extending the classical semantics to a four-valued semantics
for handling inconsistency.

The semantics of the three different types of inclusion axioms is formally defined
in Table 2 (together with the semantics of concept assertions). Again we refer to the
discussions in [13] for details.

We say that a four-valued interpretation (a 4-interpretation) I satisfies a four-valued
knowledge base O (i.e. is a model, or 4-model, of it) iff it satisfies each assertion and
each inclusion axiom in O. A knowledge base O is satisfiable (unsatisfiable) iff there
exists (does not exist) such a model. We write O |=4 α for O and an axiom α if and
only if each 4-valued model of O is a model of α. Moreover, if O and O′ have a same
set of 4-valued models, we denote O =4 O′.

200 Y. Ma and P. Hitzler

Table 1. Semantics of ALC4 Concepts

Constructor Syntax Semantics

A AI = 〈P, N〉, where P, N ⊆ ΔI

R RI ⊆ ΔI ×ΔI

o oI ∈ ΔI

� 〈ΔI , ∅〉
⊥ 〈∅, ΔI〉

C1 � C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 � C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ RI and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ RI implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ RI implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ RI and y ∈ proj−(CI)}〉

Table 2. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics

material inclusion C1 �→ C2 ΔI \ proj−(CI
1) ⊆ proj+(CI

2)
internal inclusion C1
 C2 proj+(CI

1) ⊆ proj+(CI
2)

strong inclusion C1 → C2 proj+(CI
1) ⊆ proj+(CI

2) and
proj−(CI

2) ⊆ proj−(CI
1)

individual assertions C(a) aI ∈ proj+(CI)
R(a, b) (aI , bI) ∈ RI

2.2 Reduction from Four-Valued Semantics of ALC to Classical Semantics

It is a pleasing property of ALC4, that it can be translated easily into classical ALC,
such that paraconsistent reasoning can be simulated by using standard ALC reasoning
algorithms.

Definition 1. (Concept transformation) For any given concept C, its transformation
π(C) is the concept obtained from C by the following inductively defined transforma-
tion.

– If C = A for A an atomic concept, then π(C) = A+, where A+ is a new concept;
– If C = ¬A for A an atomic concept, then π(C) = A′, where A′ is a new concept;
– If C = �, then π(C) = �;
– If C = ⊥, then π(C) = ⊥;
– If C = E �D for concepts D, E, then π(C) = π(E) � π(D);
– If C = E D for concepts D, E, then π(C) = π(E) π(D);
– If C = ∃R.D for D a concept and R is a role, then π(C) = ∃R.π(D);
– If C = ∀R.D for D a concept and R is a role, then π(C) = ∀R.π(D);
– If C = ¬¬D for a concept D, then π(C) = π(D);

Paraconsistent Reasoning for OWL 2 201

– If C = ¬(E �D) for concepts D, E, then π(C) = π(¬E) π(¬D);
– If C = ¬(E D) for concepts D, E, then π(C) = π(¬E) � π(¬D);
– If C = ¬(∃R.D) for D a concept and R is a role, then π(C) = ∀R.π(¬D);
– If C = ¬(∀R.D) for D a concept and R is a role, then π(C) = ∃R.π(¬D);

Based on this, axioms are transformed as follows.

Definition 2. (Axiom Transformations) For any ontology O, π(O) is defined as the set
{π(α) | α is an axiom of O}, where π(α) is the transformation performed on each
axiom defined as follows:

– π(α) = ¬π(¬C1) � π(C2), if α = C1 �→ C2;
– π(α) = π(C1) � π(C2), if α = C1
 C2;
– π(α) = {π(C1) � π(C2), π(¬C2) � π(¬C1)}, if α = C1 → C2;.
– π(C(a)) = π(C)(a), π(R)(a, b) = R(a, b),

where a, b are individuals, C1, C2, C are concepts, R is a role.

We note two issues. First, the transformation algorithm is linear in the size of the on-
tology. Second, for any ALC ontology O, π(O) is still an ALC ontology. Based on
these two observations as well as the following theorem, we can see that paraconsis-
tent reasoning of ALC can indeed be simulated on standard reasoners by means of the
transformation just given.

Theorem 1. For any ontology O in ALC we have O |=4 α if and only if π(O) |=2
π(α), where |=2 is the classical ALC entailment.

The following definition, also employed in [13], will be required to ensure that knowl-
edge bases which are inconsistent under the classical semantics become consistent, after
transformation, under the four-valued semantics – see Proposition 4.

Definition 3. Given a knowledge base O, the satisfiable form of O, written SF(O), is a
knowledge base obtained by replacing each occurrence of ⊥ in O with Anew � ¬Anew,
and replacing each occurrence of � in (O) with Anew ¬Anew, where Anew is a new
atomic concept.

3 Paraconsistent Semantics for Expressive DLs

In this section, we study how to extend four-valued semantics to SROIQ. For the
conflicting assertion set {≥ (n + 1)R.C(a),≤ nR.C(a)}, intuitively, it is caused by
the contradiction that there should be less than n different individuals related to a via
the R relation, and also there should be more than n + 1 different individuals related
to a via R. That is, the contradiction is from the set of individuals of concept C which
relate a via R. By this idea, we extend the four-valued semantics to the constructors for
number restrictions (with four-valued semantics to nominal) in Table 3, where #(S)
stands for the cardinality of a set S. We remark that the semantics of roles is just the
classical semantics. So the semantics for role axioms are still classical.

We give the following example to illustrate the intuition of our four-valued semantics
for number restrictions ≥ nR.C given above.

202 Y. Ma and P. Hitzler

Table 3. Four-valued Semantics Extension to Number Restrictions and Nominals

Constructor Semantics

≥ nR.C 〈{x | #(y.(x, y) ∈ RI ∧ y ∈ proj+(CI)) ≥ n},
{x | #(y.(x, y) ∈ RI ∧ y �∈ proj−(CI)) < n}〉

≤ nR.C 〈{x | #(y.(x, y) ∈ RI ∧ y �∈ proj−(CI)) ≤ n},
{x | #(y.(x, y) ∈ RI ∧ y ∈ proj+(CI)) > n}〉

{o1, ...on} 〈{oI
1, ..., o

I
n}, N〉, where N ⊆ ΔI

Example 1. Consider the knowledge base

{≥ 2hasStu.PhD(Green),≤ 1hasStu.PhD(Green)}

which states the conflicting facts that Green has at least two and at most one PhD stu-
dent. Consider a 4-interpretation I = (ΔI , ·I) where ΔI = {a1, a2, b1, b2, Green},
PhDI = 〈{a1, b1}, {b1, b2, a2}〉, hasStuI = {(Green, a1), (Green, a2), (Green, b1),
(Green, b2)}. According to Table 3, I is a 4-model because (≥2hasStu.PhD(Green))I

= (≤ 1hasStu.PhD(Green))I = B and by checking

Green ∈ {x | #(y.(x, y) ∈ hasStuI ∧ y ∈ proj+(PhDI)) ≥ 2},
Green ∈ {x | #(y.(x, y) ∈ hasStuI ∧ y �∈ proj−(PhDI)) < 2}.

This example shows that the contradictions on the constructor of number restriction
≥ nR.C is reflected by the contradiction on C, which is our underlying idea of Table
3. Generalizing this example, we have the following property which shows that if we
have contradictions of the form of {≥nR.C(a),≤mR.C(a)} ⊆ O with (m < n), then
there will be at least n −m individuals relating a via R and contradictorily belonging
to concept C under its four-valued model:

Proposition 2. Given an ontology O, if {≥nR.C(a),≤mR.C(a)} ⊆ O and m < n,
then for any four-valued interpretation I of O, we have

#{b | (a, b) ∈ RI and CI(b) = B} ≥ n−m.

Proof. Suppose CI = 〈P, N〉, denote T = {y | (a, y) ∈ RI}, T1 = {y | (a, y) ∈ RI ∧
y ∈ P}, T1 = {y | (a, y) ∈ RI ∧ y ∈ N}. It is equal to prove that |T1 ∩ T2| ≥ n−m.

From the assumption and Table 3, we have a ∈ {x | #(y.(x, y) ∈ RI∧y ∈ P) ≥ n}
and a ∈ {x | #(y.(x, y) ∈ RI∧y �∈ N) ≤ m}. That is, #(y.(a, y) ∈ RI∧y ∈ P) ≥ n
and #(y.(a, y) ∈ RI ∧ y �∈ N) ≤ m, which means |T1| ≥ n and |T | − |T2| ≤ m,
Then, it is easy to see that |T1| + |T2| ≥ |T | + n −m. Because T1 ⊆ T, T2 ⊆ T , we
have |T1 ∩ T2| ≥ n−m. �

The underlying idea of the four-valued semantics for nominals is that if the contra-
diction occurs on a nominal concept, then we explicitly collect the contradictory in-
dividuals into the proj− part of the four-valued semantics of the nominal such that a
four-valued model exists. We explain this by the following example.

Paraconsistent Reasoning for OWL 2 203

Let O = {EuropeanState � ∃currency.{euro}, (∀currency.¬{euro})(UK),
EuropeanState(UK)} which says that European countries have euro as their cur-
rency and UK is a European country whose currency is not euro. We can find a 4-
model I = 〈ΔI , ·I〉 for O, with ΔI = {UnitedKingdom, curreuro} and UKI =
UnitedKingdom, euroI = curreuro, EuropeanStateI =〈{UnitedKingdom}, ∅〉,
currencyI = {(UnitedKingdom, curreuro)} and the contradictory ({euro})I =
〈{curreuro}, {curreuro}〉. This model says that the currency curreuro belongs to the
concept {euro} contradictorily. That is, we have conflicting information about whether
the currency of Uk, which reflects the contradictory situation described in O.

For the extended four-valued semantics defined in Table 3, we have that the following
properties hold as under the classical semantics; proofs can be obtained by carefully
checking the definition of four-valued semantics.

Proposition 3. Let C be a concept and R be an object role name. For any four-valued
interpretation I defined satisfying Table 3, we have

(¬(≤ nR.C))I =4 (> nR.C)I and (¬(≥ nR.C))I =4 (< nR.C)I .

(∃R.C)I =4 (≥ 1R.C)I and (∀R.C)I =4 (< 1R.¬C)I .

Propositions 3 shows that many intuitive relations between different concept construc-
tors still hold under the four-valued semantics, which is one of the nice properties of
our four-valued semantics for handling inconsistency.

The next proposition shows that our definition of four-valued semantics for SROIQ
is enough to handle inconsistencies in a SROIQ knowledge base.

Proposition 4. For any SROIQ knowledge base O, SF(O) always has at least one
4-valued model, where SF(·) operator is defined in Definition 3.

Proof. We can prove that SF(O) has the following 4-valued model I: AI = 〈ΔI , ·I〉
for each concept name A ∈ SF(O), {o1, ..., on}I =〉{oI

1, ..., o
I
n}, ΔI〈 and proj+(RI) =

ΔI ×ΔI for each role name R, where #(ΔI) ≥ n. We prove this in two steps. First, it
is not difficult to see that for any instance a ∈ ΔI ,

a ∈ proj+((≥ nR.C)I) = {x | #(y.(x, y) ∈ proj+(RI) ∧ y ∈ proj+(CI)) ≥ n} and

a ∈ proj−((≥ nR.C)I) = {x | #(y.(x, y) ∈ proj+(RI) ∧ y �∈ proj−(CI)) < n}.

So (≥ nR.C)I = 〈ΔI , ΔI〉. Similarly, (≤ nR.C(a))I = 〈ΔI , ΔI〉 can be proved.
Secondly, we can easy see that every GCI axiom, in the form of C(a), R(a, b), C �→

D, C
 D or C → D, is satisfied in I according to Table 2. For every role inclusion
axiom R � S and role transitivity axiom Trans(R), they hold because all roles are
interpreted on ΔI ×ΔI . �

Note that unqualified number restrictions, ≥ n.R and ≤ n.R are special forms of num-
ber restrictions because ≤ n.R equals to ≤ nR.� and ≥ n.R equals to ≥ nR.�.
However, if we defined the four-valued semantics of≤ n.R(≥ n.R) by the four-valued
semantics of ≤ nR.�(≥ nR.�) defined in Table 3 and Table 1, we would find that
{≤ n.R(a),≥ n + 1.R(a)} is still an unsatisfiable set. This is because the following

204 Y. Ma and P. Hitzler

two inequations cannot hold simultaneously since �I = 〈ΔI , ∅〉:

#(y.(a, y) ∈ proj(RI) ∧ y ∈ proj+(�I)) ≥ n + 1
#(y.(a, y) ∈ proj(RI) ∧ y �∈ proj−(�I)) ≤ n

To address this problem, we also adopt the substitution defined by Definition 3. By
substituting � by Anew ¬Anew in ≥ (n + 1)R.� and ≤ nR.�, we can see that {≤
n.R(a),≥ n + 1.R(a)} has a four-valued model with ΔI = {a, b1, ..., bn+1}, (a, bi) ∈
RI for 1 ≤ i ≤ n + 1, and AI

new = 〈ΔI , ΔI〉. By doing this, we get a four-valued
model I which pushes the contradiction onto the new atomic concept Anew.

Next we study how to extend the reduction algorithm to the case of four-valued
semantics of SROIQ.

Definition 4. (Definition 1 extended) For any concept C, its transformation π(C) is the
concept obtained from C by the following inductively defined transformation.

– If C =≥ nR.D for D a concept and R a role, then π(C) =≥ nR.π(D);
– If C =≤ nR.D for D a concept and R a role, then π(C) =≤ nR.¬π(¬D);
– If C = ¬(≥ nR.D) for D a concept and R a role, then π(C) =< nR.¬π(¬D);
– If C = ¬(≤ nR.D) for D a concept and R a role, then π(C) => nR.π(D);
– For nominal {o1, ..., on}, π({o1, ..., on}) = {o1, ..., on}.
– For negated nominal ¬{o1, ..., on}, π(¬{o1, ..., on}) = {o1, ..., on}′ which is a

new nominal.

Regarding both the extension of number restrictions and of nominals, the following
theorem holds, which lays the theoretical foundation for the algorithm of four-valued
semantics for expressive DLs.

Theorem 5. (Theorem 1 extended) For any ontology O in SROIQ, we have O |=4 α
if and only if π(O) |=2 π(α), where |=2 is the entailment in classical SROIQ.

Proof. By carefully checking the proof of Theorem 1 [13], we find that the decompos-
ability of four-valued semantics to two-valued semantics [15] is key to the claim. It is
not difficult to check that the number restriction and nominal constructors satisfy the
decomposability. �

4 Tractable DLs

The forthcoming revision of the Web Ontology Language features so-called profiles
which are sublanguages of OWL 2 that have desirable properties like polynomial time
complexities [19]. In the following, we examine such tractable languages, more pre-
cisely EL++, which corresponds to OWL 2 EL, DL-Lite, which corresponds to OWL 2
QL, and Horn-SHOIQ, which is an extension of OWL 2 RL.

We will see that inconsistencies are also unavoidable in these tractable DLs, therefore
we consider how to deal with inconsistencies by our approach. We focus on discussing
whether the four-valued semantics can preserve the tractability of these tractable DLs.
That is, whether the reduction for computing the four-valued semantics
transfers tractable DLs still into tractable DLs. If it does, then we can use the four-valued
semantics to deal with inconsistency without having to worry about intractability.

Paraconsistent Reasoning for OWL 2 205

4.1 EL++

We do not consider concrete domains. The syntax definition of EL++ knowledge bases
is shown in Table 4. EL++ ontologies may also contain role inclusions (RI) of the form
r1 ◦ · · · ◦ rk � r, where ◦ denotes role composition.

Table 4. EL++ and Horn-SHOIQ◦. The Horn-SHOIQ◦ normal form used is due to [11].

Language GCIs Tractability-preserving Inclusions

EL+ + C � D, where C, D = � | ⊥ | {a} |
C1 � C2 | ∃r.C

internal inclusion (only)

Horn-SHOIQ◦ � � A, A � ⊥, A �A′ � B, internal inclusion (only)
∃R.A � B, A � ∃R.B, A � ∀S.B,
A �≥ nR.B, A �≤ 1R.B.

It is easy to see that an EL++ knowledge base may be inconsistent if we consider
the knowledge base {A � ⊥, A(a)}3. So we still hope that the 4-valued semantics can
help us to handle inconsistency in EL++ knowledge bases. However, we will see that
we don’t have as many choices of class inclusion as inALC and SROIQ if we want to
maintain the tractability of the 4-valued entailment relationship of EL++. The analysis
is as follows.

Obviously, the concept transformation of Definition 1 performing on an EL++ con-
cept produces an EL++ concept. For the transformation of internal inclusion, each
EL++ axiom C
 D is transformed into π(C) � π(D) where π(C) and π(D)
are still EL++ concepts, so that π(C) � π(D) is still an EL++ axiom. So internal
class inclusion does not destroy the tractability of EL++. This property does not hold
for material and strong class inclusions as shown by the following counterexamples:
A � AA �→ B and A � AA → B. They will be transformed into ¬(A′ AA′) � B+

and {A+ � AA+ � B+, B′ � (A′ AA′)} by Definition 2, which are not within the
expressivity of EL++. This is mainly because of no negative constructor in EL++.

For role inclusions in EL++, since there is no negative role constructor which can
cause inconsistency, we only need to use the classical interpretation for roles as what
we do forALC. So adaptation of 4-valued semantics does not affect the role inclusions
axioms.

Theorem 6. For any give EL++ ontology O and axiom α, O |=4 α if and only if
π(O) |=2 π(α). Moreover, if all of the inclusion axioms in O are interpreted as internal
inclusion under its four-valued semantics, then π(O) is an EL++ ontology.

Proof. By Theorem 1, it is obvious that O is 4-satisfiable if and only if π(O) is two-
valued satisfiable. For any inclusion axiom of O, by definition 1 and definition 4, by
induction on the construe of concepts of EL++, we can easily get that for any EL++

3 Note that to enable four-valued models on this ontology, we still need to first perform the
substitution defined in Definition 3.

206 Y. Ma and P. Hitzler

concept C, π(C) is still an EL++ concept. Because for any internal inclusion axiom
C
 D, π(C
 D) = π(C) � π(D) is an EL++ axiom since π(C) and π(D) are
EL++ concepts. Therefore, π(O) = {π(C) � π(D) | C
 D ∈ O} is a classical
EL++ ontology. �

4.2 Horn-DLs

We ground our discussion on Horn-SHOIQ◦ as defined in [11]. Then we will point
out that the same conclusion holds for other Horn-DLs, like Horn-SHOIQ [18], which
has tractable data complexiy [9]. We define Horn-SHOIQ◦ by means of a normal form
given in [11], which can be found in Table 4 where A, A′, B are concept names.

We can see that all of the Horn-SHOIQ◦ concept constructors preserve its form
under π(·) operator except ≤ 1R.B, because π(≤ 1R.B) =≤ 1R.¬B′ according to
Definition 4. To still maintain the concept structure of≤ 1R.B within Horn-SHOIQ◦,
we redefine the π(·) as follows

Definition 5. For any Horn-SHOIQ◦ concept C, πHorn(C) is inductively defined as
follows:

– πHorn(C) = π(C), if C = �, A,⊥, A �B, ∃R.A, ∀S.B,≥ nR.B;
– πHorn(≤1R.B) = ≤1R.B=, where B= �B′ � ⊥, B= is a new concept name,
– πHorn(¬(≤1R.B)) = ≥2R.B.

By Definitions 5 and 2, the transformations for material inclusion axiom A �→ ≤1R.B,
internal inclusion axiom A
 ≤1R.B and strong inclusion axiom A → ≤1R.B are as
follows:

πHorn(A �→ ≤1R.B) = {¬A′ � ≤1R.B=, B= �B′ � ⊥}.
πHorn(A
 ≤1R.B) = {A � ≤1R.B=, B= �B′ � ⊥}.
πHorn(A → ≤1R.B) = {A � ≤1R.B=, B= �B′ � ⊥,≥ 2R.B � A′}.

Obviously, πHorn(A
 ≤1R.B) is Horn-SHOIQ◦ ontology, but others are not. An-
other counterexample for material inclusion and strong inclusion that their transforma-
tion cannot guarantee within Horn-SHOIQ◦ expressivity is the one used in the EL++
case. The transformed forms ¬(A′ AA′) � B+ and {A+ � AA+ � B+, B′ �
(A′ AA′)} are not within the expressivity of Horn-SHOIQ◦. Since A � AA � B
is allowed in other Horn-DLs, the same conclusion as for Horn-SHOIQ◦ holds. This
means that when we want ro preserve the structure of tractable Horn-DLs, we have to
choose internal inclusion as the only inclusion form to perform paraconsistent reason-
ing.

Similarly to the case of EL++, we have the following theorem, which guarantees that
internal inclusion axiom can preserve the expressivity of Horn-SHOIQ◦:

Theorem 7. For any Horn-SHOIQ◦ ontology O, suppose any class inclusion axiom
in O is interpreted as internal inclusion. Then (1) πHorn(O) is a Horn-SHOIQ◦ ontol-
ogy; (2) O |=4 α if and only if πHorn(O) |=2 πHorn(α).

Paraconsistent Reasoning for OWL 2 207

Proof. By Definitions 5 and 2, the first conclusion holds obviously by observing that
πHorn(≤ 1R.A) contains a Horn-SHOIQ◦ concept and an additional Horn-SHOIQ◦
inclusion axiom under classical semantics. The second claim holds because an Horn-
SHOIQ◦ ontology is a subset of SROIQ ontology, which makes Theorem 1 guaran-
tee the validity. �

Note that the case just treated covers DLP [4], which corresponds to OWL 2 RL. In
particular, the above transformation, properly restricted, shows that DLP transforms
into DLP under internal inclusion, so tractability is preserved when the four-valued
semantics is applied.

4.3 DL-Lite

The DL-Lite family includes DL-Litecore, DL-LiteF , and DL-LiteR; the latter corre-
sponds to OWL 2 QL. The logics of the DL-Lite family are the maximal DLs supporting
efficient query answering over large amounts of instances. In [3], the usual DL reason-
ing tasks on DL-Lite family are shown to be polynomial in the size of the TBox, and
query answering is LOGSPACE in the size of the ABox. Moreover, the DL-Lite family
allows for separation between TBox and ABox reasoning during query evaluation: the
part of the process requiring TBox reasoning is independent of the ABox, and the part
of the process requiring the ABox can be carried out by a SQL engine [3].

Concepts and roles of DL-Lite family are formed by the following syntax [3]:

B ::= A | ∃R R ::= P | P−

C ::= B | ¬B E ::= R | ¬R

where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P . See to Table 5 for the syntax definitions of GCIs and Role Inclusions.

Table 5. DL-Lite Family

Language GCIs Other Axioms Tractability-preserving Inclusions

DL-Litecore B � C ∅ internal inclusion (only)

DL-LiteR B � C R � E internal inclusion (only)

DL-LiteF B � C (funct R) internal inclusion (only)

It is also easy to construct an inconsistent knowledge base even for DL-Litecore. For
instance, KB = {B � ¬A, B(a), A(a)}. Moreover, conflictions about roles possibly
occur on DL-LiteR, such as {P � S, P � ¬S, P (a, b)}.

In order to still adopt 4-valued semantics for the DL-Lite family, we define the four-
valued semantics extension for roles. Just as the four-valued semantics for concepts, a
pair 〈RP , RN〉 (RP , RN ⊆ (ΔI)2) denotes the four-valued semantics of a role R under
interpretation I , where RP stands for the set of pairs of individuals which are related
via R and RN explicitly represents the set of pairs of individuals which are not related
via R. Table 6 gives the formal definition.

208 Y. Ma and P. Hitzler

Table 6. Four-valued Semantics of DL-Lite

Syntax about Roles Semantics

R RI = 〈RP , RN 〉, where RP , RN ⊆ ΔI ×ΔI

R− (R−)I = 〈R−
P , R−

N 〉, where R−
P , R−

N represent the in-
verse relations on R−

P and R−
N , respectively.

¬R (¬R)I = 〈RN , RP 〉
∃R 〈{x | ∃y, (x, y) ∈ RI

P }, {x | ¬∃y, (x, y) �∈ RI
N}〉

¬∃R 〈{x | ¬∃y, (x, y) �∈ RI
N}, {x | ∃y, (x, y) ∈ RI

P }〉
=4 (=4)I = 〈=P , =N〉, where =P , =N⊆ (ΔI)2

(Func R) for any x, y, z ∈ ΔI , if (x, y) ∈ RP and (x, z) ∈ RP ,
then (y, z) ∈=P

For simplifying notation, we say that x and y are positively related via R under
interpretation I if (x, y) ∈ RI

P , and that x and y are negatively related via R under
interpretation I if (x, y) ∈ RI

N .
Intuitively, the first part of the four-valued semantics ∃R denotes the set of indi-

viduals x which have an individual y positively related to x via R. While the second
part of the four-valued semantics ∃R in Table 6 denotes the set of individuals x which
negatively relates to any individual y via R. Note that x is not negatively related to y
does not mean x and y are positively related under the four-valued semantics, since
RI

P ∪ RI
N = ΔI × ΔI and RI

P ∩ RI
N = ∅ are not necessary to hold under the four-

valued semantics. This is also the key point why our four-valued semantics can tolerate
conflicts caused by role assertions, by allowing a, b both positively related and nega-
tively related via R under a four-valued interpretation I . Similarly as the four-valued
semantics for concepts, by imposing RI

P ∪ RI
N = ΔI × ΔI and RI

P ∩ RI
N = ∅ on a

four-valued interpretation I , I degenerates into a two-valued interpretation.
By the following example, we can see more clearly the intuition underlying the four-

valued semantics of ∃R:

Example 2. Given ontology O = {A � ∃hasStud, A � ¬∃hasStud, A(Green)}
which is inconsistent, consider the following four-valued interpretation I = (ΔI , ·I)
with ΔI = {a, b, Green} and hasStudI = 〈{(Green, a)}, {(Green, a), (Green, b),
(Green, Green)}〉. Under this interpretation, it means that there is information that
supports Green having a student a, and there is also information which shows that
Green does not relate to any individual via role hasStudent. By checking the following
formula and by Table 6, we know that I is a 4-model of O:

Green ∈ {three exists y ∈ ΔI , such that (Green, y) ∈ hasStudI
P}

Green ∈ {for all y ∈ ΔI , (Green, y) ∈ hasStudI
N}.

Intuitively, this 4-model reflects the contradiction about Green having a student.

To define a four-valued semantics for DL-LiteF which can tolerate inconsistency, we
need to give a four-valued semantics for equality as shown in Table 6, where we use
=4 to emphasize the four-valued semantics version of equality and to distinguish from

Paraconsistent Reasoning for OWL 2 209

classical equality =, and =P stands for the set of pairs of equal individuals and =N

for the pairs of inequal individuals. To allow expressing inconsistency, the unique
name assumption (UNA) is interpreted as: for any a, b ∈ ABox, (aI , bI) ∈=N for
any 4-interpretation I . By =4, we can say that two individuals have the informa-
tion to be same. Based on this, we can define the four-valued semantics for func-
tionality axioms as shown in Table 6. Then if we have an ontology which contains
{(Func R), R(a, b), R(a, c)} and which is inconsistent under the UNA, it can have
a 4-model I by assigning (aI , bI) ∈=P ∩ =N . Now we turn to define the concept
transformations for DL-Lite.

Definition 6. The concept and role transformations for DL-Lite concepts are defined
by structural induction as follows.

– For E = R, πLite(E) = R;
– For E = ¬R, πLite(E) = R′, where R′ is a new role;
– For C = ∃R, πLite(C) = ∃R;
– For C = ¬∃R, πLite(C) = ¬∃R=, where R= is a new role name and R= � ¬R′.

Considering the internal inclusion transformation, we have that all the GCIs B � C of
DL-Lite will be transferred into the form B � C with at most an additional role in-
clusion because πLite(B � ¬∃R) = {B � ¬∃R=, R= � ¬R′}. For material inclusion
and strong inclusion, because the negative concept is not allowed to occur on the left
of a GCI, they do not preserve the DL-Lite structure. So only internal inclusion works
under the reduction from four-valued semantics to classical semantics of the DL-Lite
family to keep tractability.

Theorem 8. For any ontology DL-Lite O, O |=4 α if and only if πLite(O) |=DL-Lite

πLite(α), where |=DL-Lite means classical DL-LiteR entailment if O is DL-Litecore or
DL-LiteR; and means classical DL-LiteA [2] entailment if O is DL-LiteF .

Proof. Similarly to the cases of ALC and SROIQ, by checking the decomposability
of four-valued DL-Lite semantics to classical semantics, we can see the theorem holds
by further noting the following two facts: 1) The operator πLite(·) performing on internal
axioms which contain ¬∃R may produce a new role axiom in the form of R= � ¬R′.
2) The produced new role axioms R= � ¬R′ combining with function assertions in
DL-LiteF fall into DL-LiteA because every right-hand side of the new produced role
axiom is like ¬R′ which won’t occur in function assertions. �

5 Conclusions

In this paper, we extended on our previous study of the four-valued semantics for de-
scription logics, and especially adapted it for OWL2 and its tractable DLs. We formally
defined their four-valued semantics and proper reductions to the classical semantics,
such that all the benefits from existing reasoners on these DLs can be taken advantage
of by invoking classical reasoners after employing the presented reduction algorithms
in a preprocessing manner. Furthermore, the preprocessing transformations are linear
in the size of the knowledge bases. Unlike the four-valued semantics for ALC and

210 Y. Ma and P. Hitzler

SROIQ, we showed that in order to preserve the tractability of tractable DLs, only
internal class inclusion among the three class inclusion forms is suitable.

Our approach has already been implemented as part of the NeOn Toolkit4 plugin
RaDON. The plugin, which is described in [10], encompasses several methods for in-
consistency handling in OWL ontologies. The paraconsistent reasoning algorithm of
RaDON, which is based on the work presented in this paper, leaves it to the user to
decide how class inclusion axioms are transformed.

Future work on this topic can go into several directions. Adaptation of our approach
to obtain tractable paraconsistent reasoning support for larger tractable languages than
those presented here, e.g. for ELP [12], will enhance its potential applicability. We also
consider it important to investigate on which grounds reasonable choices for transform-
ing inclusion axioms can be made; indeed there may be alternative choices to the three
inclusion axioms presented here, which may be useful in certain contexts.

Acknowledgement. We acknowledge support by the Deutsche Forschungsgemeinschaft
(DFG) in the ReaSem project; and by OSEO, agence nationale de valorisation de la
recherche in the Quaero project. We appreciate the anonymous reviewers for their valu-
able comments.

References

1. Belnap, N.D.: A useful four-valued logic. Modern uses of multiple-valued logics, 7–73
(1977)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking
data to ontologies: The description logic DL-Lite-A. In: Proc. of the 2nd Int. Workshop on
OWL: Experiences and Directions (OWLED 2006). CEUR Electronic Workshop Proceed-
ings, vol. 216 (2006), http://ceur-ws.org/

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reason-
ing 39(3), 385–429 (2007)

4. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic
programs with description logic. In: Proceedings of the 12th International World Wide Web
Conference (WWW 2003), Budapest, Hungary, pp. 48–57. ACM, New York (2003)

5. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for
Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)

6. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

7. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

8. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Kael-
bling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 454–459. Professional Book Center (2005)

9. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive De-
scription Logics. In: Proc. of the 19th Int. Joint Conference on Artificial Intelligence (IJCAI
2005), Edinburgh, UK, July 30 – August 5, pp. 466–471. Morgan Kaufmann Publishers, San
Francisco (2005)

4 http://www.neon-toolkit.org/

http://ceur-ws.org/
http://www.neon-toolkit.org/

Paraconsistent Reasoning for OWL 2 211

10. Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S.: Radon - repair and diagnosis in ontology
networks. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.P.B. (eds.) ESWC 2009. LNCS, vol. 5554,
pp. 863–867. Springer, Heidelberg (2009)

11. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for Horn description logics.
In: AAAI, pp. 452–457. AAAI Press, Menlo Park (2007)

12. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)

13. Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with OWL. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413. Springer,
Heidelberg (2007)

14. Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent reasoning for expressive and tractable descrip-
tion logics. In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of the 21st International
Workshop on Description Logics, DL 2008, Dresden, Germany, May 2008. CEUR Work-
shop Proceedings, vol. 353 (2008)

15. Ma, Y., Lin, Z., Lin, Z.: Inferring with inconsistent OWL DL ontology: A multi-valued
logic approach. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller,
S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,
vol. 4254, pp. 535–553. Springer, Heidelberg (2006)

16. Ma, Y., Qi, G., Hitzler, P., Lin, Z.: Measuring inconsistency for description logics based on
paraconsistent semantics. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724,
pp. 30–41. Springer, Heidelberg (2007)

17. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview. W3C
Recommendation, February 10 (2004), http://www.w3.org/TR/owl-features/.

18. Motik, B.: Reasoning in description logics using resolution and deductive databases. PhD
thesis, University of Karlsruhe, Germany (2006)

19. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Candidate Recommendation, June 11 (2009),
http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/

20. Patel-Schneider, P.F.: A four-valued semantics for terminological logics. Artificial Intelli-
gence 38, 319–351 (1989)

21. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 355–362. Morgan Kaufmann,
San Francisco (2003)

22. Staab, S., Studer, R.: Handbook on Ontologies, 2nd edn. International Handbooks on Infor-
mation Systems. Springer, Heidelberg (2009)

23. Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In:
Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 343–357. Springer, Heidelberg
(1997)

24. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview (2009),
http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/
http://www.w3.org/TR/owl2-overview/

A Formal Theory for Modular ERDF Ontologies

Anastasia Analyti1, Grigoris Antoniou1,2, and Carlos Viegas Damásio3

1 Institute of Computer Science, FORTH-ICS, Greece
2 Department of Computer Science, University of Crete, Greece

3 CENTRIA, Departamento de Informatica, Faculdade de Ciencias e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{analyti,antoniou}@ics.forth.gr, cd@di.fct.unl.pt

Abstract. The success of the Semantic Web is impossible without any
form of modularity, encapsulation, and access control. In an earlier paper,
we extended RDF graphs with weak and strong negation, as well as
derivation rules. The ERDF #n-stable model semantics of the extended
RDF framework (ERDF) is defined, extending RDF(S) semantics. In this
paper, we propose a framework for modular ERDF ontologies, called
modular ERDF framework, which enables collaborative reasoning over
a set of ERDF ontologies, while support for hidden knowledge is also
provided. In particular, the modular ERDF stable model semantics of
modular ERDF ontologies is defined, extending the ERDF #n-stable
model semantics. Our proposed framework supports local semantics and
different points of view, local closed-world and open-world assumptions,
and scoped negation-as-failure. Several complexity results are provided.

1 Introduction

Ontologies and automated reasoning are the building blocks of the Semantic
Web initiative. Derivation rules can be included in an ontology to define derived
concepts based on base concepts. For example, rules allow to define the extension
of a class or property based on a complex relation between the extensions of the
same or other classes and properties. On the other hand, the inclusion of neg-
ative information both in the form of negation-as-failure and explicit negative
information is also needed to enable various forms of reasoning. In [1], the Se-
mantic Web language RDFS [8,6] is extended to accommodate the two negations
of Partial Logic [7], namely weak negation ∼ (expressing negation-as-failure or
non-truth) and strong negation ¬ (expressing explicit negative information or
falsity), as well as derivation rules. The new language is called Extended RDF
(ERDF). Specifically, in [1], the stable model semantics of ERDF ontologies is
developed, based on Partial Logic, extending the model-theoretic semantics of
RDFS [6]. The concrete syntax of ERDF is presented in [14].

ERDF enables the combination of closed-world (non-monotonic) and open-
world (monotonic) reasoning, in the same framework, through the presence of
weak negation (in the body of the program rules) and the new metaclasses
erdf :TotalProperty and erdf :TotalClass , respectively. In particular, relating

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 212–226, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Formal Theory for Modular ERDF Ontologies 213

strong and weak negation at the interpretation level, ERDF distinguishes two
categories of properties and classes [1]. Partial properties are properties p that
may have truth-value gaps, that is p(x, y) is possibly neither true nor false. Total
properties are properties p that satisfy totalness, that is p(x, y) is either true or
false. Partial and total classes c are defined similarly, by replacing p(x, y) by
rdf :type(x, c). In [1], it is shown that on total properties and total classes, the
Open-World Assumption (OWA) applies.

ERDF also distinguishes properties and classes that are completely repre-
sented in a knowledge base with respect to an (optional) ERDF formula F ,
corresponding to the context where the completion takes place. Such a complete-
ness assumption for closing a partial property p by default may be expressed in
ERDF by means of the rule ¬p(?x, ?y) ← F ∧ ∼p(?x, ?y) and for a partial class
c, by means of the rule ¬rdf :type(?x, c) ← F ∧ ∼rdf :type(?x, c), where F is an
ERDF formula.

Intuitively, an ERDF ontology is the combination of (i) an ERDF graph G
containing (implicitly existentially quantified) positive and negative information,
and (ii) an ERDF program P containing derivation rules, with possibly all con-
nectives ∼, ¬, ⊃, ∧, ∨, ∀, ∃ in the body of a rule, and strong negation ¬ in the
head of a rule.

In [1], it is shown that stable model entailment conservatively extends RDFS
entailment from RDF graphs to ERDF ontologies. Unfortunately, satisfiability
and entailment under the ERDF stable model semantics are in general undecid-
able. This is due to the fact that the RDF vocabulary is infinite. Therefore, to
achieve decidability of reasoning in the general case, in [2], we propose a modi-
fied semantics, called ERDF #n-stable model semantics (for n ∈ IN), in which
from the RDF vocabulary, we remove the infinite set of terms {rdf : i | i > n}.
The new semantics also extends RDFS entailment from RDF graphs to ERDF
ontologies. Additionally, in [2], we provide an equivalence statement between
ERDF stable model entailment and ERDF #n-stable model entailment on an
ERDF ontology O, in the case that the bodies of the rules in O contain only the
connectives ¬ and ∧.

The success of the Semantic Web is impossible without any form of modular-
ity, encapsulation, and access control. In this paper, we propose a framework for
modular ERDF ontologies, called modular ERDF framework, in which a modular
ERDF ontology R is a set of r-ERDF ontologies. Intuitively, an r-ERDF ontol-
ogy O ∈ R is an ERDF ontology that can import or just reference knowledge
about a property or class x from other r-ERDF ontologies in R that define x and
are willing to export this knowledge to O. Thus, our modular ERDF framework
enables collaborative reasoning over a set of r-ERDF ontologies, while support
for hidden knowledge is also provided. Additionally, it supports local semantics
and different points of view, local closed-world and open-world assumptions, and
scoped negation-as-failure.

Specifically, in this paper, we define the modular (ERDF) stable models of
an r-ERDF ontology w.r.t. a modular ERDF ontology. Several properties of
the modular stable model semantics are provided, including that modular stable

214 A. Analyti, G. Antoniou, and C.V. Damásio

model entailment extends #n-stable model entailment on ERDF ontologies, and
thus also, RDFS entailment on RDF graphs. We show that if R is a simple
modular ERDF ontology (i.e., the bodies of the rules of the r-ERDF ontologies in
R contain only the connectives ∼, ¬, ∧) then query answering under the modular
ERDF stable model semantics reduces to query answering under the answer set
semantics [5]. Moreover, we provide complexity results for the modular ERDF
stable model semantics on (i) simple modular ERDF ontologies, (ii) modular
ERDF ontologies without quantifiers, and (ii) general modular ERDF ontologies.

We would like to mention that the goal of our modular ERDF framework is on
interconnecting independently developed r-ERDF ontologies over the web and
not on querying a large ontology by decomposing it into smaller sub-ontologies.
The latter problem has been considered for answer set semantics in [10], but [10]
prohibits the existence of positive recursion among modules, a serious limitation
for the Semantic Web setting. In contrast, in our framework, considered r-ERDF
ontologies may be interconnected via cyclic references. For example, an r-ERDF
ontology O may be created any time after the independent creation of the r-
ERDF ontologies on which it depends (which later may be updated, possibly
referring to O).

The rest of the paper is organized as follows: In Section 2, we review ERDF
graphs, which we extend to r-ERDF formulas. Then, we define r-ERDF ontolo-
gies and valid modular ERDF ontologies. Section 3 defines the modular ERDF
interpretations of an r-ERDF ontology w.r.t. a modular ERDF ontology. Then,
it defines satisfiability of an r-ERDF formula by such a modular ERDF inter-
pretation and an r-ERDF ontology. In Section 4, we define the modular stable
semantics of an r-ERDF ontology w.r.t. a modular ERDF ontology, and provide
its properties. Further, we provide several complexity results for the modular
ERDF stable model semantics. Section 5 reviews related work and concludes
the paper.

2 Modular ERDF Ontologies

In this Section, we define r-ERDF formulas, valid r-ERDF ontologies, and valid
modular ERDF ontologies. Additionally, we provide a comprehensive example
of a modular ERDF ontology.

A (Web) vocabulary V is a set of URI references and/or literals (plain or
typed) [6]. We denote the set of all URI references by URI, the set of all plain
literals by PL, the set of all typed literals by T L, and the set of all literals
by LIT . We consider a set Var of variable symbols, such that the sets Var ,
URI, LIT are pairwise disjoint. In our examples, variable symbols are prefixed
by “?”.

Below, we review the definition of an ERDF triple from [1]. Let V be a vo-
cabulary. A (normal) ERDF triple over V is an expression of the form p(s, o)
or ¬p(s, o), where s, o ∈ V ∪Var are called subject and object, respectively, and
p ∈ V ∩ URI is called property.

A Formal Theory for Modular ERDF Ontologies 215

Below we extend the definition of an ERDF formula, provided in [1], to r-
ERDF formulas. We consider the connectives {∼,¬,∧,∨,⊃, ∃, ∀}, where ¬, ∼,
and ⊃ are called strong negation, weak negation, and material implication respec-
tively. Let V be a vocabulary and let Onam ⊆ URI be a set of r-ERDF ontology
names. We define L(V) to be the smallest set that contains the ERDF triples
over V and is closed with respect to the following conditions: if F, G ∈ L(V) then
{∼F, F∧G, F∨G, F ⊃ G, ∃xF, ∀xF} ⊆ L(V), where x ∈ Var . A (normal)
ERDF formula over V is an element of L(V). A qualified ERDF formula over V
and Onam has the form F@oname, where F ∈ L(V) and oname ∈ Onam (i.e., F
will be evaluated at the r-ERDF ontology identified by oname).

Definition 1 (r-ERDF formula). Let V be a vocabulary and let Onam ⊆ URI.
We define L(V, Onam) to be the smallest set that (i) contains the ERDF formulas
over V and the qualified ERDF formulas over V and Onam, and (ii) is closed with
respect to the following conditions: if F, G ∈ L(V, Onam) then {∼F, F∧G, F∨G,
F ⊃ G, ∃xF, ∀xF} ⊆ L(V, Onam), where x ∈ Var . An r-ERDF formula F over
V and Onam is an element of L(V, Onam). We denote the set of variables appearing
in F by Var(F), and the set of free variables1 appearing in F by FVar(F). �

Next, we review the definition of an ERDF graph G and the skolemization
of G from [1]. An ERDF graph G over a vocabulary V is a set of ERDF triples
over V . We denote the variables appearing in G by Var(G), and the set of URI
references and literals appearing in G by VG. Intuitively, an ERDF graph G
represents an existentially quantified conjunction of ERDF triples. Specifically,
let G = {t1, ..., tm} be an ERDF graph, and let Var(G) = {x1, ..., xk}. Then,
G represents the ERDF formula formula(G) = ∃?x1, ...,∃?xk t1 ∧ ... ∧ tm.
Existentially quantified variables in ERDF graphs are handled by skolemization.
Let G be an ERDF graph. The skolemization function of G is an 1:1 mapping
skG : Var(G) → URI, where for each x ∈ Var(G), skG(x) is an artificial URI,
denoted by G:x. The skolemization of G, denoted by sk(G), is the ground ERDF
graph derived from G after replacing each x ∈ Var(G) by skG(x).

Below, we extend the definitions of ERDF rule and ERDF program, provided
in [1], to r-ERDF rule and r-ERDF program, respectively.

Definition 2 (r-ERDF rule, r-ERDF program). An r-ERDF rule r over
a vocabulary V and Onam ⊆ URI is an expression of the form: G ← F , where
F ∈ L(V, Onam)∪{true} (called condition) and G (called conclusion) is either an
ERDF triple over V or false. We assume that no bound variable in F appears
free in G. We denote the set of variables and the set of free variables of r by
Var(r) and FVar(r)2, respectively. Additionally, we write Cond(r) = F and
Concl(r) = G.
An r-ERDF program P over a vocabulary V and Onam ⊆ URI is a finite set of
r-ERDF rules over V and Onam. We denote the set of URI references and literals
appearing in P by VP . �
1 Without loss of generality, we assume that a variable cannot have both free and

bound occurrences in F , and more than one bound occurrence.
2 FVar(r) = FVar(F) ∪ FVar(G).

216 A. Analyti, G. Antoniou, and C.V. Damásio

Below, we extend the definition of an ERDF ontology, provided in [1], to an
r-ERDF ontology.

Definition 3 (r-ERDF ontology). An r-ERDF ontology O over a vocabulary
V and Onam ⊆ URI is a triple O = 〈NamO, LO, IntO〉, where: (i) NamO ∈ Onam

is the name of O, (ii) LO = 〈GO, PO, 〉, is the logic of O, where GO is an ERDF
graph over V and PO is an r-ERDF program over V and Onam, and (iii) IntO =
〈Exppr

O ,Expcl
O , Imppr

O , Impcl
O 〉 is the interface of O, where: For t ∈ {pr, cl}, it

holds that:

– Expt
O is a set of pairs 〈x,Exp〉, where x ∈ V and Exp ⊆ Onam − {NamO} or

Exp = {∗}. It holds that if 〈x,Exp〉 and 〈x,Exp′〉 ∈ Expt
O then Exp = Exp ′.

We define: Exported t
O = {x | ∃ 〈x,Exp〉 ∈ Expt

O} and ExporttO(x) = Exp.
– Impt

O is a set of pairs 〈x, Imp〉, where x ∈ V , and Imp ⊆ Onam − {NamO} or
Imp = {∗}. It holds that if 〈x, Imp〉 and 〈x, Imp′〉 ∈ Impt

O then Imp = Imp′.
We define: Importedt

O = {x | ∃ 〈x, Imp〉 ∈ Impt
O} and ImporttO(x) = Imp.

Let O be an r-ERDF ontology. Intuitively, each pair 〈x,Exp〉 ∈ Exppr
O (resp.

〈x,Exp〉 ∈ Expcl
O) corresponds to an export declaration of O, where x is a

property (resp. class) exported by O and Exp is the list of r-ERDF ontologies
to which O is willing to export x. If O is willing to export x to any requesting
r-ERDF ontology then Exp = {∗}.

Similarly, each pair 〈x, Imp〉 ∈ Imppr
O (resp. 〈x, Imp〉 ∈ Impcl

O) corresponds to
an import declaration of O, where x is a property (resp. class) requested by O,
and Imp is the list of r-ERDF ontologies from which x is requested. If O requests
x from any providing r-ERDF ontology then Imp = {∗}. Obviously, we do not
allow duplicate export and import declarations for classes and properties in O.

Definition 4 (Modular ERDF ontology). A modular ERDF ontology (MEO)
R is a set of r-ERDF ontologies. �

Example 1. Consider the modular ERDF ontology R = {O1, O2, O3, O4, O5},
shown in Figure 13. Ontology O1, with NamO1 =<http://geography.int>,
provides geographical information, stating that the list of European countries is
positively closed (w.r.t. the list of countries). This local CWA is expressed by
the single rule in PO1 . Ontology O2, with NamO2 =<http://europa.eu>, de-
fines the list of European Union countries (which does not include Croatia) and
states that this list is open (w.r.t. the resources of O2)4 by declaring the class
eu:CountryEU as total. This local OWA is expressed by the first ERDF triple in
GO2 . Ontology O3, with NamO3 =<http://www.pyramis.gr>, provides infor-
mation regarding the package tours of the greek travel agency Pyramis. Similarly,
ontology O4, with NamO4 =<http://www.travel_plan.gr>, provides informa-
tion regarding the package tours of the greek travel agency Travel Plan.

Finally, ontology O5, with NamO5 =<http://www.anne_travel_pref.gr>,
presents the travel preferences of Anne. Specifically, Anne prefers either (i) a
3 Following usual convention, we have replaced ∧ by “,” in the program rules.
4 Note that ontology O2 imports class geo:Country from ontology O1.

http://geography.int
http://europa.eu
eu:CountryEU
http://www.pyramis.gr
http://www.travel_plan.gr
http://www.anne_travel_pref.gr
geo:Country

A Formal Theory for Modular ERDF Ontologies 217

Ontology O1

〈http://geography.int〉

exports class geo:Country to ∗.
exports class geo:Europ Country to ∗.
exports property geo:capital to ∗.
GO1 =
rdfs:subclass(geo:Europ Country,

geo:Country).

rdf:type(geo:Egypt,geo:Country).

rdf:type(geo:Italy,geo:Europ Country).

rdf:type(geo:Croatia,geo:Europ Country).

geo:capital(geo:Cairo,geo:Egypt).

geo:capital(geo:Zagreb,geo:Croatia).

· · ·

PO1 =
¬ rdf:type(?x,geo:Europ Country) ←

rdf:type(?x,geo:Country),
∼ rdf:type(?x,geo:Europ Country).

Ontology O2

〈http://europa.eu〉

imports class geo:Country from

〈http://geography.int〉.
exports class eu:CountryEU to ∗.
GO2 =
rdf:type(eu:CountryEU, erdf:TotalClass).

rdf:type(geo:Italy,eu:CountryEU).

rdf:type(geo:Greece,eu:CountryEU).
· · ·

Ontology O3

〈http://www.pyramis.gr〉

exports property vac:travel to ∗.
exports property vac:visit to ∗.
GO3 =
vac:travel(pyr:package1,geo:Egypt).

vac:visit(pyr:package1,geo:Cairo).

vac:travel(pyr:package2,geo:Egypt).

vac:visit(pyr:package2,geo:Cairo).

vac:visit(pyr:package2,geo:Luxor).

Ontology O4

〈http://www.travel plan.gr〉

exports property vac:travel to ∗.
exports property vac:visit to ∗.
GO4 =
vac:travel(trav:package1,geo:Italy).

vac:visit(trav:package1,geo:Rome).

vac:travel(trav:package2,geo:Croatia).

vac:visit(trav:package2,geo:Zagreb).

vac:visit(trav:package2,geo:Trogir).

Ontology O5

〈http://www.anne travel pref .gr〉

imports class geo:Europ Country from 〈http://geography.int〉.
imports property geo:capital from 〈http://geography.int〉.
imports class eu:CountryEU from 〈http://europa.eu〉.
imports property vac:travel from ∗.
imports property vac:visit from ∗.
exports property ann:choose trav package to 〈http://www.peter travel pref .gr〉.
PO5 =
eq:id(?x,?x) ← true.

ann:choose trav package(?package,?country) ← ¬ rdf:type(?country,geo:Europ Country),

(vac:travel(?package,?country), vac:visit(?package,?city))@〈http://www.pyramis.gr〉,
∀ ?city′ vac:visit(?package,?city′)@〈http://www.pyramis.gr〉 ⊃ eq:id(?city,?city′).

ann:choose trav package(?package,?country) ← rdf:type(?country,geo:CountryEU),

(vac:travel(?package,?country), vac:visit(?package,?city),
vac:visit(?package,?city′))@〈http://www.travel plan.gr〉, ∼ eq:id(?city,?city′).

ann:choose trav package(?package,?country) ← rdf:type(?country,geo:Europ Country),

¬ rdf:type(?country,geo:CountryEU),
(vac:travel(?package,?country), vac:visit(?package,?city))@〈http://www.travel plan.gr〉,
geo:capital(?city,?country).

Fig. 1. A modular ERDF ontology

218 A. Analyti, G. Antoniou, and C.V. Damásio

trip to a non-European country by Pyramis that visits only one city, or (ii) a
trip to an EU country by Travel Plan that visits at least one city, or (iii) a trip
to a European but not EU country by Travel Plan that visits the capital of the
country. Note that O5 imports the properties vac:travel and vac:visit from
any providing r-ERDF ontology in R (that is, O3 and O4). Additionally, note
that r-ERDF ontology O5 exports property ann:choose_trav_package to an
r-ERDF ontology, named <http://www.peter_travel_pref.gr>, not in R. �
Let R be a modular ERDF ontology, let O ∈ R, and let x ∈ Exportedt

O, for
t ∈ {pr, cl}. We define:

Export tO,R(x) =
{ {NamO′ | O′ ∈ R− {O}} if Export tO(x) = {∗}

Export tO(x) ∩ {NamO′ | O′ ∈ R} otherwise

Intuitively, ExportprO,R(x) (resp. ExportclO,R(x)) denotes the r-ERDF ontologies
in R to which O is willing to export property (resp. class) x.

Example 2. Consider the modular ERDF ontology R of Example 1. Then, it
holds that: ExportclO2,R(eu:CountryEU) = {O1, O3, O4, O5}, because ExportclO2

(eu:CountryEU) = {∗}. Additionally, it holds that Export
pr
O5,R(ann:choose

trav package)={}. �
Let R be a modular ERDF ontology, let O ∈ R, and let x ∈ Importedt

O, for
t ∈ {pr, cl}. We define:

ImporttO,R(x) =
{

ExportingTot
R(x , O) if ImporttO(x) = {∗}

ImporttO(x) ∩ ExportingTot
R(x ,O) otherwise,

where ExportingTot
R(x ,O) = {NamO′ | O′ ∈ R, NamO ∈ ExporttO′,R(x)}.

Intuitively, ExportingTopr
R (x ,O) (resp. ExportingTocl

R (x ,O)) denotes the r-ERDF
ontologies in R that are willing to export property (resp. class) x to O. Addi-
tionally, ImportprO,R(x) (resp. ImportclO,R(x)) denotes the r-ERDF ontologies in
R from which O imports property (resp. class) x.

Example 3. For the modular ERDF ontology R of Example 1, ExportingTopr
R

(vac:travel, O5) = {O3, O4}. Additionally, ImportprO5,R(vac:travel) =
{O3, O4}. �
In order for a modular rule base to be valid, it has to satisfy a number of validity
constraints.

Definition 5 (Valid modular ERDF ontology). A modular ERDF ontology
R is valid iff:

1. If O, O′ ∈ R and O �= O′ then NamO �= NamO′ .
2. If O ∈ R and x ∈ Importedt

O, for t ∈ {pr, cl}, then ImporttO(x) = {∗} or
ImporttO(x) ⊆ ExportingTot

R(x, O).
3. If O ∈ R and r ∈ PO such that a qualified ERDF formula F@NamO′ appears

in Cond(r) then: (i) O′ ∈ R, (ii) for each p(s, o), where p �= rdf :type, appear-
ing in F , it holds that O ∈ ExportprO′,R(p), and (iii) for each rdf :type(x, c),
appearing in F , it holds that (a) O ∈ ExportprO′,R(rdf :type) or (b) c ∈ URI
and O ∈ ExportclO′,R(c). �

vac:travel
vac:visit
ann:choose_trav_package
http://www.peter_travel_pref.gr
eu:CountryEU
eu:CountryEU
vac:travel
vac:travel

A Formal Theory for Modular ERDF Ontologies 219

Let R be a valid modular ERDF ontology. Constraint (1) of Definition 5 ex-
presses that different r-ERDF ontologies in R should have different names in
order to be uniquely identified. Let O ∈ R. Constraint (2) expresses that if O
requests a property or class x explicitly from an r-ERDF ontology O′ then it
should hold that O′ ∈ R and O′ is willing to export x to O. Assume now that it
exists r ∈ PO s.t. Cond(r) refers to an ERDF formula F of an r-ERDF ontol-
ogy O′. Constraint (3.i) expresses that it should hold O′ ∈ R. Constraint (3.ii)
expresses that if r refers to p(s, o) of O′, where p �= rdf :type, then O′ should be
willing to export property p to O. Additionally, constraint (3.iii) expresses that
if O refers to rdf :type(x, c) of O′ then O′ should be willing to either (a) export
to O the property rdf :type, expressing that all classes of O′ are exported to O,
or (b) export to O just the class c (if c ∈ URI).

Example 4. Modular rule base R of Example 1 is valid. �

In this work, we consider valid modular ERDF ontologies, only. Additionally, by
R, we will denote a valid modular ERDF ontology.

3 Modular ERDF and Herbrand Interpretations

In this section, we define the modular ERDF interpretations of an r-ERDF
ontology w.r.t. a modular ERDF ontology. Additionally, we define satisfaction
of an r-ERDF formula by such a modular ERDF interpretation and an r-ERDF
ontology. Further, we define the modular Herbrand interpretations of an r-ERDF
ontology w.r.t. a modular ERDF ontology.

Below we review the definition of a partial interpretation of a vocabulary V
[1], which is an extension of the definition of a simple interpretation of V [6],
such that each property is associated not only with a truth extension but also
with a falsity extension, allowing for partial properties.

Definition 6 (Partial interpretation of a vocabulary). A partial interpre-
tation I of a vocabulary VI consists of:

– A non-empty set of resources ResI , called the domain or universe of I .
– A set of properties PropI .
– A vocabulary interpretation mapping IV : VI ∩URI → ResI ∪ PropI .
– A property-truth extension mapping PTI : PropI → P(ResI ×ResI).
– A property-falsity extension mapping PFI : PropI → P(ResI × ResI).
– A mapping ILI : VI ∩ T L → ResI .
– A set of literal values LVI ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : VI → ResI ∪ PropI such that: (i) I(x) = IV(x),
∀x ∈ VI ∩ URI, (ii) I(x) = x, ∀ x ∈ VI ∩ PL, and (iii) I(x) = ILI(x),
∀ x ∈ VI ∩ T L. �

A partial interpretation I is coherent iff for all x ∈ PropI , PTI(x)∩PFI(x) = ∅.
Let O ∈ R. Below we define the dependencies of O w.r.t. R.

220 A. Analyti, G. Antoniou, and C.V. Damásio

Definition 7 (Dependencies of an r-ERDF ontology w.r.t. a MEO)
Let O ∈ R. The dependencies of O w.r.t. R, denoted by DR

O , is the minimum
set of r-ERDF ontologies s.t.: (i) O ∈ DR

O , (ii) if O′ ∈ DR
O and it exists x ∈

Importedt
O′ , for t ∈ {pr, cl}, s.t. NamO′′ ∈ ImporttO′,R(x) then O′′ ∈ DR

O , and
(iii) if O′ ∈ DR

O , r ∈ PO′ , and it exists a qualified ERDF formula F@NamO′′ in
Cond(r) then O′′ ∈ DR

O . �

Example 5. Consider the modular ERDF ontology R of Example 1. It holds:
DR

O1
= {O1}, DR

O2
= {O2, O1}, and DR

O5
= {O5, O1, O2, O3, O4}. �

The vocabulary of RDF, VRDF , is a set of URI references in the rdf : namespace
[6], and the vocabulary of RDFS, VRDFS , is a set of URI references in the rdfs :
namespace [6]. Let n ∈ IN . We define V#n

RDF = VRDF − {rdf : i | i > n}. The vo-
cabulary of ERDF is defined as VERDF = {erdf :TotalClass , erdf :TotalProperty}.

Let O ∈ R. We define: (i) nO = 0, if (VGO ∪ VPO) ∩ {rdf : i | i ≥ 1} = ∅, and
(ii) nO = max({i ∈ IN | rdf : i ∈ VGO ∪ VPO}), otherwise. Further, we define:
nR = max({nO | O ∈ R}∪{1}). Intuitively, nR is the largest i (i ∈ IN) such that
rdf : i appears in an O ∈ R. In the case that no such an rdf : i exists then nR = 1.
Recall that the rdf : i properties are used in RDF(S) [6] to express members of
containers (i.e. bags, sequences, and alternatives), which are in practice finitely
limited.

Let O ∈ R, and let n ∈ IN . The n#-vocabulary of O is defined as: V #n
O =

Vsk(GO) ∪ VPO ∪ Exportedpr
O ∪ Exportedcl

O ∪ Importedpr
O ∪ Importedcl

O ∪V #n
RDF ∪

VRDFS ∪ VERDF . The vocabulary of O w.r.t. R is defined as: VO,R = ∪{V #nR
O′ |

O′ ∈ DR
O }. Intuitively, VO,R corresponds to the local domain of O w.r.t. R.

Let n ∈ IN . Below we define the modular ERDF interpretations of an r-
ERDF ontology w.r.t. a modular ERDF ontology. In this definition, we use
the definition of an ERDF #n-interpretation over a vocabulary V (see [2]), not
reviewed here due to space limitations. Intuitively, an ERDF #n-interpretation I
of a vocabulary V is a partial interpretation of VI = V ∪V#n

RDF ∪VRDFS∪VERDF

that assigns truth and falsity extensions to the classes5 and properties in VI ,
satisfying: (i) all semantic conditions of an RDFS interpretation [6] of V , except
these referring to {rdf : i | i > n} terms, as well as (ii) new semantic conditions,
particular to ERDF.

Definition 8 (Modular ERDF interpretation). Let O ∈ R. A modular
ERDF interpretation of O w.r.t. R is a set I = {IO′ | O′ ∈ DR

O }, where IO′ is an
ERDF #nR-interpretation of VO′,R and it holds:

1. If O′ ∈ DR
O , p ∈ Imported pr

O′,R, and NamO′′ ∈ ImportprO′,R(p) then PTIO′ (IO′(p)) ⊇
PTIO′′ (IO′′(p)), and PFIO′ (IO′(p)) ⊇ PFIO′′ (IO′′(p)), and

2. If O′ ∈ DR
O , c ∈ Importedcl

O′,R, and NamO′′ ∈ ImportclO′,R(c) then CTIO′ (IO′(c)) ⊇
CTIO′′ (IO′′(c)), and CFIO′ (IO′(c)) ⊇ CFIO′′ (IO′′(c)). �

5 The truth and falsity extension of a class c ∈ VI is indicated by CTI(I(c)) and
CFI(I(c)), respectively. It holds: (i) x ∈ CT I(y) iff 〈x, y〉 ∈ PT I(I(rdf :type)), and
(ii) x ∈ CF I(y) iff 〈x, y〉 ∈ PF I(I(rdf :type)).

A Formal Theory for Modular ERDF Ontologies 221

Below, we define satisfaction of an r-ERDF formula w.r.t. a modular ERDF
interpretation, an r-ERDF ontology, and a valuation. First, we provide an aux-
iliary definition. Let I be a partial interpretation of a vocabulary VI , let Res
be a set, and let v be a partial function v : Var → Res (called valuation). If
x ∈ Var , we define [I + v](x) = v(x). If x ∈ VI , we define [I + v](x) = I(x).

Definition 9 (Satisfaction of an r-ERDF formula w.r.t. a modular
ERDF interpretation, an r-ERDF ontology, and a valuation). Let O ∈
R. Let I = {IO′ | O′ ∈ DR

O } be a modular ERDF interpretation of O w.r.t. R.
Additionally, let F, G be r-ERDF formulas over {NamO′ | O′ ∈ DR

O }. For each
O′, O′′ ∈ DR

O and for each mapping v : Var(F) → ResIO′ :

– If F = p(s, o) then 〈I, O′, v〉 |= F iff p ∈ VIO′ ∩ URI, s, o ∈ VIO′ ∪ Var , IO′(p) ∈
PropIO′ , and 〈[IO′ + v](s), [IO′ + v](o)〉 ∈ PT IO′ (IO′(p)).

– If F = ¬p(s, o) then 〈I, O′, v〉 |= F iff p ∈ VIO′ ∩URI, s, o ∈ VIO′ ∪ Var , IO′(p) ∈
PropIO′ , and 〈[IO′ + v](s), [IO′ + v](o)〉 ∈ PF IO′ (IO′(p)).

– If F = ∼G then 〈I, O′, v〉 |= F iff VG ⊆ VIO′ and 〈I, O′, v〉 �|= G.
– If F = F1∧F2 then 〈I, O′, v〉 |= F iff 〈I, O′, v〉 |= F1 and 〈I, O′, v〉 |= F2.
– If F = F1∨F2 then 〈I, O′, v〉 |= F iff 〈I, O′, v〉 |= F1 or 〈I,O′, v〉 |= F2.
– If F = F1 ⊃ F2 then 〈I, O′, v〉 |= F iff 〈I, O′, v〉 |= ∼F1∨F2.
– If F = ∃x G then 〈I, O′, v〉 |= F iff there exists a mapping u : Var(G) → ResIO′

such that u(y) = v(y), ∀y ∈ Var(G)− {x}, and 〈I, O′, u〉 |= G.
– If F = ∀x G then 〈I, O′, v〉 |= F iff for all mappings u : Var(G) → ResIO′ such

that u(y) = v(y), ∀y ∈ Var(G)− {x}, it holds 〈I, O′, u〉 |= G.
– If F = G@NamO′′ then 〈I, O′, v〉 |= F iff 〈I, O′′, v〉 |= G. �

Let I be a modular ERDF interpretation of O w.r.t. R and let F be an r-ERDF
formula. We define: 〈I, O′〉 |= F iff for each mapping v : Var(F) → ResIO′ , it
holds that 〈I, O′, v〉 |= F . Additionally, let G be an ERDF graph. We define:
〈I, O′〉 |= G iff 〈I, O′〉 |= formula(G). We assume that for every function v :
Var → ResIO′ , it holds that 〈I, O′, v〉 |= true and 〈I, O′, v〉 �|= false.

Below, we define the modular models of an r-ERDF ontology w.r.t. a modular
ERDF ontology.

Definition 10 (Modular ERDF model). Let O ∈ R. Let I = {IO′ | O′ ∈
DR

O } be a modular ERDF interpretation of O w.r.t. R and let O′ ∈ DR
O :

– We say that 〈I, O′〉 satisfies an r-ERDF rule r, denoted by 〈I, O′〉 |= r, iff it holds:
For all mappings v : Var(r) → ResIO′ , if 〈I, O′, v〉 |= Cond(r) then 〈I, O′, v〉 |=
Concl(r).

– We say that I is a modular (ERDF) model of O w.r.t. R, denoted by I |=R O, iff
for all O′ ∈ DR

O , 〈I, O′〉 |= GO′ and 〈I, O′〉 |= r, ∀ r ∈ PO′ . �

Let O ∈ R. We denote by ResHO,R the union of VO,R and the set of XML values of
the well-typed XML literals in VO,R minus the well-typed XML literals. Below
we define the modular Herbrand interpretations of O w.r.t. R, extending the
definition of a Herbrand interpretation of an ERDF ontology [1].

Definition 11 (Modular ERDF Herbrand interpretation). Let O ∈ R.
Let I = {IO′ | O′ ∈ DR

O } be a modular ERDF interpretation of O w.r.t. R. We
say that I is a modular (ERDF) Herbrand interpretation of O w.r.t. R iff for each
O′ ∈ DR

O :

222 A. Analyti, G. Antoniou, and C.V. Damásio

– ResIO′ = ResHO′,R.
– IO′

V
(x) = x, for all x ∈ VO′,R ∩URI.

– ILIO′ (x) = x, if x is a typed literal in VO′,R other than a well-typed XML literal,
and ILIO′ (x) is the XML value of x, if x is a well-typed XML literal in VO′,R.

We denote the set of modular Herbrand interpretations of O w.r.t. R by IHO,R.
�

Let O ∈ R. Let I = {IO′ | O′ ∈ DR
O } be a modular Herbrand interpretation of O

w.r.t. R. We say that I is a modular (ERDF) Herbrand model of O w.r.t. R iff
for all O′ ∈ DR

O , (i) 〈I, O′〉 |= sk(GO′) and (ii) for all r ∈ PO′ , 〈I, O′〉 |= r. We
denote the set of modular Herbrand models of O w.r.t. R by MH

O,R.
It holds that: if M is a modular Herbrand model of O w.r.t. R then M is a

modular model of O w.r.t. R.

4 Modular Stable Models and Complexity Results

In this Section, we define the modular stable models of an r-ERDF ontology
w.r.t. a modular ERDF ontology, and provide some of their properties. Addi-
tionally, we provide several complexity results.

Let O ∈ R. We proceed by defining a partial ordering on the modular Her-
brand interpretations of O w.r.t. R.

Definition 12 (Modular Herbrand interpretation ordering). Let O ∈ R.
Let I, J ∈ IHO,R. We say that J extends I, denoted by I ≤ J (or J ≥ I) iff: For all
O′ ∈ DR

O , it holds that (i) PropIO′ ⊆ PropJO′ , and for all p ∈ PropIO′ , it holds
PTIO′ (p) ⊆ PTJO′ (p) and PFIO′ (p) ⊆ PFJO′ (p). �

Let O ∈ R. The intuition behind Definition 12 is that by extending a modular
Herbrand interpretation of O w.r.t. R, we extend both the truth and falsity
extension for all properties of O′ ∈ DR

O , and thus (since rdf :type is a property),
for all classes.

Let I ⊆ IHO,R. We define minimal(I) = {I ∈ I | � ∃J ∈ I : J �= I and J ≤ I}.
Let I, J ∈ IHO,R. We define [I, J]O,R = {I′ ∈ IHO,R, I ≤ I′ ≤ J}.

Let V be a vocabulary and let r be an r-ERDF rule. We denote by [r]V the
set of rules that result from r if we replace each variable x ∈ FVar(r) by v(x),
for all mappings v : FVar(r) → V . Let P be an r-ERDF program. We define
[P]V =

⋃
r∈P [r]V .

In [2], we defined the #n-stable models of an ERDF ontology (for an n ∈ IN),
based on the coherent stable models of partial logic [7] (which, on ELPs, are
equivalent [7] to Answer Sets [5]). Here, we extend this definition to modular
stable models of an r-ERDF ontology w.r.t. a modular ERDF ontology.

Definition 13 (Modular ERDF stable model). Let O ∈ R, and let M ∈
IHO,R. We say that M is a modular (ERDF) stable model of O w.r.t. R iff there
is a chain of modular Herbrand interpretations of O w.r.t. R, I0 ≤ ... ≤ Ik such
that Ik−1 = Ik = M and:

A Formal Theory for Modular ERDF Ontologies 223

1. I0 ∈ minimal({I ∈ IH
O,R | ∀O′ ∈ DR

O , 〈I, O′〉 |= sk(GO′)}).
2. For 0 < α ≤ k:

Iα ∈ minimal({I ∈ IH
O,R | I ≥ Iα−1 and ∀O′ ∈ DR

O , it holds that:
if r ∈ [PO′]VO′,R s.t. 〈J, O′〉 |= Cond(r), ∀J ∈ [Iα−1, M]O,R, then 〈I, O′〉 |=
Concl(r)}).

The set of modular stable models of O w.r.t. R is denoted by Mst
O,R. �

Example 6. Consider the modular ERDF ontology R of Example 1. For every
M ∈ Mst

O5,R, it holds 〈M, O1〉 |= ¬ rdf:type(geo:Egypt,geo:Europ
Country). This is due to the local CWA in PO1 . Now, since O5 imports class
geo:Europ Country from O1, for every M ∈ Mst

O5,R, it holds 〈M, O5〉 |= ¬
rdf:type(geo:Egypt,geo:Europ Country). Therefore, due to the 2nd rule
of PO5 , for every M ∈ Mst

O5,R, 〈M, O5〉 |= ann:choose trav package(pyr:
package1,geo:Egypt).

Note the ERDF triple rdf:type(eu:CountryEU,erdf:TotalClass) in GO2 ,
expressing a local OWA. Therefore, in some M ∈ Mst

O5,R, it holds 〈M, O2〉 |= ¬
rdf:type(geo:Croatia,eu:CountryEU), while in the rest M′ ∈Mst

O5,R, it holds
〈M′, O2〉 |= rdf:type(geo:Croatia,eu:CountryEU). Now note that O5 imports
class eu:CountryEU from O2. Thus, in some M ∈ Mst

O5,R, it holds 〈M, O5〉 |= ¬
rdf:type(geo:Croatia,eu:CountryEU), while in the rest M′ ∈Mst

O5,R, it holds
〈M′, O5〉 |= rdf:type(geo:Croatia,eu:CountryEU). Reasoning now by cases
and due to the 3rd and 4th rule of PO5 , for every M ∈Mst

O5,R, it holds 〈M, O5〉 |=
ann:choose trav package(trav:package2,geo:Croatia). �

The following proposition shows that any modular stable model of O w.r.t. R is
a modular Herbrand model of O w.r.t. R.

Proposition 1. Let O ∈ R. If M ∈ Mst
O,R then M ∈ MH

O,R.

On the other hand, if all properties of O′ ∈ DR
O are total, a modular Herbrand

model M of O w.r.t. R is a modular stable model of O w.r.t. R.

Proposition 2. Let O ∈ R. If rdfs :subclass(rdf :Property , erdf :TotalProperty)∈
GO′ , for all O′ ∈ DR

O , then Mst
O,R =MH

O,R.

The following proposition relates the modular stable models of different r-ERDF
ontologies w.r.t. a modular ERDF ontology.

Proposition 3. Let O ∈ R and let O′ ∈ DR
O . Let M ∈ IHO,R and let M′ =

{MO′′ ∈ M | O′′ ∈ DR
O′}. It holds that: If M ∈Mst

O,R then M′ ∈Mst
O′,R. �

Let O ∈ R. We say that O is inconsistent under the modular stable model
semantics w.r.t. R iff Mst

O,R = {}.
Let O ∈ R, and let O′ ∈ DR

O . It follows directly from Proposition 3 that if
O′ is inconsistent under the modular stable model semantics w.r.t. R then O is
also inconsistent under the modular stable model semantics w.r.t. R. Obviously,
due to the definition of DR

O in Definition 7, all other r-ERDF ontologies in R
remain unaffected from the local inconsistency.

224 A. Analyti, G. Antoniou, and C.V. Damásio

Definition 14 (Modular ERDF stable model entailment). Let O ∈ R.
Additionally, let F be an r-ERDF formula. We say that O entails F w.r.t. R
under the modular ERDF stable model semantics, denoted by O |=st

R F iff for
all M ∈Mst

O,R, 〈M, O〉 |= F . �

The following proposition shows that modular stable model entailment extends
#n-stable model entailment from ERDF ontologies to modular ERDF ontologies.

Proposition 4. Let O = 〈G, P 〉 be an ERDF ontology and let F be an ERDF
formula. Additionally, let O′ be an r-ERDF ontology such that GO′ = G, PO′ =
P , and IntO′ = {}. It holds: O |=st#nR F iff O′ |=st

R F , where R = {O′}.

The following corollary follows directly from the above proposition and Propo-
sition 3 in [2], and it shows that modular stable model entailment extends RDFS
entailment from RDF graphs to modular ERDF ontologies.

Corollary 1. Let G, G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′ ∩ skG(Var(G)) = ∅. Let O be an r-ERDF ontology with
GO = G, PO = {}, and IntO = {}. If max({i ∈ IN | rdf : i ∈ VG′}) ≤ nR then:
G |=RDFS G′ iff O |=st

R G′, where R = {O}.
Let O ∈ R and let F be an r-ERDF formula. The modular stable answers of F
w.r.t. O and R are defined as follows6:

AnsstO,R(F) =

⎧⎨⎩
“yes” if FVar(F) = ∅ and O |=st

R F
“no” if FVar(F) = ∅ and O �|=st

R F
{v : FVar(F) → VO,R | O |=st

R v(F)}, if FVar(F) �= ∅

Example 7. Consider the modular ERDF ontology R of Example 1. Then:
AnsstO5,R(ann:choose trav package(?x, ?y)) = {〈?x =pyr:package1,?y = geo:Egypt〉,
〈?x = trav:package2,?y = geo:Croatia〉}. �

An r-ERDF formula is called simple, if it has the form: t1∧...∧tk∧∼tk+1∧...∧ ∼tn
∧(∼t′1)@NamO1 ∧...∧ (∼t′m)@NamOm , where (i) each ti is a normal or qualified
ERDF triple (positive or negative), (ii) each t′i is a normal ERDF triple (positive
or negative), and (iii) each Oi is an r-ERDF ontology. An r-ERDF program P
is called simple if the body of each rule in P is simple, or true. Let R be a
modular ERDF ontology and let O ∈ R. O is called simple w.r.t. R, if for each
O′ ∈ DR

O , PO′ is simple.
Let O ∈ R s.t. O is simple w.r.t. R. We can show that the modular stable

answers of a simple r-ERDF formula F w.r.t. O andR can be computed through
Answer Set Programming [5] on an ELP ΠO,R.

Below, we state several complexity results of the modular ERDF stable model
semantics. We define size inst(O,R) =

∑
{size of (GO′∪[PO′]VO′,R) | O′ ∈ DR

O }.

Proposition 5. Let O ∈ R, and let F be an r-ERDF formula. Additionally, let
v be (i) one of {“yes”, “no”}, if Var(F) = ∅, or (ii) a mapping v : Var(F) →
VO,R, if Var(F) �= ∅.
6 v(F) is the formula F after replacing all the free variables x in F by v(x).

A Formal Theory for Modular ERDF Ontologies 225

1. If O is a simple r-ERDF ontology w.r.t. R then: (i) the problem of establish-
ing whether O has a modular stable model w.r.t. R is NP-complete w.r.t.
size inst(O,R), and (ii) the problem of establishing whether v ∈ AnsstO,R(F)
is co-NP-complete w.r.t. size inst(O,R).

2. If for all O′ ∈ DR
O , no quantifies ∀, ∃ appear in PO′ then: (i) the problem of

establishing whether O has a modular stable model w.r.t.R is ΣP
2 = NPNP -

complete w.r.t. size inst(O,R), and (ii) the problem of establishing whether
v ∈ AnsstO,R(F) is ΠP

2 = co-NPNP -complete w.r.t. size inst(O,R).
3. In the general case, (i) the problem of establishing whether O has a modular

stable model w.r.t. R is PSPACE -complete w.r.t. size inst(O,R), and (ii)
the problem of establishing whether v ∈ AnsstO,R(F) is PSPACE -complete
w.r.t. size inst(O,R).

5 Conclusions and Related Work

In this paper, we extended ERDF ontologies [1], and thus RDF graphs to r-
ERDF ontologies. In particular, an r-ERDF ontology is an ERDF ontology that
(i) is associated with a set of export and import statements, and (ii) interacts
with other r-ERDF ontologies (through qualified ERDF formulas in the pro-
gram rules). Further, we defined a modular ERDF ontology as a set of r-ERDF
ontologies and defined its modular stable model semantics, model-theoretically,
based on partial logic [7]. We showed that modular stable model entailment
on modular ERDF ontologies extends #n-stable model entailment on ERDF
ontologies [2], and thus it also extends RDFS entailment on RDF graphs [6].
Future work concerns (i) the extension of the modular stable model semantics
such that meaning is assigned to inconsistent r-ERDF ontologies of a modular
ERDF ontology, and (ii) the implementation of the modular ERDF framework.

N3Logic [3] allows rules to be integrated with RDF. Indeed, part of the RDFS
semantics is represented by program rules. Yet, the supported form of negation
as failure, expressed through the built-in log:notincludes, is limited. Addition-
ally, N3Logic does not have a model-theoretic semantics that faithfully extends
RDFS semantics [6], does not support explicit negation and general formulas in
the body of the rules, and ignores visibility issues.

A modularity framework for RDF rule bases (without blank nodes) is pro-
posed in [11]. There, RDFS semantics are partially represented through a normal
logic program, associated with a special context/module cRDFS . The contextu-
ally closed AS and contextually closed WFS semantics of such a modular RDF
rule base R are defined, through the AS [5] and WFS [4] semantics of a normal
logic program RCC , generated from R, respectively. Yet, this framework does
not have a model-theoretic semantics that faithfully extends RDFS semantics
[6], does not support explicit negation and general formulas in the body of the
rules, and ignores visibility issues.

TRIPLE [12] is a rule language for the Semantic Web that supports modules
(called, models there), qualified literals, and dynamic module transformation.
Arbitrary formulas can be used in the body of a rule, handled through the Lloyd-
Topor transformations [9]. Part of the semantics of the RDF(S) vocabulary is

226 A. Analyti, G. Antoniou, and C.V. Damásio

represented as pre-defined rules (and not as semantic conditions on interpreta-
tions), which are grouped together in a module. The semantics of a modular
rule base is defined, based on the well-founded semantics (WFS) [4] of an equiv-
alent logic program. Yet, the model-theoretic semantics of TRIPLE [13] does
not faithfully extend RDFS semantics [6] and is not, in general, equivalent to
its transformational semantics. Additionally, TRIPLE does not support explicit
negation and ignores visibility issues.

References

1. Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Extended RDF as a Se-
mantic Foundation of Rule Markup Languages. Journal of Artificial Intelligence
Research (JAIR) 32, 37–94 (2008)

2. Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: On the Computability and
Complexity Issues of Extended RDF. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI
2008. LNCS (LNAI), vol. 5351, pp. 5–16. Springer, Heidelberg (2008)

3. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A Logical
Framework For the World Wide Web. TPLP 8(3), 249–269 (2008)

4. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General
Logic Programs. Journal of the ACM 38(3), 620–650 (1991)

5. Gelfond, M., Lifschitz, V.: Logic programs with Classical Negation. In: 7th Inter-
national Conference on Logic Programming, pp. 579–597 (1990)

6. Hayes, P.: RDF Semantics. W3C Recommendation, February 10 (2004),
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

7. Herre, H., Jaspars, J., Wagner, G.: Partial Logics with Two Kinds of Negation as a
Foundation of Knowledge-Based Reasoning. In: Gabbay, D.M., Wansing, H. (eds.)
What Is Negation? Kluwer Academic Publishers, Dordrecht (1999)

8. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation, February 10 (2004),
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

9. Lloyd, J.W., Topor, R.W.: Making Prolog more Expressive. Journal of Logic Pro-
gramming 1(3), 225–240 (1984)

10. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model se-
mantics for smodels programs. TPLP 8(5–6), 717–761 (2008)

11. Polleres, A., Feier, C., Harth, A.: Rules with Contextually Scoped Negation. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer,
Heidelberg (2006)

12. Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and Transformation Lan-
guage for the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 364–378. Springer, Heidelberg (2002)

13. Stefan Decker, W.N., Sintek, M.: The Model-Theoretic Semantics of TRIPLE.
Technical Report (2002)

14. Wagner, G., Giurca, A., Diaconescu, I.-M., Antoniou, G., Analyti, A., Damasio,
C.: Reasoning on the Web with Open and Closed Predicates. In: 3rd International
Workshop on Applications of Logic Programming to the (Semantic) Web and Web
Services (ALPSWS 2008), in conjunction with ICLP 2008, pp. 71–84 (2008)

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

The Perfect Match: RPL and RDF Rule
Languages

François Bry, Tim Furche, and Benedikt Linse

University of Munich
http://www.pms.ifi.lmu.de

Abstract. Path query languages have been previously shown to com-
plement RDF rule languages in a natural way and have been used as
a means to implement the RDFS derivation rules. RPL is a novel path
query language specifically designed to be incorporated with RDF rules
and comes in three flavors: Node-, edge- and path-flavored expressions
allow to express conditional regular expressions over the nodes, edges, or
nodes and edges appearing on paths within RDF graphs. Providing reg-
ular string expressions and negation, RPL is more expressive than other
RDF path languages that have been proposed. We give a compositional
semantics for RPL and show that it can be evaluated efficiently, while
several possible extensions of it cannot.

Graph traversal operators play a crucial role in rule and query languages for
semi-structured data and for RDF rule languages in particular. This need bas
been acknowledged by the development of languages like Versa [14] SPARQLeR
[10] and nested regular expressions (NREs) [15] and underlined in [3]. Moreover,
the need for traversal of semi-structured data in general, and XML in particu-
lar is underscored by the huge success of XPath, arguably the most prominent
XML query language. In [15] it has been shown that SPARQL augmented with
conditional (in the sense of [12]) regular path expressions is expressive enough
to query RDF graphs under the RDFS semantics without computing the closure
of the graph under the RDFS entailment rules.

Most path query languages proposed up until now are unfit for clean integra-
tion with RDF rule languages for the following reasons: (i) their use of variables
interferes with the use of logical variables already present in rule languages, (ii)
they do not always evaluate to pairs of nodes and thus cannot be safely used
at the place of RDF predicates in query patterns and (iii) they lack negation,
regular string expressions and often also conditional operators.

We propose the RDF path language RPL, that is designed for easy integration
with RDF rule languages such as SPARQL [19], Xcerpt

RDF [7,16] and RDFLog
[5,4]. RPL is an orthogonal extension to RDF rule languages in that it sets out
to extend RDF rule languages by features they lack, and in that it tries to avoid
duplication of features they already provide. RPL expressions always evaluate
to pairs of nodes within an RDF graph, and can thus be safely used at the
place of predicates within the body of RDF rules. Despite of this restriction,

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 227–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

228 F. Bry, T. Furche, and B. Linse

SPARQL extended with RPL predicates is capable, just as NREs, to query RDF
graphs under the RDFS semantics without computing the closure of the queried
graphs under the RDFS entailment rules. RPL is more expressive than previously
proposed RDF query languages in that it provides regular string expressions and
negation.

RDF Path Expressions (RPEs) come in three flavors: node-restricting, edge-
restricting and path-restricting, identified by the keywords NODES, EDGES, PATH,
respectively. Node-restricting (edge-restricting) RPEs only place restrictions on
the nodes (edges) appearing within a path. Path-restricting expressions may
place restrictions on both, nodes and edges. RPEs evaluate to sets of pairs of
nodes – i.e. binary relations over the set N of nodes of an RDF graph. The three
unrestrictive RPEs [PATH (_ _)*], [EDGES _*] and [NODES _*] evaluate to
N ×N .

This paper is organized as follows: Section 1 informally introduces the seman-
tics of RPL by example, before its syntax and semantics is formally defined in
Sections 2 and 3. Section 5 compares RPL to related path query languages and
comes up with first complexity results. Section 6 shows the tractability of RPL as
a whole, and the intractability of node and edge flavored path RPL expressions
augmented with unordered paths.

The contributions of this paper are as follows: (i) We formalize the syntax and
semantics of RPL expressions, and (ii) show that RPL can express all relevant
RDFS queries. (iii) We show that RPL can be evaluated efficiently, and (iv) that
also NREs could be extended by regular string expressions and negation without
sacrificing tractability. (v) Finally we show that extensions of RPL and NREs
to unordered paths results in the loss of the tractability of both languages.

1 RPL by Example

Before introducing RPL, we define the notions of RDF triples, graphs, and paths
in RDF graphs.

Definition 1 (RDF triple, graph). Let U , B, L be three disjoint sets of URIs,
blank node identifiers and RDF literals. Then t = (s, p, o) ∈ U∪B×U×U∪B∪L
is an RDF triple, and tg ∈ U × U × U ∪ L is a ground RDF triple. s, p, o are
the subject, predicate and object of t, respectively. A (ground) RDF graph is
a set of (ground) RDF triples. The set of nodes N of an RDF graph G are all
elements in U ∪B ∪L that appear in subject or object position of a triple in G.

Definition 2 (Path in an RDF graph). Let G be an RDF graph. The se-
quence n1, . . . , nk is a path in G, iff the triples (n1, n2, n3), (n3, n4, n5), . . . ,
(nk−2, nk−1, nk) are in G.

Example 1. [PATH (_ eg:/.*/)* rdf:type]: All pairs (n1, n2) of nodes con-
nected over intermediate nodes of the namespace eg. Additionally, the last edge
on the connecting path must correspond to the qualified name rdf:type. This
first example demonstrates the following points:

The Perfect Match: RPL and RDF Rule Languages 229

– RPEs start with an opening square bracket followed by one of the keywords
PATH, EDGES and NODES specifying the flavor of the path expression, and end
with a closing square bracket.

– As in SPARQL, XPath, XQuery, XSLT and Xcerpt
RDF, URIs may be ab-

breviated by qualified names.
– Wildcards (_) and regular expressions (e.g. /.*/) play an important role

within RPEs. Together with qualified names, URIs and literals, they consti-
tute the atomic building blocks of RPEs, called atomic RPEs.

– From atomic RPEs, compound RPEs can be built via sequencing (denoted
by whitespace), alternation (|), Kleene closure (* and +), optionality (?),
and negation (not(...)).

Example 2. The expression [PATH (>eg:p ^_[not(PATH eg:p1])])* eg:p]
collects all pairs of nodes connected over a path with at least one predicate
with URI eg:p. All intermediate nodes must not have an outgoing eg:p1 edge.

This second example introduces path directions and path predicates and demon-
strates the following points:

– URIs, regular expressions or qualified names within RPEs may be modified
by one of the directions ‘>’ (forward predicate), ‘<’ (reverse predicate) or ‘̂ ’
(node). If an atomic RPE is prefixed with ‘<’ (‘̂ ’) then it must match with
a reverse edge (node) on the path connecting the nodes n1 and n2. If an
atomic RPE is undirected or prefixed by ‘>’, then it must match a forward
edge on the path connecting n1 and n2.

– Path expressions may be nested via path predicates, which roughly corre-
spond to XPath predicates. While URIs, qualified names or regular expres-
sions within RPEs represent local restrictions only, predicates allow the spec-
ification of non-local restrictions, i.e., restrictions that are not directly en-
forced on nodes or edges on the path, but on nodes or edges connected via
a nested path expression.

Example 3. The edge-flavored query [EDGES rdf:type (rdfs:subClassOf)*]
evaluates to all pairs of nodes connected via one rdf:type edge and zero or more
rdfs:subClassOf edges (in this order).

This query determines the direct or indirect class membership of resources under
the RDFS semantics. Note that also for many other RDF queries, only the
edges along a path are relevant. The reverse relation is obtained by the query
[EDGES (<rdfs:subClassOf)* <rdf:type].

Example 4. The node-flavored expression [NODES (eg:a eg:b)] finds all pairs
of nodes that are connected over nodes eg:a and eg:b (in this order), with arbi-
trary predicates on the path. The query [NODES (eg:/.*/ | foaf:/.*/)*]
on the other hand, finds all pairs of nodes connected over a path of length zero
or more which contains only intermediate nodes belonging to the namespaces eg
or foaf. The predicates on the path are irrelevant, as indicated by the keyword
NODES.

230 F. Bry, T. Furche, and B. Linse

Example 5 (RDFS querying with RDFLog augmented by RPL). This example
shows how RDF rule languages can be augmented by RPL path expressions to
immitate the RDFS semantics.

Due to its simplicity, we choose RDFLog [5] as the rule language to be ex-
tended. But similar embeddings can be given for most RDF rule languages,
including the various SPARQL extensions with rules [17,18,8]. The RDFLog
rule1

∀x p y p1 z . (x p y) ← (x p1 z), (p1 [EDGES sp*] y) (1)

can be used to materialize the extension of the predicate p under the RDFS
semantics. In a backward chaining evaluation of an RDFLog program, material-
ization is only carried out on demand, and is thus more efficient than computing
the RDFS closure of the queried graph. If only single rules or queries are allowed
(such as in SPARQL), then the body of Equation 1 can simply be used in the
query at the place of p.

The extension of predicates with a special semantics under the RDFS model
theory deserve special treatment. E.g the extension of rdf:type is computed by
the following RDFLog rules with RPL predicates:

∀x y . (x type y) ← (x [EDGES type sc*] y)
∀x y p1 z. (x type y) ← (x p1 z), (p1 [EDGES sp* dom sc*] y)

∀x y p1 z. (x type y) ← (z p1 x), (p1 [EDGES sp* range sc*] y)

It can be shown that also extensions of the remaining RDFS predicates
subclassOf, subPropertyOf, domain and range can be encoded as RDFLog
or SPARQL rule bodies augmented with RPL. The encoding is analogous to the
one presented in [15] and is omitted here for the sake of brevity.

2 RPL Syntax

Definition 3 (Abstract syntax of RPEs). The abstract syntax of RPL is
recursively defined as follows:

– A URI u, regular expression re, qualified name q, literal l and wild card
is an atomic RPE. Moreover, a qualified name prefix:localpart where

localpart is a regular expression, is an atomic RPE.
– If p is an atomic path expression, then p, < p, > p and p̂ are directed path

expressions.
– if p1 is an atomic RPE, and q1, . . . qn are RPL predicates (see below), then

p1 and p1[q1] . . . [qn] are predicated RPEs.
– If p is a predicated or concatenated RPE, then p, p∗, p+ and p? are adorned

RPEs.
1 rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, and rdfs:domain

are abbreviated by type, sc, sp, range and dom, respectively.

The Perfect Match: RPL and RDF Rule Languages 231

– If p1, . . . pn are adorned or disjunctive (see below) RPEs, then (p1 . . . pn) with
n ≥ 1 is a concatenated RPE.

– If p1, . . . pn are concatenated RPEs, then (p1 | . . . | pn) with n ≥ 1 is a
disjunctive RPE.

– If p is a concatenated RPE, PATH p, EDGES p, NODES p are flavored
RPEs. They are called path-restricting, edge-restricting and node-restricting
expressions, respectively.

– If p is a flavored RPE, then p and not(p) are RPL predicates.

Figure 1 summarizes the relationships between the different types of subexpres-
sions in RPL. An arrow labeled with 1, + or ∗ from type A to type B means that
expressions of type B are made up of exactly one, at least one, or zero or more
expression of type A, respectively. It holds that any atomic RPL expression is
also a directed subexpression, which are in turn also predicated subexpressions,
which are in turn adorned subexpressions. As in XQuery, a concatenated ex-
pression (called sequence in XQuery) of one element is equivalent to the element
itself. Also a disjunctive RPE of one element is equivalent to the element itself.

atomic directed predicated adorned

predicate flavored concatenated disjunctive

1 1 1

∗

1

+

+

+1

1

Fig. 1. Relationships among subexpressions of RPEs

The following remarks clarify Definition 3.

– Atomic RPEs correspond to the building blocks of ground RDF graphs with
the following exceptions: (i) qualified names are allowed as shorthand nota-
tions for URIs, (ii) regular expressions are allowed as a means for matching
URIs and Literals2, (iii) the local part of a qualified name may be expressed
by a regular expression, (iv) wildcards can be used to match any blank node,
URI or literal.

– RPEs do not provide any means for selecting RDF literals based on their
types or based on their language tags, other than using a regular expression
for this purpose.

– Just as with ordinary regular (string) expressions, parentheses are used to in-
fluence operator precedence. The operators Kleene star (*), Kleene plus (+),
optionality (?) are mutually exclusive and have precedence over all other op-
erators. The concatenation operator (denoted by whitespace) binds stronger

2 Matching blank nodes with regular expressions is not allowed, since this would mean
syntactic matching of RDF graphs, i.e. the semantics of an RPE would be dependent
on the syntactic representation of the RDF graph that is being queried.

232 F. Bry, T. Furche, and B. Linse

than the disjunctive operator |, i.e. a b | c is equivalent to (a b) | c. Paren-
theses may be omitted, if they do not alter operator precedence.

3 RPL Compositional Semantics

The intuitive presentation of the RPEs is now formalized by a compositional
semantics, which is given by the function [[·]] and its four helper functions [[·]]P for
path-restricting expressions, [[·]]E for edge-restricting expressions, [[·]]N for node-
restricting expressions and [[a]]V for atomic expressions a that are evaluated in
vertex position. While the functions [[·]], [[·]]P , [[·]]E and [[·]]N evaluate to subsets
of N ×N , i.e. binary relations on the set N of nodes of the queried RDF graph,
the function [[·]]V evaluates to subsets of N .

In order to present the semantics in an easily digestible manner, we split the
entire definition according to the flavor of the RPE to be formalized. Definition
4 gives the semantics for edge-restricting RPEs, Definitions 5, 6 and 7 add the
necessary equations for node-restricting, path-restricting and arbitrary RPEs,
respectively. The three flavors of RPEs differ in the way subexpressions are con-
catenated. In contrast, most equations for evaluating atomic RPEs, alternatives
and Kleene closures are independent of the flavor and are only given once. A
more detailed natural-language description of the semantics is given in the online
version of this contribution [6].

In the following, let G be an RDF graph over the vocabulary U ∪B ∪ L, u a
URI, l an RDF Literal, re a regular expression, a an atomic RPE, pe a predicated
RPE, f1, . . . fk flavored RPEs, and e, e1, . . . , ek arbitrary RPEs.

Definition 4 (Semantics of edge-restricting RPEs). The semantics of
edge-restricting RPEs is given by the function [[·]]E defined as follows:

[[u]]E,P = {(n1, n2) | (n1, u, n2) ∈ G} (2)
[[]]E,P = {(n1, n2) | ∃p . (n1, p, n2) ∈ G} (3)

[[/re/]]E,P = {(n1, n2) | ∃p ∈ L(re) . (n1, p, n2) ∈ G} (4)
[[>pe]]X = [[pe]]X for X ∈ {E, P} (5)
[[<pe]]X = {(n2, n1) | (n1, n2) ∈ [[>pe]]X} for X ∈ {E, P} (6)

[[e1 . . . ek]]E = {(n1, nk−1) | (7)
∃n2, . . . nk . ∀1 ≤ i ≤ k ((ni, ni+1) ∈ [[ei]]E)}

[[(e1 | . . . | ek)]]X = [[e1]]X ∪ . . . ∪ [[ek]]X for X ∈ {P, E, N} (8)

[[a[f1] . . . [fk]]]E =
⋃

a′∈[[a[f1]...[fk]]]V
[[a′]]E (9)

[[ε]]E,P = {(n, n) | n ∈ N} (10)
[[e+]]X = [[e]]X ∪ [[e e+]]X for X ∈ {P, E, N} (11)
[[e∗]]X = [[ε]] ∪ [[e+]]X for X ∈ {P, E, N} (12)
[[e?]]X = [[ε]] ∪ [[e]]X for X ∈ {P, E, N} (13)

The Perfect Match: RPL and RDF Rule Languages 233

Definition 5 (Semantics of node-restricting RPEs). The semantics for
node-restricting RPEs is defined as follows:

[[]]V = N (14)
[[/re/]]V = N ∩ L(re) (15)

[[u]]V = {u} ∩N (16)
[[l]]V = {l} ∩N (17)

[[pe]]N = {(n, n) | n ∈ [[pe]]V } (18)
[[a[f1] . . . [fk]]]V = [[a]]V ∩ {n1 | ∃n2 . (n1, n2) ∈ [[f1]]} ∩ (19)

. . . ∩ {n1 | ∃n2 . (n1, n2) ∈ [[fk]]} (20)
[[e1 . . . ek]]N = {(n1, n2k) | ∃n2, . . . n2k−1, p1, . . . , pk−1 . (21)

∀1 ≤ i ≤ k ((n2i−1, n2i) ∈ [[ei]]N) ∧
∀1 ≤ i ≤ k − 1 ((n2i, pi, n2i+1) ∈ G)}

Definition 6 (Semantics of path-restricting RPEs). The semantics of
path-restricting RPEs is defined as follows:

[[̂ a]] = [[a]]V (22)
[[e1 . . . ek]]P = {(n1, nj) | ∃n2, . . . , nj−1 . (n1, n2) ∈ [[e1]]P (23)

∧ n2 ∈ [[e2]]V ∧ . . . ∧ nj−1 ∈ [[ek−1]]V ∧ (nj−1, nj) ∈ [[ek]]P }
[[̂ pe e]]P = {(n1, n2) ∈ [[e]]P | n1 ∈ [[pe]]V } (24)
[[e p̂e]]P = {(n1, n2) ∈ [[e]]P | n1 ∈ [[pe]]V } (25)

Definition 7 (Semantics of flavored RPEs)

[[PATH e]] = [[e]]P (26)
[[EDGES e]] = [[e]]E (27)
[[NODES e]] = {(n1, n4) | ∃n2, n3, p1, p2 ((28)

(n2, n3) ∈ [[e]]N ∧ (n1, p1, n2), (n3, p2, n4) ∈ G)}
[[not(u)]] = [[]] \ [[u]] (29)

4 RPL Restrictions and Extensions

In order to compare RPL to other regular path languages over ordinary graphs
and RDF graphs, and to study the complexity of RPL fragments, we introduce
the following set of sublanguages:

Definition 8 (RPL sublanguages). Besides the operators +, ? and *, RPL
makes use of the following features:

– regular string expressions (denoted by RSE)
– the EDGE keyword (denoted by →)

234 F. Bry, T. Furche, and B. Linse

– the NODE keyword (denoted by ◦)
– the PATH keyword (denoted by ���)
– predicates (denoted by [])
– concatenation (denoted by /)
– disjunction (denoted by |)
– predicate negation (denoted by ¬)
– direction modifiers (denoted by μ)

RPLf1,...,fk with f1, . . . , fk ∈ {RSE,→, ◦, ���, [], /, |,¬, μ} denotes the sublan-
guage of RPL making use of the operators +, ?, and * and the features f1, . . . , fn

only.

Languages such as XPath and Xcerpt allow queries to be incompletely speci-
fied in depth, or with respect to order. Incompleteness in depth is specified via
the descendant axis in XPath and via the desc keyword in Xcerpt. Incomplete-
ness with respect to order is the default querying mode in XPath and can be
overridden by using the << operator; in Xcerpt it is specified via curly braces.

An obvious extension of RPL is thus to introduce unordered and incomplete
paths. While the order in Xcerpt query terms is enforced/relaxed with respect
to the sibling axis of an XML document, the order in RPEs may be relaxed
with respect to the paths traversed, i.e. the descendant axis. Also the concept
of incomplete specification of siblings in Xcerpt query terms may be transferred
to the descendant axis by allowing double brackets within RPL. We denote the
extensions of the sublanguages of RPL by unordered paths, incomplete paths
and both by adding the symbols {}, [[]] or both to the feature list of the
sublanguage. The RPL expression Nodes { x y z } thus evaluates to all pairs
of nodes that are connected by a path containing only the intermediate nodes
x, y, and z in an arbitrary order. The RPL expression Nodes [[x y]] on the
other hand evaluates to all pairs of nodes that are connected via a path that
contains the nodes x and y with x appearing before y, and an arbitrary number
of nodes before x, between x and y and following y.

The semantics of {} is formalized by the functions [[·]]UN , [[·]]UE , and [[·]]UP

for unordered node-flavored, edge-flavored and path-flavored expressions, respec-
tively. The semantics of [[]] is given by the functions [[·]]IN , [[·]]IE , and [[·]]IP .

Definition 9 (Semantics of unordered and incomplete RPEs)

[[e]]UN =
⋃

p∈Perm(e)

[[p]]N [[e]]IN =
⋃

c∈Comp(e)

[[c]]N

[[e]]UE =
⋃

p∈Perm(e)

[[p]]E [[e]]IE =
⋃

c∈Comp(e)

[[c]]E

[[e]]UP =
⋃

p∈Perm(e)

[[p]]P [[e]]IP =
⋃

c∈Comp(e)

[[c]]P

A completion of a sequence e := e1, . . . , en is a sequence c that contains all el-
ements of e plus an arbitrary number of wildcards. A completion of e is called

The Perfect Match: RPL and RDF Rule Languages 235

order-respecting, iff for ei, ej ∈ e with i < j, ei appears in c before ej. Perm(e)
and Comp(e) denotes the set of all permutations and order respecting comple-
tions of e, respectively.

Both extensions of RPL – to unordered paths and to incomplete paths – are mere
syntactic sugar. The RPE Nodes { x y } can be rewritten to the equivalent
RPE Nodes (x y) | (y x) and the RPE Nodes [[x y]] can be rewritten
to Nodes _* x _* y _*. Observe that whereas the rewriting of incomplete path
expressions is linear in the size of the original expression, the rewriting of un-
ordered paths is exponential in the size of the original expression. We chose not
to include incomplete RPEs in standard RPL, since one can easily do without
them. On the other hand we chose not to include unordered RPEs in standard
RPL, because it would make evaluation of RPL NP-hard as shown in Section 6.

The semantics of RPEs that are both unordered and incomplete (denoted by
{{ }}) is easily defined at the aid of non-order-respecting permutations. For the
sake of brevity, we omit this extension of RPL.

5 RPL Compared to Lorel, SPARQLeR and Nested
Regular Expressions

[2] extends SPARQL by regular expression patterns which may occur at the place
of predicates in RDF graphs. These regular expression patterns include amongst
others kleene closure, disjunction, concatenation, but not predicate negation and
regular string expressions. Moreover, node labels are are not considered part of
the path to be matched by the regular expression pattern.

The Lorel query language [1] is an offspring of the XML database system Lore,
but can be used to query all kinds of semi-structured data. It has received con-
siderable attention in the research community, partially due to its incorporation
of regular path expressions.

RPEs compare to Lorel path expressions as follows:

– The data model of Lorel is an edge-labeled graph, without node labels. There-
fore Lorel does not distinguish the three flavors of RPEs.

– Both languages provide the unary operators Kleene plus (+), Kleene star (*)
and optionality (?), and the binary operators concatenation (denoted by ’.’
in Lorel), and alternative.

– Lorel allows the use of the character ’%’ to match 0 or more characters within
a label. RPL on the other hand allows regular string expressions. Wildcards
for entire labels are denoted by ’#’ in Lorel and ’_’ in RPL.

– Lorel allows the extraction of values from traversed paths by so-called path
variables. RPEs do not use variables since they may be embedded in RDF
query language such as SPARQL or Xcerpt

RDF, that provide themselves
variables.

– RPEs allow the restriction of paths based on path predicates, Lorel does not.
Hence query 2 is not expressible in Lorel.

236 F. Bry, T. Furche, and B. Linse

In [13] the evaluation of regular expressions over the alphabet σ of an edge-
labeled graph g is studied. Compared to RPEs, [13] considers the labels of edges
to be atomic, i.e. they do not consider regular string expressions on node or edge-
level. Moreover, non-local restrictions on paths (i.e. predicates) and traversal
in reverse direction are not expressible. Since nodes in the queried graphs are
unlabelled, only the edge labels are relevant, i.e. the path expressions in [13]
correspond to a subset of edge-flavored RPEs.

[13] considers the problems Regular Simple Path, Fixed Regular Path (R), and
Regular Path. The problem Regular Simple Path takes a regular expression e,
a graph g over the same alphabet Σ, and a pair of nodes (x, y) as input, and
returns true iff g contains a directed simple path from x to y that satisfies e. A
path is called simple, if it does not contain the same vertex twice. The problem
Fixed Regular Path is the same as regular simple path, but e is not considered
as input. Regular Path is the same as Regular Simple Path, but the path is not
required to be simple.

[13] show that Fixed Regular Simple Path is NP-complete and Regular Simple
Path is NP-hard by a simple reduction from the problems Even Path and Disjoint
Paths treated in [11] and [9], respectively. Regular Path, however, is decidable in
time O(|E| |D|), where |E| is the size of the regular path expression and |D| is the
size of the data – shown by the construction of a product automaton of the NFA
of a regular path expression and the database graph interpreted as a NFA. In
RPL we choose to accept arbitrary paths, including non-simple paths as possible
connections among two nodes. RPEs are more expressive than the regular path
expressions of [13] in three respects: (i) They allow the specification of predicates
on nodes, (ii) regular expressions for matching edge and node labels, and (iii)
in that they take into account also the labels of nodes. Therefore, the results of
[13] leave the question, if there is a polynomial time algorithm for the evaluation
problem of RPEs, open. The following result for the complexity of RPL→,/,|,μ

expressions is a direct consequence of the complexity Regular Path.

Corollary 1. RPL→,/,|,μ can be evaluated in time O(|E| |G|), where |E| is the
size of the path expression and |G| is the size of the queried RDF graph.

[15] propose the regular path language nested regular expressions (NRE) with
the following syntax:

exp := axis | axis::a (a ∈ U) | axis::[exp] | exp/exp | exp |exp | exp∗ (30)

where axis ∈ {self, next, next−1, node, node−1, edge, edge−1} and U denotes the
set of URIs. The axes next, edge and node are used to navigate from one node
in an RDF graph to an adjacent one, from a node to one of its outgoing edges
and from an edge to its sink. If the starting node is left unspecified, next, edge
and node can be interpreted as binary relations over an RDF graph G. Node
tests following the axes next, edge and node constrain the label of a traversed
edge, the object of an arc, and the subject, respectively. The semantics of the
predicates [], alternatives |, Kleene star ∗, and concatenation / are as expected.

The Perfect Match: RPL and RDF Rule Languages 237

In this section we briefly give an intuitive semantics of NRE by translating
Examples 1, 2, 3 and 4 to NRE.

We abbreviate URIs in NRE by qualified names to shorten the examples.

Example 6 (Nested regular expressions)

– Example 1 is contained in the NRE (next)∗/next::rdf:type. An exact trans-
lation is not possible due to the absence of regular string expressions for
matching nodes or edges of RDF graphs.

– Example 2 is contained in the NRE (next::eg:p)+. An exact translation is
not possible due to the absence of negation in NRE predicates.

– Example 3 is equivalent to next::rdf:type/(next::rdfs:subClassOf)∗.
– The first RPL expression in Example 4 is equivalent to the following NRE.

next/self::eg:a/next/self::eg:b

– The NRE

next::a/(next::[next::a/self::b])∗/(next::[node::b] | next::a)+ (31)

from [15] is contained in the RPE [EDGES a([PATH a b]) ∗]. An exact
translation to an RPE is not possible, since RPEs always evaluate to pairs
of nodes of an RDF graph. In contrast, NREs may also evaluate to pairs
of edges and nodes, as the subexpression ”node::b” of Expression 6 does.
Expression 6 can, however, be translated to an equivalent Xcerpt

RDF query
term or SPARQL query pattern that makes use of a single RPE.

Given an NRE exp, an RDF graph G, and a pair of nodes (n1, n2), the problem
whether there is a path from n1 to n2 matching exp within G, can be decided
in O(|G| · |exp|).

Corollaries 2 and 3 shed light on the expressive relationship between fragments
of RPL and NRE. An immediate consequence of Corollary 2 is Corollary 4. The
proofs for Corollaries 2 and 3 are contained in the online version of this paper
[6].

Corollary 2. Any RPE r ∈ RPL→,◦,���,[],/,|,μ can be translated to an equivalent
NRE of length O(|pc|).

Corollary 3. Any NRE pn excluding the axes node, node−1, edge, and edge−1

can be translated to an equivalent RPE pc of length O(|pn|).

Corollary 4. A RPE pc in RPL→,◦,���,[],/,|,μ can be evaluated in O(|G| · |pc|).

6 Further Complexity Results

The comparison of RPL to related path query languages in the last section has
already brought up some complexity results for sublanguages of RPL. In this
section we establish the tractability of RPL as a whole and the intractability of
RPL with unordered paths.

238 F. Bry, T. Furche, and B. Linse

Theorem 1 (Tractability of RPL and NRERSE,¬). RPL and the exten-
sion of NRE by regular string expressions and predicate negation (denoted by
NRERSE,¬) can be evaluated in time O(|exp| · |G|).

Proof. (Sketch) Theorem 1 builds upon Corollary 4, that establishes that the
evaluation of RPL→,◦,���,[],/,|,μ is in O(|exp| · |G|). The only features missing
in RPL→,◦,���,[],/,|,μ when compared to full RPL are predicate negation (¬)
and regular string expressions (RSE). The evaluation of regular string expres-
sions is linear. Thus, defining the size of an RDF graph as the total length of
the characters appearing within its nodes and edges, the complexity remains in
O(|exp| · |G|) when regular string expressions are added to the language.

Showing that predicate negation has no effect on evaluation complexity is a
little more tricky: Consider the proof of the tractability of NRE in [15]. It involves
the construction of product automata G×Ap for each predicate p appearing in
the expression exp to be evaluated. We can extend NRE to NRE¬ by allowing
predicate negation in the same way as RPL allows predicate negation. A RPE
pc with predicate negation can then be translated to an NRE¬ expression pn in
linear time, such that the size of pn remains linear in the size of pc.

It remains to be shown that NRE¬ is in O(|exp| · |G|). For this end, we adapt
the algorithm LABEL(G, exp) from [15] to label both positive and negative
predicates appearing in exp. For each negative predicate not(p) we introduce
the label notp which is attached to each node n in G not matching with p. Then,
for each negative predicate not(p) in exp, we substitute not(p) in notp, thereby
obtaining an ordinary NRE expression exp+. exp+ evaluates to over G with the
adapted labeling algorithm if and only if exp evaluates to true over G with the
original labeling algorithm.

Theorem 2 (NP-Completeness of RPL◦,/,{}). The evaluation problem of
RPL◦,/,{} is NP-complete.

Proof. Obviously the evaluation problem for RPL◦,/,{} is in NP. We show its
NP-hardness by a reduction from the directed Hamiltonian path problem. Let
G be an arbitrary RDF graph with nodes {n1, . . . , nk}. Then G has a directed
Hamiltonian path if and only if the RPE { NODES n1, . . . nk } has a non-empty
solution over G.

Theorem 3. The evaluation problem for RPL→,/,{} is in O(n · σw · e) where n
is the number of nodes of the RDF graph, e the number of edges, σ the number
of edge labels, and w is the length of the path expression.

Corollary 5. The evaluation problem for RPL→,/ is in O(e ·w) where w is the
length of the regular path expression and e is the number of edges in the RDF
graph.

Proof. Theorem 3 only gives an upper bound for the evaluation of RPL→,/,{},
therefore it suffices to give an algorithm that runs in O(n · σw · e) time.

Let G be an RDF graph, and p ∈ RPL→,/,{}. The idea of the algorithm is to
view G as a non-deterministic finite automaton, and p as a word to be checked

The Perfect Match: RPL and RDF Rule Languages 239

by the automaton. p is checked from the first element to the last, and the set of
valid states in the automaton is remembered in each step, starting out from the
set of all nodes in the RDF graph. For RPL→,/ (i.e. only ordered edge-flavored
expressions), this view gives us an algorithm in O(e ·w), where e is the number
of edges in G, and w is the length of p (Corollary 5).

For unordered edge-flavored path expressions, a naive implementation would
compute all possible permutations, and check the RDF graph for correspondence
with each of these permuations. Since there w! permutations for a path of length
w, this procedure has a complexity of O(w! · e). The following algorithm is more
efficient:

Again, the RDF graph G is viewed as a finite automaton, which is traversed
using symbols occurring in the path expression p. In step i of the computation,
each node n in G is labeled with all paths p of length i such that n is reachable
over p from some other node m in G. Initially, all nodes are labeled with the empty
path ε. After w steps (or earlier), the algorithm terminates and exactly the set
of labeled nodes in G is reachable over p. In Listing 1.1 we use set notation to
represent paths, since the order of traversal is irrelevant; however we must think of
paths as multisets, because the same edge label may occur multiple times in p. For
this reason, the set difference operator \ and the union operator ∪ in Listing 1.1
are the set difference and the union operator for multisets, not sets, respectively.

Listing 1.1. Evaluation algorithm for expressions in RPL→,/

for each node n in G do labels(n) = {ε} end
for i = 1 to w do // w is the length of path p

for each e in E do // follow every edge
for each l in labels(source(e)) do

if label(e) is in p \ l then
labels(sink(e)).add({l} ∪ label(e))

end
end

end
remove all labels of length i− 1

end

In the i-th iteration of the outermost loop of Listing 1.1, the set of labels for the
nodes in G is bounded by σi · |n|. Thus, the number of edge traversals in step
i is bounded by σi · |n|. The total number of edge traversals is thus σw+1 · |n|
(geometric series).

Theorem 4 (NP-Completeness of RPL→,/,{}). The evaluation problem of
RPL→,/,{} is NP-complete.

Proof. For the proof of Theorem 4 we use a reduction from the Hamiltonian
Cycle Problem. The idea of the proof is illustrated in Figure 2. Let G = (V, E)
be a directed labeled graph with nodes {1, . . . , k}. G has a Hamiltonian Cycle if
and only if the RPE { EDGES 1in, 1out, . . . , kin, kout } has a non-empty solution
over the edge expansion graph of G, which is defined as follows:

240 F. Bry, T. Furche, and B. Linse

1

2

3

4

5

1

·

· ·

2

· 3

4

·

5·

·

1out

2in

2out

5in

1out

3in

3out

4in

3out

5in

5out

3in

4out

5in

Fig. 2. Reduction from the Hamilton Cycle Problem to RPL→,/,{} evaluation

Definition 10 (Edge expansion graph). Let G = (V, E) with V = 1, . . . , k
be a graph. The edge expansion graph F = (V ′, E′, μ) of G is an edge labeled
graph with the following properties:

– V ⊆ V ′

– For each edge (u, v) ∈ E there is some node n in V ′ and edges (u, n), (n, v) ∈
E′ with μ(u, n) = uout and μ(n, v) = vin. There are no other edges in E′

involving n.
– These are all nodes and edges in F .

The edge expansion graph F of a given Graph G with v vertices and e edges
contains v + e vertices and 2 · e edges. Obviously, F can be constructed from G
in polynomial time.

7 Conclusion and Future Work

This paper describes the novel RDF path language RPL. RPL is one of the
few RDF path languages with a formal semantics. Compared to other query
languages it omits features that are rarely used, but includes features such as
regular string expressions, direction modifiers, and predicate negation, that may
turn out to be extremely useful for query authors. RPL can be evaluated effi-
ciently, but extensions of RPL with unordered paths or variables cannot. RPL is
currently being implemented. Future work includes the experimental affirmation
of the tractability of RPE evaluation.

References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query
language for semistructured data. International Journal on Digital Libraries 1(1),
68–88 (1997)

The Perfect Match: RPL and RDF Rule Languages 241

2. Alkhateeba, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expres-
sion patterns. Journal of Web Semantics (2009)

3. Angles, R., Gutierrez, C., Hayes, J.: RDF query languages need support for graph
properties. Technical report (2004)

4. Bry, F., Furche, T., Ley, C., Linse, B.: RDFLog—taming existence - a logic-based
query language for RDF (2007)

5. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like datalog
for RDF. In: Proceedings of 22nd Workshop on (Constraint) Logic Programming,
Dresden, September 30 –October 1 (2008)

6. Bry, F., Furche, T., Linse, B.: Online version,
http://www.pms.ifi.lmu.de/mitarbeiter/linse/RPL-full.pdf

7. Bry, F., Furche, T., Linse, B., Pohl, A.: XcerptRDF: A pattern-based answer to the
versatile web challenge. In: Proceedings of 22nd Workshop on (Constraint) Logic
Programming, Dresden, Germany, September 30 –October 1, pp. 27–36 (2008)

8. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B., Poppe, O.: SPARQLog:
SPARQL with rules and quantification. In: Virgilio, R.D., Giunchiglia, F., Tanca,
L. (eds.) Semantic Web Information Management: A Model-based Perspective,
ch. 12. Springer, Heidelberg (2009)

9. Fortune, S., Hopcroft, J.E., Wyllie, J.C.: The Directed Subgraph Homeomorphism
Problem (1978)

10. Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for semantic association
discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 145–159. Springer, Heidelberg (2007)

11. La Paugh, A., Papadimitrou, C.: The even-path problem for graphs and digraphs.
Networks 14(4), 507–513 (1984)

12. Marx, M.: Conditional XPath. ACM Transactions on Database Systems
(TODS) 30(4), 929–959 (2005)

13. Mendelzon, A.O., Wood, P.T.: Finding Regular Simple Paths in Graph Databases.
SIAM Journal on Computing 24, 1235 (1995)

14. Ogbuji, C.: Versa: Path-based RDF query language (2005)
15. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for

RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 66–81. Springer,
Heidelberg (2008)

16. Pohl, A.: RDF Querying in Xcerpt: Language Constructs and Implementation.
Deliverable I4-Dx2, REWERSE (2008)

17. Polleres, A.: From SPARQL to rules (and back). In: Williamson, C.L., Zurko, M.E.,
Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 787–796. ACM, New York
(2007)

18. Schenk, S., Staab, S.: Networked graphs: A declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the Web. In: Proceedings of
the 17th International World Wide Web Conference, Bejing, China (April 2008)

19. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C rec-
ommendation, W3C (January 2008),
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

http://www.pms.ifi.lmu.de/mitarbeiter/linse/RPL-full.pdf
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

A Hybrid Architecture for a Preoperative
Decision Support System Using a Rule Engine

and a Reasoner on a Clinical Ontology

Matt-Mouley Bouamrane1,2, Alan Rector1, and Martin Hurrell2

1 School of Computer Science
Manchester University, UK

{mBouamrane,Rector}@cs.man.ac.uk
2 CIS Informatics, Glasgow, UK

martin.hurrell@informatics.co.uk

Abstract. We report on a preventive care software system for preoper-
ative risk assessment of patient undergoing elective surgery. The system
combines a rule engine and a reasoner which uses a decision support
ontology developed with a logic based knowledge representation formal-
ism. We specifically discuss our experience of using a representation of
a patient’s medical history in OWL, combined with a reasoning tool to
suggest appropriate preoperative tests based on an implementation of
preoperative assessment guidelines. We illustrate the reasoning function-
alities of the system with a number of practical examples.

1 Introduction

The primary goal of clinical guidelines is to improve the quality and efficiency
of healthcare delivery, while providing an efficient, cost-effective and consistent
service across healthcare institutions. Clinical guidelines are expressed as state-
ments, rules, recommendations, management protocols, etc. They suggest a cer-
tain course of action given a specific medical context. Clinical guidance provide
support to health professionals without overruling their clinical judgment and
ability to use their own discretion in order to make decisions appropriate to
the individual circumstances of the patients and the broader medical context.
Clinical guidelines are generally designed after a lengthy and thorough process,
involving clinical topic selection, consultation with stakeholders, establishing an
expert panel which will examine the best evidence available on the topic, the gen-
eration of draft recommendations, typically by consensus, submission to stake-
holders or peer-review, and finally, issuance of final guidelines. The guidelines
may be used for training health professionals and supporting them in the intel-
lectually demanding and knowledge-intensive environment of the health services.
In addition, guidelines may lead to a significant improvement in service efficiency
and a substantial reduction in costs. The study by Ferrando et al. on 702 pa-
tients undergoing preoperative assessment estimated that applying preoperative
guidelines would reduce the cost of preoperative tests by 63% and in excess of

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 242–253, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Hybrid Architecture for a Preoperative Decision Support System 243

40% for hospital stays per patient [1]. In addition, tests performed on patients,
which were not deemed relevant by the guidelines, did not provided additional
clinical information of interest.

While the benefits of clinical guidelines may be confirmed by a number of
studies, the problem remains as ever of how to apply these effectively on the
ground and integrate them in clinical workflows and work practices, amidst the
huge volume of medical information available to health professionals, a prolifer-
ation of guidelines, as well as rapidly changing health policies [2]. The difficulty
is thus to deliver the guidelines in a format which make them readily usable by
health professionals. In addition, the considerable effort in producing and imple-
menting the guidelines is another incentive to make these guidelines sharable and
interoperable across services and institutions. Thus, the use of Information Tech-
nology in the health services, and in particular Clinical Decision Support Systems
(CDSS), can potentially efficiently support health professionals in their duties.
Tasks which may routinely be performed by CDSS include: efficiently managing
patient clinical information, handling clinical guidelines, providing risk assess-
ment, preventing errors of omission through alerts and reminders, extracting
information of interest and making recommendations appropriate to the circum-
stances of the patients, such as treatment protocols [3,4,5]. Indeed, the potential
to exploit computer systems to implement and share clinical guidelines has long
been recognised, as evidenced by the development of the GuideLine Interchange
Format (GLIF) [6], and efforts to develop guidelines models and guidelines based
decision support systems [7,8].

We here report on our work combining a preventive care software system for
preoperative risk assessment of patient using a rule engine with a decision sup-
port ontology developed with a logic based knowledge representation formalism.
We specifically discuss our experience of using a representation of a patient’s
medical history in OWL, combined with a reasoning tool to suggest appropri-
ate preoperative tests based on an implementation of the NICE preoperative
assessment guidelines1. The paper is structured as follows: first we present the
research motivation and background information on the preoperative decision
support system. We provide an overview of the system decision support ontol-
ogy and reasoning functionalities. We then discuss in details our implementation
of the NICE preoperative assessment guidelines. We conclude with a discussion
on this approach and directions for future work.

2 Background

This work is part of an ongoing project to introduce semantic technology into a
preoperative risk assessment system software called Synopsis. The overall archi-
tecture of the preoperative assessment system is illustrated in Figure 1. The use
of knowledge representation and reasoning both completes functionalities and
overcomes a number of limitations of the existing system. While numeric risk
1 NHS, National Institute for Clinical Excellence

http://www.nice.org.uk/Guidance/CG3

244 M.-M. Bouamrane, A. Rector, and M. Hurrell

Fig. 1. Hybrid architecture of the rule-engine / clinical knowledge-base preoperative
risk assessment system

score calculation is currently easily done by the system using an open source
java-based rule engine, JBoss Rules2, other tasks including categorisation, clas-
sification and logical inference were beyond the capacity of the system prior to
introduction of semantic technology.

Functionalities introduced in the system as the result of this project include
the development of an adaptive questionnaire, whereby clinical content of the
information collection process adapts automatically to information specific to a
patient clinical profile. Another enhancement to the system includes the ability
to generate a high level semantic representation of a patient clinical history in
the web ontology language OWL-DL. This is subsequently used to provide deci-
sion support functionalities via the use of automated reasoning tools. The web
ontology language OWL is supported by an active research community, readily

2 http://www.jboss.com/products/rules

A Hybrid Architecture for a Preoperative Decision Support System 245

and freely available development and reasoning tools and a well maintained ap-
plication programming interface [9,10,11].

High level medical history representation is done automatically for new pa-
tients entered in the system and we have proposed a methodology for the semi-
automatic generation of this medical history from legacy clinical databases in [12].
Note that prior to introduction to semantic technology to the system, the preop-
erative software was composed only of the following elements: user input (step
1), clinical data storage (3.a) and rule engine (4.c). Therefore, the preopera-
tive risk assessment (5) was almost entirely based on the calculation of numeric
scores. Thus, the introduction of semantic based technology in the system enables
adaptive information collection (2a and 2b), high level semantic patient mod-
elling (3.b) and decision support based on classification (4.a and 4.b) rather than
numeric rules only. This provides for a significant enhancement to the functional-
ities and capabilities of the system. We refer the interested reader to [13,14,15,16]
for a detailed description of the system features and functionalities.

3 Decision Support Ontology and Reasoning
Functionalities

Once the system has completed the adaptive information collection phase and
has generated a patient medical history semantic profile (3.b), reasoning on the
decision support ontology can then be performed. The purpose of the decision
support is to provide advice to clinicians and flag potential risks of complica-
tions so appropriate preventive measures can be taken accordingly. The decision
support ontology is divided into three domains with distinct purposes. The first
one consists of a Risk Assessment ontology and its purpose is to highlight po-
tential intra-operative and post-operative complications given a patient medical
profile and the planned surgical procedure. The second one is the Recommended
Test ontology, which purpose is to suggest certain preoperative tests, which may
help to decide whether it is safe to proceed with a planned surgery or whether
further actions need to be taken (e.g. referral to a specialist, optimisation of
patient’s health prior to surgery, etc.) The Recommended Test ontology we are
currently using is based on the preoperative tests clinical guidelines issued by
the British National Health System (NHS) National Institute for Clinical Excel-
lence (NICE). This will be discussed further in the next section. Finally, the last
domain of the Decision Support ontology is the Precaution Protocol ontology,
which may suggest a management or treatment protocol given a specific medical
context.

In the system, decision support is usually provided in a 2 step process. The
first step typically calculates risk scores or derives risk grades (ASA grades,
surgical risk grades, etc.) using numerical formulas such as the Goldman and
Detsky cardiac risk index, the Physiological and Operative Severity Score for
the enUmeration of Mortality and Morbidity (POSSUM) [17], etc. Once the
risk grades and categories have been derived from the first risk calculation step,
the system can then perform decision support using the open-source java-based

246 M.-M. Bouamrane, A. Rector, and M. Hurrell

PELLET reasoner [18] to reason on the decision support ontology given a patient
OWL medical history profile.

4 Recommended Preoperative Investigations

4.1 Description of Investigation Guidelines

The purpose of the NICE guidelines recommendations for preoperative investi-
gations is both to avoid patients undergoing unnecessary investigations, which
can be detrimental to their health, as well as more efficiently managing lim-
ited resources in the public health services. The implementation of the NICE
guidelines in the decision support system is both: (i) a pragmatic and useful
functionality provided to health professionals and (ii) a good example of how
the use of a clinical ontology and reasoner can provide functionalities beyond
the capabilities of a traditional rule engine. Regarding the first point, the table
in Figure 2 illustrates the format of the NICE guidelines recommendation for
preoperative investigations. We here describe the guidelines in more details:

Type of investigations: the guidelines include 9 potential investigations:
Chest X-Ray, ECG (Electrocardiogram), Full Blood Count, Haemostasis,
Renal Function, Random glucose, Urine analysis, Blood gases and Lung
Function.

Type of recommendations: there are currently 3 types of recommendations
for each test: “test recommended”, “test not recommended” and “consider
test”.

Factors Influencing recommendations: There are 5 factors taken into con-
sideration in order to find the relevant recommendations: the (i) age of the
patient, (ii) his ASA grade, (iii) the type of comorbidities the patient has
(e.g. respiratory, cardiovascular, renal) (iv) the type of surgery (e.g. cardio-
vascular surgery, neurosurgery, etc.) (v) the risk grade of the surgery (from
1 to 4).

Number of cases in the guidelines: the guidelines are summarised for pre-
operative health assessors into 36 tables such as the one illustrated in Fig-
ure 2. There are different tables for different combinations of the 5 factors
previously described, including different tables for children under 16 years
old and adults over 16 years old. In total, there are at least 1242 different
possible cases.

Perhaps not surprisingly, we found that in practice, preoperative health assessors
faced considerable difficulties in using the guidelines. The important number of
factors to take into consideration in order to find the correct table and then
the specific case within this table, combined with the significant number of ta-
bles meant that too much time was being spent by preoperative health assessors
trying to refer to the correct case. In addition, the preoperative health assessors
would need to be able to categorise (i) the type of comorbidities (ii) their severity
(e.g. for determining the patient’s ASA grade) (iii) the type of surgical proce-
dures and (iv) their surgical risk grades, all of this before being able to refer to

A Hybrid Architecture for a Preoperative Decision Support System 247

Fig. 2. Adapted from the NICE preoperative guidelines: investigations are recom-
mended based on: patient (i) age, (ii) ASA, (iii) comorbidities (iv) type of surgical
procedure and (v) risk grade of surgical procedure. There are 3 types of result for each
test: “test recommended”, “test not recommended” and “consider test”.

the correct table. All of these tasks are obviously highly knowledge intensive as
well as being intellectually demanding. In addition, preoperative health assessors
typically see dozens of different patients a day, each with a wide variety of health
conditions and scheduled for various types of surgical procedures. In practice,
the consequences are that, if in doubt, preoperative investigations would prob-
ably be requested regardless of the guideline (i.e. better safe than sorry) , thus
defeating the purpose of the guidelines in managing efficiently the allocation of
preoperative investigation in the health services.

4.2 Investigation Rule Axioms Generation

We combined the use of an ontology and reasoner in the preoperative decision
support system in order to automatically make recommendations regarding the
suitability of tests based on the NICE guidelines. The first step consisted into
transforming the NICE tables into rules. This enabled to considerably reduce
overlap and redundant information in the current format of the guidelines. See
Table 1 as an illustration of the NICE guidelines as rules. Figure 3 illustrates the
same rule seen through the Protégé-OWL development tool [10]. Thus, the 1242
different possible cases currently covered by the NICE guidelines were reduced
to around a hundred rules of the type illustrated in Table 1.

As the amount of redundant information in the guidelines is substantial, there
are a number of different ways the rule axioms can be expressed: according to
comorbidity, surgery grade, ASA grade, etc. Thus we have use a number of
heuristics to develop the rules:

248 M.-M. Bouamrane, A. Rector, and M. Hurrell

Table 1. NICE guidelines as a rule: refers to the first line (Chest X-ray) of the table
in Figure 2

Rule Id: NiceGuidelineRule ChestXRay NOT-RECOMMENDED05 N0007
Class name: ChestXRay NOT RECOMMENDED NT+SurgeryGrade1+

ASA2+Renal Comorb+Between16 and 80Years
Location Subclass of: ChestXRay NOT RECOMMENDED NICE Test
Meaning: “Adults between the age of 16 years to 60 years old

of ASA 2, with renal comorbidities
undergoing surgery of risk grade 1
should NOT undergo a chest X-ray investigation
unless undergoing cardiovascular surgery”

OWL Axiom PatientClassificationEntity
and ChestXRayClassificationEntity
and (has some (Age

and (hasTemporalUnit some Year)
and (hasIntNumericValue some int[≥“16”integer,<“60”integer])))

and (hasASA-gradeValue value ”2”integer)
and (hasAssociatedComorbidity some RenalComorbidity)
and (hasPlannedSurgicalProcedure some (SurgicalProcedure

and (hasSurgicalGrade some SurgicalGrade1)))
and not (hasPlannedSurgicalProcedure some CardioVascularSurgery)

Fig. 3. The NICE Guidelines as OWL Rules as viewed through the Protégé-OWL User
Interface

A Hybrid Architecture for a Preoperative Decision Support System 249

General rules: where possible, we have tried to use as generic rules as pos-
sible (e.g. ”All Adults aged over 80 years old should undergo an ECGTest
regardless of any other factorsĚ (ASA or surgery gradeĚ))”

Consistency in Rule Generation: Rules can often be generated according to
different combinations of factors. For example, the same guidelines could be
based on different combinations of factors based on patient ASA, or surgery
grade, age, etc. We generally chose to express rules along an interpretable
factor whenever possible, such as comorbidities (e.g.“all patients with a renal
comorbidity...”)

Trade-off between number of rules and complexity of rules: There is a
trade-off between an optimum (i.e. minimum) number of rules and their
complexity. It is possible to minimise the number of rules by including con-
junction, disjunction and exclusion clauses. However, ones needs to ensure
that the rules remain interpretable and as close as possible to the original
guidelines format. This is mainly for explanation purposes as the decision
support tool should be able to provide an understandable explanation of re-
sults to end users. Practicaly, this involved chosing to split complex rules into
simpler rules when too many factors in the rule made it difficult to interpret.
Typically, this involved limiting the number and occurrences of disjunction
and exclusion clauses.

The main advantage of modelling the preoperative investigation guidelines as
OWL axioms is that the preoperative decision support system can now (i) use
third party clinical taxonomies in order to allocate a surgical risk grade to a spe-
cific surgical procedure and (ii) use a third party clinical ontology to infer patient
comorbidities. Thus, using the OWL patient medical history profile generated
at the step 3.b in Figure 1, we can now automatically infer which investigations
a patient should have based on his specific medical history.

Figure 4 provides an example of preoperative test recommendation based on
reasoning on the decision support ontology. Mark is a 67 year old patient, with
arrhythmia, his ASA status has been estimated to be 3 and he is to undergo
an open excision of lesion of duodenum. Reasoning on the recommended tests
decision support ontology returns that a chest X-Ray, ECG test, full blood count
and a renal function tests are all recommended, a haemostasis test may be con-
sidered and a lung function test is not recommended. The recommendations are
made by the system based on the following reasons:

chest X-Ray: patient is over 60 and of ASA 3, in addition he has arrhythmia
which is classified in the decision support ontology as a cardiovascular co-
morbidity and he is to undergo an open excision of lesion of duodenum, a
surgical procedure of grade 4 in the ontology. All this criteria mean that this
patient falls within one of 2 categories of patients which are recommended
for a chest X-ray investigation.

ECG: test recommended as the patient has a cardiovascular comorbidity so he
should undergo an ECG test regardless of all other factors.

Full Blood Count: test recommended as the patient is over 16 years old and
is undergoing either grade 3 or 4 surgery.

250 M.-M. Bouamrane, A. Rector, and M. Hurrell

Fig. 4. Example of preoperative test recommendation based on reasoning on the deci-
sion support ontology

Renal function: test recommended as patient is over 16 and undergoing grade
4 surgery

Haemostasis: test may be considered as patient is over 16 and undergoing
grade 4 surgery

Lung Function: this test is not recommended as the patient does not have any
respiratory comorbidities

4.3 Dealing with Multiple Comorbidities

The preoperative guidelines do not explicitly deal with the issue of multiple
comorbidities and this is an other area where the decision support tool can
provide additional functionalities.

Duplication of test recommendations: In the case of a patient with multi-
ple comorbidities, it is possible that a test may be recommended for multiple
reasons. As an example, a patient of ASA 2, over 60 years old, undergoing
grade 2 surgery could be recommended an ECG test twice if he has renal
comorbidities and cardiovascular comorbidities. In this case, the system can
issue a strong recommendation alongside relevant explanation.

A Hybrid Architecture for a Preoperative Decision Support System 251

Conflicting test recommendations: the guidelines are not mutually exclu-
sive and especially not in the case of multiple comorbidities. It is possible
for example for a patient of ASA 2, less than 40 years old, undergoing grade
2 surgery to be recommended an ECG test if he has cardiovascular comor-
bidities but not if he has respiratory comorbidities. The contradiction is only
apparent: what is not necessary for a patient with only respiratory comor-
bidities obviously becomes necessary if the patient also has cardiovascular
comorbidities. Thus, one instance of a “recommended test” within a batch
of test results lead to a positive test recommendation regardless of all other
test recommendations. According to the same principle, if the system returns
instances of“consider test”along“test not recommended” instances, then the
system issues a “consider test” recommendation. Finally, the system issues
a “test not recommended” advice only if all instances returned are negative
for this specific test.

5 Discussion

The work on developing the GuideLine Interchange Format by Ohno-Machado
et al. [6] contains a very interesting discussion on the motivation behind the
development of GLIF and the process and issues encountered while translating
paper-based guidelines into computer-based guidelines. The authors emphasise
that this transcription process will usually reveal inconsistencies or flaws in the
guidelines. We agree that this is essentially a virtuous cycle as inconsistencies
in the guidelines may be highlighted and addressed. Although we found a very
small number of inconsistencies in the preoperative guidelines, this did not prove
much of a serious issue in our case. A recurring remark about the preoperative
guidelines is that they are not exhaustive: they do not cover all possible com-
binations of surgery, comorbidities and ASA cases. Our understanding is that
the guidelines cover a large number and possibly the majority of cases (although
we can not confirm this at the time of writing) of patients presenting for elec-
tive surgery. Most serious cases are not covered by the guidelines, but this is
likely to be when they would be the least helpful, as in these situations, health
professionals will use their own clinical judgement to request all relevant preoper-
ative tests or even perhaps seek an alternative to surgery. Our experience would
suggest that the major obstacle to effective use of the guidelines in the health
services in the format in which they are represented, as they remain both intel-
lectually demanding and knowledge-intensive. This is where a computer-based
decision support system can make a genuine difference in practice.

Getting the right format is without doubt a very difficult challenge for the is-
suers of the guidelines. To be useful, the guidelines need to be comprehensive in
covering a large number of cases, as well as being systematic in the presentation
of the results, while guaranteeing a rigorous path to a given recommendation for
the safety of the patients. Somehow, the format may then take precedence over
the underlying meaning behind the guidelines. Effectively, since the preoperative
guidelines use 5 types of information items as input (surgery grade, surgery type,

252 M.-M. Bouamrane, A. Rector, and M. Hurrell

ASA grade, type of comorbidities and age), these factors are always present in
the formulation of the guidelines, even if they are not necessarily relevant in ev-
ery context. As an example: if a patient has a renal comorbidity, the guidelines
recommend a renal function test regardless of any other factors (age, other co-
morbidities, surgery, etc.) However, this information is not necessarily clear, as it
is both repeated and dispersed across multiple tables. Thus, the current format
of the guidelines does not convey this information in an efficient manner. An
OWL representation of the guidelines make these relations explicit, and is thus
perhaps a closer representation of the intended meaning behind the guidelines.

6 Conclusion and Future Work

We discussed our experience of using a representation of a patient’s medical
history in OWL, combined with a reasoning tool to suggest appropriate pre-
operative tests based on an implementation of preoperative assessment guide-
lines. We illustrated the reasoning functionalities of the system with a number
of practical examples. The system described can reuse third parties ontologies
and taxonomies in order to provide advanced decision support functionalities.
Future work will include deploying the system in selected pilot sites and observ-
ing and analysing how health professionals use the recommendations made by
the system. Of particular interest will be to see if health professionals show an
interest in the system underlying knowledge representation models and whether
these relate to their personal understanding of the guidelines. In other words,
we will observe whether the knowledge representation formalisms promote the
use and understanding of the guidelines or whether they are of little interest to
the health professionals who may be more concerned with the applicability and
reliability of the results of the decision support system.

References

1. Ferrando, A., Ivaldi, C., Buttiglieri, A., Pagano, E., Bonetto, C., Arione, R.,
Scaglione, L., Gelormino, E., Merletti, F., Ciccone, G.: Guidelines for preopera-
tive assessment: impact on clinical practice and costs. International Journal for
Quality in Health Care 17(4), 323–329 (2005)

2. Audet, A., Greenfield, S., Field, M.: Medical practice guidelines: current activities
and future directions. Annals of Internal Medicine 113, 709–714 (1990)

3. Hunt, D.L., Haynes, R.B., Hanna, S.E., Smith, K.: Effects of computer-based clin-
ical decision support systems on physician performance and patient outcomes.
JAMA, Journal of American Medical Association 280(15), 1339–1346 (1998)

4. Amit, G., Neill, A., McDonald, H., Rosas-Arellano, M., Devereaux, P., Beyene, J.,
Sam, J., Haynes, R.: Effects of computerized clinical decision support systems on
practitioner performance and patient outcomes, a systematic review. Journal of
the American Medical Association, JAMA 293(10), 1223–1238 (2005)

5. Leong, T.Y., Kaiser, K., Miksch, S.: Free and open source enabling technologies for
patient-centric, guideline-based clinical decision support: A survey. IMIA Yearbook
of Medical Informatics, Methods of Information in Medicine 46(1), 74–86 (2007)

A Hybrid Architecture for a Preoperative Decision Support System 253

6. Ohno-Machado, L., Gennari, J.H., Murphy, S.N., Jain, N.L., Tu, S.W., Oliver,
D.E., Pattison-Gordon, E., Greenes, R.A., Shortliffe, E.H., Barnett, G.O.: The
GuideLine Interchange Format, a model for representing guidelines. Journal of
American Medical Informatics Association, JAMIA 5, 357–372 (1998)

7. Johnson, P.D., Tu, S.W., Musen, M.A., Purves, I.: A virtual medical record for
guideline-based decision support. In: Proceedings of the 25th Symposium of the
American Medical Informatics Association (AMIA), Washington, DC, US, pp. 294–
298 (2001)

8. de Clercq, P.A., Blom, J.A., Korsten, H.H., Hasman, A.: Approaches for creat-
ing computer-interpretable guidelines that facilitate decision support. Journal of
Artificial Intelligence in Medicine 31(1), 1–27 (2004)

9. OWL, Web Ontology Language (2004), http://www.w3.org/2004/OWL
10. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plu-

gin: an open development environment for semantic web applications. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
229–243. Springer, Heidelberg (2004)

11. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 touch paper: The
OWL API. In: Proceedings of the third International Workshop of OWL Experi-
ences and Directions, OWLED 2007, Innsbruck, Austria (2007)

12. Bouamrane, M.M., Rector, A., Hurrell, M.: Semi-automatic generation of a pa-
tient preoperative knowledge-base from a legacy clinical database. In: Proceedings
of the 8th International Conference on Ontologies, DataBases, and Applications of
Semantics, ODBASE 2009, OTM 2009 Internet Systems. LNCS. Springer, Heidel-
berg (to appear, 2009)

13. Bouamrane, M.M., Rector, A., Hurrell, M.: Gathering precise patient medical his-
tory with an ontology-driven adaptive questionnaire. In: Proceedings of the 21st
IEEE International Symposium on Computer-Based Medical Systems, CBMS 2008,
Jyväskylä, Finland, pp. 539–541. IEEE Computer Society, Los Alamitos (2008)

14. Bouamrane, M.M., Rector, A., Hurrell, M.: Ontology-driven adaptive medical in-
formation collection system. In: An, A., Matwin, S., Raś, Z.W., Śl ↪ezak, D. (eds.)
Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 574–584. Springer,
Heidelberg (2008)

15. Bouamrane, M.M., Rector, A.L., Hurrell, M.: Using ontologies for an intelligent
patient modelling, adaptation and management system. In: Meersman, R., Tari, Z.
(eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1458–1470. Springer, Heidelberg
(2008)

16. Bouamrane, M.M., Rector, A., Hurrell, M.: Development of an ontology of pre-
operative risk assessment for a clinical decision support system. In: Proceedings
of the 22nd IEEE International Symposium on Computer-Based Medical Systems,
CBMS 2009, Albuquerque, US. IEEE Computer Society, Los Alamitos (to appear,
2009)

17. Copeland, G., Jones, D., Walters, M.: Possum: a scoring system for surgical audit.
British Journal of Surgery 78(3), 355–360 (1991)

18. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantic 5(2), 51–53 (2007)

http://www.w3.org/2004/OWL

A Logic Based Approach to the Static Analysis
of Production Systems

Jos de Bruijn and Martı́n Rezk

KRDB Research Center
Free University of Bozen-Bolzano, Italy

{debruijn,rezk}@inf.unibz.it

Abstract. In this paper we present an embedding of propositional production
systems into μ-calculus, and first-order production systems into fixed-point logic,
with the aim of using these logics for the static analysis of production systems
with varying working memories. We encode properties such as termination and
confluence in these logics, and briefly discuss which ones cannot be expressed,
depending on the expressivity of the logic. We show how the embeddings can be
used for reasoning over the production system, and use known results to obtain
upper bounds for special cases. The strong correspondence between the structure
of the models of the encodings and the runs of the production systems enables
the straightforward modeling of properties of the system in the logic.

1 Introduction

Production systems (PS) are one of the oldest knowledge representation paradigms in
artificial intelligence, and are still widely used today1. Such a system consists of a set of
rules r of the form “if conditionr then actionr”, a working memory, which contains the
current state of knowledge, and a rule interpreter, which executes the rules and makes
changes in the working memory, based on the actions in the rules.

In general rule-based systems are administered and executed in a distributed envi-
ronment where the rules are interchanged using standardized rule languages, e.g. RIF,
RuleML, SWRL. The new system obtained from adding (or removing) the interchanged
rules need to be consistent, and some properties be preserved, e.g. termination. In this
work we address the static analysis of such production systems, which means deciding
properties like termination and confluence. We propose using logics and their reason-
ing techniques from the area of software specification and verification, in particular
μ-calculus [1] and fixed-point logic (FPL) [2].

In this work we consider rules in which conditions are first-order logic (FOL) formu-
las with free variables and the actions are additions and removals of atomic formulas.
We also consider the special case of variable-free, i.e., propositional rules. We note
here that in case a limited number of constant symbols is available and the rules are
quantifier-free, the first-order case can be reduced to the propositional case through
grounding, i.e., replacing each rule with all possible ground variable substitutions.

1 http://www.jessrules.com/ http://clipsrules.sourceforge.net/
http://www.ilog.com/products/jrules/

A. Polleres and T. Swift (Eds.): RR 2009, LNCS 5837, pp. 254–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.jessrules.com/
http://clipsrules.sourceforge.net/
http://www.ilog.com/products/jrules/

A Logic Based Approach to the Static Analysis of Production Systems 255

The working memory of a production system is a set of facts, i.e., ground atomic
formulas. Given a working memory, the rule interpreter applies rules in three steps:
(1) pattern matching, (2) conflict resolution, and (3) rule execution. In the first step,
the interpreter decides – nowadays typically using the RETE algorithm [3] – for each
rule ri and for each variable substitution σj whether ri can be applied in the working
memory using σj , i.e., whether the working memory satisfies σj(conditionri). This step
returns all pairs (ri, σj) such that ri can be applied using σj ; this set is called the conflict
resolution set. In step (2), the interpreter non deterministically chooses a pair from the
conflict resolution set; in case the set is empty the system terminates. In the last step,
the working memory is updated following the additions and removals in the action part
of the selected rule. The interpreter then starts again with step (1).

We note here that the choice of conflict resolution strategy affects certain properties
of the production system – for example, if one chooses a conflict resolution strategy
that allows each rule to be executed at most once, the system is guaranteed to terminate.
Therefore, the conflict resolution strategy of a production system must be known when
performing static analysis. In the present paper we assume a simple conflict resolution
strategy: the rule interpreter arbitrarily selects one pair (ri, σj) from the resolution sets
such that applying σj(actionri) to the working memory yields an updated working
memory that is different from the current one. We leave consideration of further conflict
resolution strategies for future work.

The operational semantics of production systems makes it difficult to analyze their
behavior. Therefore, it is desirable to use a formalism with a declarative semantics for
static analysis. In addition, we are interested in deciding properties of production sys-
tems for which the initial working memory varies – e.g., we want to be able to decide
whether the execution of a set of rules terminates: no matter what the start state is. We
use two well-known logics that are frequently used in the area of software verification.
For the analysis of propositional systems we use μ-calculus, which is a modal logic ex-
tended with the least and greatest fixpoint operators, and for which common reasoning
tasks, such as entailment, are decidable in exponential time. For the first-order systems
we use fixed-point logic (FPL), an extension of FOL with least and greatest fixpoint
operators. Even though reasoning with FPL is not decidable in the general case, there
are decidable subsets [4].
Our main contributions with this paper are as follows. We present an embedding of
propositional production systems into μ-calculus and show how this embedding can
be used for the static analysis of production systems. We then present an embedding
of first-order production systems in fixed-point logic, show how the embedding can be
used for reasoning over the production system, and discuss two decidable cases.

We use properties of these logics to derive (un)decidability and complexity results
for deciding properties such as termination and confluence of production systems. The
embedding of first-order production systems into FPL serves as a starting point for
investigating further decidable subsets (e.g., based on the guarded fragment [4]), in par-
ticular when considering further strategies that limit the choice in the conflict resolution
step (2) of the rule application – for example, such strategies may guarantee termina-
tion, and thus finite models of the embedding.

256 J. de Bruijn and M. Rezk

The papers is further structured as follows. We review related work in Section 2 and
give preliminary definitions in Section 3. We present our embedding of propositional
production systems in μ-calculus and show how it can be used for static analysis in
Section 4. In Section 5, we present our embedding of first-order systems in FPL. We
conclude and discuss future work in Section 6.

2 Related Work

We consider two streams of related work: action languages and planning and rules in
active databases.

The situation calculus [5] is one of the classic formalisms for representing action and
change in artificial intelligence. One might thus consider it an alternative formalism that
may also be used for capturing production systems. A distinguishing feature between
situation calculus, on the one hand, and μ-calculus and our use of FPL, on the other, is
that in the former there is a notion of situation – essentially a term capturing the history
of the actions – and in the latter there is a notion of state – essentially a collection of all
the facts that hold at a given point in time. Arguably, the latter are conceptually a better
match with the notion of working memory in production systems. Nonetheless, the sit-
uation calculus has been used in the context of production systems by [6]. Specifically,
[6] used logic programs with the stable model semantics and situation calculus nota-
tion for characterizing production systems, and deciding properties such as confluence
and termination. A notable difference between our approach and the one base on stable
model semantics, is that, in general, we allow the initial working memory to vary – we
can do that since μ-calculus and FPL allow reasoning over all possible models.

In the planning domain and STRIP-like languages, one assumes a set of operators
with preconditions and actions, an initial database and a goal. The planning problem
is to find a sequence of operations that updates the initial database so that the goal
holds. One might reuse planning results for the static analysis of production systems by
considering properties of systems as goals and finding a plan involving rule applications
as atomic actions (for example G = p meaning that p eventually holds). This problem
has been approached from the logic point of view in many ways, many of them (that we
are aware of) started with [7] approaching planning as a satisfiability problem. Reiter
[8] allows first order sentences for the goal, which makes the problem undecidable.
In [9,10], the authors address the propositional case with LTL. The main problem in
trying to apply these works to PS, is that in the planning problem, they need to find one
sequence which satisfies the goal, or the absence of a sequence. This lead the research
to linear temporal logic, where basic properties like confluence can be expressed in
a first order extension (but maybe encoded in the propositional case) and some other
properties, like [PE5] in Section 4.2 can not be neither expressed nor encoded. On the
other hand, if we consider the operators as the PS’s rules, the present work can be used
to solve to planning problem using [PE4] (in Section 4.2) and replacing p by the Goal.

In [11], the authors present a new logic (DIFR) which is an extension of PDL
that can encode propositional situation calculus. They present a formal framework for
modeling, and reasoning about actions. Consequently, each particular problem has to
be modeled ad-hoc. In the present work we model not just the conditions and effect of

A Logic Based Approach to the Static Analysis of Production Systems 257

an action, but several specific features of Production systems like strategies, constrains,
and the behavior of the system in time. We provide an axiomatization of PS (Section 4),
and a formal proof of the correspondence with the set of runs of a PS, and the models
of our axiomatization (Theorem 1). This link is required to do formal verification of
properties of PS, using the models of the axiomatization. The choice of μ-calculus
over DIFR for modeling has been based on two points: First, certain properties of
interest, like finiteness of runs (among others), cannot be expressed in DIFR, while
they can be expressed in μ-calculus (see Section 4.2). Second, in Section 5 we extend
the propositional case, and we model PS with variables, First Order Production Systems
(FO-PS). This model is in Fix Point Logic, which can be seen as a first order extension
of μ-calculus, therefore the choice of μ-calculus makes the path from the propositional
PS to FO-PS more understandable.

Rules in active databases are strongly related to production rules. While production
rules are condition-action rules, active databases contain event-condition-action rules;
there are external events that may trigger firing of rules. The techniques we are aware
of that have been proposed for the static analysis of such rules ([12,13,14]) are based on
checking properties of graphs, where nodes are rules, and an edge between r1 and r2
means that the action of r1 can trigger the firing of r2. The general problem, where con-
ditions are arbitrary SQL queries, is (unsurprisingly) known to be undecidable [15]; an
analogous result for our case is stated in Theorem 4. In [12], [13], and [14] the authors
study sufficient conditions for deciding termination and confluence. In contrast, our em-
beddings in μ-calculus and FPL are used to find sufficient and necessary conditions for
deciding these and other properties for classes of production systems.

3 Preliminaries

μ-Calculus. Let V ar be a (infinite) set of variable names, typically written Y, Z . . .
and let Prop be a set of atomic propositions, typically written p, q. μ-calculus extends
propositional logic with the modal operator ♦ and with formulas of the form μ.Z.φ(Z),
where φ(Z) is a μ-calculus formula in which the variable Z occurs positively, i.e., under
an even number of negations.

As usual, �φ is short for ¬♦¬φ and ν.Z.φ(Z) is short for ¬μ.Z.¬φ(¬Z).
A Kripke structure is a tuple K = (S, R, V), where S is a non-empty (possibly

infinite) set of states, R ⊆ S × S a binary relation over S, and V : S → 2Prop assigns
to each proposition p ∈ Prop a (possibly empty) set of states.

A valuation V : S → 2V ar assigns to each variable a set of states. For a valuation
V , a variable Y and a set S, we denote by V [Y ← S] the valuation obtained from V by
assigning S to Y .

Given a Kripke structure K = (S, R, V), we define the set of states satisfying a
formula φ, relative to a valuation V , denoted φK(V), as follows:
– pK(V) = {s ∈ S | p ∈ V (s)} for propositions p, Y K(V) = V(Y) for variables Y ,
– (φ1 ∧ φ2)K(V) = (φ1)K(V) ∩ (φ2)K(V),
–(¬φ)K(V) = S\(φ)K(V),
– (♦φ)K (V) = {s ∈ S | ∃s′ ∈ φK(V).(s, s′) ∈ R, and
– (μ.Z.φ(Z))K (V) =

⋂
{S′ ⊆ S | φK(V [Z ← S′]) ⊆ S′}.

258 J. de Bruijn and M. Rezk

A μ-calculus formula φ is satisfiable iff there exists a structure K s.t. (φ)K(V) �= ∅,
for every valuation V ; in this case K is a model of φ. A formula φ entails a formula ψ
iff (φ ∧ ¬ψ) is not satisfiable.

Fixed Point Logic. Fixed Point Logics FPL [4]) extend standard first order logic (with
equality and without function symbols) with least fixed-point formulas of the form
[μW.x.ψ(W, x)](x), where W is a k-ary relation symbol (a second order variable),
ψ(W, x) contains only positive occurrence of W and its free first-order variables are in
x. As usual, the greatest fixed-point formula [νW.x.ψ(W, x)](x) is short for
¬[μW.x.¬ψ(¬W, x)](x).

In order to obtain the necessary correspondence with the constants employed in the
production system, we assume standard names. Let C be the set of constants. Then,
all interpretations are of the form M = 〈C, ·M〉 and we have that cM = c, for every
c ∈ C.

Given a structure M = 〈Δ, ·M〉 providing interpretations for all the free second
order variables in ψ, except W , the formula ψ(W, x) defines an operator on k-ary rela-
tions W ⊆ AK :

ψM : W �→ ψM(W) := {a ∈ Δk : M |= ψ(W, a)}

Since W occurs only positively in ψ, this operator is monotone and therefore has a least
fixed point LFP (ψM). We then define

M, B |= [μW.x.ψ(W, x)](x) iff B(x) ∈ LFP (ψM)

for interpretationM and first-order variable assignment B.
Satisfaction and entailment are then defined in the usual way.

4 Propositional Production Systems

An intensively investigated area of temporal logic is automatic verification of propo-
sitional temporal logic properties of finite state systems. As is well known, semantic
properties of programs written in Turing-complete languages are undecidable, thus a
full verification of such a program intrinsically includes hand work. However, there are
many applications from components of microprocessors to communication protocols,
which work with finite data domains, and which can be represented by finite state tran-
sition systems. Even if a system is by nature infinite, sometimes the possibility exists
to abstract from infinitary aspects and obtain a finitary representation of the relevant
aspects of the behavior. Propositional logic succeeds to specify the static properties of
finite state systems, i.e. the properties of the states. Moreover, if we have finite state
systems on the one hand, and propositional temporal logics, i.e. propositional logics
amalgamated with temporal constructs, on the other hand, then automatic verification
is possible. This means, there exist programs taking a description of a finite state sys-
tem and a propositional temporal specification as input and return as result, whether the
system satisfies the temporal property.

We first present formal definitions of propositional production systems.

A Logic Based Approach to the Static Analysis of Production Systems 259

Definition 1. A Generic Production System (GPS) is a tuple PS = (Prop, L, R),
where
– Prop is a finite set of propositions, representing the set of potential facts,
– L is a set of rule labels, and
– R is a set of rules, which are statements of the form

r : if φr then ψr

where r ∈ L, φr is a propositional formula, and ψr = a1 ∧ · · · ∧ ak ∧¬b1 ∧ · · · ∧ ¬bl,
with ai �= bj (ai, bj ∈ Prop) signifying the propositions added, respectively removed
by the rule, such that every rule has a distinct label and L ∩ Prop = ∅. We define
φadd

r = {a1, . . . , ak} and φremove
r = {b1, . . . , bl}.

In the following, let PS = (Prop, L, R) be a production system. A Working Memory
WM ⊆ Prop for PS is a set of propositions. As an abuse of notation, we use WM for
both the working memory and the propositional valuation induced by it (i.e., WM |= p
iff p ∈WM).

A rule r is fireable in a working memory WM if WM |= φr and WM ′ = WM ∪
ψadd

r \ ψremove
r �= WM .2

A concrete production system (CPS) is a pair (PS, WM0), where WM0 is a working
memory. For a set of symbols Σ, a Σ-labeled tree is a pair (T, V), where T ⊆ N+ is
such that if x.c ∈ T , then also x ∈ T and V : T → 2Σ maps each node to a set of
symbols in Σ.

Definition 2. A computation tree CT PS
WM0

for a CPS (PS, WM0) is a (Prop ∪ L)-
labeled tree (T, V) such that the root of T is 0, V (0) = WM0, and for each node
n ∈ T and every rule r that is fireable in the working memory WM = V (n) ∩ Prop,
there is a child node n′ ∈ T of n such that V (n′) = WM ′ ∪ {r}, with WM ′ =
WM ∪ ψadd

r \ ψremove
r . There are no other nodes in CT PS

WM0
.

Note that the rule label r in the label of each node represents the rule that has been
fired to obtain the current node from the parent. Note also that CT PS

WM0
is unique up to

isomorphisms, and so we may speak about the computation tree of a CPS. A run of a
CPS is a branch in CT PS

WM0
. A run is terminating if it is finite.

In the remainder of this section we present an axiomatization of production systems
in μ-calculus and show how this can be used for static analysis.

4.1 Axiomatization

The existence of a formal description of any language is a prerequisite to any rigor-
ous method of proof, validation, or verification. Here we present an axiomatization of
production systems in μ-calculus. In the following subsections we will show how this
axiomatization can be used for reasoning about production systems.

In the following, let PS = (Prop, L, R) be a generic production system and let
WM0 be a working memory. We first define the necessary components of the formula

2 Note that we assume here a simple conflict resolution strategy, namely a rule is only fired if it
brings about a change in the working memory.

260 J. de Bruijn and M. Rezk

comprising the axiomatization. These components encode the constrains and require-
ments in the relation between one state and its successors depending if it is an inter-
mediate state in the execution of the PS, or a state representing the end of a run. A
greatest fix point composed of these components restricts the models to the ones which
are bisimilar to a computation tree (CT). The states in the models of the axiomatiza-
tion can be seen as nodes in the computation tree. We assume that b does not appear in
Prop ∪ L.

Root. The current state represents the root of the CT.

b ∧
∧

r∈L¬r

RApp. Rule application.
(
∧

r∈L(r → ψr))

Appl. If a rule is applied, it must be applicable.

(
∧

r∈L♦r → φr ∧ ¬ψr)

Frame. Frame axiom: if q holds, it holds in the next state unless q is removed and if
¬q holds, ¬q holds, unless q is added.

(
∧

q∈Prop(q → �(q ∨ (
∨

r∈L.q∈ψremove
r

r)))∧
(¬q → �(¬q ∨ (

∨
r∈L.q∈ψadd

r
r))))

NoFireable. No rule is fireable and there is no successor.

[(
∧

r∈L(φr → ψr)) ∧ (� ⊥]

Fireable. At least one rule is fireable and there is a successor.

(
∨

r∈Lφr ∧ ¬(ψr)) ∧ ♦�

Complete. If a rule is fireable, it is applied in some successor states.

(
∧

r∈L(φi ∧ ¬(ψr)) → ♦r)

1Rule. Exactly one rule is applied.

(
∨

r∈Lr ∧ (
∧

r∈L(r → ¬
∨

r′∈L&r′ �=rr
′)))

WM. (Optional) The initial working memory holds.∧
q∈WM0

q ∧
∧

q∈Prop\WM0
¬q

The axiom Root. captures the root of the computation tree. We now define the axioms
which capture intermediate and end (i.e., leaf) nodes.

Intermediate = RApp. ∧ 1Rule. ∧ Appl. ∧ Frame. ∧ Fireable. ∧ Complete. ∧ ¬b
End = RApp. ∧ 1Rule. ∧ Frame. ∧ NoFireable.∧ ¬b

A Logic Based Approach to the Static Analysis of Production Systems 261

We now define the μ-calculus formula that captures the production system PS:

ΦPS = [(Root. ∧ NoFireable.) ∨ (Root. ∧Appl. ∧ Frame.∧
Complete. ∧ Fireable. ∧�(ν.X.(Intermediate ∨ End) ∧�X)))]

We now proceed to prove bisimilarity between the models of ΦPS and the computation
trees of PS. We will exploit this result later for reasoning about PS.

A bisimulation between two pointed Kripke structures, K = ((S, R, V), s0) and
K ′ = ((S′, R′, V ′), t′0) is a relation Z ⊆ S × S′ such that:
– (s0, t

′
0) ∈ Z

– if (si, t
′
i) ∈ Z , then p ∈ V (si) iff p ∈ V ′(t′i), for every proposition p,

– if (si, t
′
i) ∈ Z and (si, s

′) ∈ R implies that there is a t′ ∈ S′ such that (t′i, t
′) ∈ R′

and (s′, t′) ∈ Z
– if (si, t

′
i) ∈ Z and (ti, t′) ∈ R′ implies that there is a s′ ∈ S such that (si, s

′) ∈ R
and (s′, t′) ∈ Z

We view a computation tree (T, V), with 0 being the root, also as a Kripke structure
K = (T, R, V ′), where V ′(0) = V (0)∪{b}, V ′(n) = V (n) for n �= 0, and (n, n′) ∈ R
iff n.n′ ∈ T .

Theorem 1. Given a Production system PS = (Prop, L, R), a starting working mem-
ory WM0, and the formula ΦPS .

1. A Kripke structure K = (S, R, V) is a model of ΦPS iff there is a working memory
WM for PS such that there is an s ∈ S and (K, s) is bisimilar to (CT PS

WM , 0)
2. A Kripke structure K = (S, R, V) is a model of ΦPS ∧WM. iff there is an s ∈ S

such that (K, s) is bisimilar to (CT PS
WM0

, 0).

Proof (Sketch). We start with 2. If K = (S, R, V) is a model of ΦPS ∧ WM. then
there is at least a node s0 s.t. K, s0 |= Root.∧WM.. We start defining the bisimulation
Z: (s0, 0) ∈ Z . Now we have to define bisimulation in such a way that (si, xi) ∈ Z
iff (sj , x) ∈ Z and si successor of sj , x.i is the successor of x, and si, x.i agree on
the proposition constants. Let’s take a node si successor of sj such that (sj , x) ∈ Z
and V (sj) = V (x). By Complete. we know that there is at least one successor for each
applicable rule in sj , and by RApp. and Frame., we know that the label of the successor
is just the result of the rule application. By Fireable. we know that the precondition of
every successor hold, therefore, for each successor of sj in K , we have a successor of
x in CTps (note it can be many-to-one) with the same label, so (si, xj) ∈ Z for every
si and some xj which is determined by the rule label. The other direction is analogous.

Now, the proof of 1 is straightforward: if we have a model K of ΦPS where some
state s0 (as defined above) is the set of proposition WM , we know that PS with WM
as the initial working memory is bisimilar to K by point 2. The converse is analogous.

4.2 Deciding Properties of Production Systems

Typical properties of production systems one would like to check are termination and
confluence of the system. However, one could imagine additional properties of inter-
est, e.g., redundancy of rules (useful in the design of the system). In this section we

262 J. de Bruijn and M. Rezk

showcase a number of properties that we feel might be of interest, and that can be re-
duced to μ-calculus satisfiability or entailment checking, using the axiomatization of
the previous section.

The properties stated below are defined for both generic and concrete production
systems. PEi are the properties that can be decided by checking entailment . With φPEi

we denote the formula associated with PEi.

PE1. All runs are finite (i.e., Termination)

(μ.X.�X)

PE2. All runs terminate with the same working memory (Confluence)∧
qi∈Prop(μ.X.(� ⊥ ∧qi) ∨ ♦X) → (ν.X.(� ⊥→ qi) ∧�X)

PE3. There is a fireable rule in the initial working memory

(
∨

r∈R φr)

PE4. A proposition p eventually holds in some run.

(μ.X.(p ∧ (ν.Y.p ∧ ♦Y)) ∨ ♦X)

PE5. A proposition p eventually holds for ever in every run.

(μ.X.(p ∧ (ν.Y.p ∧�Y)) ∨�X)

PE6. Some rule r is never applied

¬(μ.X.♦X ∨ r)

PE7. All rules are applied in every run∧
ri∈R(μ.Z.ri ∨�Z ∧ ♦�)

We now show how deciding the above properties can be reduced to μ-calculus entail-
ment checking, by exploiting Theorem 1.

Theorem 2. A property PEi, for i ∈ {1, . . . , 7} holds for a generic production system
PS iff ΦPS entails PEi and PEi holds for a concrete production system (PS, WM0)
iff WM. ∧ ΦPS entails φPEi.

Note that when considering concrete production systems, some of the mentioned prop-
erties (e.g., PE3) can be decided by simply running the system. However, certain other
properties (e.g., termination) cannot.

From the fact that ΦPS is polynomial in the size of PS and the fact that μ-calculus
entailment can be decided in exponential time, we immediately obtained the following
complexity results.

Proposition 1. The properties PE1-7 can be decided in exponential time, both on
generic and concrete production systems.

A Logic Based Approach to the Static Analysis of Production Systems 263

5 First Order Production Systems

We now consider the case of production systems with variables.

Definition 3. A Generic FO-Production System is a tuple PS = (τ, L, R), where
– τ = (P, C) is a first-order signature, with P a set of predicate symbols, each with
an associated nonnegative arity, and C a nonempty (possibly infinite) set of constant
symbols,
– L is a set of rule labels, and
– R is a set of rules, which are statements of the form

r : if φr(x) then ψr(x)

where r ∈ L, φr is an FO formula with free variables x and ψr(x) = (a1 ∧ · · · ∧ ak ∧
¬b1 ∧ · · · ∧ ¬bl), where a1, . . . , ak, b1, . . . , bl are atomic formulas with free variables
among x, such that no ai and bj share the same predicate symbol, each rule has a
distinct label and L ∩ Prop = ∅. We define φadd

r = {a1, . . . , ak} and φremove
r =

{b1, . . . , bl}.

In the following, let PS = (τ, L, R) be an FO-production system. With AT we denote
the set of equality-free ground atomic formulas (atoms) of τ . A working memory WM
for PS is a subset of AT . As an abuse of notation, we use WM to denote both the
working memory and the first-order structure induced by the working memory, i.e., the
domain of WM is C, cWM = c, for any c ∈ C, and c ∈ pWM iff p(c) ∈WM for any
p(c) ∈ AT .

A variable substitution S is a mapping from variables to constants in C. The ap-
plication of a variable substitution to a term or formula ϕ, written S(ϕ), is defined in
the usual way. A rule is fireable in a working memory WM using a substitution S if
WM |= S(φr) and WM ′ = WM ∪ S(ψadd

r) \ S(ψremove
r) �= WM .

A concrete FO-production system is a pair (PS, WM0), where WM0 is a working
memory. We view rule labels r ∈ L also as n-ary predicates, where n is the num-
ber of free variables in the condition φr; with AL we denote the set of ground atoms
constructed from the predicate symbols in L and the constants in C.

Definition 4. A computation tree CT PS
WM0

for a (PS, WM0) is an (AT ∪AL)-labeled
tree (T, V) such that the root of T is 0, V (0) = WM0, and for each node n ∈ T ,
every rule r, and every variable substitution S such that r is fireable in the working
memory WM = V (n) ∩ Prop using S, there is a child node n′ ∈ T of n such that
V (n′) = WM ′ ∪ {S(r(x))}, with WM ′ = WM ∪ S(ψadd

r) \ S(ψremove
r). There are

no other nodes in CT PS
WM0

.

A run of (PS, WM0) is a branch of CT PS
WM0

. A run is terminating if it is finite.
In the remainder of this section we discuss special cases of FO production systems

that can be reduced to propositional production systems, we present an axiomatization
of general FO production systems in fixed-point logic (FPL), and show how static anal-
ysis can we reduced to reasoning with FPL. This axiomatization will be a starting point
for future investigation of decidable fragments.

264 J. de Bruijn and M. Rezk

5.1 Grounding FO Production Systems

The grounding of an FO production system PS = (τ, L, R), denoted gr(PS), is ob-
tained from PS by replacing each rule r : if φr(x) then ψr(x) with a set of rules
S(r(x)) : if S(φr(x)) then S(ψr(x)), for every substitution S of variables with con-
stants in C.

Clearly, for any working memory WM , the computation trees of (PS, WM) and
(gr(PS), WM) are the same. Also, if the rules in PS are quantifier-free, gr(PS) can
be seen as a propositional generic production system – in the absence of variables,
atomic formulas are essentially propositions. This allows us to apply some of the results
for the propositional case to FO production systems.

We first exploit the fact that if the set of constants C is finite, the grounding gr(PS)
is finite, and its size exponential in the size of PS.

Proposition 2. Let PS = (τ, L, R) be an FO production system such that R is
quantifier-free and C is finite, and let WM be a working memory.3 Then, the prop-
erties PE1-7 can be decided in double exponential time, on both PS and (PS, WM).

When considering concrete FO production systems, i.e., the initial working memory is
given, we can also exploit grounding, provided the conditions in the rules are domain-
independent (cf. [16]): a first-order formula with n free variables φ(x) is domain-
independent iff whenever M = 〈Δ, ·M〉 and M′ = 〈Δ, ·M′〉 are structures, M is
a substructure of M′, and the interpretations functions are identical (·M′

= ·M), then
for all a1 ∈ M′, . . . , an ∈ M′:

M′ |= φ(a1 . . . an) ↔ a1 ∈ M∧ · · · ∧ an ∈M∧M |= φ(a1 . . . an)

If all conditions are domain-independent and the initial working memory WM0 is
given, one only needs to consider grounding with the constants appearing in (PS,
WM0). Examples of domain-independent formulas are conjunctions of literals such
that each variable occurs in a positive literal.

Proposition 3. Let PS = (τ, L, R) be an FO production system such that R is
quantifier-free and for every rule r ∈ R holds that φr(x) is domain-independent, and
let WM be a working memory. Then, the properties PE1-7 can be decided in double
exponential time, on (PS, WM).

5.2 Axiomatizing FO Production Systems

In the remainder we assume that the signature of each of the production systems con-
tains a countably infinite set of constant symbols. In our μ-calculus axiomatization for
the propositional case the structure of the computation tree was reflected in the acces-
sibility relation of the Kripke models. Interpretations in FPL are first-order structures;
therefore, we capture the structure of the computation tree using the binary predicate R,

3 Note that if C is finite, the existential quantifier could be replaced with a disjunction of all pos-
sible ground variable substitutions; analogous for universal quantifier. In this case, the ground-
ing would be double exponential.

A Logic Based Approach to the Static Analysis of Production Systems 265

and we divide the domain into two parts: the nodes of the tree, i.e., the states (A), and the
objects in the working memories (U). The arity of the predicates in P ∪ L is increased
by one, and the first argument of each predicates will signify the state; p(y, x1, . . . , xn)
intuitively means that p(x1, . . . , xn) holds in state y.

In the remainder, let PS = (τ, L, R) be a generic FO production system and let
WM0 be a working memory. We first define the foundational axioms, which encode
the basic structure of the models and the tree shape of R.

We assume that the unary predicates B (signifying the start state), U and A and the
binary predicate R are not in P ∪ L.

Structure. Partitioning of the domain.

∀x : A(x) ↔ ¬U(x) ∧ (
∧

p∈P∪L∪{B}∀y, x : p(y, x) → A(y) ∧ U(x1) ∧ · · · ∧
U(xn)) ∧ (∀x, y : R(x, y) → A(x) ∧A(y))

Tree. The predicate R encodes a tree.

∀x∃≤1y : A(x) → R(y, x) ∧ ∃≤1x : ∀y : A(y) → (¬R(y, x)∧
(μ.W.x, y.R(x, y) → W (x, y) ∧ (∃z : W (x, y) ∧R(y, z) → W (x, z)))(x, y))

We denote the set of foundational axioms with Σfound = {Structure., Tree.}. We
now turn to the axioms that encode the behavior of the production system. We omit
explanations of axioms that are simply extensions of the propositional case.

Root. B(y) ∧
∧

r∈L∀x : ¬r(y, x)

RApp. (
∧

r∈L∀x : r(y, x) → ψr(x))

Appl. (
∧

r∈L∀x : ∃w(R(y, w) ∧ ri(w, x)) → φr(y, x) ∧ ¬ψr(y, x))

Frame.
∧

p∈P∀x1, . . . , xn([p(y, x1, . . . , xn) → (∀w : R(y, w) →
p(w, x1, . . . , xn)∨(

∨
r∈L.ψr(z)=...¬p(t1,...,tn)∧...∃z : r(y, z)∧x1 = t1∧· · ·∧xn =

tn))] ∧ [¬p(y, x1, . . . , xn) → (∀w : R(y, w) → ¬p(w, x1, . . . , xn) ∨
(
∨

r∈L.ψr(z)=...p(t1,...,tn)∧...∃z.r(y, z) ∧ x1 = t1 ∧ · · · ∧ xn = tn))])

NoFirable. (
∧

r∈L∀x : φr(y, x) → ψr(y, x)) ∧ (∀w : ¬R(y, w)))

Firable. (
∨n

i=1∃x : φri(y, x)) ∧ ∃w : R(y, w)

Complete. If a rule is fireable, it is applied once.∧
r∈L∀x(φr(y, x) ∧ ¬ψr(y, x) → ∃=1w(R(y, w) ∧ r(w, x)))

1Rule. (
∨

r∈L ∃x : r(y, x)) ∧ (
∧

r∈L(∃z : r(y, z) → ¬
∨

r′∈L&r′ �=r ∃x : r′(y, x)))

WM.
∧

p∈P ∀x1 . . . xn(p(y, x1 . . . xn) ↔∨
{x1 = c1 ∧ · · · ∧ xn = cn | p(c1, . . . , cn) ∈ WM0})

Only. A rule can not be applied twice in the same state.
(
∧

r∈L∀x : r(y, x) → ∃=1z : (r(y, z))

266 J. de Bruijn and M. Rezk

Intermediate = RApp.∧ 1Rule.∧Only.∧Appl.∧Frame.∧Firable.∧Complete.∧
¬B(y)

End = RApp. ∧ 1Rule. ∧Only. ∧ Frame. ∧ NoFirable. ∧ ¬B(y)

Analogous to the propositional case, we defined a formula that captures the behavior of
PS:

ΦPS = (∃y : (Root. ∧NoFirable.) ∨ (Root. ∧Appl. ∧ Complete. ∧ Firable.∧
∀w(R(y, w) → (ν.X.y.(Intermediate ∨ End) ∧ ∀w(R(y, w) → X(w)))(w))))

The most notable difference with the propositional axiomatization is in the Complete.
axiom. In the propositional case, we could require that a fireable rule is applied at least
once, but it could be applied several times. In the first-order case, we can require a fire-
able rule to be applied exactly once. We can therefore obtain a stronger correspondence
between computation trees and Kripke models: they are essentially isomorphic.

Definition 5. Let PS be an production system, WM0 the working memory,M a model
of Σfound, and CT PS

WM0
= (T, V) the computation tree of (PS, WM0). Then, we

say that CT PS
WM0

and M = (Δ, ·M) are isomorphic if there is a bijective function
f : V �→ AM such that:

1. x.i ∈ T CT iff (f(x), f(x.i)) ∈ (R)M,
2. for every x ∈ T , every n-ary p ∈ P ∪ L, and every c ∈ Cn, p(c1 . . . cn) ∈ V (x)

iff (f(x), c1 . . . cn) ∈ pM,
3. (z, w) ∈ (R)M iff f−1(w).f−1(z) ∈ T CT , and
4. for every x ∈ AM, every n-ary p ∈ P ∪L, and every c ∈ Cn, (x, c1 . . . cn) ∈ pM

iff p(c1 . . . cn) ∈ V (f−1(x)).

Theorem 3. Given an FO production system PS = (τ, L, R), a starting working mem-
ory WM0, and the formula ΦPS ,

1. a model M of Σfound is a model of ΦPS iff there is a working memory WM for
PS s.t.M is isomorphic to CT PS

WM , and
2. a modelM of Σfound is a model of ΦPS ∧WM. iffM is isomorphic to CT PS

WM0
.

Proof (Sketch). We start with 2. We construct a mapping f ; one can verify that it satis-
fies conditions 1–4 from Definition 5.

We take y0 ∈ C s.t. Root.(y0) ∧ WM.(y0) holds. By WM. we know that 0 ∈ T
and yM0 ∈ AM “share” the same predicates. Therefore we can define f(0) = y0. We
proceed by induction.

For every x.i in CT PS
WM0

, s.t. f(x) = y, (recall that x is a predecessor of x.i by
definition) for some y ∈ AM, the node x and the state y share the same predicates
in the sense of definition 5. We have that r(c) ∈ V (x.i) for some r ∈ L. We define
f(x.i) = z, where (y, z) ∈ RM and (z, c) ∈ rM. There is such a unique z, by satis-
faction of Complete., Firable., and Appl.. This establishes satisfaction of condition 1.
Satisfaction of condition 3 is established analogously.

Satisfaction of conditions 2 and 4 is established by induction and satisfaction of
1Rule. and Only. (for p ∈ L) and by satisfaction of RApp. and Frame. (for p ∈ P).
Satisfaction of condition 4 is established analogously. The first part of the theorem is
proved analogously.

A Logic Based Approach to the Static Analysis of Production Systems 267

The following result follows immediately from the undecidability of first-order logic
and the fact that φr is an arbitrary first-order formula.

Theorem 4. The satisfiability problem for φPS under Σfound is undecidable.

Using Theorem 3 it is straightforward to verify that finiteness of all runs can be reduced
to checking entailment of

∀y : A(y) → (μ.X.∀w(R(y, w) → X(w)))(y)

and confluence can be reduced to checking entailment of∧
p∈P

(∃y, x : A(y)∧(∀z : A(z)→¬R(y, z))∧p(y, x)→(∀w : A(w)∧(∀z : A(z)→

¬R(w, z)) → p(w, x))

Even in the very expressive logics we consider in this paper, there are properties that
might be of interest, but cannot be expressed. For example: every run of the system
has the same length. This particular property cannot be expressed in FPL, or even in
monadic second-order logic over countable trees [17], for that matter.

6 Conclusions and Future Work

In this paper we presented an embedding of propositional production systems into
μ-calculus, and first-order production systems into fixed-point logic. We exploited
the fixpoint operator in both logics to encode properties of the system over time. One
of the advantages of our encodings is the strong correspondence between the structure
of the models and the runs of the production systems, which enables straightforward
modeling of properties of the system in the logic.

We have illustrated the versatility of our approach by encoding a number of proper-
ties discussed in the literature [12,14], as well as a number of other properties that have
not been previously considered. Another possible application of our encodings is the
optimization of production systems. We have already shown how one can check that a
particular rule is never applied (cf. property PE6), and thus may be discarded. Deciding
equivalence of production systems can be reduced to entailment in μ-calculus and FPL.
Equivalence can be exploited for optimization by replacing a production system with
an equivalent system that is potentially easier to execute.

We plan to extend the work presented in this paper in a number of directions. We plan
to extend both the propositional and first-order case with additional conflict resolution
strategies, e.g., based on rule priorities. We plan to extend the first-order case with
object invention, i.e., the rules may assert information about new (anonymous) objects;
this is strongly related to existential quantification in logic. Another topic we plan to
address are new decidable fragments of our first-order encoding, in particular restricting
the conditions and possibly the working memory, and conflict resolution strategies in
order to exploit the guarded fragment of FPL [4], as well as translations to monadic
second-order logic over trees; both fragments are known to be decidable. Finally, we
plan to investigate the combination of production systems with languages for describing
background knowledge, in the form of description logic ontologies.

268 J. de Bruijn and M. Rezk

Acknowledgements. We thank Sergio Tessaris and Enrico Franconi for valuable dis-
cussions and the anonymous reviewers for useful comments and feedback. The work
presented in this paper was partially supported by the European Commission under the
project ONTORULE (IST-2009-231875).

References

1. Kozen, D.: Results on the propositional μ-calculus. In: Proceedings of the 9th Colloquium
on Automata, Languages and Programming, London, UK, pp. 348–359. Springer, Heidelberg
(1982)

2. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. In: Symposium on Foun-
dations of Computer Science, pp. 346–353 (1985)

3. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif.
Intell. 19(1), 17–37 (1982)

4. Grädel, E.: Guarded fixed point logics and the monadic theory of countable trees. Theor.
Comput. Sci. 288(1), 129–152 (2002)

5. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intel-
ligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502. Edin-
burgh University press, Edinburgh (1969)

6. Baral, C., Lobo, J.: Characterizing production systems using logic programming and situa-
tion calculus,
http://www.public.asu.edu/˜cbaral/papers/char-prod-systems.ps

7. Kautz, H., Selman, B.: Planning as satisfiability. In: ECAI 1992: Proceedings of the 10th
European Conference on Artificial Intelligence, New York, NY, USA, pp. 359–363. John
Wiley & Sons, Inc., Chichester (1992)

8. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, Cambridge (2001)

9. Mattmller, R., Rintanen, J.: Planning for temporally extended goals as propositional satisfia-
bility. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artifi-
cial Intelligence, Hyderabad, India, January 2007, pp. 1966–1971. AAAI Press, Menlo Park
(2007)

10. Cerrito, S., Mayer, M.C.: Using linear temporal logic to model and solve planning problems.
In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480, p. 141. Springer, Heidelberg
(1998)

11. De Giacomo, G., Lenzerini, M.: Pdl-based framework for reasoning about actions. In: AI*IA
1995: Proceedings of the 4th Congress of the Italian Association for Artificial Intelligence
on Topics in Artificial Intelligence, London, UK, pp. 103–114. Springer, Heidelberg (1995)

12. Aiken, A., Hellerstein, J.M., Widom, J.: Static analysis techniques for predicting the behavior
of active database rules. ACM Transactions on Database Systems 20, 3–41 (1995)

13. Baralis, E., Ceri, S., Paraboschi, S.: Compile-time and runtime analysis of active behaviors.
IEEE Trans. on Knowl. and Data Eng. 10(3), 353–370 (1998)

14. Baralis, E., Torino, P.D., Widom, J., Widom, N.J.: An algebraic approach to static analysis
of active database rules. ACM TODS 25, 269–332 (2000)

15. Bailey, J., Dong, G., Ramamohanarao, K.: Decidability and undecidability results for the
termination problem of active database rules. In: Proceedings of the 17th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 264–273 (1998)

16. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

17. Courcelle, B.: The expression of graph properties and graph transformations in monadic
second-order logic, pp. 313–400. World Scientific, Singapore (1997)

http://www.public.asu.edu/~cbaral/papers/char-prod-systems.ps

Author Index

Analyti, Anastasia 212
Antoniou, Grigoris 212

Bouamrane, Matt-Mouley 242
Brodt, Simon 71
Bry, François 71, 227

Damásio, Carlos Viegas 212
de Bruijn, Jos 254
Decker, Stefan 118
De Cock, Martine 135

Eisinger, Norbert 71
Eiter, Thomas 55

Feier, Cristina 55
Furche, Tim 227

Grimm, Stephan 40
Grosof, Benjamin N. 24

Heymans, Stijn 55
Hitzler, Pascal 40, 197
Hogan, Aidan 118
Hurrell, Martin 242

Janssen, Jeroen 135

Kowalski, Robert 1

Linse, Benedikt 227
Lukácsy, Gergely 102
Lukasiewicz, Thomas 26

Ma, Yue 197
Meilicke, Christian 182

Rector, Alan 242
Rezk, Mart́ın 254

Sadri, Fariba 1
Schlicht, Anne 87
Schockaert, Steven 135
Straccia, Umberto 166
Stuckenschmidt, Heiner 87, 182
Szeredi, Péter 102

Vermeir, Dirk 135

Wan, Hui 150

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers and Tutorial
	Integrating Logic Programming and Production Systems in Abductive Logic Programming Agents
	Introduction
	Confusions
	Production Systems and Logic Programs in Practice
	Combining Production Systems and Logic Programs

	Other Approaches
	The Selection Task
	Intelligent Agents
	Deductive Databases
	Abductive Logic Programming
	ALP Agents
	Observations
	Decision-Making and Conflict Resolution
	Semantics

	The Representation of State Change and the Frame Problem
	Conclusions
	References

	SILK: Higher Level Rules with Defaults and Semantic Scalability
	SILK and Its KR Overall
	Defaults for Semantic Scalability

	Uncertainty Reasoning for the Semantic Web
	Introduction
	Motivating Examples
	Probabilistic Description Logics
	Probabilistic Description Logic Programs
	Fuzzy Description Logic Programs
	Probabilistic Fuzzy Description Logic Programs
	References

	Proof/Deduction Procedures
	A Preferential Tableaux Calculus for Circumscriptive ${\mathcal ALCO}$
	Introduction
	Description Logics and Circumscription
	Circumscriptive ${\mathcal ALCO}$
	Reasoning with Circumscribed Knowledge Bases

	Tableaux Calculus for Circumscriptive ${\mathcal ALCO}$
	Constraint Systems and Their Solvability
	Tableaux Expansion Rules
	Notions of Clash and Detection of Inconsistencies

	Conclusion
	References

	A Reasoner for Simple Conceptual Logic Programs
	Introduction
	Preliminaries
	Simple Conceptual Logic Programs
	Illustration of the Algorithm
	Algorithm
	Expansion Rules
	Applicability Rules
	Termination, Soundness, and Completeness

	Complexity Results
	Experimental Evaluation

	Outlook
	References

	Search for More Declarativity
	Introduction
	D&B-Search and Its Family of Algorithms
	A Framework for Analysing Tree Traversal Algorithms
	Analysis of Tree Traversal Algorithms
	Known Algorithms
	D&B-Search

	Conclusion
	References

	Scalability
	Distributed Resolution for Expressive Ontology Networks
	Introduction
	Distributing Logical Resolution
	Distribution Principles
	Resolution Theorem Proving
	Distributed Resolution

	Distributed Resolution for Description Logic
	Distribution Principle
	Preliminaries
	Distributed Resolution for ${\mathcal ALCHIQ}$
	Extension to ${\mathcal SHOIQ(D)}$

	Experiments
	Conclusions
	References

	Scalable Web Reasoning Using Logic Programming Techniques
	Introduction
	Overview of the DLog Approach
	The DLog Abstract Machine
	Architecture of DAM
	The Instruction Set
	Transforming into DAM

	The Parallel DLog Architecture
	Kinds of Parallelism Available in DLog
	An Initial Coarse-Grained Model of Parallelism

	Related Work
	Conclusion and Future Work
	References

	On the Ostensibly Silent ‘W’ in OWL 2 RL
	Introduction
	OWL 2 RL vs. SAOR
	High-Level Issues
	Separating Terminological Data
	Authoritative Reasoning

	Web Use-Cases
	Related Work
	Conclusion
	References
	A Rule Tables

	Uncertainty
	Answer Sets in a Fuzzy Equilibrium Logic
	Introduction
	Background
	Equilibrium Logic
	Fuzzy Answer Set Programs

	Fuzzy Equilibrium Logic
	Definition
	Relationship to Existing Frameworks
	Complexity and Geometrical Representation

	Example
	Related Work
	Concluding Remarks
	References

	Belief Logic Programming with Cyclic Dependencies
	Introduction
	Motivating Example
	Preliminaries
	Syntax of BLP
	Combination Functions
	Semantics of Acyclic BLP

	Semantics for General BLP
	Transformational Semantics for General BLP
	Fixpoint Semantics and Modular Acyclicity
	Discussion

	Conclusions
	References

	A Minimal Deductive System for General Fuzzy RDF
	Introduction
	Preliminaries
	Fuzzy RDF
	Preliminaries:Mathematical Fuzzy Logic
	Generalized Fuzzy RDF

	Summary and Outlook
	References

	Knowledge Amalgamation and Querying
	An Efficient Method for Computing Alignment Diagnoses
	Introduction
	Preliminaries
	Problem Statement
	Algorithms
	Experiments
	Conclusion
	References

	Paraconsistent Reasoning for OWL 2
	Introduction
	Preliminaries
	The Four-Valued Semantics for ${\mathcal ALC}$ – with a Slight Modification
	Reduction from Four-Valued Semantics of ${\mathcal ALC}$ to Classical Semantics

	Paraconsistent Semantics for Expressive DLs
	Tractable DLs
	${\mathcal EL}$++
	Horn-DLs
	DL-Lite

	Conclusions
	References

	A Formal Theory for Modular ERDF Ontologies
	Introduction
	Modular ERDF Ontologies
	Modular ERDF and Herbrand Interpretations
	Modular Stable Models and Complexity Results
	Conclusions and Related Work
	References

	The Perfect Match: RPL and RDF Rule Languages
	RPL by Example
	RPLSyntax
	RPL Compositional Semantics
	RPL Restrictions and Extensions
	RPL Compared to Lorel, SPARQLeR and Nested Regular Expressions
	Further Complexity Results
	Conclusion and Future Work
	References

	Rules for Decision Support and Production Systems
	A Hybrid Architecture for a Preoperative Decision Support System Using a Rule Engine and a Reasoner on a Clinical Ontology
	Introduction
	Background
	Decision Support Ontology and Reasoning Functionalities
	Recommended Preoperative Investigations
	Description of Investigation Guidelines
	Investigation Rule Axioms Generation
	Dealing with Multiple Comorbidities

	Discussion
	Conclusion and Future Work
	References

	A Logic Based Approach to the Static Analysis of Production Systems
	Introduction
	Related Work
	Preliminaries
	Propositional Production Systems
	Axiomatization
	Deciding Properties of Production Systems

	First Order Production Systems
	Grounding FO Production Systems
	Axiomatizing FO Production Systems

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

