
S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 183 – 221, 2010.
© Springer Berlin Heidelberg 2010

8 Information Flow Objects

The information objects are used for managing information and data. In addition
to the global variable and the method, the following objects are information flow
objects:

• Lists and tables
• Trigger and Generator
• AttributeExplorer
• Objects for data exchange

8.1 The List Editor

Enter and select settings and entries in lists and tables in the list editor. Duplicate
the object TableFile in the class library, and open the duplicate by double-clicking
it. Each column has a data type; each cell has a unique address.

If you want to type data into a table or list in a frame, you have to turn off inheri-
tance: FORMAT – INHERIT FORMAT

184 8 Information Flow Objects

For setting the data types of each column, it is best to use the context menu (right
mouse button on the column header) FORMAT …

Select the data type of the column here. The format string restricts interactive in-
put (validity of entries). -9, for example, means that numbers with a maximum
nine digits can be entered, negative numbers are allowed.
Permissions: On the tab permissions you can endow cells with write protection.
Column/ Row Index: You can define your own column and row indices. This is
very helpful especially when you are working with tables. By default, the row and
column indices are hidden.
You can view the indices by selecting FORMAT – COLUMN INDEX – ACTIVE or
FORMAT – ROW INDEX – ACTIVE
Example Supply List:

The row and column index each have the index 0.

8.2 The CardFile
The CardFile is a one-dimensional list with random access to the content via an
index. You can use the CardFile like an array, so that you can store and read many
values under one name. This object can easily store data with the same data type.
When you insert entries, Plant Simulation moves the following entries back one
position. You can remove entries (with “[]”). However, you can also read entries
without removing the entry from the CardFile (with the command read).

Example 85: Materials List
Insert a CardFile with the name “material” into an empty frame. Turn off inheri-
tance. Enter the following values:

8.2 The CardFile 185

A method now is to read line 2 (define a method in the same frame). The following
commands are required to do so.

is
do
 print material.read(2);
end;

Run the method (run-run or F5). The console should display “stone”. “Gold”
should be inserted in line 3. For inserting entries the CardFile provides the
method insert (position, value). Change the method as follows:

is
do
 material.insert(3,"gold");
end;

Run the method with F5!

The most important attributes and methods of the CardFile are

Method/Attribute Description
<path>.insert(<integer>,
<value>);

Inserts the value <value> at the
position <integer>. Entries with
the same or a higher index will be
moved. In QueueFile and StackFile
you only pass the value; in the
QueueFile, insertion takes place
at the last position, and in the
StackFile at the first position

<path>.cutRow(<integer>); Removes the entry with the index
<integer>, all other entries move
up. The method returns the re-
moved entry. For QueueFile and
StackFile, you pass no index. In
the QueueFile, the method deletes
the first position, in the Stack-
File the last.

<path>.read(<integer>); Reads the entry with the index
<integer> without removing it.

<path>.append(<value>); Appends the passed value to the
end of the list

186 8 Information Flow Objects

<path>[<integer>] Returns the value at the position
<integer> and deletes the entry

<path>.dim Returns the number of entries

<path>.empty Returns true if the list contains
no entries

<path>.delete Deletes the whole list

Example 86: Handling by a Robot
You are to simulate a robot, which loads several machines. The robot takes the
parts from a buffer and loads them into two machines. The robot has a swivel
range (diameter) of 4 meters. The positions of the machines are located relative to
the robot at 90° and 135° clockwise. Create the following Frame:

Settings: Source interval 30 seconds, Buffer P processing time: 0 seconds, capacity
one part; M1 and M2 each 55 seconds processing time; L1, L2, and L3 each 1 m/s
speed.

Creating the Circular Track
For the robot to show the correct behavior, you must create the track as follows.
The easiest way is to insert the track from the toolbox. First, click the track button in
the toolbox. Then click in the frame. Press Ctrl + Shift. This activates curve mode.

1. Click, counter-
clockwise, upward
curve

2. Click, coun-
terclockwise

3. Click, coun-
terclockwise

4. Click, coun-ter-
clockwise, click
the right mouse
button to exit

8.2 The CardFile 187

You must insert a connector from the end of the track to the beginning of the track.
If you need a different radius, enter these settings into the dialog EDIT PARA-
METER OF CURVE:

If the option FIXED is not selected, you can set the radius of the arc segment by
dragging the mouse. Then, proceed like this:

Design the robot: The robot consists of two parts the robot propper, which
moves on the track (in reality Plant Simulation rotates the icon), and a gripper,
which moves on the robot (forward and backward). Both are transporters. Du-
plicate two transporters, and rename them to robot and gripper. Select the fol-
lowing settings in the transporter robot: The robot has a length-oriented load
bay with a length of 0.5m:

188 8 Information Flow Objects

Icon operational, pause, failed, waiting: You have to create an icon that can be
rotated by Plant Simulation. Therefore, you must set the reference point to the
edge of the icon (in this example at the bottom, middle). The track has the setting
CURVE ROTATE MUS on the tab curve.

If the transporter now drives on the track (the reference point is located on the
track), Plant Simulation rotates the icon to the position of the transporter on the
track. This only works if you insert the track counterclockwise (see above). You
must set the length of the transporter on a very small value (e.g., 1 mm), so that
the movement matches the position of the transporter on the circle otherwise,
e.g., the transporter triggers a control with the front and stops a few angular
degrees before the actual position. Try to follow these guidelines for creating an
icon for the robot (81 x 81 pixels). The robot is created at the end of the track.
The end of the track is located “below”, so the icon of the robot must also point
downward.

Draw mode Animation mode

The reference must be downward in
the middle!

The animation line must be drawn from
top to bottom. Set the number of anima-
tion events to 25 (Icon Editor – Icon –
Number of Animation Events).

To test your robot, you can insert it by dragging it onto the track. The position
should look as follows:

8.2 The CardFile 189

Correct: (track is drawn
counterclockwise), the
reference point is located
at the edge of the icon

Wrong: Path drawn
clockwise

Wrong: The reference
point is not located at the
edge of the icon

The gripper may be designed like this:

Draw mode Animation mode

The reference point is located at the lower end of the icon. There also is an anima-
tion point for the MU which is to be transported. The orientation and size must be
coordinated with the robot.

2. Create sensors on the track: The angles relative to the loading position are
known. The loading position in this example is located at 180° (0° is down). The
positions of the machines are 90° and 135° clockwise from the loading position.
Handling robots especially calculating the sensor positions can be very time-
consuming. The sensors are created by a method. The method will delete all old
sensors from the track and then create new sensors from a list and attach a prede-
termined method (drive_control).

Working with Sensors in SimTalk
There are two ways to access the sensors on a track, a conveyor or a transporter
via SimTalk:

<path>.sensorID(<integer>),

190 8 Information Flow Objects

 via the sensorID (if known) or

<path>.sensorNo(<integer>),

via an enumeration. You can query the number of sensors with the method

<path>.numSensors

You create new sensors using the method:

<path>.createSensor(<integer>,<string>,<object>,
<boolean1>, <boolean2>)

You must indicate the position of the sensor, the type of position (“length” or
“relative”), the method to be executed (so that the method is not called by its
name, use the method ref ()), and a boolean value for the front and rear control.
Sensors will be destroyed using the method

<path>.deleteSensor(<integer>)

You must pass the ID of the sensor to be deleted. The easiest way to delete all sen-
sors is to delete the first sensor repeatedly, until no sensor is left.

The sensor itself has the following attributes and methods:

Attribute/ method Description

<sensor>.position returns the position of the sensor,
if the position type is "relative"
the returned value is a percentage
value based on the length of the ob-
ject, if the position type is length,
the returned value is a length posi-
tion on the object

<sensor>.front sets and gets whether the front con-
trol is enabled

<sensor>.rear sets and gets whether the rear con-
trol is enabled

<sensor>.positionType gets and sets the position type, pos-
sible values are: length or relative

Example: The frame includes two global variables:

Enter the following values in the table positions (positions of the sensors from the
pick position):

8.2 The CardFile 191

The method create_sensors is to first delete all sensors, then create the pick posi-
tion as sensorID 1, then create all sensors from the list positions (at the relevant
positions).

Method create_sensors:

is
 i:integer;
 id_sens:integer;
 posi:real;
 posi_further:real;
 number:integer;
do
 -- delete all sensors on the track
 number:=track.numSensors;
 for i:=1 to number loop
 id_sens:=track.sensorNo(1).id;
 track.deleteSensor(id_sens);
 next;
 -- pick_position as first sensor
 posi:=track.length/360 * pick_position;
 --insert the sensor in the track
 id_sens:=track.createSensor(posi,"Length",
 ref(drive_control),true,false);
 for i:=1 to positions.dim loop
 if clockwise then
 -- track is counterclockwise, subtract positions
 -- less than 0 --> subtract the rest from the
 --end of the track
 posi_further:=posi-positions.read(i)*
 track.length/360;
 if posi_further<0 then
 posi_further:=track.length+posi_further;
 end;
 --create the sensor
 id_sens:=track.createSensor(posi_further,
 "Length", ref(drive_control),true,false);
 end;
 next;
end;

192 8 Information Flow Objects

3. Create sensors on a transporter, program the control of the gripper: The grip-
per should have (here simplified) two positions. One position is at the end of the
robot for loading and unloading and the other at the beginning of the robot at
which the movement of the robot (here its rotation) is triggered. The control of the
gripper can then be quite simple. The robot sets the destination of the gripper and
starts the forward movement of the gripper. At the end of the track, the gripper
loads the loaded part onto the destination object. If the gripper is empty, then the
part is loaded from the destination object. The robot controls the correct timing
and the technological sequence. When the gripper has finished its work, it moves
back and its rear triggers the movement of the robot as such.

Note:
We recommend to program the control for the gripper in the class library. The
method for the robot has to be addressed with its absolute path; otherwise, prob-
lems with the instantiation might arise.

Create the method gripper_control in the class library. Then open the transporter
robot (0.5 m long) and click the button Sensors:

Insert two sensors, and assign the method gripper_control to the sensors (impor-
tant, as an absolute path!):

In its most basic form, the method gripper_control could look like this:

(sensorID:integer)
is
 target:object;
do
 if sensorID=2 then
 -- first front
 @.stopped:=true;
 if @.numMU >0 then
 target:=@.destination;
 waituntil target.empty and target.operational
 prio 1;
 @.cont.move(target);
 @.backwards:=true;
 -- pause ?
 @.stopped:=false;

8.2 The CardFile 193

 else
 -- empty
 -- wait for parts
 target:=@.destination;
 waituntil target.occupied prio 1;
 target.cont.move(@);
 -- start gripper
 @.backwards:=true;
 @.stopped:=false;
 end;
 elseif sensorID = 1 then
 -- turn the robot
 @.stopped:=true;
 ?.stopped:=false;
 end;
end;

This gripper control also works very well for controlling grippers in machine portals.

4. Insert the robot and the gripper on the track: The control of the robot on the
track is to be triggered by SensorIDs. Add the user-defined attribute targetSen-
sorID (integer) to the robot in the class library, and set the start value to 1:

The robot first moves to the pick position and waits there until the first part ar-
rives. Robot and gripper are created in the Init method:

is
do
 deleteMovables;
 .MUs.robot.create(track);
 .MUs.gripper.create(track.cont,0.4);
 -- stop the gripper
 track.cont.cont.stopped:=true;
end;

If everything worked as intended, the robot should be located on its track and the
gripper on the robot:

194 8 Information Flow Objects

5. Program the method drive_control: When the robot arrives at its target sensor,
it stops. The robot waits at sensor 1 until the place p is occupied. Then the robot
sets the destination of the gripper to P and starts the gripper (forward). Thereaf-
ter, the robot sets the next targetSensorID and the correct value for the moving
backwards. The machine should be identified via the SensorID. This is most easily
accomplished with a Cardfile (sensor_list). Enter the following data into the sen-
sor_list (data type object):

Method drive_control:

(sensorID:integer)
is
 gripper:object;
 target:object;
do
 gripper:=?.cont.cont;
 if @.targetSensorID=sensorID then
 @.stopped:=true;
 gripper.destination:=sensor_list.read(sensorID);
 -- next target ??
 if gripper.destination= P then
 waituntil (M1.empty or M2.empty) and
 P.occupied prio 1;
 gripper.backwards:=false;-- drive gripper
 gripper.stopped:=false;
 -- to M1 or M2
 if M1.empty then
 @.targetSensorId:=2;
 elseif M2.empty then
 @.targetSensorId:=3;
 end;
 @.backwards:=true;
 else
 gripper.backwards:=false;
 gripper.stopped:=false;
 @.targetSensorID:=1;-- to pick position
 @.backwards:=false;
 end;
 end;
end;

The robot now loads the two machines.

8.3 StackFile and QueueFile 195

8.3 StackFile and QueueFile

The StackFile and QueueFile are one-dimensional lists which are accessed accord-
ing to the FIFO (First in first out, queue) or LIFO (Last in first out, stack) princi-
ple. New entries will be inserted into the StackFile at the top of the list; the last
element inserted is the first entry which will be removed. New entries will be
added to the QueueFile at the bottom of the list, the first element will be removed.
The main methods for working with stacks and queues are push (element) and
pop. With delete, the entire content of a list will be deleted.

Example 87: Queuing
A transporter unloads three machines. It waits in its waiting position (here, 12.5 m),
until a driving order arrives. The transporter then drives to the machine and
unloads the part. The transporter drives with the part to the end of the track and
unloads the part there.

Create the following Frame:

Sensors on the track (length 20 meters):

Settings: Source1, Source2, and Source3 non-blocking, interval 1 minute; M1,
M2, and M3 1 minute processing time, availability 50%, 2 minutes MTTR, select

196 8 Information Flow Objects

different random number streams for the different machines; transporter speed 1
m/s, capacity one part; drain 0 seconds processing time. The transporter has a
user-defined attribute targetSensorID (integer). The start value is 3.

1. The init-method creates the transporter on the track. The transporter is to stop
at the sensorID 3.

The method init looks as follows:
is
do
 .MUs.Transporter.create(track,1);
end;

The transporter should always stop when the SensorID of the track matches the
targetSensorID of the transporter.

Program the method drive_control:
(sensorID : integer)
is
do
 if sensorID = @.targetSensorID then
 @.stopped:=true;
 end;
end;

2. The machines call the transporter after having processed the parts. In this ex-
ample, the machine should enter its sensorID into a QueueFile. The assignment of
machines to the sensors is entered into a Cardfile (sensor_list). If a sensor is not
to be used, enter the object dummy instead (as a wildcard). You cannot leave
empty rows in a Cardfile. Also add a dummy object to the frame; otherwise, you
will receive an error message. In our example, the sensor list looks as follows:

8.3 StackFile and QueueFile 197

If a part is finished on a machine, it triggers the exit sensor. The machine then has
to search the SensorID in the sensor_list and enter the SensorID into the Queue-
File order.

Searching in Lists
Searching in lists in Plant Simulation works as follows. Plant Simulation uses an
internal cursor for searching. This cursor is set to a hit. With help of the cursor,
you can determine the position within the list. At the end of the search, the cursor
keeps its old position where it found the entry. Therefore, it is necessary to first set
the cursor to the position 1.

Syntax:

<path>.setCursor(1);

Then you can use the method <list>.find(value) for searching a value. The method
find returns true, if the value was found, and false, if the value was not found. If
the list includes the queried value, the cursor is set to the corresponding position.
In a third step, you need to read the cursor position:

position:= <list>.cursor.

Example: Program the method call_transporter as the exit control of the machines
M1, M2, and M3. Select the data type integer for the QueueFile (order). The
method call_transporter could look as follows:

is
 sensorID:integer;
do
 -- search sensorID
 -- set the position of the cursor to the beginning
 sensor_list.setCursor(1);
 -- search for the machine
 sensor_list.find(?);
 -- position the cursor
 sensorID:=sensor_list.cursor;
 -- insert into order
 order.push(sensorID);
end;

3. The transporter is waiting at the waiting position until an order arrives. Then it
drives to the machine. Using the attribute dim, you can determine the number of
entries in a list. This attribute is observable; it can be monitored with an observer
or a Waituntil statement. The direction can be determined using the sensor IDs. In
this case, this is easy because the sensors are not in a mixed order. If you insert a
new sensor afterwards (e.g., for a new machine), the sensor IDs get mixed up,
which means that a greater sensor IDs do not necessarily mean a greater amount
of length of the position.

198 8 Information Flow Objects

Sensor Position, Sensor ID, Direction
The direction of a transporter is to be identified. These arguments have to be
passed:

• track
• current sensorID
• target sensorID

The return value of the function is of type boolean. Create the method (getDirec-
tion) in the current example. Using <track>.SensorID(id) you can access all in-
formation that is associated with a sensor. The method SensorID returns an object
of type sensor. The attribute position returns the position of the sensor.

Example 88: Determining Sensor Positions
Program the method getDirection:

(track:object;sensorFrom:integer;sensorTo:integer)
:boolean
is
 posFrom:real;
 posTo:real;
 backwards:boolean;
do
 posFrom:=track.sensorID(sensorFrom).position;
 posTo:=track.sensorID(sensorTo).position;
 backwards:=(posFrom>posTo);
 return backwards;
end;

Extend the method drive_control as follows.

(sensorID : integer)
is
do
 if sensorID = @.targetSensorID then
 @.stopped:=true;
 if sensorID= 3 then
 waituntil order.dim > 0 prio 1;
 @.targetSensorID:=order.pop;
 @.backwards:= getDirection(?,3,
 @.targetSensorID);
 @.stopped:=false;
 end;
 end;
end;

8.3 StackFile and QueueFile 199

4. The Transporter gets an order, drives off, and stops in front of a machine. The
transporter has to load the part from the machine and drive forward to the sink.
The transporter does not yet know the machine; the method must read the machine
from the sensor list. This is accomplished with the method read (id).
Program the method drive_control; in addition to example above

(sensorID : integer)
is
do
 if sensorID = @.targetSensorID then
 @.stopped:=true;
 if sensorID= 3 then
 waituntil order.dim > 0 prio 1;
 @.targetSensorID:=order.pop;
 @.backwards:=getDirection(?,3,

 @.targetSensorID);
 @.stopped:=false;
 else
 sensor_list.read(sensorID).cont.move(@);
 @.backwards:=false;
 @.stopped:=false;
 end;
 end;
end;

5. Program the method unload for unloading the part onto the drain, and assign it
as the exit control of the track. The transporter must unload the part to the drain.
Then the transporter drives forward. If an order exists, it must be read and the
targetSensorID of the transporter must be set anew. If no order exists, then the
targetSensorID is 3.
Program the method unload (exit control track)

is
do
 @.stopped:=true;
 @.cont.move(drain);
 if order.dim > 0 then
 -- to machine
 @.targetSensorID:=order.pop;
 else
 -- to waiting position
 @.targetSensorID:=3;
 end;
 @.backwards:=true;
 @.stopped:=false;
end;

200 8 Information Flow Objects

8.4 The TableFile

8.4.1 Basic Behavior

The TableFile is a two-dimensional list, which allows random access to the entries
via their address. TableFiles have many fields of application in simulation projects,
e.g.:

• Storage of work plans and production orders
• Collection of statistical information
• Parameterization of models

Note:
For the following example: For the distribution of setup times, depending on the
actual part and the new part, you can define the setup time in a matrix.

Example 89: Lot Change
A milling center successively processes different production orders. The parts call
for different setup times. Prior to the part moving onto the machine, the setup is to
be set anew if necessary. The necessary information is to be centrally stored in a
TableFile.

Create the following Frame:

Settings: Source interval 1:30 minutes, blocking; create three entities p1,p2,p3.
The source creates the parts in a cycle. Use the TableFile creation_table for the
distribution of the parts:

8.4 The TableFile 201

Type in the following lot sizes into the TableFile creation_table:

PlaceBuffer: capacity 100 parts, no processing time; the TableFile setup_time
contains the following information:

The setup time consists of the dismantling time of the old part (already located on
the machine) and the setup time for the new part. Setting up from P1 to P2 might
take, for example, 5+13 minutes = 18 minutes. The setup time must be assigned to
the workstation before the machine starts to set up (automatically every time a
MU with a different name arrives). For this reason, we have to make the following
considerations: It has to be checked for which part (MU) the machine is equipped;
if the machine is set up for the same part, then no action is required; if the ma-
chine is set up for another part, the set-up time is set anew and the machine starts
setting-up after moving the part to the machine.

Attributes and methods for setting up a machine

Method Description

<path>.setUp determines whether a object is cur-
rently setting-up(true if the object
sets up).

<path>setUpFor(<mu>) triggers setting an object up for a
certain MU class. The time needed de-
pends on the value of the setup time
for the object.

<path>.isSetUpFor returns the name of the MU (string),
for which the object is set up. If the
object is not set up for a specific MU,
the method returns an empty string.

<path>.setupTime sets/gets the set up time of the object

202 8 Information Flow Objects

<path>.automaticSetUp sets/gets whether the set up process
is triggered automatically when an-
other MU class arrives at the object

Program the method set up (as the exit control front for the PlaceBuffer):

is
 former : string;
do
 -- read the set-up time from the table
 -- set the attribute setupTime
 former:=singleProc.isSetUpFor;
 if former="" then
 --the first part only set-up
 singleProc.setUpTime:=
 setup_times["setup_time",@.name];
 else
 -- former part dismantling_time
 -- recent part setup_time
 singleProc.setUpTime:=setup_times["setup_time",
 @.name] + setup_times["dismantling_time",former];
 end;
 @.move;
end;

8.4.2 Methods and Attributes of the TableFile
Delete
Syntax:

<path>.delete or <path>.delete(<range>)

This method deletes all entries or the specified range in the table/list. The follow-
ing notation applies to ranges in TableFiles:

• One cell: table[column,row]
• Range: {column1, row1}…{column2, row2}

The range specification consists of two direct specifications, which are separated
by two periods. The first specification defines the upper left corner, while the sec-
ond determines the lower right corner of the range. All entries in the rectangular
area will be evaluated. When you enter {*,*} as a second indication, the table
evaluates to the largest valid column and row index.

Samples:

{2,2}…{3,3}
{“front”,“door”}…{“rear”,“door”}
{3,1}…{*,*}

8.4 The TableFile 203

Notation Range

{1,2}…{3,5} from column 1 to column 3 and row 2 to row 5

{1,*}…{4,*} all rows in column 1 to column 4

{2,3}…{*,3} in row 3 all columns starting with column 2

{2,3}…{*,*} all the columns from column 2 and all rows from row 3

{*,*}…{3,5} all columns to column 3, and all lines to line 5

Additional Methods of the TableFile are

Method Description

<path>.copy
<path>.copy(<range>)

Copies the contents of the cells
to the clipboard

<path>.initialize
(<ranges>,<values>)

Preallocates the specified areas
with the passed values, existing
contents will be overwritten

<path>[<column>,<row>]
<path>[<column>,
<row>]:= <value>;

Read/write access; the TableFile
allows random access via column
and row indices. The index starts
and ends with a square bracket.
Within the brackets, you first
enter the column and then the
row of the cell you want to
access. If you assign a value,
the data type of the value must
match the data type of the cell.

<path>.yDim Returns the number of entries
(lines).

<path>.xDim Returns the number of columns
(which contain values)

<path>.dim returns the product of columns
and rows

<path>.find(<range>,
<value>)

Sets the cursor into the cell,
which contains the value. You can
determine the coordinates with
the cursor (table.cursorX and
table.cursorY). Before searching
make sure that the cursor is
located in the correct position.
For this you can use
<path>.setCursor(<column>, <row>).

204 8 Information Flow Objects

<path>.insertRow(<value>) Adds a new empty row at the
position <value>

<path>.writeRow(<position>,
<value1>,<value2> …)

Replaces all entries in the row
at the specified position by the
passed arguments

In addition, the TableFile provides methods for inserting and removing columns
and rows. You find more information about this in the help and under the heading
statistics.

8.4.3 Calculating within Tables

Example 90: Calculating Machine-Hour Rates
Basics: Calculating the machine-hour rate allows a more accurate allocation of
common costs and thus a more accurate calculation. The goal is the apportion-
ment of the machine-related indirect production costs to one hour of machine
running time. Calculating the machine-hour rate consists of the following com-
ponents (sample):

Machine-dependent indirect pro-
duction costs

Fixed amount per
month

Variable costs per
hour

1. Imputed depreciation3 4.500

2. Imputed interest4 900

3. Imputed rent5 500

4. Energy costs per hour 0.25

5. Tooling costs 10.00

6. Repair/Maintenance 10.00

7. Fuel costs 2.50

Indirect production cost per hour 5900/number of
hours machine
running time

22.75

Machine-hour rate 5900/number of hours per month + 22.75

3 Replacement value/asset depreciation range in months.
4 Cost value/2 * imputed rate/100.
5 Footprint of the machine in m² * imputed rent per month.

8.4 The TableFile 205

We calculate the machine-hour rate in a TableFile. First, create a sample of the
machine-hour rate calculation in the class library (the calculation scheme is the
same for all machines, only the values will change). Create the following table:

Calculations in Tables
You can enter values directly into the table cells. Alternatively, you can specify
formulas, which calculate the values in the table cells. Tables and lists therefore
have two modes: In formula mode, you can enter formulas; in input mode, you can
enter values and the values of the formulas are displayed. You can switch to the
formula mode with the formula button (to the left of Open):

Calculated fields are shown with a light blue background. A formula has the fol-
lowing basic structure:

PathTableFile[c,r] operator PathTableFile[c,r]

This is a bit cumbersome in relation to the same table, so in calculations within a
table you can use the anonymous identifier „?” as a substitute for the path.

Sample:
The imputed depreciation cost is calculated as follows:

Replacement value/asset depreciation range in months. As formula in the table in
the example above you would enter:

?[1,1]/?[1,2]

If your formula is wrong, Plant Simulation shows an error message.

206 8 Information Flow Objects

It is important to consider the data types in calculations. The result cell has a cer-
tain data type (determined by the data type of the column in the table). The result
must also have this data type; otherwise, Plant Simulation will show an error mes-
sage. A reasonable simplification is the calculation in a single data type (e.g., real)
and formatting of the output (e.g., money). The calculation of the machine-hour
rate results in the following table (and the associated formulas):

 0 1

1 Replacement value 2000000.00

2 Asset depreciation range in months 120.00

3 Imputed depreciation ?[1,1]/?[1,2]

4 Cost value 1500000.00

5 Imputed rate (%) 7.00

6 Imputed rent ?[1,4]*?[1,5]/200

7 Footprint of the machine in m² 20.00

8 Imputed rent per month and m² 13.00

9 Imputed rent per month ?[1,7]*?[1,8]

10 Total fixed costs per month ?[1,3]+?[1,6]+?[1,9]

11

12 Energy costs per hour 0.25

13 Tooling costs per hour 10.00

8.4 The TableFile 207

14 Repair/Maintenance per hour 10.00

15 Fuel costs per hour 2.50

16 Total indirect production costs per hour ?[1,12]+?[1,13]+?[1,14]+?[1,15]

17

18 Monthly machine running time in
hours 1.00

19

20 Machine-hour rate ?[1,10]/?[1,18]+?[1,16]

The cell [1,18] must be calculated in the simulation. The result of the simulation is
the actual occupancy of the machine and with the calculation in the table the ma-
chine-hour rate (taking account of breaks, occupancy, maintenance, and whatever
else you take into account in the simulation).

Create the following Frame:

At the end of the simulation, the method EndSim reads (set a month as the end of
the simulation in the event controller) the working time of the object turning from
the statistics data and writes it to the table machine-hour rate (cell [1,18]). Then,
the table calculates the machine-hour rate.

Program the method endSim:

is
do
 -- set the machine working time in the table
 machine_hour_rate[1,18]:=
 turning.statWorkingTime/3600;
end;

Note:
The values in the table retain their values between the simulation runs. At the be-
ginning of the simulation, you therefore need to initialize all required values (in
the example above, the cell [1,8]).

208 8 Information Flow Objects

8.5 The TimeSequence

8.5.1 Basic Behavior
You can use the TimeSequence for recording and managing temporary value pro-
gressions (stocks, machine output…). The TimeSequence has two columns: Point
in time (1st column) and value (2nd column). You can enter values into the Time-
Sequence with SimTalk, or the TimeSequence can record values by itself.

8.5.2 Settings
Tab Content
The tab Contents shows the recorded values. You can sort the values in ascending
order according to time. The button Set sets empty fields to a default value.

On this tab, you must specify the data types to be stored. This is analogous to the
tables:

1. Turn off inheritance (FORMAT – INHERIT FORMAT).
2. Then click the right mouse button on the column header of the second col-

umn, select Format from the menu.
3. Select the data type, and click OK.

Tab Start Values

8.5 The TimeSequence 209

Time reference: You can specify whether Plant Simulation shows time-related da-
ta in absolute format (datetime) or in relative format (time).

Reference time: Enter the start of the recording of the values (time, date). The time
values are shown relative to this reference value (which shifts the values of the time
axis).

Tab Record

Here, you can select the settings that are required for collecting the data.

Value: Enter the relative or absolute path to the value (method, variable, attrib-
ute), whose course over time the TimeSequence will record. You might, for ex-
ample, record the number of parts in the object buffer. The method is
buffer.numMU. You can select the value using the button next to the input field
methods, attributes, and variables.

Mode: Watch means that values are entered after each change in value. This may
possibly lead to a slowdown of your simulation. Sample means that values at cer-
tain time intervals are entered (e.g., every 30 minutes). In watch mode, only ob-
servable values will be recorded.

Active: Use this to activate or deactivate the TimeSequence.

Example 91: TimeSequence
A process is to be balanced. Three machines supply a fourth machine with parts.
The machines M1, M2, M3 have very low availabilities (time-consuming tool test-
ing and adjustments). We are looking for the maximum output of the line, the
processing time of M4 and the required buffer size.

Create the following Frame:

210 8 Information Flow Objects

Settings: Source interval 50 seconds, blocking; M1,M2,M3 processing time 1 min-
ute, 50% availability, 45 minutes MTTR; PlaceBuffer capacity 10,000 parts, 0 sec-
ond processing time; M4 40 seconds processing time, 75% availability, 25 minutes
MTTR.

The course of stock in the PlaceBuffer is to be recorded in the TimeSequence.

Follow these steps:

1. Turn off inheritance: Format – Inherit Format (remove the check mark).

2. Click the tab Record, and select the following settings:

8.5 The TimeSequence 211

3. Start the simulation. The current time of the EventController and the stock in
the PlaceBuffer will be entered into the TimeSequence every minute.

You can easily export the values of the TimeSequence (e.g., as a text file). First
select the format of the text file:

FILE – FORMAT …

Save the table with: FILE – SAVE AS TEXT …

Note:
The EventController does not reset the TimeSequence. You must delete the pre-
vious content of the TimeSequence inside a reset or init method.

Example of a reset method:

is
do
 timeSequence.delete;
end;

The methods and attributes of TimeSequence are those of the TableFile.

212 8 Information Flow Objects

8.6 The Trigger

8.6.1 Basic Behavior
The trigger can change values of attributes and global variables during the simulation
according to a defined pattern and perform method calls. In addition, the trigger can
control a source, so that this starts to produce MUs from a certain moment in time on.

Example 92: Trigger
A machining center produces parts in three shifts (24 h) with a processing time of
1 minute. The following assembly produces one shift with three parallel places,
and two shifts with one place. The assembly time is 1:40 minutes. The parts not yet
assembled are collected in a buffer. Create the following Frame:

Settings: Source 1 minute interval, blocking; machining_center 1 minute process-
ing time; buffer 0 second processing time, capacity 1000 parts.

After 8 h simulation time, the property assembly.XDim: = 1 (after another 16
hours according to 3 again) must be set. Select these settings in the object Trig-
ger_assembly.

Tab Period

8.6 The Trigger 213

Active: Select whether the trigger is active or not during the simulation run.

Time reference: You can select a relative start time (0:00) or an absolute time (date).

Start time: When should be the trigger for the first time active?

Active interval: After what period should be set the value back to the default val-
ue (defined in a time line, e.g., 8 hours)?

Repeat periodically: The trigger is active again after the expiration of the period
length.

Period length: Sets the duration of a trigger period (e.g., one day or 1:00:00:
00.0000).

Tab Actions

You can start methods or attributes.

Button Attributes: Type into the list which attributes you want to control. An er-
ror message appears in the console when Plant Simulation could not execute the

214 8 Information Flow Objects

action. Before you can type values into the table, you must turn off inheritance and
click Apply.

Tab Values

Enter the progress of the value, which the trigger controls, into a TimeSequence.

Button Values:

Before you can type in values, you first have to turn off inheritance in the value
table (as table).

Enter the following values in the table:

Set the default value (here 1) on the tab Start values.

8.7 The ShiftCalendar 215

You can check the distribution you set on the tab Representation:

If you run the simulation for a while, you get an error message. Plant simulation
cannot reduce the dimension of the parallel station, when parts are located on the
respective places. Prior to the reduction of the capacity, the object assembly needs
to be emptied. This can, for example, be achieved by temporarily locking the exit of
the buffer (e.g., 2 minutes before shift change). The following settings are needed in
the object Trigger_buffer: Actions: Attribute buffer.exitLocked, start time: 7:58:00,
active interval 2:00, period length one day, repeat periodically, data type Boolean,
values 7:58:00 true, default value false.

8.7 The ShiftCalendar

You can use triggers to set the attribute Pause at certain intervals to true or false to
model a shift system. It is easier to accomplish this with the object ShiftCalendar.
Every material flow object, which “deals with” entities has the following times:

• Planned (working within the shifts)
• Unplanned (times outside the shifts, e.g., weekend)
• Paused (pause within the shifts)

The ShiftCalendar sets these times using a TimeSequence. You can use one Shift-
Calendar for the entire simulation, or, in extreme cases, create its own ShiftCalen-
dar for each machine.

Example 93: ShiftCalendar
You are to simulate a continuous process (coating), which has a workplace to pre-
pare and a workplace for follow-up jobs. A coating process takes 8 hours (the facil-
ity is 75 m long), the preparing and follow-up job each take 2:30 min. The coating
facility works 24 hours a day, 7 days a week. The preparing and follow-up work-
places work according to the following shift system: Beginning of the first shift,

216 8 Information Flow Objects

Monday 6.00 clock, end of the last shift: Saturday 6:00 clock. Morning shift start at
6 clock, 14 clock end, break 9:00 to 9:15 clock, 12:00 to 12:30. Middle shift: start
14 clock, 22 clock end, Break 17.00 to 17.15 and 20:00 to 20:30, Night shift: Start
22.00 until 6 clock; breaks analogous to the middle shift. What is the maximum out-
put? Create the following Frame:

Settings: Length of the entities: 0.2 meters, P1, P2 processing time 0 seconds, ca-
pacity 10,000 parts each.

Insert a ShiftCalendar object into the frame. First switch off inheritance on the tab
shift times (click on the green icon on the right side + Apply). Then enter the shift
times into the table.

Assign the ShiftCalendar to the objects on the tab Controls – Shift calendar.

The tab Resources of the ShiftCalendar provides an overview over the stations,
which use the ShiftCalendar.

8.8 The Generator 217

8.8 The Generator
The generator starts a method at regular intervals or after a certain time has
passed. You can specify all times as a fixed time or as a statistical distribution.

Example 94: Generator, Outward Stock Movement
In the following frame, the produced parts will be not removed by a drain, they
will be placed into a store (capacity 10,000). So that the store does not overflow
after a short time, we need to simulate outward stock movement. The store will
have an average outward stock movement of 80 units per hour. For this purpose,
you need a method, which removes 80 parts per hour from the store.
Create the following Frame:

Settings: Source interval 1 minute blocking, M1 and M2 processing time 50 sec-
onds, availability 95%, MTTR 5 hours, P1 capacity 1000 parts, store capacity
10,000 parts. Create safety_stock and outward stock movement (consumption) as
global variables, of data type integer, in the frame
Program the method remove (called once per hour):

is
 i:integer;
do
 if store.numMU >= (consumption+safety_stock)
 then
 --remove MUs
 for i:=1 to consumption loop
 store.cont.move(buffer);
 next;
 end;
end;

In the example above, the method must be called every hour. With the generator
you must determine the time and the method, which should be called.

218 8 Information Flow Objects

Tab Times

Active: Activate the generator.

Start: Select when the interval control will be activated for the first time.

Stop: Select at which simulation time no interval control should be active.

Interval: What time should elapse between calls?

Tab Controls
Select your method on this tab:

8.9 The AttributeExplorer
You can manage a variety of attributes of different objects from a single central
location with the AttributeExplorer.

Example 95: AttributeExplorer
Create the following Frame:

8.9 The AttributeExplorer 219

Insert a comment with the text “Click here to set preferences!” (to open the At-
tributeExplorer). The processing times of Machine1 and Machine2 should be
changed in a single dialog box. Therefore, add an AttributeExplorer to the frame.
Open the AttributeExplorer by double-clicking it. Select the tab Objects and turn
off inheritance (+ Apply). Drag the items from the frame to the list of object paths.
Press Enter after each object to add a new line to the table.

Next, select the attributes that you want to view and modify. In the example above,
these are the attributes interval (source), procTime (Machine1 and Machine2),
and capacity (buffer). Enter these settings on the tab ATTRIBUTES. Use the column
alias to display a different name than the attribute name in the AttributeExplorer
(for instance processing time instead procTime). You can select the attribute with
the button Show attributes.

First, turn off inheritance and click Apply.

If you want to display the alias names, select the option Show attributes with alias
on the tab Data. You can also select to show the paths or the labels of the objects.

Click the button Show Explorer to open a window in which you can set all values
at once

220 8 Information Flow Objects

The AttributeExplorer itself should open when you click the comment (“Click here
…”). Open the comment. Select Tools – Select controls.

Select the following:

Program the method openExplorer:

is
do
 -- activate the AttributExplorer
 attributeExplorer.Active:=true;
end;

When you now click on the comment, the AttributeExplorer opens. An issue results
in this way in older versions of Plant Simulation. You then cannot open the dialog
of the comment by double-clicking (before release 9). You can open the dialog via
the structure of the frame. Click the right mouse button on the frame in the class
library. Select Show structure from the menu. You can then double-click the ob-
jects in the opening window and thus open their dialogs.

8.10 The EventController 221

8.10 The EventController

The EventController enables access to the system time. Furthermore, you can call
all buttons of the EventController in SimTalk.

Methods of the EventController:

Method Description

<path>.SimTime Returns the current simulation time
(data type time).

<path>.AbsSimTime Returns the current simulation time
(data type datetime).

<path>.start Starts the simulation

<path>.step

<path>.stop

<path>.reset

	Information Flow Objects
	The List Editor
	The CardFile
	StackFile and QueueFile
	The TableFile
	Basic Behavior
	Methods and Attributes of the TableFile
	Calculating within Tables

	The TimeSequence
	Basic Behavior
	Settings

	The Trigger
	Basic Behavior

	The ShiftCalendar
	The Generator
	The AttributeExplorer
	The EventController

