
S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 139 – 181, 2010.
© Springer Berlin Heidelberg 2010

7 Mobile Units

MUs represent the materials that flow from object to object within the Frame. Af-
ter creating new MUs, they move through the model and remain at the end until
they are destroyed.

7.1 Standard Methods of Mobile Units

7.1.1 Create
Syntax:

<MU_path>.create(<object>[,length]);

The method creates an instance of MU on <object>; MU-path is the path to the
MU (e.g., class library). Optionally, you can specify a length on a length-oriented
object (e.g., track, line). If you do not specify a length, then the MU is generated at
the end of the object (ready to exit).

Example 72: Create MUs
At 200 m, 500 m, and 700 m, a transporter is to be created on a track which is
1000 m long.

Create the following Frame:

Note:
If you want to create track, which is a 1000 m long by dragging, then you first
have to change the scaling in the Frame window. The default setting is a grid of
20 x 20 pixels and a scale of 1 m per grid point. Therefore, you have to change
the scale so that it shows 50 m per grid point (Frame window, TOOLS – SCALING
FACTOR …). Another possibility is the following: On the tab CURVE (track) turn
off the option TRANSFER LENGTH.

Then you scale a length of 1000 m on the tab ATTRIBUTES. Then the track is
no longer shown to scale.

140 7 Mobile Units

The init method is to first delete all MUs and then to create the three transporters:

is
do
 deleteMovables;
 .MUs.Transporter.create(track,200);
 .MUs.Transporter.create(track,500);
 .MUs.Transporter.create(track,700);
 end;

After creating the MU on a place-oriented object, it can exit immediately. On a
buffer, MUs are created on the first free place, if no place has been specified. On a
length-oriented, object the MU is created as close as possible to the exit if no posi-
tion was specified. Creation will fail if the capacity of the object is exhausted and the
length-oriented object is shorter than the MU to be created (Return value: VOID).

7.1.2 MU-Related Attributes and Methods

Method Description

<MU-path>.delete; This method destroys the specified
MUs. It does delete MUs in the
class library.

<MU-path>.move;
< MU-path>.
move(<target>);
<MU-path>.move(<index>);

Move the front of the transferred
MU. If no argument is specified,
then it will be transferred to
each successor alternately. If
should be moved to a particular
successor, then you can use an in-
dex (index). The return value
(boolean) is TRUE when moving was
successful and FALSE if moving
failed (successor is occupied,
paused, failed). MUs cannot be
moved to a source.

<MU-path>.transfer;
<MU-path>.transfer
(<target>);
<MU-path>.transfer
(<index>);

Transfer moves a MU from one ob-
ject to another. It moves the en-
tire length to the next object
(not just the forefront like the
method Move).

<MU-path>.numMU; NumMu returns the number of MU,
which are booked on the MU (inte-
ger).

Within an entrance or exit control, you can access the triggering MU with the
anonymous identifier “@”.

7.2 Length, Width, and Booking Point 141

7.2 Length, Width, and Booking Point

All MUs have the properties length, width, and related booking points. The book-
ing point determines the position of the MU, from this it is booked on the next ob-
ject and can be accessed from there. The position of the booking point must be al-
ways less than or equal to the length or width. Otherwise, you get an error
message. In some cases it is necessary to dynamically adjust the length during the
simulation. This may be when the processing is changing the length or if you re-
peatedly change the direction of transport during the simulation.

Example 73: Change MU Length
We want to simulate a small part of a production. There are steel beams proc-
essed. The beams are initially transported lengthwise, then crosswise, then proc-
essed, and then transported again lengthwise. The cross conveyor serves as a
buffer. Create the following frame:

Create an entity (“beam”) in the class library. The beam is 4 meters long and 20
cm broad. Set the booking points for each length and width to 0.1 meters. Redes-
ign the icon of the beam: width 80 pixels, height 5 pixels. Delete the old icon and
fill the icon with a new color. Set the reference point to the position 40.3. Change
the icon “waiting” analogous. Make the following settings:

The source creates each 3 minutes one beam. The lines L1 and L3 are 12 me-
ters long and transport the beams with a speed of 0.05 meters per second. Un-
check the option Rotate MUs in the tab Curve in L2 so that the line L2 transports
the beams “cross”. The SingleProc has 2 minutes processing time, 75% availabil-
ity and 30 minutes MTTR. Start the simulation. If a failure occurs in SingleProc,
the beams at L2 do not jam as intended. In the original setting, L2 promotes the
cross transport, but the capacity is calculated on the length of conveyor line and
length of the beam. If the beam is 4 meters long and L2 also exactly one beam fits
on the line. To correct this, you have to temporarily reduce the length to the width
of the beam (from 4 meters to 20 centimeters). After leaving the cross conveyor,
you have to reset the length again to 4 meters. Therefore, insert two user-defined
attributes into the class beam (class library):

142 7 Mobile Units

The method setLength must be called twice, once at the entry of MUs in the line
L2 (reduce length) and once when MUs enter the SingleProc (set length back to
the original value). The method could look as follows:

is
do
 if ?=L2 then
 @.muLength:=@.width;
 elseif ?=SingleProc then
 @.muLength:=@.mu_length;
 end;
end;

The beams jam now at L2 if a failure occurs at the SingleProc.

7.3 The Entity

The entity does not have a basic behavior of its own. It is passed along from ob-
ject to object. The main attributes are length and width. Booking points determine
at which position the entity will be booked while being transported to the succeed-
ing object (mainly track and line).

The destination can be used to store the destination station during transport opera-
tions (especially during transportation by a worker).

7.4 The Container 143

7.4 The Container
The container can load and transport other MUs. It has no active basic behavior of
its own. The storage area is organized as a two-dimensional matrix. Each space can
hold one MU. The container is transported from object to object along the connec-
tors or by methods. With containers you can, for example, model boxes and palettes.

7.4.1 Attributes of the Container
The attributes of the container are mostly identical to those of the entity. In addi-
tion, the container has the following attributes:

The capacity of the container is calculated by multiplying the X-dimension with
the Y-dimension. The access to the MUs, which are transported by the container,
is analogous to the material flow objects.

Method Description

<MU-path>.cont The method "cont" returns a MU, which is
booked on the container (with the longest
length of stay).

<MU-
path>.pe(x,y)

With "pe" you get access to a place in the
container.

7.4.2 Loading Containers
The approach is somewhat complicated. A container cannot exist just by itself.
That is why you need another object, which can transport the container, e.g., to
load a box. In addition, transporters can easily transport containers. For loading
containers, you can use the assembly station (see chapter “AssemblyStation”) or
the transfer station. You can also load the container with SimTalk methods.

Example 74: Loading Containers
We want to develop a method that creates a palette that is loaded with 50 parts
and to pass these parts onto the simulation. Create the following Frame:

144 7 Mobile Units

The method createPallet must first create the palette on P and then create parts
on the palette until the palette is full. Create duplicates of container (Pallet, X-
dimension: 25, Y-Dimension: 2) and entity (part) in the folder MUs.

Method createPallet:

is
do
 --create palette
 .MUs.pallet.create(p);
 -- create parts
 while not p.cont.full loop
 .MUs.part.create(p.cont);
 end;
 -- pass the palette
 p.cont.move;
end;

Digression: Working with Arguments 1
You will also need the facts described above in the exercises below. Therefore, it
would be useful if the method could be applied to all similar cases. For this pur-
pose, you need to remove all direct references to this particular simulation from
the method (mark bold, italic).

is
do
 -- create palette
 .MUs.pallet.create(p);
 -- create parts
 while not p.cont.full loop
 .MUs.part.create(p.cont);
 end;
 -- pass the palette
 p.cont.move;
end;

The method only contains three specific references:

• Location of the palette (.MUs.pallet)
• Location of the part (.MUs.part)
• Target of creation (p)

These three items are declared as arguments.

(pallet,part,place:object)

Next, replace the specific details with the arguments (using find and replace in
larger methods).

7.4 The Container 145

(pallet,part,place:object)
is
do
 -- create palette
 pallet.create(place);
 -- create parts
 while not place.cont.full loop
 part.create(place.cont);
 end;
 -- pass the palette
 place.cont.move;
end;

The method call now just has to include the arguments. Create an init method. The
call of the method createPallet in the init method could look like this:

is
do
 createPallet(.MUs.pallet,.MUs.part,p);
end;

Start the init method. To check whether the method has really produced 50 parts,
check the statistics of the palette (double-click the filled palette) on the tab
STATISTICS.

7.4.3 Unloading Containers
You can easily simulate unloading processes using the dismantle station. For some
simulation tasks, this approach might prove to be too cumbersome, and the num-
ber of objects would be growing enormously. You can easily program unloading
the palettes with SimTalk. Accessing the palette and the parts on the palette takes
place by using the “underlying” object.

Example 75: Batch Production
You are to simulate batch production. Parts are delivered in containers and
placed close to the machines. The machine operators remove the parts from the
container and place the finished parts onto another container (finished parts).
Once the batch is processed, the container with the finished parts will be trans-
ported to the next workplace and the empty palette will be transferred. Create a
Frame with a single machine:

146 7 Mobile Units

Settings: Start, P1, P2 each one place, processing time 0 seconds, L1 4 meters
length, speed 1 m/s, Machine1 processing time one minute, no failures.

Digression: Reusing Source Code from Other Models
We want to use the same method (source code) as in the example “loading of con-
tainers” from the previous chapter. You can do this in two ways:

1. Save and import the method as an object file.
2. Export and import the methods as text.

Saving and importing the method as an object file:
You can store classes and Frames as objects at any time. The functionality is located
in the class library. Therefore, you first have to create a “class” out of the method in
the Frame. Hold down the Ctrl key and drag the method from the Frame to the class
library (if you do not hold down the Ctrl key, the method will be moved!). If needed,
rename the method in the class library. From here, you can save the method as an
object. Select the context menu (right mouse button) and select SAVE OBJECT AS.

Now you can load the method into another file as an object file. Click a folder
icon with the right mouse button. Select SAVE/LOAD-LOAD OBJECT INTO
FOLDER… from the context menu:

7.4 The Container 147

You can now select the file and insert the object into the class library. Caution:
When you import the objects, the compatibility of versions/licenses will be con-
sidered. You cannot use objects from newer versions of Plant Simulation in older
versions (or in eM-Plant).

Exporting and importing a method as text:

You can export and import the source code of the method as a text file. Open the
method createPallet. Select FILE – SAVE AS in the method editor:

Select a location and a name for the file. Insert a method in the new Frame
(without content, the contents will be completely replaced when you import a
text file). Select FILE – OPEN in the method editor: Select the text file with the
source code, and confirm. The text of the method is completely overwritten with
the contents of the file.

Continuation Example Batch Production
If not already available, create the palette container (capacity 50 parts), entity:
part. The init method should produce a full palette (50 parts) at the station P1 and
an empty palette at the station P2.

is
do
 deleteMovables;
 createPallet(.MUs.pallet,.MUs.part,start);
 .MUs.pallet.create(p2);
end;

The simulation model (without a dismantle station) could look as follows. The pal-
ette itself transfers the first part of the palette onto the machine (exit control of
P1). If a part on the machine is ready, it triggers the exit sensor of the machine. A

148 7 Mobile Units

method transports the part to the palette on the station P2, and a new part from
the palette on P1 to the machine. If the finished parts palette is full (p2), they will
be transported to F1, the empty palette is moved from P1 to P2, and a new palette
will be generated at the beginning.

Method load (exit control front P1, exit control front machine):

is
do
 if ? = P1 then
 -- load the first part onto machine1
 @.cont.move(machine1);
 elseif ?=machine1 then
 -- load the part onto the palette
 @.move(p2.cont);
 if p2.cont.full then
 p2.cont.move(L1);
 p1.cont.move(p2);
 -- create a new palette
 createPallet(.MUs.pallet,.MUs.part,start);
 else
 -- already parts on p1
 p1.cont.cont.move(machine1);
 end;
 end;
end;

You can access the part on the palette with

p1.cont.cont.

In our case p1.cont is a palette and p1.cont.cont is a part.

Digression: Working with Arguments 2 – User-Defined Attributes
Imagine that the simulation of the production contains 50 machines (each with two
buffer places). You need to extend the method “load” for each machine. There is
an easier option though, namely to separate event handling of the buffer and the
machine.

Method: loadFirstPart (exit control front P1):

is
do
 -- move the first part to the machine
 @.cont.move(machine1);
end;

Method load (without branching after objects):

7.4 The Container 149

is
do
 -- load the part onto the palette
 @.move(p2.cont);
 if p2.cont.full then
 p2.cont.move(L1);
 p1.cont.move(p2);
 -- create a new palette
 createPallet(.MUs.pallet,.MUs.part,start);
 else
 -- already parts on p1
 p1.cont.cont.move(machine1);
 end;
end;

First step: Which object in the method has a reference to a specific case?

• P1, P2
• L1
• Machine1
• createPallet (only machine1)

The anonymous identifier “?”can replace Machine1. P1 and P2 are buffers which
belong to the machine. If you are using many similar machines, it is worth your
while to define the respective attributes in the class SingleProc (in the class li-
brary). Name the attributes:

• bufferGreenParts (object)
• bufferReadyParts (object)
• successor (object)

Open Machine1 in the Frame. In the dialog of the object select:

It will open the class of the SingleProc in the class library: Click the tab USER-
DEFINED ATTRIBUTES, and define the two buffers and the successor:

150 7 Mobile Units

Save your changes by clicking OK. You can now assign the two buffers (buffer-
GreenParts P1, bufferReadyParts P2) to Machine1 and F1 as successor. To
do this, click the tab USER-DEFINED ATTRIBUTE in the object Machine1, double-
click the relevant line and select the buffer or L1.

This makes programming the method easier for many applications:

• machine1 will be replaced by ?
• p1 will be replaced by ?.bufferGreenParts
• p2 will be replaced by ?.bufferReadyParts
• L1 will be replaced by ?.successor

Specific instructions for a machine are written into an “if then else …” statement.

Method load:

is
do
 -- load the part into the palette
 @.move(?.bufferReadyParts.cont);
 if ?.bufferReadyParts.cont.full then
 ?.bufferReadyParts.cont.move(?.successor);
 ?.bufferGreenParts.cont.move(
 ?.bufferReadyParts);
 -- create a new palette
 if ? = machine1 then
 createPallet(.MUs.pallet,.MUs.part,start);
 end;
 else
 -- already parts on p1
 ?.bufferGreenParts.cont.cont.move(?);
 end;
end;

Likewise, you can convert the method loadFirstPart. Define an attribute “ma-
chine” in the class of the PlaceBuffer (type object). Set Machine1 as the value for
the attribute machine in the buffer P1. The method should look like this:

7.4 The Container 151

is
do
 -- move the first part to the machine
 @.cont.move(?.machine);
end;

Now you can easily extend the simulation without the need to write new meth-
ods. You have only to assign the methods to the sensors and set the attributes of
the objects.

Example 76: Saw
You are to simulate the following process. A block with an edge length of 40 cm is
to be sawed into 16 parts. Ten parts each will then be packed into a box. Ten
boxes are packed in a carton. Between the saw and the individual packing sta-
tions, lines with a length of 5 meters will be set up. Create the folder “Saw” below
models. Duplicate all required classes in this folder.

Create the following Frame:

Settings: L1, L2, L3, and L4 length 5 meters, speed 1 m/s; saw: processing time 10
seconds, packing_1 and packing_2 two seconds processing time, drain 0 sec.
processing time. Create two entities (block, part) and two containers (box, pal-
ette). Block: 0.4 meter length, part 0.1 meter length. Change the icon of the part to
a size of 7 x 7 pixels. Box: container, capacity 10 parts, palette: container, capac-
ity 16 boxes. Arrange your sources so that they produce the correct type of MU
(e.g., source_box).

152 7 Mobile Units

Interval palette: 1:40, interval block: 0:10

Method sawing (exit control front of SingleProc saw): The method must destroy the
block and create a certain number of parts. Creating the parts works best with a
buffer object. The processing time of the sawing can be considered as processing
time of the SingleProc. To make the simulation more flexible, define the number of
parts outside of the method (e.g., in a global variable in the example: num_parts).

Method sawing (exit control front saw):

is
 i:integer;
do
 -- destroy block
 @.delete;
 -- create num_parts
 for i:=1 to num_parts loop
 .Models.saw.part.create(buffer);
 next
end;

At the end of line L2, the parts are to be packed into boxes. If a box is placed on
the station Packing_1, the incoming part is transferred to the box. If the box is
full, it will be transferred to line L3.

Method packing_box (exit control L2):

is
 box:object;
do
 -- wait for a box
 waituntil packing_1.occupied prio 1;
 box:=packing_1.cont;
 -- pack parts into the box

7.4 The Container 153

 @.move(box);
 if box.full then
 box.move(L3);
 end;
end;

Similarly, you need to program the method packing_palette. To ensure a smooth
start of the simulation, destroy the MUs when resetting the simulation.

Note:
The task can also be solved with dismantle and assembly stations.

Example 77: Kanban Control
Simulations regarding the flow of materials have a fixed direction. The sources
produce parts according to a fixed schedule (e.g., batch). The parts move from
the source to the drain and trigger the production at the machines (push-
control). Many companies (especially in Japan) use the opposite control con-
cept. There, the succeeding stations trigger the production of the preceding sta-
tions. Trigger and main information carrier within this system is the Kanban
card. We will simulate a Kanban container system. Create the following Frame.
Also create the methods:

Settings: Machine1 and Machine2 processing time: 1 minute, 100% availability;
sale: DismantleStation, successor number 1: P0 (for containers), successor 2:
Drain 1 minute processing time. Create an entity .mus.part. The source produces
.mus.part, interval 1 minute. Select the following settings in the DismantleStation
sale:

154 7 Mobile Units

Enter the following information into the dismantle table:

The assembly station green_part_storage loads 20 parts produced by the source
onto a container that is transferred from F3. First, connect F3 with green_part_
storage, then to the source. Select the following settings in the station green_
part_storage:

Assembly table:

The production flow in this model should be like this: A container is located on the
station sale and is unloaded gradually. If the container is empty, it will be trans-
ferred to the station F1 (finished part place of Machine1). The arrival of the con-
tainer triggers the order of the unfinished parts. This takes place by transferring
an empty container from the place R1 (unfinished part place of Machine1) to the
place F2 (finished part place of Machine2). Machine2 sends a container from R2

7.4 The Container 155

to F3 and in this way triggers the delivery of the unfinished parts. The station
green_part_storage loads the container with parts and sends it back to R2. The
arrival of the container initiates the production at Machine2. If the finished part
container of Machine2 (F2) is full, it will be transferred to the unfinished part
place of Machine1 (R1). The finished parts of Machine1 will be transferred to the
station sale (P1). Trigger and main control tool of the production are the kanban
containers. They contain all information required for controlling the production.
In your simulation model you can accomplish this with user-defined attributes.
Create the container Kanban_container (capacity: 20 parts) in the class library.
Create the following user-defined attributes:

Step 1:
Create a filled container on P and empty containers on R1 and R2. Set the neces-
sary information in the kanban containers. A kanban system represents a system
of self-regulating control loops. For the present simulation, this means that a con-
tainer shuttles between two places. The container, which is located on the station
sale, shuttles between Machine1 and sale. Empty containers will be transported to
F1, full containers always to P. The unfinished parts container of Machine1
(place R1) shuttles between Machine1 and Machine2 (place F2). In other words, if
the container is full, it is transported to R1, if it is empty always to F2, etc. For
each container, this information has been stored in user-defined attributes. The
required init method should look like this:

is
 container:object;
do
 deleteMovables;
 -- initialisieren
 -- create a container at sale, load it
 -- target_empty: F1
 -- target_full: sale
 -- workplace: machine1
 container:=.MUs.kanban_container.create(p);
 container.target_empty:=F1;
 container.target_full:=P;
 container.workplace:=machine1;

156 7 Mobile Units

 while not container.full loop
 .MUs.part.create(container);
 end;
 -- create kanban_container at r1 and r2
 container:=.MUs.kanban_container.create(r1);
 container.target_empty:=F2;
 container.target_full:=R1;
 container.workplace:=machine2;
 container:=.MUs.kanban_container.create(r2);
 container.target_empty:=F3;
 container.target_full:=R2;
 container.workplace:=green_part_storage;
end;

Step 2:
If the container on the station sale is empty, it orders new parts from Machine1 by
sending the container to the station F1. Method request_sale, exit control front P0:

is
do
 -- empty container
 -- move to target_empty
 @.move(@.target_empty);
 -- request finished parts
end;

Step 3:
On arrival, a container on the finished part station, the machine has to send an
unfinished part container as a request to the preceding workplace. To enable
more convenient programming of this function, define two user-defined attributes
in the class of the SingleProc in the class library:

Type the machines into the respective buffers, for example Machine1:

Method order, exit control front F1 and F2:

is
 container:object;
do
 -- get a reference to the unfinished parts container

7.4 The Container 157

 container:=@.workplace.bufferGreenParts.cont;
 -- send unfinished parts container
 container.move(container.target_empty);
end;

Step 4:
After loading the container with unfinished parts, the container has to be trans-
ferred to the first unfinished part place (R2).Method deliver exit control front
green_part_storage

is
do
 @.move(@.target_full);
end;

Step 5:
After the arrival of the unfinished parts in the unfinished parts buffer, the first part
is transferred to the machine. Create the user-defined attribute machine in the
buffer class in the class library. Set the attribute machine of R2 to Machine2 and
of R1 to Machine1.

Method load exit control front R1 and R2:

is
do
 if @.occupied then
 @.cont.move(?.machine);
 end;
end;

Step 6:
After completing processing of the parts on the machine, the machine transfers the
part to the container, which is located on the finished part place. If the container
is full, then it will be transferred to the station target_full. If the container is not
yet full, a new part is loaded onto the machine. Method new_part exit control
front Machine1 and Machine2:

is
do
 -- load part into the finished part container
 @.move(?.bufferReadyParts.cont);
 if ?.bufferReadyParts.cont.full then
 -- move container
 ?.bufferReadyParts.cont.move(
 ?.bufferReadyParts.cont.target_full);

158 7 Mobile Units

 else
 -- load next part
 ?.bufferGreenParts.cont.cont.move(?);
 end;
end;

The simulation now works according to the just-in-time principle.

7.5 The Transporter

7.5.1 Basic Behavior
The Transporter moves on the track with a set speed forward or in reverse. Us-
ing the length of the track and the speed of the transporter, the time the Trans-
porter spends on the track is calculated. At the exit, the track transfers the trans-
porter to a successor. Transporter cannot pass each other on a track. If a faster
transporter moves up close to a slower one, then it automatically adjusts its
speed to the slower transporter. When the obstacle is no longer located in front
of the Transporter, the Transporter accelerates to its previous speed. Transport-
ers can have two types of load area:

• Matrix loading space
• Length-oriented loading space

7.5.2 Attributes of the Transporter
Create the object forklift (duplicate a transporter, speed 1 m/s) in the class library.
Open the object by double-click it.

7.5 The Transporter 159

Length: The length of the transporter must be smaller than the length of the track,
if you want to create a transporter on a track. The capacity of the tracks (setting
capacity = -1) is calculated as the length of the tracks divided by the length of the
transporter.

Speed: Enter the speed with which the transporter moves on the object track. The
speed is a positive value (data type real). If you set the speed to 0, the Transporter
stops. You can also simulate acceleration and deceleration of the transporter (op-
tion ACCELERATION).

Backwards: This option activates moving of the transporter in reverse on the
track (it also can be called by a method, for example, to drive back the transporter
after unloading).

Automatic routing (+destination): If you select this option, then Plant Simula-
tion searches along the connectors for the shortest route to the destination. All ob-
jects to the destination must be connected.

Example 78: Automatic Routing

Drag a transporter from the class library to the buffer. Open the dialog of the
transporter by double-clicking it. The destination of the transporter is track5.

160 7 Mobile Units

Start the simulation and reduce the simulation speed. The transporter finds the
shortest way.

Matrix load bay: If the option “matrix load bay” is selected, the xy coordinates
then indicate the position of MUs on the load bay. If the box is cleared, Plant
Simulation uses a length-oriented load bay.

Load bay length: Enter the length of the load bay. You can insert sensors and use
the length-oriented load bay like a track, e.g., for representing panel carts, auto-
mobile transporters, loaders, cranes, etc.

Capacity: Enter the number of MUs, which can be located on the transporter,
whole or in part, at any one time. -1 means that no limitations apply. This means
that the loading bay of the transporter is full if all MUs are touching each other.

7.5.3 Routing

If a track has various successors, four different types for routing are available:

• Automatic routing
• Drive control
• Exit control
• Basic behavior

7.5.3.1 Automatic Routing
To use automatic routing, you need to supply the transporter with destination in-
formation, and assign information to the track about which destinations are to be
reached on the track (target list). Plant Simulation searches the target lists of the
successors for the destination of the track. Then Plant Simulation transfers the
transporter to the first track whose target list contains the destination.

Example 79: Automatic Routing
A source randomly produces three parts. A transporter loads the part and trans-
ports it to the relevant machine. Then the transporter drives back to the source.
Each machine can only process one kind of part. A special track leads to each
machine. Create the following Frame:

7.5 The Transporter 161

Duplicate the entity three times. Name the parts Part1, Part2, and Part3. Color
the parts differently.

Go to the source. Enter an interval of 2 minutes. Select MU Selection random. En-
ter the table distribution into the text box Table.

Plant Simulation formats the table distribution. Open the table. Drag the parts
from the class library to the table (this will enter the absolute path into the table).
You can also enter the absolute path yourself. Next to the addresses of the parts,
type in the distribution of the parts in relation to the total amount.

The source now produces part1, part2, and part3 in a random sequence.
An assembly station then loads the transporter. First, connect track6 with the as-
sembly station, then with the source. Insert track6 so that the exit is located close
to the assembly station. Select the following settings in the assembly station.

162 7 Mobile Units

One part from the predecessor 2 is to be mounted.

The processing time of the assembly station is 10 seconds. The init-method inserts
the transporter close to the exit of track6.

Method init:

is
do
 deleteMovables;
 .MUs.Transporter.create(track6,15);
end;

Determine the destination of the transporter depending on the name of the part.
Set the value of the attribute destination of the transporter with a method. The out-
put sensor (rear) of the assembly station is to trigger the method.

The method destination sets the attribute depending on the MU names.

is
do
 -- @ denotes the transporter
 -- @.cont is the part on the transporter
 if @.cont.name="part1" then
 @.destination:=machine1;
 elseif @.cont.name="part2" then
 @.destination:=machine2;
 elseif @.cont.name="part3" then
 @.zielort:=machine3;
 end;
end;

Create and assign the destination list of the tracks. For creating the destination
lists, use objects of type CardFile.

The required data type is object. First, turn off inheritance (FORMAT – INHERIT
FORMAT).

7.5 The Transporter 163

Then click the list header (gray, string) with the right mouse button. Select
FORMAT. Select the data type object on the tab data type.

Now enter the objects, which can be reached via the track. You can also enter the
destinations by dragging the objects onto the list and dropping them onto the re-
spective line. This inserts the absolute path. Insert Machine1 into the destina-
tions_list1 and so on.

Enter the destination list on the tab Attributes of the track (forward destination list).

Move the parts at the end of the tracks.The parts are loaded onto the machines
at the end of the tracks 1, 2, 3. To accomplish this, we use the destination ad-
dresses of the transporters. Enter the method into the exit controls of the tracks
1, 2, and 3(rear).

Method unload:

is
do
 -- @ is the transporter
 @.cont.move(@.destination);
end;

At the end, the transporter drives by itself to Machine3 on track3 to Machine2 on
track2, etc., depending on which part is loaded.

164 7 Mobile Units

Note:
Plant Simulation transfers the transporter onto the first object in whose destina-
tion list the destination of the transporter is registered. If the following track is
failed, the transporter stops and waits until the failure is removed. While routing,
Plant Simulation does not take the status of the tracks into account.

7.5.3.2 Driving Control
At a junction, you can determine the destination of the transporter with SimTalk,
for example, depending on the availability and the load of the target station, and
transfer the transporter on the correct track.

Example 80: Driving Control
We want to simulate a manipulation robot (e.g., FlexPicker by ABB). The robot
can freely transport parts within a restricted area at high speed. You are to simu-
late the following problem. The robot takes parts from one place and distributes
them onto three lines. The lines have an availability of 98% and an MTTR of 25
minutes. The robot itself has an availability of 99% and an MTTR of 30 minutes.
The robot can reach an acceleration/deceleration of 100 m/s² and has a maximum
speed of 10 m/s. The cycle time is 1.05 seconds (source interval). The speed of the
lines is 0.1 m/s. The part has a length of 0.3 m. The robot has a work area with a
diameter of 1.2 meters. Set the scaling factor in the Frame to 0.005.

Create the following Frame:

Length of the tracks T0: 0.2 m, W1: 0.75 m, W2: 0.7 m, W3: 0.75 m, processing
time P1, P2, P3 3 seconds (to secure a distance between the parts), the capacity of
all buffers is one part. The length of the transporter is 0.1 meter (booking point 0).
The transporter must drive backwards after being inserted into the frame. There-
fore, select Backwards in the dialog of the transporter in the class library. Pro-
ceed as follows.

1. Program the Init method. It creates a transporter on the track T0. When creating,
a length is passed so that the transporter can trigger a backward exit sensor.

7.5 The Transporter 165

Method init:

is
do
 .MUs.Transporter.create(T0,0.1);
end;

2. Program the backward exit control drive_control: The transporter waits until a
part is located on P0 and loads it. The transporter drives forward until the end of
track T0. A single method is to be used for all controls. For that reason, the object
and possibly the direction of the transporter will be queried in the method.

Method drive_control:

is
do
 if ? = T0 and @.backwards then

 -- T0 exit backwards
 @.stopped:=true;
 waituntil P0.occupied prio 1;
 P0.cont.move(@);
 @.backwards:=false;
 @.stopped:=false;

 end;
end;

Assign the method drive_control to the track T0 as the exit control and the back-
ward exit control.

3. Program the Exit control T0: At the end of the track T0, you have to be deciding
to which place the transporter is to drive. The transporter waits until P1, P2, or
P3 is empty. Starting with the station P1, the method queries whether the place is
empty. The transporter will be transferred onto the track to the first empty place.
Method drive_control, a new branch in the query if ? = T0 and @.backwards then
…:

is
do
 if ? = T0 and @.backwards then

-- see above

 elseif ?=T0 and @.backwards= false then
 -- T0 exit
 @.stopped:=true;
 waituntil P1.empty or P2.empty or P3.empty prio 1;
 --drive to the empty place

166 7 Mobile Units

 if P1.empty then
 @.move(T1);
 elseif P2.empty then
 @.move(T2);
 elseif P3.empty then
 @.move(T3);
 end;
 @.stopped:=false;
 end;
end;

4. Program the Exit control of the tracks T1, T2, and T3: The transporter loads
the part into the buffer. After this, the transporter moves backwards to load a new
part. To simplify matters, define the attribute buffer (type object) in the class track
in the class library and assign the buffer P1 to the track T1, etc.

One control only is required for unloading. Therefore, you can program it as an
else-block in the query of the objects.

is
do
 if ? = T0 and @.backwards then

 -- T0 backwards exit
 -- see above

 elseif ?=T0 and @.backwards= false then
 -- T0 exit
 -- see above
 else
 --unload onto buffer

7.5 The Transporter 167

 @.stopped:=true;
 @.cont.move(?.buffer);
 @.backwards:=true;
 @.stopped:=false;
 end;
end;

7.5.4 Methods and Attributes of the Transporter

7.5.4.1 Creating a Transporter
You can use the method create for creating transporters.

Syntax:

<object>.create(target object) or
<object>.create(target object, length)

On length-oriented objects, you can determine the initial position at which the
transporter will be inserted on the target object.

7.5.4.2 Unloading a Transporter
Unloading of transporters is accomplished analogous to unloading containers, for
example, initiated by an exit control of the tracks.

Example 81: Unloading a Transporter
The content of the transporter will be transferred to the machine M2.

is
do
 @.cont.move(M2);
end;

Explanation: @ denotes the transporter in this case. You can access the part using
the method cont of the transporter (@.cont). The method cont returns a reference
to the part. You can then transfer the part to the machine M2 with …move(M2).

7.5.4.3 Driving Forward and Backward
Transporters often shuttle between objects. You need to change direction, so that
the transporter can move in the opposite direction of the connectors.

Syntax:

@.backwards:=true/false;

The attribute backwards returns true, if the direction of the transporter is back-
ward, and false, if the transporter is moving forward. You can set and get the value
of the attribute backwards.

168 7 Mobile Units

7.5.4.4 Stopping and Continuing
To stop and to continue after a certain time is the normal behavior of the trans-
porter. While the transporter waits, you can, e.g., load and unload the transporter
or recharge its battery. In SimTalk, you use the attribute stopped to stop the trans-
porter and make it continue on its way.
Syntax:

@.stopped:=true; --stop the transporter
@.stopped:=false; --the transporter drives again

Another possibility to stop the vehicle is to set the speed to 0. The vehicle then
slows down with the set acceleration and stops. You can start the vehicle again by
setting the speed to its original value. In this way, you can take into account accel-
eration and slow down in the simulation. To demonstrate these two options, you
can use the following example:

Example 82: Stopping Transporters
Create the following frame:

Make the following settings in the class transporter in the class library:

The source should produce only one transporter. This works with the following
setting:

7.5 The Transporter 169

The transporter should stop after 10 meters.

Variant 1: You insert a sensor in the holding position and trigger at this position
a method which stops the vehicle. The slow down is not taken into account. The
method stop should look as follows:

(SensorID : integer)
is
do
 @.stopped:=true;
end;

If you set the attribute stopped back to false, the transporter moves again.

Variant 2: The transporter slows down and stops at 10 meters. For this variant,
you need a second sensor (approx. 5.1 meters), on wich you start the slow down.
The method has in the second variant the following content:

(SensorID : integer)
is
do
 @.speed:=0;
end;

The transporter starts again, if you set the speed to a value greater than 0.

7.5.4.5 Drive after a Certain Time
Often the transporter stands for a while before it starts again, for example, for
loading and unloading. There are different ways for modeling the standing times
of the transporter. Basically, you need to start the transporter with the same man-
ner with which you have stopped it (either with the attribute stopped or speed).
Even if the transporter runs at the end of the track and stops by itself, you need to

170 7 Mobile Units

set the attribute stopped: = true to be able to start it later again (with change in di-
rection) without problems.

You can pause the transporter using the method <path>.startPause(<integer>).
After <integer> seconds ends the pause. If the transporter is paused, it stops and
drives again, if the pause ends.

Example: Transporter Starts after a Certain Time
The transporter from the example above should start again after 10 seconds. The
10 seconds should be taken into account with the method startPause.

Variant 1: transporter stopped with stopped:=true

(SensorID : integer)
is
do
 @.stopped:=true;
-- Start again after 10 seconds
 @.startPause(10);
 @.stopped:=false;
end;

Variant 2: transporter stopped with speed:=0
It is easiest to use a second sensor to start (and unloading) the transporter again
(e.g., SensorID 1 stop, SensorID 2 go). You should make sure that the vehicle, the
second sensor also triggers and not stops before. The method could look as follows:

(SensorID : integer)
is
do
 if sensorID = 1 then
 @.speed:=0;
 elseif sensorID=2 then
 --start after 10 seconds
 @.startPause(10);
 @.speed:=10;
 end;
end;

A second method to start the transporter after a certain time is to use the time of
the event controller in combination with a waituntil statement. Therefore, you take
at a certain time the simulation time of the event controller and add a certain
amount of time to it (e.g., 10 seconds). The simulation time (simTime) of the event
controller is observable. Then you can interrupt the processing of the method until
your set time is reached. An appropriate method could look as follows:

(SensorID : integer)
is

7.5 The Transporter 171

 simulTime:time;
do
 if sensorID = 1 then
 @.speed:=0;
 elseif sensorID=2 then
 simulTime:=
 eventController.simTime+num_to_time(10);
 --start again after 10 seconds
 waituntil eventController.simTime >=
 simulTime prio 1;
 @.speed:=10;
 end;
end;

Note: If no further event is there to process, the event controller stops the simula-
tion. You may have to make a small bypass, so the simulation continues running.
In the example above, for example, the following extension reaches (Source1 and
Drain).

Set the Source1 so that each second one part is produced. This will always gener-
ate new events and the simulation continues.

7.5.4.6 Start Delay Duration
A transporter stops automatically when it collides with a standing transporter on
the same track. Starts the first transporter again, then all collided transporters
automatically start again. To model this behavior more realistic, you can use the
attribute start delay duration (e.g., 0.5 seconds). The following transporter will
start with a lag of 0.5 seconds, after start of the transporter in front. You can set
the start delay duration on the dialog of the transporter (class library):

172 7 Mobile Units

Example 83: Start Delay Duration, Crossroads
You are to simulate a simple crossroads. The crossroads is regulated by traffic
lights. In this example, the transporter decides directly at the crossroads, if it
stops or goes on (without slow down). All transporters behind it drive against it.
Insert a traffic_light in the class library (duplicate a class SingleProc and rename
it). Create two icons in the class traffic_light (icon1: green, icon 2: red). Insert in
the class traffic_light a user-definded attribute “go” (data type boolean). Create a
new frame. Set the scaling factor to 0.25 (Frame window – Tools – Scaling fac-
tor). Set up the following frame:

In this example, we also show how the TwoLaneTrack works.

Settings: The sources S1, S2, and S3 create each transporter. The interval of the
creation should be randomly distributed. Make the following setting in the
source S1:

7.5 The Transporter 173

Make this setting also for S2, S3, and S4. Set the stream (first number in field in-
terval9 for each source to another value). The transporters move at a speed of 10
meters per second and accelerate with 10 m/s². To ensure that the transporter can
pass each other, set in the ways a track pitch of 4 meters.

Create at the crossroads sensors on the lanes. You can specify for each lane its
own sensors. You must uncheck for the other lane the checkboxes for the front and
rear. For every track, you need to specify two sensors. One sensor in lane A and
one sensor in lane B. All sensors will trigger the method transporter_control. In
case of road1, it could look as follows:

Initialize the simulation, so that two traffic lights show the icon 2 (red) (right
mouse button – next icon) and the attribute go is false; the other two traffic lights
show the green icon and the attribute go has the value true.

Traffic light control
For the traffic light control, we use in this example a method (traf-
fic_light_control) and a generator. The method switches the lights and the genera-
tor repeatedly calls the method with an interval of 1:30 minutes.
Method traffic_light_control:

174 7 Mobile Units

is
do
 --switchs the traffic light
 -- icon1 green, icon2 red
 if traffic_light1.go then
 traffic_light1.go:=false;
 traffic_light1.CurrIconNo:=2;
 traffic_light3.go:=false;
 traffic_light3.CurrIconNo:=2;

 traffic_light2.go:=true;
 traffic_light2.CurrIconNo:=1;
 traffic_light4.go:=true;
 traffic_light4.CurrIconNo:=1;
 else
 traffic_light1.go:=true;
 traffic_light1.CurrIconNo:=1;
 traffic_light3.go:=true;
 traffic_light3.CurrIconNo:=1;

 traffic_light2.go:=false;
 traffic_light2.CurrIconNo:=2;
 traffic_light4.go:=false;
 traffic_light4.CurrIconNo:=2;
 end;
end;

You can test the method by starting this repeatedly. The lights should “switch”.
The method is called by the generator. Open the generator by double-click and
make the following settings on the tab times:

Enter the method traffic_light_control in the field Interval on the tab Controls
(more in chapter information flow objects).

7.5 The Transporter 175

The transporter should stop when the relevant traffic light has the value go=false
and wait until go=true. Then the transporter should start again. If the lane A has
sensor number 1 and the lane B has sensor number 2, the method transporter_
control should look as follows:

(sensorID : integer)
is
do
 if ?=road1 and sensorID=1 then
 if traffic_light1.go=false then
 --traffic_light is red – stop
 @.stopped:=true;
 waituntil traffic_light1.go prio 1;
 @.stopped:=false;
 end;
 elseif ?=road1 and sensorID=2 then
 if traffic_light3.go=false then
 @.stopped:=true;
 waituntil traffic_light3.go prio 1;
 @.stopped:=false;
 end;
 elseif ?=road2 and sensorID=1 then
 if traffic_light2.go=false then
 @.stopped:=true;
 waituntil traffic_light2.go prio 1;
 @.stopped:=false;
 end;
 elseif ?=road2 and sensorID=2 then
 if traffic_light4.go=false then
 @.stopped:=true;
 waituntil traffic_light4.go prio 1;
 @.stopped:=false;
 end;
 end;
end;

Change the start delay duration in the class transporter (class library) to 0.5 sec-
onds and watch what happens.

176 7 Mobile Units

Note:
If the transporter does not stop exactly on the line of the sensor, then the reference
point of the vehicle is in the wrong position. The reference point is in the default
icon in the middle of the symbol. If the transporter is to stop exactly on the line,
then you need to set the reference point to the right edge of the icon.

7.5.4.7 Important Methods and Attributes of the Transporter

Method/attribute Description

<MU-path>.startPause;
<MU-path>.startPause
(<time>);

The method startPause immediately
pauses the Transporter and sets the
attribute pause to the value true.
When a parameter is passed (integer
greater than 0), it determines after
which time (in seconds) the trans-
porter changed back to the non-paused
state.

<MU-
path>.startPauseIn
(<time>)

Pauses the transporter after the pe-
riod defined in <time> has passed.

<MU-path>.collided; Collided returns true if the trans-
porter is collided with another
transporter.

<MU-path>.XDim;
<MU-path>.YDim;

Sets/gets the dimension of the matrix
load bay

<MU-path>.speed; Specifies the speed with which the
transporter moves on the track. The
speed must be equal to or greater
than 0. If you set the speed to 0,
then the transporter stops.

<MU-
path>.destination;

Sets/gets the destination of the
transporter

The Transporter also provides a number of methods and properties, which deal
with the battery operation and related problems.

Example 84: Portal Loader Parallel Processing
You are to simulate a portal loader which loads two machines. The machines si-
multaneously process the same kind of part. The loader picks up parts at a place
at the beginning of the track parts (capacity one part) and distributes them to the
machines. If both machines are loaded and working, the loader waits empty be-
tween the two machines. When the first machine has finished processing, the
loader drives to the machine and unloads it. A time of 5 seconds for the handling
by the loader is considered (the movement in the z-axis is not simulated). Create
the following Frame:

7.5 The Transporter 177

Settings: The source produces parts at an interval of 3:30 minutes. The processing
time of Machine1 is 7:50 minutes, of Machine2 7:40 minutes. Both machines have
an availability of 90% and an MTTR of 45 minutes. The track has a length of 25
meters; the transporter has a length of 1.5 meters, a speed of 1 m/s and a capacity
of one part. The capacity of the object in is one part. Insert the following sensors
into the track (as the drive_control):

The global variables machine1_finished and machine2_finished have the data
type boolean and the initial value false.

1. Insert the transporter: The init method creates the transporter. Prior to that, all
MUs will be destroyed.

Method init:

is
do
 deleteMovables;
 .MUs.Transporter.create(track,12);
 track.cont.destination:=in;
 track.cont.backwards:=true;
end;

2. Program the driving control: The transporter will be addressed for each trip.
For this, the attribute destination is used. Destinations are assigned to certain
sensor IDs. Once the transporter arrives at the destination (target sensor ID), the

178 7 Mobile Units

transporter stops. The method drive_control needs a parameter for the sensor_ID.
First, the transporter is to stop at the sensor_ID 1.

Method drive_control:

(sensorID : integer)
is
do
 if sensorID=1 and (@.destination=in
 or @.destination=out) then
 @.stopped:=true;
 end;
end;

3. Program the method for loading the unfinished part: The method load_blank
uses the transporter as the parameter and should have the following functionality:
The method waits until the place “in” is occupied. If Machine1 or Machine2 is
empty, the transporter loads the part and drives to the empty machine. If both ma-
chines are occupied, the transporter drives to the waiting position. The handling
time is taken into account by pausing the transporter.

Method load_blank:

(transporter:object)
is
do
 --search an empty and operational machine
 --wait for an unfinished part
 waituntil in.occupied prio 1;
 if machine1.empty and machine1.operational then
 in.cont.move(transporter);
 transporter.destination:=machine1;
 elseif machine2.empty and machine2.operational
 then
 in.cont.move(transporter);
 transporter.destination:=machine2;
 else
 transporter.destination:=waiting_position;

 end;
 --drive forward
 transporter.backwards:=false;
 -- 5 seconds handling time
 transporter.startPause(5);
 transporter.stopped:=false;
end;

7.5 The Transporter 179

Call within the method drive_control: If a loaded transporter arrives at sensor 1,
first the part is transferred to the drain “out”, then the method load_blank is called.

Method drive_control:

(sensorID : integer)
is
do
 if sensorID=1 and (@.destination=in or
 @.destination=out) then
 @.stopped:=true;
 if @.empty then
 load_blank(@);
 else
 -- move parts to the drain
 @.cont.move(out);
 --load new parts
 load_blank(@);
 end;
 end;
end;

4. Program the method load: The loaded transporter is to stop at the machine and
load the part onto the machine (if the machine is operational). Thereafter, the
transporter moves to the waiting position. If the transporter is empty, the trans-
porter unloads the machine and drives to the drain “out”. The method load re-
quires three parameters: machine, transporter, and the direction to the waiting
position (backwards true/false). The method load could look like this:

(transporter:object;machine:object;
directionWaitingPosition:boolean)
is
do
 transporter.stopped:=true;
 if transporter.occupied then
 -- transporter is loaded
 waituntil machine.operational prio 1;
 transporter.cont.move(machine);
 transporter.destination:=waiting_position;
 transporter.backwards:=
 directionWaitingPosition;
 else
 -- transporter is empty
 machine.cont.move(transporter);
 transporter.destination:=out;
 transporter.backwards:=true;
 end;

180 7 Mobile Units

 -- start after 5 seconds
 transporter.startPause(5);
 transporter.stopped:=false;
end;

5. Program the method call_transporter: If the machines are ready, they must send
a signal. The class SingleProc provides the method ready that returns true if the sta-
tion has finished processing parts. This value, however, is not observable. One solu-
tion would be the following: If the machine is ready, the processed part then triggers
a control that sets a global variable to true (e.g., machine1_finished). Global vari-
ables are observable and an appropriate action can be triggered. Within the frame,
the ready variables consist of the machine name and “_finished”. A universal
method for registering the finished machines could look like this:

Method call_transporter:

is
do
 -- ? object, that calls
 str_to_obj(?.name+"_finished"):=true;
end;

str_to_object converts a string (object name) to an object reference. Assign the
method call_transporter to the exit control (front) of Machine1 and Machine2.

6. Complete the method drive_control: Within the drive_control, the method load
must be called at the positions of Machine1 and Machine2. A control for the wait-
ing position is established at the position of the waiting position: If Machine1 or
Machine2 is operational and empty, the transporter drives into the station and de-
livers a new part. Otherwise, the transporter waits until Machine1 or Machine2 is
ready. The transporter might change its direction, set a new destination, and set
the finished variable of the machine to false. Finally, the transporter drives to the
machine. The completed method drive_control should look as follows:

(sensorID : integer)
is
do
 if sensorID=1 and (@.destination=in or
 @.destination=out)
 then
 @.stopped:=true;
 if @.empty then
 load_blank(@);
 else
 -- move parts to the drain
 @.cont.move(out);
 -- load new parts

7.5 The Transporter 181

 load_blank(@);
 end;
 elseif sensorID=2 and @.destination = machine1
 then
 load(@,machine1,false);
 elseif sensorID=4 and @.destination = machine2
 then
 load(@,machine2,true);
 elseif sensorID=3 and @.destination =
 waiting_position then
 stopped:=true;
 --new part if one machine is empty and
 --operational
 if (machine1.empty and machine1.operational) or
 (machine2.empty and machine2.operational)
 then
 @.destination:=in;
 @.backwards:=true;
 else
 -- wait until one machine has finished
 waituntil machine1_finished or
 machine2_finished
 prio 1;
 if machine1_finished then
 @.destination:=machine1;
 @.backwards:=true;
 machine1_finished:=false;
 elseif machine2_finished then
 @.destination:=machine2;
 @.backwards:=false;
 machine2_finished:=false;
 end;
 end;
 @.stopped:=false;
 end;
end;

	Mobile Units
	Standard Methods of Mobile Units
	Create
	MU-Related Attributes and Methods

	Length, Width, and Booking Point
	The Entity
	The Container
	Attributes of the Container
	Loading Containers
	Unloading Containers

	The Transporter
	Basic Behavior
	Attributes of the Transporter
	Routing
	Methods and Attributes of the Transporter

