
S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 85 – 116, 2010.
© Springer Berlin Heidelberg 2010

5 Programming with SimTalk

The basic behavior of the Plant Simulation objects often in practice is not suffi-
cient to generate realistic system models. For extending of the standard features of
the objects, Plant Simulation provides the programming language SimTalk. With
it you modify the basic behavior of individual objects. SimTalk can be divided
into two parts:

1. Control structures and language constructs (conditions, loops…).
2. Standard methods of the material and information flow objects. They are

built-in and they form the basic functionality, which you can use.

You develop SimTalk programs in an instance of the information flow object Me-
thod.

5.1 The Object Method

5.1.1 Introductory Example
Example 35: Stock Removal
We want to simulate a small production with a store. The capacity of the store is
100 parts. The workplace produces one part every minute (the source delivers …).
Name the Frame “storage”.

You can create controls with Method objects, which are then called and started
from the basic objects using their names.

You find the Method in the class library in the folder InformationFlow. Drag a
method object to the Frame. A double-click on the icon opens the method.

86 5 Programming with SimTalk

The methods (functions) have always a body:

is
do
 -- Statements
end;

Declare variables between “is and do”, enter your source code between “do and

end”. First, you have to turn off inheritance. Click on the icon in the editor,
you have to formulate the instructions in SimTalk (call your method “stockRe-
moval”!).

Confirm your changes with . You now have to assign the method to an object.
For this purpose, each object has one or more sensors. When an MU pass through
a sensor, the relevant method is triggered. Double-click on STORE – CONTROLS –
ENTRANCE; select the correct method, ready we are!

5.2 The Method Editor 87

Now start the simulation. If you were successful, then there is no jam. The Store will
verify the quantity for each entry. If it is 99, the store will be emptied (a simple solu-
tion).

5.2 The Method Editor

Double-clicking a method object opens an editor. You will find a number of
functions in the editor, which facilitates your work while programming. If you
cannot enter your source code into the method editor, inheritance is still turned
on (see above).

5.2.1 Line Numbers, Entering Text
You can display line numbers with the command: VIEW – DISPLAY LINE
NUMBERS. The following rules apply for entering text:

• Double-clicking selects a word.
• Clicking three times selects a row.
• Ctrl + A selects everything.
• Copy does not work with the right mouse button (until version 9). Use Ctrl

+ C to copy and Ctrl + V to insert text or use the menu commands Edit -
Copy, etc.

• Use Ctrl + Z to undo the last change (or Edit Undo)…
• Move also works by dragging with the mouse.

5.2.2 Bookmarks
For faster navigation, you can set bookmarks in your code. The bookmarks are

displayed in red. To insert a bookmark, select any text and click:

Bookmark functions:

Icon Description

 Deletes all bookmarks in the method.

 The cursor moves to the previous bookmark.

 The cursor moves to the next bookmark…

88 5 Programming with SimTalk

5.2.3 Code Completion
The editor supports automatic code completion. If there is only one possibility of
completion, Plant Simulation shows the attribute, the method, or variable as a light
blue label. You can accept the suggestion with Ctrl + space bar.

Starting from an object you can display all possible completions. Simply press
CTRL + SPACE. In the list you can scroll with the direction buttons, an entry will
be accepted with Enter.

5.2.4 Information About Attributes and Methods
You can always get information about the built-in attributes and methods of an ob-
ject by Show Attributes and Methods in the context menu of an object.

In the table, all methods and attributes are shown (even those you have defined).

The column signature allows you to deduce whether it is a method or an attribute
and which data you need to pass or what type is returned. If the column only
shows the data type, the entry then is an attribute.

5.2 The Method Editor 89

Example: Show the attributes and methods of the store.

Recovery time is an attribute; the data is not in parentheses. To set the recovery
time, you have to type:

Store.recoveryTime:=120;

Set the value of an attribute with „:=”.

PE is a method. The method PE expects two arguments of data-type integer and
returns an object. PE allows you to access a particular place of the store. You will
call the method with parentheses:

Store.PE(1,1);

The row mirrorX does not contain a value in the column signature. MirrorX flips
the icon on the x-axis. It is a method which has no arguments and returns no value.
You will call this method without parentheses.

Store. mirrorX;

The parentheses in the column signature indicate that startPause is a method. The
data-type is given within square brackets. This means that the argument is op-
tional. This results in two possibilities of the call:

Store.startPause; -- no time limit
Store.startPause(120); -- pause for 120 seconds

Note:
Some attributes are read-only. You can assign no value to these attributes. Online
help describes whether an attribute is read-only.

5.2.5 Templates
For a number of cases, Plant Simulation includes templates, which you can in-
sert into your source code, or which you can use as a starting point for develop-
ing controls.

You reach Templates via the menu TEMPLATE:

90 5 Programming with SimTalk

In the method editor click into the row in which the snippet should be inserted.
Then click, e.g., TEMPLATE – IF … THEN … Under SELECT TEMPLATE you find
more templates. Watch out! Most templates in this selection completely replace
your source code. You can use the Tab key for moving through the template (be-
tween the areas in angle brackets).

5.2.6 The Debugger
The debugger helps you to correct your methods. Using the F11 key, you can
quickly change between editor and debugger (or RUN – DEBUG).

Example: Open the method from the example above, place the cursor in the text,
and then press F11.

Using F11 you can, for example, move through your method stepwise and see
what happens. If the method is completed, the method will open again in the edi-
tor. If an error occurs during the simulation, the debugger automatically opens and
displays error messages.

Note:
If you have to make changes in the source code in the debugger, then you can
save the changes by pressing the F7 key.

5.3 SimTalk

SimTalk does not differentiate between upper- and lowercasing in names and
commands. At the end of a statement, you need to type a semicolon. Blocks are
bounded by an “end” (no curly brackets as in Java or C++). If you forget the
“end”, Plant Simulation always looks for it at the end of the method.

5.3 SimTalk 91

5.3.1 Names
Plant Simulation identifies all objects and local variables using their name or their
path. You can freely select new names with the exception of a few key words. The
following rules apply:

• The name must start with a letter. Letters, numbers, or the underscore “_”
may follow.

• Special characters are not allowed.
• There is no distinction between capital and lowercase letters.
• Names of key words and names of the built-in functions are not allowed.

For methods some names are reserved:

• Reset: Will be executed when clicking Reset in the Eventcontroller.
• Init: Will be executed when clicking Init in the Eventcontroller.
• EndSim: End of simulation (reaching the end time for simulation).

Generally, key words from SimTalk are prohibited names (all terms in SimTalk,
which are highlighted in blue).

5.3.2 Anonymous Identifiers
SimTalk uses anonymous identifiers as wild cards. When running the method,
these anonymous identifiers will be replaced by real object references.

root
The anonymous identifier “root” always addresses the top of the Frame hierarchy.
Starting from this Frame, you can access underlying elements.

Example 36: root
First, open the console in Plant Simulation:
VIEW – TOOLBARS AND DOCKING WINDOWS – CONSOLE

92 5 Programming with SimTalk

Create a new method. Use the method from the introduction example.
Complete the method as follows:

is
do
 -- writes the root name in the console
 print root.name;
end;

The console will show the name of the Frame in which the method was placed.

self
Self returns a reference to the current object (itself).

Example 37: Anonymous Identifier self
is
do
 -- The name of the current method will be
 -- written to the console
 print self.name;
end;

current
Current is a reference to the current Frame.

?
? denotes the object that has called the method (e.g., the object in which the me-
thod is entered as an exit control). The question mark allows a method to be used
without modification by several objects.

@
@ refers to the MU which has triggered the method (so you can access, e.g., on all
outgoing MUs).

basis
Basis denotes the class library. You can only use it in comparisons.

5.3.3 Paths
When objects are not located in the same frame or folder (name space), a path has
to be put in front of the name. Only the path allows clearly identifying an object,

5.3 SimTalk 93

so that it can be reached. A path is composed of names and periods (which serve
as a separator). Paths are divided into two kinds of paths:

• Absolute paths
• Relative paths

5.3.3.1 Absolute Path
The starting point of the absolute path is the root of the class li-
brary. From here on objects are addressed to the “bottom”. An
absolute path always starts with a period.

Example:

Modelle.Frame.workplace_1

5.3.3.2 Relative Path
A relative path starts within the frame, within which the method is located (with-
out the first period).

Example:

workingplace_1

Workingplace_1 is located in the same Frame as the method.

controls.Method1

This address refers to an object with the name “Method1” in a subframe “con-
trols”.

5.3.3.3 Name Scope
All objects, which are located in the same frame or folder, form a name scope.
Within a name scope identical names are not allowed. In other words, names in a
name scope may occur only once, all objects must have different names. In differ-
ent Frames identical names may occur. Their path distinguishes the objects. If you
try to assign a name twice, Plant Simulation shows an error message:

94 5 Programming with SimTalk

5.3.4 Comments
Comments explain your source code. Plant Simulation distinguishes between two
types of comments:

-- Comment until the end of line
/* Beginning of a comment, which
 extends over several lines
*/

Plant Simulation displays comments in green. We recommend to comment your
source code. In this comment, you should enter pertinent information about your
method. Plant Simulation provides a template for this purpose: TEMPLATE –
SELECT TEMPLATE …

You can find the header comment in CODE SNIPPETS.

The header comment (started with “--” in front of the keyword is) is shown as a
Tooltip in the Frame, when you place the mouse on the method.

5.4 Variables and Data Types 95

5.4 Variables and Data Types

5.4.1 Variables

A variable is a named location in memory (a place where the program stores in-
formation). Variables should have meaningful symbolic names. You first have to
declare a variable (introduce its name) before you can use it. Plant Simulation dis-
tinguishes between local and global variables. A local variable can only be ac-
cessed within the respective method. This variable is unreachable for other meth-
ods. Global variables are visible for all methods (in every Frame). You can set
values and get values from all methods. This way, you can organize data exchange
between the components.

5.4.1.1 Local Variables
Local variables are declared between “is” and “do”. A declaration consists of the
name of the local variable, a colon, and a data type. The keyword “do” follows af-
ter the last declaration.

Example:

is
 Name : Type;
do
-- statements
end;

For instance:

is
 stock_in_store : integer;
do
… -- statements
end;

The declaration reserves an address in the memory and you define access on it by
a name. For this reason, the operating system must know what you want to save.
A true/false value requires less memory (1 bit) as a floating-point number with
double precision (min. 32 bit). The information about the memory size takes place
through the so-called data types. The data type determines the maximum value
range of variables and regulates the permissible operations.

A value is assigned to a variable with :=.

Example 38: Declarating Variables
The circumference of a circle is to be calculated from a radius and Pi. Pi is de-
fined in Plant Simulation and can be retrieved via Pi. The result is written on the
console with the command print.

96 5 Programming with SimTalk

is
 radius :integer; --integer number
 circum :real; --floating point number
do
 radius:=200;
 circum:= radius*PI;
 print circum;
end;

SimTalk provides the following data types: acceleration, any, boolean, date, date-
time, integer, length, list, money, object, queue, real, speed, stack, string, table,
time, timeSequence, and weight.

Name Range of values

acceleration real, m/s²

any the data type will be determined only after
the assignment of the value (like VB: variant)

boolean TRUE or FALSE

integer –2.147.483.648 bis 2.147.483.647

real floating-point numbers

string character (each letter, numbers)

object Reference to an object (except comment)

table local variable with the behavior of a table

list see above

stack see above

queue see above

money …

Length as real, the value is interpreted as meters

weight see above, kg

speed real m/s

time real sec.; output: <hh>:<mm>:<ss.sss>

date, datetime date from 1.1.1970 to 31.12.2038

Data types can be converted to a limited extent. Plant Simulation initializes all lo-
cal variables automatically. The value depends on the data type:

5.4 Variables and Data Types 97

Type Initialization

boolean FALSE

integer 0

real 0

string "" (empty string)

object Void

table Void

list Void

stack Void

queue Void

money 0

length 0.0

weight 0.0

speed 0.0

time 0:00:00

date 1.1.1970 0:00:00

If you want to define another start value in the simulation, you can, for example,
use the init method.

Example 39: Global Variables
You need two methods in a Frame (Method1 and Method2):

In Method2, define a variable of type integer with the name “number”. Assign the
value 11 to the variable.

Method 2:

is
 number:integer;
do
 number:=11;
end;

In Method1, you now try to read the variable “number” and to write the value of
“number” to the console.

Method1:

is
do

98 5 Programming with SimTalk

 print number;
end;

If you run Method1 (F5 or Run – Run), you get an error. It opens the debugger
and the faulty call is highlighted. The error description is displayed in the status
bar of the debugger:

Method1 cannot access a variable “number” of Method2.

If you need the data in several methods, you have to define a global variable (vari-
able object from the folder information flow) to exchange data. All
methods can set and get the value of these variables. The global variable is defined
as an object in the class library and is addressed just like the other objects by name
and path. You have to determine the data type of the variable and can specify a
start value.

Example 40: Global Variable 2
Insert a global variable into the Frame above. Rename the variable “number”,
data type integer (start value remains 0).

Change Method2 like this: Delete the variable declaration of “count”, leave the
rest unchanged:

is
do
 count:=11;
end;

Now start Method2 (the value of the global variable would have to change), and
then Method1. The value of the global variable is displayed in the console.

Global variables are reset to the start value when you press the RESET button, if
you select the option INITIAL VALUE and specify a start value. In the previous ex-
ample, the value will be set to 0 when you enter the following setting:

5.5 Operators 99

5.5 Operators
By a combination of constants and variables, you can define complex expressions
(e.g., calculations). Operators are used for concatenating expressions. Plant Simu-
lation differentiates between:

• Mathematical operators
• Logical (relational) operators
• Assignment operators

Logical Operators are, for example, needed for comparisons.

5.5.1 Mathematical Operators
SimTalk recognizes the following mathematical operators:

– Algebraic sign, subtraction
* Multiplication
/ Division
// Integer division
\\ Modulo (remainder of integer division)
+ Addition/concatenation of strings

The integer division, which is defined for the data-type Integer, always delivers a
whole number. Any decimal places are suppressed. When calculating data for the
data type real, the result is output up to seven valid digits (eighth digit rounded,
working with decimal power).

5.5.2 Logical (Relational) Operators

Operator Function Result

AND logical AND TRUE, if all expressions are TRUE

OR logical OR TRUE,if at least one expression is
TRUE

NOT Not Invert the boolean-value

< Less than

<= Less than or
equal

100 5 Programming with SimTalk

> Greater than

>= Greater than
or equal

= equal

/= unequal

A logical expression is always interpreted from left to right. The evaluation is
completed once the value of an expression is established.

Example 41: Logical Operators
Simple method (+ start the console)

is
 local
 num1:integer;
 num 2:integer;
 num 3:integer;
 val1:boolean;
 val2:boolean;
 val3:boolean;
do
 num1:=10;
 num2:=23;
 num3:=num1*num2;
 val1:=num1<num2;
 val2:=num1<num2;
 val3:=val1 AND val2;
 print val3;
end;

Try out the operators. Let the console show different variables (Save + F5).

5.5.3 Assignments
The operator “: =” assigns a new value to a variable. First, the expression to the
right of the operator is calculated. If the value and the variable have the same data
type, then the value is assigned to the variable.

Example 42: Variable – Value Assignment
is
 num:integer;
do
 num:=1;

5.5 Operators 101

 num:=num+1;
-- first num+1, then assignment to num
 print num; -- print the new value of num
end;

If the data types are different, the values have to be converted. Plant Simulation
automatically converts real into integer and vice versa. For other types of data,
you need to use type conversion functions.

Example 43: Type Conversion 1
is
 num:integer;
 text:string;
 res:integer;
do
 num:=10;
 text:="20";
 res:=num*text;
 print res;
end;

Run time error:

The most important type conversion functions are:

Syntax Return value data type

bool_to_num(<boolean>) real

num_to_bool(<integer>) boolean

str_to_bool(<string>) boolean

str_to_date(<string>) time

str_to_datetime(<string>) datetime

str_to_length(<string>) length

str_to_num(<string>) real

str_to_obj(<string>) object

102 5 Programming with SimTalk

str_to_speed(<string>) speed

str_to_time(<string>) time

str_to_weight(<string>) weight

To_str(<any>, …) string

In the example above, a conversion from string to integer is required. You can re-
alize a type conversion of text with the help of the function str_to_num (…). The
method has the following syntax:

str_to_num (text)

Expand the example:

is
 num:integer;
 text:string;
 res:integer;
do
 nun:=10;
 text:="20";
 res:=num*str_to_num(text);
 print res;
end;

5.6 Branching

After testing a condition, the branch
decides which of the following instruc-
tions should be executed. If the con-
dition is met, the if-branch (TRUE) will
be executed. If the condition is not met,
the else branch (False) will be executed.

The general syntax is as follows:

if condition then
 instruction1;
else
 instruction2;
end;

5.6 Branching 103

Example 44: Branch 1
You only need one method for the example. We want to query if value1 is less than
10. If yes, then a message “If branch is executing” should be displayed in the con-
sole, otherwise “Else branch is executing”

is
 local
 value1:integer;
do
 value1:=12;
 if value1< 10 then
 print " If branch is executing";
 else
 print " Else branch is executing";
 end;
 print " Here we continue normally";
end;

Try different queries!

After passing through the branch, the execution of the code continues. If more than
one condition is to be checked, the conditions can be nested. The nesting depth is
not limited. In this case, a new condition begins after the if-branch with “elseif”.

Example 45: Branch 2
Extension above:

is
 local
 value1:integer;
do
 value1:=7;
 if value1= 10 then
 print " value1 is 10.";
 elseif value1=9 then
 print " value1 is 9";
 elseif value1=8 then
 print " value1 is 8";
 elseif value1=7 then
 print " value1 is 7";
 -- and so on …
 end;
 print "Here we continue normally. ";
end;

104 5 Programming with SimTalk

If you have to check many conditions, this construction gets complicated quickly.
You can then use so-called case differentiations.

5.7 Case Differentiation

Case differentiation in SimTalk has the following syntax:

inspect <expression>
 WHEN <constant_1> THEN <instruction 1>
 WHEN <constant 2> THEN <instruction 2>
-- …
end;

Example 46: Case Differentiation
is
 local
 num:integer;
do
 num:=2;
 inspect num
 when 1 then print "Num is 1.";
 when 2 then print "Num is 2.";
 when 3 then print "Num is 3.";

5.8 Loops 105

 -- and so on
 else
 print "Not 1, not 2, not 3 !";
 end;
end;

5.8 Loops

5.8.1 Conditional Loops

5.8.1.1 Header-Controlled Loops

Before passing through the loop instruc-
tions, Plant Simulation checks whether a
condition is met or not. The loop is re-
peated if the validation of the condition
returns true. If the condition before the
first loop is not met, the loop instruc-
tions will not be executed.

Make sure that the loop condition is
false some of the time (e.g., increase in
the value of a variable, until their value
exceeds a certain limit).

Endless loops are terminated with
the key combination CTR + ALT +
SHIFT.

Syntax:

while <condition> loop
<instructions>
end;

Example 47: while-Loop
Loop 1, Loop 2 to Loop 10 should be written to the console.

is
 i:integer;
do
 i:=1;
 while i<10 loop
 print "Loop run number:" + to_str(i);

106 5 Programming with SimTalk

 i:=i+1;
 end;
end;

5.8.1.2 Footer-Controlled Loops

The condition is checked after the exe-
cution of the loop statement. If the
condition for a termination of the loop
is not met, the loop statement will be
executed one more time. The loop
statement is executed at least once.

Syntax:

repeat
 -- instructions
until <break condition is met>;

Example 48: repeat-Loop
is
 i:integer;
do
 i:=1;
 repeat
 print "Loop number:" + to_str(i);
 i:=i+1;
 until i>5;
end;

5.8 Loops 107

5.8.2 For-Loop
If you know exactly how often the loop is to be iterated, you can use the for-loop
or the from-loop. It needs a running variable to control the number of runs of the
loop. The variable is increased or decreased during each run starting from an ini-
tial value by a certain value. When a predetermined end value is reached, the loop
will be terminated.

Syntax1:

from < Initialization > until <condition> loop
 <instructions>
end;

Syntax 2:

for < Initialization > to
<end value> loop
 -- loop instructions
next;

Example 49: from-Loop
Outputs will be shown in the console (loop 1, loop 2, and so on)

is
 local
 i:integer;
do
 from i:=1; until i=10 loop
 print "loop " + to_str(i);
 i:=i+1;
 end;
end;

Example 50: for-Loop
A loop should be executed 5 times:

is
 i:integer;
do
 for i:=1 to 5 loop
 print "loop " + to_str(i);
 next;
end;

108 5 Programming with SimTalk

You can count in the loop backwards with “downto” instead of “to”.

Example 51: for-Loop with downto
Similar to the previous example:

is
 i:integer;
do
 for i:=5 downto 1 loop
 print "loop " + to_str(i);
 next;
end;

5.9 Methods and Functions

A function is the definition of a sequence of statements, which are processed when
the function is called. There are functions in different variants:

Arguments are passed to some functions, but not to others. (Arguments are val-
ues, which must be passed to the function, so the function can meet its purpose.)
Some functions give back a value, others do not.

5.9.1 Passing Arguments

Arguments serve the purpose for passing data on during the function call (not just
a stock removal function call, for example, but at the same time the number of the
average stock removal per day is handed over by function call). The data type for
the given value must match the data type of the argument declared in the function.
The arguments have to be declared in the function. The declaration will be made
at the beginning of the method before “is” in parenthesis in the following format:

(name : type)

For example:

(Stock_removal : integer)

Within the method, the arguments can be used like local variables, with the caller
determining the initial values.

5.9 Methods and Functions 109

Example 52: Passing Arguments 1
The user is to enter the radius of a circle, and the size of the circumference is to be
displayed in the console. To enter the argument, you need a text box. This is called
by the function “prompt”. Using the method “prompt”, you can ask the user for
input. If you pass a string to the method “prompt”, then this string will be shown
as a command prompt:

Names: Frame: Programming, Method: Test, the type of the data to be read is
string, a type conversion is therefore necessary (str_to_num (identifier)).

Method Test:

is
 radius :string;
 circumference : real;
 val:real;
do
 -- prompt
 radius:=prompt("Radius");
 -- type conversion to real
 val:=str_to_num(radius);
 -- calculate circumference and display in
 --the console
 circumference:=val*2*PI;
 print circumference;
end;

Open the console to see the result.

5.9.2 Passing Several Arguments at the Same Time

Within the definition, a semicolon separates several arguments. When you call the
function, you have to pass the same number of arguments that you have defined in
the function.

110 5 Programming with SimTalk

Example 53: Passing Arguments 2
For two given numbers, the larger number is to be returned after the call of the
function. Name the function getMax (number1, number2).

(number1:integer;number2:integer)
–- passing arguments
:integer –-type of the return value
is
do
 if number1 >= number2 then
 result:=number1; -- return value
 else
 result:=number2;
 end;
end;

Call the function (from another method):

is
do
 print getMax(85,23);
end;

5.9.3 Result of a Function
Methods can return back results (usually a method that returns a value is called a
function). For this purpose, you have to enter a colon and the type of the return
value before “is”. The result of the function has to be assigned within the function
to the automatically declared local variable “result”. Another possibility is to use
“return”. Return passes program control back to the caller. You can also pass a
value on this occasion. After processing, the function will return the content of the
variable “return” to the caller (the return value will replace the function call).

Example 54: Results of a Function
A function “circumference” is to be written. The radius will be passed to the func-
tion and the function returns the circumference.
Function circumference:

(radius:real) -- argument radius (2)
:real –- data type of the return value
is
do
result:=radius*2*PI; -- (3)
end;

Method Test (in the same Frame):

5.9 Methods and Functions 111

is
 res:real;
do
 res:= circumference (125); -- (1)
 print res;
end;

Explanation:

(1) A value is given when calling the function.
(2) The function declares the arguments.
(3) The function inserted the value passed at the designated position.

If you want to return more than one result from one function, result will not work.
One solution is to define arguments as a reference. Usually the program makes
copies of the data, and the function continues to work with the copies (except if
you are passing objects; objects will always be passed as reference to the object).
The original values of simple data types remain unchanged in the calling method.
If arguments are defined as reference, you can change the values in the calling me-
thod by the called function.

The definition is accomplished with

(byref name:data_type)

5.9.4 Predefined SimTalk Functions

SimTalk has a range of ready functions.

5.9.4.1 Functions for Manipulating Strings

Function Description

copy(<string>,<integer1>,
<integer2>);

The function "copy" copies a num-
ber of characters (integer2) from
a string starting from the posi-
tion integer1. The first charac-
ter has the position 0.

incl(<string1>,
<string2>,<integer>);

The function "incl" inserts a
string2 into the string1 before
the position integer. The new
string is returned.

omit
(<string>,<integer1>,
<integer2>);

"omit" copies the string and de-
letes the substring within it
from starting position integer1
with number (integer2) charac-
ters. The new string will be re-
turned.

112 5 Programming with SimTalk

pos(<string1>,<string2>) "pos" shows the position within
string2, in which the string1 oc-
curs in for the first time. If
the string1 is not contained in
string2, 0 is returned, otherwise
the position as integer.

strlen(<string>) "strlen" returns the length of
the string passed.

Example 51: Functions for Manipulating Strings
The file extension of a filename is to be identified and re-turned. The dot will be
searched for first. Then, starting from a position after the dot all characters until
the end of the string will be copied. The result will be displayed in the console.

is
 filename, extension:string;
 length, posPoint:integer;
do
 filename:="samplefile.spp";
 -- search point
 posPoint:=pos(".",filename);
 -- find out the length of the text
 length:=strlen(filename);
 -- copy the substring
 extension:=copy(filename,posPoint+1,length-
posPoint);
 -- display in the console
 print extension;
end;

5.9.4.2 Mathematical Functions
Function Description

sqrt(x)

Square root. The argument x has to be greater
than or equal to 0.

abs(x) Absolute amount of x.

round(x) Rounds x to the nearest whole number (on or
off).

round(x,y) Rounds x on y digits.

floor(x) Nearest whole number less than or equal to x

ceil(x) Nearest whole number greater than or equal to x

5.9 Methods and Functions 113

min(x,y) Minimum

max(x,y) Maximum

pow(x,y) xy

…

5.9.5 Method Call
Methods are called by their names. During the simulation, methods have to be
called often in connection with certain events.

5.9.5.1 Sensors
Most objects have sensors that are triggered when an MU enters the object and ex-
its again. Length-oriented objects, such as the Line, have separate sensors for
moving forward or in reverse.

Example 56: Methodcalls by Sensors
Parts manufactured by a machine are to be counted using a global variable. Cre-
ate the following simple Frame:

“COUNT_PARTS” is a global variable of type integer. The method “count”
should look like this:

--
--| increases the global variable "COUNT_PARTS" with
--| each call by one
--
-
is
do
 COUNT_PARTS:= COUNT_PARTS +1;
end;

The method should now be called if a part is exiting the machine. Open the dialog
of the SingleProc and select the tab CONTROLS.

114 5 Programming with SimTalk

The main sensors are entrance and exit control. The setup control is triggered when
a setup process starts and ends. You can activate the sensor with the front or the rear.
The choice depends on the practical case. The rear exit control is triggered when the
part has already left the object. For counting, this is the right choice. If you would
trigger the control with the front, the MU will still be on the object. If the subsequent
object is faulty or is still occupied, the front sensor is triggered twice (once when try-
ing to transfer, the second time when transfer is done). If you select “front” in the
exit control, then you need to trigger the transfer by SimTalk, even if a connector
leads to the next object (e.g., @.move or @.move(successor)). If you press the F2
key in a field in which a method is registered, Plant Simulation will open the method
editor and will load the relevant method.

5.9.5.2 Other Events for Calling Methods
For calling methods, you can use other events. These events can be found in the
object dialogs under the command TOOLS – SELECT CONTROLS …

The failure control, for example, is called if a failure of the object begins and ends
(when the value of the property failure changes).

Example 57: Fail Control
You are to simulate the following part of a production. On a multilane, non-
accumulating line parts are transferred and transported by 3 meters. Processing
on each lane by a separate machine follows. If a machine fails, the entire line
must be stopped (all lanes have to be stopped).Create the following Frame:

5.9 Methods and Functions 115

Settings: Source1 to Source3: interval 1 second, not blocking, Conveyors: 12 m,
0.5 m/s, SingleProc: each 1 second processing time, Failures: 90% availability,
10 minutes MTTR, Drain: 0 seconds processing time.

One way to stop all lanes by one machine failure could be: The method “fail-
control” checks whether a machine is failed. If at least one machine is failed, the
speed of all three lines is set to 0. If no machine is failed, the speed is set to the
value that is stored in the global variable “v_speed”.

Method failcontrol:

is
do
 if SingleProc1.failed or
 SingleProc2.failed or
 SingleProc3.failed then
 Line1.speed:=0;
 Line2.speed:=0;
 Line3.speed:=0;
 else
 Line1.speed:=speed;
 Line2.speed:=speed;
 Line3.speed:=speed;
 end;
end;

Now the method “failcontrol” must be called whenever a failure occurs, or when
the failure ends. Click in the dialog of the SingleProc objects TOOLS – SELECT
CONTROLS: Enter the method “failcontrol” as the failure control.

Repeat this for all three machines. The result can very well be proven statistically.
The individual machines can in theory work 90% of the time. If the failures of the
other machines lead to no more parts being transported by the conveyor, then the
machines remain 20% of their processing time without parts in addition to their
own failures. That means the machines can on average operate only 70% of the
time. Run the simulation for a while (for at least 2 days). Then click the tab
STATISTICS in SingleProc1, 2, or 3.

5.9.5.3 Method Call After a Certain Timeout
You can call SimTalk methods after a certain timeout. This can be useful if you
need to trigger calls after an interval referred to an event.

116 5 Programming with SimTalk

Example 58: Ref-Call
In this simulation, the machine should send a status message (ready) 10 seconds
before completion of a part (e.g., to inform a loading device). The message should
be shown first as output in the console. Create the following simple frame:

Settings: Source interval 2 minutes, SingleProc 2 minutes processing time, inCon-
trol as entrance control SingleProc. The method callLoader writes a short mes-
sage into the console. Method callLoader:

is
do
 print time_to_str(eventController.simTime) +
 " called loader";
end;

The call of the method callLoader should now take place 10 seconds before com-
pletion of the part on the SingleProc. If you use the entrance control to start the
timer, the method should be started after the processing time of SingleProc minus
10 seconds. For calling a method after a certain time period, you may use the
method <ref>.MethCall(<time>,[<parameter>]) in Plant Simulation. You cannot
address the method with a path or directly with name, because the method is then
called directly. Instead, use the method ref (<path>). This returns a reference to
the method by which you get access to the method. In the example above, the
method InControl should look like this:

is
do
 ref(callLoader).methcall(
 SingleProc.procTime-10);
end;

	Programming with SimTalk
	The Object Method
	Introductory Example

	The Method Editor
	Line Numbers, Entering Text
	Bookmarks
	Code Completion
	Information About Attributes and Methods
	Templates
	The Debugger

	SimTalk
	Names
	Anonymous Identifiers
	Paths
	Comments

	Variables and Data Types
	Variables

	Operators
	Mathematical Operators
	Logical (Relational) Operators
	Assignments

	Branching
	Case Differentiation
	Loops
	Conditional Loops
	For-Loop

	Methods and Functions
	Passing Arguments
	Passing Several Arguments at the Same Time
	Result of a Function
	Predefined SimTalk Functions
	Method Call

