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Foreword

Natural systems are complex, heterogeneous and diverse. If we look in detail, in

fact, we see that each system is unique, differing from all others in various

characteristics. Scientific investigation is largely a process of simplifying and

selecting from such systems a small set of key components, governing factors,

and relationships that are sufficient to describe how the system works. From these,

ecologists try to develop generalizations across many systems. By this process, they

improve their understanding of nature. This knowledge may also help where

guidance in management is necessary.

There is no one “right” way to perform the simplifications used in the study of

natural systems. This text is about the quantitative modelling of natural systems, but

makes the point that a number of different approaches to such modelling have

evolved and may be valid. Thus, ecologists have at their disposal alternative ways

of specifying the aspects that are needed for describing of how an ecological system

works and which aspects can be left out of consideration.

Ecological modelling today plays an increasingly important part in facilitating

insights into how organisms interact with their environment and each other, and how

this creates the properties of ecological systems. The general use of quantitative

models in studying nature developed historically as a specific part of the advancement

of science. Where one locates the starting point of modelling depends on one’s

particular perspective. Some of the methods we use today – differential equations –

were developed during the seventeenth century. One prediction of such equations,

exponential growth, representing an important component today in many ecological

models, became well known through the famous work of Malthus in the late

eighteenth century in an economical context. Verhulst’s formula of logistic growth

was formulated in the nineteenth century. With the equations for a predator–prey

interaction by Lotka and Volterra in the early twentieth century, quantitative ecology

started to use models of successively increasing complexity.

In the early stages of development, ecological modelling was largely based

on differential equations, which were fundamental primarily for the development

of classical mechanics. This may have contributed to the notion that modelling in

ecology was merely an application of differential equations or other mathematical

formalisms. However, if this were actually true, it would not be reasonable to

v



consider ecological modelling as a distinct discipline. Ecological modelling would

in that case be more properly viewed as a subdiscipline of applied physics or

mathematics. The point of view taken in this book is a different one. It presents

the modelling of complex ecological dynamics as a part of ecology, thus a sub-

discipline of biology. It makes use of a wide variety of techniques imported from

various sources, among which there are numerous mathematical methods, but also

techniques from computer science and operations research. In addition, systems

theory, quantitative methods from geography, and methods from a variety of other

fields have helped supply formal methods to solving ecological problems.

It is the understanding of the organizers of this text that modelling should start

with the specific ecological questions at hand and then the most appropriate ways of

representation and formalisation should be selected. That is, ecological modelling

should not be primarily steered by knowledge of applied mathematics, but should

start from the foundations of ecological and biological knowledge and insight. Then

the quantitative methods that are most suitable can be chosen and applied. Using

and adapting methods from outside biology for ecological purposes requires a broad

overview of the methodological repertoire that is applicable for representing and

understanding patterns and processes arising from the interaction of organisms with

their environment.

The spectrum of what can be applied in this field of science has indeed grown

considerably – quantitatively as well as structurally. Ecological modelling has

grown very rapidly during the last 35 years. When the journal Ecological Modelling

was launched in 1975, only 300 pages were published per year – around 20 papers.

Today, the journal publishes 4,000 pages of a larger format and about 400 papers

per year. Ecological models are used much more widely today and are indispens-

able tools in ecological research and environmental management. Models are also

able today to solve a wider range of problems, because we have a wider range of

different model types available. Thirty-five years ago most of the published models

were either biogeochemical models or population dynamic models. We have today

many more types of models that can account for the spatial distribution, the shifts in

structure, adaptation, individuality and the quality of the available data sets. This

textbook presents both the quantitative and qualitative progress in ecological

modelling and draws a clear up-to-date image of the field of ecological modelling.

The progress of the last few decades results not only in ecological modellers now

being able to make use of an enormous range of mathematical tools and specialised

software. It also results in a great expansion in the different ways of looking

at ecological systems. Therefore, an overview of ecological modelling cannot be

given today simply by introducing a single approach or technique. An overview of

how to model complex ecological dynamics is a task that by its nature can only be

addressed by bringing together experts on different methods. This is similar to

the approach used in large-scale modelling efforts, where scientists specialised

in different fields work together with other collaborators who have statistical,

geographical, or computer science expertise.

Accordingly, the editors of this textbook did not attempt to summarise second-

hand information from literature, but instead asked leading specialists in the most
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relevant domains of modelling to contribute chapters, starting from the level of

elementary introductions and leading up to summaries of more advanced topics and

studies. This required structuring criteria on how to guide the reader through the

field. The editors decided on a historical and conceptual introduction, followed by

an ordering of topics, based on increasing complexity, introducing a range of

different modelling techniques in 11 subsequent chapters. The main part of the

book presents the most relevant modern approaches, starting with equilibrium

methods of ecosystem mass transfer balances and ending with object-oriented

systems approaches allowing for time variation, as well as structurally varying

self-organizing networks. To illustrate applications of these methods, the final

section of the book describes a number of selected prominent case studies, which

also emphasise the necessity of cooperation in the application of different techniques

to solve complex tasks.

Producing a coherent text through the efforts of many collaborators was only

possible through productive interaction. In this respect, this collaboration reflects in

miniature the way ecological modelling is usually done in the world. It is not a field

for “lone wolves”, but requires considerable team spirit. This book creates a proper

ambience for such spirit, by going beyond just the compilation of facts and

how-to’s, to demonstrate concrete examples of cooperation in this field. Reading

the lines and in between the lines the reader experiences practical application of

modelling – and how to bring complex things together.

Copenhagen, Denmark Sven Erik Jørgensen

Coral Gables, USA Donald L. DeAngelis
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Preface

The idea for this book emerged in 2007 at the annual meeting of the Ecological

Society of Germany, Austria and Switzerland. When the European Ecological

Federation met in Leipzig, in the following year, we had drafted a concept that

was well received by various colleagues, and which also caught the interest of the

publisher.

For many years we have been working in different fields of ecological modelling

with the purpose of solving ecological questions, broadening existing approaches

and exploring new advances in the modelling of plants, animals, communities,

landscapes, terrestrial and aquatic environments and the application of simulation

models. In the light of this background and encouraged by discussions with our

colleagues, we agreed that a textbook was needed to provide a broad overview

in the field of ecological modelling to our students. Thus, we wanted to compile

a broad scope of different perspectives and practices in ecological modelling:

an introduction to the diversity of model approaches, model development and

model evaluation.

Such a compendium and orientation is vital, in particular for young scientists who

are less experienced with the various levels of complexity in ecological research and

who are looking for the right model type to help solve a specific scientific question.

We believe that the era of one-trick ponies in ecological modelling will soon be

phased out. No user should be limited to an inappropriate tool, spending endless time

and energy “adapting” and working around inherent limitations before being able to

apply a model – there are many alternative pathways. Therefore, the focus of this

book is to highlight the diversity of different views, methods and approaches. Being

able to choose from a multitude of approaches allows a much better understanding of

diversity and variability within natural systems. Studying ecology means an attempt

at understanding the complex dynamics of natural processes and we must be aimed at

capturing these with a maximum of clarity and conceptual ease. This can only be

achieved by considering the available options. International experts and competent

colleagues have been invited to communicate the key areas of their expertise in a

clear and straightforward way, emphasizing the merits and limitations of individual

methods along case studies.
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Favouring a theory-guided, application-oriented perspective, we reduced the

extent of mathematical formalisms. This does not mean that the book is free of

mathematical expressions, but it is written in a comprehensive and encompassing

style providing easy access to the central ideas and concepts. The entire textbook

can serve as a curriculum for studying ecological modelling, but it is equally

suitable for reading only single chapters that cover your focal interest. Since the

rule “everyone to his/her own taste!” is also true for modellers, we do not advocate

any specific model or software programme: please feel free to develop your own

applications and codes, and provide them to your colleagues when possible, as this

will aid in advancing the repertoire of options.

Finally, we very much enjoyed the inspiring teamwork that made this book

possible. Many individuals have helped us during the last years by providing

feedback, ideas, and in particular, revisions of parts of this book. Especially, we

would like to thank Kathryn L. Berry for her invaluable help with all aspects of text

handling. Sincere thanks are expressed to Stefanie Wolf, editor at Springer, who

pleasantly and professionally guided us through the project . . . and to the entire

Springer team.

Coral Gables, FL, USA Fred Jopp

Bremen, Germany Hauke Reuter

Bremen, Germany Broder Breckling

Supplementary material for the book is available at

www.mced-ecology.org
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Part I

Introduction



Chapter 1

Backgrounds and Scope of Ecological

Modelling: Between Intellectual Adventure

and Scientific Routine

Broder Breckling, Fred Jopp, and Hauke Reuter

Abstract The biological environment is full of diversity, changing situations, and

dynamic alterations. This makes the field exciting and demanding, and sometimes

confusing to understand. Models are one of the means to gain and maintain an

overview of the various phenomena emerging in the different biotopes and relating

to a wide range of scientific questions.

1.1 Getting Started: Motivations for Ecological Modelling

Nature is in a state of continuous dynamic change. Through the millenia it has

accumulated the diversity and complexity as it is found today. Anthropogenic influ-

ences have altered many habitats, often with the consequence of a dramatic loss of

biological diversity. Many species vanish while others colonize new environments.

We need to understand the implications of natural dynamics and human interventions.

How far can ecology as an empirical science and modelling as a set of analysis

and synthesis tools help us to enable an adequate understanding of the ongoing

dynamics (Fig. 1.1a–g)? Different modelling approaches have been applied to

assess a wide range of questions relating to most ecological systems. The book

contains several examples to illustrate questions asked and systems studied with

different modelling approaches. For instance, how important is the impact of

agriculture for local biodiversity loss and what role does dispersal of organisms

play in this context (Fig. 1.1a; Chap. 16); how important are seasonal variations

of wetlands for the structure and the dynamics of small fish communities in a

disturbed marshland (DeAngelis et al. 2010; Fig. 1.1b; Chap. 19); how are food

webs structured and what are the driving forces for oscillating dynamics (Fig. 1.1c;

Chaps. 5 and 12); what are the environmental factors determining phase shifts in

coral reef systems and at which points should management intervene (Fig. 1.1c;

B. Breckling (*)

General and Theoretical Ecology, Center for Environmental Research and Sustainable Technology

(UFT), University of Bremen, Leobener St., 28359 Bremen, Germany

e-mail: broder@uni-bremen.de

F. Jopp et al. (eds.), Modelling Complex Ecological Dynamics,
DOI 10.1007/978-3-642-05029-9_1, # Springer-Verlag Berlin Heidelberg 2011
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Chap. 18); what mechanisms rule swarms and schools of individuals and how do

these swarms interact with the environment (Fig. 1.1d; Chaps. 2 and 12 ); Can we

reliably forecast stocks in fisheries to support a sustainable resource use and what

impact does Global Change have here (Fréon et al. 2005; Chap. 21); what mechan-

isms control competition in Mangrove forests (Fig. 1.1e; Chap. 2); how can we

assess and compare the gene flow of conventional and genetically-modified crops

(Fig. 1.1f; Chap. 16); how can Geographical Information Systems (GIS) be used for

model integration and what is the benefit of this procedure for ecology (Fig. 1.1g;

Chap. 22)?

In all the above fields ecological models were set up to help in gaining insights,

to understand the implications of change and to identify knowledge gaps. In some

Fig. 1.1 Environments and examples (see text) where ecological modelling contributed important

aspects to the understanding of ecological dynamics. (a) North European pastures, (b) Everglades

marshland (Florida, USA), (c) coral reef system, Indo-West Pacific (Foto courtesy of E. Borell),

(d) school of Mouth Mackerels feeding on zooplankton, Red Sea, Egypt, (e) tropical mangrove

forest, Malaysia, (f) conventional and genetically modified maize fields in Northern Germany

(gene flow), (g) distribution of landcover types in Northern Germany (remote sensing image)

4 B. Breckling et al.



cases plausible predictions can be made while in others we can only study

scenarios and learn more about the type and range of uncertainties. Ecological

systems are structurally diverse and complex systems. These systems are known

to express complex interaction networks with a high number of interrelationships

and context-specific feedback processes. The outcome finally evolving from this

interaction network is highly dynamic. Only parts of the entire system are

accessible for empirical measurements. Any kind of modelling that tries to fill

these empirical gaps will have to take the complexity and the dynamics of

ecological systems into account. This was also eponymous for the title of this

book: Modelling Complex Ecological Dynamics. The conceptual approaches,

techniques and applications compiled in the following chapters will attempt to

give an overview of what is feasible and what can be achieved. You, the reader,
are invited to share the findings in this field, and eventually pick up the thread as a
researcher and expand the knowledge in an interesting discipline of environmen-
tal science.

For a long time ecological work had focused on making an inventory of biota,

collecting, gathering and classifying organisms in the diverse range of habitats

(e.g., Linné 1748; Lamarck 1815–1822; Darwin 1859; Haeckel 1866; all of which

also included the development of criteria and hypotheses on processes leading to

the diversification of biota). This was then followed by studying how the biological

entities respond to the environment and relate with each other. In physical systems,

the experimental setup to decide on hypotheses of relations of material objects can

be intentionally constructed (“framework constellation”, McCarthy 1963). How-

ever, the precision in assessing ecological relations is usually much lower. In an

early phase of scientific development, a general formalization and mathematization

of natural systems was seriously considered. The French mathematician and astron-

omer Pierre Simon de Laplace (1749–1842) developed the idea, that in an ideal

situation, when the precise location and impetus of all components moving in the

universe would be known, the physical laws of dynamic interaction should allow to

forecast any state in the future, and would equally enable to recalculate (backwards)

all states in the past. Achieving this goal, of course would require infinite calcula-

tion capacities with infinite precision. Such an infinitely fast and capable calculator,

called Laplace’s demon, certainly was meant only as a theoretical consideration

(de Laplace 1814), but outlined what was considered as the field of scientific

intelligence.

Today in ecology, we are satisfied if we can make some cautious steps towards

better understanding. To globally summarize all aspects of how organisms relate to

each other and their environment in strict and quantitative cause-effect relation-

ships does not seem to be reasonable. In this context, understanding ecological

dynamics will remain incomplete and approximate, as suggested by theoretical

consideration as well as practical experience. Nevertheless, it remains a challenge

to find out where, to what extent and why forecasts are possible. Or to set up rules

that lead to satisfying explanations and rationales when this is not the case.

Understanding complex environmental relations also requires inclusion of an

abstract representation of the phenomena in focus. This abstract representation can
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contain theoretical or empirical elements or assumptions, which are brought together

for making final statements that deal with cause and effect. In the following, we will

refer to this abstract representation by using the term model. A model can be a

conceptual setting, a verbal description, a simplified physical representation, and

of course also a description in quantitative mathematical relations. While mathe-

matical representations and verbal descriptions sometimes are seen as something

entirely different, we would like to emphasize that there are usually transitions and

translations between both. This is meant as an invitation to all ecologists not only to

observe organisms and patterns in the field but equally to think how observations can

be captured in formal settings and thereby used to investigate the underlying

processes andmechanisms.Whenwe arrive at such a turning point between empirical

investigations and their transformation in mathematical forms, we are able to look

at our observations from another angle. Taking a modelling perspective, we will

discover new implications which were not entirely obvious at first glance and lead to

new insights. The ecological complexity we observe is not always and necessarily

complicated: There are surprisingly simple avenues to complexity, which are starting

directly in the heart of simplicity.

1.2 Simplicity and Formal Representations: Appetisers

to Model Complex Ecological Dynamics

Models need to be simpler than the original. A model representation as complex as

the relations it represents would not really be enlightening and helpful. A model

should aid in the understanding by allowing an overview and focusing on certain

important aspects. The challenge is to make a simplification to capture the essence

of a specific focus of interest. In fact, this is one of the most important challenges in

modelling and a source of lasting controversies (DeAngelis and Gross 1992).

Now, let us see how complex the relations will be that can result from very

simple approaches. The black box approach is perhaps the most radical simplifica-

tion that made many phenomena accessible for modelling. In this approach, theo-

retically, in the considered context, everything is put into a box. It is assumed that

the internal dynamics in the box are irrelevant as long as they do not greatly change

the amount of the relevant content. Only an accounting for the input and output

of the desired variables is done. In principle, this is what Alfred Lotka and Vito

Volterra (Lotka 1925; Volterra 1926) did in their famous model approach on the

relation of a predator and a prey population that they tackled with a simple

differential equation model (see Chap. 6).

But how can such an approach help to understand complexity? Some empirical

ecologists used to critisize (specifically mathematical) models as being too theoret-

ical because the simplifications, manifested in the black-box approach, seemed to

ignore what is biologically interesting to them: the diversity, variability and hetero-

geneity of ecological entities.
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Is the expectation of capturing and expressing the essence of ecological entities

in forms of simplicity a contradiction? Some aspects of life and technology can be

precisely forecast and operated. For instance, a computer would not work in the

case its states of operation were not fully determined. In other fields projections are

impossible, e.g., the efforts to forecast earthquakes precisely have only very limited

success. Comparatively, weather forecasts work sometimes but only within very

narrow time frames. Biological relationships are notoriously difficult to predict in

models. However, there are surprising applications of these relations. We can use

simple models to demonstrate the causes of complex dynamics. This will not tell us

which example out of the possible range we will actually meet next time in the field.

But it will help us to link different aspects of causal structures and consider joint

contexts of the ecological systems.

To create complex dynamics, we only need simple relations, slight modifica-

tions, and iterative repetition. Then we can show: Not all complex phenomena are

based on equally complex relations. Simple settings can generate complexity, and

hence complexity can be based on simple mechanisms. Here we start with a few of

the most simplistic examples. In the subsequent chapters we will then successively

turn to more sophisticated approaches and solutions, which will relate to advanced

ecological theory and application.

One Formal Step into the Kingdom of Chaos

To show how close simplicity and complexity are, we leave out all biological

realism for a moment. We only link numbers with each other and define a specific

predecessor and successor for each. Since numeric operations are frequently used in

ecological modelling, we are not too far away from our subject.

We define the successor (y) of each number (x) as the value we obtain if we

subtract the inverse. This is a simple mathematical operation: y ¼ x� ð1=xÞ
Since the result is again a real number, we can apply the same operation again and

thus create chains of operations. These chains have interesting properties. They tend to

approach 0; however, when becoming smaller than þ1 (and larger than �1)

the algebraic sign changes and they then alternate between positive and negative

values. Since we can use any starting point, the procedure successively intertwines the

chains like infinitely long and thin spaghetti. This becomes apparent if we follow the

fate of an interval that contains any possible starting points between two close numbers

that are far outside the interval between [�1;þ1] (see arrows in Fig 1.2). It is apparent,

that the numbers will become subsequently smaller (when being positive – or larger

when being negative). The interval itself will increase in extent after each step.

This kind of movement, increasing the differences between originally close

values through continuous operations, can be observed in this simple equation.

It exhibits what is called deterministic chaos. In this case the chaos expands any

small interval by iteration successively until they become independent from each

other. A graphic representation of the process is shown in Fig. 1.2.
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Complexity in a Simplistic Ecosystem Model

In ecological modelling it is often discussed to what extent an ecosystem model can

be simplified. An extreme simplification is putting all biomass into one big box (Y)

and distinguishing only growth (biomass production) and decay (decomposition,

re-mineralization). Growth could be simplified as a constant increase of an amount

C1. The decrease will be simplified as the vanishing quantum of an amount

proportional to the current amount of Y with C2 as a proportionality factor. We

decide for a step-wise operation with either biomass growth or decay occurring in

each step. If the biomass Y exceeds a threshold value (þ1 for simplicity), decom-

position is operated, otherwise increase occurs. This yields the form:

Fig. 1.2 Graphical iteration of the function y ¼ xsuc ¼ x – (1/x). The arrows show two initially

close starting values. For iteration, the starting value is drawn towards the function line. To obtain

the next iteration, the determined value is connected to the diagonal (where y and the according

x-value equate) and again move to the function. It can be seen, that initially small intervals become

successively expanded. Initial correlations tend to get weaker and get successively lost. This is a

characteristic feature of what is called deterministic chaos
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IF Yn < 1 THEN

Ynþ1 ¼ Yn þ C1

ELSE

Ynþ1 ¼ Yn � C2*Yn

To learn about the properties of this system we investigate its behaviour for

C2 ¼ 0.5 and start each iteration process with y ¼ 0.5. The first 1,000 iterations

are discarded to eliminate transient behaviour. We then plot the results with C on the

x-axis and the corresponding simulation results on the y-axis. To survey the model

outcome across a parameter range we start with C1 ¼ 0.0 and increase it in small

steps up to 0.7. The result is a highly structured pattern with interesting changes in

periodicities. In the covered range, periods between þ2 and infinity approximation

occur (Fig. 1.3).

The example shows that simplicity and complexity can be in quite a close

relationship: A radically simplified ecosystem model can exhibit aspects of a fractal

dynamic (see also Chaps. 3 and 11). If we find such a situation where we have

captured complexity in a simple approach, then we have found an interesting

underlying mechanism. This is something that we are looking for in various

Fig. 1.3 Iterating the model

IF Yn < 1 THEN Ynþ1 ¼ Yn þ C1

ELSE Ynþ1 ¼ Yn – C2*Yn,

C2 ¼ 0.5,

C1 is drawn on the x-axis. Drawn over the according C1 value, the y-axis shows 500 successive

calculation results which exhibit different periodicities. The first 1,000 iterations of the simulation

for each value of C1 are not drawn to eliminate transient behaviour
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contexts. Here, it shows that a complicated dynamic process does not always need

to be based on complicated rules and mathematics.

Regular Random and Organic Forms

Many organic forms have components where certain aspects of its parts repeat the

overall shape. When a shape consists of parts of itself, it is called self-similar. Self-

similar structures can be highly complex, even though they can be captured in

relatively simple models involving random processes. Figure 1.4 was produced by

the following instruction: Select any arbitrary point in a plane as an initial value. Then

make a random decision between three alternative linear shifts. Keep repeating with

the obtained result.

Fig. 1.4 A self-similar, leaf-like shape was obtained by iterating a point in the plane. A random

decision was made between three transformations. (a) shows the transformations as specified by

the values given in Table 1.1. (b) Iterations are started at 0.0 and repeated 420,000 times with each

point drawn. The overall figure yields an attractor: after sufficiently long time, the iteration of any
starting point would end up in the same figure. Many sponges, coral-, tree- or leaf-like forms can

be approximated in a comparable way

Table 1.1 Parameters for the three alternative shifts to produce a leaf-like shape. For each step

one of the transformations is chosen randomly

Transformation First Second Third

Shrink co-ordinates along the x-axis 0.7 0.6 0.6

Shrink co-ordinates along the y-axis 0.9 0.7 0.7

Shift along the y-axis 0.2 –0.2 –0.2

Shift along the x-axis – –0.3 0.3

Turn around the point [0, 0] – 45� –45�
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Structure Can Be Created by Blind Random Processes

Let us imagine individual prey, randomly moving in a habitat without any orienta-

tion. They regularly reproduce up to a population maximum. Predators move a bit

differently and follow a certain direction which is slightly changed stochastically at

each step (a detailed model description is given in Chap. 12). Let all individuals be

randomly dispersed in the beginning (Fig. 1.5, left). Would you imagine finding all

prey closely aggregated in one or very few clusters after running the model for some

time? Chapter 12 discusses self-organizing phenomena like this in further detail.

Apparently, as illustrated with the model, spatial organization of organisms does

not need an underlying plan, or a pre-existing gradient. It just can emerge through

random interactions.

There are many more examples throughout this book where elementary interac-

tions are specified, which bring up emergent phenomena and surprising results over

the long run. The discovery of how these phenomena relate to the underlying

interactions can make the construction of ecological models highly fascinating.

Comprehensive modelling and model networking also helps us to assess man-

agement and conservation options. You will find some interesting starting points to

follow these and comparable model applications for environmental conservation in

Chaps. 21 and 22.

1.3 Getting on: Diversity of Approaches in Ecological

Modelling

In ecological modelling, not all the approaches are genuine ecological develop-

ments. Ecological modelling is in the fortunate situation to be able to do “concept

(window-) shopping” in other fields of science. In fact, most of the methodologies

Fig. 1.5 Simulation of an individual-based predator–prey model starts with a random initial

configuration (left). Points indicate the current positions of prey and predators; the line shows

the movement from the previous position. Lighter shades and smaller points represent the prey,

darker and larger ones the predator. The spatial distribution is shown after 50 (centre) and 100

steps (right). Prey concentrate in dense clusters. For further model specification see Chap. 12
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which are successfully used in ecological models have previously been developed

and applied for other purposes. But the usage and eventual modification can be very

specific in ecology.

This is also reflected in how we organized the contents of this book. We first

focus on explaining methods and then demonstrate some selected application cases.

Continuous and discrete formalisms, linear, nonlinear, ordinary and partial differ-

ential equations were originally developed in physics but have also been applied

in chemistry, in economics and sociology – and have found prominent use in

ecology. The same is the case for matrix approaches. A recent and highly important

source for inspiration came from computer science, where cellular automata

and in particular the object-orientation paradigm brought important improvements

in systems representation and individual-based modelling. Furthermore, network

approaches that are linking different model types largely grew with developments

in computer application. Still, ecological modelling is not just an application

of approaches that were developed elsewhere. Ecological modelling provides

room for diverse points of views. It is not a unified, canonical discipline with

some procedures legalized and others excluded. It is a space for creativity and

experiments.

We are convinced that the central part of ecological modelling must be founded

on a basic understanding of the underlying ecology and biology – how organisms

grow, how they move, behave, disperse and interact with their environments.

A prerequisite for modelling is always a profound biological knowledge. Only

then we can go to modelling approaches and select, modify and adapt the most

promising techniques. This may at times yield the criticism that the use of the

mathematics is not in strict line with all the formal definitions. We think this is not

necessarily a problem. As long as the applied techniques adequately represent

ecological processes, ecological modelling can be useful, despite this objection.

In this regard we want to encourage a creative handling of such situations.

Therefore, the first priority for ecologists should be not only the reproduction of

established formal recipes, but, more importantly, the use of them as an inspiration

to come up with better, new and improved answers to the large field of remaining

open questions in ecology.
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Chapter 2

What Are the General Conditions Under

Which Ecological Models Can be Applied?

Felix M€uller, Broder Breckling, Fred Jopp, and Hauke Reuter

Abstract The purpose of this chapter is to discuss the conditions under which models

can be applied. Modelling can help to solve specific problems, but not all questions in

ecology require or benefit from the application of a model. It is therefore necessary to

have an idea about the criteria under which the development of a model can provide

useful information or help to solve questions in ecological analysis and which concep-

tual and technical approaches are themost appropriate ones. Technical knowledge about

the particular modelling techniques is presented in the subsequent chapter of this book.

Here, we intend to give an overview of the basic criteria of model application.

2.1 Models as Instruments of System Analysis

Models are abstractions of reality and instruments for the survey and analysis of

complex systems (Wainwright and Mulligan 2004; Dale 2003). They are used to

reduce the complexity of systems with reference to the specific problem that the

observer wants to solve. Ecological models can depict the interactions and changes

of environmental elements and simulate the dynamics of spatial and temporal

patterns in ecosystems. Thus, they are instruments of environmental systems

analysis (Bossel 1992; Gnauck 2000; Hannon and Ruth 2001).

A fundamental system comprehension should be considered as an initial con-

ceptual condition for successful modelling. Ecological systems are complexes of

biotic and abiotic elements, which are interrelated by flows of energy, matter and

information (Breckling and M€uller 1997). These interactions build up a compre-

hensive and complicated network of heterogeneous direct and indirect effects (Fath

and Patten 2000). This network has an extraordinary high connectivity and its

complexity rises drastically with the number of elements, relations and nonlinear

interactions (Salthe 1993; Grant and Swannack 2007). This has the implication that
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we might never be able to fully understand these ecological systems structures and

functions and the resulting dynamics. On the other hand, there are many good

reasons why we should attempt to do so, e.g., the need to search for solutions of our

urgent environmental problems. Systems analysis (see Chap. 4) and modelling

provides steps and theories to cope with complexity in ecological systems.

Ecological modelling provides a large set of different approaches to analyse

drivers of systems dynamics and extrapolate developments. However, it also has to

be applied critically. The modeller should be conscious of the following:

l Models are observer-defined abstractions that can reflect reality only in the

framework of the observer’s viewpoint, the amount and quality of input infor-

mation and the basic assumptions of the modeller
l There is an optimal degree of model complexity. This is not the highest com-

plexity because large and complicated models tend to be difficult to handle and

can increase uncertainty (Joergensen and Bendoricchio 2001)
l In any case the model outputs comprise specific uncertainties. To optimize the

results, modelling needs extensive information about the investigated system

and about the modelled object or process, as well as a precise question or

hypothesis and data for both model development and model testing

2.2 Model Creation Should Be Carried Out

in a Systems-Analytical Procedure

To make the general modelling procedure more illustrative, Fig. 2.1 sketches the

single steps of a system analysis leading to an applicable ecological model. More

technical details are elaborated in Chaps. 4 and 23) on model development, while

the conceptual fundament is discussed here. The steps of model preparation begin

with basic questions like:

l What is the focal object of the model?
l What is the specific aim of the model and what is its role in solving the focal

problem?
l What are the spatial and temporal extents of the model and in what dimensions

should the outputs be provided?
l What are the spatial and temporal resolutions of the model and how detailed

should the processes be that are represented in the model (model complexity)?
l What are the most important issues to be represented and what are the relations

between them?
l What data are necessary to (a) develop and (b) test the model?
l What are the forcing functions of the modelled systems and how do these

constraints affect the elements?
l How can the interrelations be depicted in a clear and understandable graphical

scheme?
l What are the basic assumptions made in model development?
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Although these questions seem to be trivial, they are often not dealt with in a

satisfactory manner in practical modelling applications. However, answering these

questions and documenting the derived conception needs to be done before techni-

cal steps of model development are taken. There are two main reasons for this

requirement: On the one hand, this allows one to find the optimal conception for the

model without forgetting or neglecting basic preconditions, and on the other hand,

the documentation of the respective answers will enable the modeller to return to

his original objectives when he has been lost in the complexity of model improve-

ment. Figure 2.1 further illustrates that model development follows a cyclic pro-

cess: Already with the definition of the data requirements, limitations might

become obvious that make it necessary to change the general outline. The results

of calibration and validation (see below) usually support this experience, and
sometimes demand the modeller to go back to the very first steps because some

basic requirements could not be met.

Taking into account these working procedures, two focal strategic items should

be highlighted to avoid an exaggerated application of the cyclic principle:

Models Require a Clear and Precise Specification of the Focus
of Investigation

A clear distinction needs to be made between what is part of the problem and what

is left out of the considerations. This may sound fairly straightforward; however, in

almost any practical situation this decision poses a serious challenge. The web of

ecological interactions is complex. However large the resources for research might

Fig. 2.1 Basic steps of environmental systems analysis and modelling (adapted from M€uller
1999)
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be – there will always be additional influences that have to be ignored and cannot be

integrated in a given context. A complete model of ecological interactions in any

field is impossible. Therefore, delimitations (where to end the list of relevant

influences) require good reasoning and judicious decisions of the modeller. Regard-

less of how well the rest of the work is done, unreasonable decisions about what to

consider and what not, can determine the usefulness of the entire work. Therefore,

this issue should be taken very seriously. Decisions require a balance and linkage of

the general nature of the problem under consideration, as well as the specific

working conditions and available technical, logistical and intellectual means.

Models Need Intelligently Chosen Criteria for the Distinction
of Important and Unimportant Aspects

There has to be a consideration of relevance concerning elements and relations that

could make an important part of a model. The decision about which subjects and

interactions are considered to be relevant depends on the available background

information. During the work, it may turn out that the background information was

not sufficient. A careful analysis of what is already known in the field is crucial. The

modeller needs a clear view of which influences contribute (sometimes, always or

only under specific conditions) in an important way to the given problem. There-

fore, a literature survey to attain an overview that goes well beyond the current

focus is required. Often the necessary decisions should be prepared in a discussion

with co-operators or other experts in the field and experts in related topics.

Furthermore, a consideration of the working conditions for the modelling pro-

cess is required: What is the available time span, what are the resources, manpower,

data bases, etc., and what are the temporal constraints of model development? The

answers can be integrated into a synopsis of the requirements to solve a given

problem and the compromises that derive from the limitations (and preferences) of

the specific situation. This background knowledge will allow the modeller to

develop a reasonable work plan. Experience tells us that the duration (time require-

ment) of model elaboration is difficult to anticipate. Certain steps may be achieved

much more easily and faster than expected; however, in most cases unexpected

obstacles occur and things usually take longer than expected.

2.3 The Modelling Potential: What Can Models Help to Do?

Models are used for a wide range of purposes. Wainwright and Mulligan (2004) list

different application fields for environmental models. They can, for example, be

applied as an aid in research, as tools for understanding, tools for simulation and

prediction, as virtual laboratories, and integrators between disciplines, and in
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addition, they are research products and means for communication. In the follow-

ing, some of these model purposes and potentials are elucidated.

Models Can Help to Analyse the Results of Empirical
Investigations or a Theoretical Problem that Is Not
Accessible Through Statistical Data Interpretation Alone

Models can generally work within two types of situations – helping to solve

empirical problems where a model needs to meet certain requirements resulting

from field or laboratory measurements (data), and for theoretical purposes that

investigate conditions and possibilities based on assumptions. Models usually go

beyond situations and questions that require only data interpretation and statistical

analysis. A good example for such a modelling approach is the complex competi-

tion situation between hardwood hammocks and mangroves (see Fig. 2.2). In the

marshlands of South Florida Everglades (U.S.) hardwood hammocks and man-

groves occur with distinct boundaries between their respective areas. Teh et al.

(2008) applied a spatially-explicit simulation model to examine the effects of the

salinity of the aerated zone of soil overlying a saline body of water, known as the

vadose layer, as a function of precipitation, evaporation and plant water uptake

(Fig. 2.2 right) on the vegetation. The model predicted that mixtures of saline and

freshwater vegetative species represent unstable states, which are highly dependent

on initial conditions of the system. The model conceptually explains the mechanism

Fig. 2.2 Model on separation of mangroves (left) and hardwood hammocks in the marshlands of

South Florida Everglades (U.S.). The model focuses on water transport and effects of the salinity

on the vegetation (P precipitation, E evaporation, T transpiration, I infiltration, Teh et al. 2008)
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that allows both vegetation forms to coexist – and why disturbance pattern can have

long lasting influences.

Statistics are applied to data, while models are used to interpret systems states

and processes, representing the dynamic developed and often applying an iterative

procedure. However, models and statistical applications cannot be strictly and

consistently delimited, though specific domains of application can be defined –

with a minor overlap.

Furthermore, modelling allows to test the coherence and degree of completeness

of the understanding of distinct ecological processes. For instance, for a long period

it was not clear what kind of behavioural modes would be sufficient to lead to highly

aligned fish schools. With an individual-based modelling approach to represent

different behavioural patterns of individual fish it was possible to test the existing

assumptions (Fig 2.3). Results revealed that, depending on distances between

neighbouring fish, attraction, adjustment of direction and swimming speed and

repulsion were sufficient to produce schools. Modelling also revealed, that it was

only necessary to consider a limited number of nearest neighbours to keep a school

together (Huth and Wissel 1994). For aggregation of a school, weighting of neigh-

bours according to distance turned out to be a more efficient model assumption

(Reuter and Breckling 1994). Thus models may help to check if knowledge on

partial processes is sufficient to represent observed system behaviour.

Fig. 2.3 Schooling in fish. Left: Traces of a fish school in a heterogeneous environment: the gray

shaded area is a part of the environment with higher food density where individuals move more

slowly. Coming from the upper right some individuals are outside the food patch and accelerate.

To stay within the school these individuals change direction (turn right). As a result the whole

school stays on the food patch. Right: This phenomenon occurs as an emergent property if the

speed difference between preferred and non-preferred parts of the habitat is sufficiently large.

Simulated schooling fish stay considerably longer on food patches than do solitary fish. (rel.

location indicates how much longer a fish stays on food patches in relation to their coverages;

speed difference to normal cruising speed of 25 units/timestep)
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Models Can Help to Understand Emergent Properties
(Emergent Phenomena)

Usually the modeller works in a situation where he has gathered various information

about specific interactions of partial processes but is interested in the overall result to

demonstrate how single processes overlay and produce new (emergent) phenomena.

Nielsen and M€uller (2000) have defined such emergent properties as self-organized

features of a system that are not properties of the subsystems. Rather, these properties

emerge as a consequence of the interactions within the system. They appear at one

organizational level of a system and are not immediately deducible from observation of

the single units in isolation, which compose the system. Many examples of emergence

can be found in the regulationmechanisms of physiological processes, rangingbetween

the levels of biochemical compounds, organelles, cells, tissues, organisms or popula-

tions. On all of these levels certain features emerge, which cannot be provided by the

parts: For instance, an isolated chlorophyll molecule cannot use the energy of solar

radiation for living processes. Only if it is embedded in a complex system of biochemi-

cal compounds, can it help to transform energy to become beneficial for the organism.

Or – to consider a larger ecological context – cyclic processes in an ecosystem are only

possible due to the interaction of the different subsystems. The storage of nutrients in

the system can be comprehended as an important emergent property.

Many interpretations of emergence are based on the information flows between the

systems’ components. O’Neill et al. (1986) and also Allen and Starr (1992) have

founded their ideas on the frequency distribution of ecosystem processes (Fig. 2.4).

Following their hypotheses in hierarchy theory, the interactions between a single high

frequency process produces the potential for processes of lower frequencies to provide

constraints on the higher frequency units due to selected signal filtering procedures.

Fig. 2.4 Characteristics of hierarchical structures. Signal transfer between different levels of a

hierarchy construct (modified after M€uller 1992)
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These temporal distinctions are linked with spatial differences: fast processes

mostly operate on small spatial units while slow processes tend to have broader

spatial extents.

A very practical consequence of hierarchical views on environmental systems is

used to make the distinction of working scales for models: The modeller should

focus on a certain part of the spatio-temporal continuum of ecological processes: by

the selection of the natural frequencies and typical spatial extents of the core model

variables, the modeller can define the focal level in the hierarchy of ecological

relations. To depict the system’s organization with minimum information, it is

recommended that one works on three scales (with three typical frequencies), that

are (a) the focal scale of the main variables (highlighting the interactions between

subsystems at the same level of integration) and the two adjacent scales to consider,

(b) the fast variables related with the sub-systems as well as (c) the slow variables

that act as constraints. The latter frequently can be treated as forcing functions.

Often, in model applications, the slow variables are set constant. This represents an

approximation that can be reasonable for a limited time horizon but usually limits

the long-term applicability of the model: The only constant phenomenon in living

systems is change, and the way changes occur.

Models Can Clarify Interaction Implications Between Different
Levels of Organization and Can Help to Understand
Level-Crossing Phenomena

In the context of hierarchy theory, an organization level is considered as a result of

the interactions of a number of elements that bring up specific properties on a broad

scale coming into existence due to small scale interactions. For example, interac-

tions among different individuals can result in a specific age distribution on the

population level. The level of the individual and the emergent properties on the

level of the population (age distribution, pattern of spatial distribution, or distribu-

tion of other properties) can be analysed.

The same conditions can be found concerning the overall properties of an

ecosystem, based on the interactions of individuals, populations, and abiotic con-

ditions of a particular location (see Fig. 2.5).

Models often use inputs from a lower level of organization and provide results

on a higher level. Thus the modeller has to deal with the question, whether the

knowledge on lower level processes (used as model input) is in accordance with the

overall results on a higher level. In this sense, models deal with level-crossing

phenomena. The model of beetle dispersal (Jopp and Reuter 2005) may be used as

an illustrative example. It represents movements of carabid beetles in heteroge-

neous landscapes, depending on the species properties and landscape characteris-

tics. The rules for the step length and angular deviation of single movement steps

are derived from empirical data (Fig. 2.6 left). It can then be investigated what
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effects these properties have on dispersal in differently structured landscapes

(Fig. 2.6 right). Depending on the distribution of suitable and less suitable habitats,
the model can provide results of how individual behaviour and landscape dispersal

patterns relate over the long run.

This field of ecological analysis should not be dealt with by expert’s intuition
alone. In this regard, models allow an extension of conclusions beyond what is

accessible in direct empirical investigations. With appropriate model approaches it

can be studied how components of a level-crossing interaction network influence

each other. For instance, Chap. 18 illustrates how trophic pyramids and trophic

cascades of a wetland ecosystem (Everglades) are affected by hydrological changes.

Models Can Illustrate Iterative and Feedback Processes

In ecological models interactions between elements are in most cases specified in a

computer programme and executed on a computer. The rationale behind this is that

the number of repeated executions of all steps can be several orders of magnitude

higher than what can be done by manual calculation. Modelling has special merits

when feedback or iterative processes are involved: If we know the elementary

interactions – what will be the result if they re-occur 10, 1,000 or 100,000 times? In

linear cases, sometimes mathematical calculations can directly lead to a precise

Fig. 2.5 Hierarchichal levels, which are distinguished as organization levels. Ecological model-

ling deals with individuals, populations, ecosystems, landscapes, and biomes. Still lower levels,

from the biomolecule up to the individual, are the domain of physiology; however, sometimes

these are also included in models along with ecological levels of interactions
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result. Nonlinearities frequently are not so easy to extrapolate. Here models are

often the only promising way to expand ecological knowledge. For instance, this is

frequently the case on grid-based processes (see Chap. 8 on Cellular Automata).

A pattern studied on the basis of grid-based processes are forest fires. The final

pattern can be well observed on the regional scale. The overall transition-rules on

the small-scale, however, can only be estimated. Model assumptions can be tested

to determine whether they lead to patterns that are in line with the observed findings

(e.g. Ratz 1995).
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Fig. 2.6 The construction of Move Steps distributions and Model output from a model on beetle

dispersal (Jopp and Reuter 2005). Upper Left and Middle: Derivation of movement rules from

empirical data. Upper Right: Simulation set-up for the analysis of connectivity effects of hedge-

rows and stepping stones. The width of the hedgerows and the number of stepping stones are

varied in the scenarios. Lower Left and Right: Resulting long term pattern of dispersal for a model

population from a source habitat (top) to a sink habitat (bottom) which are connected by six

habitats functioning as stepping stones. Dispersal success and densities result from a combination

of movement speed, mortality on hostile lands and probability to cross habitat boundaries. Abax
parallelepipedus, a slow disperser with high habitat fidelity, has to colonize all stepping stone

habitats before reaching the sink habitat (lower right). In contrast, Carabus hortensis, which easily
crosses borders between habitats, does not colonize the stepping stones, but reaches the sink

habitat in a fraction of time (lower left)
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New approaches additionally facilitate the potential to work with flexible inter-

action networks, where the number of elements and the way they are connected can

change (see Chap. 11 on L-Systems, and Chap. 12 on Individual-basedmodels). This

poses high challenges to the conceptual development of simulation frameworks,

especially if not only the involved quantities change in a nonlinear way, but also the

structure changes in the course of interactions. This can be the case in modelling the

structure and physiological processes in plants (see e.g. Figs. 4.3 and 4.4).

Models Can Facilitate an Understanding of Multi-Scale
Problems in Ecology

Phenomena that involve several orders of magnitude in scales are usually difficult

to handle. There are examples where model approaches can help to deal with large-

scale issues that depend on very small scale interactions.

Nutrient budgets on the landscape level are an example (see Fig 2.7). Here

initially the soil physicochemical potentials of different sites are used to calculate

local nutrient flows, representing e.g. a patch scale. If the modelling question is

Fig. 2.7 Nitrogen leaching in the Bornh€oved Lakes landscape simulated with the WASMOD

modelling system (Reiche 1996). Left: The measured nutrient retention capacity of different soil

types has been taken to calculate a business-as-usual scenario with a dominant small-farm

structure. Right: Simulation of different scenarios: (a) Industrial agriculture – a structure with

big farms and efficient land use practice leads to a change in land cover and land-use, providing an

overall reduction of nitrogen leaching amounts. (b) Green agriculture – due to the reduced use of

fertilizers and due to reduced pressures, i.e., on poor soils the nitrogen flows into the groundwater

are heavily reduced
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related to the budgets of landscapes or catchments, these small items have to be

integrated to build up a landscape picture. But as the spatial scale increases, new

processes arise, which were not evident at the smaller scale; for instance erosion,

groundwater flow or airborne transports connect patches in a horizontal manner.

Thus for the respective model analysis, a multi-scale approach has to be used with

emergent processes at each level (see Chap. 22 for more examples).

Models Can Support Decision Making Processes

Besides their potential in basic research, ecological models can also be very helpful

tools in decision making processes (also see Chap. 22 on Integrated Environmental

Models). Often the environmental manager can hardly foresee the effects of certain

measures for the states of environmental or social-ecological systems. To reduce

this uncertainty, models can illustrate assessment components. In this context

scenario modelling is playing a very important role. In that case the model con-

straints are defined due to the representation of different assumptions on environ-

mental situations, management options or political strategies. From the model

application the potential effects can be illustrated and an optimal strategy can be

selected. On the other hand, model applications are usual parts of our everyday life;

think of the weather forecasts, the characterisations of economic developments or

the multiple economic applications of programmes to show what might happen if

certain constraints of a system are changed. A most influential example can be

taken from global climate models (Fig. 2.8). The predictions of future trends of

global temperature rise, depending on different mitigation strategies, are basic

elements of global political decisions.

2.4 The Limitations: What Models Cannot Do

Now that we have seen the potential of ecological models, it is also necessary to

mention some limitations of models as well.

Limits in Predictability

Ecological models are not a new form of alchemy. You cannot put in cognitive lead,

tin, and other low value materials, expect the computer to do magic and hope for

intellectual gold as a result. The potential of modelling has limitations, and the

“garbage in – garbage out” principle holds. Enthusiasm about modelling sometimes

tends to obscure that. Modelling can expand knowledge; however, it cannot replace

it. It can derive implications of given knowledge and it can be used to test interactive

hypotheses. Because of the complex interactions that take place in ecological
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systems, the predictive power of models is usually limited. This is especially true for

processes with a pronounced singularity, where local specific events largely influence

the subsequent dynamics in a way that cannot be precisely forecast. However,

probability estimations can often be derived through ecological modelling. To have

an idea about this limitation is a precondition to reasonably applying ecological

modelling.

Models Cannot Function Without a Precise Question
or Hypothesis and an Appropriate Underlying
Theoretical Framework

Although this demand seems to be trivial, it has to be stated that a very detailed task

specification in connection with explicit knowledge about the purpose is a basic

Fig. 2.8 Temperature trends and projections of global average surface temperature

source: UNEP/GRID-Arendal Maps and Graphics Library (2005), Philippe Rekacewicz, http://

maps.grida.no/theme/climatechange
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condition for successful modelling. It is essential to know the purpose and the

modelling objective before one can decide how far the complexity of reality should

be reduced in the modelling approach. The underlying theory is crucial for the

interpretation and validation of the results.

Models Cannot Function Without a Data Base for Model
Development and Testing

The correctness of a model has to be re-evaluated again and again during the model

developmental procedure. The outputs have to be compared with the target system,

usually the ecological reality. Thus, the modeller needs data from the reference

system during several steps of model development.

The improvement of model quality proceeds in different steps. For these proce-

dures, a deep understanding of the modelled subject is necessary, as well data for

different types of model testing. The procedural steps generally are the following

(Nielsen 2009):

1. Consistency check and sensitivity analysis. The model is checked versus logical

predictions of what is likely to be the result of any change in the parameters and

forcing functions of the model. Furthermore the question of parameter sensitiv-

ity should be assessed.

2. Calibration. One major issue to be addressed here is that the chosen parameter

values need to be justified. This means that several aspects (e.g. uncertainty of

the parameters, their accuracy, their significance for the model) have to be

considered. Also, the results of the calibration can be observed by comparing

the outputs with data sets.

3. Validation. This phase is the highest level of model quality assessment. It is a

test of how well, model predictions (prognoses) are matched with actual obser-

vations. The higher the potential effect of the modelling results is, the higher

should be the emphasis in testing model results against independent data. For

validation, one or more datasets are required that describe the modelled situation

independent of the data used during model development.

Different possibilities to apply data sets for model validation, for quality assess-

ment of models and to secure correctness of model results are described in Chap. 23.

Models Have to Be Treated Skeptically When They Are Applied
Outside the Validation Regimes

A consequence of the validation strategy is information on the range of validity of

the model. If it is applied within the validation range, the results usually are of
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a high quality. But regrettably this is usually the most uninteresting case. Most

models are developed to show potential future developments, and these dynamics

of interest cannot be used for validation, because they are the application cases

(However, later, the model quality can be improved on the basis of wrong predic-

tions of the formerly future dynamics). We can never fully know how forcing

functions and other input variables for our future model projections will develop

through time; we can only know them later, retrospectively . Therefore model

results will remain uncertain to a high extent (see e.g. Fig 2.9). If the ranges of

the validation data sets are exceeded, the typical nonlinear relations or hysteresis

effects can be responsible for extreme modifications of the system’s behaviour (see

Fig. 6.12). Also, if we apply models to other places than the area or system for

which they were developed, there may be new parameter constellations that could

not be taken into account during the development phase. Summarizing, a model

will never be free of uncertainty and it is essential to respect the range of validity for

each part of the model when discussing its results.

Models Rarely Produce Reliable Prognoses, but Can Be Used
in Scenarios

Taking this point into account, models should not be used for specific prognoses.

But as we still want to benefit from the modelling power, scenarios are a good level

for applied modelling. When defining scenario conditions the user has to be aware

that his model output may never be realized; i.e.; because it is likely that he will

Fig. 2.9 Biomass dynamics of specific Northern-German zooplankton groups from Berlin lakes;

left part of the figure: real measurements until 2009; right part: the projection for a further year on
the basis of an autoregressive moving average model (Jopp, unpublished)
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choose extreme initial conditions to show the potential difference of the outputs

against ‘business as usual’ conditions.

If we summarize these limitations, we can list that:

l Successful models should be based on the awareness that they are abstractions.

Therefore reality can only be reflected in the frame of the abstract input

information.
l Models can provide results only within the limits of the basic assumptions.
l Models cannot mimic the complexity of nature. High model complexity does not

mean high modelling efficiency.
l Models produce uncertainty.

As a consequence of these points, the modeller should try to assess the uncer-

tainty of his predictions and – this may be the most important point – document all

model assumptions and report the uncertainties to the user and the scientific

community. By doing so, modelling as a scientific method does not exclusively

follow the golden scientific rules of comprehensibility and reproducibility. It also

enables the great opportunities that uncertainties provide: when prior conditions are

not fully met and the output allows different interpretations, there is always the

chance to follow sidelines of current scientific knowledge. Then, aside from the

well-trodden trails, some of the most interesting findings and thrilling discoveries

can be made
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Chapter 3

Historical Background of Ecological Modelling

and Its Importance for Modern Ecology

Broder Breckling, Fred Jopp, and Hauke Reuter

Abstract The chapter outlines major routes of development leading to the current

spectrum of concepts and applications in ecological modelling. The field is closely

linked to achievements in other sciences, in particular physics, numerics, computer

science, and cross-disciplinary adoption of ideas. Ecological modelling emerged

initially as a relatively homogeneous field and mainly employed differential equa-

tions which originated in classical mechanics. Quantitative ecological dynamics

were initially described in a formal analogy to physical processes. In the last few

decades, the methodological repertoire in ecological modelling was successively

expanded. Nowadays, the whole range of quantitative methods available in nume-

rical mathematics can be seen as a foundation for future model development in

ecology. Some pioneers in the field are briefly introduced and their contributions

linked to some of the mainstreams and sidelines of the state-of-the-art in ecological

sciences. The overview provided here will not be able to provide historical com-

pleteness but attempts to facilitate an understanding of the origin of the major

approaches presented in this book and how they obtained their role in current

ecological modelling.

3.1 A Historical Journey: Mainstream and Sidelines

of Model Development in Ecology

Science as a whole has and continues to undergo a long process of advancement. At

each period, the current state-of-the-art also represents the background of expecta-

tions for how the domains of the unknown might be tackled and structured in the

future. The state-of-the-art provides the vocabulary, the grammar, and the paradigms
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of world views. When looking back, it becomes apparent that the particular view of

each development phase had the tendency to give rise to interesting extrapolations.

The existing domains of the unknown get filled with structural analogies of what

was known. To this day, existing knowledge creates expectations of what is to

come, therefore, truly new knowledge is frequently surprising and controversial. In

Italy, Galileo Galilei (1564–1642) established experimental investigations as a

targeted approach on scientific questions. In France, René Descartes (1596–1650)

provided an elaborated philosophical underpinning of science in a mechanistic

world view. In Britain, Newton (1643–1727) formulated a synthesis that showed

a validity of the same mechanic laws being applicable on the microscopic scale of

the laboratory as well as on the macroscopic scale in astronomy. From 1751

onwards, the French encyclopaedists Denis Diderot (1713–1784), Jean Baptiste

D’Alembert (1717–1783), and others attempted to turn a synopsis of science into an

emancipatory power during the era of enlightenment. In the following time, science

diversified methodologically. Thermodynamics, chemistry, statistical mathematics,

and other fields rapidly progressed. In this concert, ecology arrived relatively late.

The German chemist Justus von Liebig (1803–1873) had already established the

use of synthetic fertilizer. Organic chemistry was advancing when Ernst Haeckel

(1834–1919) coined the term “ecology” in 1868 in his book “General Morphology

of Organisms” (1868). In 1935, when Tansley introduced the term “ecosystem”, the

very first modelling applications in ecology had just been developed. The starting of

ecological modelling occurred during the 1920s. It is quite obvious that we do not

report about a canonical field – there are lots of different opinions and views about

modelling in ecology. So we just take a glimpse of a transient process, which is not

only influenced by achievements arising in ecological science. Modelling techni-

ques and their ecological applications emerge in an intense exchange with scientific

advancement in other disciplines.

3.2 Ancestors of Ecological Modelling

Ecological modelling deals with the formalization of dynamic and complex inter-

action networks, how organisms relate with each other and with their environment.

Modelling attempts to uncover implications of understandable relations that are not

obvious at first glance when looking at the organisms and the locations where they

occur. With model development we hope to identify concealed implications. We

attempt to approximate and expand the margins, and the boundaries of what is

intelligible. The new insight that a good model provides, goes beyond what can be

concluded with direct observation, evaluation and interpretation.

Though the term ecology is relatively young, the assessment of natural processes

is much older. We can find the precursors of ecological modelling in natural history

and also in other disciplines.
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Modelling as Derived from Physics: Ecology as Derived
from Natural History

Physics had the role of the paradigmatic, standard-setting science. The establish-

ment of the experimental method as a primary source of rational intelligence was

established first for physical relations. Galilei and successors emphasized that a

temporally limited experiment, well isolated from the context and carefully

arranged, can stand as a prototype for a class of similar phenomena. Knowing

one outcome informs about the entire field of identical settings. One case can stand

for all – as long as standardization is adequate. This applied to inorganic material,

i.e. res extensa, as Descartes put it. He exempted res cogitans, the domain of

intelligence, where mechanistic paradigms would not hold in his opinion. Living

beings – though usually considered as plain res extensa – posed difficulties to some

degree. Discussions sparked about how far man and animals share certain proper-

ties, and how the human mind as a domain of free choice and brain as a domain of

its physical substrate would relate. In neurology and brain research certain aspects

of this controversy continue today (Maasen et al. 2003).

Studying the diversity of life and life forms was the domain of natural history

(Mayr 1982). An early impetus of natural history was a theological interest to

illustrate the richness of creation (natural theology, e.g. Paley 1803). Natural

history was largely descriptive and quantification played a relatively marginal

role. This line of tradition was influential in ecology. It remained meaningful and

it caused scepticism towards quantitative “physicalistic” descriptions. The founder

of ecology, Ernst Haeckel himself, did not emphasize the application of quantitative

methods in ecology. He largely used conceptual approaches, verbal descriptions,

and graphical representations. The initiative to look at quantitative relations of man

and environment did not emerge in the context of natural history or ecology but in

physics, in economics, and demography.

Malthus: Basic Ideas in Population Science

Robert Malthus (1766–1834) was one of the first to introduce quantitative con-

siderations in the population context. He considered implications and determinants

of the growth of human populations. Mainly operating from an economic perspec-

tive, his ideas had subsequent influence for ecological considerations. He linked the

growth and well-being of the human population directly with a development of

natural resources (Malthus 1798) (Fig. 3.1).

Later, Darwin (1809–1882) considered the malthusian ideas in his develop-

ment of evolutionary theory. A key idea of Malthus was that population growth

tends to exhibit self-similar characteristics: If each of the population member has

the same chances of fertility in space and time, the involved growth processes tend

to be exponential. With a constant rate of increase, exponential growth accelerates
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over time. On the other hand, Malthus argued, resource development would not

proceed exponentially but follow a linear dynamic. Malthus saw the discrepancy

between these two growth forms of arithmetic versus geometric growth as an

inevitable source of tension and instability. This controversy substantially

inspired the following scientific debate on well reasoned, quantitative considera-

tions on the human use of natural resources. At that time, Malthus’ major impact

was not in the field of ecology as he worked in the newly developing field of

political economics. Here, in the era of European imperialism, his ideas played an

important role in the discussion about how to deal with scarce and limited

resources (Claeys 2000).

Verhulst: Early Functional Generalizations

It did not take long until other, successively more elaborated functional forms to

describe growth were provided. Pierre Francois Verhulst (1804–1849) (Fig. 3.2)

was a Belgian mathematician, who sought a way to describe the modification

of growth intensity under the conditions of limited resources. He found a

rather simplistic form in 1838. His function is still widely used in ecological

modelling under the name of logistic growth (see Chap. 6: Differential Equa-

tions (6.7)).

The growth process that this equation describes always tends towards an equi-

librium. Interestingly, for quite a long time logistic growth was far less considered,

compared to Malthus. It was largely forgotten until Raymond Pearl (1879–1940)

rediscovered it when ecological modelling had made its first steps in the 1920s

(Pearl 1925). This was when the relevance of quantitative considerations as a

foundation of ecology became more and more potent (see Lotka and Volterra,

below). In physics, chemistry and other fields of science, advancement had led to

Fig. 3.1 Robert Malthus

source: wikimedia commons
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a well established mathematical underpinning and to the discovery of more and

more quantitative relations. Ecology – terminologically existing as a sub-discipline

of biology – was still largely dominated by qualitative assessment.

3.3 Founders of Ecological Modelling

In the first half of the twentieth century, Einstein’s relativity theory of 1905 had

been successively accepted in physics. Quantum theory was on the way, and David

Hilbert discussed infinite dimensional vectors as mathematical objects. With some

lag, the relevance of quantitative relations received attention in ecology as well.

This started with quite elementary and simple contexts, which did not require

elaborated mathematical forms. Differential equations, which describe the change

of particular variables over time, played the leading role.

Lotka and Volterra: Setting the Stage for Network
Approaches

Independent from each other, Alfred Lotka (1880–1949) and Vito Volterra

(1860–1940) developed the same simplistic form to describe the interaction of a

predator population and a prey population (Lotka 1925; Volterra 1926). The

equations are explained in detail in Chap. 6. In the subsequent time, this model

inspired innumerable variations, modifications, and adaptations to specific con-

texts. To this day, the original works of Lotka and Volterra are among the most

frequently cited papers in ecological modelling. The Verhulst-equation, re-dis-

covered by Pearl around the same time, helped to extend the functional repertoire

usable in the equations. The Lotka–Volterra (LV) model describes the interaction

Fig. 3.2 Pierre Francois

Verhulst

source: wikimedia commons
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of two species in the most simplistic way. Actually, any real ecological context is

by far more complex than two types of organisms interacting in a constant

environment. Interestingly, in a metaphorical sense, it can be stated, that the

LV-equations have the same role in ecology as Kepler’s laws had in astronomy:

the two-body problem can be mathematically solved. In isolation, the mutual

gravitational impact of two objects is easy to describe in an equation. But when

three or more mass points influence each other, it becomes very difficult to

develop a valid model. The three-body problem requires numeric approximation

and can be solved only in some special cases. In ecology, it was now possible to

write down one, two, or a larger number of equations for the interaction of

populations. But the equations could not be solved if their complexity was only

a little bit higher than the LV-model. This may have been the reason why

ecological modelling still played a peripheral role in the ecological science.

This aspect changed with the extent that network interactions could be numeri-

cally managed.

von Bertalanffy: System Theoretic Foundation
and Generalization

The Austrian biologist and philosopher Ludwig von Bertalanffy (1901–1972)

(Fig. 3.3) played an important role in establishing and popularizing the systems

perspective in biology in general, and influenced ecology (1949, see also 1969). He

developed the concept of a flow equilibrium and emphasised the holistic approach.

This encouraged to turn conceptual reasoning about the relations of interacting

parts and the whole into practical research agendas. In his time, the transition was

Fig. 3.3 Ludwig von

Bertalanffy (courtesy of

Bertalanffy Center for the

Study of Systems Science,

W. Hofkirchner, Vienna

http://www.bertalanffy.org)
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made where network structures could not only be formulated but also iterated. This

allowed to approximate the dynamic processes in complex networks. He, and the

following colleagues were influential for network approaches to gain further roots

in ecology.

Lindeman, EP and HT Odum, Waddington: Modelling
and Ecological Application

There are many scientists who influenced the establishment of quantitative views in

ecology. We select a few. Raymond Lindeman (1915–1942) (Fig. 3.4) pioneered

the concept of trophic dynamics. In his 1942 work at the University of Minnesota

(USA) he elaborated quantitative relations in an ecosystem context. At this time, he

still met reservation whether this would bring ecological research forward.

For further description of his work: see Chap. 18 on trophic cascades. In the

1950s, Eugene Odum (1913–2002) published an influential textbook (1953), where

he emphasized quantitative relations in a systems context as a means for ecosystem

management. With this book, “modern ecology” reached the surface of the scien-

tific mainstream. His brother Howard forwarded the idea to represent relevant

relations in ecological systems using energy equivalents incorporated in biomass

as a unifying measure. The energetic content of biomass could be used as a basis for

homogeneous descriptions applicable for all ecosystem types. Paradigmatic in this

context was the Silver Springs Ecosystem study (Odum 1957). Odum and collea-

gues refined their conceptional ideas in further studies (see Fig. 3.5). Though the

concept is generalizable in a formal sense, as any change in ecological system has

energetic implications, not all aspects were solved. This was because numerous

factors influence the quantitative changes in energy transfer. E.g. limiting factors of

Fig. 3.4 Raymond Lindeman

(by courtesy of University of

Minnesota Archives)
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chemical nutrients, and information processing by the organisms. Systems ecology

proceeded in a controversial way. The International Biological Programme (IBP),

established in 1962, executed 1964–1974, was the first global attempt to provide a

quantitative overview across different ecosystem types. The co-ordinator was C.H.

Waddington (1905–1975). Representative ecosystems were identified and biotic

inventories and quantitative trophic relations were investigated with a comparably

large effort (Worthington 1975). For the first time, a large international effort was

centred on ecosystems research including co-ordinated modelling efforts. Conti-

nuations of the research efforts provided model approaches that were quite impor-

tant in the understanding of the forest decline, which was a large-scale phenomenon

as a consequence of acidification of precipitation through industrial emissions

during the 1970s and eighties (Bossel 1986, 1996).

Forrester, Meadows, Patten, Joergensen: Ecological
Systems and Interdisciplinary Linkages

The systems approach has been continuously elaborated since the 1950s. Methods

were developed that allowed to link knowledge from different disciplines in co-

ordinated research frameworks. The interdisciplinary methods are described in

further detail in Chap. 4. Origins were in systems philosophy (von Bertalanffy),

and in industrial dynamics. Forrester (1961) developed a systems approach that he

initially applied to understand complex matter flows in industry and the relating

economic flows. The approach was subsequently generalized (Forrester 1969) and

applied in a global environmental context (Meadows et al. 1972). Bernhard Patten

(1976) exemplified the applicability for systems ecology. The strength of the

approach was in facilitating an interdisciplinary understanding, to structure com-

plex research tasks and to organize larger consortia of researchers contributing to an

overall goal. With numerous works of Joergensen, e.g. his activity to establish

the Journal Ecological Modelling in 1975, with the compilation of Textbooks

(Joergensen 1986) and handbooks (e.g. Joergensen 1979), and the establishment

Fig. 3.5 Conceptional ecosystem model with input and output side following Patten (1978) and

Odum (1997)
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of the International Society for Ecological Modelling in 1975, the topic was fully

established as a conceptionally and methodologically expanding science.

To meet the demands of empirical complexity, it became necessary to involve

additional methods. Most of these additional methods were again imported from

other disciplines and adapted to ecological requirements and then yielded the

repertoire of modelling complex ecological dynamics.

3.4 Diversification and Diversifiers

During the 1980s it became apparent that homogeneous variables had a limited

potential to fully capture the complexity of ecological relations. In particular,

quantity–quality transitions and inhomogeneous temporal and spatial structures

were difficult – at least inconvenient – to be captured in differential equation

systems. Criticisms towards modelling as such (e.g. den Boer 1981) would be

overcome when modelling methodologies diversified.

The Object Paradigm and Individual-Based Modelling

During the 1960’s, Ole Johann Dahl (1931–2002) (Fig. 3.6) and Kristen Nygaard

(Fig. 3.7) from the Norwegian Computer Centre in Oslo developed a computer

language which went conceptually beyond the established so-called procedural

approach: With SIMULA (SIMUlation LAnguage), extending ALGOL (ALGO-

rithmic Language) they introduced options that allowed a kind of self-structuring

during programme execution (Dahl et al. 1968). Reference variables could point to

particular addresses of the computer storage to indicate the location of complex

data objects. These data objects could be created and deleted when running the

programme and utilize references to each other that could be changed during

execution. This yielded object-oriented programming, which became generally

known in computer science with the SMALLTALK-80 programming language

Fig. 3.6 Ole-Jan Dahl,

courtesy of Depart. of

Informatics, University of Oslo
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with C++ and others during the late 1980s. These developments opened consider-

able new options in ecological modelling, since object orientation allowed a

convenient linkage of structural and functional dynamics, which had been difficult

to bring together. In both domains, changes could be synchronously represented –

by changing the object structure together with the values of the variables stored in

the objects (Fig. 3.8). One of the first, who understood the importance for ecology

was Heinrich Kaiser in Aachen (Germany). He used the approach for the develop-

ment of individual-based models (Kaiser 1976, 1979). A Pioneer in the field was

also Paulien Hogeweg in Utrecht (The Netherlands, see Hogeweg and Hesper 1979,

1983). The individual-based approach offered far more options to synchronously

represent variability in physiological states of organisms, usage of their behavioural

repertoire and responses to time variant structural environmental pattern (Huston

et al. 1988; Judson 1994).

The Self-Organization Paradigm

The self-organization paradigm became influential in ecology at about the same

time as the individual-based modelling approach. It emerged in the context of

physics (Haken 1977), thermodynamics (Glansdorff and Prigogine 1971), and

systems theory. The proponents of the self-organization approach argued the

following: Science as a whole is grounded on the principle of causality. Any change

that occurs has an antecedent cause. Same settings, same causes always produce the

same results. In this way, causes and effects were traditionally segregated. What

happens if they interact in large numbers and complex networks? With the avail-

ability of automated calculation potential, non-trivial effects were discovered in

loop-structures where interaction results served as a new input (the effect becomes a

new cause that feeds back in iterative cycles). In feedback structures, non-trivial states

can emerge that cannot be reduced to plain external impact. Systems can self-generate

Fig. 3.7 Kristen Nygaard
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complexity. This became a very influential idea for interdisciplinary exchange

(Jantsch 1980; Prigogine and Stengers 1984). In parallel to ecology, the self-

organization discourse influenced biology as a whole, as well as the social sciences,

psychology, and other fields of science and philosophy. The Santa Fe Institute (New

Mexico, USA) developed the research agenda of Artificial life. Here, formal

descriptions of how living entities self-organize were used to study the potential

to simulate properties of living systems using physical substrates (Langton 1994).

Frequently, object structures were used, but also other approaches like Cellular

Automata (see Chap. 8), which had received relevant applications in physics, and

thermodynamics. Moreover, fractals were used (Mandelbrot 1982) and new devel-

opments in the theory of dynamic systems (Peitgen 1992), all of which had become

more widely recognized during the 1980s and 1990s.

3.5 Anything Goes: The Diversity of a Post-Modern Ecology

Where are we now? Ecological modelling is a well established discipline. It is

recognized that the understanding of complex phenomena requires modelling and

that formal approaches can to a considerable extent capture the quantitative and

qualitative understanding we have about biological systems and their environmen-

tal interactions. From model representations, we also know that marginal shifts can

Fig. 3.8 Scheme of an object-oriented programme during execution state. The objects are using

pointers to access each other (see Chap. 12)
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be amplified and alter directions of development, which allows qualitative under-

standing but limits prognostic potential. It is clear meanwhile, that not a single

methodological approach is equally suitable for all questions and problems. This

confronts ecologists with the requirement to select appropriate approaches. Which

one to chose depends on the problem to be solved. Nowadays, methods from many

different sources are adapted if they are suitable for ecological modelling purposes.

How else could we discover activity pattern and behaviour of marine animals

except by combining radio tracking, remote sensing and other technical devices

with data evaluation facilities to come up with object oriented behavioural models

(see Chap. 12)? How else could we come up with realistic plant shape models

without using graphical iteration (see Chap. 11)? How else could we gain an

integrated picture of landscape dynamics and how it alters the living conditions

for protected organisms, if not using a larger set of methods in parallel with

network-like connections of mutual input (see Chap. 21)? We use differential

equations, matrix models, individual-based descriptions – as presented in the

different chapters of this book as single approaches – or when it is needed, various

model components will be coupled together (see Chaps. 20 to 22).

Promising approaches are very welcome for ecological application when it helps

and inspires the understanding of organisms and their relations among each other

and their environments. Regardless of the currently available, amazing supply of

modelling techniques and methods, we ecologists should always stay focussed on

one thing: to develop our own model.

40 B. Breckling et al.



Part II

Modelling Techniques and Approaches



Chapter 4

System Analysis and Context Assessment

Broder Breckling, Fred Jopp, and Hauke Reuter

Abstract System analysis is a theory-based approach with a wide range of practi-

cal applications for interdisciplinary co-operation that was derived from the Gen-

eral Systems Theory, as introduced by Bertalanffy and others. Formerly being

developed as an analytical instrument, it has now become also an integral part of

model development. The method starts with the delimitation of the investigated

system from the surrounding context, the specification of its compartments, key

factors, driving forces and how these interact with each other. To gain a conceptual

overview, a cause–effect diagram of a system can be constructed to sketch the

influences between the investigated components. Such a graphical examination can

be refined in a next step into a flow-diagram (flow chart) that depicts the compart-

ments, connections and controls of the system. This tool is of considerable help

when developing model systems further on the basis of differential equations, as it

enables to characterize time-dependent quantitative changes of the components as a

result of their interactions. Over the recent years, object-oriented systems analysis

(OOSA) has been established as a structural extension of the classical systems

analysis. By using the object-oriented programming approach, OOSA enables to

represent and subsequently simulate dynamic systems which change their structure

over time. We provide examples of the resulting complex interaction networks from

marine fisheries and functional plant architecture.

4.1 Systems Analysis and Context Assessment: The Starting

Point for Model Development

Systems analysis is an essential part of model development. It provides a targeted

methodology that helps to identify, represent and connect the important compo-

nents and relations which are relevant in a given context. System analytical
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approaches can be used to structure complex ecological phenomena (Jørgensen and

M€uller 2000). The methodologies are applicable in practically any discipline,

including social, technical and ecological systems. In this chapter we give a short

overview on backgrounds and fundamentals in system analysis and frontier views

of ecological theory and application. Furthermore, we explain important terminol-

ogies and introduce major techniques and strategies used in the system analytical

practice as a basis for the development of ecological models.

4.2 Ecological Theory, Systems and Complexity

In former stages of development, systems analysis was seen mainly as an analytical

tool which was used to structure and survey smaller, as well as large interaction

networks (Forrester 1968). Later, it was used as a scoping approach in coordinating

the tasks to be done, in particular to coordinate interdisciplinary research groups

where different specializations contribute to a given task and where the facilitation

of an interdisciplinary understanding is essential (Patten 1959, 1975). However, it

seems necessary to mention that systems analysis is not a standardized procedure.

There are many different interpretations of system theory. We largely refer to the

approach originating from the works of Bertalanffy (1969, called “General System

Theory”) and in addition to the more recent Object-Oriented Systems Analysis (Hill

1996) that originated from computer programming.

In ecology, the transition from qualitative consideration to quantitative consid-

erations is largely due to the introduction of a systems perspective (Odum 1953,

1983; Meadows et al. 1972). With the epistemological underpinning developed in

the context of Bertalanffy’s general system theory (Bertalanffy 1949, 1950, 1969)

the concept became widely applied also in biology. Ecological applications fre-

quently related to a systems interpretation as used in cybernetics (see: Patten 1975;

Patten and Odum 1981), and elaborated the implications for hierarchical structures

relevant in ecological systems (Odum 1971; Allen and Starr 1982; O’Neil et al.

1986). Odum (1977) points out that central concepts of ecosystem theory need to

adopt a holistic perspective to deal successfully with the complexity of the system

in focus. Applications cover all aspects of analysing and describing ecological

systems from short-term physiological processes, adaptive behaviour and reaction

to environmental conditions, to long-term evolutionary approaches.

4.3 What Is a System and What Is Systems Analysis

A system is an abstract, hierarchical construct of a set of elements, which is

considered to operate as an entity. When referring to any given system, we first

need to make a consistent distinction of what exactly belongs to the system and what

does not.With this first analytical step, the boundaries of the system are defined. The

different elements and their relations are specific for a particular system. The

elements can be involved in relations with other elements.
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Elements can be grouped into sub-systems which can have relations to other

elements or sub-systems. The resulting systems may be hierarchically organized

(see e.g. Fig. 2.4). However, in the early days of systems analysis, the hierarchical

aspect was followed only in a very limited way, because the representation in

differential equations used for dynamic models used to concentrate the interaction

on only one focal level (see Chap. 6).

System analysis is a generally applicable strategy to operationalize a given

context of any structure and complexity. It allows to check the available informa-

tion for completeness, consistency, relevance and plausibility, and can be colloqui-

ally summarized as an assessment of “how things work together”. The strength of

the approach is its interdisciplinary applicability which allows to organize and

structure workgroups and contents across different scientific specializations,

while maintaining the coherence of the subject.

During the first step of model development (see also Chaps. 2 and 3), there are

important questions to answer:

l What are the key factors to focus on?
l What are the driving forces behind the investigated phenomena?
l Which interactions are relevant, which can be excluded?
l How to organize and prioritize the analysis?

These decisions have to be made with care since the best model does not help

to solve specific research questions if it does not capture the relevant influences. The

best way to begin is to provide a communicable structure of what the model intends to

deal with. Such a conceptual overview can serve as a decision basis for further model

development. The following steps are a short overview of how such a communicable

structure can be obtained.

The Development of a Cause–Effect Diagram

An approach serving to delimit a modelling task and identify relevant structural

components of the given context is the cause–effect diagram. It is a graphical

representation that has the purpose to list the relevant aspects of the considered

context and to indicate existing relations and influences. The specification should be

made in a way that it prepares the next steps in formalizations:

Every component in the diagram should be selected so that it represents something
quantifiable. With regard to interactions it is involved in, it should be possible to

specify the component so that it can increase or decrease in quantity. Or to put it

another way: Only concepts that allow the specification of an increase or decrease are

suitable as a component in analysis. Examples of suitable concepts are e.g. biomass,

temperature, concentration or density of a substance, frequency, etc. Less suitable are

terms that involve names, tastes, styles, and other concepts that are difficult to

interpret what their increase or decrease in quantity could mean. Vague terms that

leave room for different ways of interpretation should also be avoided. They should
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be expressed in other terms or divided further into (sub-) components. The compo-

nents should have a minimum of internal structure. If a component has a pronounced

internal structure it should be considered to disaggregate it further. Disaggregation of

the overall context into its components should be continued to approximate a

manageable number of components (or elements). Frequently, manageable problems

are limited to around ten components. If a higher number seems inevitable, it should

be discussed whether the modelling task eventually requires a more specific focusing.

The first step is to write the single components so that relations between them can be

drawn in the form of arrows. The arrow between two components means there is an

influence of one component on another component concerning quantitative changes.

The criterion for where to set an arrow is a specific one: if the component increases in

quantity, the other component should either increase as well or decrease in quantity.

The influencemust not be necessarily in exact proportion, only the direction of increase

or decrease should hold. If the influence is mutual, two arrows should be drawn.

For a cause–effect diagram, a relation exists between two components if the

quantity of a component changes as a result of a change in another component.

A positive influence would exist if component A increases, and then, as a result

component B increases too. Also, a positive relation would be considered if B

decreases as a consequence of a decrease in A.

A negative influence exists, if elementA increases in quantity, and then element B

decreases as a result (or B increases as a result of a decrease in A). The next step is to

draw arrows between the elements as relations (influences). This may require shifts of

the location of the components so that the overview is optimized and the possible

crosses of the arrows are minimized. The quality of the influence, whether it is positive

or negative, is indicated by assigning the arrow with an according symbol (þ or �).

The cause–effect diagram (see Fig. 4.1 for an example) facilitates a conceptual

overview. Discussing the result can give rise to further refinements and is the

crucial step in an identification of the important elements (variables) that are used

in further development steps in modelling. Further steps include a quantitative

specification of each of the influences as a mathematical function.

The selection of a system analytical interaction network is not as trivial as it may

seem at first glance. The selection of each of the components (elements) and

influences (relations) requires careful discussion to capture the crucial interaction.

It forces the modeller to be explicit about the ideas of how things work together.

The Flow-Diagram (Flow Chart): Compartment, Connections,
Controls: The “3 Magic C’s”

Cause–effect diagrams provide the first overview. In a following step, they can be

refined into flow-diagrams. Flow diagrams are an important tool deriving from the

classical systems approach, which deals with the development of differential equa-

tion models where time-dependent quantitative changes occur as a result of the
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components interactions. Other modelling approaches go specific ways in successive

refinement. The additional achievement of the flow diagram is, that a graphical

overviewmakes it easier to survey larger networks and follow quantitative transitions

within the model. The flow chart approach was originally popularized by Forrester

(1968) in the context of the simulation package “DynaMo”. Later, the approach

became modified in different ways and was used also as a graphic user interface in

various simulation software (e.g. STELLA, ModelMaker, SIMILE, see http://www.

mced-ecology.org). This links the conceptual development of amodel with computer

implementation. The flow diagram consists of the following major components:

l Compartments

Compartments are containers to store material, energy, or any kind of quantity in

focus. They represent a variable (element) of a dynamic system. Compartments are

drawn as rectangles.

l Connections

Connections are drawn as solid arrows. They represent the flow of the quantities

between the compartments. A flow always occurs in a dynamic system when the

size of a variable changes. An increase is considered as an inflow to the variable, a

decrease as an outflow. The flow can come from or go to other compartments, or

Fig. 4.1 Example of a cause–effect diagram describing relations in coastal fisheries. Explanations

of which criteria are used to set-up a cause–effect diagram are given in the text
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cross the border of the system [inflow from the outside into the system (i.e. from a

source), outflow when it leaves the system (into a sink)].

l Controls

Controls are used to specify the extent of flows occurring between different

compartments. They are drawn as valves with influences from other parts of the

system that are drawn as light or dotted arrows. The dotted arrows represent the

causal structure, determining which parts of the system have an impact on other

parts.

Compartments, connections, and controls represent the functional units which

allow to specify dynamic systems. For convenience, additional graphical elements

are sometimes used in systems representation when a direct interfacing to a

mathematical formalization is intended.

l Sources and Sinks

The system border is indicated only implicitly in the form that flows come from

the outside into the system or leave the system to the outside. Sources are used if a

flow is represented that does not originate from within the system (i.e. an inflow to a

variable that does not originate from another variable). Sinks, usually displayed

with the same symbol as a source, are displayed when a flow originates from within

the system but does not ends in a systems compartment.

l Auxiliaries

In some cases it simplifies the representation by adding a symbol (e.g. a larger

circle) to represent expressions, which occur more than once in the specification of

different controls.

l Parameters

These are constant values that are used to specify controls. They can be visua-

lized by a specific symbol, frequently a small circle, from which influence(s) go to

one or more than one control.

The transition from a cause–effect diagram to a flow chart is made by an

assignment of the concepts appearing in the cause–effect diagram to either a

compartment, connection or control. Arrows from the cause–effect diagram are

distinguished whether representing flows or influences. The process to set up a

flow diagram is easier when the overall structure has already been considered in

terms of causes and effects, rather than starting at the beginning with the set-up of

a flow diagram without having systematized the relevant relations to be considered

beforehand.

For a correct systems representation, implicit rules emerge for flow charts. Flows

can only originate from sources or from compartments and end at sinks or compart-

ments. Influences can originate from parameters, auxiliaries, compartments or con-

trols. They can connect to auxiliaries and controls, but cannot end at compartments.

Figure 4.2 represents an example of a Lotka–Volterra flow chart.
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Why the General Systems Theory Is Extensible

General Systems Theory, as introduced by von Bertalanffy and others, raised the

expectation of general applicability, i.e. being an “all purpose approach”.What would

be more general than listing what it is that changes, and then assigning howmuch that

would be under certain circumstances. The approach was applied and actually is most

Fig. 4.2 Example of a flow diagram: Flow chart of the Lotka–Volterra equations, see Chap. 6

(6.11). In the classical flow-chart notation the diagram relates to the following differential

equation system

d Prey/dt ¼ Prey Increase� Prey Decrease

d Predator/dt ¼ Pred Increase� Pred Decrease

Capture term ¼ Capture Probability � Prey � Predator
Prey Increase ¼ Growth factor � Prey
Prey Decrease ¼ Capture term

Pred Increase ¼ Conversion factor � Capture term

Pred Decrease ¼ Mortality factor � Predator
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appropriate as a developmental basis for (ordinary) differential equation systems. It is

less suitable to describe structurally heterogeneous settings, where it is not reasonable

to define internally homogeneous variables, where the internal heterogeneity is of

crucial interest. Also, the approach is not well suited if it is required to describe

systems that vary in time not only quantitatively but also change their structure in a

pronounced way. For this kind of application case, “structural dynamic modelling”

was developed as an extension (see Chap. 19). Starting the operations in terms of

establishing and interrupting relations, adding and removing components is the field of

object-oriented systems analysis, which was derived from the according computer

programming paradigm (object oriented programming).

4.4 Non-Classical System Approaches: Object-Oriented

Systems Analysis

The object-oriented systems analysis (OOSA) originated in computer science in the

context of object-oriented programming. It is the conceptual background of program-

ming languages, which allow some self-organization and self-modification features

of the executable programme. In fact, OOSA is more general than the “general

systems” approach, which can be thought as a sub-set of what object orientation

can deal with. In the following, we give a brief introduction into the object-oriented

programming paradigm (OOP) and use it for systems analytical purposes. More

elaborated descriptions can be found at Rumbaugh et al. (1991) and Hill (1996)

and in the chapter on individual-based models (Chap. 12). The term “object-oriented

systems analysis” refers to specific features of modern computer programmes.

In computer science, a class is a unit that can be specified in a computer

programme. It consists of storage reservations for variables as well as executable

statements of computer code. The specific feature of a class allows it to be copied

(“instantiated”) various times during programme execution. Then, the copies are

referred to as objects. In order to distinguish several copies of a class during

programme execution a special type of variable (“reference variable” or “pointer”)

is required. A pointer contains the address where the object can be found in the

computer storage. Hence, using pointers, it is possible to specify relations and also

interactions between objects.

4.4.1 Object Oriented Systems Analysis Facilitates Structurally
Dynamic System Representations

For ecological applications, classes can be used to describe the set of states and

activities of organisms and individuals. Using OOP it is conveniently possible to use

one generic description to simulate large numbers of individuals performing their

activities independently of each other. OOP allows to handle structurally variable
interaction networks. This largely extends the range of phenomena that can be
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modelled, in particular self-organizing spatio-temporal structures on different levels

of organization (Breckling et al. 2005; Reuter et al. 2008). The system analytical

operations to set up an object-oriented model are explained in Chap. 12, since the

approach has its most important application in individual-based modelling.

4.4.2 Application Examples

The object structure of a model can be very closely adapted to quantitative and
qualitative ecological knowledge and thus allows to investigate implications from

Fig. 4.3 Object network of a structurally dynamic plant model: Meristems, internodes, leaves,

roots and root-tips are classes from which objects are instantiated to simulate the plant architec-

tural development according to the physiological processes simulated inside the objects (assimila-

tion, nutrient transport, etc.); see Eschenbach (2005) for details
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what is known without being forced by the abstraction concepts to focus only on

specific properties. This is shown in the following examples.

Eschenbach (2005) attempted to model structural and physiological implications

of plant development jointly. Previousmodels usually focused on either the structure

or on physiological processes. She defined the typical units as classes and specified

according methods (rules how to change the variables) within the particular classes.

Under certain conditions new class instances are created (e.g. branches, internodes)

– or existing ones could be eliminated (e.g. leaves). This allowed to test whether

certain assumptions about partitioning that cannot be directly measured, but are

important for growth implications were in line with the overall structural develop-

ment that results after many years of growth. (Figs. 4.3 and 4.4).

The same approach can be used to describe animal interactions. H€olker and
Breckling (2002, 2005) applied it to simulate local density heterogeneities of fish

depending on individual behaviour and environmental structures. The model aimed

at investigating the relation between individual bio-energetic characteristics and

population development. It represents individual fish as autonomously acting agents

Fig. 4.4 The repeated iterative application can reveal complex plant-like structures with root

system, stem, branches, leaves and meristems as shown for the model of alder trees (Alnus
glutinosa). Two Simulation results of structural development assuming different light intensities

are shown (left: optimal, right: low light). The tree architecture adapts to the environmental

conditions according to the response pattern of the single components showing the implications

of environmental or physiological differences on the structural development [from Eschenbach

(2005)]
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with an explicit behavioural repertoire to react to its environment and comprises, e.g.

food searching, movement and biomass and season dependent reproduction. Bio-

energetic processes were implemented in detail to represent a realistic food depen-

dent growth and reproduction, which includes a size dependent exploitation of

resources. The model was parameterized for the roach (Rutilus rutilus) and simula-

tions were carried out for the abiotic conditions of a Northern German lake of about

1.1 km2 surface.

The analysis of model results revealed changes in structural relationships.

Depending on size the fish were able to exploit further resources (molluscs)

providing a higher nutritional value (Fig. 4.5a). Heterogeneities in size structure

thus were amplified (Fig. 4.5b) allowing the larger individuals to reproduce 1 year

before the rest of the cohort. The model thus allowed to analyze causes for the

empirically determined cohort structure and potential reactions to changing envi-

ronmental conditions.

4.5 System Types and Modelling Approaches:

A Modern Diversity

For model development, a structural overview of the relevant relations to be

included or left out of consideration is essential. Formulating this overview in an

explicit way is the primary step of model development. If there are shortcomings in

Fig. 4.5 Results from the fish model of H€olker and Breckling (2002, 2005). (a) Increase in

biomass and size dependent diet of roaches (Rutilus rutilus). Large individuals are capable of

exploiting bigger food items (molluscs) thus providing a higher nutritional value [Figure adapted

from H€olker and Breckling (2005)]. (b) Simulation results of the length development of a second

year roach cohort. The length frequency illustrates the differentiation in size. Most roaches are

below 13 cm and only a few are 0.5–1 cm longer
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certain model details it is usually possible to correct them. However, if basic

decisions like which model structure to use are inadequate, regardless how good

the rest is, the entire modelling work could be compromised.

In early years of ecological modelling the focus was on quantitative transitions

in structurally fixed networks. Nowadays, things have become more challenging

and demanding. The overview has to encompass not only quantitative transitions

but also qualitative and structural dynamics. It requires a basic insight in the

biotic interactions and a very clear definition of what is considered the focus of

interest.

Afterward a representation of the basic interactions to be included is possi-

ble. Only then can the decision be made as to which modelling technique is

the most suitable. The way abstractions are made is different for the various

approaches.

It is useful to move beyond the commonly applied practices to select the

problems according to the techniques one is able to handle, and not the other way

around. It is better to choose from a larger range of different tools, according to the

state-of-the-art of current ecological modelling techniques. This strategy is not only

more efficient and appropriate. It also helps to maintain the quality of the theoretical

analysis with the diverse requirements of modern ecological issues.
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Chapter 5

Steady State Models of Ecological Systems:

EcoPath Approach to Mass-Balanced System

Descriptions

Matthias Wolff and Marc Taylor

Abstract We describe the fundamentals and applications of trophic models of

ecological systems and show how a simple mass balance approach of the early

1980s was further developed into a very advanced complex software package,

freely available on the internet (Ecopath with Ecosim, EwE, http://www.ecopath.

org). Through its three decades of evolution, the approach became increasingly

popular, with over three hundred Ecopath models being published to date. During

its first 10–15 years, the approach was mainly used as a tool to integrate ecological

and fisheries data to understand and visualize the trophic flow structure of ecosys-

tems, thereby allowing for the meaningful comparisons between systems. Later

(since the mid-1990s) it was increasingly used to explore ecosystem changes under

the impact of management or climate impact scenarios. This evolution from a more

descriptive mass-balance to a simulation modelling tool was enabled through

fundamental changes in the mathematical architecture: the original version of

Ecopath was based on linear algebra for input–output analysis to investigate the

properties of steady state networks, while in the recent version, coupled differential

equations are used for each of the defined system compartments. The new model

architecture thus allows the magnitude of flows in and out of compartments to

change over time, which makes simulations of changes possible. Foraging arena

theory was also taken into account and prey biomass was allowed to vary in its

availability (vulnerability) to predators. If the predators consumption is mainly

determined by prey availability (bottom-up control, low vulnerability), predator

biomass would greatly respond to changes in prey biomass, while under a situation

of strong predator (top-down) control, changes in predator biomass would greatly

impact its prey (high vulnerability). Since EwE also allows for specifying different

resource use types (e.g. types of fisheries or other resource uses) and economic

variables associated to them (operational costs, number of people employed etc.),

different management regimes can also be explored in terms of their socio-economic
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outcome. If spatially explicit data on biomass distribution of model groups and

dispersal rate values are available, the Ecospace module of the EwE package may

be used to derive at a spatially explicit, dynamic trophic model able to simulate how

the management of one part of the system area may affect other parts. The

incorporation of these spatial dynamics is of particular interest in the exploration

of management questions, such as in the size and placement of Marine Protected

Areas (MPAs) (this application is not further described in this chapter).

5.1 Introduction

The steady state trophic modelling approach came into focus in the late 1970s,

when the evidence was increasing that any strong single species fishery (like the

Cod fishery in the North Atlantic) substantially affects other parts of the ecosystem

that are trophically linked with the target resource. People sought to quantify

trophic interactions within aquatic ecosystems and different multispecies

approaches and models evolved. Among the pioneering work was the North Sea

Model of Anderson and Ursin (AU model, 1977), which includes the dynamics of

nutrients, phytoplankton, zooplankton and age-structured Beverton–Holt yield

models for the main fish groups of the system. The full model was based on 308

differential equations and required an enormous amount of biological information

for model formulation. The Multispecies Virtual Population Analysis (MSVPA)

followed shortly in the early 1980s and the AUmodel also represents a multispecies

extension of traditional single species fisheries stock assessment models. It is based

on values of predation mortality based on catch-at-age data; predator ration and

predator diet information and allows estimating the predation mortalities produced

by predators on prey species and the annual consumption of prey by predators.

While the approaches mentioned, and other related ones, were developed from age

structured population models, the ECOPATH trophic modelling concept, developed

during the early 1980s by Polovina (1984), followed a different, more holistic

approach: it uses biomass pools of functional groups, which are connected through a

predator–prey diet matrix. Energy flow through the food web is balanced by equating

the biomass production with internal consumption and exports to the fishery of the

different compartments. This approach allows integrating a large number of species

into ecological functional groups, requires much less biological information and is

thus applicable for data – sparse situations that are often found in tropical waters.

During the first decade of its genesis, ECOPATH was greatly enriched through the

input of Ulanowicz’s (1986, 1997) ideas of network growth and development of

natural systems and through substantial contributions by Christensen and Pauly

(1992), which were all integrated into the ECOPATH II software. In the mid-1990s

Carl Walters joined the team and developed a simulation software, then called

ECOSIM (Walters et al. 1997). It was based on ECOPATH II, but replaced the simple

linear algebraic equations by coupled differential equations, thus allowing compart-

ment biomasses to change over time as a response to changes in mortality or
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consumption or environmental forcing. Thus, a tool was created that allows, by using a

balanced ECOPATHmodel as a reference, to explore ecosystem response of different

fishing policies and to follow ecosystem changes over time by fitting time series of

observed biomasses and catches to fishing effort and/or environmental parameters.

Application Range

ECOPATH requires the identification of main functional groups within a system,

and allows to quantify and visualize biomass flows, to identify key compartments of

high biomasses and productivities and to understand the relative importance of the

biomass export to the fishery for the energy cycling of the system.

Relevant research questions are related to (a) the relative impact of the fishery

and natural predation on the key resources of the system; (b) the overall functional

structure (i.e. the ratio of benthic to pelagic compartments; relevance of benthic

versus pelagic primary productivity etc.); (c) the trophic efficiency between trophic

levels; (d) network flow characteristics (such as degree of connectivity, amount of

internal cycling, role of detritus, etc.); (e) mean trophic level of the catch, Primary

Production Required (PPR) to sustain the catches and many more summary statis-

tics that can be derived from this holistic approach. It is frequently used for

comparing network structure, overall degree of development/disturbance and the

relative role of certain functional groups of aquatic ecosystems. Hundreds of

aquatic ecosystems have been modelled with this approach and the database for

comparative research has grown substantially over the past two decades. Following

the Large Marine Ecosystem (LMEs) initiative of Sherman et al. (2003) ECOPATH

models were and are being constructed for each of the LMEs. A substantial number

is already accessible on the web (see: http://www.seaaroundus.org).

5.2 Conceptual and Mathematical Basis of Approach

5.2.1 Mass-Balance Modelling: Ecopath

The core routine is based on the assumption of mass balance over a given time

period (usually 1 year, but any other interval may be chosen). In its present form

Ecopath is based on two master equations, one to describe the production term (5.1)

and one for the energy balance for each group (5.4).

Master equation one:

Pi ¼ Yi þM2i � Bi þ Ei þ BAi þM0i � Bi; (5.1)

where Yi is the total fishery catch rate of i,M2i is the instantaneous predation rate for

group i, Ei the net migration rate (emigration�immigration), BAi is the biomass
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accumulation rate for i, whileM0i is the “other mortality” rate for i. Pi is calculated as

the product of Bi the biomass of i and (P/B)i, the production/biomass ratio for i. The
(P/B)i rate under most conditions corresponds to the total mortality rate, Z (see Allen

1971), commonly estimated as part of fishery stock assessments. The “other mortal-

ity” is all mortality not included elsewhere, and is internally computed from (5.2)

M0i ¼ Pi � ð1� EEiÞ
Bi

; (5.2)

where EEi is called the “ecotrophic efficiency” of i, and can be described as the

proportion of the production that is utilized in the system. The predation term, M2,

in (5.1) serves to link predators and prey as

M2i ¼
Xn

j¼1

Qj � DCji

Bi
; (5.3)

where the summation is over all n predator groups j feeding on group i, Qj is the

total consumption rate for group j, and DCji is the fraction of predator j’s diet

contributed by prey i. Qj is calculated as the product of Bj, the biomass of group j
and (Q/B)j, the consumption/biomass ratio for group j. For parameterization Eco-

path sets up a system with (at least in principle) as many linear equations as there

are groups in a system, and it solves the set for one of the following parameters for

each group, biomass, production/biomass ratio, consumption/biomass ratio, or

ecotrophic efficiency. The other three parameters along with the following para-

meters must be entered for all groups, catch rate, net migration rate, biomass

accumulation rate, assimilation rate and diet compositions (for more details see

Christensen and Walters 2004).

Within each group energy balance is ensured using the following master equa-

tion two:

Master equation two:

Consumption ¼ production þ respirationþ unassimilated food: (5.4)

This equation is in line with Winberg (1956), who defined consumption as

the sum of somatic and gonadal growth, metabolic costs and waste products.

In Ecopath it was chosen to estimate respiration from the difference between

consumption and the production and unassimilated food terms. This reflects the

focus on application for fisheries analysis, where respiration rarely is measured

while the other terms are more readily available. Besides units of wet weight

biomass, Ecopath models can be constructed using energy as well as with nutrient

related currencies. If a nutrient-based currency is used in Ecopath the respiration

term is excluded from the above equation (as nutrients are not respired), and the

unassimilated food term is estimated as the difference between consumption and

production.
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Addressing Uncertainty

A resampling routine, Ecoranger, has been included to accept input probability

distributions for the biomasses, consumption and production rates, ecotrophic

efficiencies, catch rates, and diet compositions. Using a Monte Carlo approach, a

set of random input variables is drawn from user selected frequency distributions

and the resulting model is evaluated based on user-defined criteria and physiologi-

cal and mass balance constraints.

To facilitate this task of describing probability distributions for all input

parameters (including the diet compositions matrices) and to make the process

more transparent a “Pedigree” routine was implemented (Pauly et al. 2000) that

allows the user to mark the data origin using a pre-defined table for each type of

input parameters (from in-situ sampling, taken from other models etc.). The

confidence interval around the input parameter is smallest (�10%) for data

derived from sampling the same system and largest for those derived from other

models (�80%).

The Pedigree index values for input data scale from 0 for data that is not rooted

in local data up to a value of 1 for data that are fully rooted in local data. Based on

the individual index value an overall “pedigree index”, t, is calculated as the

average of the individual pedigree value based on

t ¼
Xn

i¼1

ti; p
n
; (5.5)

where ti,p is the pedigree index value for group i and input parameter p for each of

the n living groups in the ecosystem; p can represent either B, P/B,Q/B, Y or the diet

composition, DC. To scale based on the number of living groups in the system (n),

an overall measure of fit, t* is calculated (using an equation based on how the

t-value for a regression is calculated) as

t� ¼ t �
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p (5.6)

This measure of fit describes how well rooted a given model is in local data.

Mass-balancing an ECOPATH model is usually achieved by manually adjusting

biomasses, mortality rates, diets, etc., searching for data inconsistencies and gradu-

ally obtaining a balanced model. An iterative method for obtaining mass-balance

has been added to EwE, offering a well defined, reproducible approach, while also

allowing exploration of alternative solutions based on parameter confidence inter-

vals as explained above. This routine, called automated mass balance, is further
explained in Christensen and Walters (2004).
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Ecosystem Indicators

A selection of ecosystem indicators was included in EwE to describe the state of the

system. Following Odum (1969, 1971) it is assumed that an undisturbed ecosystem is

mature and that in a more mature system most niches are filled; that a larger part of

the energy flows should be through detritus-based food webs; that primary production

should be more efficiently utilized; that the total system biomass/energy throughput

ratio should be higher, etc. As shown by Christensen and Pauly (1998) (and many

others) the use of a composite of ecosystem indices may allow to describe the state of

a given system and how it may have changed over time. A selection of relevant

ecosystem “health” indices included in EwE are given in the following Table 5.1.

5.2.2 Time-Dynamic Simulation: Ecosim

The basics of Ecosim are described in detail by Walters et al. (1997, 2000) and will

only be overviewed here. Ecosim consists of biomass dynamics expressed through

a series of coupled differential equations. The equations are derived from the

Ecopath master (5.1), and take the form

dBi

dt
¼ gi

X

j

Qij �
X

j

Qij þ Ii � M0i þ Fi þ eið Þ � Bi; (5.7)

where dBi/dt represents the growth rate during the time interval dt of group i in terms

of its biomass, Bi; gi is the net growth efficiency (production/consumption);M0i the

non-predation (“other”) natural mortality rate estimated from the ecotrophic effi-

ciency, Fi is fishing mortality rate, ei is emigration rate, Ii is immigration rate

(assumed constant over time, and hence independent of events in the ecosystem

modelled), and ei � Bi – Ii is the net migration rate of (5.1). The two summations

estimate consumption rates, the first expressing the total consumption by group i, and
the second the predation by all predators on the same group i. The consumption rates,

Qji, are calculated based on the “foraging arena” concept, where Bi’s are divided into

vulnerable and invulnerable components (Walters et al. 1997, Fig. 5.1), and it is the

transfer rate (vij) between these two components that determines if control is top-

down (i.e. Lotka–Volterra), bottom-up (i.e. donor-driven), or of an intermediate type.

Ecosim bases the crucial assumption for prediction of consumption rates on a

simple Lotka–Volterra or “mass-action” assumption, modified to consider “forag-

ing arena” properties. Following this, prey can be in states that are either vulnerable

or un-vulnerable to predation, for instance by hiding (e.g. in crevices of coral reefs

or inside a school), when not feeding, and only being subject to predation when

having left their shelter to feed (Fig. 5.1). In the Ecosim formulation (Walters et al.

1997, 2000) the consumption rate for a given predator feeding on a prey was thus

predicted from the effective search rate for predator–prey specific interactions, base
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vulnerabilities expressing the rate with which prey move between being vulnerable

and not vulnerable, prey biomass, predator abundance. The model as implemented

implies that “top-down versus bottom-up” control is in fact a continuum, where

low v’s implies bottom-up and high v’stop-down control. EwE has incorporated

numerous further computational routines; to force time series, to handle complex

Table 5.1 Ecosystem indices given in the EwE software

Name of index Meaning

Cycling index Fraction of an ecosystem’s throughput that is recycled

Predatory cycling index Corresponds to the cycling index but is excluding detritus groups

Cycles and pathways A routine that presents the numerous cycles and pathways that are

defined by the food web representing an ecosystem based approach

suggested by Ulanowicz (1986)

Connectance index The ratio of the number of actual links to the number of possible links.

Feeding on detritus (by detritivores) is included in the count, but the

opposite links (i.e. detritus “feeding” on other groups) are

disregarded

System omnivory index The average omnivory index of all consumers weighted by the

logarithm of each consumer’s food intake. It is a measure of how

the feeding interactions are distributed between trophic levels. An

omnivory index is also calculated for each consumer group, which

is a measure of the variance of the trophic level estimate for the

group

Trophic level

decomposition

Aggregates the system into discrete trophic levels sensu Lindeman.

The routine reverses the routine for calculation of fractional trophic

levels.

Trophic transfer

efficiencies

Calculated for a given trophic level as the ratio between the sum of the

exports plus the flow that is transferred from one trophic level to the

next, and the throughput on the trophic level. The transfer

efficiencies are used for construction of trophic pyramids, and

others

Primary production

required (PPR)

To estimate the PPR to sustain the catches and the consumption by the

trophic groups in an ecosystem the following procedure is used: all

cycles are removed from the diet compositions, and all pathways in

the flow network are identified using the method suggested by

Ulanowicz (1995). For each pathway the flows are then raised to

primary production equivalents using the product of the catch, the

consumption/production ratio of each path element times the

proportion the next element of the path contributes to the diet of the

given path element

Mixed trophic impact

(MTI)

Leontief (1951) developed a method for input–output analysis to assess

the direct and indirect interactions in the economy of the USA,

using what has since been called the “Leontief matrix”. A modified

input–output analysis based on the procedure described by

Ulanowicz and Puccia (1990) is implemented in EwE. The MTI

describes how any group (including fishing fleets) impacts all other

groups in an ecosystem trophically. It includes both direct and

indirect impact, i.e. both predatory and competitive interactions.

Ascendency EwE includes a number of indices related to the ascendency measure

described in detail by Ulanowicz (1986). Ascendency is seen as a

measure of ecosystem growth and development
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life histories, to trace nutrients and pollutants through the food web and several

others (for more details see Christensen and Walters 2004).

5.3 Application Examples

5.3.1 Ecopath Approach

The following example is based on Wolff (2006), who compared Ecopath II models

of two mangrove fringed estuaries in Costa Rica (Gulf of Nicoya, at the Pacific

shore) and Brazil (Caeté estuary, NE of Belem) with respect to biomass and energy

flow distributions, productivity and fisheries potential, with the added objective to

obtain guidelines for conservation and management of these systems.

Figure 5.2 shows the flow charts of the two models derived from the ECOPATH

programme.

Figure 5.3 shows a routine of ECOPATH, which allows the visualization of

flows that enter (as food) and leave (to the predators and the fishery) a compartment.

In the example below the central mangrove consumers in both systems (land crab in

the Caeté system and shrimps in the Nicoya Gulf) are shown. A biomass pyramid of

both systems is also included.

The input data matrix (see additional material at http://www.mced-ecology.org)

needs three input parameters for each compartment: biomass (B), turnover rate

(P/B) and consumption rate (Q/B). The trophic level of each group is calculated by

the program based on the diet matrix, which connects the model compartments.

Differences in biotic structure, energy flow and resource productivity’s between

both systems proved to be substantial as seen by the summary statistics of the model

calculated (but not included here). These are largely due to differences in topography,

Fig. 5.1 Simulation of flow between available (Vi) and unavailable (Bi–Vi) prey biomass in

Ecosim. ai is the predator search rate for prey i, v is the exchange rate between the vulnerable

and un-vulnerable state. Fast equilibrium between the two prey states implies Vi ¼ vBi / (2vþ aBj)

(based on Walters et al. 1997)
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tidal regime and mangrove cover between both systems. The Gulf of Nicoya is

exposed to semidiurnal tides and an efficient daily water exchange between the

mangrove stands and the gulf and thus to a strong mangrove matter export to the

gulf water. In comparison, the mangrove forest of the Caeté estuary is only flushed

each fortnight and the largest part of the mangrove production thus remains within

Fig. 5.2 Flow charts of the Gulf of Nicoya (left) and of the Caeté estuary (right); box size is

proportional to square root of compartment biomass (except for mangrove compartment); Q-values

represent total amount of biomass entering the compartment; flows are given in gm–2 (wet mass)

Fig. 5.3 Caeté estuary (left) and Gulf of Nicoya (right). Role of land crabs (Ucides cordatus) and
shrimps (Penaeus spp.) in the ecosystem and system biomass pyramid; food biomass from prey

compartments (black bars); food biomass to predators (dark grey bars); catches (light grey bar)
(widths of bars proportional to amounts transferred) (from Wolff 2006)
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the forest. This is reflected in great differences in food web structure and the amount

and type of resources produced in both systems. In the Gulf of Nicoya, detritus

matter exported from the mangroves to the estuary feeds an aquatic food web with

shrimps and other aquatic detritivores in the centre of the web, while in the Caeté

estuary, most energy remains in the benthic domain of the mangrove forest where it

is transferred to an enormous biomass of leaf consuming mangrove crabs, the

principal resource of this system.

5.3.2 Ecosim Approach

The following example is taken from Taylor et al. (2008) who explored the relative

importance of external and internal ecosystem drivers in the Northern Humboldt

Current Ecosystem from 1995 to 2004. External, non-trophically-mediated drivers

considered were changes in phytoplankton biomass, fishing rate (effort and mortal-

ity), and oceanic immigrant biomass (mesopelagic fish).

Figure 5.4 below shows to what degree the time series of biomass of several of

the model groups (open points) were reproduced by the model simulations. Three
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Fig. 5.4 left: Time-series trends of biomass changes from the data sets (dots) and Ecosim

simulations (lines). Presented is the best-fit simulation (i.e. lowest SS), using all drivers (phyto-

plankton, PP; fishery, F; and immigrants, I) followed by a “fit-to-time-series” routine. Yearly data

points represent “biological years” (i.e. July–June of the following year). Asterisks indicate

artificially-forced functional groups (diatoms, dino- and silicoflagellates, and mesopelagics);

right: Sum of square (SS) changes under the application of external drivers in all possible

sequences and combinations. All simulations use intermediate, default control settings (i.e. all

predator–prey vulnerabilities equal 2.0). Negative values (i.e. decrease in SS) indicate an improve-

ment in fit (from Taylor et al. 2008)
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model groups (diatoms, dinoflagellates and myctophic fish) were fixed during the

model runs. As shown by the figure, anchovy dynamics are well simulated. The

initial decrease in anchovy biomass during 1997–1998 is mainly reproduced by

forcing phytoplankton abundance downwards; specifically, a decrease in diatom

biomass and subsequently, a decrease in the second most important food item,

mesozooplankton.

The application of fishing as an external driver improved the fit of the simulation

and helped to explain the long-term dynamics of several main target species. The

fishing driver decreased long-term variance by 22% (Fig. 5.4) pointing to the

important role of fishery in shaping the trophic flows and biomass distribution in

the system.

5.4 Outlook

Through the integration of the biomass budget (balanced flows) approach of

Ecopath with the time-dynamic approach of Ecosim, a modelling software package

(EwE) was created, which can be used for a great variety of data situations and

purposes. In the most data sparse situation, Ecopath can be used to integrate

available biological, ecological and fisheries information of the ecosystem to obtain

a first holistic view and understanding of the system under study. The process of

model construction is most instructive since questions of ecosystem functioning

and process rates are addressed. Since model construction requires the knowledge

input of different experts (for the different model groups studied), the process of

model construction may help to integrate groups of researchers working in the same

Table 5.2 Further application examples using the EwE-software

Application EwE

package

Author(s)

Comparison across ecosystems Ecopath Christiansen and Pauly (1993),

Moloney et al. (2005)

Comparison of ecosystem states Ecopath Shannon et al. (2003), Tam et al.

(2008), Taylor et al. (2008c), Wolff

(2006)

Ecosystem phase shift exploration Ecosim Shannon et al. (2004)

Optimal harvest strategies Ecosim Arreguı́n-Sánchez et al. (2004a, b)

Mediation of trophic controls with actual

environmental time series

Ecosim Field et al. (2006)

Mediation of trophic controls by a third

functional group

Ecosim Guenette et al. (2008)

Fitting of trophic mediation time series with

post-hoc comparison to actual time series

Ecosim Shannon et al. (2008), Coll et al. (2009)

Exploration of trophic and environmental

drivers

Ecosim Taylor et al. (2008a–c)

Marine protected area exploration Ecospace Okey et al. (2004)
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system. If the available data base is rich, the model architecture may be more

complex, with more functional compartments defined and meaningful input para-

meters obtained. If time series of compartment biomasses, environmental para-

meters, fisheries effort or catch are available, the mechanisms causing observed

ecosystem changes can be explored over any relevant time period. EwE can thus

also be applied as a complex modelling tool for simulating scenarios of ecosystem

change under varying boundary conditions. As mentioned in Table 5.2 the spatial

dynamics of the system can also be modelled if spatially explicit data for the model

compartments are available.
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Chapter 6

Ordinary Differential Equations

Broder Breckling, Fred Jopp, and Hauke Reuter

Abstract Differential equations represent a centrally important ecological model-

ling approach. Originally developed to describe quantitative changes of one or more

variables in physics, the approach was imported to model ecological processes, in

particular population dynamic phenomena. The chapter describes the conceptual

background of ordinary differential equations and introduces the different types of

dynamic phenomena which can be modelled using ordinary differential equations.

These are in particular different forms of increase and decline, stable and unstable

equilibria, limit cycles and chaos. Example equations are given and explained. The

Lotka–Volterra model for predator–prey interaction is introduced along with basic

concepts (e.g. direction field, zero growth isoclines, trajectory and phase space)

which help to understand dynamic processes. Knowing basic characteristics, it is

possible for a modeller to construct equation systems with specific properties. This

is exemplified for multiple stability and hysteresis (a sudden shift of the models

state when certain stability conditions come to a limit). Only very few non-linear

ecological models can be solved analytically. Most of the relevant models require

numeric approximation using a simulation tool.

6.1 Background and Purpose of the Chapter

Differential equations play a highly relevant role in the history of modern ecology.

The introduction of differential equation-based modelling was an important

achievement in the paradigm shift from of a previously more qualitatively oriented

science to a leading role of quantitative approaches. The concept of differential

equations originated in classical mechanics. It was developed to describe the motion

of mass points, acceleration, and other time dependent processes. Early last century,

differential equations were adapted by a few ecologists, who focused on quantitative
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considerations varying over time (Kingsland 1995). The introduction of differential

equations successively refined analysis of ecological relations and helped to assess

the backgrounds and driving forces of quantitative changes in natural systems.

Differential equations describe the change of one or more variables over time. The

change can be influenced by the quantity of the variable itself, by external impact or

by responses to other variables. Differential equations can be used to describe single

elements as well as complex networks of dynamic systems (Bertalanffy 1976).

This chapter introduces the use of differential equations in ecological models. It

does not provide a complete overview of the mathematical theory. Here, those

aspects are selected and explained, that are most important to understand the

contribution of differential equations in ecological theory and its applications. We

facilitate an understanding of which kind of dynamic representations have particu-

lar relevance for describing ecological processes. The chapter addresses the central

terms and topics that are required for model construction and that are useful for

understanding the scope and the limitations of the approach. For this purpose, a

selection was made that reduces the difficulty of mathematical formalism. The

selection of topics builds on lecture experiences at the University of Bremen, and

feedback from a large number of students over the years. Not only are the mechan-

isms of increase and decrease of different variables explained, but also the phe-

nomena of multiple equilibria, hysteresis and deterministic chaos.

6.2 What Are Differential Equations?

Differential equations represent a concept of abstraction with very specific require-

ments. Though the approach is used in a modelling strategy called “general systems

theory” (Bertalanffy 1976) differential equations can be successfully applied only

when specific preconditions hold:

l They deal with homogeneous quantities. They do not describe the internal

heterogeneities that may lie behind particular variables. The focus of interest,

is on “how much?”, assuming that the internal quality of what the variable

represents, is invariant and structurally homogeneous.
l Differential equations are deterministic and functional. A given state of the

system always determines precisely the subsequent states. Stochastic influences

are excluded.
l Differential equations are continuous. They describe the succession of states in

infinitely small intervals, i.e. for any point in time of the considered simulation

interval.

These specifications can best be visualized by a pool metaphor: a pool – to be

filled with water (or whatever imaginary liquid), having an inflow and an outflow

(Fig. 6.1). Together with the initial filling level of the pool, the regulation of inflow

and outflow determines the filling state (i.e. the value of the variable), which we can

also call the compartment size. In this metaphor, the equations describe the operation
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of the valves that regulate the amount of inflow and outflow per unit of time.

As functions, inflow and outflow can depend on specific constants, including the

pool size itself (or other pools), and other (externally determined) functions. For

ecological applications, variables typically represent populations in relatively

homogeneous and constant environments.

With some elementary examples we can see how the metaphor and the formula-

tion of equations relate. First, we look at the simplest equations, combine and

expand them to model successively more complex dynamic phenomena. A constant

inflow only (i.e. with no outflow) would lead to a constant increase of the pool size

per unit of time. Constant inflow and outflow would lead to a net change rate –

either positive or negative, depending on the relative flows (or no change if the

inflow equals the outflow). If the state variable size feeds back to influence inflow or

forward to influence outflow in exact proportion to its current pool size, exponential

growth or decline will be modelled. In (6.1)–(6.3), N denotes the pool size state, C is

a constant >0, and t is the time.

Equation (6.1): Constant rate of increase of a pool (variable) per unit of time

dN

dt
¼ C: (6.1)

Equation (6.2): Constant decrease of a pool (variable) per unit of time and

dN

dt
¼ �C: (6.2)

Fig. 6.1 The pool metaphor – how differential equation models describe quantitative relations.

Any change of the pool size (the size of the variable) implies a flow. How much of a flow per unit

of time occurs, is considered to be regulated (by valves). This regulation is described as a function,

which can depend on the size of the variable itself, on other variables or flows, or on external

conditions
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Equation (6.3): Several constant factors can be aggregated

dN

dt
¼ C1þ C2� C3ð Þ ¼ C: (6.3)

Equation (6.4): Characteristic for exponential growth is the strict linear propor-

tionality of the rate of increase with the size of the pool. When N is plotted over

time, we see that the increase accelerates with time.

dN

dt
¼ C � N: (6.4)

Equation (6.5): For the exponential decrease we have a negative slope of the rate

and a decelerating decrease when pool size is plotted over time.

dN

dt
¼ �C � N: (6.5)

Equations (6.4) and (6.5) describe flows which depend only on the pool size and

a constant. As a result, exponential growth or exponential decline, respectively, will

occur.

Now, we extend the functions used in the equations to successively greater

complexity and discuss the dynamic results. In (6.6) constant increase and expo-

nential increase are combined. In principle, we can use any function which allows

us to determine the rate of change – with one or more variables interacting, for

example exponential growth and negative quadratic decrease (6.7).

Equation (6.6): Exponential growth together with constant increase

dN

dt
¼ C � N þ C: (6.6)

Equation (6.7): Exponential growth with negative quadratic decrease. This is the

so-called logistic growth function (see below)

dN

dt
¼ C1 � N � C2 � N2: (6.7)

We can simultaneously model several variables that can be either independent of

each other, or coupled; that is, mutually influence each other. One of the simplest

pairs of coupled equations, that is, having two interacting variables and interesting

dynamics, is

dN1

dt
¼ C1 � N2 (6.8)

dN2

dt
¼ �C2 � N1:
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C1 and C2 are positive constants. The variable N1 increases exponentially in

proportion to the variable N2. The change of N2 depends negatively on the size of

N1. The resulting dynamics is an oscillation, depending on the initial conditions and

the parameter size (Fig. 6.2). For C1 ¼ C2 ¼ 1.0, a sine curve will result when

plotted over time – or a circle when one variable is plotted over the other.

Formal structures like this are used to capture some of the dynamic phenomena

of ecological processes.

6.3 Differential Equations as a Modelling Approach

for Dynamical Systems

When experimenting with differential equations, it is a frequent experience that

explosions (rapid exponential growth) or a collapse (approximation of zero) occur

unintentionally, if the model was not carefully designed. The art of modelling is to

select quantitative relations in a meaningful way so that they capture relevant and

dominating elements of observable (physical, biological) phenomena. Simplifica-

tions are inevitable, which always brings the possibility of interesting discoveries as

well as irrelevant or trivial results. In cases where only one equation is used,

relevant information about the resulting dynamics can be obtained from a graphical

representation that plots the rate of the change as a function of the size of the

variable. This representation is called rate level graph. For one-dimensional sys-

tems, which are described by only one differential equation, the general type of

dynamics can be directly deduced. All intersections of the plot of the rate of change

with the zero line are equilibria. This is because, at that particular variable value,

the changes are zero. If the plot of the rate of change of a variable N first decreases

with increasing N, then becomes negative for larger N, the intersection with the

zero-line is a stable equilibrium. This means, if a system in an equilibrium state is
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Fig. 6.2 Simulation of (6.8). Left: N2 over N1, Right: N1 and N2 over time. Initial conditions:

N10 ¼ 1.0, N20 ¼ 2.0 Parameter: C1 ¼ 3.0, C2 ¼ 4.0
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slightly disturbed (i.e. is shifted to the vicinity of the equilibrium), it will move

back. The variable increases in the case that N is smaller than the equilibrium and

decreases for N larger than the equilibrium. In the opposite case we have an

unstable equilibrium. Then the variable decreases for N smaller than the equilib-

rium and increases for N larger than the equilibrium – it successively moves away

from the equilibrium – regardless how close it is to the equilibrium point, as long as

a difference exists [(6.9), (6.10), Fig. 6.3].

dN

dt
¼ C1 � N � C2 � N2 with stable equilibrium at C1=C2 (6.9)

dN

dt
¼ �C1 � N þ C2 � N2 with unstable equilibrium at C2=C1 (6.10)

It is important to note that in a rate level graph only the rate of change for

different N is shown, not the change over time. Rate over stock is different from

stock over time. Figure 6.4a, b show the respective examples with N plotted over

time.

Using this kind of functional approach, the change of animal-, plant- or micro-

bial populations can be approximated by treating the population sizes as pools.

With the concept outlined so far, we can now look at a frequently considered

starting point for quantitative population ecology, the Lotka Volterra model.

6.4 Lotka–Volterra Equations as a Starting Point

for Ecological Modelling

The Lotka–Volterra model is the simplest way to describe the interaction of a

predator population and a prey population. It was proposed independently by Alfred

Lotka (1925) and Vito Volterra (1926). It is extremely simplified and thus not very

realistic; however, this simplicity is what makes it interesting. Frequently, models

are started with a by far too simple approach and then refined in a step-wise process.

N N

0 0

Net increase
positive

Net increase
negative

dN
/d

t

dN
/d

t

Fig. 6.3 Rate level graph of a one-dimensional system [(6.9) and (6.10)] with one trivial equilib-

rium at N ¼ 0. The other equilibrium is stable (left side) or unstable (right side)
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At all intermediate steps, model behaviour is tested to make sure that even in

complex situations the overview does not get lost. This approach is called rapid

prototyping and is frequently applied in various modelling approaches. The Lotka–

Volterra equations can be considered as a simple prototype of a predator–prey

system. The equations are:

dPrey

dt
¼ C1 � Prey� C2 � Prey � Pred (6.11)

dPred

dt
¼ C2 � b � Prey � Pred � C3 � Pred

To understand the model, we first look at the different components of the

equations.

Prey represents the size of the prey population.

Pred represents the size of the predator population.

In the literature, predator and prey are frequently denoted as N1 and N2, which
we will use also below.

dPrey=dt represents the extent of change in the prey population at each point in

time.

dPred=dt represents the extent of change in the predator (pred) population at

each point in time.

– C1, C2, C3 and b are positive constants. In typical cases, they have a small value

below 1.0.

– C1 is the rate of increase per unit of time (growth rate) for the prey population.

– C2 is a predation factor, specifying what fraction of prey will be caught per unit
of time depending on the size of the predator and prey population.

0
0

0.20

0.40

0.60

0.80

1.00

1.2

1.4

1.6

2.0 4.0 6.0 8.0 10.0

Time
0

0

1.0

2

3

1.0 2 3

Time

4 5 6

Fig. 6.4 Left: Temporal dynamics of (6.9) (initial condition: N ¼ 1.5 for the upper curve and N ¼
0.05 for the lower one). The stable equilibrium is at N ¼ 1.0. Right: Temporal dynamics of (6.10)

(initial condition: N ¼ 1.0015 for the upper curve and N ¼ 0.95 for the lower one). The unstable

equilibrium is at N ¼ 1.0
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– b is a conversion factor. It specifies what fraction of the captured prey biomass is

transformed into predator biomass.

– C3 is a mortality factor specifying what fraction of predators is lost per unit of

time.

To understand the dynamics of the model we look at the expressions which are

summed up in the function:

– C1 * Prey is an exponential growth term. The prey (in absence of predators, i.e.

Pred ¼ 0) would exponentially increase

– C2 * Prey * Pred is the product of both populations multiplied with a constant.

It represents the frequency that predator and prey meet. C2 is typically chosen to
be small. In the predator equation we find the same term multiplied with an

additional constant b. This represents the amount of caught prey which is

converted to predator biomass.

– C3 * Pred describes an exponential decay. Per unit of time a certain fraction of

the predator population is lost. This is how the model describes death on the

population level. We see the implication of the pool approach: The age of

individuals does not play a role. Depending on the size of the pool always the

same proportion is subtracted.

Now we look at the equations as a whole and can conclude which properties are

represented in the equations and which typical properties of real organisms are

ignored. We can see that, without predators, prey would grow infinitely. There is no

capacity limitation. Without prey, on the other hand, the predators would decline at

a constant rate. The implication is that the smaller the population becomes, the

longer each remaining predator will survive. There is no limitation of life span.

Another unrealistic feature of the model is that an increase in the amount of prey

will always lead to an increase in the rate of prey capture and rate of predator

increase. The predators have no saturation limit and thus no limit how fast they can

grow. These aspects could easily be modelled more realistically, but this would

make the model less simple. Now we take a look at its dynamic features and then

add model properties to show how the equations can be extended.

An overview of the system dynamics can be obtained if we display the system

using one axis to show the size of the prey population and the other axis for the

predator population. Each combination of predator and prey values is marked by a

point in the plane. This is why the number of the variables is said to indicate the

dimension of the system. A two-dimensional system can be easily displayed in the

plane. This form of display is called state space or phase space. We can get a coarse

overview of what is happening in the phase space by calculating the resulting

dynamics for a set of grid points and draw them as vectors. Such a graphic is called

direction field (see Fig. 6.5).

Any calculation of the dynamics has to start with initial values for the predator

and prey populations (initial conditions). Displayed in the phase space, the combi-

nation of the two initial values will appear as a point. The differential equations

describe the successive fate of systems states emerging from this starting point.
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It yields a continuous line connecting successive states. Such a line is called a

trajectory. A trajectory is a line in the phase space showing the fate of a system, i.e.

the successive sizes of the variables. The starting point is at the initial condition.

Can two-dimensional dynamic systems describe oscillatory processes? Yes, and

this implies that there are domains of the phase space where an increase of a

variable dominates and others where a decrease dominates. These domains can be

separated by a line where increase and decrease are balanced, i.e., the change of that

variable is zero for an infinitely small moment. This occurs whenever the size of a

variable transits a maximum or minimum value. If we consider all possible points of

the phase space on which zero growth for one of the variables occurs, we obtain a

line which is called the zero growth isocline, or just isocline, for that variable. There
is an isocline for each variable. An intersection of the isoclines represents an

equilibrium point of the system (where the rates of change of both variables are

zero). The area of the phase space from which an equilibrium point is reached is

called a domain of attraction or a basin. Points or areas (!) in the phase space that

are approached during the system dynamics are also referred to as attractors.
Before we proceed to a simulation of the Lotka–Volterra equations, we employ

the introduced concepts to anticipate some aspects of the dynamics of the system.

We first find equations for the isoclines. To do that we only need to set the rate of

change of each variable to zero and solve the resulting equation for one variable in

terms of the other. Using this procedure, the prey isocline is: (see 1.243)

0 ¼ C1 � Prey� C2 � Prey � Pred; (6.12)

or

Pred ¼ C1

C2
:

When the size of the predator population equals C1/C2, the momentary change

of the prey population is zero (i.e. the prey population dynamics transits from

increase to decrease – or decrease to increase). The predator isocline is: (see l. 243)

calculated by the same procedure to obtain:

0 ¼ C2 � b � Prey � Pred � C3 � Pred; (6.13)

or

Prey ¼ C3

b � C2ð Þ

It is apparent, that the isoclines for the Lotka–Volterra equations are both

constant. The change of all prey population sizes is zero when the size of the

predator population has a specific value. And the change of all predator values is

zero for a specific prey population size. The intersection of these lines is an
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equilibrium point where no changes in population size occur. The coordinates of the

equilibrium point are defined by (6.12) and (6.13).

At all other points of the phase space both variables of the system change over

time. The isoclines separate the phase space into four sectors: One where both

populations grow, one where both decline, and two other sectors where either prey

or predator increase while the other decreases (Fig. 6.5).

The analytical result obtained in Fig. 6.5a can be refined, if the values are calculated

grid-wise and the resulting direction of prey and predator vector is drawn. This yields

the example of a direction field in Fig. 6.5b. It can be seen, that the system oscillates.

The oscillation occurs for all initial combinations of predator and prey population

sizes; however, the amplitude depends on the starting value (Fig. 6.5, Fig. 6.6). Only

for a starting point precisely at the equilibrium, there would be no subsequent change

in the values of the variables.

Pred

PreyC3 / b * C2

C1 /C2

a b

Fig. 6.5 (a) Lotka–Volterra isoclines. The vectors indicate in which direction prey and predator

populations develop in the phase space. (b) Example of a direction field for the Lotka–Volterra

model (6.11). The following values were used: C1 ¼ 0.1, C2 ¼ 0.001, C3 ¼ 0.1, b ¼ 0.1. The

model equilibrium occurs at Pred¼ 100 and Prey¼ 1,000, x-axis: 0.0 . . . 2,000, y-axis: 0.0 . . . 200
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Fig. 6.6 Simulation the Lotka–Volterra system (6.11). (a) Display of Pred and Prey over time,

(b) Display of Pred over Prey (trajectory drawn in the phase space). Initial conditions: Prey¼ 400,

Pred ¼ 100, Parameter: C1 ¼ 0.1, C2 ¼ 0.001, C3 ¼ 0.1, b ¼ 0.7
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Now we have the main conceptual ideas at hand to deal with more complex

cases. A strategic approach to represent more complex situations can move in two

directions – to increase the number of variables, and to replace constants by

particular algebraic expressions involving the variables; i.e. to introduce nonlinea-

rities. While the Lotka–Volterra equations can be solved analytically, equations

with higher nonlinearities usually require numeric approximation (simulation).

6.5 The Few Basic Types of Long-Term Behaviour

in Deterministic Dynamical Systems

The determinism implied in differential equations always results in the same

trajectory when identical functions and identical initial conditions are used. From

this general condition we can derive relevant restrictions concerning the types of

dynamics that can occur in these systems. The restrictions apply to systems which

do not receive external inputs and are completely described by the equations. Such

a model is called an autonomous system. The knowledge about these restrictions

can be used to determine the minimum dimensions for certain types of dynamic

behaviour to occur. In the following we introduce the most important types of

dynamics in differential equations. If the description of a system’s behaviour

requires the use of external forcing functions, it is obvious that the system equations

themselves capture only a part of what determines the dynamics of the considered

variables. This usually invokes consideration of whether a more complete descrip-

tion could be achieved in further studies.

6.5.1 Dynamic Properties in One-Dimensional Systems

One-dimensional systems are the most restricted concerning the potential dyna-

mics. The only possibilities are to (a) approach zero, (b) approach infinity or (c)

approach a steady state (steady state equilibrium).

There can be more than one equilibrium point in a particular equation if non-

linearities are involved. If there is more than one equilibrium point, the initial

conditions are crucial which of the alternative equilibria is approximated (see

below: domain of attraction).

Collapse or Explosion

A simplistic way to describe collapsing or exploding dynamics is by exponential

increase or decline as the only possible alternatives of the dynamics. An example

was presented in (6.8) with Ninitial > 0 and c > 0 for explosion, c < 0 for collapse,

and marginal stability for c ¼ 0. This type of behaviour can also occur in systems

with a higher number of variables.
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Stationary States (Single or Multiple Equilibria)

The third alternative, that a one-dimensional system approaches a nontrivial equi-

librium (equilibrium at a finite value of N), requires in a minimum setting the

combination of linear increase and exponential decrease (6.14). The introduction of

higher nonlinearities can lead to multiple equilibria

dN

dt
¼ C1� C2 � N (6.14)

with C1 and C2 > 0. A stable dynamic equilibrium exists for N ¼ C1/C2. The
logistic equation [see (6.9)] has also a stable equilibrium.

6.5.2 Dynamic Properties in Two-Dimensional Systems

In two dimensional systems, the same types of dynamic behaviour can occur as in

one-dimensional systems. Oscillations are an additional type of dynamics that are

not found in 1D systems. There are different types of oscillations. The simplest

oscillator results from a positive and negative coupling of two variables, as we saw

in (6.8) and Fig. 6.2.

In case of models that include nonlinearities, the oscillations can either

increase or decrease in amplitude over time. At the transition point between

both types there are so-called marginal stable oscillations, which neither increase

nor decrease in amplitude, but maintain the amplitude set by the initial condi-

tions. This is the dynamic behaviour of the Lotka–Volterra equations (Fig. 6.6).

An additional type of oscillation occurs, if a dynamic behaviour which leads to

increasing oscillation in a certain part of the phase space is limited by a region of

the phase space where a decreasing amplitude prevails. Over the long term, a

specific cycle results, independent of the initial conditions. This is called a stable

limit cycle. This dynamic type will be presented in a simple model example

below. An unstable limit cycle is also possible. It would be more difficult to

observe, since the slightest, infinitesimal deviation would induce a transit to either

one of two different alternative states, which could be explosion, collapse or

another stationary state.

Oscillations with Damped Amplitude (Approximating a Steady State)

The following system (6.15) oscillates with decreasing amplitude and approaches

an equilibrium point (stationary steady state). Over time, the oscillations decay.

To obtain this behaviour, the Lotka–Volterra equations (6.11) are used and it is

additionally assumed that the growth capacity of the prey is limited.
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dPrey

dt
¼ C1 � Prey K � Preyð Þ

K
� C2 � Prey � Pred (6.15)

dPred

dt
¼ C2 � b � Prey � Pred � C3 � Pred

The form used in the prey equation is equivalent to the logistic curve, as given in

(6.9), which can be verified by multiplying and replacing C1/K by C2. Since the

behaviour is more easily understood if the size of the environmental capacity can be

directly specified as a constant, the form in (6.15) is frequently used in models.

Figure 6.7 presents a simulation result of (6.15).

Oscillations with Increasing Amplitude

The system described in (6.16) exhibits oscillations with increasing amplitude,

successively moving away from an unstable stationary state. Since the amplitude

grows exponentially, the effect can be seen best by starting the system close to

the equilibrium (Fig. 6.8). In this case, the Lotka–Volterra equations are extended

by a saturation term. This term describes increasing predator growth rate with

increasing prey population, up to a saturation level. The same form is frequently

used to describe enzyme kinetics (Michaelis–Menten equation). One constant

specifies the maximum achievable rate (here: C11) and the other one the half

saturation concentration (here: population size at which half of the maximum rate

occurs, CS).
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Fig. 6.7 Damped oscillations obtained from a simulation of (6.15). (a) Display of Pred and Prey

over time. (b) Display of Pred over Prey. Initial conditions: Prey ¼ 400, Pred ¼ 100, Parameter:

C1 ¼ 0.1, C2 ¼ 0.001, C3 ¼ 0.1, b ¼ 0.7, K ¼ 2,000
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dPrey

dt
¼ C1þ C11 � Prey

CSþ Prey

� �
� Prey

� �
� C2 � Pred � Prey (6.16)

dPred

dt
¼ C2 � b � Prey � Pred � C3 � Pred

Limit Cycles (Periodic Equilibria)

A limit cycle can be obtained when additional properties are introduced to the

equations. A first condition for a limit cycle frequently is that there is an unstable

nontrivial equilibrium point of the system, i.e. a perturbation away from the

equilibrium results in increasing oscillations. Then, a second condition guarantees

that the increase cannot proceed without limit, but instead meets a domain where

further increase is damped. The system adjusts to a border zone where the limit

cycle is approached from the outside through damped oscillations and from the

inside by increasing oscillations. Deviations to both sides would decay over time

toward the limit cycle. Thus, the initial conditions are not important for the cycle,

as long as the system starts in a domain of the phase space where the trajectory will

be captured by the cycle. In an example, we construct a predator-prey system

exhibiting a limit cycle with the following assumptions added to the Lotka–Volterra

system. For shortness we rename Prey to N1 and Pred to N2; both population

equations are further modified.

A hyperbolic function strongly decreases predation probabilities when the prey

population is small. This can be due to the effect of a refuge with limited capacity

where the prey would be relatively safe. To represent this, the predation function
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Fig. 6.8 Increasing oscillations obtained from a simulation of (6.16). (a) Display of Pred and Prey

over time. (b) Display of Pred over Prey. Initial conditions: Prey ¼ 1,000, Pred ¼ 152. The

unstable equilibrium is at Prey¼ 1000, Pred¼ 150. Parameter: C1¼ 0.1, C11¼ 0.1, CS¼ 1,000,

C2 ¼ 0.001, C3 ¼ 0.1, b ¼ 0.7
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C2 * N1 * N2 is modified (6.17) and added to the predator as well as the prey

equation

C2 � N1 � N2
AþN1
N1

(6.17)

At N1 ¼ A the predation efficiency is reduced to 50%. This rate decreases for

smaller N1. Further modifications are required: (a) the introduction of a saturation

function into the growth term. An appropriate selection of constants can ensure that

the oscillations close to the equilibrium point are unstable (this can lead to an

increasing amplitude around the equilibrium, as was seen in (6.16) and Fig. 6.8);

(b) the introduction of a logistic term (capacity limitation), preventing an infinite

increase of the oscillations, as it was seen in (6.15) and Fig. 6.7. Then, the following

differential equation system results (6.18), where increasing and decreasing oscilla-

tions can be observed (Fig. 6.9).
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dN1

dt
¼ C1þ C11 � N1

Csþ N1

� �
� N1 � K � N1

K

� �
� C2 � N1 � N2ð Þ

AþN1ð Þ
N1

(6.18)

dN2

dt
¼ b � C2 � N1 � N2ð Þ

AþN1ð Þ
N1

� C3 � N2

For the following parameter values (6.18) exhibits a globally stable limit cycle:

C1¼ 0.1,C11¼ 0.2,Cs¼ 1,000,K¼ 10,000,C2¼ 0.001,A¼ 50, b¼ 0.1,C3¼ 0.1.

6.5.3 Dynamic Properties in Three-Dimensional or Higher
Dimensional Systems

There are dynamic phenomena that cannot be observed in one-dimensional or two-

dimensional systems. In systems with three or more variables additional phenom-

ena can occur. These are chaos and quasi-periodic oscillations. The latter type of

behaviour can occur, if two or more oscillators are overlaid or intertwined. Trajec-

tories of initially close starting points remain close during the subsequent dynamics;

however, in a certain domain of the state space, every point will eventually be

approached as time proceeds. More material on quasi-periodic oscillators can be

found at http://www.mced-ecology.org.

Deterministic Chaos

Unlike in quasi-periodic oscillations, in systems exhibiting deterministic chaos we

do not find single distinct oscillation frequencies. Instead, a continuous spectrum of

frequencies occurs over time. This implies that originally closely neighbouring

starting points will gradually lose coherence. A criterion for chaos is that in any

domain of the state space there are trajectories that approximate the other areas in

the overall domain of attraction and lose correlation with each other. The correla-

tion between trajectories that are initially close to each other decays over the long

term. Periodic trajectories also exist. The resulting dynamics of chaotic systems are

complex. In three or higher dimensions, such a deterministic, non-periodic flow is

possible, even though the trajectories do not cross. Otherwise, this phenomenon

would not be possible in deterministic systems. An example of a chaotic system

inherent in the equations of a predator–prey system was discovered by Gilpin 1979.

It was published some time after Lorenz (1963), who had discovered chaotic

behaviour in dynamic systems for the first time when modelling turbulent atmo-

spheric processes.
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dN1

dt
¼ N1 r1� a11 � N1� a12 � N2� c1 � N3ð Þ (6.19)

dN2

dt
¼ N2 r2� a21 � N1� a22 � N2� c2 � N3ð Þ

dN3

dt
¼ N3 b c1 � N1þ c2 � N2ð Þ � dð Þ

with r1 ¼ 1; r2 ¼ 1; a11 ¼ 0.001; a12 ¼ 0.001; a21 ¼ 0.0015; a22 ¼ 0.001;

c1 ¼ 0.01; c2 ¼ 0.001; b ¼ 0.5; d ¼ 1 and the initial conditionsN1¼N2¼N3¼ 50.

The Gilpin equations (6.19) describe a predator population (N3) and two com-

peting prey populations (N1, N2). The only new aspect to what we have discussed

so far is the inclusion of competition. It relates to logistic growth, in which growth

of a population is limited to a finite total carrying capacity, where the increase of

each competing population is limited by both its own size, and the size of the

competing population, in terms of a competition coefficient. Without predators, in

Gilpin’s model one prey population would be outcompeted and go extinct. Both

populations persist through the predator’s influence, which modulates the competi-

tion effect. This model was used as a default for the “interaction engine”, a simple

differential equations integrator of the POPULUS software (Alstad 2007). Fig-

ure 6.10 shows the simulation of the three variables over time. In Fig. 6.11 it

looks “as if ” the trajectories would cross, but this is only because a projection of

only two of the three variables in a plane was shown (N2 over N1). There are also
other ways in which deterministic chaos can occur in the interaction of three
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Fig. 6.10 Gilpin’s Spiral Chaos Attractor. The simulation results of (6.19) with the initial

conditions N1 ¼ N2 ¼ N3 ¼ 50. N1, N2 and N3 are plotted over time (3,000 time steps)
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variables. Hastings and Powell (1991) described a three species food chain model

exhibiting chaotic dynamics.

Collapse, explosion, single or multiple stationary states, oscillations and chaos

are basic types of temporal changes which can occur in continuous dynamic

systems. Any dynamics occurring in differential equations can be understood as

combinations and interactions of these basic types.

6.6 Construction of Differential Equation Models with

Specific Properties: Multiple Stability, Bifurcations

and Phase Transitions

In a next step we will make use of elements of the previously discussed types of

dynamic and present approaches to constructing dynamic systems with specific

intended properties. In ecological modelling, frequently, the opposite approach is

taken: bottom-up assumptions on certain biotic relations are formalized and built into

a model. Then the model is simulated and the result interpreted. If observations

confront us with certain kinds of dynamic behaviour, it is good to know what are

the minimum conditions for particular properties to occur in a model, and what

specific structures are crucial for a certain dynamic behaviour. When bottom-up
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Fig. 6.11 2D-view of Gilpins Spiral Chaos Attractor. The simulation results of (6.19) with the

initial conditions N1 ¼ N2 ¼ N3 ¼ 50. N2 is plotted versus N1 (3,000 time steps)
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and top-down elements can be combined, it will facilitate a more directed develop-

ment. Especially for two-dimensional systems, the isoclines (see Sect. 6.4) are of

particular importance in model construction. They allow one to see when small

changes in the system, e.g. the size of a single parameter, can give rise to basic

changes of the overall system behaviour. Intersections of the isoclines are the points

where the temporal changes in the system are zero. If such an intersection emerges or

disappears as a function of changes in parameter values, this represents an important

change in system behaviour. The possibilities of isoclines intersecting are limited if

isoclines are straight lines. Nonlinearities in the system can give rise to curved

isoclines. This can bring various kinds of interesting dynamic properties.

6.6.1 Logistic Growth

An interesting nonlinearity consists in the introduction of a negative quadratic term.

As we saw above, when this is added to a simple exponential equation, it yielded the

logistic curve (6.9). Simulating the equation, we saw, that starting with very small

N, a rapid increase occurred that transitioned towards a stationary state. Starting

with a very large N, we observe a declining trend, which stabilizes to the same

steady state (Fig. 6.3, logistic growth). Logistic terms are frequently used in

ecological models to simulate limited carrying capacities.

6.6.2 Multiple Equilibria States and Hysteresis

The mathematical term “catastrophe” refers to a rapid transition of a system

equilibrium point from one state to another. It can occur, if the change of a

condition causes the system to leave a stable domain beyond a critical point, after

which a bifurcation occurs. Then, the system shifts towards another alternative

stable state. Such a situation is shown in Fig. 6.12. Here the upper and the lower

branch of the graph (solid lines) are the stable state regions of the system. Once the

induced change in conditions forces the system to cross a bifurcation point (either

of the two black dots in the graph), the system shifts towards another alternative

state. The dashed line in the graph represents the unstable region between the two

alternative system states. One consequence is that such a system can reach multiple

equilibrium points, only depending on the impact of the driving forces (see

Fig. 6.12). These dynamics can result in hysteresis behaviour, and they have been

intensively studied in lake ecosystems. Scheffer et al. (1993) found such concurrent

alternative equilibrium states exist in shallow lakes, which tend to be either algae or

macrophyte dominated. The transitions between these alternative states can occur

through changes in the nutrient load. Scheffer et al. found, also, that the stability of

a given stable state (see the upper and lower branches in Fig. 6.12) prevents an
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immediate return to the former stable state. For example, if the upper branch

represents a macrophyte-dominated lake and the lower branch an algal-dominated

lake, and nutrient input increases along the x-axis, then the nutrient input to the lake
must be reduced to a much lower level (left black dot) to cause a transition from

algal- to macrophyte dominated than the nutrient level (right black dot) at which the

reverse transition occurred. Dong et al. (2002) found the same dynamics for a

system of algae and periphyton in a model which describes functional group

interactions in the Everglades marshland. Currently this kind of dynamics is

intensively discussed for transitions in reefs systems from coral dominated to

algae dominated states (see also Chap. 17).

In the following,we use an abstractmodel to investigate the relations and conditions

of hysteresis. The calculation of the isoclines will facilitate the overview. Equation

(6.20) represents a predator-prey model with nonlinear interactions for the prey and a

logistic growth of the predators. In (6.20), the predator death rate b plays the role of the
critical parameter leading to the transition between different equilibria points.

dN1

dTime
¼ A� �P3�N13þP2�N12�P1�N1þP01

� �þP02
� ��N1�N1�N2

dN2

dTime
¼ N1 � N2� b � N22 (6.20)

Fig. 6.12 Dynamics of alternative ecosystem states, sensu Scheffer et al. (1993) (further explana-

tions in the text)
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The zero growth isocline for N1 is

N2 ¼ A � �P3 � N13 þ P2 � N12 � P1 � N1þ P01
� �þ P02 (6.21)

and for N2 it is

N1 ¼ b � N2 (6.22)

withA¼ 2.0;P3¼ 4.0;P2¼ 6.0;P1¼ 2.5;P01¼P02¼ 0.25; b between 1.0 and 3.0
The parameter b influences the slope of the N2-isocline (6.22). There is a domain

with one equilibrium where prey numbers, N1, are low (Fig. 6.13a), which is a

stable attractor. In Fig. 6.13b, where b has been increased, we see that there can be

three intersections of the isoclines, of which the two outer ones represent stable

equilibrium points. The system will remain in the original stable equilibrium until b
increases further and the middle intersection points disappear. This situation is

shown in Fig. 6.13c, where also the state of the system transitions to the other stable

equilibrium, with higher N1, can be seen. Figure 6.13d shows the results of

increasing and decreasing b, which leads to an array of different transition points.

In the next model we construct a situation, with three concurrent equilibria and

four transition paths between them (6.23).

dN1

dTime
¼N1� A� �N15þP4�N14�P3�N13þP2�N12�P1�N1þP0

� �þN1
� �

�N1�N2

dN2

dTime
¼ N1 � N2� b � N22 (6.23)

Fig. 6.13 Three different situations for different values of b (6.20). The parameter b determines

the slope of the isocline for N2 (6.22). (a) Only one equilibrium exists where N1 has a low level;

(b) two alternative equilibria exist. Depending on the initial conditions, either one of the equilibria

is approached. (c) only one equilibrium exists where N1 has a high level. (d) when the system is in

the low level equilibrium state, it moves to the upper one only, if the isocline is beyond the lower

dotted line. Being in the upper equilibrium, it would move back only if the isocline is above the

upper dotted line. The displayed area is x ¼ 0.0 . . . 1.0; y ¼ 0.0 . . . 0.5
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Figure 6.14a shows a parameterization where four transitions occur. Figure 6.14b

demonstrates a parameterization of (6.23) where in one direction there are two

transitions between different equilibria, whereas in the other direction there occurs

only one. Figure 6.14c shows a situation where a central stable branch is fully

masked as the system jumps over it when transiting between alternative states. This

central “hidden” stable branch would become apparent only when using initial

conditions which are close to this equilibrium when b is set to 1.0.

When more complex nonlinearities are involved, we have seen, that hysteresis

effects are not only limited to transitions between two alternative equilibria.

Therefore, when modelling partially unknown contexts, we need to be sufficiently

cautious, whether there are previously unobserved nonlinearities as these could lead

to hysteresis effects.

6.6.3 The Crucial Role of Phase Transitions and Initial
Conditions

If there are multiple stable states in a model, normally only one becomes

directly apparent. The part of the phase space from which a particular equilib-

rium is approached, is called domain of attraction, or sometimes also basin of
attraction.

In its basic form, the Lotka–Volterra system is a marginal case. As long as

positive parameters are used, in principle the type of behaviour is always the
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Fig. 6.14 The isoclines were obtained for (6.23) with different parameter. (a) A system with three

alternative equilibria and four transitions between them (A ¼ 2.0, P4 ¼ 10.0, P3 ¼ 38.0975,

P2 ¼ 68.585, P1 ¼ 58.0725, P0 ¼ 18.585). B should range upwards and downwards between

0.5 and 2.0. (b) A system with three alternative equilibria but only three transitions between them

was obtained for A ¼ 1.2, P4 ¼ 11.5, P3 ¼ 51.38, P2 ¼ 110.636, P1 ¼ 113.604, P0 ¼ 43.848.

B should range upwards and downwards between 0.5 and 3.0 In one direction, there is one

transition, the reverse goes in two distinct steps. (c) A system with three alternative equilibria

but only two transitions were obtained using the parameter A ¼ 3.5, P4 ¼ 10.0, P3 ¼ 38.99,

P2 ¼ 73.94, P1 ¼ 67.89, P0 ¼ 23.94. B should range upwards and downwards between 0.5 and

3.0. The trajectory starting at the initial conditions N1 ¼ N2 ¼ 2.04 exhibits a damped oscillation

approaching an equilibrium at N1 ¼ N2 ¼ 2.0
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same: marginally stable oscillations. This holds even though the speed of

change can become so extremely rapid (or slow), that standard numeric approx-

imations fail. From what has been previously discussed, we can derive conclu-

sions for phase transitions. In nonlinear systems with multiple equilibria,

parameter changes can lead to the emergence of new alternative equilibria or

induce the destabilization of previously stable states. In particular, models with

more complex nonlinearities facilitate the occurrence of complex combinations.

A still relatively simple type of transition is the breaking up of a stable

equilibrium and the emergence of a limit cycle. This transition was named

after the Austrian mathematician Eberhard Hopf. For (6.18) we can observe

such a Hopf-bifurcation when changing the parameter C3. For small and large

parameter values the limit cycle vanishes and the system approaches a steady

state instead of a limit cycle (Figs. 6.9 and 6.15).

To be sufficiently careful in the interpretation of a model, the modeller needs to

have an overview of the potential range of dynamic behaviour. Since ecological

models are always a simplification focussing on a limited set of interactions and

conditions (“ceteris paribus” – i.e. all other conditions remain the same), it is useful

to know about potential implications. This applies not only to the field work, where

the empirical background for structural and functional model specifications are

conceptualized – the number of variables, the quantitative relations and the param-

eter ranges. It is also necessary to have an intuition about the potential properties of

dynamic systems representations.

For a modeller it is not enough to be able to write down equations and let the

computer evaluate them numerically. An appropriate interpretation of simulation

results should also take into account that slight parameter changes could lead

to phase transitions, which would alter the overall dynamics. Without knowing

the potential effects of the phase transitions between alternative equilibria (which

are quite difficult to experimentally investigate in the field, if the system state

cannot be arbitrarily manipulated), adequate interpretation of the model results

might be difficult. This leaves much potential for uncertainty. However, other

difficulties can be managed by understanding the equations and protecting against

simulation artefacts. Some of these strategies to tackle “standard” uncertainties are

compiled at http://www.mced-ecology.org and in Chaps. 2 and 23.

6.7 Solving Differential Equations Analytically

and Numerically

For most ecological questions where dynamic models are developed, a mathe-

matical solution is not possible and a numerical evaluation of the equations is

required. Analytical solutions exist only in relatively simple cases; i.e. linear

equations and some simple nonlinear equations. These include the logistic growth

function, and the Lotka–Volterra model. More complex, nonlinear ecological
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models require a numerical approach via simulation. When assessing an ecological

context with analytical approaches, the level of natural complexity has to be

reduced for tractability. A negative consequence of this simplification might be

the loss of the dynamical interaction structures. A prominent exception to this

dilemma is represented by the trophic level analysis using steady state models as

explained in Chap. 5.
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Fig. 6.15 Hopf bifurcation: The system described by (6.18) exhibits a limit cycle. If the parameter

C3 is decreased from 0.1 (original version shown in Fig. 6.11) to 0.01, the limit cycle vanishes and

a stable equilibrium emerges (upper two figures). The same happens in the equation if the

parameter is increased to 0.4 (lower two figures). In between there are transition points where

the phase shift between approximating a stable equilibrium and a limit cycle occur
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For the understanding of time-dependent dynamics, numerical approximation is

necessary. This, of course, poses the problems both that numerical results may be in

error and that generalizations based on numerical results are difficult. Plausibility

considerations are to some extent inevitable. Personal experience of the modeller

who works with differential equations is not only the basis to adequately understand

and formulate the code, but also generates a kind of gut feeling for solutions that are

adequate to capturing the relevant ecological patterns and processes. A brief outline

on some of the major points to be considered for successfully working with this

model category can be found at http://www.mced-ecology.org.

With the beginning of the elementary contributions from Malthus (late eigh-

teenth century), James Lotka and Vito Volterra (1925, 1926), and Fisher

(1930–1940) the method of differential equations is well established in biology

and ecology; for a detailed historical overview: see Chap 3; for further develop-

ments: see Chap. 7; example applications are given in Chaps. 17–20.

Since their introduction, differential equations have had a leading role in eco-

logical modelling. During the last decades the field of ecological modelling has

expanded considerably. Today, differential equations still contribute to scientific

progress, though side by side with a wide variety of other approaches which are

outlined in the following chapters.

Further Readings

Many textbooks exist on ordinary differential equations, often with a very specific

focus. A list of books relating to the ecological context can be found at http://

homepage.ruhr-uni-bochum.de/michael.knorrenschild/embooks.html (Knorrenschild

M (2010) List of textbooks on ecological modelling). From our perspective we would

select the following books and webpages that expand on the contents provided in this

chapter:

Edelstein-Keshet L (2004) Mathematical models in biology, 2nd edn. SIAM, 586 p

Jeffries C (1989) A workbook in mathematical modeling for students of ecology. Springer,

Heidelberg

Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge, http://

www.cambridge.org/us/catalogue/catalogue.asp?isbn¼9780521001502

Sharov A (n.d) Quantitative population ecology. On-Line Course. http://home.comcast.net/~sharov/

PopEcol/popecol.html

William SC, Gurney WSC, Nisbet RM (1989) Ecological dynamics. Oxford University Press,

Oxford, New York. http://www.stams.strath.ac.uk/ecodyn/

Wiki book on differential equations. http://en.wikibooks.org/wiki/Differential_Equations

Yodzis P (1989) Introduction to theoretical ecology. Harper & Row, New York
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Chapter 7

Partial Differential Equations

Michael Sieber and Horst Malchow

Abstract Spatially homogeneous processes of change are the subject of the pre-

ceding chapter. Partial differential equations are one method to model the interplay

of these processes with spatial phenomena such as movement of individuals and/or

a heterogeneous environment. Random motion of organisms might be described as

diffusion, and directed motion as advection. The latter can be composed of loco-

motion and motion of the surrounding medium. The focus of this chapter is on

classical systems of no more than two interacting and diffusing populations. The

potential of such systems to exhibit spatiotemporal pattern formation is studied.

7.1 Introduction

Mathematical models for spatially homogeneous processes, with their potential for

multiple steady states and complicated temporal dynamics, are the cornerstone of

ecological modelling (see Chap. 6). Yet only by taking into account the spatial

dimension of species growth, interaction, locomotion and transport is the full diver-

sity of population dynamics realized. The possible spatiotemporal dynamics include

stationary and dynamic patchy patterns, regular and irregular oscillations, propagat-

ing fronts, target patterns and spiral waves amongst others. Historically, possibly the

best-known examples for spatiotemporal patterns come from physics and physical

chemistry, cf. the Bénard convection cells (Bénard 1900) and the waves in the

Belousov-Zhabotinskii reaction (Belousov 1959). Similar patterns have been found

in biological and, in particular, population-dynamical systems, such as the bio-

convection of up-swimming microorganisms (Hill and Pedley 2005; Wager 1911),

travelling waves in cyclic populations (Sherratt and Smith 2008), the wavy dynamics

of amoeba (Gerisch 1968) and striped vegetation patterns (White 1971), cf. Fig. 7.1.

Partial differential equations (PDEs) are one way to incorporate the spatial dimension

M. Sieber (*)
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in models of biological dynamics, and as such they are related to coupled map lattices

and cellular automata. Often, PDEs take the form of reaction-diffusion equations,

especially if individuals are assumed to perform a random walk, similar to small

particles in a fluid whose molecules are in constant thermal motion. PDEs can also be

used to model directed motion in the form of advection and even random environ-

mental fluctuations. The next few pages give an overview of some basic PDE models

and the interesting range of patterns they may generate.

7.2 Single Population Models

In the case of a single species homogeneously distributed in space, the rate of

change of the species population density Y ¼ Y(t), that is, its temporal behaviour, is

described by the ordinary differential equation (ODE):

dY

dt
¼ f Y; t; cð Þ (7.1)

Here, f describes all processes relevant for the species growth, i.e. reproduction,
competition and predation. In general, f will depend on a set c 2 Rk of biological

parameters, like birth and mortality rates. Additionally, the growth rate parameters

of the species may also explicitly depend on the time t, i.e. reflecting seasonality of
reproduction or increased mortality in harsh winter conditions. In the following, we

always assume that f does not explicitly depend on time, and the variables t and c
are dropped from the notation. A real-valued function Y is a solution of this

equation if its temporal derivative satisfies (7.1). In order to uniquely identify a

particular solution, it is also necessary to specify the initial population density

condition in the form Y(0) ¼ Y0.

Fig. 7.1 Left: Spirals in an amoeba population (Dictyostelium discoideum). The base line of the
photo is about 28.9 mm (Courtesy of Christiane Hilgardt and Stefan C. M€uller, University of

Magdeburg). Right: Satellite image of tiger bush in Niger, the darker lines of woodland are on

average about 20–40 m wide and 50–100 m apart (Courtesy of the US Geological Survey)
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Now, for a population that is inhomogeneously distributed across its habitat, the

population density Y ¼ Y(t, x) of a single species changes not only over time t, but
also with spatial location x. In biological scenarios, the domain or habitat will

usually be some bounded subset of three-dimensional space. In this case, x usually

denotes the Cartesian coordinates of a point in that domain. Let us first consider

only one-dimensional spatial domains, in which case the spatial location is simply

denoted by the real number x.

If it is assumed that the motion of individuals on this domain can be approxi-

mated by a random walk, the rate of change is given by the reaction-diffusion

equation:

@Y

@t
¼ f Y; xð Þ þ D

@2Y

@x2

� �
(7.2)

As in the non-spatial case, the growth term f describes the species growth, which
now may additionally depend on the spatial location x. To shorten notation, the

variable x is also usually omitted in the following. The second term now describes the

species dispersal, usually down its own spatial density gradient. The diffusion

coefficient D reflects how motile the individuals of the population are. The fact

that the population density now depends on two independent variables is reflected in

the partial derivatives in (7.2), one with respect to time t and the other of second order
with respect to the spatial variable x. A solution to this equation is a real-valued

function Y, whose partial derivatives satisfy (7.2) and which has a given initial

population distribution Y(0, x) ¼ Y0(x). If the spatial domain is bounded with

boundary d, the solution additionally needs to fulfil suitable boundary conditions.

An important special case is referred to as the no-flux boundary conditions, given by:

@Y t; xð Þ
@n

¼ 0

for all points x 2 d. Here, with respect to the outward pointing normal vector, the

partial derivative is perpendicular to the boundary. This boundary condition simply

reflects the assumption that no individual leaves or enters the domain through the

boundary; i.e., because the population is physically confined to a certain habitat or the

habitat is surrounded by a hostile environment. In the next sections we will see how

the form of the growth term f determines which spatiotemporal patterns these solu-

tionsmay exhibit. Note, that for all exampleswe assume no-flux boundary conditions.

7.2.1 Exponential Growth

For the Malthusian assumption (Malthus 1798) of exponential growth of a single

species, the growth term takes the form:

f ðYÞ ¼ rY (7.3)
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The intrinsic growth rate r is the only parameter. For r > 0, the population will

grow explosively to arbitrarily high values at every location x. If the initial

population distribution is a localized patch, this gives rise to a spatiotemporal

wave moving outward from the initial patch. Luther (1906) proved that the speed

vF of this wave front of population spread is:

nF ¼ 2
ffiffiffiffiffiffi
rD

p
(7.4)

Clearly, unlimited growth, as predicted by (7.3), is never observed in nature.

However, the speed of the wave front obtained from this model is seen again in the

next section in a more realistic setting.

7.2.2 Logistic Growth

The concept of a carrying capacity K of the environment was introduced by

Verhulst (1838). This yields a growth saturation for higher population densities,

effectively limiting the population density to a maximal finite value. The

corresponding growth term reads:

f ðYÞ ¼ rY 1� Y

K

� �
(7.5)

Logistic growth is a widely used standard assumption for population models. At

carrying capacity the intrinsic growth rate vanishes; that is, f(K)/Y ¼ 0 and this is

the only stable steady state of the system.

In combination with diffusion, logistic growth was first investigated by Fisher

(1937) as a model for the spread of genes in a population and simultaneously by

Kolmogorov et al. (1937). Any initial, smooth density distribution from capacity

K to zero will form a wave front with the speed given by (7.4), finally filling the

whole space with the population at its carrying capacity. An illustration for a one-

dimensional domain is shown in Fig. 7.2.

7.3 Allee Effect

Allee (1931) found that population growth is optimal and highest at medium popula-

tion densities. This has been called the Allee effect. In its stronger formulation it

implies the existence of a minimal viable population size (Courchamp et al. 2008).

A population with a density below this value will die out, whereas a population with a

size above this value will grow to its carrying capacity. The growth function reads:
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f ðYÞ ¼ rY 1� Y

K

� �
Y

K�
� 1

� �
(7.6)

where K_ is the minimal viable population density. The system is bistable, with

extinction as well as carrying capacity as stable steady states. This changes the

dynamics (not only locally), such that, in the absence of noise, the initial condition

determines the final steady state. With diffusion, the same initial, smooth density

distribution as in Sect. 7.2.2 will not necessarily grow and propagate towards

capacity but can also break down. The front moves back towards total extinction, i.e.

until the population has died out everywhere. The two stable steady states introduce a

critical size of the spatial extent of a population (Malchow and Schimansky-Geier

1985). Population patches greater than the critical size will survive, while the others

will go extinct. In spherically symmetric coordinates, the temporal dynamics of the

radius R of a population patch is:

dR

dt
¼ 2D

1

Rk
� 1

R

� �
(7.7)

where Rk is the critical radius that has to be exceeded in order to survive, even if the

local density is greater than K_. This is a superposition of two critical size problems,

which is demonstrated in Fig. 7.3. It is important to understand that one can find

moving fronts in single population systems. In the long run however, the spatial

population distribution on a finite domain will be uniform.

Y(x, t)
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5

10 0
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TimeSpace

Fig. 7.2 Spatial propagation of a logistically growing population for r ¼ 3, K ¼ 1, D ¼ 10�1, all

parameters given in arbitrary units (a.u.), no-flux boundary conditions
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7.4 Two Population Models

As we have seen, growth and dispersal of a single species in a constant and

homogeneous environment does not support spatial pattern formation, it merely

balances out spatial differences in population density. However, spatial patterns can

appear in models with at least two interacting and moving populations. Since these

patterns are more striking in two spatial dimensions, we will also move on from one

spatial dimension to a two-dimensional model; that is x ¼ (x, y). The interaction

and dispersal of both populations is then described by the two equations:

@Y1
@t

¼ f1ðYÞ þ D1r2Y1 (7.8)

@Y2
@t

¼ f2ðYÞ þ D2r2Y2 (7.9)

The basic structure of each equation is the same as for the single species model of

(7.2), but the respective growth terms f1,2 now depend on the vector Y ¼ (Y1,Y2) of
both populations. Also, dispersal of the populations is now possible in two dimen-

sions, indicated by the two-dimensional Laplacian:

r2 ¼ @2

@x2
þ @2

@y2

which is simply the sum of the second order partial derivatives with respect to the

spatial dimensions. The diffusivity or motility of the populations is given by D1 and

D2, respectively. A selection of stationary and dynamic patterns will be described

below. All of these patterns arise from the following, very important model of a

prey species Y1, a predator Y2, and a constant top predator population Y3:

Y(x, t)
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Fig. 7.3 Spatial reverse (left) or forward (right) propagation of a population with Allee effect

for an initial condition less or larger than the critical radius. Parameters: r ¼ 3, K ¼ 1, K– ¼ 0.4,

D ¼ 10�1 (a.u.), no-flux boundary conditions
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f1ðYÞ ¼ rY1 1� Y1
K

� �
� aY1

1þ bY1

� �
Y2 (7.10)

f2ðYÞ ¼ e
aY1

1þ bY1

� �
Y2 � mY2 � g2Y2

2

1þ h2Y2
2

Y3 (7.11)

Here, the prey grows logistically with growth rate r and carrying capacity K. The
consumption of prey by the specialist predator Y2 is modelled with the so-called

Holling-type II functional response, which assumes a linear relation between

prey density and prey consumption at low prey densities, but saturates if the prey

becomes abundant. This takes into account that there is maximum value of prey

biomass that each predator can consume in a given time. This maximum value is

given by a/b, the ratio of search rate a and prey handling time b. The parameter

e < 1 is the predator’s conversion efficiency and m its mortality. The constant top

predator is assumed to be a generalist, described by a Holling-type III functional

response. This functional response saturates at g2/h2, but assumes a lower than

linear consumption at low prey densities. This reflects that the generalist predator

Y3 switches to a significant consumption of the specialist predator only when Y2
becomes abundant. If the top predator is absent, that is Y3 ¼ 0, model (7.10 and

7.11) reduces to the classical Rosenzweig-MacArthur predator–prey model (1963).

In this reduced model, the unique stationary point where both population densities

are strictly positive can be stable or unstable. In the unstable case, the equilibrium is

surrounded by a stable limit cycle, which corresponds to periodically varying

population densities. As we will see, the form of the spatiotemporal patterns that

can be observed in the full reaction-diffusion model greatly depends on whether the

spatially homogeneous system given by (7.10 and 7.11) is in the parameter range of

stationary or periodic dynamics.

7.4.1 Turing Patterns

Turing patterns are perhaps the most famous spatial patterns arising from reaction-

diffusion systems (Turing 1952). These stationary patterns appear after diffusive

instability of a stable, spatially uniform population distribution. For them to arise,

the diffusion coefficients of the two species need to be sufficiently different, i.e.

D2 � D1, and the growth terms have to obey certain conditions. For two interacting

species, these conditions are called activator–inhibitor (Gierer and Meinhardt 1972)

or destabilizer–stabilizer (Segel and Jackson 1972) relations. Because of their often

striking polarity and symmetry, Turing had thought them as a possible mechanism

of forming physiological gradients in biomorphogenesis. Applications in population

dynamics soon followed (Segel and Jackson 1972). Three simulation results of (7.10

and 7.11) for different initial conditions are shown in Fig. 7.4.
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These stationary spots and stripes are typical representatives of Turing struc-

tures. There have been many discussions about the role of diffusive instabilities in

forming population or animal coat patterns. Natural patterns never have this

symmetric shape; however, the pattern can be altered by noise.

7.4.2 Target Patterns and Spiral Waves

In addition to stationary Turing patterns, (7.10 and 7.11) also allow for dynamic

spatiotemporal patterns. Therefore, assume that our sample system (7.10 and 7.11) is

in the parameter region of limit cycle oscillations. In this case, any local perturbation

leads to the formation of concentric waves, the so-called target patterns. A subsequent

perturbation of the circular wave fronts, like a collision with an obstacle, the domain

boundary or another wave, may cause the opening of these fronts and spiral waves to

appear. The two corresponding patterns are shown in Fig. 7.5.

Closely related to this phenomenon are periodic and irregular travelling waves

(see Sherratt and Smith 2008 for a review of theoretical results and field studies)

and the so-called ‘wave of chaos’ (Malchow et al. 2008), which can be seen as the

spatially one-dimensional analogon to the target pattern shown in Fig. 7.5.

The effects described above are examples of irregular spatiotemporal dynamics.

There are numerous other examples of temporally and spatiotemporally irregular

oscillations in model systems and there is an ongoing discussion about the role and

identification of deterministic chaos in ecology. It has been identified in laboratory

systems (Becks et al. 2005; Cushing et al. 2003), but it will always be hard to

distinguish between deterministic and stochastic effects in real data.

1
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0 2
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Fig. 7.4 Formation of Turing patterns for different perturbations of the spatially uniform distri-

bution of (7.10 and 7.11). Parameters: r ¼ 5/14, K ¼ 7/50, a ¼ 2/3, b ¼ 5/3, e ¼ 3/5, m ¼ 7/40,

g2 ¼ 2/125, h2 ¼ 1/25, Y3 ¼ 1, D1 ¼ 10�3, D2 ¼ 2 � 10�3 (a.u.), no-flux boundary conditions
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7.4.3 Diffusion-Induced Chaos in Heterogeneous Environments

So far we have assumed that the environmental conditions relevant for species

growth and interaction do not explicitly depend on the spatial position, i.e. the

parameters are constant all over the spatial domain. However, it was already

implied in (7.2), that the growth term f may explicitly depend on the spatial

location x. This allows one to incorporate heterogeneous environmental conditions

into the spatial model. One effect of a heterogeneous environment in a spatially

one-dimensional variant of model (7.10 and 7.11) has been presented by Pascual

(1993), assuming a linear increase in the prey growth rate r(x) ¼ r0 þ cx. Assum-

ing that the system is in the oscillatory regime at all spatial locations, this leads

to a line of infinite diffusively coupled non-identical oscillators. Following the

temporal change of population density Y(t) at fixed spatial locations x indicates

that the local dynamics undergo a transition from regular oscillations at high prey

growth rate to quasi periodic and finally chaotic oscillations at low prey growth rate.

This is shown in Fig. 7.6.

7.5 Concluding Remarks

The examples given above can be generalized to N interacting species in three

dimensional space, which are subject to diffusive and advective motion and envi-

ronmental fluctuations. This leads to the following equation for the rate of change

for the ith species:
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y

0

5

5x
y

0

Fig. 7.5 Generation of target patterns and spiral waves of (7.10 and 7.11). Parameters: r ¼
K ¼ 1, a ¼ b ¼ 10/3, e ¼ 2, m ¼ 4/5, g ¼ h ¼ Y3 ¼ 0, D1 ¼ D2 ¼ 1 (a.u.), no-flux boundary

conditions
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@Yi
@t

¼ fiðYÞ þ
Xn

j¼0

Dijr2Yj �r � niYi þ Fi Y; tð Þ (7.12)

Here, Y ¼ {Yi; i ¼ 0, 1, 2, . . ., N} denotes the population densities of the

N species at time t and position x ¼ (x, y, z). The term fi describes the growth,

death and interactions of the ith species, which, as we have seen, may depend on the

time t, spatial location x and a set of constant parameters. The Dij are the self- and

cross-diffusion coefficients. As in the previous examples, the self-diffusion coeffi-

cients Dij reflect the motility of the species with respect to its own spatial gradient.

Cross-diffusion is the dispersal of a species along the gradient of others, which

facilitates the description of some behavioural strategies like neutrality, attraction

or repulsion (Skellam 1973). The velocity vector vi of the ith species gives the

speed and direction for both the common passive advection, with the surrounding

transport medium as water or air and the potential individual capacity of active

locomotion. The nabla operatorr ¼ (∂/∂x, ∂/∂y, ∂/∂z) is simply the vector of the

partial derivatives with respect to the spatial directions, with the dot product

r2 ¼ r � r denoting now the three-dimensional Laplacian. Environmental and/

or demographic variability may be introduced into the model via a density-depen-

dent external stochastic force Fi with certain noise characteristics. Note, that for

Fi 6¼ 0 (7.1) has to be interpreted as a stochastic PDE and solutions Y to (7.12) then

constitute stochastic processes. This chapter has provided a very small collection

and short description of selected spatiotemporal pattern forming mechanisms,

100
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Fig. 7.6 Diffusion-induced chaos in (7.10 and 7.11) along a gradient in the prey growth rate.

Parameters: K ¼ 1, a ¼ b ¼ 5, e ¼ 1, m ¼ 0.61, g ¼ h ¼ Y3 ¼ 0, D1 ¼ D2 ¼ 10�4 (a.u.),

no-flux boundary conditions
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focussing on a specific predator–prey model. However, general PDEs, as given by

(7.12), have also been used to model bio-invasions (Shigesada and Kawasaki 1997),

epidemic spread (Brauer et al. 2008; Hilker 2005) and noise-induced pattern

formation and transitions between different spatiotemporal patterns (Sieber et al.

2007, 2010). Reaction-diffusion PDEs are also especially suitable for the modelling

of marine plankton dynamics, where small plankton particles are subject to turbu-

lent diffusion within the surrounding water column (Hilker et al. 2006; Malchow

et al. 2002, 2004, 2005). There is a rich literature for further reading on the use of

PDEs for modelling biological systems. A good overview has been provided in

Holmes et al. (1994) and Allen (2003) and a very nice and already classical

introduction to the role of diffusion processes in ecology has been given by Akira

Okubo (1980, 2001). Another recommended reading is the book by Jim Murray

(2003), and a recent overview more focused on eco-epidemiology can be found in

Malchow et al. (2008).
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Chapter 8

Cellular Automata in Ecological Modelling

Broder Breckling, Guy Pe’er, and Yiannis G. Matsinos

Abstract Cellular Automata (CA) are models that generate large-scale pattern from

small-scale local processes. CA deal with spatially extended dynamics using a grid

structure. Successive states of cells, which are arranged on a grid, are calculated

according to a set of rules. State transitions depend on the state of the single cells and

the state of the cells in the local neighbourhood. Cellular Automata are applied as a

modelling approach in many scientific disciplines and are used in ecology as one of

the most popular model types to study spatially extended dynamics. The chapter

starts with a brief historical overview about CA. It describes how CA function, and

for which types of problems they can be employed. We present simple theoretical

examples, followed by a more detailed case study from plant competition and

grassland community dynamics. As an outlook, we discuss major fields of applica-

tion with a special focus on the ecological context. Finally, we provide a brief

overview and recommendations on the use of some of the software specialized in

the field of CA modelling.

8.1 Introduction and Historical Background

Cellular Automata were conceptually developed by the Austro-Hungarian mathe-

matician John von Neumann (1903–1957) during the 1950s. He was interested in

simulating self-reproducing patterns. Instead of continuous approximations, he

The chessboard is the world;

the pieces are the phenomena of the universe;

the rules of the games are what we call the laws of Nature.

T. H. Huxley (1870)
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used discrete (stepwise) representations of space and time. Together with Stanislaw

Ulam, the work was developed at the Los Alamos Laboratory, where both were also

involved in the Manhattan Project.1 Ulam used the idea to study crystallization

processes on a two-dimensional grid (or lattice). The first CA model that made the

approach widely known dated from the 1960s, when the Cambridge-based mathe-

matician John Conway developed the “Game of Life” (Gardner 1970). This is a

simple grid based process where cells can switch between two states following

simple rules (Sect. 8.3). Because of its simplicity and surprisingly interesting and

complex behaviour, the Game of Life created a lasting enthusiasm.

During the 1970s, a series of applications of cellular automata models were

developed in physics to study gas and liquid diffusion, crystallization processes,

magnetic and spin phenomena (Forrester et al. 2007). CA were further used as step-

wise (discrete) approximation models for partial differential equations (see

Chap. 7).

During the 1980s, following a marked increase of computer availability and

computation power, the application of cellular automata has seen a significant

increase, especially in mathematics and physics. Scientists started to realize that a

discrete representation of systems could provide simpler and more efficient approx-

imations of spatially complex processes compared to continuous approximations.

It was then that cellular automata machines were constructed, in order to handle

parallel processing more efficiently (Toffoli and Margolus 1987). An important

contribution to CA was made by Wolfram (1994), who systematically explored the

overall dynamics of large classes of one-dimensional cellular automata using the

software “Mathematica”, which he developed initially for this purpose. Wolfram

showed that simple, deterministic rules can generate complex patterns in space or

time that look as if they were completely random. In ecology, CA successively

became one of the most frequently used approaches to model spatially extended

processes. Often, they are used in combination with other techniques such as

individual-based models (Chap. 12).

Due to their ease of implementation and capacity to simulate spatial patterns,

CAs have been widely applied to ecological problems related to spatial processes,

such as epidemic propagation (Sirakoulis et al. 2000), plant population dynamics

(e.g. Iwasa et al. 1991; Pascual et al. 2002), post-disturbance resilience (Matsinos

and Troumbis 2002), colonization processes (Silvertown et al. 1992; Hobbs and

Hobbs 1987), land-use and land-cover change (White et al. 1997) and spatial

competition of corals (Langmead and Sheppard 2004, see also Chap. 17). Rietkerk

et al. (2004) used a simple cellular automaton model based on the model of Thiery

et al. (1995) in order to understand how scale-dependent feedback can explain a

diversity of spatial patterns in self organizing savannah ecosystems. Moustakas

et al. (2006) developed a CA to analyse the interaction between fish schools and

fleets of fishing vessels, in order to assess the efficacy of conservation measures.

1The Manhattan project covered the initial initiatives in the USA to develop nuclear weapons of

mass destruction. The leading physicists worked for this project during the Second World War.
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These models refer to basic biological processes: dispersal and competition. It is the

variation in the strength and scale of feedbacks between cells in the automaton that

influence the outcomes in terms of structure and scale of patchiness. This illustrates

the general nature of scale-dependent processes underlying self-organized patchi-

ness in ecosystems.

8.2 Cellular Automata: The Components

Though cellular automata can handle very complex spatial situations and quite

difficult rule systems, the conceptual basis is quite simple, easy to understand and

applicable with almost any conventional or object-oriented programming language.

A cellular automaton consists of a large number of cells, which are connected to

a grid and can change their state individually. For all cells, a neighbourhood is

defined that constitutes the surrounding area that influences the state transitions of

each particular cell. Finally, there is a set of rules defining how each of the potential

states of a cell and the states of the neighbourhood will determine the transition

between cell states.

The Cells

Cellular automata models use cells as the units of operation. Cells can be consid-

ered as a storage space, with a defined number of state variables that can either be

discrete or continuous. The most simplistic CAs consist of cells that can switch

between two different states (binary), to be represented e.g. by black and white, on

and off, dead or alive, etc. But it is also possible to have a cell’s state being

characterized by a larger number of variables. For example, when modelling soil

processes using a CA, the cell could represent a square meter of the ground and

have storage space for variables such as water content, organic material, tempera-

ture, etc.

The Grid

In a CA, each cell is surrounded by other neighbouring cells. The grid can be

visualized by drawing the cells as nodes and the connection to adjacent cells as

edges. A grid can be finite or infinite, (for simulation purposes only finite) and can

have different topologies. For instance, cells along a line with one neighbour to the

right and one to the left would represent a one-dimensional grid, cells with four

neighbours (North, South, East and West) would represent a two-dimensional grid,

etc. In principle, any topological structure would be possible (Fig. 8.1).
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The Neighbourhood

The neighbourhood comprises the cells in the surrounding of a focal cell. The

neighbourhood cells are defined as those that can influence the state of the

particular focal cell. To determine which change occurs, the state of the focal

cell and the states of the neighbourhood cells are evaluated. Usually, the neigh-

bourhood consists of the directly adjacent cells, but the neighbourhood can have

different extents and can vary in shape between rectangular, circular, etc. Other

definitions are possible as well, e.g. that each cell selects a random number of

other cells as neighbours – regardless where they are located on the grid. In case

of a rectangular two-dimensional grid (Fig. 8.1b), the most commonly used

neighbourhood comprises the four direct neighbours (Fig. 8.2b). In the CA

terminology, this is also called von Neumann neighbourhood. If the eight directly

adjacent cells are considered as neighbours, it is called Moore neighbourhood

(see Fig. 8.2c), named after the US-American mathematician Edward F. Moore

(1925–2003).

Fig. 8.1 Examples of one-, two- and three-dimensional grids of different topologies. (a) Linear

grid: each cell has two neighbours; (b) 2D rectangular grid: each cell has four neighbours; (c) 2D

triangular grid: each cell is connected to three neighbours; (d) 2D hexagonal grid: each cell has six

neighbours; (e) 3D cubic grid: each cell inside the grid has six neighbours; (f) 3D tetrahedral grid:

A cubic grid is not the only possibility to model in three dimensions. An alternative could consist

of cells connected at the edges of stapled tetrahedrons. Please keep in mind that the given

neighbourhood relations do not apply for margin cells
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The Rules

Rules of the CA are fundamental to specify how cells change their states. There can

be an arbitrary number of rules. The rule-set for a CA applies to all cells. The

current state of a particular cell and the states of the cells in the neighbourhood

determine which of the rules are applied to change the cells state. The rules must

consider all possible combinations of situations which can occur in the neighbour-

hood of a cell. A very simple example of a rule for a CA would be that the state of a

cell can be any natural number, and that the subsequent state of a cell in the next

step is the sum of the states of the neighbouring cells. This rule would constitute a

deterministic CA. It would, however, also be possible to add stochasticity, e.g. by

determining that for a given probability the state of the focal cell is zero.

Running a CA: The Iteration

A CA is processed step by step. One step (one iteration) comprises an application of

the rules to all cells on the grid. To process a CA, the initial state of all cells must be

set. This initial configuration is used for the first update. Cell by cell the rules are

applied, taking into account the state of each cell and the state of cells in the

neighbourhood. This yields the next state of all the cells. To avoid a bias of the

update procedure, the new state of each cell is saved in a separate interim grid, so

that the transition is applied only once after all the states (or transitions) of all cells

have been calculated. Then the iteration can be repeated until a termination

condition is met. The termination condition can be a maximum number of itera-

tions, a pre-defined state of the grid, or an interruption by the user.

Boundary Conditions

Practical applications cannot work with infinite grids. The grid has to be spatially

limited and a specification is required on how to process the cells at the boundary,

Fig. 8.2 Neighbourhoods in cellular automata: (a) focal cell; (b) von Neumann neighbourhood

comprising the four adjacent cells – North, South, East, West; (c) Moore neighbourhood consid-

ering eight directly adjacent cells; and (d) a neighbourhood which consists of the nearest and

second-nearest cells. Other definitions of neighbourhoods are also possible
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where their neighbourhoods can be different from those situated in the inside of the

grid. There are alternative ways in which boundary conditions can be specified.

To this end the following solutions are frequently taken:

l Setting a different neighbourhood at the boundaries, taking into consideration

that cells at the boundary have a different number of neighbours compared to the

other cells and therefore require an according adaptation of the rule-set.
l The grid can be framed by a number of outer cells that maintain a particular state

without being updated.
l In case of a rectangular grid, boundary cells can take the cells of the opposite

boundary as their neighbours (i.e. the Eastern edge of a grid connects to the

Western, the Northern connects to the Southern edge). Topologically this yields

a torus (a doughnut like shape), as shown in Fig. 8.3.
l Grid extension: in the case of a homogeneous background state the grid could be

dynamically extended. This solution, however, is possible only to the limits of

processing capacity.

8.3 An Easy Example: Conway’s Game of Life

Conway’s Game of Life (Gardner 1970) is an excellent example to familiarize

with the concept of CAs and with the process of updating the grid cells. Since

the rules are rather simple, it is even possible to solve smaller grid iterations on

paper. In more complex models, this process can of course be done only by a

computer.

The Game of Life CA uses a two-dimensional rectangular grid. The cells can

have two states, either “alive” (black) or “dead” (white). The state they take in a

succeeding iteration (the rule set) depends on their own state and the states of their

eight adjacent neighbours (Moore neighbourhood):

l A white cell becomes black (alive) if exactly three cells in its neighbourhood are

black.
l A black cell remains black if two or three neighbours are black.

Fig. 8.3 Applying torus boundary condition in a rectangular grid by connecting opposite edges
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l A black cell turns to white, if less than two neighbourhood cells are black (it

“dies of solitude”) or if more than three neighbourhood cells are black (it “dies of

overcrowdedness”).
l The game can start with any initial configuration of black and white cells.

Depending on the initial configuration, different patterns emerge. There are con-

figurations which lead to global expansion. Others end in stationary or in repetitive

pattern which re-emerge after a number of iterations. Other initial configurations

can lead to “extinction”, with only white cells remaining (Fig. 8.4).

Fig. 8.4 Some pattern types which can occur in the game of life. (a) An initial configuration

which “dies out” after four iterations; (b) an initial configuration which generates a stationary

pattern; (c) an initial configuration which generates an oscillating pattern (re-emerging after a

number of iterations); (d) a pattern that re-emerges but shifts location with time (“glider”); (e) an

initial configuration generating a complex irregular pattern with parts that die out and others that

oscillate or remain stationary. This is the so-called r-pentomino, which grows a large, irregular

pattern taking more than 1,000 iterations before it becomes stationary and/or periodic
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8.4 Examples of Pattern Generating Mechanisms

The Game of Life is a deterministic CA. Other applications may also include

stochastic rules. There are certain types of interactions that can be found in different

contexts that give rise to a specific category of pattern. We present three examples:

A self-scaling random pattern, a spiral wave pattern, and a diffusion-limited

aggregation.

Self-Scaling Random Pattern

A simple mechanism to generate a macroscopic pattern starting with a random

configuration is to let each cell adapt to the state of the majority of its neighbours.

Successive updates lead to growing homogeneous patches. The process can end up

self-stabilizing. In case the boundaries of the resulting patches shift randomly, there

is the possibility that such a system would finally end with a homogeneous grid with

the same state for all cells. There are a few applications in a biological context, e.g.

in tissue differentiation (Nijhout et al. 1986; Rasmussen et al. 1990) (Fig. 8.5).

Spiral Wave Pattern

This type of pattern is quite important for some self-organization processes in

biology. It can be found also under the technical term of “excitable media”. The

term refers to the tendency of the CA, when applied to a two-dimensional grid, to

form patterns of waves of excitation which move across the grid in an undamped

manner. Though the pattern can be quite complex, the underlying mechanism is

relatively simple. Each cell can have one of three states. The first one is called

“excitable”. Being excitable, a cell remains in this state as long as there is no

stimulus from the neighbourhood. The second state is called “excited”. When being

in this state, each “excitable” cell in the neighbourhood of the “excited” cell will

shift to the state “excited” as well. An excited cell remains for a certain number of

iterations in this state, and then transits to a state called “refractory”. Being in a

refractory state, a cell cannot be excited again regardless of the neighbourhood

states. After some iterations it returns to the state “excitable”. The numbers of

iterations which can be specified for the phases of “excited” and “refractory”

influence the shape of the emerging macroscopic pattern.

A grid started with only “excitable” cells would remain as it is. A grid started with

only “excitable” and “refractory” cells would end up in an overall state of being

excitable as well. However, when there are a few excited cells, a spreading pattern

can occur, which can organize the rest of the grid spatio-temporally. For random

initial configurations of a sufficiently large grid, spiral wave patterns frequently occur
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(Fig. 8.6). Comins et al. (1992) used a cellular automaton employing deterministic

rules to explore the spatial dynamics of a host–parasitoid interaction resulting in

spiralling spatial patterns.

Diffusion-Limited Aggregation

Diffusion-limited aggregation is a process that can be observed in the successive

growth of river systems, in certain forms of organic growth, involving branching,

and in some inorganic immobilization processes. Again, the basic underlying rules

are relatively simple. Cells can be in three types of states, which can be called

“empty”, “mobile” and “fixed”. A “mobile” cell shifts the state of any (randomly

chosen) “empty” neighbouring cell into “mobile”, while turning back to an

“empty” state. This simulates random movement of a particle across the grid. If

a cell is in the state “mobile” and has a cell with the state “fixed” in its neighbour-

hood, the “mobile” cell changes its state to “fixed” and remains in this state for the

rest of the simulation, regardless of the states of neighbouring cells. To obtain

non-trivial results, it is required that a sufficiently large number of “mobile” cells

Fig. 8.5 The pattern on a triangular grid (three neighbours to each cell) was obtained by applying

the following rules: The initial configuration is a random distribution. If the state of the majority of

the neighbours differs from the focal cell’s state, it has a 50% probability to change to the state of

its neighbours. After a number of iterations, the pattern reaches a stable state, where each cell’s

state conforms to the majority of its neighbours. Shown are the iterations 0, 2, 5, 8, 11, and 14
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are started, and that at least one “fixed” cell exists on the grid. The emerging

pattern is a random structure with a self-similar pattern (Fig. 8.7). Examples for

the application of diffusion-limited aggregation models are CAs for predicting

urban development (White and Engelen 1993), investigating the spatial distribu-

tion of plants and animals (which often seem to form fractal patterns; Kendal

1995), and studying pattern formation, e.g. in plant morphogenesis (Fleury 1999)

(Fig. 8.7).

8.5 Case Study: Competition and Dispersal in Grassland

Communities

As an example of a more complicated, recent model applied for the study of

ecological questions, we elaborate on a CA model of a grassland community dynam-

ics (Matsinos and Troumbis 2002). The model illustrates nicely how local interac-

tions (dispersal and competition) determine overall community structure. The model

focuses particularly on the effect of resilience in communities on gap-creating

Fig. 8.6 A spiral wave pattern on a hexagonal grid; excitable cells (white), excited cells (black),
refractory cells (grey); see text for details of state transitions
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disturbances (i.e. fire), imposed at different spatial extents. Model simulations were

based on data from an experimental community with five grassland species.

A lattice of 200 � 200 square cells was used, with at most one individual of each

species occupying a cell at a time. Global rules applying at the local scale determine

the state of the system at each time step. The degree of influence of a cell to

neighbouring cells follows a negative exponential decrease. The biological pro-

cesses simulated are seed dispersal and competition. The following main proce-

dures were used:

l Every individual of each species i produces seeds at a given rate pi. We assume

that the distribution of times between individual seed production is exponential,

with a mean of 1/pi.
l The probability that a seed disperses from one cell to another depends on the

species dispersal type (local, medium or long) and the distance between cells.
l Displacement of species is modelled in occupied cells depending on the com-

petitive advantage of the invading species. The process of seed dispersal to

neighbouring empty cells is modelled using a probabilistic algorithm.

The model starts with an assignment of seeds to donor cells in a random manner

but with a frequency that is inversely related to donor cell distance. If a cell

receives multiple seeds from different plant species, a random variable linked to

the competition coefficient of the species determines the winner at that cell. All

seeds are then eligible to sprout and will germinate at the next growing season;

dormancy is not considered; the model does not consider environmental variability

between years.

Parameters from an experimental biodiversity study of grasslands in Lesbos,

Greece were used for the model specification. The experimental study was part of

the European-wide research project BIODEPTH (Hector et al. 1999), aiming to

Fig. 8.7 Diffusion limited

aggregation, produced with

the fractal generator

FRACTINT. A large number

of mobile cells are started in

the periphery, which attach by

chance to a centrally located

“fixed” cell, bringing up the

typical diffusion-limited

aggregation-pattern
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investigate diversity–productivity relationships in natural grasslands. Experimen-

tal plots consisting of 2, 4, 8, 18, and 32 native species were established and

maintained since 1997 in seven European countries. For the parametrization of

our model we chose the two-species configurations, extracting relative biomass

changes and estimating competition strength to simulate the interactions between

five plant species: Phalaris coerulescens, Hordeum geniculatum, Hirschfeldia
incana, Lagoecia cuminoides, and Bituminaria bituminosa. Among the five spe-

cies, pair experiments have shown their competitive hierarchy and biomass

changes in the plots yielded information on the competitive strength. This was

assumed to translate into displacement probabilities in the model (Table 8.1).

Results showed that longer distance dispersing plants have a competitive advan-

tage in colonization success as compared to better competitors, especially in the

cases of disturbance-mediated creation of gaps in coverage. An increase in species

number led to more resilient communities and a higher percent cover of the

landscape. A further model adaptation therefore incorporated

l A scale-related neighbourhood structure
l Asymmetrical hierarchy in competition
l Invasion processes

The neighbourhood structure in the model was based on the dispersal attributes

of the different species, and showed significant change in final assemblage

patterns where short-distance dispersers were found to decrease in abundance.

Asymmetrical hierarchy (in terms of competition) was modelled as a stochastic

process, and showed to alter the composition of steady-state communities signifi-

cantly, favouring assemblages with low overall diversity. Invasion was shown to

interfere and alter the overall pattern of abundance. The effect of disturbances was

studied as well, examining whether the community is resilient to disturbances or

tends to change subsequent to disturbances (e.g. Fig. 8.8). The approach high-

lighted the emergence of complex community patterns from simple local inter-

actions. A great amount of information is necessary for the parametrization of

such a model, yet the outputs of the model provide a broader understanding of

patterns that are far too complex to grasp with any other tool. Therefore, despite

the relative complexity of the model, it provides the means to gain understanding

of complex patterns in nature, the underlying mechanisms of which are otherwise

poorly understood.

Table 8.1 Matrix of displacement probabilities that were used in the model

Displacing species i Resident species j

Phalaris Bituminaria Hordeum Hirschfeldia Lagoecia

Phalaris – 0.2 0.6 0.15 0.3

Bituminaria 0.1 – 0.01 0.03 0.04

Hordeum 0 0 – 0.01 0.01

Hirschfeldia 0.03 0.01 0.01 – 0.02

Lagoecia 0.1 0.01 0 0.01 –
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8.6 Outlook and Applicability

In a unique way, Cellular Automata combine conceptual simplicity, the potential to

expand simple interactions to complex structures, and an enormous range of

application fields for quite demanding problems – with the potential to capture

surprising self-organizing effects. This makes it worthwhile and desirable for any

ecological modeller to familiarize with this approach.

It is possible to run CAs without much effort in pre-defined modelling environ-

ments, each of which specializes in a particular field of rule types. Yet, it is equally

easy to escape the restrictions that customized software frequently have, and develop

a unique CA according to one’s specific applications, with the additional power to

modify it to specific situations or explorations, e.g. by time-dependent or situation

specific variations of the neighbourhood or through self-modifying rule systems.

Other ecological modelling applications, and especially those that require a spatially

structured input in order to provide an environment with particular statistical features,

can be easily generated with a CA and used as a grid input. Clearly, Cellular

Automata can contribute not only to strengthen ecological theory, but also for the

development of predictive tools for ecology and conservation. In the process, one

may reveal that modelling itself can be fun as well.

Fig. 8.8 Plot of relative abundance for 1,000 iterations for the three species: Phalaris, Hordeum,
Bituminaria starting from same abundance (33%). Disturbance occurring on iteration 500 affects

20% of the landscape [from Matsinos and Troumbis (2002)]
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Chapter 9

Leslie Matrices

Dagmar S€ondgerath

Abstract This chapter introduces matrix models – used to describe the dynamics of

populations classified by age or other criteria like size or stage. It will be shown how

characteristic values of the Leslie matrix, i.e. eigenvalues and eigenvectors, are

used to determine the asymptotic behaviour of the population. Elasticity analysis

deals with the effects of small parameter changes on population growth. As a result,

values for the relative importance of specific life history parameters for the popula-

tion dynamics are given. For example, these values can be used in conservation to

identify those parts of an organism’s life history where management methods

should focus. Finally, an extended Leslie model for populations with both age

and stage structure will be introduced and used to forecast the effects of climate

change on the voltinism and range of occurrence of a dragonfly species.

9.1 Introduction

Matrix models are used to simulate structured populations. The origin of these

models dates back to a paper by Leslie (1945). Originally, they were used for

demographic purposes; i.e. to describe the development of human populations. For

this purpose the population is divided into classes according to age. With an

appropriate projection matrix composed of age-specific fertility, survival rates

and a given initial distribution, it is possible to project the age distribution for

every future time point. Since development, these models have been modified in

multiple ways and have been applied in many fields.

For plant life cycles the vital rates cannot be regarded as functions of age

because reproduction strongly depends on size and more complex life cycles have

to be regarded (Caswell 1986). Therefore, stages instead of age are usually

incorporated in the model to divide the population into classes. A frequently cited

D. S€ondgerath
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example (Caswell 2001; Soetaert and Herman 2009) is the life cycle of teasel

(Dipsacus sylvestris), a European perennial weed with the following six stages:

dormant seeds 1st year, dormant seeds 2nd year, small rosettes, medium rosettes,

large rosettes and flowering plants. Pascarella and Horvitz (1998) also used a stage-

classified matrix model to determine the importance of environmental variation to

the dynamics of a tropical understory shrub caused by hurricanes.

Selhorst et al. (1991) coupled two Leslie models to describe the predator–prey

relationship between two arthropods, Scolothrips longicornis and Tetranychus
cinnabarinus. The difficulty in dealing with insect populations is that the develop-

ment of insects strongly depends on environmental factors (e.g. temperature), so

that the age of an individual is not a good indicator for its development status.

Several studies dealing with insect populations therefore used an approach combin-

ing age and stage by coupling several Leslie processes (S€ondgerath and M€uller-
Pietralla 1996; Braune et al. 2008).

Size-dependent classes are widely used when dealing with fish populations.

In these cases fecundity is a function of the size of the individuals and not of

their age. Jung et al. (2009) used a Leslie size-dependent approach to simulate the

dynamics of the Pacific cod in order to improve the reliability of stock assessments

for fisheries management. Size-dependent vital rates were also regarded by Ang and

De Wreede (1990) for the simulation of algal life histories.

In order to control an African pest rodent, Stenseth et al. (2001) used a Leslie

model with three stages of females and three stages of males. In this study they

formulated the vital rates as functions of density and rainfall. Bieber and Ruf (2005)

set up a Leslie model for the wild boar with three stages: juveniles, yearlings and

adults. They found that reducing juvenile survival will have the largest effect on the

population growth in good years, whereas strong hunting pressure on adult females

will lead to the most effective population control in bad years. Heppel et al. (2000)

did a meta-analysis of 50 mammal populations based on Leslie models. They

examined the impacts of small changes in fertility, juvenile and adult survival on

the population growth. On this base they were able to discriminate between

carnivores, rodents, grazers, marine species and primates.

9.2 Model Description

The dynamics of age-structured populations is usually described with matrix

models, which can be traced back to the papers of Leslie (1945, 1948). The main

assumption of these models is that time and age are measured in the same units. For

example, if the age classes consist of individuals from 0 to 1 year old, from 1 to

2 years old and so on, then the time step of the model must be one year. If the age

classes denote 1-week old individuals and so on, then the time step of the simulation

model has to be one week. Hence, during one time step, individuals from one age

class pass into the next class according to the age-specific survival rate. The first age

class consists of the offspring from all reproductive age classes.
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The life cycle of a population with four age classes is given in Fig. 9.1. The solid

line arrows represent the survival rates to the next age class, whereas the dotted line

arrows indicate the reproduction of the different age classes. The first age class is

assumed to be non-reproductive, so there is no dotted line arrow starting from this

class. All individuals surviving to or beyond age class 4 are aggregated in that age

class. Individuals of the first age class will survive with a probability of 0.5 and will

then be in age class 2. Likewise, individuals in age class 2 will survive to age class 3

with a rate of 0.6, and those of class 3 will be in age class 4 with a 70% probability.

10% of the individuals in age class 4 will survive and will remain in age class 4.

Individuals of age classes 2–4 contribute to the first age class with rates of 0.8, 1.8

and 1.5, respectively. Therefore, if xi(t) denotes the number of individuals in age

class i at time t, the following equations can be set up to evaluate the number of

individuals at the next time step t+1:

x1ðtþ 1Þ ¼ 0:8 x2ðtÞ þ 1:8 x3ðtÞ þ 1:5 x4ðtÞ
x2ðtþ 1Þ ¼ 0:5 x1ðtÞ
x3ðtþ 1Þ ¼ 0:6 x2ðtÞ
x4ðtþ 1Þ ¼ 0:7 x3ðtÞ þ 0:1 x4ðtÞ

Summarizing these equations into a matrix formulation one can write:

x1ðtþ 1Þ
x2ðtþ 1Þ
x3ðtþ 1Þ
x4ðtþ 1Þ

0
BB@

1
CCA ¼

0 0:8 1:8 1:5
0:5 0 0 0

0 0:6 0 0

0 0 0:7 0:1

0
BB@

1
CCA �

x1ðtÞ
x2ðtÞ
x3ðtÞ
x4ðtÞ

0
BB@

1
CCA

The vectors~xðtÞ and~xðtþ 1Þ consist of the number of individuals in the four age

classes at time points t and t + 1, respectively. The matrix on the right hand side of

the equation is the so-called projection or Leslie matrix. In the first row of this

matrix the age-specific fertility rates are written and the sub-diagonal contains the

respective survival rates.

age
class 1

age
class 2

age
class 3

age
class 4

0.1

0.70.60.5

0.8

1.8

1.5

Fig. 9.1 Illustration of a life cycle with four age classes. The solid line arrows indicate survival
rates and the dotted line arrows indicate fertilities
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To generalize, a Leslie model describing the population dynamics of a popula-

tion with i ¼ 1, ..., n age classes, age-specific survival rates Si and age-specific

fertility rates Fi can be written in the form:

x1ðtþ 1Þ
x2ðtþ 1Þ
..
.

..

.

xnðtþ 1Þ

0
BBBBB@

1
CCCCCA

¼

F1 F2 Fn

S1 0 � � � � � � 0

0 S2
. .
. ..

.

..

. . .
. . .

. . .
. ..

.

0 � � � 0 Sn�1 Sn

0
BBBBB@

1
CCCCCA

�

x1ðtÞ
x2ðtÞ
..
.

..

.

xnðtÞ

0
BBBBB@

1
CCCCCA

, ~xðtþ 1Þ ¼ L~xðtÞ

The Leslie matrix L contains the life-history parameters of the population, i.e.

survival and reproduction rates. Obviously some of the Fi-values in the Leslie

matrix are usually zero, because in natural populations only certain age classes

will be reproductive ones. Starting with a given initial population, this equation can

be used to update the population vector for future points in time.

Other criteria such as size classes or different stages of the life cycle can also be

considered, without changing the structure or behaviour of the model.

Long-Term Behaviour

Several characteristics concerning the long-term behaviour of the population can be

derived from the projection matrix by means of some well-known results of matrix

algebra (see e.g. Kaw 2008; Meyer 2000; Searle 2006). First the model equation can

be written as:

~xðtþ 1Þ ¼ L~xðtÞ ¼ L2 ~xðt� 1Þ ¼ . . . ¼ Ltþ1 ~xð0Þ

Second, it is known that any Leslie matrix L is similar to a diagonal matrix with

the eigenvalues li as diagonal entries. Hence L
t+1 can be transformed to W Lt+1 V

with W and V being composed of the right and left eigenvectors, respectively.

Hence the model can be rewritten as:

~xðtÞ ¼ W Lt V ~xð0Þ ¼
Xn

i¼1

lti~wi~v
T
i~xð0Þ ¼

Xn

i¼1

lti~wici

Third, it is known that for each projection matrix L there exists one positive real

eigenvalue l1 of modulus greater than any other. This dominant eigenvalue there-

fore determines the asymptotic behaviour of the population as can be seen from the

above model representation. If l1 > 1 the population will grow exponentially,

whereas in case of l1 < 1 the population will decrease. For this reason l1 is often
called the growth rate of the population and is related to the intrinsic rate of increase

obtained from Lotka’s equation via r ¼ ln(l1).

122 D. S€ondgerath



L ¼

0 0 0:31 0:28 0:30 0:40 0:48 0:36 0:45 0:28
0:86

0:90
0:89

0:88
0:86

0:84
0:81

0:5
0:33 0:63

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

maximal eigenvalue l1 ¼ 1.047

A further result is that the population will finally reach an equilibrium state called

stable age distribution, given by the right eigenvector ~w1 of l1. This can be derived

from the characteristic equation L ~w1 ¼ l1 ~w1 by considering the second to nth row
of this matrix, setting w11 ¼ 1 and solving for successive values, finally arriving at:

~w1 ¼ 1; S1l
�1
1 ; � � � ; S1S2 . . . Sn�1l

�nþ1
1

� �T
. Appropriately scaled, this stable

age distribution gives the proportion of individuals in the different age classes and

does not depend on the initial distribution. Only for the sake of completeness it should

be noted that the appropriate left eigenvector~v1(sometimes called the reproductive

value vector of the population) can be interpreted as contribution values of the age

classes to future generations.

As an example, consider the life table of the red deer (adopted after Lowe 1969,

cited in Begon et al. 1996) (Table 9.1). This life table results in the Leslie matrix

given on the lower panel of the table. Entries which are not explicitly given are zero.

In this example we are dealing with a Leslie model with ten age classes; i.e., 1-year-

old animals, 2-year-old animals and so on, up to animals 10 years old and older.

Based on this matrix a projection for the next 30 years was done, starting with an

initial population of 10 individuals, all belonging to the first age class or uniformly

distributed over all 10 age classes, respectively.

Table 9.1 Life table of the red deer (Lowe 1969) and the resulting

projection matrix

Age (years) Birth rate Mortality rate Survival rate

1 0 0.14 0.86

2 0 0.10 0.90

3 0.31 0.11 0.89

4 0.28 0.12 0.88

5 0.30 0.14 0.86

6 0.40 0.16 0.84

7 0.48 0.19 0.81

8 0.36 0.50 0.50

9 0.45 0.67 0.33

10 0.28 0.37 0.63
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The sum of individuals in all age classes for every time point is shown in Fig. 9.2.

Apart from small differences at the beginning the population dynamics is the same for

both initial populations. Because the maximal eigenvalue ofL is greater than one, the

population will grow exponentially. The normed right eigenvector belonging l1
describes the stable age distribution of the deer population (i.e. the proportions of

individuals belonging to the different age classes), which finally will be reached no

matter what initial distribution is assumed (Fig. 9.3).

Elasticity Analysis

The impact of small changes in the life history parameters on the population

dynamics is of special interest for ecologists when making recommendations for

species management. For example, a specific age class should be a target for

conservation or control, if a small change in survival of this age class markedly

affects the population growth. Whether an increase or decrease in survival is desired

depends on the population being at risk or a pest, respectively. The effects of small

changes in the parameters on the growth rate can be assessed by an elasticity

analysis of the projection matrix (see also sensitivity analysis Chap. 23). Elasticity

is a measure of the effect of a proportional change in the life history parameters on

Fig. 9.2 Results of two simulation runs with the projection matrix given in Table 9.1. The initial

population was ten individuals, all in age class 1 (solid line) and uniformly distributed over all ten

age classes (dotted line), respectively

124 D. S€ondgerath



the population growth rate (Caswell 1978, 2001; de Kroon et al. 2000). According to

Caswell (1978), the elasticities for each entry lij of the matrix L are evaluated as:

eij ¼ @ log l1ð Þ
@ log lij
� � ¼ lij

l1

@l1
@lij

¼ lij
l1

viwj

~vT~w

with ~v and ~w being the left and right eigenvectors of l1. An important characteristic

of the elasticities is that they sum up to unity (de Kroon et al. 1986). For specific life

history parameters they thus can indicate the relative importance for the population

dynamics. Elasticity analysis decomposes the population growth rate into contribu-

tions made by the different life history parameters; e.g. growth, survival, reproduc-

tion and, therefore, points to the parameters where management measures should
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Fig. 9.3 Proportions of individuals (y-axis) in ten age classes (x-axis) at four time points for two

different initial distributions of ten individuals. For the upper panel the simulation was initiated

with all individuals being in the first age class, whereas in the lower panel the same number of

individuals were uniformly distributed over all age classes. In both cases the same stable age

distribution was reached after a few time steps
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focus. The concept of elasticity is widely used in conservation biology; examples

are given by Benton and Grant (1999), Pascarella and Horvitz (1998), Heppel et al.

(2000) and Pichancourt et al. (2006).

For the red deer example given in Table 9.1 the following elasticity matrix is

evaluated:

E¼

0 0 0:038 0:029 0:027 0:029 0:028 0:016 0:009 0:005
0:181

0:181
0:143

0:113
0:087

0:058
0:030

0:014
0:005 0:007

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Based on these elasticity values, it is apparent that the survival rates of the first

two or three age classes are much more important for the growth of the red deer

population than any of the fertility rates. Any measure to control the population

should therefore focus on these parameters.

9.3 The Extended Leslie Model

In the original Leslie model there are several restrictions that should be mentioned:

First, up to now we have dealt with a constant environment. To consider fluctuating

environmental conditions (e.g. temperature) that play a crucial role in insect

development, other concepts are needed. One possible way to do this is to translate

the real time into another unit, taking into account the environmental conditions.

This alternative unit is called the biological time (or biological age, as well) and it

measures (to a certain extent) the state of development of individuals (S€ondgerath
and M€uller-Pietralla 1996; Schr€oder and S€ondgerath 1996).

The concept of biological time is as follows: consider a population whose

development will last 100 days under constant optimal conditions. The develop-

ment rate for this population is defined as 1/100 ¼ 0.01/day. Summing up the

development rates after 100 days will yield a value of 1 (the time the development

is complete).

Real conditions are never constant, so a formulation of the development rate

dependent on environmental conditions is needed. For the most important environ-

mental factor (the temperature), this relationship is often an optimum curve which,

for example, can be described by an O’Neill function (Spain 1982) depending on

parameters rmax (maximal development rate under optimal temperature), Topt, Tmax
(optimal and maximal temperature, respectively) and the Q10-value, which describes
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the increase of the development rate as a consequence of increasing the temperature

by 10�C. An example for an O’Neill function can be seen in Fig. 9.4a. Combining this

function with a real temperature course yields a time dependent development rate.

Finally, integrating this time-dependent rate over time will give the biological time:

biolðtÞ ¼
ðt

0

rate temp tð Þð Þ dt

For simplicity, one can regard the biological time as the sum of the development

rates. This is because an integral can be approximated by an infinite sum of
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Fig. 9.4 Relation between temperature, development rate, biological time and transition probability:

(a) Temperature-dependent development rate described by an O’Neill function with rmax ¼ 0.0085

and Topt ¼ 25. (b) Artificial time course of temperature described by a sine function. (c) Resulting

biological time calculated by integrating the O’Neill function over time. (d)Weibull distributions with

scale parameter 1 and different shape parameters (2 for the solid line and 12 for the dashed one) applied
to the biological time shown in panel c lead to the transition probabilities of the extended Leslie model
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piecewise constant values. Irrespective of the mode of evaluation (sum or integral),

the development is completed when the biological time reaches the value of 1. With

this concept, the real time t is transformed to another unit biol(t) which can be

thought of as the fraction of development which is completed up to time t.
A second drawback of the original Leslie model is that no density dependence is

incluced in the original model and all parameters are constant. A possible extension

of the original model is to formulate the fertilities, for example, as functions of the

number of individuals already present in the habitat under study (S€ondgerath and

Schr€oder 2002). A first approach to do so may be a step function. Up to a specific

critical density the fertility is F1; beyond it is F2 (< F1). A more flexible approach is

a function of the Weibull-type:

FðNÞ ¼ Fmax 1� exp � N=Ncritð Það Þð Þ;

with Fmax denoting the maximum fertility at low densities, Ncrit, the critical

population density and a, a steepness parameter. For very high a-values this

function reduces to a step function. Of course, the survival rates can also be

formulated as density dependent in a similar manner (Pykh and Efremova 2000).

The original Leslie model deals with classes dependent on age or stage but not

both. For populations whose development depends on the environment (e.g.

insects) this is not sufficient, because age and stage are not linked in a straightfor-

ward way. For this reason, the extended Leslie model was set up (S€ondgerath and

Richter 1990). This model coupled different Leslie models, one for each stage of

the life cycle. The coupling was done via time-dependent transition probabilities,

which reflected the development status of the individuals. These transition prob-

abilities were evaluated on the basis of the biological time defined above. First, the

biological time resulting from the stage-specific development rate for each stage

was evaluated. In Fig. 9.4b an artificial temperature curve is given. In Fig. 9.4c the

biological time resulting from integration of the time-dependent development rates

is shown. The latter can be reached by combining the O’Neill function with the time

course of temperature. In the first period the biological time increases slowly

because of the low temperature. Due to nearly optimal conditions, the increase is

higher after approximately 150 days. Temperatures above the optimum of 25�C
(between days 187 and 298) result in a flattening of the biological time curve in the

specified period. As outlined above, the development of one stage is completed

when the appropriate biological time reaches the value of 1. In the example shown

in Fig. 9.4 this is the case after 233 days. To take biological variation into account a

statistical distribution (e.g. a Weibull distribution) is applied subsequently to finally

reach at the transition probabilities for the model. The Weibull distribution has two

parameters: one scale parameter, which is 1 in this case, and a shape parameter,

which affects the steepness of the curve. The higher the shape parameter, the less

biological variation is included (see Fig. 9.4d).

The general structure of the extended Leslie model for a population with three

development stages can be seen in Fig. 9.5. This kind of model was successfully

used for different purposes, e.g. to forecast the dynamics of pest populations
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(S€ondgerath and M€uller-Pietralla 1996). In a simulation study it was used to

investigate the effect of habitat fragmentation on the spread of populations

(S€ondgerath and Schr€oder 2002). Recently, the extended Leslie model was applied

to describe the dynamics of the dragonfly Gomphus vulgatissimus along a latitudi-

nal gradient over Europe (Braune et al. 2008). This will be described in the next

section.

9.4 An Ecological Application: Effects of Global Change

on the Voltinism in Dragonflies

All model simulations of the Intergovernmental Panel on Climate Change (IPCC)

show a warming in the future across Europe due to climate change. Several

examples for ecological consequences of recent climate change have been

described; e.g. changes in populations and reproductive biology, changes in phe-

nology, changes in geographic range and ecosystem-level changes (Hickling et al.

2005; Parmesan 2006; Hassall et al. 2007). Studies on European dragonflies show

that some species already exhibit accelerated life cycles and/or their ranges have

shifted northwards (Hassall and Thompson 2008).

Different approaches are in use to model species spatial distributions under

different climate conditions. The species distributions can be predicted by inferring

the environmental requirements of the species from their current geographical

distribution (Climate Envelope Models, see e.g. Araújo et al. 2006 or Hijmans

and Graham 2006). Other approaches are structured population models, which

Fig. 9.5 Life cycle of an age- and stage-structured population. In each of the three development

stages different age classes are passed through, for each stage a Leslie model is set up. The

different stages are linked via transition probabilities depending on environmental variables. The

solid arrows denote survival probabilities within one stage, and the dashed ones transition

probabilities into the next stage
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assume functional relationships between life cycle parameters and environmental

factors (Caswell et al. 1996; Braune et al. 2008). The advantage of this kind of

model is that it results not only in information about the range of the species but also

in life cycle characteristics.

The extended Leslie model for the dragonfly Gomphus vulgatissimus (Braune
et al. 2008) was developed in order to study the effects of climate change scenarios

on voltinism (i.e. the number of generations completed within one year) (Corbet

et al. 2006), and on the potential range (i.e. the geographical area within which this

species is able to reproduce and establish a stable population). Knowledge of

voltinism and potential range are needed to understand how species could adapt

or already have adapted to environmental conditions in different regions.

The life cycle was divided into three stages: eggs (E), larvae (L) and mature

adults (A). The projection matrix was constructed from two types of sub-matrices

for each stage: one for survival within that stage (S) and one for transition or

development into the next stage (D).

L ¼
SE 0 DA

DE SL 0

0 DL SA

0
@

1
A

The temporal pattern of the life cycle was determined by the probability distri-

bution function of the random variable development time, which itself depends on

the time course of environmental covariates (S€ondgerath and Richter 1990). In the

case of G. vulgatissimus the major controlling environmental variables are temper-

ature and day-length (Corbet 1999). The dependency on these variables was

modelled by the accelerated life model (Cox and Oakes 1984) with a multiplicative

approach, leading to the biological time (Schr€oder and S€ondgerath 1996). As

explained above, this item reflects the actual development status of an individual:

the greater the biological time, the more advanced is the development. The devel-

opment is completed when the biological time equals unity. Biological variation

was taken into account by subsequently applying a statistical distribution function

to evaluate the transition probabilities into the next stage. For further details of the

model see Braune et al. (2008). With this model, simulations were done along a

latitudinal gradient from southern (42�N) to northern (62�N) Europe. This latitudi-
nal gradient describes the major distribution limits of the species. Evaluations were

performed for present-day conditions, as well as for three future time points (2020,

2050 and 2080). For the latter, temperature rises according to the scenarios given by

the Intergovernmental Panel of Climate Change (IPCC) were incorporated. The

initial population for each simulation was 5,000 eggs.

The results of two of the four simulations can be seen in Fig. 9.6. For the present-

day scenario, G. vulgatissimus showed a 2-year life cycle, up to about 50�N in

southern Europe. Between 50�N and 52�N, both 2- and 3-year developments are

shown, suggesting cohort splitting. For latitudes from 52�N to 54.5�N, the larval

life cycle lasted 3 years, followed by a region with 3–4-year development

(54.5�N–56�N). At the northernmost range, the larvae needed 4 years for their

130 D. S€ondgerath



development. The model predicts that from 2020 a 2-year life cycle will predomi-

nate in wide parts of the current range of the species, whereas the 3-year life cycles

shift further northwards. The 4-year life cycle in the north became negligible in

2020 and disappeared even in the northernmost parts in 2050.

Common to all simulations was a shift towards a slightly later emergence from

south to north induced by the decrease of day-length with more northern latitudes.

Naturally, the beginning of emergence (which is reproduced by the model) ranged

from April to June between southern and northern populations. In the zones of

cohort overlap the model predicts a longer flight season in the future or even a

bimodal phenology, with a large peak in spring and a smaller peak in late summer.

The model also predicted a slight northwards shift of the distribution range by

at most 1.25� in 2080. Such northward shift for G. vulgatissimus has already been

recorded. It adds up to 104 km from 1960–1970 to 1985–1995 (Hickling et al. 2005).

Summarizing the model revealed three main climate change effects: first, the

distribution of voltinism patterns is affected with a general trend towards a spread of

shorter generation times in the northward direction. Second, emergence is accelerated

in southern latitudes. The pattern of earlier emergence does not shift northwards. This

may be due to the additional photoperiodic control in the model. Third, the tempera-

ture scenarios provided by the IPCC led to a northward extension of the species.

However, competition with related species, prey availability, droughts and other

factors may cause other reactions of the population that are not yet covered by the

model. Nevertheless it appears that population models based on Leslie matrices can

be powerful tools to forecast effects of climate change on voltinism patterns and

distribution range of species. Combining several single-species models can help

to analyze the consequences of climate change on community and ecosystem levels,

e.g. a temporal decoupling (“mismatch”) of up to now synchronized processes such

as temporal coincidence of predators and the appropriate prey populations.
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Fig. 9.6 Results of simulation runs for the dragonfly Gomphus vulgatissimus based on an

extended Leslie model with temperature and day-length as environmental variables. On the x-
axis time is shown, geographical latitude is on the y-axis and the simulated number of adult

dragonflies on the z-axis. The results are show along the gradient from 42�N to 62�N for current

climatic conditions (2005) and for the year 2080 according to the IPCC scenarios. The model

shows a northward extension of the species together with a faster development (Braune et al. 2008)
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9.5 Conclusions

This chapter has dealt with Leslie matrix models, a special case of discrete time

models where a population is divided into age classes of the same length as the time

step. For this model population parameters, like age-specific survival and fecundity,

were summarized in the Leslie matrix. An eigenanalysis of this matrix yielded

important information about the asymptotic behaviour of the population as well as

the relative importance of certain life history parameters on the population dynam-

ics. Further, an extended Leslie model for populations with both, age and stage

structure, was given. With this model the effects of climate change on the voltinism

and range of occurrence of a dragonfly species were investigated. In this example it

was shown that population models based on Leslie matrices can be powerful tools

in ecological investigations, although some important factors were not yet covered

by the model. Therefore, Leslie matrix models can help to analyze community and

ecosystem level consequences of climate change.
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Chapter 10

Modelling Ecological Processes with Fuzzy

Logic Approaches

Agnese Marchini

Abstract The development of an ecological model may involve problems of uncer-

tainty. Ecologists have to deal with imprecise data, ecosystem variability, complex

interactions, qualitative aspects, and expert knowledge expressed in linguistic terms.

In all these cases, fuzzy logic could provide a suitable solution. Fuzzy logic allows to:

use uncertain information such as individual knowledge and experience; to combine

quantitative and qualitative data; to avoid artificial precision and to produce results

that are found more often in the real world. Developed in the late sixties as a method

to create control systems when using imprecise data, fuzzy logic has been used for a

very large number of engineering applications, and more recently to develop models

of air, water and soil ecosystems.The following sections of this chapter introduce the

basic structure of a fuzzy model, describing the variety of options that exist at each

stage. An example of fuzzy model is also outlined: the knowledge-driven develop-

ment of an index of water quality having five qualitative output classes. Finally,

possible future developments of fuzzy modelling in ecology are suggested.

10.1 Introduction

10.1.1 Fuzzy Logic: A Mathematical Theory for Uncertainty

Ecologists very frequently cope with imprecise and vague data. Formalizing such

fragmentary information with traditional “hard computing” approaches can be

difficult. Important alternative tools are provided by the so-called “soft computing”

techniques. They fill a methodological gap, dealing with imprecision, uncertainty,

partial truth, and approximation. Fuzzy logic, a theory developed in the mid-1960s

A. Marchini
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by Lotfi A. Zadeh, is a soft computing approach particularly suitable for ecological

models.

Fuzzy logic is an alternative method to represent complex systems, such as those

encountered in biology, sociology or economy. Instead of numerical variables and

mathematical formulas, fuzzy models require linguistic variables and rules. For

example: the variable temperature might have linguistic values such as hot or its
antonym cold; a linguistic rule might be: “if pressure is high, then volume is low”.
This approach helps ecologists who have an idea of the process under study, but have

data affected by too much imprecision to be used in the development of a formal

model. Fuzzy logic applies meaning to imprecise concepts and uses uncertainty as an

additional source of information. The first key concept of fuzzy logic is partial truth.

Rather than labeling a statement as either true (1) or false (0), as classic binary logic
does, in fuzzy logic the degree of truth of a statement can assume any value between

0 and 1. The degree of truth is established by a membership function m. Membership

functions, the second key concept, represent the transition from numbers to words

and allow one to “compute with words”. Dealing with fuzziness and imprecision does

not prevent fuzzy logic from being a mathematical formalism, and fuzzy systems

being sound and not ambiguous. Bart Kosko, one of the pioneers in the development

of fuzzy systems, demonstrated that “an additive fuzzy system can uniformly approx-
imate any real continuous function on a compact domain to any degree of accuracy”
(Kosko 1994).

Fuzzy logic has had a great impact on mathematical disciplines such as logic,

algebra, topology, data analysis, etc. Technical applications include a variety of

different controllers and software, for example: chips that control cameras, eleva-

tors, air conditioners, washing machines and other home appliances; automobile

and other vehicle subsystems, such as automatic transmissions, ABS and cruise

control; artificial intelligence in video games; edge detection in digital image

processing; pattern recognition algorithms in remote sensing; and language filters

for offensive text in message boards and chat rooms. The impact of fuzzy logic on

ecological research has displayed an increasing trend: the first applications date

from the late 1980s, when it was introduced for the ordination of vegetation data.

Since then, more than two hundred publications about fuzzy applications in eco-

logical research have appeared in scientific journals.

10.1.2 Fuzzy Logic and Ecology

Fuzzy logic has been repeatedly proposed as a powerful technique to develop

models for decision support in ecosystem management (Silvert 1997, 2000;

Adriaenssens et al. 2004; Fr€anzle 2006; Jørgensen 2008). The capability of fuzzy

logic to use uncertain information that other methods cannot take into account

makes this computational technique particularly important in ecology. In fact, the

representation of ecosystems is affected by many sources of fuzziness:
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l Uncertain input data: gaps, inaccuracy, spatial and temporal variability, hetero-

geneity, qualitative ecosystem attributes
l Uncertain input–output relationships: complex systems, non-linear interactions,

management of multiple variables, exceptions to general rules, different impor-

tance of variables
l Uncertain output: qualitative classes, non-ordinal classes, non-sharp boundaries
l Uncertain expert knowledge, legislative requirements, opinions of administra-

tors, end-users, etc, expressed in linguistic form

Fuzzy models of ecosystem functions have been developed in all continents,

confirming that the principles of fuzzy logic theory have been established worldwide

in ecological institutions. Fuzzy systems have been developed for air, water, soil

ecosystems, with both biotic and abiotic ecosystem variables. Analysis and assess-

ment of air pollution, water eutrophication, groundwater contamination, control of

ozone levels, evaluation of sustainability of fishery and fish farming, analytical

assessment of soil degradation, leaching or acidification risk, are just a few examples

of ecological issues modelled with a fuzzy approach that can be found in the scientific

literature.

In a number of cases, fuzzy logic has also been combined with GIS or with other

soft computing techniques, such as artificial neural networks, self-organizing maps,

and genetic algorithms in order to integrate the adaptability of fuzzy logic to human

reasoning with a data-driven approach.

Most authors have acknowledged that fuzzy logic represents a suitable, feasible and

effective tool to deal with ecological issues, and that it provides more reliable results

when compared with other methods for environmental assessment (e.g. Altunkaynak

et al. 2005). Fuzzy logic has demonstrated to be particularly suitable for the develop-

ment of new indices of ecological quality. It allows one to acknowledge the subjective

aspects of the index design process, and provides the tools to easily handle subjectivity,

by quantifying it and manipulating it with mathematical rigour (Table 10.1).

10.2 Structure of a Fuzzy Model

A fuzzy model typically consists of three stages: fuzzification, inference and

defuzzification. The latter is not always required.

Fuzzification is the process for linking a variable to its underlying characteristics

by means of a membership function m. After fuzzification, the input variable loses
its numerical definition and acquires a linguistic definition: for example, it might

become small, hot, high. Its numerical value is transformed into a fuzzy member-

ship grade: a unit-less number in the interval [0, 1].

Once all variables are fuzzified, they can be processed through the fuzzy rules of

the model. This is the inference stage. Fuzzy rules typically are in the form of

logical implication (if ... then). Single rules are then combined to produce a fuzzy

output, still in the form of fuzzy membership grade in the [0, 1] interval.
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Defuzzification is the process to convert the fuzzy output into a non-fuzzy value

that can be used in non-fuzzy contexts.

The following subsections will present an overview of the most used techni-

ques for fuzzification, inference and defuzzification. In fact, the three stages can

be performed in many different ways (Table 10.2), depending on the type of

information integrated in the model and on the required output. This plasticity is an

Table 10.1 The fuzzy approach can be useful in different ways to develop an ecological index.

A number of issues that can be encountered in the process of index development is presented, with

the respective solutions offered by the fuzzy approach

Issues of the index development process Solutions

Boundaries

Many “traditional” indices subdivide the

range of a variable into intervals

associated with different scores or quality

classes. Boundaries between two intervals

are often sharp. In this way, small

deviations from a threshold value implies

big differences in the output. This is not in

agreement with the behaviour of natural

systems

Fuzzy membership functions allow to

represent soft boundaries and

gradients. Membership functions can

overlap: a variable value can display

two characteristics at the same time

System complexity

One of the most desirable features of

ecological indices is the ability to combine

metrics in a manner that is complex

enough to capture the dynamics of

essential ecological processes, but not so

complex that their meaning is obscured

(Borja and Dauer 2008)

Fuzzy rule-based systems are able to

model non-linear, multidimensional,

complex phenomena; yet, the

linguistic form of the if ... then rules

make fuzzy models easily

understandable

Reference conditions

Reference conditions, required to define the

class of best ecological quality, should be

described by pristine, undisturbed

environments. Unfortunately, such

conditions may not exist anymore.

Scientists are thus required to define

virtual reference conditions using

mathematical models and/or expert

judgement

Fuzzy models are mathematical models,

based on logic rules, and are also

expert systems, based on expert

judgement

Legislative criteria

Classes of ecological quality (e.g. good,
moderate, poor) do not have a clear

quantitative definition. Threshold values

that separate two quality classes should

take into account the levels of

acceptability and public concern, which

are highly subjective, and not directly

measurable

Fuzzy membership functions are suitable

for representing purely linguistic

variables, such as classes of ecological

quality. They could be designed with

some degree of overlap, avoiding hard

thresholds and integrating different

conceptions of good or poor ecological
quality
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important feature of the fuzzy approach, which allows one to deal with any kind of

data. On the other hand, the variety of choices that exist at each stage may be seen

as a difficulty and a source of subjectivity: ecologists have no guidelines to select

the most opportune techniques for a specific problem. The definition of several

steps listed in Table 10.2 can be data-driven, i.e. based on statistical evaluation of

data sets or machine learning techniques. Optimal parameterization of member-

ship functions, weights, rules, etc., is recommended as it improves model perfor-

mance, but it is only possible when an adequate amount of experimental data is

available. Unfortunately, in ecological research it is often difficult to collect large

data sets, especially when biological information (populations, communities) is

involved. Therefore, the knowledge-driven approach, based on expert opinion, is

the most common strategy to define membership functions and if ... then rules

in ecological fuzzy models. Of course, it introduces more subjectivity into the

model.

Table 10.2 Stages of a fuzzy model and some possible options for developing each step

Model stages Steps requiring definition

by the model developer

Possible options Definition can be

Fuzzification Input variables Qualitative or quantitative Knowledge-driven

(ecological

knowledge)

Membership functions:

number

Generally 2–5 Knowledge-driven

or data-driven

Membership functions:

position along the

x-axis

Depends on the variable

range; generally in

[0, +1],

or [–1, +1]

Knowledge-driven

or data-driven

Membership functions:

shape

Linear (triangular,

trapezoidal), or non-

linear (gaussian,

sigmoidal, others)

Knowledge-driven

or data-driven

Inference Model type Takagi–Sugeno or

Mamdani

Knowledge-driven

if ... then rules Depend on the problem Knowledge-driven

or data-driven

Mathematical operators Min and max; product,

weighted sum, others

Knowledge-driven

or data-driven

Weights (optional) Any positive real number Knowledge-driven

or data-driven

Defuzzification

(optional)

Type of output Qualitative or quantitative Knowledge-driven

Defuzzification method Centroid, mean, max, mean

of maximum, center of

maximum, bisector,

linear combination,

“winner takes all”,

others

Knowledge-driven

or data-driven
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10.2.1 Fuzzification: Membership Functions

Membership functions are the core of a fuzzy model, and the most revolutionary

concepts of fuzzy set theory. One of their advantages is that the linguistic expres-

sion of a variable is easily understandable by everyone, whereas numerical values

are meaningful only for experts.

Any model variable is described by a characteristic C, such as low or high.
A membership function mC converts the numerical value of the variable v into a

membership grade to the characteristic C. The membership grade ranges from 0 to 1,

and can assume all values in this interval:

mC(v) ¼ 1, full membership: v displays C completely

mC(v) ¼ 0, null membership: v does not display C
0 < mC(v) < 1, partial membership, v partially displays C

A straightforward example: consider the variable “water temperature” and its

characteristics cold and hot. A temperature 0�C could have membership 1 to the

function cold and membership 0 to the function hot. Conversely, the value 100�C
could have membership 0 to cold and membership 1 to hot. Membership grades

between 0 and 1 represent intermediate situations. In other approaches, they would

be classified as uncertain values. Fuzzy logic converts uncertainty into enhanced

information. In fact, uncertain values have partial membership to more than one

characteristic. This is due to an important feature of membership functions: they

overlap. A variable value is allowed to have non-null membership for two functions

simultaneously. For instance, a medium temperature value can be partially cold and
partially hot. The amount of overlap between two functions is related to the amount

of uncertainty included in the model: the more the overlap, the more the uncer-

tainty. Classical “crisp” functions do not tolerate uncertainty, since they have null

overlap (a temperature value can be either cold or hot). In other terms, whereas in

classical systems there would be a steep threshold between cold and hot water
temperature, the fuzzy approach offers a gradual transition, which is more similar to

real world conditions.

To develop a fuzzy model, the ecologist is required to define the number of

membership functions for each variable of the model, their shape and their position

along the x-axis. These are parameters of the model and indicate the semantic

meaning of the variable characteristics. Membership functions can be linear (trian-

gular and trapezoidal) or nonlinear (bell-shaped, sigmoid, polynomial) (Fig. 10.1).

Triangular and trapezoidal membership functions indicate that the variable charac-

teristic changes linearly as the variable value changes. Nonlinear functions describe

more complex behaviours. Triangular and trapezoidal functions are easier to define,

whereas more complicated shapes are less intuitive and may require the definition

of more parameters.

However, linearity is not a common behaviour of ecosystems: nonlinear func-

tions such as Gaussian and sigmoid would probably better represent ecological data

and improve model performance.
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10.2.2 Model Rules

A fuzzy model is a collection of linguistic rules, thus it is transparent and easily

understandable. A fuzzy rule is a logical implication, “if antecedent, then conse-

quent”. The action of the implication is to reduce the truth of the consequent

according to the degree of fulfilment of the antecedent. The antecedent is a combina-

tion of several conditions connected with the logical operator of conjunction, and. To
produce a fuzzy output, all fuzzy rules are aggregated, generally with the logical

operator of disjunction, or. The logical operators and, or, if ... then can be implemen-

ted with different mathematical operations (Table 10.2). Typically, minimum is used

for and, maximum for or and product for if ... then.
There are two main types of fuzzy models: Mamdani and Takagi–Sugeno. In the

Mamdani type, both rule antecedent and consequent are in the form of membership

functions: “if (variable v is characteristic C, and . . ., and variable z is characteristic
Z), then output is characteristic O”. The model output is expressed in linguistic

terms: it is a membership grade to a linguistic characteristic. In some cases, a

linguistic output (for example a quality class) is desirable, thus, defuzzification can

be avoided. In Mamdani models, defuzzification becomes necessary only when a

numerical output is required. In Takagi–Sugeno models, the rule conclusion is

already a crisp value, linear function of the inputs: “if (variable v is characteristic

C, and . . ., and variable z is characteristic Z), then output is f(v . . ., z)”. Therefore,
this model type does not require an explicit defuzzification procedure.

In ecological applications, the linguistic character of the Mamdani-type output is

suitable to model qualitative ecosystem features, for example classes of soil or

water quality (Ocampo-Duque et al. 2006; Tscherko et al. 2007; Icaga 2007),

whereas the behaviour of environmental variables can be easily forecast or

modelled by means of the Takagi–Sugeno approach (Jorquera et al. 1998; Ryoke

et al. 2000; Altunkaynak et al. 2005; Lin and Cobourn 2007).
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Fig. 10.1 Examples of linear (a) and non-linear (b) membership functions for the characteristics

low, medium and high of a variable v
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Fuzzy models take into account all possible combinations of membership func-

tions (characteristics) of all variables, thus the number of rules increases exponen-

tially with number of variables and membership functions. Simple models display a

few rules, but there can be fuzzy models with hundreds or thousands of rules. Single

rules are generally assessed by expert judgement, but this may become complicated

when a large number of rules is involved. Methods for automatic rule assessment

have been proposed, in order to overcome the problems of subjectivity (Tscherko

et al. 2007; Marchini et al. 2009).

10.2.3 Defuzzification

The fuzzy output is determined by the degrees of fulfilment of several rules. Fuzzy

rules in fact allow their partial and simultaneous fulfilments. Depending on the

values of the input variables, some rules will be fulfilled more than others, and their

own output will have more importance in the aggregation process for the computa-

tion of the final output.

Whilst in Takagi–Sugeno models the output is already in the form of scalar, the

output of Mamdani models is in fuzzy form, i.e. membership grades to linguistic

characteristics, and has to be defuzzified. Defuzzification is the process of combin-

ing several partial memberships to produce a crisp set, or a crisp single-valued

quantity, compatible to non-fuzzy approaches. It can be performed through differ-

ent techniques (Table 10.2). The selection of the most opportune technique depends

on the type of information desired in the output. In ecological models the output sets

are usually defuzzified by calculating their center of gravity, weighted average, and

maximum; less frequently by other methods. When qualitative classes need to be

evaluated, defuzzification is avoided, as it entails a loss of information.

10.2.4 How to Create and Use a Fuzzy Model

The previous sections have shown that fuzzy models can be developed using a

variety of strategies. It is almost impossible to specify a detailed guideline to create

a fuzzy modal that can have general validity. However, all models have essential

steps to be followed, which can be implemented choosing amongst the possible

options presented in Table 10.2:

1. Select input variables and their characteristics

2. Design membership functions for each variable characteristic

3. Select an output variable and its classes

4. Generate if ... then rules, combining all variable characteristics (antecedent of

implication) and output classes (consequent of implication)

5. Define logical connectives used to manipulate rules (and, if ... then, or)
6. Define defuzzification strategy (optional)
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It is always recommended to clearly explain the choices undertaken at each step,

and the motivations that have justified them. For example: “bell-shaped member-
ship functions have been chosen since they better represent the Gaussian behaviour
of the model variables”.

Once the model has been developed, its application with sample data involves

the following steps:

1. Fuzzify. Calculate membership grades of the input data through membership

functions

2. Infer. For each rule, calculate grade of antecedent fulfillment (application

of connective and), and grade of rule fulfillment (application of connective

if ... then). Aggregate results of all rules using connective or
3. Defuzzify. Apply defuzzification strategy (when scheduled)

10.3 An Ecological Application: Design of a Quality Index

The development of effective indices of ecological quality represents an important

branch of environmental research, as the capability of measuring human disturbance

on natural ecosystems is necessary for effective management (Marchini 2010). How-

ever, there is little acceptability of ecological indices by environmental managers and

even by scientists. The suitability of old and new indices has been called into question

during conferences and on the pages of scientific journals. Although perceived as

objective procedures, ecological indices involve many steps that are based on subjec-

tive expert judgement: variables selection, data transformations, definition of thresh-

olds, etc. (Scardi et al. 2008). Fortunately, there are advanced computational

techniques such as fuzzy logic, able to handle subjectivity and effectively, by quanti-

fying it and manipulating it with mathematical rigour (Shepard 2005).

This chapter presents the development of a multi-variable index (Marchini, unpub-

lished data) for transitional waters (estuaries, lagoons) using a fuzzymodel. Themodel

follows the Mamdani type, which is the most commonly used for ecosystem manage-

ment (Adriaenssens et al. 2004). Transitional waters are highly variable environments,

therefore, distinguishing between natural and human-induced disturbance is problem-

atic. The European Water Framework Directive (2000/60/EC) requires the inclusion

of biological elements, namely phytoplankton, other aquatic flora, zoobenthos and fish

fauna to measure ecological status of transitional waters. Ecological status has to be

expressed by means of five quality classes: high, good, moderate, poor and bad. This
requirement is extremely difficult to meet. Generally, transitional waters host low-

diversity communities, with dominance of disturbance-tolerant species. For this

reason, methods based on species diversity or sensitivity might be unable to identify

anthropogenic impacts in these environments. Biological metrics for the definition

of ecological status should be (a) ecologically relevant, i.e. their response to distur-

bance should be unequivocal and acknowledged by a large scientific community, and

(b) easy tomeasure, i.e.measurements should be low-cost, technically easy to perform
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and unlikely to be affected by errors. Unfortunately, findingmetrics with both features

is a challenging task. Single metrics often display ambiguous responses to human

disturbance, especially in transitional waters where the border between natural and

human-induced disturbance is really fuzzy. Furthermore, different biological elements

may respond in different ways to a disturbance. Therefore, an ecologically robust

approach could be a combination of different biological elements and characteristics

of these elements into a single classification tool, which can provide the integrated

response of the community.

First, a careful survey of relevant literature on ecological indices for transitional

waters was performed. The survey highlighted a set of seven metrics indicated as

ecologically relevant by many authors (Table 10.3). They were used as input

variables. Membership functions were drawn for all variables, trying to preserve

the personal judgement of different experts. Figure 10.2 illustrates how thresholds

indicated by different authors have been integrated and utilized to design member-

ship functions for the metric “total number of fish species”. For all variables, the

characteristics associated with bad ecological status and the characteristics asso-

ciated to high ecological status have been clearly identified. All seven metrics do

not have the same importance for ecological quality assessment: they have been

weighted as shown in the last column of Table 10.3.

The rule-base has been developed by setting the combination of all variables in

their worst characteristics to bad ecological status: if (total number of fish species is

low, and Chl a concentration is high, and seagrasses are absent, and. . ..), then
ecological status is bad. Conversely, high ecological status has been assigned to the

combination of all the variables’ best characteristics: if (total number of fish species is

high, and Chl a concentration is low, and seagrasses are present, and. . ..), then
ecological status is high. Intermediate combinations have been associated to the

other three classes of ecological status, good, moderate, poor. The metrics weighting

and the rules assessment have been performed by means of an automatic procedure

explained inMarchini et al. (2009). The followingmathematical operations have been

used to calculate the output: algebraic product for conjunction (and) and for implica-

tion (if ... then), algebraic sum for disjunction (or). They have been chosen as they

Table 10.3 List of selected metrics considered in the new index, their response to disturbance

(>: direct relation; <: indirect relation; ><: unimodal relation) and their importance in the

definition of the index value, expressed as weight

Biological quality

elements

Metrics Response to

disturbance

Weights

Phytoplankton 1. Chl a concentration (mg l�1) > 0.14

Macroalgae 2. Percent cover of opportunistic species

(%)

> 0.152

3. Biomass (gWW m–2) > < 0.168

Seagrasses 4. Presence (yes–no) < 0.097

Benthic

invertebrates

5. Shannon diversity (H’) < 0.145

Fish fauna 6. Total number of fish species < 0.152

7. Number of estuarine resident

species

< 0.145
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guarantee a smooth variation of the index in response to input variations. Defuzzifica-

tion has been performed bymeans of the linear combination technique: the five output

classes of ecological status have been weighted to produce a final index value varying

from0 to 100,with 0 representing bad quality and 100 representing high quality status.
The defuzzification weights are as follows:

output index value ¼ 0·mbad + 25·mpoor + 50·mmoderate + 75·mgood + 100·mhigh.

low

high

medium

1

0

total number of fish species

method a: EBI (Breine et al. 2007)

method b: EFCI (Harrison & Whitfield 2004)

method c : EBI (Borja et al. 2004)

total number of fish species

Limit for low =
threshold of method (a) = 7

Limit for medium =
threshold of method (c) = 3

Limit for high=
threshold of method (b) = 7

Limit for medium =
threshold of method (a) = 10

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

Fig. 10.2 Definition of the membership functions low, medium and high for the metric “total

number of fish species” based on three published methods ((a), Breine et al. 2007; (b), Harrison

and Whitfield 2004; (c), Borja et al. 2004)
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Since it is based on seven different metrics, the index has a complex, multi-

dimensional behaviour. A simplified representation of the index variation in response

to input values variation is shown in a 3D graph (Fig. 10.3): twometrics, percent cover

of opportunistic macroalgal species and total number of fish species are plotted on the

horizontal axes, whereas all the other metrics are fixed in their “worst case” condition,

i.e. at the values corresponding to bad ecological status. For this reason, the maximum

index value obtained with this simulation is 50 instead of 100. The index increases in

response to the increase of fish and to the decrease of opportunistic macroalgae. The

general behaviour of the index is non-linear, but there are regions of linearity, due to

the selected shape of membership functions (triangular and trapezoidal).

10.4 Future of Fuzzy Ecological Models

In the scientific literature, many examples of ecological fuzzy models already exist,

but many more are expected to come, considering the wide range of solutions that

fuzzy logic offers to ecologists and environmental scientists. Future progress of the

modelling techniques is desirable, in particular relative to the fuzzification, infer-

ence and defuzzification strategies. Most of the currently published models make

use of the simplest available options (linear functions, default inference operators

and defuzzification methods), regardless of their semantic meaning. Furthermore,
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Fig. 10.3 Response of the multivariable index developed with a fuzzy system to the variation of

the variables total number of fish species and percent cover of opportunistic macroalgae
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the parameterization of the model is often based on expert knowledge, without

sensitivity analysis or use of optimization techniques. On the one hand, the use of

personal knowledge and experience is an advantage for the fuzzy approach, as it

increases the quantity of information that is possible to include in a model. On the

other hand, it also includes subjectivity, which can be seen as a weakness of the

model.

Such aspects need improvement to create more reliable and scientifically sound

fuzzy ecological models. A possible strategy to achieve this goal is the hybridiza-

tion of the human-like reasoning style of fuzzy systems with other soft-computing

approaches. For example, neural networks, which are able to learn optimal mem-

bership functions and fuzzy rules from datasets. Such data-driven approaches

would improve model performance by taking into account non-linear membership

functions, complex model structures, alternative inference operators and defuzzifi-

cation strategies.

Another aspect that can be further developed in fuzzy ecological modelling is the

inclusion of biological variables (species, communities). Most of the published

models have been using only abiotic variables. Physical and chemical variables are

usually easier (and cheaper!) to measure and monitor. However, they might not

provide sufficient information on the investigated environment. Tingey (1989)

emphasized that “there is no better indicator of the status of a species or a system
than the species or system itself ”. The inclusion of biotic variables, under the

direction of experienced biologists would help in designing more effective fuzzy

ecological models. This can only be achieved by improving the familiarity of

biologists to fuzzy logic techniques.
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Chapter 11

Grammar-Based Models and Fractals

Winfried Kurth and Dirk Lanwert

Abstract In ecological interactions the three-dimensional structure of organisms can

play an important role. We will present an approach for modelling and simulation of

the development of geometrical structures in space, which is particularly suitable for

representing branching systems as they occur in plants. The related notions of self-

similarity and fractality will be briefly discussed. The crucial idea for modelling is to

describe the development of a modular structure by rules controlling the replacement

of substructures by other substructures. Such replacement systems are also called

“grammars”. When the structures are encoded as strings, we speak of L-systems. A

more general case are graph grammars, where the transformed structures are networks

consisting of nodes and arcs. Loosely following Kurth (2007), we will first show

example grammars written down in the programming language XL, which simulate

the branching structures of simple plants. The final example, also implemented in XL,

is about competition and resulting spatial interaction between plants. All code

examples can be tested with the free software GroIMP (“Growth-grammar related

Interactive Modelling Platform”).

Abbreviations

FSPM Functional-structural plant model

GroIMP Growth-grammar related interactive modelling platform

RGG Relational growth grammar

XL Extended L-system language

W. Kurth (*)

Department for Computer Science, Chair for Computer Graphics and Ecological Informatics,

Georg-August University of G€ottingen, Buesgenweg 4, 37077 G€ottingen, Germany

e-mail: wk@informatik.uni-goettingen.de

F. Jopp et al. (eds.), Modelling Complex Ecological Dynamics,
DOI 10.1007/978-3-642-05029-9_11, # Springer-Verlag Berlin Heidelberg 2011

147



11.1 Introduction

Grammar-based or rule-based modelling tries to capture the morphological develop-

ment of organisms in three-dimensional space. For example, in plants we can often

observe that they are composed of structural units (internodes, root segments, buds,

leaves, flowers), which are repeated in space and which grow and develop according

to clear botanical rules (e.g. laws of phyllotaxis or inflorescence architecture). Thus,

a seemingly complex tree crown can be described by quite a small number of

geometrical units and rules. All simulations of ecological situations where a precise

description of three-dimensional arrangements is needed can profit from such a rule-

based description e.g. for tree crowns competing for light and space, and for root

systems competing for soil resources.

The Hungarian biologist Aristid Lindenmayer (1925–1989) was the first to use a

grammar-based formalism to simulate the growth of organisms, namely, of filamen-

tous algae (Lindenmayer 1968). His rule systems were later denoted Lindenmayer

systems or L-systems. For a while, the applications of this new formalism remained

restricted to morphological studies of small herbaceous plants (e.g. Frijters and

Lindenmayer 1974) or to the free exploration of forms which can be obtained by

parameter variations in the rule systems (Hogeweg and Hesper 1974). Later, Smith

(1984) and Prusinkiewicz (1987) combined L-systems with a powerful description

code for static branching structures, turtle geometry, and used this approach for plant

models in computer graphics. A book with numerous illustrations (Prusinkiewicz and

Lindenmayer 1990) inspired further work of this sort. L-systems were also used for

other organisms forming branched structures, such as fungi (Tunbridge and Jones

1995) and corals (NVIDIA 2006). However, Herman and Schiff (1975) already had a

more ambitious aim: “. . . a general purpose simulator in which all kinds of different

biological ideas can be tested with ease.” To accomplish this, the purely structural

representations which can be obtained with simple L-systems were not sufficient. The

guiding idea was to extend the L-system approach to a formal calculus which could

play a role in biology which is analogous, e.g., to that of differential equations in

physics or group theory in crystallography. The first steps were already done by

Prusinkiewicz and by Lindenmayer himself when they introduced numerical para-

meters in their L-systems. Later, a combination of the rule-based approach with

process-oriented models of biological systems was realized in various forms. Room

and Hanan (1995) coined the term “virtual plants” for the resulting simulated organ-

isms, and in the preface to Siev€anen et al. (1997), the notion of “functional-structural
tree model” was used, which was later generalized to “functional-structural plant

model” (FSPM). To provide flexible tools for creating FSPMs, several authors

extended the concept of an L-system. For instance, in the language XL (which will

be used below for some “virtual plant” examples), L-systems are extended to graph

grammars and rule application is combined with classical imperative and object-

oriented programming in order to capture the process-related aspects of plant growth

in an adequate way in a model. Such an extended grammar approach is quite

powerful: Recently, Cournède (2009) has also shown that the basic algorithms of
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the so-called Greenlab model (Guo et al. 2006) (which is the result of an independent

line of FSPMs originally not employing rewriting systems) can be expressed in the

form of a grammar.

11.2 Turtle Geometry

If we want to formalize rules for structural development of organisms, like those for

shoot formation and branching of plants, we have to define a code. Its task will be

to translate organic entities like leaves, internodes, flowers etc. into formal objects or

symbols which can be referred to in precise rules and which can also readily

be processed by a computer. Several codes of this sort have been designed. The

most frequently used one is called “turtle geometry”, a name referring to a virtual

device for construction or drawing, called the “turtle” (Abelson and diSessa 1982). The

concept of “turtle” was incorporated into the LOGO programming language by

Seymour Papert in the late 1960s (seeHarvey 1997 about LOGO). The formal symbols

which will finally encode our geometrical structures are interpreted as commands
directed one after the other to this turtle. The turtle has a memory containing informa-

tion about the length s of the next geometrical entity to be constructed, its thickness d,
its colour c, the turtle’s current position, its current direction of movement, and more.

Among the available commands are the following ones:

M0 move forward by s length units (without drawing)

F0 move forward and draw simultaneously a line of s length units

M(a) move forward by a units (without drawing); the explicitly specified

number a overrides the turtle’s s
F(a) move forward and draw simultaneously a line of a length units

L(a) overwrite s by the value a
D(a) overwrite d by the value a
P(a) overwrite c by the value a (interpreted as a colour index)

RU(a) rotate clockwise by the angle a (around the “up” axis, which is

perpendicular to the plane where the turtle is moving)

In the commands M0 and F0, the zero says that there is no explicit argument;

instead, the “state variable” s of the turtle is used. Strings consisting of these

commands can be used to specify structures made of consecutive lines (or cylinders

in three dimensions) with varying length, thickness and visibility. Each of these

strings describes a fixed geometrical structure.

Loops can be used to abbreviate iterated parts of a command sequence:

for (int i:(1:n)) (X) generates n replicates of the string X (here, int i defines a

counting variable for the repetitions). For example, the turtle programme:

L(100) for (int i:(1:60))

(for (int j:(1:i)) (F0) RU(90))

generates a rectangular spiral (cf. Kurth 2007).
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So far, the turtle can draw only one line after the other. To create the possibility to

produce branching patterns, special commands denoted “[” and “]” are introduced:

When the turtle reads “[”, its current state (including the values of s, d, c etc.) is stored
on a stack. The following string is then processed by the turtle as a branch which ends

when “]” is reached: At this moment, the stored state is taken from the stack and

overwrites the state, which the turtle got by finishing the branch. The turtle then “jumps

back” to its old position and resumes its operation as if the construction of the branch

since “[” had not taken place. Figure 11.1 shows the turtle interpretation of the string

F(50) [RU(60) D(1) F(20)] RU(-30) F(50):

After a vertical segment of length 50, specified by F(50) in the beginning, the

shorter, but thicker branch to the right (with diameter 1 set by the command D(1)) is

constructed. When the closed bracket is processed, the turtle resumes its old position

and follows the commands RU(-30) F(50) to draw the upper-left part of the structure.

The turtle’s movement can be extended to the third dimension by two further

rotation commands: RL(a) and RH(a). They rotate the turtle around an axis point-

ing (initially) to the left, respectively around its current head direction.

11.3 L-Systems

Lindenmayer systems, also called “L-systems”, are parallel rewriting systems
which are applied to strings, i.e. to sequences of symbols. Mathematically, a

“pure” L-system (without geometrical interpretation) has 3 components: an alpha-

bet S which contains the basic symbols, a start string called “Axiom”, and a finite

set of rules. Each rule has the form:

symbol ¼¼> string of symbols

where all symbols are elements of S. In a deterministic L-system, the left-hand side

of each rule must be different from that of all other rules. An application step of the

Fig. 11.1 A branched

structure specified with

the turtle
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L-system to a given string s consists of the simultaneous replacement of all symbols

in s occurring on the left-hand side of a rule by their corresponding right-hand side.
Symbols which cannot be replaced remain unchanged. By beginning with the start

string and iteratively performing one application step to the result of the preceding

one, we get the developmental sequence of strings generated by the L-system:

Axiom ! s1 ! s2 ! s3 ! . . .

As a simple example, let us consider the L-system with S¼ {A; B}, Axiom¼ A,

and with the two rules

A ¼¼> B

B ¼¼> AB

The resulting developmental sequence is:

A ! B ! AB ! BAB ! ABBAB ! BABABBAB ! . . .

From Lindenmayer’s original viewpoint, A and B can be interpreted as two

different cell types of a filamentous organism. The rules express the facts that a cell

of type A can grow into a cell of type B, and a cell of type B can divide into two

cells of type A and B, respectively. The developmental sequence then reflects the

growth of the filament in discrete time steps. (Note that the number of cells in this

sequence increases according to the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, . . ., i.e.
each number is the sum of its two predecessors.)

To let L-systems produce more interesting geometries than just linear filaments

of cells, the definition of an L-system is extended by a fourth component, turtle

geometry. It provides a geometrical interpretation: With each string, particularly

with each Si from the developmental sequence above, a geometrical structure Si in
two- or three-dimensional space is associated. This is realized by letting the

alphabet S of the L-system contain the set T of all turtle commands. The strings

si obtained from the L-system are then separately interpreted by the turtle: They are

scanned from left to right, and the geometrical structure Si is constructed by

processing the occurring commands one by one. Symbols from S which are not

in T are ignored by the turtle. Figure 11.2 summarizes the resulting scheme of

interpreted L-system application.

An example (from Prusinkiewicz and Lindenmayer 1990, p. 25, adapted)

demonstrates this mechanism: The rules of our L-system are:

Axiom ¼¼> L(100) F0 and

F0 ¼¼> F0 [RU(25.7) F0] F0 [RU(-25.7) F0] F0 .

The resulting structures S1, S2, S3 and S4 are shown in Fig. 11.3.

Fig. 11.2 L-system

application with geometrical

interpretation. The dotted
arrows symbolize the

interpretation of strings by the

turtle (from Kurth 2007)
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11.4 Parametric L-Systems

Some of the turtle commands (e.g. F, L, LMul, D) require parameters with

numerical values. The power of L-systems to perform calculations of all kinds

is considerably enhanced if we allow the use of such parameters, also in

connection with other symbols. The next L-system provides an example. It

produces a structure which resembles a fern leaf (Fig. 11.4a) and makes use

of a parameterized symbol A standing for a bud. A has two parameters, t and k,

which can take integer values. t is a time delay; it is decremented by 1 in each

step until the value is 0, and thus a certain number of steps (here 6) must pass

before a lateral branch starts growing. The second parameter, k, switches

systematically between þ1 or �1 and controls the orientation of the branch.

In order to specify how many and what sorts of parameters the symbol A shall

have, it is declared as a module:
module A(int t, int k);

Axiom ¼¼> L(100) A(0, 1);

A(t, k) ¼¼> if (t > 0) (A(t-1, k))

else (F(1) [RU(k*45) A(6, k)] F(1) RU(3) A(0, -k));

F(x) ¼¼> F(1.15*x)

Fig. 11.3 A developmental sequence of branching structures, generated by a simple L-system

(see text)
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The potential of such an L-system can easily be explored by playing around with

parameters: If, for example, the initial delay in the branches is reduced from 6 to 2,

branches will emerge earlier and a more compact form of the structure results

(Fig. 11.4b).

11.5 Fractals

Patterns like the ferns in Fig. 11.4 show a self-similar structure, i.e. affine transforma-

tions exist which map the whole pattern to some parts of it. Such self-similarity
occurs frequently in nature, e.g., in crowns of older trees in the form of “reiterations”.

Self-similarity is an indication that there are some structural rules governing the

pattern which can be used to specify it in a very condensed form, like our ferns were

described by the three L-system rules above. Alternative methods to generate self-

similar patterns also exist, e.g. the direct specification of the structure-preserving

affine transformations by matrices – an approach known as “Iterative Function

Systems” (IFS; see Barnsley 1988).

Self-similar structures can be characterized as fractals, which means, as geomet-

rical objects which have a “broken” (or non-integer) dimension. “Dimension” in this

context does not refer to the usual algebraic definition of the dimension of a manifold

(as the number of coordinates which is necessary to fix positions in it), but to the

degree to which the object fills the space. For instance, the ferns in Fig. 11.4 are more

space-filling than a straight line (dimension 1) but less than a plane-filling object like

a filled triangle (dimension 2). Hence, their fractal dimension is a broken number

between 1 and 2. Exact definitions of fractal dimension are given in measurement

theory, a branch of mathematical topology (see Edgar 1990). Some well-known

Fig. 11.4 (a) Fern leaf produced by a parametric L-system (see text), (b) variant with reduced

delay parameter for branch emergence (from Kurth 2007)
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fractals from mathematics are the Mandelbrot set and Julia sets (Peitgen and Richter

1986). Many natural objects can also be characterized, at least approximately, by a

fractal dimension – this is true for some plants, venation patterns, coastlines, clouds,

galaxies, mineral surfaces (cf. Mandelbrot 1977), or movement paths of organisms.

However, fractality is more an analytic notion which is normally not directly suitable

to design procedures for synthetic generation of structures. Hence we will not explore

it deeper here.

11.6 Relational Growth Grammars

Despite their successful use for realistic-looking structural models of plants, L-systems

still have certain limitations (even if some extensions of the original concept are

included). First of all, in interpreted L-systems (with turtle geometry and with

brackets for branching), only two possible relations can exist between simulated

objects: A can be a direct successor of B or can be supported by B as a branch.
However, many more sorts of relations between objects are possible in reality and

can be worth modelling. Another problem with L-systems is that they are not an

appropriate tool for the creation of truly two-dimensional or even three-dimensional

arrangements, like tessellations in the plane (tilings with a collection of simple

shapes without leaving any space) or cellwork systems (e.g., in tissues). There

are extended formalisms like “map L-systems” and “cellwork L-systems” (see

Prusinkiewicz and Lindenmayer 1990) for this purpose, but their definitions and

usage are rather complicated. The core of this problem is that the classical interpre-

tation of bracketed strings by the turtle can only yield structures with an underlying

topology which is locally one-dimensional and has a structure similar to trees.

Hence, cycles and networks can be created only if additional tools are allowed.

Another weakness of L-systems is apparent when they are viewed from the per-

spective of software engineering: As a programming language they are poor in

comparison to modern languages; particularly, the object-oriented programming
(OOP; see Chaps. 4 and 12) style, which is currently the standard approach amongst

professional programmers, is not supported. The fundamental units of parametric

L-systems are only symbols with some numbers attached, no objects in the sense of

OOP. Furthermore, no hierarchy of object classes, where specialized classes inherit

attributes and methods from more general classes, can be defined in classical L-

systems.

Finally, from a biologist’s viewpoint, it is a drawback that genotype and pheno-
type of an organism cannot easily be captured in a model based only on classical L-

systems (although the DNA molecule has basically the structure of a string).

These were reasons to design a new rewriting formalism, “relational growth

grammars” (RGG). An RGG operates on graphs instead of strings. By a “graph” we
mean a mathematical structure consisting of nodes and directed arcs (also called

“edges”) connecting some of these nodes. “Trees” (in the abstract sense) are special

graphs, but in general, cyclic substructures, which do not occur in trees, are allowed
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in graphs. RGG are called “relational” grammars because several types of edges

(relations between nodes) are possible.

The RGG approach allows to model arbitrary relations and networks. It can also

be used to represent genes, genetic processes and the development of the phenotype

in one and the same formalism (Kniemeyer et al. 2004). The weakness of L-systems

concerning software engineering is addressed by permitting RGG rules as construc-

tion elements in a programming language, called XL (eXtended L-system language),

which at the same time is an extension of the object-oriented language Java, and by

allowing Java objects to be nodes of the graphs which are rewritten. A similar

approach led to the language “L+C” (Karwowski and Prusinkiewicz 2003), which

is an extension of C++ by L-system rules, but this language does not include graph

transformations. An exact mathematical definition of RGG and a precise description

of the language XL was given by Kniemeyer (2008).

The general form of an RGG rule is as follows:

L, (* C *), (E) ¼¼>> R {P};

where L is the left-hand side proper of the rule, i.e. a search pattern for a set of

subgraphs to be replaced by the right-hand side, R, which specifies also a set of

graphs. C is a set of graphs which must be present as a context of L in order to make

the rule applicable, and E is a condition for applicability of the rule, specified by a

logical expressionwhich can contain parameters referring to nodes from L and C (or

to their attributes). P is a piece of imperative code which is executed when the rule is

applied. C, E and P are optional parts. An RGG is composed of such rules, which are

usually simultaneously applied to a given graph, similar to L-system rules.

The inclusion of imperative code allows an easy link to process-oriented

models, e.g., for light interception, photosynthesis and carbon allocation. As an

example, Fig. 11.5 shows the simulation results of three virtual beech trees (Fagus

Fig. 11.5 A virtual beech tree grown under three different light conditions (incident radiation

increasing from left to right). The simulation was done with GroIMP using an RGG (from

Kniemeyer 2008, p. 325)
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sylvatica L.) which were modelled using an RGG with process-oriented compo-

nents (see Kniemeyer 2008). Another FSPM of this sort will be shown at the end

of this chapter.

RGG are a special case of graph grammars. As for L-systems, there exists an

established mathematical theory on graph grammars (Rozenberg 1997). L-Systems

form a special case of RGG, because strings can be interpreted as special graphswith a

linear structure, with edges of a certain, fixed type “successor” between consecutive

symbols. In XL, edges are generally written down in the form “-edgelabel->”, where

“edgelabel” specifies the type of the edge. Since the edge type “successor” is so

frequently used, a simple blank symbol is allowed instead of “-successor->”. This

convention allows us to write downL-system rules inXL in a familiarmanner – and in

fact, all L-system examples shown above were directly taken from XL programmes.

In order to make them readable by an XL compiler (like that included in the software

GroIMP, see http://www.grogra.de), one has only to enclose the rules (without the

module declarations) in a surrounding frame of the form

public void run( ) [ . . . ]

This construction is necessary because RGG rules in XL can be organized in

several blocks in order to enable a better control of the order of rule application, like

in so-called table L-systems (Rozenberg 1973).

However, RGG have a capacity going far beyond that of L-systems. As an

illustration, Kniemeyer et al. (2004) show a graph transformation rule which

simulates the genetical process of “crossing over”. It cannot be expressed as a

simple L-system rule, but as an RGG rule.

Additional flexibility comes from the possibility offered by XL to derive new

relations between graph nodes from the given ones. For example, the search pattern

a -x-> -y-> b matches all pairs of nodes (a, b) in the graph (standing, e.g. for plant

organs) which are connected by two consecutive edges of type x and y, respec-

tively, whereas the pattern:

a (-x->)* y

matches all pairs which are connected by an arbitrarily long path consisting of

edges of type x (in mathematics, this kind of relation is called the “reflexive-

transitive hull” of the relation x). Search patterns of this sort can be used in so-

called “graph queries” which, when evoked, give back all subgraphs of the current

structure which are consistent to the search pattern. Queries enable to carry out

calculations on all the results. Queries in XL are enclosed in starred parentheses

(* . . . *) – in fact, the optional “context” part of an RGG rule is also a graph query.

For example, the following expression in XL calculates the total area of all leaves

which are attached to the branching system emerging from a specific node n in a

tree crown:

sum((* n (– –>)* Leaf *)[area])

Here, “(– –>)*” denotes the reflexive-transitive hull of the relation “successor”

or “branch”, i.e. all nodes of type “Leaf” which can be reached via a directed path
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emerging from n are taken into account. Similar queries can be used to calculate the

biomass or the stored carbon in compartments of plants or in whole individuals. An

ecosystem simulation at a higher level could use these data to assess the carbon flow

through the system.

11.7 An Eco-Physiological Model of a Coniferous Tree Stand

Formalisms like L-systems or RGG can be used for functional-structural plant

models (FSPM). Such models combine structural and functional features of plants

or plant populations in one coherent formal framework. As an example we will

sketch a model of trees competing for light and a small part of its implementation in

the XL language. This eco-physiological growth model is taken from Lanwert

(2007). For the modelled competing conifers, only the above-ground part is repre-

sented in the model. For reasons of efficiency, the structure of the individual trees is

simplified.

The model uses a spatial approach based on biomass and photosynthetic capacity

which are assumed to be the main factors which control growth (Pfreundt 1988;

Pfreundt and Sloboda 1996). The individual trees are modelled as one-dimensional

entities, i.e. no branching is represented. The segments of the trunk axis carry all

relevant information, including certain properties of the crown. The calculation of

the basic processes such as photosynthesis, respiration, allocation and of growth is

carried out in annual steps. First the biomass of the needles is allocated vertically

along the trunk axis using a beta distribution.

Photosynthetic performance is calculated in relation to the maximum photo-

synthetic capacity in unshaded conditions at the tree top and depends on the

corresponding weighted needle mass above the calculation point as an input

quantity of a Beer-Lambert function (Monsi and Saeki 1953). Respiration is

calculated separately for the five tree compartments: “needles”, “branches”,

“trunk”, “coarse roots” and “fine roots”. After subtracting the maintenance respi-

ration from gross assimilation, the remaining net assimilation pool forms the basis

for growth.

After considering the mortality rates for roots, branches and needles and sub-

tracting the proportional cost rates for needle, branch, root and height growth, the

remaining pool of assimilates determines the secondary growth of the trunk. Height

growth of the individual tree is calculated using a function relating height to age

with a stochastic and rank preserving correction component.

After completion of growth, the new needle densities are calculated for the next

year. This is carried out separately for each needle-age cohort. The new tree height,

the death rates of the old needles, the newly formed needle mass as well as an

upshift of the crown base is taken into account.

The implementation of the model follows an object-oriented approach

(cf. Chaps. 4 and 12). A tree consists of segments whose properties, such as
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the needle masses, are assigned as initial parameters or calculated during simula-

tion. All calculations, like estimation of shadow and photosynthesis, are based on

these objects. The results are stored in the object properties. All objects are

organized into a large graph which does not contain any cyclic path of edges.

The object structure of the model is designed in analogy to a botanical object

hierarchy (forest stand – tree – annual shoot). The calculation steps are carried

out by applying a relational growth grammar on the graph of the model. This

keeps the code comprehensible and close to the botanical structure.

The main item of every growth model based on photosynthesis is the spatial

structure of the biomass which defines the light distribution and thus photosynthetic

performance (see Sloboda and Pfreundt 1989). This statement emphasizes the signif-

icance of the sub-model used for photosynthesis. Its basic concept shall be explained

in simplified terms below.

The starting point is the assumption of a tree-specific function Fwhich is applied

to the weighted biomass B(~x) above the point ~x and gives back a dimensionless

relationship q(~x) between the maximum and the actual photosynthetic performance

at ~x, taking a cone into account where potential shadow-casting objects above ~x are

located. We receive the photosynthetic performance p at ~x by multiplying q(~x) with
the maximum photosynthetic rate p0 (kgC kgC–1 y–1):

qð~xÞ ¼ FðBð~xÞÞ and pð~xÞ ¼ p0 � qð~xÞ

In order to calculate the influence of shadow of an object M on ~x, contribut-
ing to B(~x), we imagine a cone opened into the sky with its apex in ~x and with

opening angle a. Depending on the distance of M the shadowing effect on ~x is

varying. It is thus weighted by the reciprocal square of the distance between M
and ~x.

Taking into account the object-oriented approach of the model (see Fig. 11.6),

every trunk segment seg of a tree represents the given needle massMtotal(seg) (kgC)
located in its height. For this height, the needle density r(seg) corresponding to seg
is separately calculated for each needle-age cohort using a beta distribution multi-

plied by the length of the segment and summed up to the overall needle mass

Mtotal(seg) (kgC).
Figure 11.6 shows two arbitrary, adjacent trees. For each segment seg0

which is part of the trunk of Tree0, the shadowing needle mass of all segments

of the neighbouring Tree i inside a cone with the given opening angle a is

calculated.

Realization in the Extended L-System Language

The object-oriented approach gives one the ability to sum up the weighted shadow-

ing biomasses of all segments within the cone as follows:
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Bðseg0Þ¼
X

i¼1

n

segi2ConeðaÞ

MðsegiÞ �TMTreeðiÞ

Distðsegbase0�����!
;segbasei
�����!Þ2þ ci

with ci ¼
R2

TreeðiÞ
cfTreeðiÞ

(11.1)

and with M(segi) representing the needle biomass of shadowing segment i and Dist

(segbase0
�����!

, segbasei
�����!

) giving the distance between the two segment base points.

TMTree(i) is the light transmission coefficient of the tree to which the segment object

segi belongs. The quotient R2/cf represents a correction factor taking into account

the distribution of the needle mass over the crown radius R of the tree the segment

segi belongs to.
The following code sample (taken fromLanwert 2007, adapted) shows a “for”-loop

which is executed in a rule applied to an arbitrary segment s and which makes use of a

query, enclosed by (* . . . *) and defining a set of subgraphs, using a search pattern and
four conditions. The search pattern looks for all segments (named a) connected by a

daughter relation (directly or indirectly) with a tree element (named b). The first two

conditions exclude all matches where the tree element (b) is equal to the parent tree

element of themain segment s andwhere the top segment of b is outside the cone. Thus

most trees in far distance are eliminated. The second two conditions exclude all

ρ age group

Ymin tree i

corrected
tree height i

corrected
crown base ihorizontal distance

crown base 0
crown base i

Tree i

Tree 0

seg 0

Δ tree base

1-5

ρ total

α

Fig. 11.6 Shadowing segments (dark) of a neighboring tree i within a light cone above the base

point z of segment seg0 (adapted from Lanwert 2007)
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remaining segmentswithout needle biomass and outside the cone of potential shadow-

ing. In the body of the loop, the weighted needle mass of each shadowing segment is

then calculated according to (11.1) and summed up to the total shadowing biomass of

segment s.

for ((* b:Tree (– –>)* a:Segment,

(s.getParent( ) !¼ b && b.getLastChild() in cone(s, alpha)

&& a[needleMassTotal] > 0.0 && a in cone(s, alpha)) *))

{

s[externalShadowingBiomass] +¼ (a[needleMassTotal]

* b[lightTransmissionCoefficient] / (distanceSquared(a, s)

+ b.calculateNeedleMassDistributionCorrectingTerm( )));

};

This approach for modelling competition for light has a high degree of generic-

ness, i.e. it can easily be adapted to other biomass distributions or to more detailed

tree models which take asymmetric crown shapes or even an exact branching

system architecture into account.

The presented conifer model was developed as part of a larger, distributed

simulation system which also provides a 3D graphical interface with possibilities

of interactive manipulation of single trees (see Lanwert 2007). It is intended to be

used in e-learning scenarios where a group of students can test forest management

practices by cutting virtual trees and evaluating the consequences on future growth

of the remaining stand. Since the growth model is based on local light conditions

and thus on the 3D canopy structure in the vicinity of each tree, it allows to assess

different strategies of logging.

11.8 Outlook

Rule-based functional-structural modelling is suitable in situations when the three-

dimensional structure of an organism or of a community has an important influence

on its development. This is not only the case for tree crowns competing for light, but

also, e.g. for some plant-animal interactions. There have been first attempts to

model the movement and foraging behaviour of animals with extended L-systems

(Kurth and Sloboda 2001). Probably, a significant number of agent-based and

individual-based models, as covered by Chap. 12, can also be embedded in a

grammar-based framework in the future.

Another active field of research in functional-structural plant models addresses

the genetic basis of plant metabolism and regulatory networks. For example, a

“barley breeder” model, implemented in the language XL, enables virtual breeding

in a genetically heterogeneous population and simulates the hormonal control of

internode elongation in barley via a metabolic network (Buck-Sorlin et al. 2007).

On the technical side, a recent effort (Hemmerling et al. 2010) aims at providing
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user-friendly constructions in XL to evoke numerically suitable solvers for sub-

models based on ordinary differential equations (cf. Chap. 6).

Further Readings

For further reading on the topic, the book “The Algorithmic Beauty of Plants” (Prusinkiewicz and

Lindenmayer 1990) is still an excellent introduction. The original source regarding the recently

developed language XL is Kniemeyer (2008), which also contains numerous examples. The use of

functional-structural plant models in applications can best be traced by looking into the

proceedings of the FSPM conferences and workshops: Bouchon et al. (1997), Siev€anen et al.

(1997), Kastner-Maresch et al. (1998), Andrieu (1999), LeRoux and Sinoquet (2000), Hu and

Jaeger (2003), Godin and Sinoquet (2005), Vos et al. (2007), Fourcaud et al. (2008), Hanan and

Prusinkiewicz (2008).
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Chapter 12

Individual-Based Models

Hauke Reuter, Broder Breckling, and Fred Jopp

Abstract This chapter will describe the category of models that represent the

behaviour and interaction of distinct individuals with specific properties. Models

of this type can become very complex, but have the advantage that model structures

operate on a low level of abstraction and represent ecological relations in a form

similar to empirical assessment. Individual-based models facilitate studies of emer-

gent properties, where characteristics of higher level entities like populations or

communities can be generated on the basis of single actions of particular indivi-

duals. They allow to simultaneously investigate energetic and physiological

aspects, behaviour, and relations to other organisms and heterogeneous environ-

mental structures. As a technical background, object-oriented programming is

frequently used for this model approach. This chapter introduces the conceptual

background and describes two case studies, one that investigates spatial aspects of a

predator–prey interaction, and a second one which depicts community interactions

of Northern Scandinavian small mammals with oscillating population dynamics.

12.1 Introduction

Individual-Based Models (IBM) represent single organisms and their environment.

They allow studying the implications of physiological processes, behavioural traits,

and environmental interactions synchronously. This offers a structurally unique

option for ecological modelling, because of the potential to join structural, func-

tional, quantitative and qualitative aspects in a way that closely conforms to

observation data and conceptual knowledge representation. In the context of eco-

logical modelling applications, we use the term agent-based models synonymously.
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Background and Development of the Approach

Early applications of this approach go back to the 1970s. They were a response to

the requirements to include more biological realism and explicit spatial represen-

tations into ecological models (Łomnicki 1988). First models were introduced

by Kaiser (1976; territoriality of dragonflies), Hogeweg and Hesper (1983; social

interaction of bumblebees), Seitz (1984; life stage sequences in a Daphnia popu-

lations), and DeAngelis et al. (1979; development of cohort structure in small-

mouth bass populations) and modelling forest stand dynamics (Botkin et al. 1972;

Shugart and West 1977).

The minimum requirement for an individual-based model is the separate repre-

sentation of individual entities, which can be distinguished in one or more char-

acteristics. These characteristics of the individuals must be separately accessible

and tracking of individual state changes must be possible during simulation. In most

of the application cases, the number of states, and the repertoire to modify the states

depends on the internal conditions. In relevant application cases, individual-based

models attempt to provide a coherent picture of how particular organisms would act

in a particular condition.

To use the full potential of the approach it is also possible to include different levels

of entities. Complex modular organisms like trees can be represented as a set of

individual branches, roots, leaves, fruits, etc. The individual organism is then a

compound instance of sub-units. On the other hand, it is also possible – and sometimes

useful – to operate other compound entities. For example, a representation of an

environment can comprise a spatially differentiated structure where physical and

chemical parameter differ locally and give rise to specific local responses of the

organism’s activity. Furthermore, abstract entities like populations can be represented,

either as units with specific parameters like age distribution, biomass spectrum, which

change during simulation, or as an aggregate that integrates over the individuals

included in the model. Such an extended specification of an IBM may thus comprise

configurations in which the components are not basic units but particular components

of ecological systems. In principle, these may range from (sub-)cellular units, plant

modules (Breckling 1996; Eschenbach 2005) to aggregations such as cohorts, social

animals (nests, hives), populations, functional types, or spatial or temporal units of

higher order (K€ohler et al. 2003; Middelhoff et al. in print).

With such an extended understanding of how the IBM approach can be used,

one can see that it is in fact structurally identical, sensu strictu, to agent-based

models (ABMs). The term ABM originally emerged in a computational context

with applications in physics as well as applications in social sciences and econom-

ics. ABM often describe robotic aggregates responding to a variable environment,

or they simulate complex behaviour of humans in social networks. From an

ecological perspective, it appears reasonable to use both terms (IBM and ABM)

synonymously. In a similar way, the term multi-agent system or multi-agent

simulations (MAS, e.g. Ferber 1999) bases on the same concept, however empha-

sizes the interactions of a larger number of autonomously acting software agents

and is even more common in technical applications.
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The approach becomes operational only if the computational challenges of such a

model can be met. This was made possible by developments in computer program-

ming and programme processing. The representation of a larger number of indivi-

duals with an interaction potential is feasible only with larger processing and data

management capacities. The advancement in hardware and software development

allowed more resource-demanding applications like Object-Oriented Programming

(OOP). In the late 1960s, the programming language SIMULA (Dahl et al. 1968)

provided the ground for the virtual representation of active agents, which was later

adapted to various programming languages (Smalltalk, Delphi, C++, Java, and

others).

Early IBMs often had a narrow focus and concentrated on single species

investigations (e.g. Kaiser 1976; DeAngelis et al. 1979; Seitz 1984). These early

models applied quasi-automatic transition between the single model-states (e.g.

age, biomass, location). However, they could already illustrate the great potential of

the IBM-approach. It thus added a new perspective to modelling in a close relation

to the specific characteristics of ecological systems (see Chap. 4 on systems

analysis), compared to the homogeneity requirements of variables as they were

used in the classical systems dynamic approaches (Forrester 1968).

Further developments made IBMs applicable for investigations of behavioural

decisions and interactions in social groups. Paulien Hogeweg and co-workers

pioneered this field with their model on social interaction in bumblebee colonies

(Hogeweg and Hesper 1983). A first paradigmatic overview was presented by

Huston et al. (1988).

Facilitating a representation of variable environments, structured populations and

behavioural traits, the modelling of complex life histories emerged (e.g. Wolff 1994;

Colasanti and Hunt 1997). For instance, it became possible to simulate highly resolved

time-energy-budgets as a basis for behavioural decision processes. The model on the

reproduction phase of a robin population is such an example (Reuter and Breckling

1999) and allowed to investigate reproduction success under different environmental

settings. A further development in IBM-methodology involved the number of consid-

ered and interacting species. In this context the inclusion of interaction rules plays a

major role. These rules often refer to trophic relations (e.g. Kaitala et al. 2001), spatial

competition or even to succession processes (Breckling 1990).

An increasing number of models combine sophisticated internal resolution of

organismic processes with the representation of several species and their interac-

tions to analyze e.g. food webs and community dynamics. Examples for this type

are the simulation of plant competition including different herbivores by Parrot and

Kok (2002) and the analysis of regular population cycles of small mammals (Reuter

2005, see Sect. 12.4). Often the simulated entities are designed to operate in

heterogeneous environments including a spatially explicit habitat structure, season-

ality and varying climate data. The models simulate explicitly designed scenarios

directly, using empirical data involving e.g. GIS-derived maps and assumptions on

local temporal and spatial developments. In the marine context we find successful

attempts extending simulation models to include all relevant trophic levels (so-

called end-to-end models, e.g. Travers et al. 2007). These approaches in marine
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ecology propagate the coupling of different model types in which individual-based

models are thought to play an integrating role (Cury et al. 2008) because of their

flexible structure, which allows to combine knowledge and data from different sub-

disciplines, that can be used to analyze findings on heterogeneous ecosystem levels

and to understand the corresponding complex interaction and network structure.

In particular, since radio-tracking became possible, the modelling of the beha-

vioural repertoire within a spatial context, and especially models that explicitly

investigate animal movement and dispersal, have become an important domain of

IBM applications (Gustafson and Gardner 1996; Broekhuizen et al. 2003; Jopp

2003; Pe’er and Kramer-Schadt 2008). IBMs have greatly contributed to the study

of population dynamics in complex landscapes (Lima and Zollner 1996; Nathan

et al. 2008; Revilla and Wiegand 2008). Population development may be simulated

in dependence of complex behavioural modes or context dependent changes in

reactions (Shin and Cury 2001) also including the field of population viability

analysis (PVA, e.g. LePage and Cury 1997; Mazaris et al. 2005). IBM of invasion

processes allow combining dispersal processes with specifies properties, individual

behaviour and the properties of the invaded community (Higgins et al. 2001;

Nehrbass et al. 2007).

Since their beginning, IBMs have undergone a rapid development and have been

applied to almost all ecological topics and a large number of research questions

(DeAngelis and Gross 1992; DeAngelis and Mooiji 2005; Grimm and Railsback

2005). In the following, we illustrate the basic structure of IBMs and demonstrate

their functionality on the basis of simple model applications.

12.2 The Structure of Individual-Based Models

In order to give an overview on basic formal elements of individual-based models

we begin with a short introduction into the programming background and an outline

of the concept of object-oriented programming (OOP, e.g. Rumbaugh et al. 1991;

Silvert 1993; Hill 1996). Then we look at the application of the OOP to conve-

niently describe structure and interaction of individual actors.

In OOP, the source code is organized in blocks which are delimited from each

other. There are different types of blocks with the so-called CLASS as the most

prominent one. A CLASS is a specific programme unit which consists of storage

reservations for variables and may additionally contain code (statements) how to

change the values of its variables. In such a CLASS it is possible to specify further

sub-classes which allows to implement a hierarchic programme structure. During

programme execution, a CLASS can be copied multiple times and these class

instances may be kept available in the computer storage. This is the decisive feature

in object-oriented programming. The copies of a class are called OBJECTS, thus

being eponymous for the whole approach. Each of these objects, which are avail-

able during runtime of the programme, consists of the same code as the class from

which it is derived, but may contain specific values stored in its variables. This
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allows objects to differ from each other with respect to the role they play in model

execution. The variations in variable values may trigger different parts of the

internal code to be executed and thus may lead to a different behaviour and

development of the respective object.

In fully featured OOP-languages, the command to instantiate an object may be

triggered from any part of the programme. To access objects, a special kind of

variable is needed. These so-called REFERENCE VARIABLES or POINTERS

directly refer to a specific object and thus facilitate uni-lateral or mutual interactions

between objects. OOP has revolutionized computer programming due to its more

flexible design structure and clear organization of programme code. Moreover, the

features of object orientation make even complex models easier to maintain and

helps in tracing errors (“bug tracking”). Due to the flexible structure during

programme run time (instantiation and deletion of objects, switching of pointers

from one object to another) OOP easily allows to handle the structurally complex

interaction networks required for advanced ecological applications (Reuter

et al. 2008). This allows simulating a large variety of phenomena, in particular

self-organizing spatiotemporal structures on different levels of organization (Reuter

et al. 2005).

Most individual-based programmes contain relatively similar essential parts and

processes which are common for this model type:

1. The representation of an individual entity as a class

2. The layout of a structured representation of the environment

3. The organization of the temporal model execution and interaction between the

entities

These parts will be explained in the following.

12.2.1 Representation of Individual Entities

A class can be conveniently utilized to describe the life-history and interaction of an

individual organism. Usually, it consists of three main parts (Fig. 12.1): (a) state

variables which describe individual properties and attributes, (b) statements and

code blocks which are used to update these variables, and (c) a scheduling mecha-

nism to update the properties of the individuals.

a) Variables Describing Individual Properties

Which kind and how many variables are necessary to describe the properties of an

individual, depends on the research question and the complexity of the individual

life-history and activity repertoire in focus. In the simplest case, one property/

variable is enough to be able to distinguish the individuals. For example, describing

movement or dispersal patterns would necessarily require variables to store the
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coordinates related to an individual’s location (Jopp and Reuter 2005). In most

cases, the number of variables describing individual properties is considerably

higher. Besides location, they often comprise biomass, age, sex and a relational

context. For instance, when the object refers to plant modules, information on

neighbouring modules is decisive to determine transport processes. For many

higher animals e.g. the information on a home range (or territory) or on eventual

offspring that have to be fed, may be necessary.

b) Code to Update Individual Properties

It is useful to organize the updating of an individual’s state in terms of a set of

“activity procedures” (changing states relevant with regard to the environment) and

“physiological processes” (changing states referring to the internal condition of the

individual). Common examples for activity procedures are movement, reproduc-

tion, and feeding. Physiological processes represented in a model can be ageing and

energy metabolism. The according procedures access and update the involved

variables. For example, an activity “movement” should change the variables storing

the location information. If energetic processes are included, “movement” may also

change the energetic state to include the cost of the particular activity. The

description of activities can be accomplished with very simple rules and can also

integrate other mathematical approaches like fuzzy logic (see Chap. 10) or differ-

ential equations (see Chap. 6). The decision which details should be included in an

activity procedure depends on the focus of the model, the available knowledge and

information status of the ecologist. As the ecological quality of the input informa-

tion basically decides the character of the model as a whole, we advocate that

ecologists, with the necessary knowledge at hand, should be intensively involved in

the programming process or better yet, learn to program their own models instead of

relying on specialized programmers or pre-defined software tools which usually

restrict the optimal adaptation to what the specific situation requires.

Fig. 12.1 Basic scheme of

a class to represent an

individual (Breckling et al.

2006)
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c) Process Scheduling: How to Organize the Regular Update of Individual

Processes and Properties

The above part focussed largely on structural descriptions. Essential for the life-

history model of an organism is how exactly the update process of all individual

state variables is organized. This constitutes the dynamic part and can be referred to

as “process scheduling”. To coordinate the concurrent execution of a larger number

of entities in a model requires a loop control structure within the program code of

the particular class (respectively the instantiated objects), which is iterated as long

as the object has the internal status as a living entity during the simulation run. To

distinguish active and no longer active objects requires the introduction of a

Boolean variable, e.g. with the name “ALIVE” as one of the object’s states. A

Boolean variable can store the values of either TRUE or FALSE. The control

mechanism that uses the distinction, is referred to as “life loop”.

The “life loop” of each currently active individual entity is repeated (iterated) as

long as this variable has the Boolean status TRUE. Otherwise, the object will be

terminated, deleted from the storage and the storage space released as being freely

available. From a top-down point of view, the execution of any specific activity can

be made dependent on distinctive conditions that relate to the internal state of the

individual entity (like the energetic state, age, reproductive stage) and with the

external situation (e.g. availability of food, presence of predators, daytime or time

of the year). It is thus necessary to implement an algorithm to determine which of

the possible activities is to be executed for a given situation.

These scheduling algorithms may range from very simply to very complex. A

simple scheme would e.g. execute all activity and physiology procedures in the

same order during each passing of the life loop as a “cyclic activity control”. This

activity scheduling mechanism is adequate for configurations where it is not

necessary to evaluate complex behavioural alternatives that may require changes

of the sequence of activities (e.g. models concentrating on movement behaviour,

see Sect. 12.3, the IPP example).

To model complex behavioural patterns, a further elaborated decision algorithm

is required. For instance, with a “priority driven activity control” it is possible to

assign a variable corresponding to each activity which indicates its execution

priority. Consequently, during each life loop sequence the activity with the highest

priority value gets executed. In the course of execution, the priority of the particular

activity is reduced, while the idle activity alternatives may accumulate successively

higher priority values. Thus complex behavioural decisions (including time-energy

budgets, analysis of behavioural trade-off’s in life history) can be represented by

considering external and internal states in relation to the supposed execution time

for each activity (Breckling et al. 1997).

In an individual-based model, the ecologically relevant state of any simulated

entity results from all performed activities in which the relevant inner states of the

individual have been evaluated in feedback processes with all relevant external

states (e.g. “environment”). The activities of an individual thus can alter its own

states (e.g. if hungry through food search) but can also influence the environment,
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and the state of other individuals (e.g. if predated then a predator will influence the

“ALIVE” variable of a caught prey object).

Because the interaction structure becomes successively more complex with an

increasing number of concurrent objects, it is usually not reasonable or possible to

specify it directly. Instead, a self-scheduling mechanism is required. How to set-up

such a mechanism is described in Sect. 12.2.3.

12.2.2 Representation of the Environment

One of the important potentials of IBMs is to facilitate an easy way for simulating

spatial (and temporal) variability and heterogeneity. In the following, we focus on

how to simulate heterogeneous environmental states. When starting on the organis-

mic level, a heterogeneous spatial organization will, to some extent, already be

reached by specifying location variables for the represented organisms and installing

an activity procedure “movement” to change these variables adequately (see

Sect. 12.3., the IPP example). When organisms interact (e.g. as predators or prey,

or as schooling organisms), the presence/absence of other individuals structures an

otherwise homogeneous environment. In addition, various other data structures can

be used to represent spatial heterogeneities. Frequently, grid-based representations

are used. Grid maps with the relevant information attached to each cell of the grid can

store e.g. (water) depth and currents in aquatic surroundings, or altitude and habitat

types in terrestrial environments. It is possible to include spatially heterogeneous

resource levels, physical structures, local light intensity, eventually in relation to

slope orientation. Often, this information is read into the programme from external

sources at the beginning of a simulation run. Also, it can be generated and modified in

the programme itself with particular updating routines. In more complex computer

models, the environmental information is frequently generated by external modules

or by other programmes. In these cases, the simulation requires the coordinated

employment of an overall system of coupled models. For simulations in marine

environments, an IBM can be coupled with a regional oceanography model

(ROM), which provides regularly updated information on currents and physical

water conditions (Penven et al. 2006). In a similar manner, it is possible to read-in

weather data in order to specify seasonal changes. Sometimes, Cellular Automata (see

Chap. 8) are employed to generate environmental structures (Breckling et al. 2006).

The resource density and the way it is influenced by the organisms is a frequent topic

considered in IBM (Reuter 2005; Charnell 2008).

12.2.3 Scheduling Programme Processes

After discussing the update of individuals, and aspects of the data management

to provide dynamically changing environmental structures we now consider the
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coordination of the different entities. With many concurrently active units, this

is an important task. A coherent solution is required – and crucial for model

execution.

Individual-based programmes usually employ a discrete event scheduling
mechanism: Any calculation result is accessible at a specific point in simulation

time. It is not reasonable to attempt a simulation of a continuous approximation,

in particular, if many qualitative decisions are to be taken (an organism is alive or

not, etc.). In OOP simulations, very large numbers of objects can be active at the

same simulation time. In principle, real parallel processing is physically not possi-

ble if the number of processors is smaller than the number of objects. Therefore,

an explicit handling of execution order is necessary. This task is a general one

and does not need to be newly developed for each model. It can be generally

solved on the level of the simulation environment and is employed for the specific

scheduling requirements.

Often, programme environments have a central instance which activates the

updating of all processes. This is acceptable if a fixed scheduling scheme can be

described in advance and updating is quite regular (e.g. as in the case of cellular

automata). However, we advocate a more flexible solution in which updating

requests are controlled by the objects themselves and allow changes depending

on the objects internal state. The objects already contain the code to calculate which

activities are performed under the specific conditions. As one additional task it is

possible to let them calculate a time interval of how long it would take in simulation

time to have the particular activities done.

This time interval is returned to a central time management and can be used to

establish a so-called “event queue”, which shifts programme control always to the

first one in the queue and eliminates it after execution. Thus, the programme level

of event control gets the function of organizing the updating process that originates

from the requirements of the objects. SIMULA (Dahl et al. 1968), the first object-

oriented programming language, provides a very efficient solution in form of a

system class SIMULATION. The event organization is handled automatically in

the background, while each object sends a message how long it is put on “HOLD”

(being busy with the current activity). This event scheduling concept was revolu-

tionary, and was the blueprint for many other programming languages, which at this

time had a different concept of event handling, as the programmer explicitly had to

take care of it. The different frameworks for IBM development provide specific

inherent solutions for scheduling of active entities.

12.3 Application Example I: An Individual-Based

Predator–Prey Model

The structure of an individual-based model will now be illustrated in detail with

the Individual-based Predator–Prey Model (IPP). This model was developed
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as a spatially explicit, individual-based implementation of a Lotka-Volterra

predator–prey interaction with one prey and one predator species (Breckling et al.

2000). The Lotka-Volterra model is a frequently considered topic in differential

equation based population modelling (see Chaps. 6 and 7). It is used here to

demonstrate the change of perspective, when an individual-based point of view is

adopted. Both simulated species have a limited activity repertoire consisting of

feeding, growing, reproduction and movement. All activities are kept at a low level

of complexity, thus serving as prototypes, however, illustrating the potential for

further development.

The total numbers of both prey and predators are limited to a few thousand

objects, which corresponds to the processing capacity of the environment to facili-

tate reasonably fast computation. The potential “movement” algorithms are the

same for both species. They consist either of a Brownian (random) movement (for

each movement step the new direction is chosen stochastically) or a directed walk

(for the next step, the old direction and speed is maintained and a small random

component is added). This leads to a higher autocorrelation of the overall move-

ment direction. The choice of the movement algorithm (random vs. directed) has to

be made for all organisms of one class by setting a specific value for a switch in a

parameter file (“InFile”). It then applies to the whole simulation run. The length of

each movement step is calculated in relation to the biomass of the respective

organism.

Feeding and energy physiology differ between the simulated prey and predators.

The prey grow independently from any external influence. This simulates unlimited

resources. However, the predators search a specified radius around their current

location during each time step and feed on the prey which they find within this

radius. Then, the biomass of the identified accessible prey (multiplied with a

conversion factor between 0 and 1) is added to the current biomass of the predator

individual. The predator loses biomass according to a biomass dependent respira-

tion function which leads to starvation below a certain threshold, if no prey

individuals are met.

Reproduction for both, prey and predators, is biomass dependent and implemen-

ted as a fission-like process. If an individual reaches a specified biomass threshold,

new objects of the same species are instantiated at the same location, and adult

biomass is then distributed between juveniles and the adult.

The environment for the simulation run is established as a homogeneous area,

with each edge being connected to the opposite site and thus leading to torus

boundary conditions (see Fig. 8.3 in Chap. 8). These conditions minimize boundary

side effects (Jopp 2003).

In the beginning of each simulation run, a specified number of prey and predator

individuals are distributed randomly across the simulation area. Generally, all relevant

parameters describing the behaviour of prey and predator as well as other parameters

of the specific simulation (e.g. duration, size of area, etc.) are set in a parameter file.

Though individual actions do not include any directional preference, and only

random components change the movement paths, we obtain emerging large-scale
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spatial structures as a result of the interactions of the model components. The

type of pattern depends largely on the combination of the involved movement

processes. In the following, we will elucidate some of the characteristic emerging

patterns.

In the first example prey and predator individuals both move according to a

random walk. As a consequence, after the initial random distribution prey and

predators exhibit a spatial segregation. The population of the predators can only

grow in the proximity of the area which is dominated by the prey. As the predator

aggregations successively shift towards the prey areas, spatial dynamics result in a

kind of travelling wave pattern (see also Sect. 8.4) that involves both prey and

predator individuals (Fig. 12.2).

The second example (Fig. 12.3) illustrates the results when the prey exhibits a

Brownian (random) movement, whereas the predators move according to a corre-

lated random walk. This scenario leads to a remarkable aggregation of the prey. We

find temporarily stable prey clusters with roaming predators which rarely meet a

cluster while roaming the overall area. The predators can feed during a few time

steps when passing a prey cluster, however will leave it again because they maintain

the momentum of their movement.

When all other factors remain unchanged (i.e. ceteris paribus condition), the

degree of autocorrelation, which is represented in the value for directedness of the

predator movement, is the key factor that enables transferring one class of spatial

pattern (travelling wave phenomenon) into another (random distribution, see

Turchin 1998). Also, further variations of different movement factors that can be

specified over the parameter file between prey and predators lead to different

spatial distribution patterns.

Fig. 12.2 Simulation results of the IPP model simulating a simple individual-based predator–

prey interaction. Points indicate the current positions of prey and predators, the line shows the

movement from the previous position. Lighter shades and smaller points indicate the prey,

darker and larger points indicate the predator. Left: The initial distribution is random. Center:
After 200 time steps – if both types of organisms move randomly, according to a Brownian

movement, a characteristic spatial self-organization occurs. After the initial phase a dynamic

change of border structures occurs where predator and prey interaction is highest. Right: After
400 time steps
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12.4 Application Example II: Cyclic Rodent Communities

in Northern Scandinavia

In order to illustrate the potential of the individual based-modelling approach we

outline a more complex example relating to population cycles in Northern Scandi-

navian rodents. In community ecology, cyclic population dynamics constitute an

interesting example for complex dynamics often involving a multitude of species-

intrinsic factors and environmental influences (Myers 1988; Bascompte et al. 1997;

Sanderson et al. 1999; Haydon et al. 2002; Bauer et al. 2002).

Rodents, mostly in the Northern Hemisphere, often exhibit drastic changes in

population size with numbers at peak times reaching up to 500-fold of numbers in

the minimum phase. In Northern Scandinavia, where the changes in abundances

are most regular with peaks every 3–5 years, cyclic dynamics impact the whole

local biocenosis and are synchronous over large areas (Huitu et al. 2003). These

community interactions of small rodents have fascinated ecologists for many

decades (e.g. Elton 1927; Chitty 1960; Stenseth 1999; Korpimaeki et al. 2005)

and gave rise to many controversial discussions (Rosenzweig and Abramsky

1980) on the driving factors. Numerous hypotheses have been put forward

including abiotic influences (Aars and Ims 2002; Sundell et al. 2004) and biotic

intrinsic factors (Chitty 1967; Boonstra 1994; Oli and Dobson 2001). In the last

years, biotic extrinsic interactions (mostly trophic relationships) have been widely

recognized as the most important processes. However, it is still discussed,

whether rodent population dynamics are controlled by bottom-up causation (e.g.

Jedrzejewski and Jedrzejewska 1996; Selas 1997) or are top-down limited (e.g.

Norrdahl 1995; Klemola et al. 2003). Further more it is not clear how important

the role of pathogens is (e.g. Hoernfeldt 1978; Cavanagh et al. 2004) and if

driving factors change with cycle phase. Despite the long lasting controversy and

the numerous field investigations, the causalities for population cycles are not yet

Fig. 12.3 Simulation results of the IPP model simulating a simple individual-based predator–prey

interaction. For a description of symbols see Fig. 12.2. Left: The initial distribution is random.

Center: After 100 time steps – if the prey moves randomly, and the predators exhibit a directed

movement with a partial auto-correlation, a pronounced cluster structure of the prey occurs. Right:
after 400 time steps
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entirely known. Especially restricting in this context are the inherent limitations

of field work in relation to the temporal and spatial extent of the investigated

phenomenon.

In order to analyze large-scale effects that result from complex interactions in

variable cause–effect networks, an individual-based model was developed (Reuter

2005). The model allowed integrating the most essential components and their

interaction structure on different integration levels. It represents small mammals’

communities as a food web which is composed of three trophic levels: (1) rodent

food, (2) rodents and (3) predators (Fig. 12.4). Rodents and predators were

described as individual organisms with a detailed life history including an activity

repertoire and physiological processes. The modelled organisms interact in an

environment with a spatial arrangement of habitats under seasonally changing

conditions. This concept extended previous differential equation based modelling

approaches (Hanski and Korpim€aki 1995; Turchin and Hanski 2001) by integrating
most aspects from the ongoing debate that are relevant for rodent population

dynamics.

Simulations with the model allow covering different scenarios with respect to

the environment and the parameterized species. The investigated scenario included

the parameterization for two rodent species, field vole (Microtus agrestis) and bank
vole (Clethrionomys glareolus), and two predator species, the least weasel and the

Fig. 12.4 The components and actors of the rodent cycle model: Predators (least weasel,Mustela
nivalis and long-eared owl, Asio otus) and rodents (field vole, Microtus agrestis and bank vole,

Clethrionomys glareolus) are represented as individual objects. The environment is represented as

a grid-map which also contains the food resources for the rodents (adapted from Reuter 2005)
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long-eared owl (Mustela nivalis, Asio otus), with respect to their different ecologi-

cally relevant properties (e.g. territoriality, food specialization, migration beha-

viour). Simulations take place on a grid map, with an extent of 150 ha and a spatial

resolution of 30 � 30 m. The resources for the rodents are calculated for each grid

cell and exhibit seasonal dynamics and allow for a feedback process with exploita-

tion by rodents.

The model represented dynamics and interactions on different integration levels

including individual life history traits, population development and community

interactions. The individual level included e.g. ontology, reproduction sequences,

weight development, habitat use and interaction with other rodents and predators.

As a result of the individual interactions cyclic population dynamics emerged, as

they are typical for Scandinavian rodent communities with an average cycle length

slightly below 4 years. These cyclic population level dynamics were not imple-

mented in the programme specification but are emergent properties produced by

the model components during execution (Breckling et al. 2005; Reuter et al.

2005, 2008).

The model also allows analyzing the population structure with respect to

age structure, reproduction rates and mortalities for different phases of the cycle.

Specialized predators shared the cycles frequency with the rodents but the phase

lags behind. The factors that cause this sudden decline of rodents are believed to be

of crucial importance for the whole system dynamics (Batzli 1996).

By analyzing mortalities in the phase between maximum abundance and the

following minimum, the model gave new insights into the driving forces: The

overall model results showed that mortalities due to intrinsic factors like senes-

cence did not increase distinctly. In contrast, trophic interactions that are based on

the lack of food and predation pressure contributed to about 90% of mortality of

rodent individuals in this phase. The results clearly emphasize that food web

interactions constitute the essential driving force of the cyclic dynamics. Further

investigations however yielded another surprise: The trophic control and its

relative strength, which was calculated as the difference between normalized

mortality rates in relation to either of the two factors, varies unpredictably in

the model (Fig. 12.5) and cannot be correlated to specific properties of the

respective cycle.

With respect to the identification of these two factors that have a varying impact,

the model results give important new conclusions for the discussion of the driving

forces in Scandinavian rodent cycles and may thus help to explain the differing

results of numerous empirical investigations.

12.5 Conclusions

The relation of modelling on the one side and empirical information and biological

knowledge on the other is different for IBM than it is for other modelling

approaches. While the modelling approaches usually employ a specific abstraction
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pattern that captures ecological relation only according to a particular scheme,

IBM has the advantage to represent observation and knowledge in a form that

is highly congruent with how we understand existing interaction. The level of

abstraction is low, and the model represents elementary interactions that aggregate

in the course of model execution in the same form as observable phenomena in

empirical investigations. The iterative character of the models allows to “sample”

during simulation. In that respect IBM is a crucial tool in testing consistency

of ecological knowledge. Due to their potential to represent detailed biological

knowledge and small-scale mechanisms, IBMs tend to have a complex model

structure. This requires a particular attention to model documentation and eva-

luation (see Chap. 23).

The generic applicability of the structure of IBMs allows simulating a wide

range of issues in terrestrial as well as in aquatic ecology. The illustrated scheme of

programme organization is sufficiently flexible to capture organismic development

and behaviour, environmental conditions, and the interaction of both. It is suitable

to specify e.g. predator–prey interactions (Charnell 2008), schooling (Reuter and

Breckling 1994), and behavioural shifts under varying conditions (Peacor et al.

2007), the formation of colonies and the description of structural–functional devel-

opment of modular organisms (Eschenbach 2005).

IBMs allow to represent interaction of structural and functional features across

different scales. Thus situations which do not only involve quantitative transitions

but in parallel also qualitative or structural changes can be studied. Simulation

results on higher organization levels emerge from the self-organizing interactions

of basic units.

Fig. 12.5 In the rodent population oscillation model it turns out that top-down and bottom-up

control of the rodent cycles change in an unpredictable way. This yields an explanation for why

empirical investigations led to contradictory results (from Reuter 2005)
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Chapter 13

Modelling Species’ Distributions

Carsten F. Dormann

Abstract Species distribution models have become a commonplace exercise over

the last 10 years, however, analyses vary due to different traditions, aims of applica-

tions and statistical backgrounds. In this chapter, I lay out what I consider to be the

most crucial steps in a species distribution analysis: data pre-processing and visua-

lisation, dimensional reduction (including collinearity), model formulation, model

simplification, model type, assessment of model performance (incl. spatial autocor-

relation) and model interpretation. For each step, the most relevant considerations are

discussed, mainly illustrated with Generalised Linear Models and Boosted Regres-

sion Trees as the two most contrasting methods. In the second section, I draw

attention to the three most challenging problems in species distribution modelling:

identifying (and incorporating into the model) the factors that limit a species range;

separating the fundamental, realised and potential niche; and niche evolution.

13.1 Introduction

As more species types undergo rapid human-induced extinction, understanding why

species occur where they do is becoming a highly relevant, pressing and potentially

life-saving topic. Conservation actions, such as establishing protected site networks,

adapting land use, providing stepping-stone habitats all require an idea of how the

target species will respond. Furthermore, using organisms as a “bioassay technique”,

i.e. indicators of environmental trends (such as climate change, air pollution, over-

fishing), demands an intimate knowledge of the organism’s niche. Species distribution

modelling (SDM) attempts to identify the probable causes of species whereabouts.

We seek to delineate the realized niche of an organism based on its current distribution

with respect to the environment (for definitions and concepts see Guisan and Thuiller

2005; Kearney 2006; Soberón 2007; Elith and Leathwick 2009b).

C.F. Dormann

Department of Computational Landscape Ecology, Helmholtz Centre for Environmental

Research – UFZ, Permoserstr.15, 04318 Leipzig, Germany

e-mail: carsten.dormann@ufz.de

F. Jopp et al. (eds.), Modelling Complex Ecological Dynamics,
DOI 10.1007/978-3-642-05029-9_13, # Springer-Verlag Berlin Heidelberg 2011

179



Why Species Distribution Modelling?

There are several fundamental challenges to this approach (e.g. first and foremost

that it is correlative; see Vaughan and Ormerod 2005 and Dormann 2007b for a

recent critique), and before jumping into the analysis, it is worth considering

whether SDMs are actually useful and fit for the purpose of our specific problem.

For example, at very small spatial scales, differences in environmental conditions

may be too small to be of predictive value and biotic interactions (competition,

predation) may be of crucial importance. In contrast, at the global scale, data

become so coarse that we “only” model the climate niche and specific habitat

requirements cannot be detected.

On the other hand, SDMs try to extract ecological information from a species

occurrence pattern when and where it matters. Expert knowledge usually cannot

inform us which trait or limitation will be relevant for our problem at hand. We may

know that a palm tree does not survive sub-zero temperatures, but the observed

distribution will tell you that even 10 � 10 km grid squares with minimum

temperatures well below 0�C harbour this species because of microclimatically

suitable places. Thus, at the spatial resolution under investigation, the physiological

threshold can be misleading even though it may be true. Overall, SDMs are useful

for complementing existing approaches in at least these five areas of research:

1. Small-extent, decision-support for conservation biology (such as Biological

Action Plans: Zabel et al. 2003, and numerous others)

2. Testing specific hypotheses, e.g. on the spatial scale of habitat selection (Graf

et al. 2005; Mackey and Lindenmayer 2001), the species-energy hypothesis

(Lennon et al. 2000) or range-size effects on diversity pattern (Jetz and Rahbek

2002)

3. Generating hypotheses, e.g. on correlation of species traits with environmental

variables (K€uhn et al. 2006), which can then be tested experimentally

4. Identifying hierarchies of environmental drivers (Bjorholm et al. 2005; Borcard

and Legendre 2002; Pearson et al. 2004)

5. Prospective design of surveys, e.g. optimizing sampling schemes for rare species

(Guisan et al. 2006)

Now, we shall focus on the technical side and assume that you know what you

are doing, ecologically speaking.

Analysing the geographic distribution of species’ occurrence, abundance or

diversity is, essentially, a statistical task. As such, the fundamental ideas and

principles of good statistics apply (and can be found in the excellent but advanced

book of Hastie et al. 2009). There are at least three reasons why methods for

describing or modelling these patterns have reached a higher level of sophistication

than many other fields in ecology. Firstly, biogeographical data sets are nowadays

large (both in terms of number of data points and potentially explanatory variables),

necessitating the use of new statistical strategies. Secondly, species distribution

data typically carry a largish bunch of common intrinsic statistical problems and
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accordingly several solutions have been tailored to these problems (presence-only

data, low information content of binary data, spatial autocorrelation, multi-collin-

earity, model unidentifiability). Thirdly, species distribution modelling (SDM) is

“sexy”. As habitat of many species is continually lost, as climate changes and as

environmental management becomes a matter of human survival, scientists, deci-

sion makers and the general public look for information and predictions of possible

future scenarios. Consequently, substantial funding (at least for ecological topics)

over the last decade has enabled talented scientists to make a career from SDMs.

Aims of This Chapter

Recent developments have made the field of SDM somewhat complex, diverse and

confusing for the newcomer. The aim of this chapter is thus to (1) provide a recipe

for SDM; (2) briefly discuss a few selected “hot” topics; and (3) give an overview of

challenges of a more ecological modelling type (dispersal, occupancy, biotic inter-

actions, functional variables, evolution, changing limiting resources). I shall restrict

citations to fundamental or specific methodological papers and will therefore have

to ignore the vast amount of good ecological papers that “only” did it right. On the

other hand, I am not aware of any paper on species distribution modelling that could

tick all elements of the recipe below.

13.2 A Species Distribution Modelling Recipe

A good cook needs no recipe. Alas, we are trained more in ecology than statistics.

Moreover, without the right ingredients (a.k.a. data) and tools (software), no dish

will be tasty. Also, I should mention other recipes along this line: see Harrell (2001)

for a generic statistical recipe, and Pearson (2007) and Elith and Leathwick (2009a, b)

for a specific one on SDMs. As for “cooking tools”, I highly recommend using

code-based software so that each step of the analysis is documented and easily repro-

ducible. The functions mentioned in this chapter are all from the free R environment for

statistical programming (R Development Core Team 2008).

The recipe falls into three sections: pre-processing, modelling and model inter-

pretation (Fig. 13.1). These sections are somewhat arbitrary, but are useful to

structure the whole endeavour. We shall assume that you have your ingredients

well prepared: The observed data are as good as we need them, the explanatory

variables are ecologically relevant and at the same resolution and your statistical

tools are laid out in front of you. A worked example is available at http://www.

mced-ecology.org (“Where’s the sperm whale?”), which follows the recipe and

provides example data and R-code.
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13.2.1 Pre-processing and Visualization

The Response Variable

When the data are presence–absence (i.e. binary) no further preparation is needed.

When data are counts or continuous, we have to make sure that assumptions of the

modelling approach are met. For parametric modelling approaches (regressions by

means of GLM or GAM), count data are usually assumed to be Poisson distributed

but all too often are not. Continuous responses are generally assumed to be

normally distributed. These assumptions can be checked only after modelling,

because we need to look at the residuals or compare log-likelihoods of different

distributions. Generally, if too many zeros have been observed, the data are over-

dispersed and we have to resort to one of three alternative approaches: a quasi-

Poisson distribution (where over-dispersion is explicitly modelled); a negative

binomial distribution (where a clumping parameter is fitted); or a separate analysis

of zeros and non-zeros (as in zero-inflated or other mixed distribution models:

Fig. 13.1 Overview of the species distribution modelling workflow. The three phases contain

various tasks, for which typical examples are given in the right column
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Bolker 2008). Sometimes people log-transform count data (more precisely: y’ ¼
log(yþ1)), and find the new y’ to be normally distributed.

Normally (Gaussian) distributed data show a normal distribution in the model

residuals and a straight 1:1 relationship in a QQ-plot of these residuals. Deviations

need to be accounted for, e.g. by transforming the data (any good introductory

textbook, such as Quinn and Keough (2002), will feature a section on transforma-

tions, including useful ones such as the Box-Cox1 transformation).

When we have presence-only data (i.e. only locations where a species occurs but

no information where it does not), two alternative approaches are available. We

could use purpose-built presence-only methods, or we could use all locations

without a presence and call them absences (pseudo-absences). Both approaches

have their difficulties (Brotons et al. 2004; Pearce and Boyce 2006). The first suffers

from a lack of sound methods (in fact, following Tsoar et al. (2007) and Elith and

Graham (2009), I would currently only recommend MaxEnt2 in this direction and

hope for the approach of Ward et al. (2009) to become publicly available). The

second approach lacks simulation tests on how to select pseudo-absences and how

to weight them (see Phillips et al. 2009 for the cutting edge in this field), although it

has been argued that the pseudo-absence approach can be as good or better than the

purpose-built presence-only methods (Zuo et al. 2008). In what follows, I only

consider presence-(pseudo)absence data.

The Explanatory Variables

Explanatory variables may also require transforming! Consider a relevant explana-

tory variable which is highly skewed (e.g. log-normally distributed), as is commonly

the case for land-use proportions. Few high-value data points may completely

dominate the regression fitted. To give a more balanced influence to all data points,

we want the values of the predictors to be uniformly distributed over their range.

This will rarely be achievable, and researchers mostly settle for a more or less

symmetric distribution of the predictor. Note, however, that ideally we want most

data points where they help most. For a linear regression, the mean is always best

described, so we would want most data points at the lowest and highest end of the

range. For a non-linear function, for example a Michaelis–Menton-like saturation

curve, wewantmost data points in the steep increase, while there is little gained from

many points at the high end, once the maximum is reached. As a rule of thumb we

need many data points where a curve is changing its slope.

Transformation of explanatory variables is particularly needed for regression-

type modelling approaches such as GLM and GAM (see below for explanation).

Regression trees (used, e.g. in Boosted Regression Trees, BRT, or randomForest)

are far less sensitive, if at all (Hastie et al. 2009). It is a good custom to make

1boxcox inMASS (typewriter and bold are used to refer to a function and its R-package)
2Phillips et al. (2006b): http://www.cs.princeton.edu/~schapire/maxent/
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a histogram of each explanatory variable before entering it into an analysis!

Transformation options are the same as for the response.

Missing data are a (very) special case of transformation. Although generally

disliked by many analysts, imputation (replacement of missing data) is often a good

idea (see Harrell 2001), particularly if missing data are scattered through the data

set (i.e. across several variables!) and we would loose many data points if we simply

omitted every data point with missing values. Standard imputation uses the other

explanatory variables to interpolate a likely value for the missing one.3 Replace-

ment by the mean is not an option!

“Outliers” are (in general) a red herring: If there is no methodological reason

why a data point is extremely high (e.g. one data set being recorded in winter, while

all other data points are from the summer), then this datum should also be included

in the analysis. Otherwise the data set may be poorly sampled, but the “outlier”

would still represent a (potentially) valuable datum. It would be good practice to

omit it later on and see if the results are robust to this omission. Furthermore, in

multi-dimensional data sets (i.e. those with several explanatory variables), a datum

might be an “outlier” in one dimension, but an ordinary data point in all others: why

delete it?

Finally, all continuous variables should be standardized before the analysis.4

This reduces collinearity, particularly with interactions (Quinn and Keough 2002).

As a convenient side effect, regression coefficients are now directly comparable:

the larger their absolute value, the more important this term is in the model (they

become standardized regression coefficients).

Collinearity

Collinearity refers to the existence of correlated explanatory variables. Some

predictors are only proxies for an underlying, latent variable. For example, consider

temperature and rainfall, which are largely governed by distance to ocean (ocean-

ity), altitude and regional terrain. Collinear predictors can lead to biased models due

to inflated variances (Quinn and Keough 2002). There are many cures to this

ailment, but no remedy. Logically speaking, if two predictors are tightly linked to

an underlying (but elusive) causal variable, there is no way to find out which is the

“correct” predictor for our analysis. We may choose precipitation over temperature

when modelling plants (or the other way around for insects), but there is no

guarantee that this choice allows us a sensible extrapolation of our model. Further-

more, using Principal Component Analysis (PCA) or any of the other tailor-made

methods for collinearity (Partial Least Squares, penalized regression, latent root

regression, sequential regression, and many others) will not solve the ecological

problem, only the statistical. These methods will produce either a new data set of

3transcan and aregImpute in Hmisc
4scale
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uncorrelated variables, or “consider” the correlation when estimating model para-

meters.

So where is the problem? Imagine an organism whose distribution is governed

entirely by its sensitivity to frost. When we combine our climate variables into one

or more principal components, model the species’ distribution, and then predict to a

climate change scenario, the fact that both rainfall and mean summer temperature

are correlated with number of frost days will dilute its impact in the model. The

total effect of “frost” is distributed over all correlated variables. As a consequence,

any climate prediction will underestimate the effect of frost and hence yield a

“wrong” expected future distribution. If we don’t know the true underlying causal

mechanism, no statistics can help us here (or at least very little). Any correct

ecological knowledge used in variable pre-selection, however, will lead to a smaller

bias in scenario projections!

Dimensional Reduction

Often we may have dozens or even hundreds of potential explanatory variables (e.g.

from multispectral remote sensing or landscape metrics). We should try to reduce

this set to as few as possible for two reasons: (1) The more variables we have, the

more they will be correlated. (2) The more variables we have, the more likely one of

them will spuriously contribute to our model (type I error). For SDMs, Austin

(2002) and Guisan and Thuiller (2005) argue that we should choose “resource” over

“direct” and “direct” over “indirect” variables. For example, the abundance of prey

(hardly ever available) or nesting opportunities will be a resource variable when

analysing the distribution pattern of a bird of prey. Temperature or human distur-

bance could be direct variables, impacting on the bird without moderation by other

variables. Indirect variables would be altitude or length of road in a grid cell, which

are substitutes, surrogates or proxies for other, more directly acting variables. These

indirect variables are often not immediately perceivable by the organism (such as

altitude by a plant or length of road verges by a rodent). So if we have two

(correlated) variables, we should discard the one “further away” from the species’

ecology.

If we are unable to reduce the data set sufficiently (i.e. k�N), we should use

dimensional reduction techniques, such as Principal Component Analysis5 or its

more sophisticated variants that also allow categorical variables (nMDS6). The

scores for the most important axes in this new parameter hyperspace can be used as

explanatory variables. Note that interpretation is often extremely impaired by

automatic dimensional reductions. It is thus always advisable to use ecological

understanding rather than statistical functions at this step!

5prcomp
6isoMDS in MASS or, more conveniently, metaMDS in vegan
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An alternative is to “filter” the data by importance. We can use a robust and able

technique to tell us which variables are important. Next, we use only those 5 or 12

variables filtered from the initial pool of variables, and continue. If variables are

uncorrelated, regression-tree based methods are very useful for this, and I recom-

mend randomForest and Boosted Regression Trees. If you plan to model your data

with BRT anyway, there is little point in reducing the number of explanatory

variables before.

Finally, be aware that any model can only find correlations with the variables

provided. Of course, we know that our hypothetical bird of prey depends on specific

prey. Without this information, we may actually be modelling the niche of the prey,

not of the predator!

Exploratory Data Plotting

Can we finally start? No! It is both good practice and highly advisable to look at the

data by plotting them in any reasonable combination conceivable (see, e.g., Bolker

2008). Plot thematically related explanatory variables as scatterplot7 to detect

collinearity. Plot each explanatory variable against the response (henceforth called

X and y, respectively) and look for nonlinear effects. Plot data in parameter space,

e.g. as function of two Xs (Fig. 13.2) and a hull-polygon around the data to see that

40% or so of the parameter space is not in your data set. This is the area outside the

convex hull in Fig. 13.2. The more variables (and hence dimensions) your data set

has, the more severe this problem becomes. It is so prominent among statisticians

(though not among ecologists) that it is referred to as the “curse of dimensionality”

(Bellman 1957; Hastie et al. 2009). Repeat this plotting for any number of variables.

Getting a feeling for the data is crucial, and many later errors can be avoided. Every

minute invested at this stage saves hours later on.

13.2.2 Modelling

Here, we arbitrarily divide the process of deriving a “usable” model into two steps.

The first, model building, selects the variables to be included, the type of non-

linearity and order of interactions considered, and the criteria for selecting the final

complexity of a model. The second step, model parameterisation, performs the final

step of using the data to calculate the best estimates for variable effects. It is this

model that we want to use for interpolation, hypothesis testing or extrapolation. Note

that in some methods these two steps are implicitly taken care of and that there is no

two-step process (mainly machine learning, where model selection is done internally

through cross-validation in order to prevent models from being “unreasonably”

7pairs

186 C.F. Dormann



large: e.g. Hastie et al. 2009). For more traditional approaches (and here I am

thinking of GLMs), we may want to have these steps functionally separated.

Model Formulation

We have reduced our data set to a moderate number of predictors in the step

“Dimensional reduction” above. Now we still need to specify in which functional

form the predictors are allowed to correlate with the response. In early years, both

non-linear and interactive model terms were neglected, making many of their

findings less trustworthy. Modern methods (such as BRT) will automatically have

non-linearity and interactions build-in. It is still important to understand the rele-

vance of non-linearity and interactions, even when using the tree-based methods,

because we still have to be able to interpret the results. The information on the

importance of a variable often returned by machine-learning algorithms does not

allow us to see how the variables act. As shown in the case study at http://www.

mced-ecology.org (Where’s the sperm whale?), the functional relationship must be
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Fig. 13.2 Visualizing the parameter space supported by data. In this case, the top-right and
bottom-left corner of the parameter space of the two predictors has not actually been sampled by

data (despite a low correlation of r ¼ �0.26). The parameter space actually sampled is indicated

by the convex hull, covering 57% of the area, and it declines dramatically with the number of

dimensions (“curse of dimensionality”). In other words: we have few data points to look at

interactions of higher order
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plotted to gauge its shape. For interactions we need to plot each variable at each

level of the other variable, thus visualizing synergistic or compensatory effects of

the two variables.

The key idea behind SDM, i.e. the environmental niche of a species, implies a

hump-shaped relationship between any environmental predictor and a species’

occurrence: there are lower and upper limits. Hence, we must allow the model to

be nonlinear. If we happen to only sample a part of the entire gradient, we also

need to consider saturation curves, which are again non-linear. The simplest, and

generally sufficient, way to include non-linearity is by generating a new, squared

dummy variable for each continuous predictor.8 This represents the third element

of a Taylor series (which can be expanded to represent any continuous function).

When using GAM or other spline-based approaches, non-linearity is governed by

the smoothing function used. Here the issue is not so much how to model non-

linearity, but rather how much non-linearity we allow for. Reducing the “wiggli-

ness” of splines (either by stepwise model selection for the number of knots in

each predictor9 or by shrinkage of spline fits10) prevents over-fitting and should

be the standard approach.

Interactions are similarly relevant. Statistically, an interaction is the product of

the participating main effects. Ecologically, it means that we need to know the

value of all variables included in the interaction, not only the main effects. Because

this is highly relevant and often difficult for the beginner, let me briefly give an

example. Assume that global patterns of plant diversity are well-predicted by the

predictors “annual precipitation” and “mean annual temperature” – and their

interaction. For the main effects, wet or hot means more species, but not necessar-

ily. When a site is hot, it needs to also be wet to have high species richness;

otherwise it may well be a barren desert. But when cold, a site will never support

many plant species, independent of precipitation. In this example, neither tempera-

ture nor rainfall alone is sufficient to predict species richness at any site, but we

need to interpret them in concert.

Classification and regression trees (CARTs) embrace non-linearity and interac-

tions in an elegant and natural way. Their boosted (BRT) or bagging (randomFor-

est) extensions hence do not require specification of non-linearity and interactions.

Model Simplification

One of the fundamental problems in building statistical models is the trade-off

between the variance explained by the model, and the bias it produces when

8This can be done either manually (X1.2 <- X1^2) or as part of the model formula (y ~ X1 + I
(X1^2)); higher-order polynomials should be specified using poly (y~poly(X1,degree¼3)),
which calculates orthogonal polynomials.
9As proposed for the function gam in package gam: see ?gam::step.gam.
10As proposed for the function gam in package mgcv: see ?mgcv::step.gam.
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validating it on a new, independent data set (variance-bias-trade-off: Hastie et al.

2009). Smaller models are more robust, i.e. less biased, at the expense of being not

very good in explaining variance. The way to derive the “optimal” model size is

through cross-validation (CV). For some modelling approaches this is automati-

cally implemented, but the majority of model types require the user to carry out this

step. N-fold cross-validation encompasses a random assignment of data points to

the N subset, with N usually between 3 and 10. Care should be taken to have equal

prevalence in all subsets, e.g. by randomizing 0s and 1s separately (stratified

randomization). The model is then fitted to N�1 of the N subsets and evaluated

on (by predicting to) the remaining subset. This is repeated for all N subsets and

evaluations are averaged. Based on these values, we can select the best modelling

strategy (both model complexity and model type). An alternative approach is to

bootstrap the entire model building process and use bootstrapped measures of

model performance. Since a bootstrap requires several thousand runs, and a CV

only a few, CV is far more common.

Information theoretical approaches are based on analytical methods to describe

this CV. Hence Akaike’s Information Criterion (AIC) or Schwartz’/Bayesian

Information Criterion (BIC) are implicitly also based on cross-validation. While

it is clear that too large a model will be over-fitting, and that too small a model will

not capture as much of the variation as it should in the data, the “true” model will

always remain elusive, and our “optimal” model will only be a caricature of the

truth. However, here is much to be learned from this caricature!

Model Type

At this point we have to choose one (or more) method(s) to do our analysis with.

The good “traditional” approaches comprise Generalised Linear Models (GLM)

and Generalised Additive Models (Guisan and Zimmermann 2000). Discriminant

Analysis has been given up on, as have been Neural Networks and CARTs (Guisan

and Thuiller 2005). “Modern” approaches are often based on either multidimen-

sional extensions of GAMs (such as MARS and SVM) or machine-learning varia-

tions of CART (such as BRT and randomForest: Hastie et al. 2009). Anyone using a

machine-learning method should familiarize himself with this method. The major-

ity of them are performed on real data sets, where the truth is unknown and the

performance of a method was hence assessed by cross-validation. These compar-

isons show, broadly speaking, that model types sometimes differ dramatically in

performance, that each model type can be misused and that both GLM and BRT are

reliable methods when used properly.

This is not the place to explain the differences between all of them (see Hastie

et al. 2009 for a recent and comprehensive description or Elith and Leathwick

2009a). It has to suffice to make clear the main difference in the machine-learning

approach to “traditional” statistical models. In traditional models (e.g. GLM), we

specify the functional relationship between the response and its predictors. For

example, we decide to include precipitation as a non-linear predictor for plant
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species richness. This model proposal is then fitted to the data. In machine learning,

we propose only the set of predictors, but not the model structure. Here, an algorithm

builds a model proposal, fits it to a part of the data set and evaluates its performance

on the other part of the data. It then proposes a modification of the original model and

so forth. Machine-learning algorithms11 differ in scope, origin, complexity, and

speed, but they all share this validation step which is used to steer the algorithm

towards a better model formulation. There are plenty of studies comparing different

modelling approaches (Guisan et al. 2007; Meynard and Quinn 2007; Pearson et al.

2006; Segurado and Araújo 2004). Rather, we shall continue using GLM and BRT as

representatives for the two most common good approaches.

The choice of model type has much to do with availability of software, current

fashion and, of course, with the specific aim of the study. Further complications arise

if the design of the survey may require a mixed model approach (e.g. due to repeated

measurements or surveys split across observers), if spatial autocorrelation needs to be

addressed, if zero-inflated distributions have to be employed, and if corrections for

detection probability shall bemodeled. Themore additional requirements are imposed

on the model, the more GLMs become the sole possible method.12 Alternatively, you

may want to go for a Bayesian SDM (see Latimer et al. 2006, for a primer).

If your data and model require an unusual combination of steps (say a combination

of zero-inflated data with nested design and spatial autocorrelation, while predictors

are highly correlated and many values missing), and you develop a way to cook this

dish, then you should do (at least) two things: Firstly, evaluate your method for its

ability to detect an effect that you know is there (“sensitivity”). Secondly, evaluate

your method for its specificity to detect effects that you know are not there. Both
evaluations should be amply replicated, should be based on simulated data (so that

you know the truth) and should (finally) confirm that your new methods is reliable!

Spatial Autocorrelation

Spatial autocorrelation (SAC) refers to the phenomenon that data points close to each

other in space are more alike than those further apart. For example, species richness in

a given site is likely to be similar to a site nearby, but very different from sites far away.

This is mainly due to the fact that the environment is more similar within a shorter

distance. Hence, SAC in the raw data (species occurrence) is a consequence of SAC in

the environment (topography, climate), something Legendre (1993) termed “spatial

11http://www.machinelearning.org/ is a good place to start exploring this field.
12Most of these “complications” can be handled by standard extensions of GLMs (see, e.g. Bolker

2008, and various dedicated R-packages). They will, however, make the model less stable, require

larger run-times and still rely on getting the distribution right. There is, of course, the alternative of

Bayesian implementations. Since these are also fundamentally maximum likelihood approaches,

they are similar to sophisticated GLMs. In any case, there is no Bayesian Boosted Regression Tree

(not to speak of a combination with spatial terms and mixed effects). It runs against the Bayesian

philosophy to use boosting or bagging, and there is no efficient implementation either.
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dependence”. In SDMs, we do not care about SAC per se, but about SAC in the

model’s residuals (i.e. unexplained by the environment), because it distorts model

coefficients (Bini et al. 2009; Dormann 2007a). To date it is unclear whether this

residual SAC is mainly due to model misspecification (omission of non-linearity and

interactions), due to variation in sampling coverage, due to omission of important

predictors, or due to ecological processes (territoriality, dispersal). Only with respect

to some of these problems a statistical solution can be found. The spatial toolbox is

rich in approaches (Beale et al. 2010; Carl et al. 2008; Dormann et al. 2007; Mahecha

and Schmidtlein 2008). In any case, SDM residuals should be investigated for spatial

autocorrelation, and attempts should be made to correct for it. If spatial models yield

similar coefficient estimates (GLM) as non-spatial models, then there seems to be little

value in “going spatial”: the ranges of the spatial autocorrelation may or may not be

related to the ecological scale of movement or behavioral patterns (Betts et al. 2009;

Dormann 2009).

Tweaking the Model

There are several ways in which the quality of the model can be increased (Maggini

et al. 2006). One important start is to investigate the model residuals. They indicate

whether model assumptions were violated (e.g. when residuals are highly skewed or

their variance is not the same throughout the range of fitted values) or if some non-

linear relationship went unnoticed (residuals may show a hump-shaped trend

against fitted values).

Model diagnostics13 will also indicate outliers, i.e. data points that have a high

influence on the model coefficients. We can use weights to decrease an outlier’s

impact. Weights are also useful when the balance between presences and absences is

very disturbed. Down-weighting the more common category so that model weights

sum to the same value for 0s and 1s has been shown to increase the sensitivity of

binomial models (Maggini et al. 2006). The same approach is recommended when

using pseudo-absences (Elith and Leathwick 2009a).

By including data from other scales or broader geographic coverage, regional or

local SDMs can also be improved. Pearson et al. (2004) used European distribution

and climate data to fit a niche model for four plant species. Predicted probabilities

of occurrence from this model were then used as input variable alongside land-

cover variables in the second-step model for the UK. Thereby the authors avoided

the problem that the climate gradient in the UK is much shorter than of the species’

global distribution.

Assessing Model Performance

To quantify how well our model fits the data, we compare model predictions with

field data (usually on a hold-out sample; e.g. the subset of a cross-validation).

13Diagnostics for GLMs fitted in R are given by plotting the model object.
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Traditionally, the probability predictions from the model were converted into

presences and absences and then a confusion matrix could be used to calculate

various parameters of choice (e.g. commission and omission error, kappa, etc:

Fielding 2002). The AUC (“area under curve”) is currently the most commonly

used measure of discriminatory power of a model. Its value (between 0.5 for

random and 1 for perfect) quantifies the ability of the model to put the data points

into the correct class (i.e. presence or absence), independent of the threshold

required by the other measures mentioned. It has recently received justified criti-

cism because its values are not comparable across different prevalences (and the

criticism extends to kappa, too; see Lobo et al. 2008). Currently, misclassification

rates, commission and omission errors are more en vogue again, because they can

be intuitively interpreted. Furthermore, by assigning different weights to false

negatives (omission error) and to false positives (commission error), conservation

management can come to more sophisticated and balanced decisions (Rondinini

et al. 2006).

Only rarely will a second set of data be available to investigate the quality of our

model(s) through external validation. A different recording strategy, another time

slice or data from a different geographic location represent really independent data,

and could thus be considered an external validation. The internal validation

(described above as cross-validation) is an optimistic assessment of model quality.

When using SDMs to infer underlying mechanisms, external validation is less of

an issue than when using them to extrapolate to a future climate or other sites.

Because the cross-validated models are optimistic, they give narrower error bands

than they should.

13.2.3 Interpretation

Once we have arrived at what we regard as a final model, we should make every

effort to understand what it means. A first and most relevant step is to visualize the

functional relationships within the model. The plot of how occurrence probability

is related to, say, annual precipitation should be accompanied by a confidence band

around this line. It may be useful to plot the data as rug (ticks on the axis representing

positions of the data values) into this figure to visualise the support at each point in

parameter space (Fig. 13.3).

For interactions, visualization becomes more difficult. Two-way interactions can

still be plotted (e.g. as a 3-D plot or as a contour plot). No confidence bands can be

included, though. Here it is again very important to indicate the position of the

samples to identify regions of the parameter space that have not been sampled. For

higher dimensions, or for a model that averages across many sub-models, we can do

the same plots (called marginal plots for main effects because they represent the

marginal changes to a predictor, averaging across all other predictors). We can also

slice through higher dimensions, i.e. calculate a marginal plot for specific values of

other predictors (often their median).
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Spending time plotting is again well invested. We will detect errors in the model,

scratch our head over inexplicable (and hence overly complex) patterns, and be

forced to extract the main conclusions from it. It is this phase where the traditional

GLM is superior to the BRT, because variable interpretation is easier. It is,

however, also this phase where we may realize that BRTs are superior to GLMs

because they can model step-changes and thresholds much better. Personally,

I think we should not publish patterns we do not understand. There are, as the

previous steps have shown, several decisions that could generate artifacts and their

publication cannot be seen as progress.

13.3 Beyond Recipes: New Challenges for Species

Distribution Models

The above recipe can be used to derive a static description of environmental

correlates with distribution data. But they often leave the analyst unsatisfied.

Many assumptions might be suspected to be violated (Dormann 2007b), such as

Fig. 13.3 Functional relationship between an environmental variable and a binary response. Rug

(ticks on lower axis) indicate for which x-values data were available. Lines represent a quadratic fit
(solid) and its standard deviation (dashed). Thin grey line is the true, underlying, data-generating
function. Note the few data points upon which the declining half of the function is based (6 of a

total of 50 have a value >0.35)
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stationarity, unbiased coverage, or equilibrium with environment.14 There are three

key challenges with the following problems of current SDMs: (1) A niche model

describes the current niche, and it is unclear which factors will be limiting elsewhere

or in the future. (2) Climate change projections delimit only the potential future
distribution, and it is unclear whether the species will ever fill this new range; e.g.,

due to dispersal constraints. And, (3), our understanding of the adaptive potential of

a species is currently very poor. This sets, in part, the research agenda for species

distribution models. Let us look at these challenges in more detail.

What Limits a Species’ Range?

An organism is constrained in its population dynamics by resources, competitors,

predators and diseases, density dependence, reproductive opportunity, mutualists,

environmental stochasticity and so forth (e.g. Krebs 2002). The same holds true for

its spatial distribution (e.g. Gaston 2009; Holt and Barfield 2009), but additionally

spatial constraints come into play (e.g. distance between habitat fragments, mini-

mum territory size, Allee effects due to low population density). With an SDM, we

are usually only able to quantify some of these limitations, and, accordingly, SDMs

often do not transfer very well to other sites (Schr€oder and Richter 1999; Randin

et al. 2006; Duncan et al. 2009, but see Herborg et al. 2007). In particular, biotic

interactions are hardly ever quantified explicitly within SDMs (although some of

them will also correlate with the environmental data used). But they matter in real

data (e.g. Preston et al. 2008; Schweiger et al. 2008), and they impact model

performance and predictive ability (as shown, in a simulation study, by Zurell

et al. 2009). It is thus a key challenge to incorporate biotic interactions into SDMs,

but to date such attempts are few and far between (e.g. Bjornstad et al. 2002). A

recent review (Thuiller et al. 2008) indicates some avenues to do so, but all of them

are based on the explicit modelling of populations within cells, if not individuals. It

is unclear how to derive a more general dynamic SDM, without spending years

per species on incorporating detailed ecological knowledge.

Fundamental, Potential and Realized Niches

The reason why many biogeographers refer to SDMs as “Species Distribution

Models” and not as “niche models” is because they do not believe that we model

the niche of the target species. In fact, as Jiménez-Valverde et al. (2008) argue,

14Actually, the term “equilibrium” is a bit misleading. What is meant is that the entire width of its

niche is filled. Within this niche, there may well be unoccupied sites, e.g. due to metapopulation

dynamics. A problem arises, when a species does not occupy say the dry end of its soil moisture

niche for historic reasons. Then the estimate of this end of the niche will be biased.
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because we do not know why a species is absent in some sites, we are in the dark

about its niche. The discussion of what a niche is, and what we are modelling, has

sparked several interesting and not always compatible publications (e.g. Kearney

2006; Soberón 2007). Hence, Araújo and Guisan (2006) have named the “clarifica-

tion of the niche concept” the first of five challenges for SDMs. While we cannot

resolve this issue here, it is important to realize that the “niche” based on the

correlation between geographic distributions and environmental conditions is quite

a bit more vague than the niche discussed in evolutionary ecology, where resources

and other causal drivers are envisaged (see, e.g. Losos 2008).

More to the point in this context is the challenge to quantify how much of the

fundamental niche is actually covered by the realized niche as extracted from

SDMs. If, on one extreme, the realized niche is pretty much also the fundamental

niche (i.e. there are no biotic interactions alike to constrain the distribution at the

scale we are analyzing), then we can merrily predict future distributions of this

species (e.g. under climate or land-use change). At worst, we are overestimating the

future, “potential” distribution (if in the future biotic interactions may become

limiting or if species do not reach the sites). At the other extreme, if the fundamental

niche is considerably wider than what we model, any projection can be fundamen-

tally flawed (Dormann et al. 2010). I am not aware of any study assessing the

overlap of realized and fundamental niche for geographic distributions (see also

Nogués-Bravo 2009). It could require transplant experiments into areas beyond the

current range and the manipulation of biotic interactions there. The few studies

going into this direction point at a large discrepancy between fundamental and

realized niche. Battisti et al. (2006), for example report on a range shift after a

particularly warm summer, which was not reverted afterwards, indicating that it

was dispersal limitation that prevented a filling of the niche. Similarly, several

studies point at the importance of dispersal limitation (Nekola 1999; Ozinga et al.

2005; Samu et al. 1999; Svenning and Skov 2004), leading to both a bias in the

modeled environment-occurrence relationship as well as the width of the niche

itself. There is, as yet, no standard way to wed SDMs and dispersal (for attempts

see, Johst et al. 2002; King and With 2002; Lavorel et al. 2000; Lischke et al. 2006;

Midgley et al. 2006; Schurr et al. 2007; Thuiller 2004).

Niche Evolution

Another important and fast developing field related to species distribution model-

ling is the study of niche evolution. I shall use this term very loosely, as is often

done, to also include micro-evolutionary changes, genetic (and ecological) drift

within species and genotypic plasticity (Pfenninger et al. 2007). Climate change

projections using SDMs rely on the assumption that species are not able to adapt

significantly to altering environmental conditions. This assumption is implicit in the

extrapolation of the fitted niche: if a species was able to adapt rapidly, then the

present niche would not be related to its future niche.
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The problem is that we have considerable, if patchy, evidence that niches can

rapidly evolve (reviewed in Thompson 1998), change within the fundamental niche

(Dormann et al. 2010) or at least that variability within a species is large enough to

allow it to shift its niche when confronted with novel environments (e.g. Ackerly

et al. 2006; Broennimann et al. 2007; Hajkova et al. 2008; Holt 2003; Holt and

Gaines 1992). There is, as yet, no synthesis of niche evolution nor, to my knowledge,

any mechanistic approach to incorporate geno- and phenotypic plasticity into SDMs

or spatial population models. There is, on the other hand, more than anecdotal

evidence that microevolutionary processes are at play and matter ecologically

(Hampe and Petit 2005; Phillips et al. 2006a). Hence, this field still awaits being

embraced by species distribution models.

13.4 Concluding Remarks

This chapter tries to strike a balance between guidance for novices to species

distribution modelling – by providing a recipe for the most crucial elements of

SDMs – and an embedding of SDMs into the currently most relevant statistical

challenges. Analysing a species’ distribution can be a very useful starting point for

further investigations or process-based modelling attempts. The correlative nature

of modelling in general, and species distribution modelling specifically, should

always be remembered. Tempting as it may be to incorporate a lot of ecological

knowledge into mechanistic or statistical models, only little of this information will

actually be relevant at the focal scale. The main intellectual challenges that remain

are to not over-interpret one’s findings and to seek independent corroboration.

Acknowledgments Over the years, many colleagues helped develop the above recipe. I am

particularly grateful to Boris Schr€oder, Bj€orn Reineking and Jane Elith, as well as the many

participants of statistical workshops on this topic. I am also grateful to Fred Jopp, Hauke Reuter

and Dietmar Kraft for improving a previous version. Funding by the Helmholtz Association is

acknowledged (VH-NG-247).

196 C.F. Dormann



Chapter 14

Decision Trees in Ecological Modelling

Marko Debeljak and Sašo Džeroski

Abstract Decision tree learning is among the most popular machine learning

techniques used for ecological modelling. Decision trees can be used to predict

the value of one or several target (dependent) variables. They are hierarchical

structures, where each internal node contains a test on an attribute, each branch

corresponding to an outcome of the test, and each leaf node giving a prediction for

the value of the class variable. Depending on whether we are dealing with a

classification (discrete target) or a regression problem (continuous target), the

decision tree is called a classification or a regression tree, respectively. The

common way to induce decision trees is the so-called Top-Down Induction of

Decision Tress (TDIDT). In this chapter, we introduce different types of decision

trees, present basic algorithms to learn them, and give an overview of their

applications in ecological modelling. The applications include modelling popula-

tion dynamics and habitat suitability for different organisms (e.g. soil fauna, red

deer, brown bears, bark beetles) in different ecosystems (e.g. aquatic, arable and

forest ecosystems) exposed to different environmental pressures (e.g. agriculture,

forestry, pollution, global warming).

14.1 Introduction

Machine learning is one of the most essential and active research areas in the field

of artificial intelligence. In short, it is the study of computer programmes that

automatically improve with experience (Mitchell 1997). The most widely investi-

gated type of machine learning is inductive machine learning, where the experience

is given in the form of learning examples. Supervised inductive machine learning,

sometimes also called predictive modelling, assumes that each learning example

includes some target property, which should be predicted. The final goal is then to
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learn a predictive model (such as a decision tree or a set of rules) that accurately

predicts this property.

Machine learning (and in particular predictive modelling) can be used to auto-

mate the construction of certain ecological models, such as models of habitat

suitability and models of population dynamics from measured data. The most

popular machine learning techniques used for ecological modelling include deci-

sion tree induction (Breiman et al. 1984), rule induction (Clark and Boswell 1991),

and neural networks (Lek and Guegan 1999).

This chapter first introduces the task of predictive modelling. It then describes

the different types of decision trees (classification, regression and multi-target

trees) and presents techniques for learning them. Finally, it gives examples of the

use of decision trees in ecological modelling, including examples of both popula-

tion dynamics and habitat suitability modelling.

14.2 The Machine Learning Task of Predictive Modelling

The input to a machine learning algorithm is most commonly a single flat table

comprising a number of fields (columns) and records (rows). In general, each row

represents an object and each column represents a property (of the object). In machine

learning terminology, rows are called examples and columns are called attributes (or

sometimes features). Attributes that have numeric (real) values are called continuous

attributes. Attributes that have nominal values are called discrete attributes.

The tasks of classification and regression are the two most commonly addressed

tasks in machine learning. They deal with predicting the value of one field from the

values of other fields. The target field is called the class (dependent variable in

statistical terminology). The other fields are called attributes (independent variables

in statistical terminology).

If the class is continuous, the task at hand is called regression. If the class is

discrete (it has a finite set of nominal values), the task at hand is called classifica-

tion. In both cases, a set of data (dataset) is taken as input, and a predictive model is

generated. This model can then be used to predict values of the class for new data.

The common term predictive modelling refers to both classification and regression.

Given a set of data (a table), only a part of it is typically used to generate (induce,

learn) a predictive model. This part is referred to as the training set. The remaining

(hold-out) part is reserved for evaluating the quality of the learned model and is

called the testing set. The testing set is used to estimate the quality of the model

when applied to unseen data, i.e. the predictive performance of the model.

More reliable estimates of performance on new data (not seen in the process of

learning) are obtained by using cross-validation (Alpaydin 2010). Cross-validation

partitions the entire set of data into k (with k typically set to 10) subsets of roughly

equal size. Each of these subsets is in turn used as a testing set, with all of the

remaining data used as a training set. The performance figures for each of the testing

sets are averaged to obtain an overall estimate of the performance on unseen data.
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14.3 Decision Tree Induction

14.3.1 Types of Decision Trees

Decision trees (Breiman et al. 1984) are hierarchical structures, where each internal

node contains a test on an attribute, each branch corresponds to an outcome of the

test, and each leaf (terminal) node gives a prediction for the value of the class

variable. Depending on whether we are dealing with a classification or a regression

problem, the decision tree is called a classification or a regression tree, respectively.

Classification trees predict the values of a discrete variable with a final set of

nominal values. An example classification tree modelling the habitat of oilseed rape

by plant abundance is given in Fig. 14.5. The tree has been derived from real-world

data by using decision tree induction (Debeljak et al. 2008).

Regression tree leaves contain constant values as predictions for the class value.

They thus represent piece-wise constant functions. Model trees, a type of regression

tree where leaf nodes can contain linear models predicting the class value, represent

piece-wise linear functions. An example model tree that predicts the abundance of

anecic earthworms is given in Fig. 14.1 (Debeljak et al. 2007).

Multi-target trees (Blockeel et al. 1998), sometimes also called multi-objective

trees (Struyf and Džeroski 2006) generalize decision trees to the prediction of several

target attributes simultaneously. The leaves of amulti-target tree store a vector of class

values, one for each target, instead of storing a single class value for one target.

Each component of this vector is a prediction for one of the target attributes.

Depending on whether the targets are all discrete-valued or real-valued, we can

talk about multi-target classification trees or multi-objective regression trees.

An example of a multi-objective regression tree, giving predictions for three

Fig. 14.1 Regression tree for predicting the abundance of anecic earthworms. The additional

information given in each node is the min/mean/max of earthworm biomass. In the leaves, this

information is extended with the number of examples and relative root mean square error

(Debeljak et al. 2007); upper right: epigeic earthworm Eisenia fetida (Lumbricidae) (Courtesy

of Paul Henning Krogh)
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real-valued targets, is given in Fig. 14.2 (Demšar et al. 2006). The tree predicts

three targets simultaneously: the abundance of Acari and Collembola, as well as

their biodiversity in soil.

14.3.2 Learning Decision Trees

Given a set of training examples, we want to find a decision tree that fits the data

well and is as small (and thus as understandable) as possible. Finding the smallest

decision tree that will fit a given data set is known to be computationally expensive.

Heuristic search techniques are thus employed to build decision trees, guided by

measures of impurity or dispersion of the target attribute. Greedy search, consider-

ing only one test/split at a time, is typically used.

The typical way to induce decision trees is the so-called Top-Down Induction of

Decision Trees (TDIDT, Quinlan 1986). Tree construction proceeds recursively start-

ing with the entire set of training examples (entire table). At each step, the algorithm

first checks if the stopping criterion is satisfied (e.g. all examples belong to the same

class): If not, an attribute (test) is selected as the root of the (sub-)tree, the current

training set is split into subsets according to the values of the selected attribute, and the

algorithm is called recursively on each of the subsets. The attribute/test is chosen so

that the resulting subsets have as homogeneous class values as possible.

Consider for example the tree in Fig. 14.1. At the root node, the algorithm

addresses each of the independent variables (including silt, clay, pH and time

since sowing) and selects one variable (clay)/test (clay >7.8) that splits the entire

set of examples best, i.e. results in subsets with homogeneous values of the class

(as compared to other attributes/tests). The examples are then split into two

subsets (those with clay >7.8 go down the right branch, the others to the left),

and the algorithm is started again twice, once for the left and once for the right

subset. In each of the two cases, only the examples in the respective branch are

used to build the respective sub-tree (examples going down the left/right branch

are used to construct the left/right sub-tree).

For discrete attributes, a branch of the tree is typically created for each possible

value of the attribute. For continuous attributes, a threshold is selected and two

branches are created based on that threshold. For the subsets of training examples in

each branch, the tree construction algorithm is called recursively. Tree construction

stops when the examples in a node are sufficiently pure (i.e. all are of the same

class) or if some other stopping criterion is satisfied (e.g. there is no good attribute/

test to add at that point). Such (terminal) nodes are called leaves and are labelled

with the corresponding values of the class.

Different measures can be used to select an attribute in the attribute selection step.

Common to all of them is that they measure the homogeneity (or the opposite,

dispersion) of the values of the target and its increase (decrease) after selecting the

attribute/test for the current node. They differ for classification and regression trees

(Breiman et al. 1984) and a number of choices exists for each case. For classification,
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Quinlan (1986) uses information gain, which is the expected reduction in entropy

(uncertainty) of the class value resulting from knowing the value of the given

attribute and the outcome of the test. Other attribute selection measures, such as

the Gini index, a measure of the statistical dispersion of the target variable (Breiman

et al. 1984), can and have been used in classification tree induction. In regression tree

induction, the expected reduction in the variance (also a measure of statistical

dispersion, but for continuous targets) of the class value can be used.

Multi-target trees are constructed with the same recursive partitioning algorithm

as single-target trees. The key difference is in the test selection procedure. For

classification, the heuristic impurity function used for selecting the attribute tests

(that define the internal nodes) is defined as N
PT

t¼1

Var yt½ � with N the number of

examples in the node, T the number of target variables, and Var[yt] ¼ Entropy[yt]

the entropy of target variable yt in the node. For regression, the sum of variance

reductions along each of the targets is used to select tests.

Multi-target trees are an instantiation of the predictive clustering trees (PCTs)

framework (Blockeel et al. 1998). In this framework, a tree is viewed as a hierarchy

of clusters: a node corresponds to a cluster. PCTs have been used to handle different

types of targets: multiple target variables, both discrete and continuous (Struyf and

Džeroski 2006; Debeljak et al. 2009), time series (Džeroski et al. 2007) and

hierarchies of classes, with multiple class-labels per example (Vens et al. 2008).

An important mechanism used to improve decision tree performance is tree

pruning. Pruning reduces the size of a decision tree by removing sections of the tree

(sub-trees) that are unreliable and do not contribute to the predictive performance of

the tree. When a sub-tree rooted in a certain node of the tree is pruned, it is removed

from the tree and the node is replaced by a leaf. The dual goal of pruning is to

reduce the complexity of the final tree as well as to achieve better predictive

accuracy by the reduction of over-fitting and removal of sections of the tree that

may be based on noisy or erroneous data.

There are two major approaches to decision tree pruning. Pruning can be

employed during tree construction (pre-pruning) or after the tree has been con-

structed (post-pruning). Typically, a minimum number of examples in branches can

be prescribed for pre-pruning and a confidence level in accuracy estimates for

leaves for post-pruning.

14.3.3 Systems for Building Decision Trees

The CART (Classification And Regression Trees) system (Breiman et al. 1984)

was the first widely known and used system for learning decision trees. It has

been surpassed in popularity only by the C4.5 system for learning classification

trees (Quinlan 1986), succeeded by C5.0 (RuleQuest 2009). Nowadays, the most
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commonly used implementation of classification trees is likely J4.8, the Java

reimplementation of C4.5 within the WEKA suite (Witten and Frank 2005).

Besides CART, the M5 system (Quinlan 1992) builds regression trees. As

compared to CART, the novelty in M5 is that it can also build model trees (with

linear models in the leaves). The commercial successor of M5 is Cubist (RuleQuest

2009), which transcribes the learned regression and model trees into rules (which

are further post-processed/simplified). The publicly available reimplementation of

M5 is called M50 and is part of the WEKA suite (Witten and Frank 2005).

The construction of multi-target trees is implemented in the software system

CLUS (Blockeel and Struyf 2002; Struyf and Džeroski 2006; Struyf et al. 2010).

CLUS can build trees predicting a single target or multiple targets. It can also

consider discrete and continuous targets, i.e., can build multi-target classification

and regression trees. The system MT-SMOTI (Appice and Dzeroski 2007) builds

multi-target model trees, whose leaves can contain multiple linear equations for

predicting the values of each target.

An overview of the different systems for building different types of decision

trees is given in Table 14.1.

14.4 Modelling Population Dynamics with Decision Tree

Approaches

Population dynamics studies changes of the size and structure of populations over

time, taking into account environmental and biological processes influencing these

changes. For example, one might study the size of a brown bear population as

affected by its initial size, sex and age structure, reproduction age, fertility and

mortality of different age classes. The modelling formalism most often used by

ecological experts is the formalism of differential equations, which describe the

change of state of a dynamic system over time (see Chaps. 6, 7, 9). A typical

approach to modelling population dynamics can be as follows: an ecological expert

writes a set of differential equations that capture the most important relationships in

the domain. These are often linear differential equations. The coefficients of these

equations are then determined (calibrated) using measured data.

Relationships among attributes describing internal demographic properties of a

population and the set of external environmental attributes influencing changes of

Table 14.1 An overview of decision tree types and systems for learning them, with respect to the

number and type of target variables (targets)

Type of targets (decision trees) Number of targets

Single-target Multi-target

Discrete (classification trees) C4.5, C5.0, J4.8, CART, CLUS CLUS

Continuous (regression trees) CART, CLUS CLUS

Continuous (model trees) M5, M50, Cubist MT-SMOTI
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population’s parameters can be highly non-predictable and non-linear. This has

caused a surge of interest in the use of different non-linear modelling techniques for

modelling population dynamics (see e.g. Chaps. 8, 10, 12). Furthermore, these

include neural networks (Lek and Guegan 1999; Recknagel et al. 1997; Schleiter

et al. 1999), equation discovery (Džeroski et al. 1999; Todorovski et al. 1998) and

decision trees.

Classification and regression trees can be used for modelling population dynam-

ics as follows. The task of predictive modelling is to forecast the future state of the

population or the change in the state of the population over a specified time period,

given the current state of the population and the environment. For instance,

Kompare and Džeroski (1995) used regression trees discovery to model the growth

of the dominant species of algae (Ulva rigida) in the lagoon of Venice in relation to
water temperature, dissolved nitrogen and phosphorus, and dissolved oxygen.

In the area of forestry, decision trees have been successfully used to model

population dynamics of red deer and spruce bark beetles population dynamics in

forest ecosystems. The study about the population dynamics of red deer focused on

the effects of different meteorological conditions, habitat properties and hunting

regimes on the population dynamic of red deer (Stankovski et al. 1998; Debeljak

et al. 1999). A highlight of the results of the red deer studies was the discovery of

the strong influence of meteorological parameters on the browsing intensity for new

growth of woody plants (beech and maple) and consequently the body weight of

1-year-olds, 2-year-olds, and hinds (important parameters of the studied red deer

population). These results challenge previous simplistic approaches, assuming

simpler and more direct relationships between the density of the red deer population

and its parameters and the browsing rate of new forest growth.

The study of spruce bark beetles (Ogris and Jurc 2010) focused on environmen-

tal conditions that stimulate population growth of the spruce bark beetles Ips
typographus and Pityogenes chalcographus. The results show a strong correlation

between the appearance of I. typographus at Northeast (NE) expositions, while

P. chalcographus prefers West (W) and North (N) sites. The discovered habitat

preferences of bark beetles confirm the adaptation of spruce to drought conditions at

southern expositions, where its root system penetrates deeper in the soil. At N, NE

and W sites, the individual trees are more sensitive to drought and mechanical

destabilization due to the shallow root system and thus they are more prone to

attack by bark beetles.

Decision trees are also used in agro-ecology. The population dynamics of soil

organisms is affected by the changes of different biological and physicochemical

environmental attributes and agricultural practices. A study about the effects of

growing Bt-maize cultivation on abundances of earthworms populations (Oligo-

chaeta) (Debeljak et al. 2007) used farming practices, soil parameters, the

biological structure of soil communities, and the type and age of the crop at the

time of sampling as attributes to predict the total abundance of three functional

groups of earthworms (epigeic – live and feed on plant litter (Fig. 14.1); endogeic –

geophagous and live in the soil; anecic – live in soil but feed on plant litter on the

surface). The highly accurate (r2 ¼ 0.83) regression tree model for anecic worms
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(Fig. 14.1) shows that this functional group of earthworms prefers less clay and

more silt soil with medium pH. It has been shown that the seasonal effect (autumn/

spring sampling) has stronger influence on anecic biomass compared to the inter-

annual effect (autumn 2002/autumn 2003). Indeed, it is very well known that in

temperate arable ecosystems, anecic earthworms reach their minimum in winter,

due to low temperature, and their maximum in autumn, after spring and summer

reproduction and development. Finally, agricultural practices, such as tillage or

maize variety have no effects on anecic earthworm biomass.

Soil dwelling populations in arable ecosystems are exposed to various anthropo-

genic pressures. To identify attributes influencing the abundance of soil mites and

springtails and the biodiversity of soil micro-arthropods, a multi objective regres-

sion tree has been induced from data collected under different crop management

practices (Demšar et al. 2006). Figure 14.2 shows an example of such a decision

tree predicting the target attributes abundances of Acari (r2 ¼ 0.653) and Collem-

bola (r2 ¼ 0.675) and the diversity of Collembola (r2 ¼ 0.562). The model indi-

cates that the most important parameters are the soil type, the time (number of

months) since the establishment of the current situation, and the different forms of

tillage. Hence, the model can adequately reproduce the known empirical knowledge

on this phenomenon.

14.5 Habitat Modelling Using Decision Trees

Habitat modelling typically relates properties of the environment with the pres-

ence, abundance or diversity of organisms (for other detailed examples, see

Chap. 13 on spatial distribution models). For example, one might study the

influence of soil characteristics, such as soil temperature, water content, and

proportion of mineral soil on the abundance and species richness of Collembola

(springtails; the most abundant insects in soil (Kampichler et al. 2000)). Habitat

modelling can also be linked with spatial information derived from geographic

information systems (GIS) on the studied area (Debeljak et al. 2001; Jerina et al.

2003) (see also Chap. 22).

A number of habitat-suitability modelling applications of other machine learning

methods (e.g. neural networks, genetic algorithms) were surveyed by Fielding

(1999). Lek-Ang et al. (1999) used neural networks to build a number of predictive

models for Collembola diversity. Bell (1999) used decision trees to describe the

winter habitat of pronghorn antelope. Jeffers (1999) used a genetic algorithm to

discover rules that describe habitat preferences for aquatic species in British rivers.

Rule inductions were also used to relate the presence or absence of a number of

species in Slovenian rivers to physical and chemical properties of river water, such

as temperature, dissolved oxygen, pollutant concentrations, chemical oxygen

demand, etc. (Džeroski and Grbović 1995).

Decision trees are applied widely in habitat modelling. Džeroski and Drumm

(2003) have used classification tree models to predict the suitability for the sea
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cucumber species Holothuria leucospilota on Rarotonga, Cook Islands. Kobler and
Adamič (1999) have used decision tree models to identify locations for construction

of wildlife bridges across highways in Slovenia. Decision trees were used to model

habitat suitability for red deer in Slovenian forests using GIS data, such as eleva-

tion, slope, and forest composition (Debeljak et al. 2001). Models of potential and

actual habitat for brown bears have been induced from GIS data and data on brown

bear sightings using decision trees (Jerina et al. 2003). Ogris and Jurc (2007)

applied decision trees to identify potential habitats for different tree species under

varying climate change scenarios. Decisions trees are used in habitat modelling of

soil organisms that are under the influence of different soil characteristics and crop

practices (Kampichler et al. 2000; Debeljak et al. 2007).

Habitat modelling is also becoming relevant in agriculture due to problems with

crops, such as oilseed rape, sunflower, wheat or sorghum, which can escape from

cultivation and colonise field margins as feral populations. To control the processes

leading to the formation of new feral populations, habitat models enable us to

identify suitable growing conditions for new potential feral populations. Such

research has been conducted on a 41 km2 production area of winter oilseed rape

in Loir-et-Cher region, France (Pivard et al. 2008). Based on attributes describing

locations of all cultivated oilseed rape fields and feral populations and their

demographic properties, a habitat model for feral oil seed rape was developed

(Fig. 14.3). The model predicts the probability of the presence of a feral population

in the studied area.

Side effects of oilseed rape (OSR) cultivation include volunteer plants that

emerge on the field after cultivation of OSR and may cause crop impurity or

weed control problems. To understand the suitable conditions for formation of

volunteer populations of OSR, a habitat model to predict presence and abundance

of volunteer oilseed rape (Brassica napus L.) was induced from a dataset about the

seedbank at 257 arable fields used for baseline sampling in the British Farm Scale

Evaluations of genetically modified herbicide tolerant (GMHT) crops (Debeljak

et al. 2008). Volunteer OSR was most likely present if a previous OSR crop had

been grown in the same field (Fig. 14.4). However, machine learning also indicated

previously unknown correlations between the abundance of volunteer oilseed rape,

total seedbank and several other factors like the percent of nitrogen and carbon in

the soil. Once OSR has been cultivated at a site volunteers are not excluded

specifically from any part of the country or from sites having particular abiotic

characters such as high pH or low % of nitrogen. Volunteers had, moreover,

become present at 24% of sites where there had been no OSR crop in the last

8 years, presumably as a result of a previous crop (beyond the 8 years recorded) or

imported to the site with farm machinery. Their abundance, moreover, varied

systematically with factors that are generally associated with the intensity of

farming, notably total seedbank abundance, species number and plant life history

groups (Fig. 14.5), and most consistently with percentage of nitrogen and carbon in

the soil. All these factors were linked to an extent with geographical region, being

smallest in the arable south-central and south-east and largest in the north and

south-west.
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14.6 Conclusion

This chapter introduced decision trees as one of the most popular machine learning

techniques used for ecological modelling. It also gave an overview of the use of

decision trees in ecological modelling with a particular focus on population

dynamic and habitat suitability modelling. We have shown that the applications

of machine learning to population dynamic and habitat suitability modelling can be

grouped along two dimensions. One dimension is the type of environment where

Fig. 14.4 Classification of presence of oilseed rape by crop type (C2-Type: crop type 2 years

before the sampling date; C5-Type: crop type 5 years before the sampling date; types are Oilseed,

Miscellaneous (Misc.), Cereal, Vegetable, grass ley or set aside (Ley)) (correctly classified

instances: 60.7%) (Debeljak et al. 2008)

Fig. 14.5 Classification of

presence of oilseed rape by

the abundance of plants (m2)

of particular functional

groups (SloDet – slow,

determinate development;

SloOut – slow development

living below the crop canopy;

FasIdt – fast indeterminate

development) (correctly

classified instances: 63.8%)

(Debeljak et al. 2008)
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the studied group of organisms lives, e.g. aquatic (river or sea) or terrestrial (forest

or agricultural fields). Another dimension is the type of applied machine learning

technique.

The major advantages of decision tree methods include the ability to capture

interactions between the variables used for modelling, the understandability of the

produced models (trees) and their efficiency. Decision tree learning methods can

establish models fast from large quantities of data, involving either a large number

of records (example) or a large number of columns (variables) or both. Also,

decision tree models make predictions very fast and can be used to classify large

numbers of examples: This is important in the context of pixel-based classification

in geographical information systems, where very large numbers of spatial units/

points need to be classified.

Decision tree learning is also capable of identifying the relevant variables from a

large set of independent variables. The resulting trees typically use only a few of the

variables available. This, however, can easily be a disadvantage in some situations:

If all the variables available contribute to the classification, it is very likely that the

tree will not use them all and will hence have lower performance.

Other situations where decision trees may encounter problems are domains

where the variables are completely independent. In addition, small numbers of

examples/records are quite problematic for decision trees. In both situations, using

methods like linear or logistic regression would be more appropriate.

Decision trees are derived from data only. No domain knowledge or limited

amounts thereof are used in the learning process. As such, they represent the data

driven or empirical approach to ecological model construction, which is more

appropriate when we have plenty of high-quality (reliable and relevant) measured

data and little knowledge about the studied system. When only few or low-quality

(unreliable or irrelevant) data are available, and/or there is a considerable know-

ledge about the studied system, the classical knowledge-based paradigm of manual

model construction could be more appropriate.
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Part III

Application Fields, Case Studies
and Examples

Model Applications to Understand Complex Ecological Dynamics

In the previous section of this book, the most common and important modelling

approaches for ecological purposes were introduced. The following section will

focus on application examples from ecological systems in different regions of the

world, which demonstrate how models contribute to a large variety of issues in

basic and applied research in ecology. With the given examples we intend to give a

motivating insight into the wide field of model applications, from small scale

population processes to landscape representations involving a combination of

different approaches and techniques. Thus, the examples contain both detailed

research results and for specific systems, an overview of model applications.

Although the examples refer to a wide set of different ecological systems, they all

require an approach to deal with complex dynamic behaviour.

Hypothesis Testing on the Landscape Level

Spatial patterns in landscapes can be assessed from two different perspectives: first,

as a result of interactions of the underlying biotic and abiotic processes, and second,

as influenced by the constraints that direct and modify the underlying interactions.

This mutual dependence is further complicated by the permanent change in land use

conditions, which often leads to habitat loss and fragmentation. Here, models can

be of great help to answer hypotheses on causes, effects and potential future

developments. For this purpose, a neutral perspective is often adopted, meaning

that the model generates characteristic spatial patterns without considering specifi-

cally targeted mechanisms referring to underlying ecological processes. In this

sense, these kinds of models are used as a null hypothesis to test deviations in the

empirical data from theoretical expectations.

In Chap. 15, Gardner outlines the historical development of this approach for

Landscape Ecology. He explains the working principles and presents a case study

from the North-American Piedmont Forests in Maryland.
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The role of dispersal and how it can be formalised by using different dispersal

kernels is the topic of Chap. 16 by Garnier and Lecomte, which tests hypotheses

on the conditions that support the survival of organisms in structured landscapes.

They explain models that have been developed to understand the spread of oilseed

rape along road verges and the invasion of grasslands by pines. The models are

applicable largely for European and Northern-American habitats.

In Chap. 17, Kubicek and Borell investigate the importance of path depen-

dency and ecosystem phase shifts for tropical coral reefs, which are among the most

diverse ecosystems worldwide and are currently severely threatened by anthropo-

genic impacts. Here, standard model types are reviewed on how effectively they can

be used to understand the main driving forces of tropical coral reefs, interacting

sensitively between resilience and phase shifts.

Environmental Management and the Integrative
Power of Modelling

Modelling plays an increasingly important role for management and ecological

conservation. When phenomena are investigated that occur over a wide range of

hierarchical ecosystem levels or over several spatial and temporal scales, modelling

is often the only solution to analyse and understand the ongoing dynamics. Further-

more, applying empirical experiments on the landscape level is not always a

possible option. In this context, ecological modelling offers many possibilities for

management and planning. Moreover, ongoing research models collect data that

derive from many different sources, sometimes over decades, and display different

statistical properties.

In Chap. 18, Jopp, DeAngelis and Trexler investigate the possible conse-

quences of changing and reducing the water table in the fluctuating marshlands of

the South-Florida Everglades and how changes may affect the trophic structure.

A special contribution is Chap. 19 by Nielsen and Jørgenson which presents a

case study on the modelling activities on the Danish post-glacial Lake Glumsø.

Here, the advancements of ecological modelling can be seen over more than three

decades: moreover, this research project had profound impacts on the advancement

of ecological modelling as a scientific discipline.

In Chap. 20 Gallego uses model-coupling to understand the complex dynamics

of marine zoo- and ichthyoplankton and what importance these dynamics have for

the dramatic stock collapses of cod in the Northern Atlantic.

In Chap. 21, Jopp and DeAngelis demonstrate the integrative power of model-

ling for the comprehensive Everglades restoration plan. The plan aims to support

the recovery of many endangered species and biodiversity of the overall landscape

of the Everglades and its neighbouring ecosystems in southern Florida. Here,

ecological modelling plays a central role for science-based decision making, and

hence, ecosystem restoration.
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In Chap. 22, Kraft focuses on integrated modelling: He describes how models

from different disciplines are coupled and their complex results are aggregated into

a modelling framework, for which Geographical Information Systems (GIS) are

commonly used. The author brings several application examples from catchment

models and models that are dealing with coastal and marine landscapes.

The eight contributions in this section illustrate how to use models to understand

complex problems and issues that could not easily be grasped otherwise. Although

we present the chapters in a sequence following complexity considerations, you, the

reader, should feel free to use any starting point that suits your preferences as the

chapters represent independent cases.
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Chapter 15

Neutral Models and the Analysis of Landscape

Structure

Robert H. Gardner

Abstract Neutral landscape models were originally developed to test the hypo-

thesis that human-induced fragmentation produces patterns distinctly different

from those associated with random processes. Other uses for neutral models were

immediately apparent, including the development and testing of metrics to charac-

terize landscape change. Although metric development proved to be significant, the

focus on metrics obscured the need for iterative hypothesis testing fundamental to

the advancement of science. In this chapter, we will present an example of an

alternative neutral model and hypothesis designed to relate the process of landscape

change to the resulting patterns observed. The methods and programme, Qrule, are

described and options for statistical testing outlined. The results show that human

fragmentation of landscapes results in a non-random association of land-cover

types. Options for additional landscape studies are discussed and access to Qrule

described in hope that these methods may be employed to advance our understand-

ing of the process that affect the structure and function of our landscapes.

15.1 Introduction

The accelerating rate and global extent of habitat loss and fragmentation are having

a direct and significant impact on species diversity (Lindborg and Eriksson 2004;

Vellend et al. 2006), the rate and extent of exotic species invasions (Hooper et al.

2005; Vitousek et al. 1997), water quality and availability (Ferrari et al. 2009;

Meyer and Turner 1992) and the productivity of ecosystems that humans depend on

for food and materials (Osher et al. 2003; Williams et al. 2004). Even local and

regional weather patterns are recognized as being significantly affected by land-

scape change (Pyke 2004; Stohlgren et al. 1998). The importance and difficulty of

understanding the immediate and long-term consequences of landscape change has

R.H. Gardner
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lead the National Research Council to declare this problem an urgent scientific

challenge (NRC 2003).

There are many reasons why the study of ecosystem change at landscape studies

is a daunting task: Ecosystem dynamics result from complex interactions of numer-

ous physical and biological attributes that vary in space and time. Each landscape

has a unique, and often unknown history whose effects may be subtle and long

lasting and experimental manipulations of landscapes are nearly impossible (the

“N ¼ 1” problem). Consequently, models of landscape dynamics have become an

integral part of landscape ecology. However, the use of a landscape model presents

its own special issues. Each new problem requires the selection of an appropriate

(and often new) model; the parameters required by the model are often difficult to

know or are estimated with high uncertainty; and the errors associated with

predictions are impossible to determine. Hagen-Zankder and Lajoie (2008) and

Gardner and Urban (2007) have noted an additional problem: the geographic

constraints of landscapes (i.e. the boundary conditions of map extent, the presence

of rivers and lakes, etc.) may restrict the dynamic range of model output, resulting

in alternative model formulations producing similar sets of predictions. These

constraints result in confusion with regards to the causes and effects of altered

landscape dynamics. Under all of these conditions a neutral modeling approach can

be of great value.

The ideal neutral landscape model is a simple construct, which generates

landscape pattern without including specific physical and biological processes of

interest. The magnitude of difference of landscape data, or more complex process-

based models from the neutral model results is a measure of the important role that

these processes may play in the development of landscape pattern (Gardner et al.

1987; Pearson and Gardner 1997). The simplest neutral model is a random map

(Gardner et al. 1987) that produces patterns based on a single parameter, pi, the
fraction of the map occupied by each habitat type, i. Although the appearance of

random maps obviously differs from actual landscapes, the lessons learned have

been diverse and significant (see Gardner and Urban 2007 for a review).

The background for the development of neutral landscape models has a number

of key elements. The first occurred when colleagues at Oak Ridge National Labora-

tory began analyzing USGS digital land use and land cover (LUDA) data (Krummel

et al. 1987). The USGS LUDA database (Fegeas et al. 1983) originated from NASA

U2/RB-57 high-altitude aerial photo coverage in 1973, which were subsequently

hand-delineated into 1 of 37 land cover categories. For the first time, these data

provided a spatial description of habitat distribution for the entire U.S. Krummel

et al. (1987) selected the Natchez Quadrangle for analysis, 1:250,000 quadrangle

composed of 24 separate sections. To analyze this quadrangle a special computer

programme was written (remember, this was pre Arc-Info days!) to reformat the arc

and node topology and remove section boundaries. It was evident that the shape of

habitat boundaries changed with scale. George Sugihara suggested that fractal

geometry could be used to characterize patch shape. The large size of the data

set allowed a moving-window regression analysis to detect the scale at which the

fractal index changed.
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It was obvious that fractal geometry was both interesting and useful for land-

scape studies and that we had only scratched the surface of what might be done.

Simulated by this and by Mandelbrot’s work (e.g. Mandelbrot 1967, 1983) I

attended a Gordon Conference on fractals in the summer of 1986. A broad spectrum

of issues and applications were discussed, but the most interesting was the presen-

tation by Dietrich Stauffer on percolation theory. The images he presented (which

were random 2D structures) looked remarkably like landscapes. Discussions with

Stauffer at the conference and subsequent study of his first book on percolation

theory (Stauffer 1985) made it clear that this theoretical framework would provide a

rich set of tools for landscape ecology.

Yet how does one use randommaps and percolation theory in landscape ecology?

Caswell’s paper on neutral models and community theory (Caswell 1976) was well

known and widely discussed, but had not been of particular interest to problems in

landscape ecology. However, it was clear that combining Caswell’s approach with

Stauffer’s percolation theory would provide a neutral model for landscape ecology.

In the fall of 1986 we began writing the programme RULE (Gardner 1999) and

running a series of simulations to describe this approach. In the spring of 1987, with

the completed manuscript in hand, we presented the results during the 2nd Annual

Meeting of the U.S. chapter of the International Association of Landscape Ecology

at the University of Virginia. Frank Golley, who was instrumental in the develop-

ment of landscape ecology in the U.S. had just established the new journal appro-

priately titled “Landscape Ecology”. Frank requested at the Charlotte meeting that

we submit this manuscript for publication in this new journal and by the end of that

summer our paper (Gardner et al. 1987) had appeared in print.

The diversity of issues for which neutral models may be useful has been

significant, yet the full range of applications has yet to be fully explored (Gardner

and Urban 2007). Although new methods have been developed (e.g. Hagen-Zanker

and Lajoie 2008; Li et al. 2009; Wang and Malanson 2007), existing methods for

analysis and comparison of maps available within the original software (now called

“Qrule”, http://www.al.umces.edu/Qrule.htm) have rarely been fully employed.

This chapter will explore these two areas by first developing a new neutral for the

analysis of landscape change within the Piedmont of Maryland, a large area that is

being rapidly altered by urban development. Analysis methods will then be used to

test the hypothesis that the contagion processes associated with human develop-

ment have been responsible for non-random changes in the patterns of forest

patches. Specifically, there may be an insignificant reduction in the total amount

of forest cover, but significant changes in the adjacency of land cover types and the

probability that distribution of the size of forest patches has occurred.

15.2 A Programming Philosophy

Documentation and practical examples illustrating the use of Qrule are available in

a number of publications (Gardner 1999; Gardner and Walters 2001; Pearson and

Gardner 1997). Recently added revisions have also been described (Gardner and
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Urban 2007) and the latest version of the programme is available on the web (http://

www.al.umces.edu/Qrule.htm). Consequently, we will not explain the details

required to perform Monte Carlo simulations with Qrule, assuming that the reader

is either aware of the above resources or can refer to them directly.

RULE (now called Qrule) was originally designed for a very specific purpose:

the generation and analysis of random maps and comparison of these neutral

models with actual landscapes. Because other software for landscape analysis

was available when RULE was written; first a programme by Monica Turner

(SPAN, described in Turner and Ruscher 1988) and later FRAGSTATS (McGarigal

et al. 2002), a parsimonious subset of metrics were implemented in Qrule. The

choice of metrics was based on the need for a minimum summary of pattern

characteristics for each land cover type (the metrics p, the total fraction of the

map occupied; the total number of patches; and the total amount of edge were

selected for this purpose) and the introduction of new metrics and principles of

analysis to landscape ecology, based on percolation theory. Stauffer’s book (1985)

emphasized two significant problems in the analysis of random structures generated

on gridded landscapes: the first problem was that the shape of the grid, whether

triangular, rectangular or hexagonal, dominated the shape of smaller clusters. Thus,

for many metrics there was a need to use large maps and to restrict the analysis to

the largest clusters. The fractal index was sensitive to grid effects approaching the

value of 2.0 on a rectangular lattice when cluster sizes where small (the rectangular

lattice is typically used in landscape studies, though hexagonal lattices have been

employed, e.g. Roberts 1987). The second problem was that random maps and

actual landscapes often have a large number of small, isolated clusters. These small

patches, which usually compose only a minor fraction of the total area occupied by

that land cover type, will bias the estimates of metrics that are based on arithmetic

mean values. These two problems are avoided in percolation theory and subse-

quently in Qrule, which adopted this approach by estimating the fractal dimension

for only the largest cluster on the map and by using geometric averages for

summary statistics. The discussion of the effect of map extent on the reliability of

landscape metrics was extensively evaluated in Gardner et al. (1987). With the

exception of the addition of lacunarity analysis to Qrule circa 1991 (Plotnick et al.

1993, 1996), changes to the programme through time have focused on fixing bugs

and increasing the convenience and efficiency of programme execution.

The philosophy of a limited scope for Qrule resulted in an emphasis on the

import and export of data. It is not uncommon for landscape analysis projects that

use Qrule to export spatial data from ArcInfo, to rescale these maps using PDW

(Gardner et al. 2008), to analyze the resulting patterns with Qrule, and display

summary statistics using R (R project). To enable this flexibility, an extensive suite

of data files are used in Qrule (Table 15.1): there are four different options for

output of generated maps, with a 5th map type always created to visualize and

analyze results in ArcInfo; and there are four data sets used to statistically summa-

rize results (Table 15.1).

The comparison of neutral models with the observed pattern of actual landscape

has always been based on traditional principles of statistical inference. If the
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landscape pattern lies beyond the 95% confidence region generated by a sufficiently

large set of Monte Carlo iterations, then one may be confident that the observed

patterns are statistically different from the random patterns at a ¼ 0.05 (Gardner

and O’Neill 1990; Pearson and Gardner 1997). This statistical comparison is, of

course, subject to Type II error (Zar 1996) when multiple metrics are employed to

describe landscape patterns. One may avoid this important pitfall by first forming a

specific question per the example of Krummel et al. (1987), selecting a single

appropriate metric (or limited subset of metrics) and making the appropriate

statistical test(s). Multivariate approaches reduce the dimensionality of the analysis

(Fauth et al. 2000), providing a more succinct summary and avoiding the problem

of correlated parameters (Riitters et al. 1995; Wang and Malanson 2007), but the

utility of multivariate statistics still depends on the formation of a specific testable

a priori question.
There is extensive literature in landscape ecology that has focused on the

development and interpretation of landscape metrics (e.g. Gustafson 1998; Hargis

et al. 1998; Li et al. 2005; Neel et al. 2004; O’Neill et al. 1987; Wickham and

Riitters 1995). However, the usefulness of robust statistical testing for comparing

neutral models with actual landscapes remains under-appreciated. Consider the

direct effects of habitat fragmentation on the frequency distribution of patch sizes

for a given cover type. The effects of a small amount of habitat loss will have

dramatically different effects depending on p, the amount of habitat that exists on

the landscape: when p is high, the effects of habitat loss on the frequency distribu-

tion of cluster sizes is small, however, when p is ~0.6 and near the critical threshold
defined by percolation theory, small changes will have dramatic effects on the

frequency distribution of cluster sizes (Gardner et al. 1987). Landscape metrics

are generally poor indicators of these effects because they are usually a single-

numbered, averaged value (see Li et al. 2009 for an exception). The alternative is an

Table 15.1 Input and output files used or created by Qrule

Routine Unit Name Purpose

main.f90 10 rulerun.log Output file recording programme input and statistical summary

of results

main.f90 11 patch_cfd.

dat

Output data file of cumulative frequency of patch sizes

(compressed mode)

main.f90 12 variable User-defined name of output map of individual habitat patches

main.f90 13 variable User-defined name of output map of rank-ordered sizes of

habitat patches

main.f90 14 variable User defined output map labeled by habitat type

genmap.

f90

15 variable User named input file of landscape map for analysis by Qrule

main.f90 16 assmat.dat Output file of adjacency matrices

main.f90 17 stats.csv Comma delimited output file of summary statistics (landscape

metrics)

genmap.

f90

19 arcgrid.map Output file of Qrule generated map for input into ArcInfo

main.f90 20 lacun.dat Output file of summary results from lacunarity analysis
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examination of the cumulative frequency distributions (cfd) of patch sizes where

statistical differences can be examined by the familiar distributional tests (e.g. the

KS test, Zar 1996). Even more powerful methods exist if the expected change in the

cfd can be defined a priori, allowing parametric comparison of the observed with

the appropriate theoretical distributions (Johnson and Kotz 1969, 1970). Because

the cfd of patch sizes varies with map dimension, resolution and methods used to

classify land-cover types, it is usually impossible to pre-define an expected shift in

the cfd and compare this shift with an appropriate probability distribution. In these

cases one must rely on neutral models to generate the “expected” cfd to compare to

an observed landscape using the appropriate statistical test(s). It is these principles

of analysis that are illustrated in the following example.

15.3 Methods

The neutral models available in previous versions of Qrule have all assumed that

landscapes could be represented as a rectangular lattice (grid). Large, irregular

landscapes were simply truncated to form a rectangular map. Although remote

imagery is composed of square pixels, the boundaries of most landscapes are rarely

rectangular. A new neutral model was created for the analysis presented here;

one primarily designed to eliminate this truncation effect. This method, labeled

“Random-with-Constraints” (RwC) first examines the actual landscape, extracts the

boundaries and other embedded constraints (i.e. user-defined areas such as rivers

and lakes where habitat cannot be located), constructs a mask from this information,

and then randomly generates habitat within the area permitted by the mask. The

number of land-cover types generated is also user controlled but must be equal to or

less than the number of cover types in the original mask. During programme

execution and before the original land cover map is evaluated, the user can

aggregate cover types. In the current analysis, non-habitat (class “0”) was combined

with open water (class “1”) to create the mask; classes 5, 6, and 7, which had no

representation within the original map were re-classed to 0; and the remaining

cover types of urban, barren lands, forest, agriculture and wetlands were sequen-

tially renumbered to cover classes 1–5, respectively. The fraction of sites in each of

these five classes, pi, within the actual land-cover map was recorded and sub-

sequently used to generate random cover types in the ten Monte Carlo iterations

of the RwC model. The result was ten random maps with the distributional area

equal to the original map (each map having five land cover types in proportion to

the observed frequencies of the original map).

A second revision to Qrule was the reconfiguration of the data files used for

statistical testing. The four files (Table 15.1) produced for each execution of Qrule

are: rulerun.log which records all programme input and provides a statistical

summary of results, including the land cover association matrix and indices char-

acterizing patch attributes; assmat.dat, the association matrices of land cover types

(one matrix for each map iteration); stats.csv, the output record for each iteration
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and habitat type in comma delimited format, including the ten indices summarized

in rulerun.log; and patch_cfd.dat, the cumulative frequency distribution (cfd) of

patch sizes for each iteration and habitat type in summary form (i.e. the cumulative

frequency in each size class).

Manipulation of output files generated by Qrule by other programmes is neces-

sary for visualization and statistical testing. To assist in this sometimes tedious

process, a series of programmes have been written in R (R Team 2008) to display

results and test for significant differences. The statistical results and visualization

reported here were produced by these programmes.

Maryland Piedmont Maps

Data from the National Land Cover Database for the Piedmont of Maryland were

downloaded and were selected for this analysis (http://www.mrlc.gov/download_

data.php). The multiple categories for 1992 and 2001 were aggregated into seven

classification level comparisons: open water, urban, barren land, forest, grassland,

agriculture and wetlands. The 30-m resolution of the maps resulted in grids with

dimensions of 4,365 rows and 5,550 columns. These two maps were first analyzed

with Qrule using the next-nearest-neighbor rule for patch identification. Qrule

results provide a select set of indices characterizing patterns (see Gardner 1999

for a listing and description of these indices). The indices reported here include

three calculations characterizing the largest cluster: LC.sz, the size of the largest

cluster in hectares; LC.ed, the amount of edge for the largest cluster in meters; and

LC.frc, the fractal index of the largest cluster. Also considered are five general

indices for each land cover type: S.frq, the total number of pixels for each land-

cover type (pixel units); T.cltr, the total number of patches; C.len, the average

correlation length of patches in meters; Sav, the area-weighted average patch size in

hectares; T.eg, the total amount of edge in meters.

Many comparisons could be constructed from this information-rich data set. The

analysis reported here focuses on patterns of loss of forested areas because this

landscape-attribute has been threatened by population growth and urban develop-

ment within this region (Lookingbill et al. 2009) and has resulted in special

legislation to protect forested areas (http://www.dnr.state.md.us/forests).

15.4 Analysis and Hypothesis Testing

Forested areas occupied 28.2% of the Maryland Piedmont in 1992, declining to

27.3% in 2001 (Table 15.2), a change equivalent to the loss of nearly 6,000 ha.

Urban areas showed the opposite trend, increasing from 13.5% in 1992 to 14.3% in

2001, a change that produced an additional 5,673 ha of urban development. The size

distribution of forest patches also shifted although the median value of 0.9 ha
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remained constant over this 9-year period. However, the geometric average patch

size (Sav) declined by 263.1 ha and the size of the largest forested area decreased by

825 ha. The size distribution of urban areas showed an 11% increase in Sav from

13,753 ha to 15,411 ha and a simultaneous increase in the largest urban area from

26,707 to 29,309 ha. The increase in urban area occurred with a declining number

of urban patches from 33,926 in 1992 to 32,816 in 2001 (Table 15.2). The pattern of

urban growth occurred as a result of an increase in the average patch size and the

subsequent joining of adjacent urban areas. Because the median value of the size

distribution for urban areas was constant (Table 15.2), the process of absorption

appears to have affected all size classes of urban development.

The assessment of map accuracy for MRLC data is an important consideration, but

also a complex topic (see Homer et al. 2004, 2007; Vogelmann et al. 1998; Wickham

et al. 2004; Yang et al. 2001) that is beyond the scope of this analysis. If we assume

that open water changed little between 1992 and 2001, then the 0.4% increase in open

water over this time period (Table 15.3) provides a simple and convenient index of

relative accuracy. Table 15.3 shows that the only category that lost area was forest,

with a net decline of 516.6 thousand ha; All other land cover categories increased in

area, with the greatest gain for the agriculture, grassland and urban categories.

Figure 15.1 illustrates the cumulative frequency distribution (cfd) of the size of

forest patches in 1992 with the cfd generated by the RwC model of Qrule. The cfd

for 2001 was similar in form and is not illustrated here. The random maps generated

by the RwC model had a greater number of small, isolated clusters with 50% of the

patches smaller than 0.18 ha, while the median patch size for the 1992 land cover

map was nearly a hectare in size (0.9 ha, Table 15.2). The largest patch for the

random maps was 18.3 ha while the largest for the 1992 land cover data was

14,072 ha. It is clear that the random and empirical distributions (Fig. 15.1) are

different, and the KS test confirms this result (D ¼ 0.021, a ¼ 0.02). The RwC

Table 15.2 Statistical description of the statistical distribution of forest and urban patch sizes (ha)

within the Maryland Piedmont in 1992 and 2001

Year Land cover type p1 N Minimum Median Maximum Sav

1992 Forest 0.2820 16,145 0.09 0.9 14,072 2,742.5

1992 Urban 0.1346 33,926 0.09 0.18 26,706.7 13,753.1

2001 Forest 0.2734 14,807 0.09 0.9 13,247 2,479.4

2001 Urban 0.1429 32,816 0.09 0.18 29,308.5 15,410.9

Table 15.3 Land cover change within the Maryland Piedmont from 1992 and 2001

Land cover type Change (1,000 ha) Percent change

Open water 24.5 0.40

Urban 141.2 2.80

Barren lands 50.1 16.90

Forest –516.6 –1.50

Grassland 155.1 12.50

Agriculture 244.4 1.00

Wetlands 129.6 1.20
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model generated random patterns within the restricted area defined by the 1992 land

cover map (i.e. its selected boundaries shown in Fig. 15.2 plus lakes and rivers).

Under some circumstances the map constraints may be sufficient to cause the RwC

model to produce patterns that differ substantially from a random map without

constraints (see discussion of the association matrix below). Because the restric-

tions of the Maryland Piedmont map are not severe (Fig. 15.2), the general patterns

are similar to those of a simple random map (cf. Gardner et al. 1987; Gardner and

O’Neill 1990; Zar 1996) (Fig. 15.2).

The statistical differences among landscape metrics can be graphically illustrated

with box and whisker diagrams. Figure 15.3 plots the distribution of Sav for forested

and urban areas, contrasting the distributions of values from the RwC simulations for

1992 and 2001. The values for the actual landscapes are beyond the range of the RwC

generated values (Table 15.2) and are not plotted here. Figure 15.3 shows that the

range of values for Sav from the RwC simulations were very small (C.V.<1%) with

clearly different values for 1992 and 2001. Because patterns generated by the RwC

model are due to random processes, this difference is entirely due to the shifts in p for
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Fig. 15.1 The cumulative frequency distribution of forest patches within the Maryland Piedmont

(open circles) in 1999 contrasted with the cumulative frequency distribution of random patches

(open diamonds) generated by the RwC method using Qrule (see text for details)
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forest and urban areas that occurred over this time period. The high precision in

estimates of Sav (and other landscape metrics) is due, in part, to the large landscape

with an equally large number of patches. If one assumes that the confidence intervals

around the actual land cover data (Table 15.2) can be estimated with equal confi-

dence, then the observed changes in the characteristic size of forest and urban patches

(Sav) should be regarded as significant. Bootstrap estimates of confidence intervals

could be performed to provide a quantitative verification of this assertion.

Other landscape metrics generated by Qrule (or by other similar software

products) are interesting to examine and can provide insights into the change in

landscape pattern with time. However, hypothesis testing using multiple metrics is

dangerous because of the strong correlations that exist among metrics (Riitters et al.

1995; Wang and Malanson 2007). Figure 15.4 uses the “splom” procedure of R (see

Appendix) to illustrate correlations among metrics for the RwC simulations for

forested land cover in 1992. The ten Monte Carlo simulations produced 4,091,630

forest patches with the largest patch of 25.3 ha and a characteristic patch size (Sav)

of 1.77 ha. Figure 15.4 illustrates three strong relationships that exist among

metrics: the amount of edge on the largest cluster (LC.ed) was perfectly correlated

(r ¼ 1.0) with the size of the largest cluster (LC.sz); the total amount of edge

(T.edg) was highly correlated (r ¼ 0.99) with the total number of forested pixels

(S.frq); and the correlation length of patches (C.len) was highly correlated (r ¼
0.88) with the characteristic patch size (Sav). These values were all significant at

Fig. 15.2 The shaded area represents the Piedmont region of Maryland
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a¼ 0.01 and d.f. ¼ 8. Other strong relationships exist (r> 0.58) among metrics for

edge (LC.eg, T.eg), the total number of clusters (T.cltr), and the fractal index for the

largest cluster (LC.frc). Because landscape metrics are often non-monotonic with

p (Gardner and Urban 2003), the nature of the correlation structure can be expected
to shift as the level of abundance of land cover type changes. Consequently,

correlations among metrics should always be explored by methods like those

illustrated in Fig. 15.4 before hypothesis testing begins.

Qrule produces an association matrix in the data “assmat.dat” that records the

frequency of adjacency among land cover types for each simulation. The associa-

tion at each time period, and the change in association over the interval 1992–2001

can be statistically tested with the usual w2 methods. The expected frequencies are

usually estimated as a function of p, the observed frequency of each land cover type.
In fact, this type of test is a neutral model before neutral landscape models were

suggested! Because the simulations reported here were performed using the con-

straints of the landscape (the RwC method), the “expected” values for w2 tests the
observed frequencies produced by the RwC simulations. For the large landscapes

considered here, the use of the RwC association values had a minor impact on

results (as noted above). We also know from the above results that the pattern of

association for the actual landscapes will certainly differ from that of the RwC
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Fig. 15.3 A box and whisker plot of Sav contrasting the shifts in the size distribution of urban and

forested patches generated by the RwC model using the 1992 and 2001 data for the Maryland

Piedmont (see text for details)
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simulations. Therefore, one interesting test is to examine a subset of the association

matrix: the frequency of urban areas associated with forested areas from 1992 to

2001. The observed frequencies of urban:forest association for the actual land-

scapes were 2.14 � 10–3 and 1.82 � 10–3 for 1992 and 2001, respectively; the

expected frequency for the RwC simulations were 1.2 � 10–2 and 1.23 � 10–2,

respectively. Converting to counts, we can test these differences with a 2 � 2 w2

contingency table yielding 8.9� 109 and 7.1� 109 for 1992 and 2001, respectively.

The critical w2 value for a ¼ 0.0001with 1 d.f., as estimated by Conover (1971,

p. 367), was 2.4� 107. Thus, there is significantly less urban:forest association than

expected by chance alone for both time periods. The decline in forest occurred

with the simultaneous increase in urban areas, producing a loss of 235 km of forest

edge over this 9-year period. Applying an w2 test to this change gave a value of

Correlated Metrics

C.len
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T.eg

T.cltr

LC.rms

LC.frc
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Fig. 15.4 Scatter plots of landscape metrics from ten iterations of Qrule using a neutral model

with constraints (the RwC model) derived from the 1992 map of forested areas in the Maryland

Piedmont. See text for a description of these metrics
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3.19 � 107, a difference that was also significant at a ¼ 0.0001. The conclusion is

that the loss of forest edge was greater than expected from increases in urban areas

and decreases in forest alone.

15.5 Discussion

Measuring the rate and extent of land cover change, and determining the causes of

these changes continues to be a significant challenge for landscape ecology.

Although extensive data sets from satellite sources are now widely available

(Vogelmann et al. 1998, 2001), issues of accuracy and changing technologies

continues to complicate the detection of change through time (Homer et al. 2004;

Wickham et al. 2004). This chapter addresses a second issue associated with change

detection; that of making scientifically rigorous comparisons from these pattern-

rich data sets. The argument made here is that the appropriate approach should be

parsimonious, achieved by a careful match of specific questions with a minimum

set of relevant measures of landscape change. Analysis based on multiple metrics

results in multiple comparisons and consequently an uncontrolled statistical error

associated with inferences drawn from these comparisons. The familiar a level, or

the probability of accepting a false hypothesis is usually defined for a single

comparison as a ¼ 0.05, meaning that there will be a 1 in 20 chance of accepting

a false hypothesis. With each additional comparison, C , the a-level or more

appropriately, the “experiment-wise error rate”, ae (Kirk 1968) increases as [1.0 –

(1.0 – a)C]. This means that if a for the comparison-wise error rate is fixed at 0.05

and one makes four comparisons, then ae ¼ 0.1855, a nearly 1 in 5 chance of

accepting a false hypothesis. A further complication is the lack of independence

among metrics (as illustrated in Fig. 15.4) that complicates conclusions drawn from

the examination of a suite of landscape metrics.

These issues are not new and have been discussed within the landscape litera-

ture (e.g. Dale et al. 2002; Gardner and Urban 2007; Wagner and Fortin 2005).

The chief impediment for adopting a parsimonious approach that avoids this

problem seems to be the three-pronged issue of determining the specific question,

selecting the appropriate metric and performing the relevant statistical test. These

steps may all be performed using Qrule, but have been awkward in the past

because the user must be familiar with the data sets generated by Qrule. A series

of programmes written in R (Appendix) have been provided here to illustrate and

facilitate this process.

An example using data from the piedmont of Maryland has been presented to

illustrate the process of hypothesis testing. The question(s) of concern involved

the possible effects that increases in urban areas (over an 11-year period) had on

the simultaneous loss of forested habitat. A comparison of the two data sets had

shown that urban areas had increased and forest areas declined over this time

period. Three specific questions were tested: the first question was, “Could the

pattern of change be explained by two simple random processes?” Or more
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precisely, “Were observed changes statistically different from those generated by

random processes alone?” The RwC neutral model was developed, random land-

scapes with identical political and physical boundaries were generated, and a KS

test comparing random with actual landscapes showed that the cumulative dis-

tributions of random versus actual forest patch sizes were indeed, significantly

different. The second question was, “Has there been a significant change in

patterns of association between urban and forested areas?” An examination

of the association matrix, with a w2 of the contingency table, showed that patterns

of urban:forest association were less than expected by chance alone, but the loss of

forest edge was greater than expected from increases in urban areas and decreases

in forest alone.

There are many other hypotheses that could be tested with these data. For

instance, we might wish to know “Did urban growth has result in a rate a loss of

larger forested areas that was greater than expected by chance alone?” Or perhaps

the alternative question would be of interest: “Were smaller patches of forest

absorbed by urban growth at a rate greater than expected by chance alone?” An

additional set of questions could be developed regarding the effect that changes in

agricultural lands might have had on forest loss. The construction of a complex set

of tests that compared the relative impact of agricultural versus urban land use

change is an intriguing possibility left to the curiosity of the reader. Such inquiries

might involve the development of more complex neutral models, or the critical

application of the suite of software tools (not just Qrule) that are now available.

Whatever the approach, reliable results will only be achieved if the analysis adheres

to the statistical principles of hypothesis testing.

15.6 Conclusion

Relatively simple models can often “explain” complicated patterns. Indeed, as

Gardner et al. (1987) have demonstrated, real landscapes are sometimes indistin-

guishable from purely random maps. This result does not argue that real landscapes

are produced by simple random processes, but simply defines the conditions in which

more detailed explanations of cause-and-effect cannot be demonstrated. When a

simple random model fails, then a more complicated explanation (or model) may be

tested. For instance, explanations that invoke specific agents of pattern formation due

to the physical template (environmental gradients), biotic processes, or disturbance

regimes (including human actions). We have illustrated one method for employing a

neutral model that considers the effect of landscape constraints on observed patterns.

Although the comparisons made here between this model and actual landscapes were

dramatically different, variations in the shape, extent, and proportions (p) of land
cover types have yet to be fully explored for the RwC model. We hope the combined

process of model development and statistical tests will be helpful in the extension of

these ideas to other landscapes and landscape questions.
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Appendix

The development of RULE (Gardner 1999) has been an evolutionary process. The

current incarnation of this programme, version 4.0, provides extensive changes to

the format of the output, data files for statistical summaries, and the inclusion of a

new neutral model described in this manuscript (the RwC model selected as option

“Y” when executing code). Programme documentation, example input and output

files, and the source code for Qrule may be obtained from http://www.al.umces.edu/

Qrule. Also available, R4Q, a series of procedures written for the R software

(R Development Team 2008). It is hoped that the release of the source code will

allow alternative neutral models to be suggested and tested to better understand the

relationship between pattern and process at landscape scales. The Open Software

License (http://www.opensource.org/licenses/index.php) applies to the distribution,

use, and possible alteration of Qrule.
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Chapter 16

Stage-Structured Integro-Differential Models:

Application to Invasion Ecology

Aurélie Garnier and Jane Lecomte

Abstract Modelling dispersal processes requires a quantitative measure of the

amount of individuals dispersed at each distance, which is conveniently summar-

ized in a dispersal kernel. The framework of stage-structured integro-differential

models provides spatially explicit population dynamics models that couple a

stage-structured life-cycle with a dispersal kernel. This framework is flexible

and can notably incorporate density-dependence and stochasticity in demography

and dispersal. We first present the general formalism of stage-structured integro-

differential models and then provide two examples of application, both from

invasion ecology. The first model was developed for the spread of feral oilseed

rape along road verges. It is a one-dimensional deterministic invasion model, with

a complex dispersal kernel that includes the combined action of various dispersal

vectors. The second model was developed for the invasion of grasslands by pines

and is a two-dimensional stochastic model with a life-cycle that accounts for

the maturity age (10 years) and the dependence of cone production to tree height

and tree density.

16.1 Introduction

Dispersal is a major evolutionary force (Clobert et al. 2001) that determines the

ability to colonize new habitats, the intensity of competition between kins and

the structure of gene flow between populations. Within a population dynamics

point of view (i.e. when focusing on individuals rather than genes), measuring and

modelling dispersal are crucial aspects in biogeography, metapopulation ecology

and invasion ecology (Bullock et al. 2002). Dispersal kernels are known to be a

particularly effective tool in modelling dispersal processes because these probability

density functions quantify the proportion of individuals dispersing at each distance
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(contrary to a simple mean dispersal distance). Thus, dispersal kernels can account

for the rare but highly important long-distance dispersal events (i.e. the tail of the

kernel) which notably determine the ability of a species to colonize unoccupied

areas, to find mates located far away or to escape competition (Clobert et al. 2001).

Stage-structured integro-differential models (Neubert and Caswell 2000) are

spatially explicit population models that couple a stage-structured dynamics (using

a transition matrix, see Chap. 9) and dispersal (using dispersal kernels). A large

variety of dispersal kernels can be used, including fat-tailed kernels that model

frequent long-distance dispersal events and also mixture kernels that model the action

of several different dispersal vectors (Clark 1998). Therefore, the integro-differential

population models are an alternative to metapopulation models (which usually

consider a simple mean dispersal distance) and to reaction-diffusion models (i.e.

partial differential equations, Chap. 7), in which a Gaussian dispersal kernel is

implicitly included (Skellam 1951).

In this chapter we first present the formalism of stage-structured integro-differential

models and the type of output provided by this type of model. We then provide

two examples of application in which an invasion process, i.e. the expansion of a

particular species in a new habitat, is modelled. The first example, a simple one-

dimensional model, was developed to assess the spread of feral rape along road verges

(Garnier and Lecomte 2006; Garnier et al. 2008). The second example, a two-

dimensional stochastic model based on a cellular automaton approach, was developed

to evaluate the invasion of grasslands by pine species (Boulant et al. 2009).

16.2 Model Structure

Stage-structured integro-differential models are based on an integro-differential

equation which computes iteratively the density of individuals within each deve-

lopmental stage at each time t and on each location x (Neubert and Caswell 2000):

n x; tþ 1ð Þ ¼
ðþ1

�1
An y;tð ÞoK x; yð Þ
h i

n y; tð Þ dy

Bold letters in the equation above correspond to vectors and matrices whereas

italic letters are used for scalars (e.g. time, location). The vector n(x,t) is the density
of individuals in each developmental stage at time t and on location x, An(y,t) is the

matrix of demographic transitions (which is here dependent on the local density

of individuals n(y,t)), K is the matrix of dispersal kernels and the symbol “o”

corresponds to a term-by-term matrix product. The individuals located on y at time

t (n(y,t)) contribute to the density on x at time t þ 1 (n(x,t þ 1)) through recruit-

ment or survival (matrix An(y,t)) followed by dispersal from y to x (matrix of
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dispersal kernels K(x,y)). The integral term represents the sum of all the contribu-

tions originating from all locations y.

The Demographic Component: A Transition Matrix

The matrix A governs the demographic transitions occurring between each devel-

opmental stage at each time step. Each term aji (row j, column i) of matrix A

corresponds to the demographic parameter of the transition from stage i to stage j.
For example, let us consider a simple two-stage model for an annual plant species

with a soil seed bank where stage S corresponds to seed bank seeds and stage F to

mature plants (Fig. 16.1). The population is censused just before seed release at the

end of the reproductive period.

Let us assume that we consider demography on location x. The transition matrix

A allows computation of the density of individuals in both stages S and F at time

t þ 1 (population vector n(x,t þ 1)) from the density at time t through the relation

n(x,t þ 1) ¼ An(x,t), with A ¼ s fp
g fg

� �
. The matrix A can be made space-

dependent, for example to model spatial heterogeneity in habitat quality (i.e. direct

dependence on location x), or dependent on the density n(x,t) at location x to

include density-dependence, such as in the integro-difference equation above. See

Chap. 9 and Caswell (2001) for more details on transition matrices and stage-

structured population models.

The Dispersal Component: A Matrix of Dispersal Kernels

A dispersal kernel is a probability density function k that gives the probability k(x,y)
that an individual (or a particle, e.g. pollen) moves from location x to location y.
This general notation of k does not make any assumption about the spatial homo-

geneity regarding dispersal. If the space is homogeneous, then dispersal from

location x to location y only depends on the distance separating x and y (d(x,y),
say |y–x| in a one-dimensional habitat) and thus k(x,y) ¼ k(d(x,y)). Most dispersal

g
S F

fp

s fg

Fig. 16.1 A two-stage life cycle diagram. Stages: seed bank seeds (S) and mature plants (F).

Demographic parameters: annual survival in the seed bank (s), germination (g), rate of seed

incorporation in the seed bank (p) and seed production ( f)
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kernels are leptokurtic, with dispersal to both short and long distances occurring

more frequently than they would under a Gaussian kernel (Fig. 16.2). Moreover,

different types of tails exist among leptokurtic dispersal kernels such as thin-tailed

kernels (quicker decrease than an exponential), exponential-like kernels (long-

range decrease similar to an exponential) and fat-tailed kernels (slower decrease

than an exponential). These dispersal kernels generate different colonization pat-

terns (Clark et al. 2001), mixing propagules and gene flow at long distances

(Devaux et al. 2007).

The kernel matrix K describes dispersal events occurring during each demo-

graphic transition in the stage-structured integro-differential model. Each term kji
(row j, column i) of matrix K corresponds to the dispersal kernel for dispersal

events occurring during the transition from stage i to stage j. The absence of

dispersal is modelled by a Dirac delta function d(x) which (very roughly speaking)

is zero if x 6¼ 0, is infinite when x ¼ 0, and integrates to 1. In our two-stage

example (Fig. 16.1), dispersal only occurs when seeds are released from mature

plants, i.e. during the transitions F ! S (incorporation of dispersed seeds into the

seed bank) and F ! F (germination of dispersed seeds). The kernel matrix thus

writes: K ¼ dðxÞ kðxÞ
dðxÞ kðxÞ

� �

Model Output

As in non-spatial stage-structured population models, the asymptotic population

growth rate l in the integro-differential stage-structured model corresponds to the
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Fig. 16.2 Examples of dispersal kernels: Gaussian function (“GAUSS”; thin-tailed), exponential

function (“EXP”) and geometric function (“GEOM”; fat-tailed). The y-axis is on a logarithmic

scale for easier recognition of the shape of kernel tails
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largest of the eigenvalues of the transition matrix A at small densities (i.e. in

absence of intra-specific competition). Values of l greater than unity guarantee

that population size will grow when small.

In its deterministic form described above, and under some assumptions (no Allee

effects, thin-tailed kernel, population growth rate greater than unity) the integro-

differential population model generates travelling waves which move at a constant

speed c* (Weinberger 1978; Neubert and Caswell 2000). The invasion speed c* is

determined by the low-density leading edge of the travelling wave and is calculated

as a function of the transition matrix A for small densities and the kernel matrix K

(see Neubert and Caswell 2000 for mathematical expressions). Perturbation ana-

lyses, i.e. sensitivity (see Chap. 23) and elasticity analyses (see Chap. 9), on l and

c* can be analytically performed for deterministic integro-differential models [see

Neubert and Caswell (2000) for mathematical details]. These analyses generally

require simulations when the model is stochastic (however, see Lewis and Pacala

2000 for stochastic unstructured integro-differential models).

16.3 Application Examples

16.3.1 Invasion of Road Verges by Feral Oilseed Rape

Oilseed rape (Brassica napus L.) is an annual cultivated species for which feral

populations (i.e. populations escaped from crops and established in uncultivated

areas) are a common feature along road verges in European and North American

farming landscapes (Pivard et al. 2008a, b; Knispel and McLachlan 2009). The

persistence and spread of these feral populations are expected to raise both agro-

nomical and ecological issues in the case of genetically modified (GM) cultivars

(Hancock et al. 1996; Pessel et al. 2001). Indeed, if the transgene confers a selective

advantage to the plant (e.g. herbicide tolerance), and if efficient dispersal vectors

move feral seeds across long distances, the GM feral plants could invade unculti-

vated habitats and thus modify the composition of semi-natural plant communities.

Moreover, feral-to-crop gene flow and feral seed surviving within soil seed banks

could make the (spatial and temporal) isolation between GM and conventional

crops less feasible.

Stage-structured integro-differential models are well adapted to model the

spread of GM feral oilseed rape populations along road verges because: (1) the

stage-structured dynamics component of the model can account for the different

stages of oilseed rape life cycle (seeds in the seed bank and reproductive plants) and

for the impact of a selective advantage on specific parts of the life-cycle and (2) the

dispersal component can be used to explicitly model the successive action of the

different seed dispersal vectors occurring along road verges.

The invasion model we developed for GM feral oilseed rape in a previous study

is deterministic and is one-dimensional to mimic the linearity of road verges. The

first version of the model (Garnier and Lecomte 2006) was thereafter refined to
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include experimental data on seed dispersal and to model explicitly the action of

various dispersal vectors (Garnier et al. 2008). The demographic component of the

final model is reduced to a two-stage life cycle (Fig. 16.1) with seed bank seeds,

mature plants and an annual census occurring just before seed release in summer.

The dispersal component accounts for the successive action of primary dispersal

vectors that disperse seeds from the mother plant to the ground (ballistic dispersal

and verge mowers), followed by the action of secondary dispersal vectors that re-

entrain fallen seeds (wind and vehicles). Mathematically, the global seed dispersal

kernel (k – Fig. 16.3) is thus the convolution of the primary and secondary dispersal

kernels (k1) and (k2): k ðxÞ ¼
Rþ1

�1
k1ðyÞ k2 x� yð Þ dy. This convolution describes the

proportion of seeds dispersed from the location 0 to x via an intermediate location y:
seeds are first dispersed from 0 to y by the primary vectors (term k1(y)) and then are
subsequently re-entrained from the location y to the location x by the secondary

vectors (term k2(x � y)). This process is summed over all possible intermediate

locations y (integration symbol). The environment is supposed to be homogeneous.

Because primary seed dispersal along road verges is likely to occur at both short

distances (ballistic dispersal, known and measured) and long distances (verge

mowers, unknown but assumed to exist at a low frequency), the primary dispersal

kernel (k1) is itself a mixture kernel which sums a small proportion (p1) of dispersal
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Fig. 16.3 The components of the dispersal kernel for feral oilseed rape seeds along road verges.

“Bal”: (primary) ballistic dispersal only; “Bal þ secondary”: primary ballistic dispersal followed

by unidirectional secondary dispersal, “Bal þ mow þ secondary”: global dispersal kernel includ-

ing primary dispersal by ballistic and a small proportion p1 ¼ 0.1 by mowers (mean dispersal

distance by mowers a ¼ 50 m, unidirectional) followed by unidirectional secondary dispersal
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by mowers (kmow) and a large proportion (1 � p1) of ballistic dispersal (kbal):
k1(x) ¼ p1kmow(x) þ (1 – p1)kbal(x). Ballistic dispersal is bidirectional in the one-

dimensioned road verges (Fig. 16.3) whereas dispersal by mowers is expected to be

unidirectional. The corresponding kernel functions are respectively a bidirectional

Weibull function for ballistic dispersal [kbal(x) ¼ m|x|cexp(–d|x|cþ2) estimated by

Colbach et al. (2001)] and a unidirectional exponential function for mowers

(kmow(x) ¼ exp(–x/a)/a if x > 0 and kmow(x) ¼ 0 if x < 0 – hypothetical).

The secondary seed dispersal kernel (k2), that includes the combined (and

unidentified) effect of dispersal by wind and by vehicles is a unidirectional mixture

of two Gaussian functions that was fitted from a seed dispersal experiment, using a

maximum-likelihood method (Garnier et al. 2008).

The invasion model was run with contrasting values of selective advantage (with

an effect on both seed germination and plant survival) due to herbicide tolerance.

We performed elasticity analyses, which are similar to sensitivity analyses (see

Neubert and Caswell 2000 for their application to integro-differential models) to

identify the key-parameters of the model. Results showed that the invasion speed

was primarily determined by long-distance dispersal (whatever its low occurrence

rate). The selective advantage noticeably increased invasion speed, provided some

long-distance dispersal events were included.

This study underlined the necessity to obtain relevant estimates of long-distance

dispersal of feral oilseed seeds along road verges to make reliable predictions of the

spread of (GM) feral populations. However, long-distance dispersal events are

known to be very difficult to detect and to quantify because they are rare and highly

stochastic (Clobert et al. 2001; Bullock et al. 2002).

16.3.2 Invasion of Grasslands by Pines

The invasion of open habitats by native and introduced tree species is a growing

concern in many regions of the world (e.g. Richardson et al. 1994; Dovciak et al.

2005) and is favoured by changes in natural and human environmental factors: fire

regime, climate, farming practices (grazing) and forestry practices (large planta-

tions of exotic trees). Seedling recruitment is known to have a key-impact on the

population dynamics of several tree species (Harper 1977) and is thus expected to

have also a predominant effect on their invasion dynamics. Because seedling

recruitment itself depends highly on different environmental factors, simulation

models are a useful tool to better understand how these factors interact and

influence the spread of trees.

Stage-structured integro-differential models are particularly useful to model the

spread of invasive tree species. This is because in slow growing tree species, where

maturity occurs after several years, it is crucial to distinguish several age-classes in

their life-cycle. Moreover seed dispersal kernels estimated from field data can

easily be implemented in this type of models. Stochastic environmental, demo-

graphic and dispersal variations are known to have a critical impact on the spread
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rate of invasive populations and these stochastic factors can be accounted for in

integro-differential models (Lewis and Pacala 2000).

Boulant et al. (2009) developed a cellular automaton model (see Chap. 8) for the

spread of two pine species (Pinus sylvestris L. and Pinus nigra Arn. ssp. nigra) in
Mediterranean grasslands. This stochastic stage-structured integro-differential

model allows simulation of pine expansion within a 500m-wide rectangular gridded

landscape divided into 25 � 25 m cells. The demographic component of the model

accounts for the whole complexity of the pine life cycle: trees begin to produce

cones at the age of 10 years and cone production is age-(height-)dependent and

density-dependent. Therefore the life-cycle was divided into 15 stages (Fig. 16.4):

nine seedlings age-classes (from 1-year old (S1) to 9-year old (S9)) and six adult

classes. Adults were divided into four 2-m height classes (A2–4m to A>8m) of

increasing fecundity. When the total density of adults in a cell reaches the maximal

density of isolated trees (Dis), adults are considered as dominant in woodland

(Adom). Individuals reaching maturity when the total density of adults in a cell is

larger than the maximal density of dominant trees (Ddom) are considered as sup-

pressed (Asup), i.e. with a reduced fecundity. When the maximum tree density

(Dmax) is reached, no more seedlings can establish. Seedling recruitment was

modelled explicitly as a function of tree fecundity and of the interactions between

shrub cover, post-dispersal seed predation, grazing pressure, grass competition, and

drought (see Boulant et al. 2009 for more details on demographic parameters).

The dispersal kernel of the pine model is a mixture of two exponential functions

that combines a small proportion (p) of long-distance dispersal and a larger

proportion (1 – p) of short-distance dispersal, which was estimated from field

data. Since dispersal was supposed to be isotropic, a one-dimensional form of the

kernel was used although the landscape was two-dimensional. The probability that

a seed produced in a cell i reaches a cell j located at a distance xij thus writes:

k xij
� � ¼ p 2e�2xij=a1

pa2
1

þ 1� pð Þ 2e�2xij=a2

pa2
2

, where a1 and a2 are the mean distances of
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Fig. 16.4 Life cycle graph for the pine model [simplified from Boulant et al. (2009)]. Adult

density thresholds (in a 25 � 25 m cell): maximum density of isolated trees (Dis), maximum

density of dominant trees in woodland (Ddom), maximum tree density (Dmax).DA: adult density in a

cell (including isolated, dominant and suppressed trees), sj: seedling establishment rate
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long- and short-distance dispersal, respectively. This function integrates to 1 when

summed over all directions and over all distances.

All components of the pine model are stochastic: demographic and environmen-

tal stochasticity is included in the demographic component and both the direction

and the distance of dispersal are randomly drawn (from a uniform distribution and

from the dispersal kernel, respectively). Simulations are necessary to explore the

dynamics of such a complex model, which combines a highly structured life-cycle

and stochasticity in every component. An example of a trajectory run over 100

years from an initial stand (one column of cells composed of 20% of dominant trees

and 80% of suppressed trees) located at the left edge of the rectangular landscape,

shows the patchy expansion of the population towards the opposite edge (Fig. 16.5).

Invasion speed was computed from the linear regression of wave front location on

time (see Kawasaki et al. 2006 for mathematical details).

Elasticity analyses performed on the stochastic growth rate and the invasion

speed gave a better understanding of the interactions between the different factors

influencing seedling recruitment and notably revealed that grazing intensity was the

main factor limiting pine spread. This result has important consequences in terms of

management, as it suggests that grazing by domestic livestock could be an effective

tool to limit the invasion of open landscapes by pines, which is less expensive than

mechanical interventions.

16.4 Conclusions

Integro-differential models are a useful tool to model the spatio-temporal dynamics

of a population. They allow sufficient realism in both the life cycle (stage-structure)

and dispersal processes. Their flexible formalism permits to include intra-specific

50
0

m

10005000
Distance from the original stand (m)

Fig. 16.5 Simulation obtained with the pine invasion model. Each 25 � 25 m cell is coloured in

grey shades according to tree density (white cells ¼ empty cells, black cells ¼ maximal tree

density). The simulation was run over 100 years
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competition (density-dependence), stochasticity in demography and dispersal, and

habitat heterogeneities. Both biological examples presented here came from inva-

sion ecology, in which it is particularly essential to account for rare events (e.g.

long-range dispersal events, catastrophic environmental variations). Indeed, quan-

tifying invasion risks must rely on probabilities associated with scenarios rather

than on an average behaviour.

In addition to invasion ecology (Buckley et al. 2005; Jacquemyn et al. 2005 and

the two examples presented here), integro-differential models have also been

applied to conservation biology (Bullock et al. 2008), epidemiology (Medlock

and Kot 2003), evolutionary models in population genetics (Champagnat et al.

2006), studies on mixed reproductive strategies in plants (Le Corff and Horvitz

2005) and on mechanisms of seed dispersal by wind (Soons and Bullock 2008).
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Chapter 17

Modelling Resilience and Phase Shifts in Coral

Reefs: Application of Different Modelling

Approaches

Andreas Kubicek and Esther Borell

Abstract Tropical coral reefs are among the most diverse habitats with great

ecological and economic importance. These highly dynamic ecosystems are fre-

quently subject to natural disturbance events (e.g. hurricanes) which can lead to

dramatic changes in reef properties if the systems’ resilience is already reduced by

anthropogenic impacts such as increased levels of nutrients or over-fishing. Due to

their high complexity many relations in coral reef dynamics are still poorly under-

stood and ecological modelling becomes increasingly prominent as a tool to close

these knowledge gaps. This article gives an overview on different modelling

techniques that address the investigation of coral reef dynamics and discusses

advantages and disadvantages of respective applications.

17.1 Introduction

Tropical coral reefs are complex ecological habitats, that are the most diverse of all

marine ecosystems, with estimates of benthic and pelagic organisms ranging from

600,000 to more than 9 million species worldwide (Reaka-Kudla 1997). Scleracti-

nian corals (stony corals, Cnidaria, Anthozoa) are the main reef builders. They fix

calcium carbonate, which produces the majority of the habitat structure for other

reef organisms. Coral reefs are dynamic systems within a wider network of closely

interlinked habitats such as mangroves and seagrass beds, (Nagelkerken et al. 2002;

Mumby and Hastings 2008), which are frequently subjected to natural disturbances

(Connell 1997; Buddemeier and Smith 1999). However, the nature and temporal

pattern of disturbances have changed severely over the past few decades coinciding

with global climate change (Veron et al. 2009) and increasing anthropogenic

activities in coastal areas (Mora 2008), often exceeding the regenerative capacity

of reef systems (Bellwood et al. 2004).
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Chronic alterations of a reef environment including increased levels of nutrients,

overfishing and the release of toxic compounds can severely undermine reef

resilience and thus the ability of reef communities to cope with new disturbances

superimposed onto those already existing (Nystroem et al. 2000). Reduced resil-

ience inhibits or delays reef regeneration after a disturbance event, which can lead

to long-lasting or even irreversible changes in community structure; so-called phase

shifts to alternative stable states (Hughes and Connell 1999; Hughes et al. 2007).

The resultant alternative state is manifest in either a new dominant coral species

(Aronson et al. 2004) or an alternative life-form, like corallimorpharians (Kuguru

et al. 2004), ascidians, soft corals, sponges and urchin ‘barrens’ (Norstroem et al.

2009) and very often algae (McManus and Polsenberg 2004). Regardless of the

nature of these shifts, they generally all culminate in a conspicuous loss of benthic

invertebrate and fish diversity as well as a decrease in inorganic carbonate deposi-

tion, which in turn reduces reef complexity, overall species richness and increases

shoreline erosion.

Important factors that mediate resilience include (1) the degree of diversity

within functional groups, functional redundancy and the response diversity within

each group, (2) demographic structure of populations, (3) recruitment success, and

(4) ecosystem connectivity, i.e. exchange processes among reefs or between reefs

and adjacent habitats within a given seascape.

When diversity of coral reef species is high and species interact in a highly

structured environment, feedback loops occur over a wide range of scales. Thus,

descriptive approaches using mean average measures or starting from reduced

statistical assumptions might not be appropriate for analysing the complex structure

and underlying processes. Here modelling may help to integrate the multitude of

components, relevant variables and parameters to describe and visualize complex

ecological processes and the driving forces which shape the resilience of a system.

Models may also be used to simulate the behaviour of specific system components

in response to a changing environment (Fig. 17.1).

In the following subsections we describe different approaches to modelling reef

resilience including examples of a trophic model which is based exclusively on

differential equations (Sect. 17.2) and a Cellular Automaton (CA) model which

allows spatial explicit analysis (Sect. 17.3). Section 17.4 introduces how Individual

Based Modelling (IBM) can facilitate the implementation of direct individual

interactions of organisms and Sect. 17.5 gives an example of a grid based commu-

nity model which combines differential equations and a CA approach. We have

chosen these examples to illustrate and discuss the possible advantages and draw-

backs of presently applied ecological modelling techniques.

17.2 Equation-Based Modelling of a Coral Reef Food Web

McClanahan (1995) developed a differential equation model to evaluate the impact

of fishing on Kenyan coral reefs. The model simulates the food web of a virtual reef

ecosystem of undefined spatial extent in which corals and algae comprise the primary
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producers, herbivores consist of sea urchins and herbivorous fish and predators

are composed of invertivorous and certain piscivorous fish as well as humans,

i.e. fishermen.

Model relationships and parametrisation were all based on empirical studies and

local fisheries data. To keep the model at an operational size, McClanahan

considered only a limited number of the system’s key components and their

interactions and left out other food web pathways such as phytoplankton, detritus

or corallivores and top predators, such as sharks. Gross and net reef production is

calculated by combining production and respiration for both algae and corals.

Although the model considers that both groups fix calcium carbonate from the

seawater, corals in the model calcified at rates ten times greater than algae and thus

represented the major calcium carbonate depositors. Sea urchins and herbivorous

fish competed for algae and in the process of foraging eroded reef structure with the

erosion by urchins being tenfold higher than that of fish.

Invertivores controlled the abundance of urchins and in the model switched

to an unspecified alternative food source upon depletion of sea urchins. This had

the effect that invertivores did not experience bottom-up control, which

decreased fluctuations in model dynamics. Herbivorous fish were controlled

by piscivores. At the very top end of this web were humans who ultimately

Fig. 17.1 Intact coral reef, Sulawesi/Indonesia (Photo by E. Borell)
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constitute a somewhat arbitrary control of all fish present in the system. All

processes in this model were described by utilizing a matrix of interlinked

differential equations (Chap. 6).

Through variation of the state variables ‘fishing experiments’ were performed in

order to assess the effects of fishing intensity and catch selection on fisheries yield,

community structure and ecological processes. McClanahan performed a total of

five simulation runs to specifically determine (1) the model’s prediction of succes-

sional dynamics, (2) the effect of removing all bony fish, (3) the effect of removing

only piscivores, (4) the effect of removing all fish except invertivores, and (5)

model predictions of a scenario where sea urchins (or fishing) do not have a

detrimental effect on live coral. Model simulations of different scenarios revealed

that the modification of a single variable in this web of highly interrelated compo-

nents has important ramifications for reef development. One of the major findings

of the model (and later verified by field studies) was that coral reefs are prone to

have more than one equilibrium state for realistic parameter ranges (see Chap. 6),

influenced by the extent of fishing or the abundance of piscivores (Fig. 17.2). The

simulation results showed that if all fish groups were harvested, two equilibrium

states could occur, one governed by herbivorous fish and the other by sea urchins.

A third ecological state was manifest by high algal and low coral cover associated

with the low abundance of either herbivorous fish or sea urchins. The fisheries

management strategy that is predicted to produce the highest yields whilst main-

taining high primary productivity and calcium carbonate deposition was to harvest

piscivores and herbivorous fish and to leave invertivores unharvested. For this

case, the model predicted the amount of piscivores to quickly decline, taking

predation pressure off the herbivorous fish and channelling the majority of algal

production into herbivorous fish, while invertivores kept the sea urchin abundance

low. When fishing levels were highest, algal biomass was predicted to increase and

Fig. 17.2 Transition processes between different equilibrium states of the coral reef ecosystem

indicated by model simulations and field studies. Adapted from McClanahan (1995)
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competitively exclude corals. Calcium carbonate deposition would remain high

because of the proportion of calcifying algae and because bioerosion would

decrease due to low sea urchin and fish abundance.

McClanahan’s model has the general applicability to assess coral reef food

web interactions through a somewhat holistic approach rather than focusing on a

limited number of organisms and interactions. However, a major shortcoming of

this type of modelling is presented by the fact that it is highly aggregated. Treating

several components under the umbrella of one variable, i.e. the grouping of various

components according to functional types or trophic groups severely reduces

natural variability and may therefore easily mask processes which are crucial

attributes to the system’s dynamics. Considering that different species or functional

groups of algae and corals, do exhibit very different types of tolerance to a given

environmental condition, the lack of distinction can lead to the oversimplification

of a given scenario.

17.3 Spatial Competition Between Coral Species: Application

of a Cellular Automaton Modelling Approach

Langmead and Sheppard (2004) designed a classical cellular automaton model

(Chap. 8) to assess the effect of natural background disturbance (e.g. sedimentation,

predation) on a coral community on a Caribbean fore-reef slope. Each disturbance

event can be set to occur over different spatial scales and at varying levels of

intensity. The model comprises ten different coral species that compete for space.

Each of the species has a specific pattern of recruitment, growth, mortality rate and

aggression (i.e. competitive potential).

The simulation area of the model reef comprises a torus with a total size of 9 m2

that is subdivided into 1 cm2 cells corresponding to a median sized coral polyp.

Each of these cells can contain either bare substratum or one of ten coral species at

a time.

The model was exclusively parameterized with data obtained from the literature.

Coral growth was based on annual skeletal extension rates of each species and was

expressed as radial expansion. Growth was determined by the rules for competitive

interactions between corals: Colonies could only grow into adjacent cells if they

were either unoccupied (bare substratum) or occupied by a competitively subordi-

nate species (species were ranked according to their aggressiveness). Depending on

the differential susceptibilities to disturbance and varying mortality rates, each

species was assigned a probability of mortality if impacted by disturbance. Based

on data for larval settlement in the study area, each coral species was set to be

present at a specific density and the number of potential recruits was then deter-

mined annually using a Poisson probability distribution. Recruitment success was

determined by larvae abundance and the amount of free space in the plot as recruits

are only allowed to settle on bare substratum.
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To gain a better understanding of the spatial extent of disturbance (i.e. the

fraction of the plot that is disturbed) and the size of disturbed patches, two different

scenarios were created: First, the spatial extent of disturbance was varied at five

intervals ranging from 0 to 0.6 while the size of disturbed patches was kept

constant. In the second scenario, the total disturbed fraction of each plot per year

was kept constant and the size of disturbed patches was varied. The sizes of

disturbed patches followed a power law model in which frequency of disturbance

events is related to their spatial extent; i.e. smaller disturbances were set to occur

more often than larger ones.

Recruitment and background disturbances were updated yearly while growth

and competitive interactions were iterated once every 3 months.

Simulations were run for 500 years (complete cycle of the model) and percent-

age cover of each species was taken on an annual basis. The data derived from the

model simulations were fed into a Bray–Curtis matrix in order to determine the

sensitivity of the variables on species diversity, species composition and mortality

in response to each of the model parameters.

The results showed that in the absence of disturbance, the reef was occupied by

competitively dominant species and that those species featuring low aggression and

low growth rates were lost after short periods of time. Intermediate levels of

background disturbance favoured high coral diversity, which supports the classic

hypothesis of intermediate disturbance (Grime 1973). Accordingly, the amount of

bare substratum increased with higher levels of disturbance and was accompanied

by a decrease in biodiversity.

The relative importance of total colony mortality to partial colony mortality

changed with colony size class. Total mortality was more important for small

colonies while large colonies were most sensitive to partial mortality. For sensitive

species, competitiveness, i.e. aggressive potential had the greatest influence on

community composition. Growth was also an important factor whereas mortality

and recruitment had the least impact on the model.

Model evaluation showed that only five out of the ten simulated species were

comparable to actual field observations. Despite this relatively weak congruence

(mainly resulting from insufficient data), for coral population size structures,

the model was able to accurately represent growth and distribution for seven out

of the ten species. The results indicate that size structure of populations is a much

more precise indicator for testing the predictive abilities of the model than the

simple comparison of coral cover.

Another important aspect of the results was the apparent relationship between

the threshold of partial and total colony mortality and modal colony size on a log-

scale, which demonstrates that colony size and age may be decoupled earlier than

was previously thought (e.g. see also Bak and Meesters 1998). Also, the results

indicate that size of disturbed patches was as important in structuring coral

communities as the overall amount of disturbance (Fig. 17.3). This poses an

important consideration when looking at recovery mechanisms of reefs since

the spatial extent of cleared substratum is rarely directly quantified in the field,

but is usually determined indirectly through differences in coral cover. Even though
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some interesting information can be deduced from this approach, the overall

applicability of the model in a broader context of coral reef dynamics and effects

of disturbance events is limited due to its small size and the lack of other key

components such as grazers and algae, which can play a crucial role in structuring

coral reef communities.

17.4 Macroalgal Growth Patterns Simulated with

an Individual-Based Model

Many macroalgae exhibit non-deterministic phenotypic growth, which enables

them to thrive under different environmental conditions. Yniguez et al. (2008)

designed an individual-based (or agent-based, see Chap. 12) model (SPREAD,

Spatially-Explicit Reef Algae Dynamics) to investigate the effects of key growth

factors (nutrients, light, temperature) as well as disturbance and mortality on the

growth rates and growth morphology of the calcifying algaeDictyota andHalimeda
spp. at four different sites (two inshore and two offshore reefs) within the Florida

Keys Reef Tract. Model performance was empirically evaluated with local growth

rate and structure for H. tuna at these sites.

To determine the effects of different environmental conditions on the growth

patterns of the algae, Yniguez et al. (2008) used single modules (see Fig. 17.4) as the

interacting components in their model rather than representing whole algal indivi-

duals. The emergent properties of superordinate hierarchies such as the whole

individual organism, the population or the algal community were thus derived

from interactions of single modules. The model environment was composed of a

three-dimensional cubical grid (edge length ~30 cm) and subdivided into 1 cm3

cells. Each cell contained information about light and space availability, nutrients

and temperature. Temperature and nutrients were kept uniform for all cells at each

time step but changed with season. Light availability was determined for each cell

Fig. 17.3 Effect of disturbed patch size on community composition while the total fraction of

disturbed reef area was kept constant. Mean percent cover at 500 years for the most abundant

species (Mc Montastraea cavernosa, Ma Montastraea annularis, Mm Meandrina meandrites, Ag
Agaricia spp.) and bare substratum (BS). [From Langmead and Sheppard (2004)]
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individually depending on depth and shading effects of existingmodules. At the start

of the simulation, the initial values for state variables and the number of model

organisms were set corresponding to field observations. The model used discrete

daily time steps. Each module had direct information of its position within the grid

and was able to retrieve/‘sense’ environmental parameters for both its own cell and

its neighbourhood. Based on this information, probabilities for growth (defined as

the production of a new module by an existing one) and growth pattern were

calculated and newly produced modules positioned. If existing modules were

situated at the edge of an alga they could be randomly selected for fragmentation,

which implied an additional mortality probability for the fragment. At the end of an

iteration the three-dimensional grid was transformed into a two-dimensional square

to calculate the percentage of cover for each species.

A total of 30 replicate simulations (each over a period of 1,000 days) per site

revealed striking similarities for morphometric characteristics of model H. tuna and
field data such as the number of segments per individual alga between different sites

and the relationship between growth (segment production) rates and depth. H. tuna
from the deepest site featured the highest growth rates and the highest number of

produced modules per individual, while individuals of the shallowest site had low

growth rates and low numbers of segments. Despite small divergences between

model prediction and field data, the natural inter-site differences in growth mor-

phometrics were well reflected by the model. Due to its fine-tuned nature this

technique is not yet applicable to larger scale simulations mainly due to limitations

in computing capacity. Similar methodologies were already applied in the study of

plant architecture and morphology by utilizing so called L-Systems (see also

Chap. 11). This approach is novel in the marine context and can contribute valuable

information regarding small scale processes, which can be fed into larger scale

models when depicting natural variability.

Fig. 17.4 Halimeda tuna – a single module as interacting components in the model (a) the

modelled growth pattern (b) and a photograph of the actual alga (c). Taken from Yniguez et al.

(2008)
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17.5 Ecosystem Model for Phase Shifts

in Caribbean Coral Reefs

The current collapse of many coral reefs in the Caribbean is thought to be a

combined effect (Bellwood et al. 2004) of overfishing of herbivorous fish (Hughes

1994), coral diseases (Bythell and Sheppard 1993), hurricanes (Bythell et al. 1993),

coral bleaching (Kramer et al. 2003) and local deterioration of water quality (Littler

et al. 1993). Macroalgal blooms on the overfished reefs in the Caribbean were, until

the early eighties mainly prevented by a single species of sea urchin Diadema
antillarum. The mass mortality of D. antillarum in 1983 (Lessios 1988), left

parrotfish (Scaridae) as the main herbivores on many Caribbean reefs.

To gain a better understanding of the relative importance of fishing of parrotfish

and parrotfish grazing for coral-algal dynamics, Mumby (2006) merged different

modelling approaches within one application that facilitates the integration of

interactions within and between different trophic levels of a typical Caribbean

coral reef community. The main model in this study constitutes a grid based spatial

explicit simulation model for a hypothetical reef that combines empirical data

derived from field studies, experiments and other models. The second model is an

equation based approach, which was designed to model the processes of parrotfish

grazing in order to parameterize their grazing behaviour in the main simulation

model.

The Basic Coral Reef Model

The model addressed the dominant massive reef building coral species (as most

branching species were eliminated by the white band disease) on a common

Caribbean reef in the Montastraea annularis zone at mid-depth (5–15 m) where

coral diversity and abundance were found to be highest. The model was para-

meterized with data from Glovers Reef of Long Cay (LC) in Belize. The virtual reef

area comprised a 625 m2 (25 m � 25 m) lattice made up of 2,500 rectangular cells

(0.5 m � 0.5 m). The functional organisation inside the cells resembled that of a

classical cellular automaton. Unlike a classic cellular automaton however, the cells

were able to accommodate more than one distinct entity, i.e. different organisms

and/or dead substratum at the same time. The benefit of such an organisation is that

the observer is able to split up populations into smaller groups thereby facilitating a

semi-individual model behaviour. Contrary to an IBM, organisms in this model did

not interact directly with each other but the trajectory of an organism’s behaviour

and development was determined by the characteristics of its own cell (i.e. compo-

sition of components) and those of its neighbourhood.

The model was iterated every 6 months; an interval that is sufficiently long to

allow for meaningful assessments of coral growth and coral distribution. Yet, direct

algal cover is the outcome of a dynamic balance between algal production (area for

colonization, recruitment rate, and growth) and algal removal (grazing), processes
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that occur over much shorter time spans. For this reason Mumby (2006) developed

a second model to parameterize parrotfish grazing intensity, in which he determined

the proportion of area grazed within a 6-month period. The calculations incorporate

parameters for fish species, abundances, sizes, sex, and feeding activity (bite rates).

According to the results, in an unharvested parrotfish community 30% of the total

area was grazed, while in heavily depleted populations the grazed proportion com-

prised only 10% and for areas of intermediate fishing pressure, this fraction amounts

to 20%.

The main model included corals, algae, urchins and parrotfish (Fig. 17.5).

However, urchins were excluded from most model scenarios since a large scale

recovery of D. antillarum populations was considered unlikely and outbreaks of

diseases could readily reoccur. Corals and algae (see Table 17.1 for summary of

attributes for corals and algae) were placed randomly on the grid until distinct

Fig. 17.5 Processes included in the simulation model (arrows) that link the major functional

categories of reef organisms (boxes). Taken from Mumby (2006)
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proportions of spatial cover had been reached with the rest being occupied by sand

and rubble.

Corals were divided into two functional groups according to their mode of

reproduction, comprising either brooders or spawners. Brooding corals produce

planula larvae which settle in the vicinity of their parent colony. Spawners (com-

monly referred to as broadcast spawners) release gametes and the planulae are

dispersed in the water column and may migrate many kilometres before settlement.

Table 17.1 Major attributes of corals and algae and the main rules utilized in the model

Corals Algae

General information
Massive corals

Two groups according to reproductive mode:

1) Brooders, e.g. Porites astreoides
2) Spawners, e.g. Siderastrea siderea

Macroalgae and cropped algae

Age classes:

Cropped algae 0–6 months

Cropped algae 6–12 months

Macroalgae 0–6 months

Macroalgae 6–12 months

Reproduction/recruitment/dispersal
Larval production depending on maturity

state/size class for high coral cover:

juvenile (<60 cm2) ! no larvae

pubescent (60–250 cm2) ! ~50 larvae � cm�2

adult (>250 cm2) ! ~210 larvae � cm�2

Number of recruits that can settle per cell

depending on settling ground:

Bare substrate ! 4 recruits

Cropped algae ! 2 recruits

Macroalgae ! 0 recruits

! the density of spawning coral recruits is ten

times lower than that of brooding ones

Probabilistic overgrowth of cropped algae

(A) by macroalgae (M) within a von-

Neumann-Neighbourhood, depending

on proportions of macroalgae (M4c)

and corals (C)

if C � 0.5 PA ! M ! 0.75 � M4c

if C < 0.5 PA ! M ! M4c

Growth
Constant diametric growth rates:

8 mm � year�1 (brooders)

10 mm � year�1 (spawners)

If cropped algae are not grazed for 1 year

they turn into macroalgae

Mortality
Periodic – annually

Smaller coral colonies are more susceptible to

partial and whole-colony mortality than

larger ones

Stochastic – hurricanes

Proportion of corals is subject to partial or

whole-colony mortality; based on mean

fraction of reef destruction across the

Caribbean

Periodic – annually

Proportion of algae which are eaten by

grazers

! depending on grazer density

Stochastic – hurricanes

Proportion of macroalgae become cropped

algae if located on disturbed patch;

based on mean fraction of destruction

across the Caribbean

Interactions and processes
If corals reach maximum cell size (2,500 cm2):

!Larger colonies grow over smaller colonies

!Corals grow over cropped algae

!Corals can displace macroalgae

Macroalgae can grow over cropped algae

Macroalgae can grow over corals

(depending on coral colony size) and

lead to partial or whole-colony

mortality
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The model was parameterized with data for Porites astreoides and Siderastrea
siderea for brooders and spawners respectively. Both maturity and reproductive

output were expressed as a function of colony-size and the efflux of larvae from

reefs was quantified from the size-frequency distribution of coral colonies. Coral

recruitment was parametrized with data from an offshore reef in Belize which had

high adult coral cover and high biomass of grazing fish. Coral recruitment in the

model was set to occur at an initial colony size of 1 cm in diameter with the

settlement success being determined by the components of their cell (i.e. rugosity

and algal characteristics). A linear stock-recruitment relationship was created based

on the assumption of high adult coral cover and optimal larval supply. The massive

growth forms of coral colonies were expressed as hemispheres and growth rates

were modelled by linear extension rates of the hemispheres (Table 17.1).

Mortality rates of corals were also colony-size dependent where whole colony

mortality was generally lower for mature (large) colonies than for smaller ones.

Large colonies were able to overgrow smaller colonies in basic interactions once

colonies had reached the maximum implied size of a cell. Macroalgae were able to

overgrow coral recruits and to cause extensive partial mortality of larger colonies.

Data on hurricane mediated mortality was derived from the impact of Hurricane

Mitch on mature colonies of M. annularis in Belize where at least 90% of the

colonies experienced partial-colony mortality. The frequency of hurricanes could

be varied according to geographical area. Since the simulation area of 625 m2 is

relatively small, the chances that a reef would be either completely destroyed or

missed entirely by a hurricane were high. For this reason the model used the mean

percentage of destroyed reef area for the whole simulation area rather than sub-

dividing it into patches of heavy and light destruction.

Algae were distinguished as either cropped algae (cropped substrata) or macro-

algae. Cropped algae included encrusting coralline red algae, fine filamentous algae

and algal turfs, which were contained within one category because coral recruit-

ment, i.e. coral settlement and post-settlement mortality is associated with all of

these types. If cropped algae were not grazed, spores of macroalgae (here in the

model Dictyota spp. and Lobophora variegata) developed into a fleshy canopy that
prevented coral settlement. Macroalgal growth progressed by either of the follow-

ing pathways: Cropped algae which were not grazed over the period of 1 year

turned into macroalgae. Once established, macroalgae were able to overgrow

cropped algae in neighbouring cells depending on their relative cover and that of

corals within a von-Neumann-Neighbourhood (see also Table 17.1). If coral cover

was low, macroalgae could overgrow an area of cropped algae similar in size to the

area they occupied, whereby high coral cover reduced this area by 25%.

Simulations and Results

An a priori sensitivity analyses revealed that initial coral cover, grazing and

hurricane frequency were all important factors influencing coral cover over a period
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of 20 years. It is important to bear in mind that the model was only simulated on the

reef dynamics of initially ‘healthy’ reefs. The most important findings of the

simulations may be summarized as follows:

First, in the absence of any acute disturbance event and the urchin D. antillarum,
coral cover always increased when grazing was carried out by an unexploited

community of parrotfish. This in turn had a positive influence on recruit survival

where highest densities correlated positively with highest coral cover. Second, in

the absence of D. antillarum, the dynamics of coral cover were highly sensitive to

changes in hurricane frequencies. Reefs that experienced hurricanes on a decadal

basis showed a net decline in coral cover whereas a hurricane frequency of 20 years

allowed for full recovery akin to the initial 30% coral cover. Reefs that were

subjected to hurricanes at even lesser frequencies (e.g. 40–60 years) exhibited

rapid reef growth. On the other hand, the inclusion of D. antillarum enabled reefs

to withstand hurricanes on a decadal basis and the results showed that overall

diversion in reef recovery (i.e. reef trajectory) between different hurricane frequen-

cies decreased. Third, a reduction in parrotfish biomass lead to substantial changes

in reef community. High parrotfish biomass (i.e. high grazing) resulted in a 25%

increase in coral cover. Conversely, coral cover decreased from 30 to 7% when

parrotfish were heavily depleted. Furthermore, the results demonstrate that grazers

(or the depletion of them) is a fundamental and overarching factor in shaping the

trajectory of reef development in Caribbean forereefs. All other parameters, such as

whole-colony mortality rates, connectivity, larval retention and dispersal had a

negligible effect on coral cover. Last, reefs that maintained a healthy parrotfish

population showed clear phases of reef growth in between hurricane disturbances

which recurred at 40-year intervals. In contrast, reefs with a partially depleted

parrotfish population being subjected to the same hurricane frequency exhibited a

steady decline in coral cover.

Interestingly, examination of temporal shifts in the relative size-frequency

distribution of corals under different disturbance scenarios also indicates that

hurricanes and the exploitation of grazers had very contrasting effects on coral

populations: Under intense exploitation of grazers, the coral size distribution

become bimodal and the population experienced a bottleneck among the juvenile

size classes. On reefs with high levels of grazers but frequent hurricane distur-

bances, populations were characterized by high numbers of juvenile and pubescent

colonies while the adult part of the population experienced a bottleneck.

Improvement and Adjustment to Different Questions

This study illustrates that the overall outcome of the model could not have been

predicted by simply examining the parametrisation due to the intricate nature of

biotic and abiotic interactions across spatial and temporal scales. The results of this

model received strong support by proceeding studies using modified versions of the

same simulation model. The importance of sea urchins for the ecological balance
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between corals and macroalgae on Caribbean reefs was confirmed by Mumby et al.

(2007) who investigated the susceptibility to and persistence of macroalgal domi-

nance on Caribbean reefs. Mumby and Hastings (2008) extended the model by

including vicinity to mangroves as an additional factor and two different depths

as additional parameters in order to assess the relative importance of mangroves

(they function as nursery grounds for Scarid fish) on the abundance of parrotfish on

adjacent reefs. In another recent study Mumby (2009) uses the same model to assess

the stability of alternative stable states of Caribbean reefs. Here, the parameters

pertaining to external disturbances were omitted and instead the model concentrates

on the inherent parameters of coral community dynamics. In contrast to the model

discussed here, growth rates, sizes at maturity, overgrowth and mortality were now

not set as fixed values but determined probabilistically, which allows for a higher

degree of natural behaviour of the model due to a broader range of natural

variability. The reef community dynamics were investigated with regard to differ-

ent levels of grazing intensity ranging from 5 to 40%. Simulations were run in

6 month intervals for a total of 36 single reefs. With this approach, Mumby was able

to identify clear threshold levels of grazing intensity (i.e. the level of grazing

necessary to prevent the shift to an alternative state) for different sets of initial

coral cover and different levels of grazing.

Spatially explicit modelling approaches to understand the impact of grazers on

coral reefs have only emerged over the past 5 years. The models by Mumby offer a

novel approach to overcome the problem of reef complexity, which to date has

complicated experimental studies of the interactions of multiple disturbances.

However, a word of warning should be issued regarding the organisation in a

lattice. The complexity of the model may lead to complications in the definition

of clear rules for interactions between individual organisms which are not located in

the same cell. For example, if a coral outgrows its cell, the part that protrudes into

the adjacent cell becomes an integral component of that cell and thus ‘fragmented’

from its original colony. It starts to function as a new and smaller entity with rules

and trajectories of a juvenile coral colony, since age is determined via size. The fact

that most processes are determined via a von-Neumann-Neighbourhood might

compensate for the loss in detail to some extent, however, depending on the

questions asked, there may still be a risk to ignore certain important processes.

17.6 Summary and Conclusions

The techniques currently available in ecological modelling all bear certain limita-

tions and the choice of a given approach depends on the question of interest.

The exclusive utilization of differential equations (Sect. 17.2) can provide

interesting results for different fishing scenarios in a relatively complex simulation

environment, that may help to improve fisheries practices. Often these techniques

lack resolution, however, as all components are aggregated into functional (larger)

groups, which substantially obscure the inherent natural variability among relevant
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components. This can be compensated through the employment of a cellular

automaton as illustrated by Langmead and Sheppard (2004). It allows for spatially

explicit analyses through disaggregating populations into single interacting coral

polyps. On the downside, because the rules of this CA model do not address cell

aggregations (i.e. the whole coral colony) they cannot change in relation to individ-

ual colony attributes.

The grid based approach by Mumby (2006) allows to integrate a suite of

important components of a coral reef system, which makes it possible to describe

the complex characteristic processes for coral reef communities. This application

constitutes a novel approach to the analyses of resilience and phase shifts of coral

reefs. It builds on the concept of a cellular automaton by implementing distinct

procedures within one cell and allows for dynamic changes of certain rules, e.g.

larger colonies are less likely to be overgrown by algae than smaller ones. The

combination of different modelling techniques does not only improve model

performance but also helps to identify some of the deficits in our current research

and may reveal how future experiments could be adjusted in order to fill the gaps.

Yet, the structure with distinct spatial entities – the cell – limits this approach in its

flexibility. The formulation of rules for several cells or across cells becomes very

complicated and could be easier accomplished by utilizing a continuous area.

In contrast, individual based modelling (IBM) is free from such limitations

because the model area does not have to comprise spatial aggregation of the acting

units. Yniguez et al. (2008) give a good example for an applied IBM. In their model

the environment is organized as a grid which holds different states for environmen-

tal variables. Interactions either between algal modules and/or algal modules with

their environment are possible in all directions with dynamic changes of rules in

relation to the component’s attributes. The utilisation of IBM offers several useful

tools to study resilience as object-oriented programming (Chap. 4) provides the

possibility for a detailed description of organisms (as objects) in separate subpro-

grams (see also Chap. 12). This constitutes a very fine-tuned approach to model

detailed interactions on small scales. In addition, an IBM allows to integrate all

earlier developed modelling techniques, like equation based sub-models or CAs,

wherever intended or needed to create an application with highly dynamic perfor-

mance and realistic behaviour.

Understanding the factors supporting resilience and the characteristics of phase

shifts is imperative if we want to understand current and future coral reef dynamics.

Both resilience and phase shifts comprise highly complex processes that are not yet

fully understood. Over the past few years modelling has become a prominent tool to

tackle ecological questions in coral reef science. Modelling has not only contrib-

uted a great deal to advance our understanding of potential driving forces pertaining

to reef resilience, but also helped to identify the current scientific gaps and research

deficits in this discipline. Future modelling approaches that merge past and present

information derived from previous models, with data of specific sites will substan-

tially enhance our abilities to identify local driving forces of reef dynamics. This

may be employed in management programs that can help to improve the sustainable

utilisation of resources.
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Chapter 18

Trophic Cascades and Food Web Stability

in Fish Communities of the Everglades

Fred Jopp, Donald L. DeAngelis, and Joel C. Trexler

Abstract We introduce the trophic organisation structure of aquatic ecosystems by

giving a short overview on some classic landmarks from ecological theory. The

concept of trophic cascades describes interactions in food webs that descend the

whole structure. They start at the top node of the highest carnivores, the piscivores,

by increasing the piscivore’s biomass which in turn triggers changes in the succes-

sive trophic hierarchical levels. The concept of trophic cascades has long since

passed from theoretical into applied ecology. We demonstrate this with an example

of a spatially-explicit simulation model that is used to understand the high varia-

bility in the aquatic trophic structure of the Everglades marshland. Changes in

hydrology of the Everglades over the last several decades have reduced the hydro-

period in some areas and may have diminished foraging fishes and their food base.

A key component for restoring fish productivity to historic levels is to understand

and to improve the spatio-temporal water patterns in the wetlands. Therefore, by

applying the simulation model we investigated the dynamics of an aquatic food

web with the following components: primary producers, detritus, invertebrates,

fish consumers and nutrients. For this purpose, a hydroscape of 20 � 20 km was

modeled that shows a natural-like elevation gradient. The annual fluctuations

in water level were imposed as sinusoidally changing hydrology on the whole

system, which resulted in dynamic patterns of flooded and non-flooded areas. We

performed long-term simulations over a period of 10 years and examined how the

trophic levels reacted to changes in the water level; in particular, how the changing

water levels affected trophic cascades. We discuss the consequences of these

results for management and restoration of the Everglades aquatic communities.
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18.1 Trophic Organization of Aquatic Ecosystems

From the point of view of functional organization, all ecosystems are characterized

by fluxes in matter and energy. They have structural components, trophic levels,

which enable and control the transport of these fluxes through the ecosystem. When

we speak of a trophic level we mean all biota in a food chain or food web of an

ecosystem that are the same number of links away from the ultimate source of

energy, which is usually solar radiation. In the lowest trophic level (level 1) are the

primary producers, which are normally green autotroph plants, and which support a

chain or web of consumers. Depending on their feeding behaviour, the consumers

are separated into the group of herbivores (trophic level 2), which feed on the

producers, first-order carnivores (trophic level 3), which feed on herbivores, and,

often, second-order carnivores (trophic level 4) that feed on first-order carnivores.

Whether there are still higher level carnivores is ecosystem-dependent. Decom-

posers, which enable the recycling of nutrients by feeding on the organic litter, are

often classed into the bottom of the food web. In 1941 the ecologist Raymond

Lindeman (1941) published a fundamental study on the trophic interrelations of the

Cedar Bog Lake, Minnesota, USA, a late stage eutrophic lake. Due to the theoreti-

cal implications and the high number of successive studies that were motivated by

the work of Lindeman, this study can be regarded as one of the most important

studies for modern aquatic community ecology.

Most importantly, Lindeman’s work focused on the flow of energy up the food

chain from the autotrophs to the top carnivores, and thus on the dependence of each

trophic level on the one below it. Biomass usually decreases with each higher

trophic level, which is referred to as trophic pyramid. Lindeman explained this

phenomenon as a consequence of respiration within each trophic level and of the

high losses of energy during transfer from one trophic level to the next, due, in part,

to The Second Law of Thermodynamics. Also, he assumed that control of these

flows went primarily in one direction, from the autotrophs up to higher trophic

levels. In the sense that any given trophic level depends on the conditions of the

level below it, Lindeman expressed here the idea of bottom-up control. Figure 18.1

shows such a typical example of pure bottom-up control in a four-level food chain

in an ecosystem.

Hairston, Smith, and Slobodkin (1960) reviewed a number of different food chain

studies derived from different habitats. They concluded that interspecific competi-

tion exists within each of the trophic levels of the producers, the carnivores and the

decomposers. They also inferred that the herbivore trophic level is rarely food-

limited; instead it appears to be predator-limited. Hence, Hairston et al. introduced

the idea that in food chains the controlling effects can also go ‘down’ the food chain,

which is a mechanism that is termed top-down control. These two concepts of

bottom-up and top-down control in trophic structures of ecosystems have been and

are still widely investigated and seem to be of extraordinary importance for aquatic

systems, in particular (DeAngelis et al. 1996). The concepts have been extended in

such a way that ecologists encompass not only the impacts of lower on higher
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hierarchical levels with the concept of bottom-up control, but also the impacts of

nutrients, physical factors (e.g. temperature) and chemical factors (e.g. water pH,

dissolved oxygen). Othermajor physio-chemical factors that affect lake productivity

are light, water-turnover time and vertical mixing. However, it has been found in

recent years that even when all of these physical factors are taken into account, they

can only explain approximately half of the observed variability in primary produc-

tivity and the productivities of higher trophic levels. There is a lot of variation in the

production of comparable trophic levels among lakes that have the same phosphorus

input or nutrient loading. Carpenter et al. (1986) have offered the hypothesis that

much of this variation can be explained by “cascading trophic interactions”. These

are interactions that cascade down food chains, starting from the highest carnivores,

the piscivores. An increase in piscivore biomass causes a decrease in planktivore

limited by
Carnivore 1
availability

limited by
Herbivore
availability

limited by
primary

productivity

Primary
Producer
Primary

Producer

limited by
resources

HerbivoreHerbivore

Carnivore 1Carnivore 1

Carnivore 2Carnivore 2

Fig. 18.1 Pure bottom-up control in a four level food chain. Due to the limitations, for every level

strong competition effects apply
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biomass, which leads to an increase in herbivore biomass (as well as allowing the

herbivore community to shift towards larger zooplankton, which are preferential

prey of planktivorous fish), and thus to a decrease in phytoplankton biomass.

Depending on certain ecological conditions and for certain times of the year the

length of the food chains can vary which is paradigmatically depicted in Fig. 18.2.

The ability of predatory fish to control prey populations is well-documented.

This can cause suppression of the forage species, which affects species composition

and size structure of the zooplankton community, and in turn influences the

phytoplankton community. Important earlier work (e.g. Brooks and Dodson

1965) examined the impact of fish predation on zooplankton size structure, showing

that the planktivorous fish eliminated the large zooplankton (daphnids), which

allowed algae to reach high concentrations. The trophic cascades typically studied

by limnologists are similar, but usually extend from piscivorous fish down to

phytoplankton. To explain the concept in more detail, consider a simple food web

for a typical small lake in northern U.S., as shown in Fig. 18.3. You will note that

this web is not quite chainlike, so the trophic levels are not perfectly distinguished.

There is much experimental evidence that consumers in this web can control prey.

Changes in large piscivorous fish densities (bass, pike, or salmonids) have been

shown to cause changes in vertebrate planktivore populations (e.g. bluegills, sun-

fish, yellow perch). Large numbers of vertebrate planktivores tend to reduce large

crustaceous zooplantkon and invertebrate planktivores. In the absence of vertebrate

planktivores, invertebrate planktivores deplete small crustaceous zooplankton and

rotifers. The effects of zooplankton on phytoplankton are more complex, because

zooplankton help recycle nutrients (good for phytoplankton) as well as feed on

+

H

–

+ –

+ –
P

P

C

H

P

Fig. 18.2 Conceptual Model of Trophic Cascades. P Producer, H Herbivore, C Carnivore.

The possible impact between the levels is depicted by the signs
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phytoplankton. Furthermore, the size structure of the zooplankton makes a diffe-

rence in what will happen. So we see that the effects of planktivores on zooplankton

are complex. A particular planktivore (vertebrate or invertebrate) may not signifi-

cantly affect the size distribution within the zooplankton (herbivore) trophic level;

that is changing the ratio of large to small zooplankton. This can still have a

downward effect. Large zooplankton (e.g. Daphnia) tend to have a much stronger

negative effect on phytoplankton than smaller zooplankton, so cascading effects

may still occur. The effect of zooplankton on phytoplankton is also somewhat

complex, because (1) some phytoplankton are inedible to zooplankton, and (2)

zooplankton may sometimes have a beneficial effect on some phytoplankton by

increasing the speed of nutrient recycling into the water column.

In the following, we adapt these theoretical concepts on trophic structuring and

cascades to the situation of the Florideanmarshlands of the Everglades in the southern

U.S and apply them to analyse the implications for the stability of its ecosystems.

18.2 The Aquatic Food Web of the Everglades

The Everglades ecosystem is a subtropical heterogeneous marshland, which

offers diverse habitats for a wide variety of species (see Chap. 21), including

large rookeries of wading birds. The underlying food web of small fishes and

invertebrates are the energy base for much of the biodiversity of the higher trophic

Piscivore

Invertebrate
Planktivore

Vertebrate
Planktivore

Rotifers Small
Crustacean
Zooplankton

Large
Crustacean
Zooplankton

Inedible
Phytopankton

Edible Net
Phytoplankton

Nannoplakton

PO4, NH4

Fig. 18.3 Conceptual model of trophic structure in a typical lake, as described by Carpenter

et al. (1986)
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levels. Due to the distinct seasonality with dry and wet phases, the seasonal changes

in the distribution of flooded and non-flooded areas are extremely pronounced. As

the elevation gradient of the Everglades landscape is only minimal, small differ-

ences in mean water levels can alter the fraction of flooded habitat drastically.

Surviving organisms must be able to cope with these altering hydrological condi-

tions (Trexler et al. 2002), which also determine the available foraging area for

wading birds and thus, have influence on their breeding cycles. In this context, a

substantial decline of the traditional bird communities in the Everglades has

occurred over the past several decades (Ogden 1994). There is empirical evidence

that in wetlands large planktivorous and piscivorous fish that are sensitive to

seasonal changes in water depths, periodically move in and out of local areas in

which the water depth changes (Trexler et al. 2005; DeAngelis et al. 2007). This

affects the temporal pattern on which trophic cascades influence the Everglades

food web (Dorn et al. 2006; Chick et al. 2008). Within the cycle of annual re-

flooding of extensive wetland areas, trophic cascades caused by invading fish can

lead to significant changes in the whole aquatic food web structure of the Ever-

glades (DeAngelis et al. 2010). Depending on individual traits of the fish species,

they can disperse and exploit different habitat types; e.g. opportunistic fish species

can disperse into and exploit re-flooded areas first, while gleaner species, which are

good at exploiting resources at low levels, are more successful in dominating

permanently flooded wetland areas. The specific combination of heterogeneity in

elevation and fluctuations of water level can lead to a community of multiple

coexisting species feeding on the same resource (DeAngelis et al. 1998; Jopp

et al. 2010).

We now investigate the dynamics of such a food web structure with an annual

standard water level fluctuation of 0.6 m amplitude. To do this we introduce a

spatially-explicit model framework (for detailed model descriptions, see: DeAngelis

et al. 2010; Jopp et al. 2010), that includes the main physical factors, seasonal water

level fluctuations and a linearly increasing topographic elevation. The model con-

sists of a simple aquatic food web, as well as rules of movement for certain species

populations in the simulated spatial environment. The food web consists of six

groups: a functional group of invertebrates, three separate small fish species,

which differ in their traits (F1 ¼ an intermediate fish, F2 ¼ a good disperser,

F3 ¼ a good exploiter), crayfish, and a piscivorous fish species, which is the top

predator. There is also a periphyton functional group, which is amixture of algae and

microbes that serves as a food source for fish and crayfish. Non-living pools exist for

detritus and nutrients. For each of these components, there is a set of specific

differential equations (see Chap. 6: Ordinary Differential Equations), which

describes the interactions between the components. The functional responses of

the small fish and crayfish are not Holling type 2, but rather Beddington–DeAngelis

(Beddington 1975; DeAngelis et al. 1975). This assumes that the fish are somewhat

territorial and thus self-limiting, and helps to stabilize the dynamics of the model.

The functional response of the top predator follows a Holling type 2 function. The

whole model is spatially explicit, with the food web dynamics occurring on a grid of

100 � 100 cells. Each spatial cell is assumed to be 200 � 200m, which results in an
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overall simulated area of 20 � 20 km. This two-dimensional topography increases

linearly from zero to 2 m along the full distance of 20 km in x-direction, which
simulates the slow increasing field elevation gradient. The model also takes into

account the seasonal cycle of flooding and drying, which is simulated by a sinusoidal

function, producing variability of the water level over the simulation time. For each

cell, the potential food web structure is the same, although living biota are assumed

present in a cell only when it is flooded, and the fish are present only when water is of

sufficient depth. During the execution of the model, the cells show local heteroge-

neity due to the interaction of different elevation, water stands and biomass levels.

There is seasonal net movement of the fish and crayfish: (a) movement out of

cells that are drying, and (b) movement into cells that are becoming flooded. During

the period of rising water, a fraction of the population in a given cell is allowed to

move up the gradient to an adjacent newly flooded cell, while during falling water

some fraction of a population is able to escape being stranded by moving to cells

that are still flooded. The fish are also allowed to diffuse among flooded cells and

exploit the different habitat resources. To examine how the model components

react to annual changes in the water level, long-term simulations over a period of

10 years are performed. In particular, the model predicts biomasses of fish across

the heterogeneous landscape over time.

Due to page limitations, full equations and parameters of the model are not

listed here, but are documented in Jopp et al. (2010), DeAngelis et al. (2010), and

can be found as supplementary material on the MCED webpage (www.MCED-

ecology.org).

We use this modelling framework to meet the following aims:

l Describe the resulting temporal pattern of the aquatic food web under the above

mentioned conditions
l Investigate how important trophic cascades vary temporally in the model and

what this may imply for the southern Florida fish community.

18.3 Model and Simulation Results

We now examine the temporal dynamics of the food web subject to this baseline

hydrological regime, with a water level fluctuation of 0.6 m in amplitude.

Figure 18.5 shows six snapshots in time through the annual hydrologic cycle

along the elevation profile throughout a year for the six higher trophic levels):

invertebrates, fish species 1, 2 and 3, piscivorous fish and crayfish. To achieve

stable patterns, long-term simulations over 10 years were performed, and the last

year, year 10, is displayed and analysed here.

In all sub-figures elevation increases from the left to the right, by about 2 m

over a 20-km distance. The first three panels (Fig. 18.5a–c) refer to the dry

season, when the water levels are decreasing. The most conspicuous features in

these panels are the pulses of fish and crayfish that are retreating towards the
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flooded lower elevations (towards the left) as water levels decline. Fish 2 (good

disperser) moves ahead of Fish 1 (intermediate traits), Fish 3 (good exploiter),

and the crayfish. To the right, where the elevation is higher and fish density lower,

the invertebrates show a peak, as they are now free from fish predation. In addi-

tion, a remnant population of crayfish also survives, as they face less competition

from the fish.

As water levels continue to decline, the piscivorous fish will move to lower

elevation to the left where the cells are permanently flooded. As the water levels

begin to rise again (Fig. 18.5d), some fish begin to follow the water movement,

resulting in small population peaks, with the crayfish leading, followed by Fish

3. Subsequently, all species follow the water movement to gradually occupy

most of the cells (Fig. 18.5e), except for the last 12 or so cells at the right most

(Fig. 18.5f), which are permanently dry. Piscivores occupy some of the cells in

the higher elevations when permitted by adequate water depth, but in low

density, as they do not have time to build up high biomass. In the simulated

food web, there are three distinct food chains observed (see Fig. 18.4): periphyton-

fish/crayfish-piscivore, detritus-invertebrate-fish-piscivore, and detritus-crayfish-

piscivore. Because of these overlapping food chains, trophic cascades are not

clearly discerned. However, some top-down effects are observed in the simula-

tions as seen in Fig. 18.5d, where high density of piscivores is associated with

reduced fish and crayfish density, and high density of invertebrates. In the vicinity

Nutr

Peri Detr

Invt

F1F1F2F3Cray

Pisc

Fig. 18.4 Trophic structure of the basic food web structure of the Southern Florida fish commu-

nity model. Arrows indicate predator/prey relationships. Pisc Piscivorous Fish, Cray Crayfish,

F1, F2, F3 Small fish species, Invt Invertebrates, Peri Periphyton, Detr Detritus, Nutr Nutrients
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of the wet-dry water margin, these cascading effects become more complex and

may be difficult to distinguish from the pulses of invading or retreating popula-

tions. In Fig. 18.5a, for example, the invertebrates show a double peak around the

wet-dry water margin. The invertebrate’s peak observed on the right side is the

Fig. 18.5 Simulation output of the mean biomass of the food web along an elevation gradient

during seasonal variations in water level in the last year (year 10). Starting from day 50 (a) each 60

days a ‘snapshot’ was made until the end of the simulation (f). The water level amplitude during

this simulation run was 0.6 m
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result of being free from fish predation. Further, there is a decrease in invertebrate

population to the left, which is a result of an increase in fish populations after the

fish have been freed from piscivore top-down predation.

18.4 Discussion and Outlook

Trophic cascading effects are an important feature of the trophic structure of

aquatic ecosystems. After describing the working mechanisms, we applied the

theory with a spatially-explicit model that we used for long-term simulations of

10 years for the dynamics of the basic structure of the Everglades food web.

A specific feature of the Everglades is the annual fluctuation in water level,

which is also fundamental to many other wetlands; e.g. the Pantanal (Heckman

1998), Doñana (Serrano and Serrano 1996). We have used our simplified model

representation to study such a system using a minimal food web model on a

100 � 100 cell landscape, which has an elevation gradient and is exposed to

fluctuating seasonal water levels. The model structure and parametrisation were

suggested from empirical knowledge derived from the Everglades system. Some

important features stand out in the computer simulations.

l The fish, in particular, but also crayfish, show distinctive pulses at the edge of the

drying front as water levels decline. Some small pulse-like behaviour can be

observed following the flooding front during rising water level, but the pulses are

much smaller. The difference is due to two main effects. First, nearly all fish that

are not stranded move to lower elevation in response to the drying front. On the

other hand, when cells are re-flooded, a smaller fraction of the fish invades the

newly flooded cells. A perhaps more important reason for the weaker pulses with

rising water is that fish moving up the flooding front deplete the supply of fish in

the donor cells, which are resupplied slowly by diffusion from the flooded cells

at lower elevations. When water levels are falling, the retreating fish pile up with

fish already present in the still-flooded cells, which in turn pile up in the cells

below as water continues to drop.
l Trophic cascades can be discerned in the simulations, but they are relatively

moderate compared to such cascades that we have discussed before. One

reason for this may be that our food web is not a linear trophic chain, but

contains omnivory as well; that is, piscivorous fish consume all of the fish

species, as well as crayfish. Although omnivory is known to work against the

strength of trophic cascades (Strong 1999; Nystroem et al. 1996), lake systems

contain omnivory as well, so this does not completely explain our results.

Another reason, however, is that diffusion is an important mechanism in our

model. Smaller fish can move in and out of the zone in which there is a high

concentration of piscivores, which may tend to smooth out the top-down effects,

which is supported by other studies (Howeth and Leibold 2008; Holyoak et al.

2005; Leibold et al. 2004).
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Fig. 18.6 Typical cycle of water levels in an area of Everglades freshwater marsh: (a)Water levels

are high and both small and large fish are present in the flooded marshes. Trophic interactions
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Some of the key patterns captured by this model mirror patterns observed in

field data on Everglades aquatic communities. For example, when marshes are re-

flooded following the dry season, the density of fish and some invertebrates is low

in both the newly re-flooded and continually inundated marshes. The principles of

this mechanism are depicted in Fig. 18.6. It has recently been noted that the strength

of top-down biotic interactions declines following a re-flooding event and that the

interaction web varies seasonally and spatially, depending on the position in the

landscape and history of drying at the site and around it (Trexler et al. 2005; Liston

2006). Another major issue for wetland management is the issue of permanently

flooded water bodies, like canals and swales. These were built to serve engineering

purposes; that is, to expedite water movement and storage. However, there is

growing evidence that permanently flooded areas may provide opportunities for

introduced piscivorous fishes to persist in systems historically lacking such pre-

dators or become stabilized to their presence at low density (Cucherousset et al.

2007; Rehage and Trexler 2006). Future work with this model format can improve

our hypotheses about the role of permanent aquatic refuges in marsh ecosystems,

particularly in a landscape framework, to better direct future research on this

important management topic.

The fascinating mechanisms of trophic cascading effects are not only an enrich-

ment to ecological theory, but can also be applied to management and conservation

issues of aquatic and semi-aquatic ecosystems, where they help to understand the

complex dynamics and variability in the participating hierarchical levels.

Fig. 18.6 (continued) between these functional groups can occur in the marshes. (b) As water

levels recede, large fish and then small fish move into refugia of deeper water. (c–d) If water levels

reach low levels, deep ponds and solution holes may be the only refugia remaining. Intense

predation by large fish on small fish may take place in the ponds. When the water levels rise

again, the remaining fish can explore the hydroscape and the cycle continues [modified from

DeAngelis et al. (1997), illustration by M. Trexler]
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Chapter 19

Lake Glumsø: Case Study on Modelling a Small

Danish Lake

Søren Nors Nielsen and Sven Erik Jørgensen

Abstract The case study on the small Danish post-glacial Lake Glumsø shows

some of the highlights of aquatic ecosystem research over the time span of more

than 30 years. The research at Lake Glumsø is closely linked to the development of

ecological modelling as a discipline, inspired a wide range of related working

approaches as well as advancements in ecological modelling and the development

in ecological theory.

In the early working phase, models based on differential equations were used

not only to describe the lake processes but also to methodologically identify the

optimal formalisation of the described processes. First, modelling applications were

continuously improved, thus providing a large body of functional representations

for the different compartments. A result of the intense discussions of the early

model structures was a new approach called structural dynamic modeling which

allowed for varying numbers of variables and a model structure that could change

during simulation time. Continuing the search for optimal trade-off between model

complexity on one side and efficiency and precision on the other side, machine

learning techniques were applied to find out, whether this could help to identify the

most reasonable model structures which were tested with Lake Glumsø data and

many other lakes world wide. In further contributions to ecological theory, the

question was tackled whether overall ecosystem characteristics, like exergy, bio-

mass production or species composition, do converge in a successional process

towards optimal values. This led to the development of ecosystem goal functions,

which was part of an international ecosystem research debate on the theoretical

patterning and the dynamics of ecosystems.

Collaborating research groups on ecosystem research benefited very much

from the experiences made and the knowledge gained from the Lake Glumsø

studies.
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19.1 Introduction: How a Small Danish Lake Helped to

Advance the Development of Ecological Modelling

As new scientific options and approaches emerge, they are frequently tested and

applied in a reference case. One such case with a high impact on ecological

modelling was the development of the Lake Glumsø model. The lake is a small,

shallow, post-glacial lake in Denmark situated on the Danish island of Seeland,

78 km away from the capital, Copenhagen with 266,000 m2 surface area and 2.4 m

maximum depth. This chapter will outline the importance of this lake to the

advancement of ecological modelling over a time span of more than 30 years. It

also presents an interesting illustration on how the results from a prototypic case

may inspire a wide range of other work and developments in application as well as

in establishing new techniques.

19.1.1 Why Studying Lake Glumsø?

There is nothing special about this lake. In Denmark, Sweden, Germany, Poland

and various other countries throughout the Northern temperate climate zone there

are similar post-glacial lakes. Therefore, results obtained for one of them can be

helpful to understand the situation of many others: it is a prototypic case. Lake

Glumsø, was selected as a case study because: (1) the hydrology was simple, (2) the

municipality had planned and decided to invest in waste water treatment to clean up

the lake, (3) the lake was highly eutrophic, which made it reasonable to expect a

significant improvement following the intended measure, (4) the retention time was

only 5 months allowing a fast response of the lake to validate model prognoses.

During development of the model for Lake Glumsø it was possible to provide a

robust model structure that was widely applicable to simulate dynamic processes

requiring minor or moderate adaptation to be used for other lakes, estuaries,

reservoirs and near coastal waters. The modifications required the parametrisation

of involved processes referring to, e.g., size, depth, and nutrient load. As a proto-

type, the Glumsø model contained the relevant variables, functions and parameters

in a clearly presented and well accessible form.

Starting in the 1970s, lake modelling had become important for several reasons.

As a result of an increased use of chemicals in households and diversion of more or

less untreated sewage into lakes, as well as an increased use of chemical fertiliser

inputs in agriculture, eutrophication of lakes and rivers had become widespread and

a major concern in environmental protection. As other works suggest (e.g. Scheffer

et al. 1993), specific concepts were required to understand the dynamics of the

involved processes, in particular to estimate potential outcomes of management

measures to anticipate effort and the achievable results. Important pioneer work in

these fields has been done using the Glumsø study site.
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19.1.2 The Database

Inmeasurement campaigns from 1972 to 1975 the following data for the state variables

was acquired: total and soluble phosphorus, total nitrogen, nitrate, nitrite, ammonium,

phytoplankton (biomass and chlorophyll a), zooplankton in the water column, total,

interstitial, and exchangeable phosphorus, total interstitial, and exchangeable nitrogen

in the sediment. The processes of primary production, and sedimentation were

measured in the field. Exchange of nutrients between sediments and water column

was determined in laboratory. For the forcing functions inflows of water (tributaries

andwastewater), outflow rate, aswell as total and soluble phosphorus, total and soluble

forms of nitrogen, phytoplankton, water temperature, light intensity, and precipita-

tion were determined. Later, the database was expanded with series of frequent

measurements, three times a week for themonths of April andMay. For further details

on the available database see (Jørgensen et al. 1973, 1986; Jørgensen 1976)

19.2 Modelling and Simulation: The Basic Approach

with Differential Equations

In the early 1970s, differential equation based modelling systems were the predom-

inant approach. From the comparatively few simulation tools that existed and that

could cope with complex dynamics, the Continuous Systems Modelling Program

(CSMP) developed by IBM was chosen. The program is a pre-compiler and parser

that serves as a FORTRAN interface. It was developed for engineers to solve first

order time dependent differential equations. Likewise its ability to handle systems

with big differences in time constants as well as the possibility of direct integration

of FORTRAN programming lines were important in making this choice.

The following are the most important variables and processes that were included

in the model:

State variables:

l Minerals: total and soluble phosphorus, total nitrogen, nitrate and nitrite,

ammonium
l Minerals in the water column: nitrogen and phosphorus
l Minerals in the sediment: nitrogen and phosphorus total, interstitial, and

exchangeable
l Phytoplankton: represented as biomass, carbon, nitrogen and phosphorus
l Zooplankton and fish represented as biomass

Processes are indicated in Fig. 19.1. For further information on model structure,

processes and parameters see (Jørgensen 1976; Jørgensen et al. 1978).

In total, the implementation consisted of 19 state variables, and 55 parameters (i.e.

constants), which already represented parts of the lake dynamics well (Fig. 19.2).
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During an early state of development, the model was already applied more

widely than previous models as an experimental tool to identify an optimal formu-

lation of processes. Five important observations were made during the development

of the model:

Fig. 19.2 Results from an early version of the model. Productivity in different scenarios [redrawn

from Jørgenson (1976)]: (a) phosphorus is not removed from the waste water, (b) waste water with

a discharge of 0.4 mg P/l, (c) waste water with a discharge of 0.1 mg P/l

Fig. 19.1 Conceptual diagram of the Glumsø model at the final state of development, where the

biogeochemical cycles are aggregated
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l It was necessary to develop a more complex description of the sediment water

exchange than applied initially (Jørgensen et al. 1982).
l It was necessary to apply a two-step production sub-model of the phytoplankton

involving initial and subsequent uptake and a determination of actual growth by

intracellular mineral nutrient concentrations.
l A simple Monod kinetics (in analogy to the form frequently used for enzymatic

catalysis) was tested but failed in the verification and calibration phase.
l The presence of various functional types of zooplankton, herbivores, detrivores

and omnivores was tested and found not to be important.
l It was necessary to apply a carrying capacity and threshold values for grazing of

zooplankton.

While the initial model was able to simulate the correct level in each compart-

ment, the temporal pattern was not sufficiently met. An additional, intensive

measuring program was set up for a short period covering the spring bloom in

order to calibrate the model involving identification of a proper maximum growth

rate and temperature dependency of the phytoplankton. While temporal density of

data input can be important, it is not recommended to use a temporal resolution

that is too low, as it increases the noise of predictions. In a couple of studies the

model was found to perform relatively well even on other lakes, such as Lake

Balaton and also to perform well when compared with other models (Costanza and

Sklar 1985).

19.3 Further Elaboration of Modelling Techniques Departing

from the Lake Glumsø Model

The Lake Glumsø model served as a blueprint for other lake models. Several model

descriptions were inspired or advanced by pioneering work done at this lake (see

Jørgensen and Bendoricchio 2001). A list of other case studies based on the Lake

Glumsø model is shown in Table 19.1.

The many applications that have been possible illustrate that the framework is

robust. However, for each case it was necessary to elaborate which additional state

variables and processes were of importance and therefore needed to be incorporated

in order to simulate the system under consideration.

In addition to its function as a basis for advancement in lake modelling, the case

also served as an example to develop new modelling techniques and improve model-

ling approaches. Some of the developments are briefly described in the following.

19.3.1 Discussing the Model Structure

The observed applicability of the model for a broad number of cases sparked a

considerable discussion on what aspects of the lake dynamics were the most
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important ones and which ones were negligible. Since eutrophication was in the

focus, nutrient dynamics and the dominant animal, plant and microbial species

involved in the turnover of mineral nutrients and primary production were most

relevant. To what extent the inclusion of particular species was necessary or whether

an aggregated representation (as a black box) was sufficient, was largely discussed

(e.g. Jørgensen et al. 1978). It was already at an early state discussed for how long

the “final” structure would be able to simulate the system in a quantitatively reliable

manner. Retrospectively, it turned out that with the improvement in the condition of

Table 19.1 Case studies using the Glumsø model as platform for development (type of system,

system name, level of model development, modifications needed; modified from Jørgensen and

Bendoricchio 2001)

Lakes, shallow System Modifications made Level

One layer Glumsø version A Basic version 7

Glumsø, version B Non-exchangeable nitrogen 7

Lake Gyrstinge Level fluctuations, sediments exposed to

air

4–5

Lake Lyngby Basic version 6

Lake Bergunda Nitrogen fixation 2

Broia Reservoir Macrophytes, two boxes 2

Lake Great Kattinge Re-suspension 5

Lake Svogerslev Re-suspension 5

Lake Bue Re-suspension 5

Lake Kornerup Re-suspension 5

Lake Søbygård Structural dynamic model 6

Lake Balaton Adsorption to suspended matter 2

Lake Annone Structural dynamic model 6

Lake Balaton Structural dynamic model 6

Lake Mogan Only P-cycle, structural dynamics,

competition between submerged

vegetation and phytoplankton

6

Stadsgraven,

Copenhagen

4–6 interconnected basins 5/6

Copenhagen, inner

lakes

5–6 basins 5

Lakes, deep more

layers/boxes Lake Victoria Boxes, thermocline, other food chain 4

Lake Kyoga Other food chain 4

Lake Mobuto Sese

Seko

Boxes, thermocline, other food chain 4

Lake Fure Boxes, nitrogen fixation thermocline 7

Lake Esrom Boxes, Si-cycle, thermocline 4

Estuaries

Ringkøbing Firth Boxes, nitrogen fixation 5

Roskilde Fjord Complex hydrodynamics 4

Lagoon of Venice Ulva/Zostera competition 6

Level indication: 1 – conceptual diagram selected, 2 – verification has been carried out,

3 – calibration using intensive measurements, 4 – calibration of the entire model, 5 – validation:

object function and regression coefficient has been found, 6 – validation of a prognosis for

significant changed loading has been carried out or the development of structural dynamic

model (SDM), 7 – validation of a prognosis and development of SDM
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the lake, i.e. the lowering of the nutrient load through the establishment of sewage

treatment, the species composition considerably changed. This also influenced the

characteristics of the growth dynamics and the nutrient budgets, and thus the overall

ecology (Scheffer et al. 1993). The lake responded differently to a comparable

impact when the biocoenosis consisted of different organisms.

19.3.2 Structural Dynamic Modelling

A further approach where the lake model helped to advance ecological theory

was structural dynamic modelling. Only a short time after measures had been

undertaken, Lake Glumsø showed the first signs of a shift in the species

composition of the phytoplankton and zooplankton community. In the first

period this appeared not to be important to the quantitative predictions of the

model and the validation of the prognosis was performed in an acceptable manner

(Jørgensen et al. 1986). This underlines the achievement of the approach as it was

the first lake model where it was possible to validate a prognosis. However, the

subsequent shift was not captured well by the initial model. This refers to the fact

that conventional differential equations have a fixed model structure which

describe only the quantitative change of particular variables. What if the number

of variables and/or the structure of the equations changes during the simulated

time interval? This was investigated in context of structural dynamic modelling.

In fact, this approach was useful, since the dominant species had changed during

the lake restoration that reduced the nutrient load combating eutrophication.

The overall approach of structural dynamic modelling was described in (Jørgen-

sen 1986, 1992). Specific results were also presented in Jørgensen (1995) and

Nielsen (1995).

19.3.3 Goal Functions

As an important issue in ecological theory, it was discussed whether certain

characteristic features develop towards specific (optimal?) values on the level

of the entire ecosystem. Are there coherent trends resulting from the interaction

of the components, in form of a specific ecosystem state, that was optimized

during succession? At a very early state the exergy function derived from a

thermodynamic analysis of the ecosystem (Jørgensen and Mejer 1979, 1981,

1983; Mejer and Jørgensen 1979) was considered as a possible candidate to

govern the evolution of ecosystems with time. The function was found to be

closely correlated to the buffer capacity of the system (Jørgensen 1982) and it

was tested as a goal function for Lake Glumsø by Jørgensen (1986) and later

Salomonsen and Jensen (1996). Likewise, its importance was analysed for other

similar Danish lakes (Jørgensen 1995; Nielsen 1995, 1997) where the role in
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selection of species composition of the zooplankton, phytoplankton and macro-

phyte community, respectively, were analysed. A large variety of approaches

were discussed in this context, see M€uller and Leupelt (1997) for an overview of

goal functions. From different perspectives, several features could be identified,

which were possible to be brought together in a theoretic ecosystem pattern

(Jørgensen 2002). Furthermore, biomass has been applied in two cases (Stra-

skraba 1979; Radtke and Straskraba 1980), exergy in 21 cases (Zhang et al.

2010). To test and exemplify some of the approaches, the Lake Glumsø model

was employed. The overall results supported the hypothesis of the application of

maximum exergy as a useful goal function as an emergent property of ecosys-

tem dynamics (Jørgensen 2002).

19.3.4 Equation Discovery

In the early phases of development of the Glumsø model a great deal of work was

put into the search for appropriate equations. During this period the search was

carried out largely because of the limited powers of computers at that time. In order

to save computating time, the most simple equation was looked for that was able to

simulate observations within acceptable accuracy. A more complex equation would

not only be more costly in computing time but would also likely involve more

parameters and eventually introduce a higher uncertainty in the model (cf. Costanza

and Sklar 1985). In some of the versions of the Glumsø model up to 7–8 different

expressions of various temperature dependencies were tested on process equations

for their efficiency, i.e. contribution in improving the precision of model predictions.

But does a model need to be entirely the work of a modeller – or could a

computer programme also be used in model development? At least computer

algorithms, machine learning techniques (see Chap. 14), can help in model con-

struction if it is to identify the most reasonable structure. If a large set of equations

exists that lead to nearly comparable results, a computer-based testing of alterna-

tives can be helpful. The approach is to some extent comparable with parameter

identification (see Chap. 23), where the value of a parameter is changed as long as it

fits an optimization criterion. Here, the number of equations and their algebraic

structure is varied and then the simulation results compared with the data. This is

what the work of Atanasova et al. (2006, 2008), Todorovski and Dzeroski (2006),

Todorovski et al. (1998) and Vladusic et al. (2006) describe using the Lake Glumsø

data as an example.

19.4 Overall Contribution

Over the decades, the focus of interest in ecological modelling has successively

changed – this went in line with alterations in the environmental situation. In the

late 1970s, the environmental impact of excessive nutrient input leading to
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eutrophication was successively reduced. The installation of sewage treatment units

mitigated detrimental effects. Often, as in the case of Lake Glumsø, a simple

diversion of pollutants were chosen as it was less expensive and it was still believed

that: “dilution was the solution to pollution”. With time, lakes are now cleaner than

they were 30 years ago. Certainly, modelling has helped to gain an understanding of

the nature of the processes involved. These changes are also reflected in the works

on Lake Glumsø.

The studies completed on Lake Glumsø influenced and benefited later ecosystem

research, such as the German ecosystem research programme from 1988 to 1999. In

the Bornh€oved Lakes Region with a special focus on Lake Belau (which is largely

comparable to Lake Glumsø) the approach was made to investigate aquatic and

terrestrial systems in parallel, to see how they influence each other, e.g. through

matter and energy flow. Here, models were employed as a primary synthesis tool

(Fr€anzle et al. 2008; Breckling et al. 2005).

Last but not least, the Glumsø studies helped to demonstrate the importance of:

1. Adequate background data, both for verification, calibration and validation of

prognosis

2. The use of modelling as an experimental tool

3. The multidisciplinary character of the modelling exercise

Moreover, the case has led to a new type of structural dynamic models that can

cope with the shifts in species composition of ecosystems.
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Chapter 20

Biophysical Models: An Evolving Tool in Marine

Ecological Research

Alejandro Gallego

Abstract Although they have been in use for some time, biophysical models are

still a relatively new tool in the study of the ecology of marine zoo- and ichthyo-

plankton. As the range of specific applications has expanded so has their level of

complexity and sophistication. From simple particle-tracking models simulating

the transport of zero-drag, neutrally buoyant particles, the field has evolved towards

the development of true biophysical models where the “particles” represent

biological entities with increasingly sophisticated submodels simulating their

development, survival and behaviour. Here I present the results of a modelling

experiment to illustrate the effects of increasing model complexity on the trajectory

and final distribution of “particles” (e.g. representing early life stages of marine

fish). The outcomes are widely applicable and demonstrate the importance of

selecting the appropriate level of complexity required for the specific research

objectives.

20.1 Background

If we were to pick an environment where physical processes have a major influence

on the biological entities that inhabit it, the marine environment would be a prime

candidate. Not only are marine organisms affected by the characteristics of their

physical surroundings such as temperature, salinity, oxygen and nutrient concentra-

tion, to name just a few, but they often live in a highly dynamic three-dimensional

world where they can be subject to turbulent motion, wave action, major advective

processes resulting from currents generated, e.g. by winds, tides and water density,

etc. It should then come as no surprise that biophysical models, i.e. models that

represent the interplay between physical and biological processes, are often the

This article is Crown Copyright. Marine Scotland 2011.

A. Gallego

Marine Scotland – Science, Marine Laboratory, 375 Victoria Road, P.O. Box 101, Aberdeen,

11 9BD, UK

e-mail: A.Gallego@marlab.ac.uk

F. Jopp et al. (eds.), Modelling Complex Ecological Dynamics,
DOI 10.1007/978-3-642-05029-9_20, # Springer-Verlag Berlin Heidelberg 2011

279



modelling tool of choice in marine ecology. This is particularly true in studies of

zooplankton and the early life stages of fish, which often reside in the water column

and have very limited locomotory capabilities. In this context, we generally refer to

biophysical models as Lagrangian Individual-Centred Models, although Eulerian
approaches and those that do not focus on the individual are also found in marine

ecological literature, as well as a number of cases of hybrid coupled Eulerian-
Lagrangian models. The definitions of the Eulerian and Lagrangian approaches

used throughout this chapter follow Turchin (1998).

Marine organisms can live within the sediment, on the seabed (the benthic layer)
and above it, the latter ranging from a close association with the bottom (the

demersal layer) to living on, or just below the sea surface. A considerable number

of organisms, from taxa that span from invertebrates to many species of fish live in

the pelagic zone, which is not directly associated with the sea bottom. Many of

these organisms have relatively limited locomotory ability, particularly in relation

to the horizontal flow of ocean currents. However, they are often capable of

significant vertical movement and are referred to by the collective term of plankton,
derived from the Greek planktos, which means errant or drifter. This also includes

the ichthyoplankton, representing the early life stages of many fish. Larval fish have

the ability to swim, and directed horizontal swimming has been demonstrated in a

number of species, although generally among the more developed and behaviou-

rally capable warm-water, rather than temperate, species (Leis 2007).

The physical environment provides planktonic organisms with their means of

transport, their living conditions (e.g. light, temperature, salinity, oxygen) and their

food. The direct observation of biophysical processes at scales relevant to plank-

tonic organisms is difficult. Technological advances such as Video Plankton

Recorders (e.g. Lough and Broughton 2007), Optical Plankton Counters (e.g.

Gallienne et al. 1996), holography (e.g. Sun et al. 2008) and high resolution

acoustic methods (Ross et al. 2008) show promising results. In comparison, tradi-

tional sampling methods based on, for example, nets or pumps are very limited in

their spatial and temporal coverage and resolution, and their sample analysis is time

consuming and dependent on increasingly rare taxonomic skills. Biophysical mod-

els do not suffer from some of the problems of observational methods and can

therefore be used to complement experimental and observational studies in the

marine field.

Cod (Gadus morhua) populations in the North Atlantic have been subject to a

high degree of exploitation from the mid-twentieth century, resulting in some

spectacular stock collapses in the western Atlantic (e.g. Myers et al. 1997). Our

study area corresponds to International Council for the Exploration of the Sea

(ICES) Divisions IV (North Sea), IIIa (Skagerrak) and VIId (eastern English

Channel), managed as a single “North Sea stock”, as well as ICES Division VIa

(the “west of Scotland stock”). Following concerns about the effect of an unsus-

tainable fishing pressure on the cod population (Cook et al.1997), ICES recom-

mended a number of stock recovery measures, which culminated in 2002 in the

recommendation of the cessation of fishing in certain areas (ICES 2003).

Although the management of the European cod stocks is implemented at coarse
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spatial scales, evidence from morphometry, tagging, microchemistry and genetic

studies (Hutchinson et al. 2001; Wright et al. 2006) points at the existence of a cod

meta-population (Hanski and Gilpin 1997), consisting of a number of distinct sub-

populations, relatively isolated, but with some degree of exchange between them.

Therefore, if the spawning biomass of local sub-stocks reaches a low level, where

depensation may threaten recruitment, the extent of immigration from neighbour-

ing sub-stocks may be critical for their recovery. Such exchange may be the result

of the advection of offspring or active migration by juveniles or adults but none of

these processes have been adequately quantified for the species.

Heath et al. (2008) designed an age-structured population dynamics model to

study the consequences of different natal fidelity scenarios on the meta-population

dynamics of North Sea and West of Scotland cod. The model followed discrete

cohorts (fish born on the same date), originating from ten spatially resolved discrete

sub-populations (“natal units”), as their numbers and maturity state (immature or

mature) progressed through time (year-classes). Each sub-population had spatially

defined spawning and nursery areas (identified from field survey data). The propor-

tion of offspring produced in each spawning area which reached a given nursery

area was quantified by Transition Probability Matrices (Paris et al. 2009) calculated

from the output of an offline biophysical model embedded within the population

dynamics scheme. The biophysical model has been described in detail by Gallego

and Heath (2003) and Heath and Gallego (1998, 2000) and it demonstrated that the

offspring transport and survival patterns were not temporally or spatially uniform.

The correct understanding of those patterns could be critical for the preservation of

the cod sub-population structure and potentially for the maintenance of the North

Sea and West of Scotland cod stocks (Heath et al. 2008). To achieve the level of

complexity in the biophysical model appropriate for the goals of this modelling

exercise and the biological patterns that it aimed to represent (Gallego et al. 2007),

I carried out a sensitivity analysis whereby I tested the sensitivity of the model

results (against a baseline model run) to a number of model components of varying

complexity by initially varying one component at time and finally a number of

combinations of those.

20.2 Description of the Analysis

The model made use of daily depth-resolved horizontal velocity fields (resolution

0.25� longitude by 0.125� latitude and 11 fixed-depth vertical layers) generated by a
statistical model of the north Atlantic circulation (SNAC; Logemann et al. 2004)

based on the HAMSOM hydrodynamic model (Backhaus and Hainbucher 1987)

and hourly M2 tidal velocities. Particles were seeded regularly (at the same hori-

zontal resolution as the HDM) into the model domain within the areas identified as

spawning locations (see above), which were resolved at 1.0� longitude by 0.5�

latitude rectangles. For these sensitivity analysis runs, year 2002 flow-fields were

used and the simulations were run from the start of egg production (see below) until
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the end of August. By this time, all surviving juveniles were expected to have

become demersal, following settlement to the seabed. The model time-step was 1 h.

Of all the possible components of the biophysical model outlined in Fig. 20.1, a

summary of the different model setup combinations used in the sensitivity analysis

runs is presented in Table 20.1.

The baseline simulation had a single particle release date within the spawning

areas (defined for each of the ten sub-populations), corresponding to their specific

date of peak egg production (ranging from day-of-year 62–69). The simulation was

purely deterministic in relation to horizontal transport (horizontal diffusion

HYDROGRAPHY
(HDM)

flowfields (u,v,w*)
T*, S*

others* (diffusivity, turbulence, etc.)

meteorological
data

“PARTICLE-TRACKING” MODEL

BIOLOGICAL
MODELS

initial conditions
(e.g. egg production*)

swimming
behaviour* (e.g. DVM)

growth*

mortality*
(“super-

individual”)

LOWER TROPHIC
LEVEL MODELS*

(e.g. NPZD)

HIGHER TROPHIC
LEVEL MODELS*final conditions

(e.g. settlement*)

Fig. 20.1 Schematic diagram of the components of a biophysical model of fish early life stages.

Asterisks indicate non-critical components; solid arrows are inputs/outputs and dashed arrows
indicate constituent components. Abbreviations: HDM: hydrodynamic model; u, v and w are the

three-dimensional velocity components, where w is the vertical component; T: temperature;

S: salinity; NPZD: nitrate, phytoplankton, zooplankton, detritus model; DVM: diel vertical

migration

Table 20.1 Summary of the model setup combinations used in the different runs (see text for an

explanation)

EP H.diffusion Behaviour Mortality Settlement

Single date No Fixed No Time

Single date No Fixed Yes Time

Single date 10 ppsp Fixed No Time

Single date 50 ppsp Fixed No Time

Single date 100 ppsp Fixed No Time

Gaussian No Fixed No Time

Single date No DVM No Time

Single date No Ontogenetic No Time

Single date No Fixed No Complex

Single date 50 ppsp Ontogenetic yes Complex

Gaussian No Ontogenetic yes Complex

The top row describes the characteristics of the baseline run

EP egg production, H.diffusion horizontal diffusion, ppsp particles per start position, DVM diel

vertical migration
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switched off; see below) as well as vertical movements (fixed depth of 25 m, which

is approximately half the typical mixed layer depth in the area at the time), and all

cod larvae settled to the seabed when they reached a given age (90 days). The

particles initially represented cod eggs, and their hatching time and subsequent

(post-hatch) larval growth were modelled as functions of their individual tempera-

ture history. Egg development is largely dependent on temperature (e.g. Fox et al.

2003) and temperature, in addition to its direct effect, can be used as a proxy for

other co-varying factors influencing larval fish growth in the field, such as food

availability, day-length, water column stability, etc. (Gallego et al. 1999). Daily

temperature fields were linearly interpolated from monthly mean three-dimensional

temperature fields derived from a statistical model of observational data (ICES

statistical rectangle horizontal resolution: 0.5� latitude, 1.0� longitude and five

layers in the upper 150 m; Heath et al. 2003). In the baseline run, the particles

were not subject to mortality. Each particle was considered a “superindividual”, i.e.

an assemblage of identical individuals. The weighting of each particle was given as

a fraction of the sub-population’s egg production (total egg production by the sub-

population divided by the number of particles released within its spawning area).

When applied, mortality was implemented by reducing the weighting of each

individual particle (see below).

The effect of mortality was investigated by applying amortality rate parameterized

as a function of length whereby faster growing superindividuals experienced lower

cumulative mortality over the simulation period.

The effect of horizontal diffusion was tested by subjecting the particles to an

additional stochastic horizontal velocity component. This was computed at particle

positions as a function of horizontal velocity shear from the hourly residual plus

tidal current fields, following a method derived from Oey and Chen (1992). To

achieve statistical stability (see Brickman et al. 2009), multiple particles must be

released from each start position so I carried out runs with 10, 50 and 100 particles

per start position.

The effect of particle release pattern was tested by comparing the baseline,

where all annual egg production was released on the date of peak spawning for

each subpopulation, with a run where the start and end dates of the spawning season

were fixed for each spawning area, based on field observations. The proportion of

the annual egg production shed each day was represented by a Gaussian curve with

mean at the date of peak spawning and standard deviation equal to 1/6 of the

spawning season duration.

It is generally accepted that planktonic organisms are passively advected by the

horizontal flow but are capable of vertical migration. To test its effect, the baseline

simulation (vertical depth fixed at 25 m; see above) was compared with a simulation

where particles migrated with a sinusoidal diel vertical migration (DVM) pattern

between 5 and 45 m depth. It was also compared with a more complex pattern

where the vertical position of cod eggs and larvae varied ontogenetically, using a

model (Heath et al. 2003) derived from observational data reported in the literature.

At the end of their pelagic phase, cod juveniles become demersal. This transition

period is likely to be one when density-dependence can influence year-class strength
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(Gallego and Heath 2003). To test the effect of a density- and habitat-dependent

settlement scenario, a simulation was carried out where juvenile cod could settle

within an age window (90–100 days) but only if there was sufficient free settlement

“carrying capacity” (�0.5 individuals m�2) within a suitable depth range

(20–325 m). Pelagic mortality (where implemented) increased exponentially within

that window.

Finally, computing hardware constraints prevented me from carrying out a

combined simulation with Gaussian egg production, horizontal diffusion with an

adequate number of particles per start location (�50), ontogenetic vertical migra-

tion behaviour, mortality and the more complex settlement scenario. Rather, two

simulations with a partial combination of those characteristics were carried out (see

Table 20.1), although their results will not be presented here in detail.

20.3 Model Results

The sensitivity analysis presented here will concentrate on the effect of varying model

complexity on the patterns of transport and settled juvenile distribution, rather than

the absolute values. The comparisons between the baseline and more complex runs

will be largely qualitative. Although I will present a metric of average model

performance, the mean absolute error (MAE; Willmott and Matsuura 2005), I will

illustrate differences in transport patterns with particle trajectory plots (Fig. 20.2). I

will also illustrate differences in juvenile distribution patterns with gridded (1.0�

longitude by 0.5� latitude) maps of the percentage of the total (summed over the

model domain) settled juvenile population present in each grid cell (Fig. 20.3).

A more detailed quantitative analysis has been carried out. However, it is less

relevant in the context of the application of the biophysical model in the overall

modelling system of Heath et al. (2008) and it cannot be adequately summarized in

the space available to this Case Study. However, in general, although a number of

“biological” techniques can be employed to validate biophysical model results (see

Paris et al. 2009), the appropriate ones for this type of sensitivity analysis are best

taken from the physical fields such as oceanographic modelling literature (see

“model error quantification techniques” referred to by Lacroix et al. 2009) and

atmospheric/climate research (e.g. Taylor 2001).

20.3.1 Mortality

There should not be noticeable differences in the particle trajectories between the

baseline run (Fig. 20.2a) and its equivalent with mortality (not shown), as its only

effect would be to “cut short” certain tracks where the weighting of superindivi-

duals became �0. Overall, the effect of mortality on juvenile distribution patterns,

as implemented here and at the spatial resolution of this analysis was quite subtle
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(Fig. 20.3b). Mortality slightly smoothed out the juvenile distribution (max. %

within any given grid cell was 7.8 and 3.8 in runs without and with mortality,

respectively), without a dramatic effect in geographical patterns. The largest diffe-

rences were along the areas where juveniles accumulate at the end of the simula-

tions (some of which correspond with actual cod nursery areas), as it could be

expected. The MAE between these 2 runs was 0.0480.

20.3.2 Horizontal Diffusion

Horizontal diffusion increases the horizontal spread of the particle tracks (e.g.

Fig. 20.2b–c) compared with the purely deterministic tracks of the baseline run

(Fig. 20.2a). As the number of particles per start location increases, so does the

relative horizontal dispersion of the settled juveniles up to a point when increasing

numbers of particles do not result in significantly different patterns, i.e. the simula-

tion results become independent of stochastic effects. The biggest differences occur
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Fig. 20.2 Particle tracks over the duration of the simulation runs. (a) baseline run; (b–c) runs with

horizontal diffusion with 10 (b) and 100 (c) particles per start location; (d) run with a Gaussian

particle release (spawning) pattern; (e) run with an “ontogenetic” (see text) vertical migration

behaviour pattern; and (f) run with a complex (see text) settlement rule
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between runs without and with horizontal diffusion while, at the relatively coarse

grid scale used to illustrate these results, the effect of number of particles is hardly

noticeable and only the case of 100 particles per start position is presented

(Fig. 20.3c). At finer gridding resolution (results not shown), the differences

between 10 and 50 particles are more obvious, suggesting that the appropriate

number of particles per start position should be somewhere between 50 and 100.

This is supported by the pattern of change in MAE values (0.0787, 0.0755 and

0.0759 for differences between runs with 10, 50 and 100 particles and the baseline,

respectively).

20.3.3 Particle Release Patterns

The particle release pattern corresponded with the daily proportion of the annual egg

production (represented by a Gaussian curve) at each spawning location, compared to

the baseline where all particles were released on the sub-population-specific peak

Fig. 20.3 Gridded geographical distribution of the percentage of the total population of settled

juvenile cod per grid cell at the end of the simulations, summed over the model domain, for the

baseline run (a) and absolute differences between alternative runs and the baseline (b–f); (b) run

with mortality; (c) run with horizontal diffusion with 100 particles per start location; (d) run with a

Gaussian particle release (spawning) pattern; (e) run with an “ontogenetic” (see text) vertical

migration behaviour pattern; and (f) run with a complex (see text) settlement rule
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spawning dates. The runs were purely deterministic but the effect of day-to-day

flowfield variability results in differences in the trajectories of particles released

from the same location on different dates (Fig. 20.2d, compared to 20.2a). Indeed,

the effect of particle release pattern on particle trajectories is similar to that of

horizontal diffusion (see Fig. 20.2b–c), although the effect on the distribution of

juveniles is more spatially variable than that of horizontal diffusion (compare

Fig. 20.3d with 20.3c but note the different colour scales). The MAE of this simula-

tion compared with the baseline is 0.0539.

20.3.4 Vertical Behaviour

The particle tracks of simulations with particle vertical migration behaviour

(Fig. 20.2e; run with DVM pattern not shown) were quite similar among them-

selves and to those of the baseline run, where all particles were kept at a constant

depth (Fig. 20.2a). However, there are some absolute differences between the

end distribution of juveniles at the end of these runs (Fig. 20.3e; run with DVM

pattern not shown) compared to the baseline (Fig. 20.3a). The DVM pattern has

larger absolute differences than the “ontogenetic” one but the latter is more

geographically variable. Their MAE values were 0.0763 and 0.0823, respectively.

20.3.5 Settlement Rules

The effect of additional settlement rules on the trajectory of the particles was very

small (compare Fig. 20.2f with 20.2a). This was expected since the consequence of

the additional constraints is just to prolong the pelagic stage of any juveniles ready

to settle (where there is either no spare demersal carrying capacity or suitable depth)

until suitable conditions are found. The only appreciable differences between the

baseline (Fig. 20.3a) and the present runs are in some limited areas in the west coast

of Scotland and central northern North Sea (Fig. 20.3f). The MAE was 0.0344.

20.3.6 Combined Factors

Since both horizontal diffusion and extended particle release patterns had the effect

of “spreading out” the particle trajectories, it is not surprising that those were quite

similar among the two runs with multiple changes to the characteristics of the

baseline run (the two bottom lines on Table 20.1). However, horizontal diffusion

had a greater effect on the spread of the final distribution of settlers than a Gaussian

particle release pattern, as demonstrated by a greater MAE (0.1039 and 0.0908,

respectively).
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20.4 Conclusions

The sensitivity analysis presented in this Case Study serves to illustrate a number of

issues regarding how to decide on the appropriate level of complexity for biophysi-

cal models in marine ecological applications, although the specific lessons derived

from this exercise are only applicable to the model that was being examined, i.e.

one designed to investigate the relative distribution and survival of North Sea/west

of Scotland cod early life stages at reasonably coarse spatial and temporal resolu-

tion, to provide input to a coupled model studying the metapopulation dynamics of

cod in the area. Also, as I discuss at the end of this section, increasing the model

complexity introduces an added element of uncertainty, associated with the chosen

functional form and parameterization of the additional processes explicitly mod-

elled. An in-depth quantitative analysis of such uncertainty is beyond the scope of

the current Case Study. Instead, the functional relationships and parameter values

used in the more complex simulations represent the best available knowledge of the

processes modelled, based on the relevant ecological literature and our own

research. Nonetheless, the next step should be to evaluate quantitatively the more

complex models against the uncertainties introduced by their extra parameters.

In the present analysis, settlement scenario was the component the model was

least sensitive to. However, this analysis was carried out at a coarse spatial resolu-

tion and the more complex settlement scenario was still considerably simplistic so

we should not interpret these results to lessen the potential relevance of settlement.

On the contrary, as our knowledge of the cod settlement ecology increases, we

should test the model sensitivity to more realistic scenarios.

Applying size-dependent mortality to the model did not have a large effect on

settlement distribution patterns. Mortality is one of the main biological processes

where fundamental information is still lacking in the field (Gallego et al. 2007).

Characterizing it as a simple size-dependent function is unlikely to capture the

appropriate degree of ecological realism. As above, we should test model sensiti-

vity as new information becomes available.

The particle release pattern had a similar effect to that of horizontal diffusion,

although of a lesser magnitude. Realistic egg production models (Heath and

Gallego 1998; Scott et al. 2006) are relatively rarely used in biophysical models

but over-simplistic particle release patterns can artificially reduce variability if

flowfields are sufficiently variable through time.

Biophysical models focus on advective processes and diffusion is often over-

looked, even though it can have a major effect on particle distribution. This is of

crucial importance in studies of connectivity between different populations. Sensi-

tivity analyses like those carried out here will not only illustrate this effect but are

also necessary to determine the appropriate number of particles to be tracked, thus

avoiding stochastic bias.

Finally, this sensitivity analysis endorses the importance of modelling realistic

vertical behaviour patterns compared to a fixed depth position. Of course, their

effect is dependent on the vertical flowfield variability. Even the more complex
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ontogenetically-varying behaviour was relatively simplistic. With the development

of our ability to model the physical and biological environment (e.g. light, tempe-

rature, salinity, predator and prey fields, etc.) at increasingly finer resolution, we

must continue to test the sensitivity of our results to increasingly complex models to

decide on the right level of complexity.

Biophysical models for the study of marine ecological issues are becoming more

common and more sophisticated (Miller 2007). This, in part, has paralleled the

developments in computing power and sometimes it is unclear whether increased

model complexity is necessary, rather than giving in to the temptation to virtually

reproduce nature. Higher complexity does not always result in a better model

because of parameter uncertainty and variability – often functions and parameters

used in a model are taken from different species, developmental stages, environ-

ments, etc. The output of more complex models is more difficult to interpret and

“external” issues such as higher computational costs complicate necessary steps

like a comprehensive sensitivity analysis. Biophysical modelling research would

benefit from the type of analysis to investigate the effect of varying degrees of

complexity that has been carried out for trophic ecosystem models (e.g. Anderson

2005). Methods such as using the output of a more complex model as a baseline to

evaluate the performance of simpler alternatives (e.g. Fulton et al. 2003; Raick et al.

2006) have provided a very useful insight and some general guidelines (Fulton et al.

2003). In the absence of a more comprehensive exercise, the obvious conclusion, as

we wrote (Gallego et al. 2007) is that biophysical “models should be as simple as

possible but as complex as necessary” and “the level of complexity should be

adjusted to the model objectives and the observed biological patterns that it aims to

reproduce”.

20 Biophysical Models: An Evolving Tool in Marine Ecological Research 289



Chapter 21

Modelling the Everglades Ecosystem

Fred Jopp and Donald L. DeAngelis

Abstract The Everglades represent a delicate ecosystem in Southern Florida and is

the largest sub-tropical wetland system in the USA. It provides home for a wide

variety of unique biodiversity and wildlife. Due to its vicinity to human settlements,

the Everglades have been under threat since the beginning of the twentieth century.

With the dangers of Global Change on the horizon, this pressure will increase in the

near future. The Comprehensive Everglades Restoration Plan (CERP) is a major

environmental restoration effort, which is under way and will profoundly affect the

Everglades and its neighbouring ecosystems in southern Florida. In the CERP,

ecological modelling plays a central role for science-based decision making. In this

paper, we introduce the general strategy of modelling for the purpose of ecosystem

restoration. We also present two special modelling frameworks and show how they

are being used for ecosystem and population-level modelling to help in the planning

and evaluation of Everglades restoration.

21.1 The Threatened Ecosystem of the Everglades

The subtropical wetlands of the Everglades are located in southern Florida in the

United States (see Fig. 21.1), and extend over an area of ca. 6,100 km2. It is a

delicate ecosystem that comprises the largest subtropical wilderness in the U.S. and

provides habitat to a unique compilation of biodiversity. Many threatened species,

like the Florida Panther, the American Crocodile, and the greatest diversity of

wading birds in Northern America, contribute to this local assemblage of species.

Because it lies in the vicinity of large human settlements in southern Florida, the

integrity of the Everglades faced increasing threats during the twentieth century.

After catastrophic floods in the 1940s a regional management plan, the Central and

Southern Florida Project for Flood Control and Other Purposes, was set up with the

following objectives: to control the hydrology and possible flood events, to provide
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water supply for the big cities, including Miami and Ft. Lauderdale, and to develop

the area for residential purposes and for agricultural use. Consequently, a giant

canal system was established to control and carry off water during periods of heavy

rainfall, which altered the water flow from its natural condition.

This system of integrated water regulation and flood control makes use of Lake

Okeechobee as the central water reservoir, which allows large-scale agriculture but

also has drawbacks. Not only do the consequent human-induced major fluctuations

in Lake Okeechobee endanger the aquatic and semi-aquatic communities directly

in the lake, but due to its position upstream of the Everglades, those habitats are

also heavily affected. As side-effects of agriculture, the Everglades ecosystem

receives heavy loading of nutrients, which have had impacts on the vegetation

and wildlife in parts of this originally oligotrophic system. Today, because of

the loss of land and changes in the flow of water, the unique biodiversity of the

Everglades is under strong pressure: the wading bird rookeries and colonies have

drastically declined within the last decades, the Florida panther is endangered, and

the effects are felt by alligators and the fish communities, as well. With the dangers

of Global Change on the horizon, which will bring with it sea level rise, more

extreme weather events, and invasive species, the future of the Everglades is

Fig. 21.1 Map of the Southern Everglades, MAP I-2742 by Jones, J., Thomas, JC and Desmond, G.;

courtesy of U.S. Geological Survey (WCA: Water Conservation Area)
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precarious and ecological restoration is becoming more and more relevant. After

concerns were first expressed by the early environmentalist Marjorie Stoneman

Douglas, the Everglades were given the status as an International Biosphere

Reserve, World Heritage (1979) and protected wetland area, thus, Everglades

restoration has had a long history. The focus of the restoration efforts in the

Everglades has been an ecosystem approach rather than protecting just one desig-

nated geographical area. Such an ecosystem approach of Everglades restoration

must not only respect the particular features of the diverse landscapes, like

hammocks, pinelands, mangroves, freshwater sloughs, marshes and estuarine

habitats, but must also understand how these interactions form patterns and pro-

cesses on the landscape level (Fig. 21.2).

After much effort, in the year 2000 the Comprehensive Everglades Restoration

Plan (CERP) was approved. The focus of this plan is to care for “restoration,

preservation and protection of the South Florida ecosystem, while providing for

other water-related needs of the region”. The plan aims to spend $10.5 billion over

30 years and combines more than 50 different projects; in this sense it can be

surely called the biggest restoration project, worldwide. The central idea of CERP

is “getting the water right”, which means restoring, as much as possible, the

quantity, timing, and spatial distribution of the historical water flows. Hence,

many projects of CERP are dealing with re-directing billions of gallons of water

daily to enable enhanced water deliveries. Another aim is the purchase of land at

the borders of the current protected natural areas for ecological buffer zones.

Within the whole of CERP, modelling has a central role for science-based decision

making.

Fig. 21.2 Adaptive Management Restoration Approach, where modelling plays an important part.

Background picture was taken on a small vegetation island close to Cape Sable. Board walks like

this are maintained by the Everglades Park Service

21 Modelling the Everglades Ecosystem 293



21.2 The Everglades Integrated Modelling Approach:

General Strategy

Due to its unique ecosystem and to the creation of Everglades National Park, the

interest in the ecological integrity of the Everglades has a long history. The amount

and variety of the collected data is in keeping with the importance of this ecosys-

tem, and ranges from climatological and meteorological data, to biotic data,

sociological and economical data. The last two deriving from opinion polls or

related economical census, as far as they are relevant for the ecosystem. The data

bases in these areas are very good in many respects and the modelling aspect of

the Everglades research makes intensive use of all of those objects and qualities,

concentrating on sources that are important for Everglades restoration on the

landscape level. The goals of this restoration process are twofold: (1) maintaining

the ecosystem-specific traits and processes in situ, and (2) maintaining viable

populations of all native species in situ (Science Sub-group 1994).

In trying to achieve these goals, models and modelling tools are intensively used

to increase understanding and are applied on nearly every hierarchical level of the

research process to integrate the available knowledge (see Fig. 21.3).

Fig. 21.3 Interplay of data acquisition, modelling, evaluation and final management decision

within Everglades’ research
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In the following section we explain the general strategy of the integrated

modelling approach for Everglades restoration. As a first step, the empirical data

are analysed and checked for consistency, which helps to fill-up knowledge gaps.

The empirical sectors involved are “classical” ecologically: landscape data (e.g.

topology, hydrology, soil, vegetation), and population data (e.g. plant and animal

populations and their interactions). Then, in a second integration process, sector-

specific model-frameworks are applied, which are used for forecasting purposes.

Examples of such model-frameworks are the South Florida Water Management

Model (SFWMD 1992) and Natural Systems Model (Fennema et al. 1994), the

Everglades Landscape Model (ELM; Fitz and Sklar 1999) and the Across Trophic

Level System Simulation Complex (ATLSS; Gross and DeAngelis 2001). The last

two model frameworks and their working principles will be explained in detail in

the next paragraph.

After the developmental process of representing the data and describing the

system dynamics is accomplished, the model frameworks can be used to generate

computer scenarios and make projections. In computer scenarios, a characteristic

set of conditions and traits is grouped within a special case. The procedure referred

to as computer scenario is when different sets of conditions are sensibly grouped

into alternative cases and the reaction of the model components to the variation of

these characteristics is assessed through computer simulation. The scenario tech-

nique is used to evaluate the outcomes of possible future situations on the target

variables. A possible goal of such an approach could be to generate scenarios on

breeding and foraging behaviour of animals under different conditions of hydrology

and vegetation types (DeAngelis et al. 1998).

In providing input for ecosystem restoration, special emphasis is put on model

evaluation (see also Chap. 23), which normally begins with a sensitivity analysis

and visualization processes, to display model outcomes on the landscape level (see

Fig. 21.3). If more than one model or model type is available for the same or close

related issues, these model attempts are thoroughly compared and their relative

advantages and disadvantages are evaluated. This procedure guarantees that the

different “powers” of the model systems are systematically evaluated. For all steps

of the evaluation processes described here, expert advice and opinions are obtained

and integrated before the outcome is finally communicated to stakeholders on

management decisions on Everglades restoration.

Figure 21.4 focuses on the integrating power of modelling within an ecological

project. Here, even at the starting point of data and information collecting, (see

Fig. 21.4 left, upper corner) modelling techniques can help to overcome possible

difficulties. Basically, these difficulties have to do with aggravating circumstances

during data collection or with intrinsic characteristics of the natural phenomena in

focus, such as heterogeneities and variabilities that can lead to data gaps and, later,

to inconsistencies. Appropriate modelling tools can help to evaluate these first data

structures, understand the heterogeneities, and fill-up the data gaps. When dealing

with complex ecological phenomena, the following aspects of knowledge visuali-

zation are important: (1) Providing for spatially explicit model representations

is more and more requested, which also helps to encourage the communication
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process within the project; (2) it is useful as a consistency check and can help to find

relevant patterns within the data collections. In particular, models play a most

important role when it comes to analysing across-scales phenomena (Reuter et al.

2008), which is one important part of a meta-analysis approach. Finally, stake-

holders have to make management decisions on restoration and conservation for the

Everglades ecosystem. Because these decisions have to be science-based, also in

this step models help to integrate and communicate understanding and viewpoints

about the system.

21.3 Examples of Everglades Dynamic Landscape Model

Frameworks

Within the Everglades Restoration project, the spatially-explicit modelling frame-

works of the Everglades Landscape Model (ELM; Fitz and Sklar 1999) and the

Across Trophic Level System Simulation (ATLSS; Gross and DeAngelis 2001) are

closely interlinked. In the following, we will explain their working principles.

Fig 21.4 Integrative capacity of modelling
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Providing the Landscape Basis: ELM

The Everglades Landscape Model ELM (Fitz and Sklar 1999) is a regional-scaled,

grid-based model framework, that brings together different landscape layers, like

vegetation, hydrology and topology, and combines these layers to a GIS-like output

representation. The vegetation types used here derive originally from the Florida Gap

Analysis project (Pearlstine et al. 2002), providing a spatial resolution of 28 � 28 m,

which are aggregated in ELM into cells of the size 1,000 � 1,000m. The ELMmodel

uses its own hydrologic modelling, but uses boundary conditions from the larger scale

South Florida Water Management Model (SFWMD). ELM also contains simple

modelling of the nutrient (e.g. phosphorus) fluxes of suspended material, and growth

and competition of major vegetation types. A key objective of ELM is to project the

movement of phosphorus from the agricultural areas into the Everglades.

Modelling Animal and Population Distributions: ATLSS

The Across Trophic Level System Simulation program, or ATLSS, is an integrated

set of computer simulation models representing the biotic community of the Ever-

glades/Big Cypress region and the abiotic factors that affect it (DeAngelis and

Gross 2001). The major objective of the ATLSS models is to estimate the effects of

hydrologic scenarios on key biota of the Everglades. The spatial extent of the

models is the entire Everglades/Big Cypress region and some surrounding areas,

and the spatial resolution is generally 500 � 500 m cells, though sometimes finer.

Relevant abiotic quantities, such as hydrology, fire, and major storms are modeled.

Hydrological scenarios from the SFWMD are used for this purpose.

The output of this model at the 2 � 2 mile grid scale, is converted to a

500 � 500 m grid scale. The ATLSS models are spatially-explicit, using GIS map

layers of topography, soil, vegetation type, etc. The biotic community is represented

by a hierarchy of models, beginning with the process models of the biota constituting

the energy base, including vegetative biomass, lower trophic level invertebrates, and

decomposers (Fig. 21.5). Models that contain some relevant details on size and age

structure simulate several important functional groups, such as fishes, macro-inverte-

brates, and small reptiles and amphibians, which utilize the production of the energy

base and provide food for some of the top consumers (for size/age structure models

see Chap. 9, for an example on local models and process models see Chap. 18).

Several individual species that are highly valued because they are unique or

threatened, or are regarded as indicators of the overall conditions of the ecosystem,

are modeled in much greater detail, using individual-based models (see Chap. 12).

These species include the American alligator, the American crocodile, several species

of wading birds, white-tailed deer, the Florida panther, the Cape Sable seaside

sparrow, and the snail kite. The objectives of the ATLSS program over the long

term are to aid in understanding how the biotic communities of South Florida are
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linked to the hydrologic regime and to other abiotic factors, and to provide a

predictive tool for both scientific research and ecosystem management. The distribu-

tion, volume, and timing of water flow influences the energy and material transfers

among ecological components within and across the trophic levels of these systems.

The ATLSS integrated models mechanistically simulate the causal relationships

between hydrology and the biotic components of the Everglades/Big Cypress region.

The ATLSS Program has produced model output used in evaluations conducted

by DOI agencies (USFWS, NPS) of Everglades restoration scenarios proposed

under the Central and South Florida Project Comprehensive Review Study

(Restudy). Starting in the autumn of 1997, a set of simulations was produced

each month or less and disseminated both in hard copies and on the web to agencies

engaged in the evaluations of the Restudy plans. This output was used in making the

final decision on a restoration plan, and at the same time was used in a scientific

publication (DeAngelis et al. 1998).

21.4 Future Modelling Contributions for Everglades

Restoration

In the subtropical wetlands of the Everglades, ecological modelling plays a central

role in science-based decision making for restoration purposes, a function which

is becoming more and more important as the delicate ecosystem is drastically

Fig. 21.5 Applied model types within the ATLSS project, following DeAngelis et al. (1998)
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confronted with the side effects of non-sustainable practises. Like any other rele-

vant scientific tool, modelling has to be evaluated and to be adapted to new

conditions.

Regarding the development of the ATLSS program, we can state, that since the

Restudy plan, the whole framework has continued to develop in several ways. First,

the models have been applied to other scenario evaluations in South Florida, such as

the Modified Water Delivery Program. Second, the number of models within

ATLSS is expanding to cover crayfish and apple snails, with other models in the

planning phase. Of particular importance will be a model of vegetative succession

that will forecast changes in numerous vegetation types under changing hydrology

and nutrient inputs. Third, the geographic range of ATLSS is expanding to cover

the mangrove estuary areas of South Florida. Mangrove estuary vegetation, fish and

other fauna are being modelled. Fourth, a GIS-based ATLSS Visualizer has been

developed to allow agencies to view and analyse all ATLSS output data. Fifth,

sufficient data now exist for improved calibration and validation techniques to be

applied to the ATLSS models, which is in progress now, along with uncertainty

analysis.

What are the future demands that the discipline of ecological modelling has to

face when dealing with Everglades issues and what, from the methodological point

of view, is needed to overcome these? For the Everglades, in the times of the

“Grand Challenges” (NRC 2001), the need for positive actions is becoming more

urgent. Without doubt, a landscape that is totally surrounded by coastal margins is

most at risk from “Global Change” in the form of sea level rise. Here, a projected

rise of the sea level of 2–8 ft by 2100 (Overpeck and Cole 2006; Overpeck and

Weiss 2009) would in the least, strongly affect, and at worst, devastate most of the

positive efforts that have been accomplished for restoration in the Everglades to

date. Consequently, more positive actions must be taken. Following Gardner et al.

(2008) these actions should include:

l Identifying endangered landscapes/habitats and broadly communicating the

essential reasons for preserving these critical resources
l Linking numerous and specific case studies across countries, biomes and

landscapes to develop robust criteria for sustainability and adaptive management
l Increasing the awareness within financial sectors of the fundamental relation-

ships between economics and landscape management
l Working out new formal techniques to visualize the rates and the consequences

of landscape change

Realizing these actions will depend strongly on the development of adequate

theoretical tools and modelling tools to tackle the issues that stand before us. Along

these lines, we expect developments in which originally separated areas of model-

ling grow together. An example for such a development can already be seen with

the integration of GIS-like systems into broader modelling frameworks (see

Chap. 22). Another important keyword for future ecological modelling is model

“coupling”, which can be performed in two ways: (1) the output of one model is

used as input of a hierarchically higher located model. So far, there have been
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excellent outcomes, in terms of data evaluation with this technique in the ATLSS

project; (2) model frameworks consist of different sub-model types, in which, for

instance, one ODE-based part determines the resource for a population, while the

individuals of this population are represented with an IBM-like model type (more

on model coupling see Chap. 20).

With the approaching of the Grand Challenges to the Everglades ecosystem, the

terms of reference for ecological modelling also expand. In a kind of modelling

disclosure procedure, we, as modelers, have to make clear, exactly what models can

accomplish, what are the conditions under which models can work, and particu-

larly, what they still cannot do. By informing stakeholders of what really can be

achieved with theoretical and modelling tools, confidence in our scientific methods

will be strengthened, and there will be an increased understanding of the usefulness

of modelling in determining how the Everglades ecosystem may change in the

future.
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Chapter 22

Model Integration: Application in Ecology

and for Management

Dietmar Kraft

Abstract Integrated Environmental Modelling (IEM) is a prospering and multifac-

eted field of science. Many research projects employ several individual models in

combination in order to describe entire ecosystems. Integration is the skill to join

single models, data, and knowledge on a technical as well as on a conceptual level.

IEM has become a prerequisite for modern environmental management and has

been promoted by fundamental changes in environmental politics in the last decade.

The goal and strength of IEM is the interpolation of information on local ecosystem

behaviour and the extrapolation and transfer of results to other locations, to

different scenarios and into the future.

This chapter deals with the integration of models, data and information to

represent and analyse dynamics of complex ecosystems by using Geographic

Information Systems (GIS). GIS can either act as a framework to combine data

and execute separate (and incorporated) models, or can simply be applied to

manipulate data used by autonomous models.

Three specific application examples illustrate possible structures and function-

alities of IEM and highlight the benefit of using GIS to join data, models and

information. Along with many challenges concerning the conceptual details of

model joining and integration of information and knowledge, the use of GIS to

support IEM is extremely beneficial, and constantly drives advancements in eco-

system research.

22.1 Introduction: Integrated Modelling

The complexity of a model tends to increase with the extent of the spatial scales and

the number of organizational levels examined. Not only does the number of

elements that need to be considered increase, but also there is an expansion of
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internal coupling of elements and of the degree of aggregation of the components

(WGBU 1997). To combine different scales and levels of an ecosystem, models

have to include horizontal as well as vertical interactions, interdependencies and

reciprocities of the examined entities as well as human activities (Schellnhuber

et al. 1999). These relations exceed the boundaries of the subunits of ecosystems

and geographic features. They transcend socio-economic sectors and scientific

disciplines. Consequently, “holistic” models require the expertise (and the models)

of different scientific disciplines. In this context, integration has two main objec-

tives: (1) developing interdisciplinary, networked approaches of joining disciplin-

ary data, models and methods – joining understood in the sense of conceptually and

technically combining them, and (2) finding methods to handle the resulting

complexity. These objectives include both technical challenges as well as contex-

tual questions, the latter resulting from new aspects following upon data, models

and methods integration. Integrated Environmental Modelling (IEM) addresses

both objectives: IEM couples models from different disciplines to find answers

for holistic questions and helps to aggregate complex results to make the models

operable and communicable.

Integration is a driver for the development of different tools, concepts and

approaches ofmodelling. As a result, environmental research, which has concentrated

on specific topics and a centred set of methods for quite some time, is now broadening

its methodological approach. Knowledge that was quite centred at first, may now be

more broadly linked with different models to deal with a particular subject and thus

widen the scope of investigations and enable results that were not achievable before.

Consequently, in the context of this broader consideration IEM is a sophisticated

object under investigation. Based on a combination of models, IEM have the potential

to answer newly arising questions by interlinking particular disciplinary knowledge.

The analysis of complex and abstract phenomena like dynamic interactions of

inhomogeneous socio-ecological systems rely especially on sophisticated methods

that might be offered by IEM. The management of catchments, coastal zones, and

marine landscapes where elements with differing dynamics converge, present many

examples for trans-disciplinary approaches dealing with this complexity.

Geographical Information Systems (GIS) offer two general techniques to sup-

port this kind of integration and therefore are an important addition to IEM. GIS are

able to link data based on their location and to aggregate them. Data linkage can be

performed by intersection of the respective geometries or just by overlaying

different thematic layers in a map. Based on their spatial reference, GIS may

serve as an interface between data, models and paradigms. In this way, GIS has

catalysed integrated modelling and environmental research over the last decades.

The needs of management, policy and planners increase the demand for easily

accessible, manipulable and presentable spatial information. GIS have strongly

supported a spatially-explicit way of looking at natural systems: Location, under-

stood as the habitat of organisms, is increasingly used as a level of integration in

ecosystem research, providing the environment for organisms and defining terri-

tories and expansion of biocoenoses. Any information on a habitat having a spatial

reference can be processed and linked with other spatial data in a GIS.
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In addition, requirements of resource management and environmental policy

have strongly favoured the development of IEM (Dolk et al. 1993). Considering

global change, politicians, spatial planers and environmental managers require

predictions describing possible future developments in scenarios, forecasts, and

projections. Information should be regionally differentiated, comprehensible and

immediately available. Environmental management assesses the consequences of

changes, developments or shifts of the systems described. Weighting the rele-

vance of impacts, assessing states, and evaluating ecological functions of entities,

animals, plants, as well as communities, are central objectives (Costanza et al.

1998).

Most dynamic simulation models have limited ability to represent spatial pro-

cesses, as they focus on specific aspects of the processes themselves (see the

chapters on PDE, CA, IBM, and SDM – Chaps. 7, 8, 12, 13 respectively). GIS

offer methods to handle temporal dynamics, analysing the changes of the relevant

parameters across the area. In contrast to many other approaches that represent

space in terms of square boxes or simplified grids, GIS operates with spatial

references in terms of geodetic coordinate systems, e.g. by using geographic or

metric based coordinates. Together, GIS and IEM have the ability to address both

challenges: joining complex data and aggregating them to manageable information.

IEM follows a holistic, area-wide and trans-disciplinary approach. Data or

models describing the status of different subsystems are interacting in a joint

software-framework describing the status of the whole (considered) system, using

adequate indicators and appropriate geo-referenced datasets. IEM simulate the

observed behaviour of an entire system and based on scenarios, intend to provide

projections of future states.

This chapter has the following outline: General technical and conceptual aspects

will be described, which have to be considered when developing and discussing the

results of an IEM. The third section focuses methodically on the stepwise process of

model integration via GIS. The main exemplary GIS-techniques for joining data

layers (and hereby models respectively) and aggregating complex interactions are

described. Section 22.4 describes three examples of IEM coupled by GIS. Finally,

I conclude with general strategies of model coupling with GIS and discuss future

perspectives.

22.2 General Aspects of IEM

Interoperability, dealing with the problems of assembling and interrelating data

and/or models, is one of the central objectives of IEM (Argent 2004; Goodchild

et al. 1997). The technical ability to exchange data and the conceptual capacity to

make use of information intrinsically ties models and GIS to each other (Abel et al.

1994). There are two general options to follow when developing a (integrated)

model:
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1. Monolithic Approach: Writing an over-all model including more or less detailed

representations of subsystems. This straightforward type of integrated model is

appropriate when focusing on a clearly distinct aspect, describing an ecosystem

based on limited factors and indicators. Monolithic all-in-one-models require a

deep knowledge of the system – profound software skills. Monolithic IEM have

many advantages: they tend to be high-performance and profit from enhanced

internal data exchange. They follow a coherent and regularly well documented

concept with every component directly adjusted to each other and the whole

system. Typical disadvantages of monolithic IEM are elaborated manageability

and a high risk of conceptual errors hidden deep in their code.

2. Modular Approach: Using existing models and combining them into an

integrated model. Figure 22.1 (left) shows an example for this using GIS as an

integration tool. The GIS manages spatial data in a database, supports model(s)

with input, retrieves results from it, and passes the information to tools, which

apply specific methods of aggregation and evaluation. Finally, the GIS executes

the visualization of results.

Although a number of established monolithic IEM exist (Argent et al. 2006), this

chapter focuses on modular approaches (Hinkel 2009; Voinov et al. 2004) as they

highlight the process of integration much better. The technical side of an integration

process necessary to actually integrate different models, teaches a lot about the

conceptual side of how to integrate the contents. Modular approaches can easily

demonstrate both aspects of integration (see Section on Conceptual and Technical

Aspects).

Fig. 22.1 Using GIS as a framework to couple data and models (left) or as a tool to manage, map

and analyse data for a cascade of models (right) (modified from Argent 2004)
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Basic Approaches

Figure 22.1 illustrates the two basic, structural approaches of using GIS for model

integration (Brandmeyer et al. 2000; Argent 2004): (1) The integration proceeds

with the GIS being used as a control instance that manages, analyses and maps the

spatial data. Retrieved by the GIS, the modelling components create this data. (2)

Alternatively, a cascade of models and tools run independently from the GIS, using

the GIS-services to get, manipulate and push data. While the first approach is using

GIS to execute models with all the limits of a GIS, the second uses the abilities of

the models running a GIS as spatial database and service-provider, with all the

limits of access and performance.

On a low level of integration (Fig. 22.1 right), the GIS is limited to managing the

data generated by one or more independent models. In this context, loose coupling

would be done by plain interfaces allowing data exchange. Tight coupling via

programming might allow a dynamic use of the components as a “running”

model, while loose coupling is limited to static “put and get”. On a high level of

integration, GIS-components build a functional unit within a model framework (or

vice versa). Having flexible programming environments or macro-languages avail-

able is a precondition for tight coupling of models and GIS, while effective

software-components are the basis of an embedded modelling approach (Sui et al.

1999).

Conceptual and Technical Aspects

Expanding on the basic approach above, there are two contextual approaches for

integrating data, models and methods from different disciplines:

The vertical path, overarching the different sources of data, focuses on the more

technical aspects of integration. Especially in a GIS framework, vertical integration

interconnects information from different disciplines on one common level. It

couples data, models and tools with the same content on a spatial level. Vertical

integration follows the idea of trans-disciplinarity: using information from a tribu-

tary submodel on specific aspects to support a comprehensive model addressing an

overarching question (Oxley et al. 2007). Vertical integration of data and models to

a coupled framework strongly supports fundamental investigations on the charac-

teristics of the system described. It enables the analysis of interactions of entities on

the same organizational level based on information from different levels.

The horizontal path generalizes complex information gained from the coupling

of models and connects it to the knowledge gathered from the analysis of the

coupled data (Yokozawa et al. 1999). It aggregates data, combines different infor-

mation and uses them for conceptual generalizations. Horizontal integration builds

on the results of the vertical approach, which is the first step of the integration

process within the model framework. The horizontal, conceptual orientation is
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necessary to connect information from different levels of complexity to address

comprehensive questions on the behaviour of an ecological system.

Combining models from different disciplines into integrated applications poses

technical as well as conceptual challenges:

On the technical side, legacy models (i.e. software that has been outdated but

is difficult to replace because of its wide use) are not often developed to interact

with other models, neither within nor between disciplines. These models are well

known techniques, especially in disciplines with many popular models like

hydrology, forestry and ecology. However, limits are noted and problems of

integration with other models are obvious (Loucks et al. 1984; Mackay 2000;

Zalewski 2002). Consequently, the topic of interoperability, the task of joining

data, models or methods receives a lot of attention (as a start see Goodchild

1999).

On the conceptual side, integration has to deal with a range of problems. In

addition to ontological discrepancies between scientific disciplines, as well as

between science, management and politicians, the concepts of the different sciences

are often “hidden” in ancient code. This is true at least for the use of typical units,

for the classification of systems and for definitions and specific disciplinary terms

that might have a different meaning in each discipline.

Obviously, both aspects are relevant; they are both sides of the same coin, which

are necessary to integrate data and models. During the development of an IEM,

technical as well as conceptual aspects are crucial for the success of the approach.

22.3 Model Integration by GIS

GIS are powerful and established tools in sciences dealing with spatially referenced

data. Common GIS (like ESRI ArcGIS®, MapInfo®, GRASS and QGIS) offer a

variety of tools to manage, visualize, analyse, and interpolate data. Handling

different coordinate systems and projections and visualizing information in detailed

maps are commonly used features. Maps are useful to present and discuss results,

especially with decision makers dealing with environmental issues (Aspinall et al.

2000).

GIS: A Brief Definition

A GIS is a software that manages, analyses, and presents data that are spatially

referenced by their location.

GIS depict any information system that enables the user to capture, store,

integrate (join, merge and unite), edit, analyse, share, and display geographic

information.
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In a more common logic, GIS-applications allow users to analyse spatial infor-

mation, edit data (aggregation, generalization, and projection are most typical

editing actions), create maps, perform logical or spatial queries, and present the

results of all these operations in maps or tables.

From the application-oriented view, GIS is an information platform used as a

interface to obtain thematic maps, which have to be distinguished from the under-

lying software providing tools for the management of spatial data. In this sense,

modellers are developers, picking methods and resources from GIS-applications

and using them as a toolbox.

By providing data management, (statistical) analysis and visualization tools, GIS

were among the first frameworks that made wide-ranging methods of integration

available.

Capturing spatial data in GIS follows the general idea shown in Fig. 22.2.

Graphical layers or features, which could be entities with a geographic location,

consisting of vector structures like points, lines, polygons, any kind of raster-files or

objects from a database model, are tied to a geodetic coordinate system, defining

their position (see Derby et al. 2005). The relevant descriptive records are linked to

the features by unique identifiers.

Using geographical information for integration enables modelling with precise

spatial data and condensing respective results in maps (Livingstobe et al. 1994).

This is advantageous since information in maps is spatially referenced. GIS can

Fig. 22.2 General structure of GIS: geo-position as connection between different layers of data.

Vector data (polygons, lines, points) are linked to attribute tables with descriptive data (modified

from Derby et al. 2005)

22 Model Integration: Application in Ecology and for Management 307



support embedded models with more realistic spatial characteristics of the entities,

than simple box models. The capabilities of a GIS are eminent: it can calculate

dimensions of objects (even if they are dynamic) represented in different coordinate

systems and projections. Together with information on the velocity of processes,

the according rates can be calculated. Being spatially explicit, it is possible to

connect data and models based on their determined location.

Nevertheless, attention has to be focused on the spatial fitting of the data,

models and methods. Distribution of abiotic as well as biotic phenomena tend to

be heterogeneous and inconsistent. The representativeness of the measurements

has to be secured. Especially in complex systems, driving forces and resulting

impacts might act on different spatial levels (Levin 1992) underpinning its

importance (Schreier et al. 2002). Naiman (1992) argues a number of issues

related with the possible mismatch of scales. Important issues concerning man-

agement aspects are:

1. The mismatch between local controls and system-wide needs and priorities.

2. The discrepancy between the scale or level of available factual information and

the dimension of a phenomenon, e.g. between the catchment level and the level

at which important decisions are made (Aspinall et al. 2000).

3. An absence of systematic investigation of processes on a suitable scale.

Furthermore, on a more institutional level, misfits between natural system

boundaries and legal units can exist (Young 2003). Institutional arrangements

like administrational units or protected areas are not necessarily based on natural

borders (and vice versa). Especially in the context of resource management and

environmental politics, solving the conceptual problems arising from fixed but not

fitting borders is a challenge: the validity area of an environmental law might end at

a border, but ecosystems’ patterns and processes do not. Transition sections and

buffer zones (created by a GIS tool) are appropriate technical and conceptual

methods dealing with this aspect of spatial fitting.

22.3.1 Methods of Integration

Consideration of dynamics requires specialized integrated approaches. IEM are

supposed to describe spatial and temporal distributions of the entities and should

consider the different units and conceptual levels of the parameters. Consequently,

they need to deal with a high level of complexity. Moreover, to answer questions of

management and policy making, they have to provide information from diverse

institutional levels, rather than any conceptual level or scale.

Various functions offered by common GIS-applications support coupling of data

and models and aggregating of the resulting information. The following workflow

focuses on the main steps in a common software framework.

As an example, Fig. 22.3 shows the stepwise integration of a simple model on

land use. Integration aims to identify areas that are based on the intensity of land
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use, and are sensitive to high rainfall. Using different socio-economic scenarios, the

land-use model thus calculates the suitability for a specific agricultural land use.

Data from a projection of precipitation are aggregated to zones of high rainfall. All

information is combined to identify sensitive areas.

The first step of any model integration is to make all data and model-interfaces

available within the technical framework and to the software (by file managing

systems etc.). Fortunately, common operation systems do not bother the user with

data connectivity problems anymore. Standard file formats should be accessible to

the GIS directly, as long as they are geo-referenced.

Basic methodical requirements of model integration are multifaceted (see

Fig. 22.3):

Fig. 22.3 Procedure of stepwise integration of a simple model on land use to identify areas

sensitive to high rainfall: (a) joining land use and rain gauge, (b) interpolation of precipitation,

(c) classification of high rainfall, (d) generalization of sensitive areas (see text for more details)
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(a) Different spatial shapes have to be linked depending on the character of the

input data and models used (e.g. joining point data, areal data and images)

(b) Considering different temporal and spatial situations means not simply asses-

sing data but interpolating them on a consistent temporal and spatial level (e.g.

calculating mean annual area-data from daily data of a station)

(c) Analyse the joint spatial information, characterizing its distribution and typify-

ing it (e.g. generating spatial zones of equal character)

(d) Finding appropriate indicators of the status of the individual system, undertak-

ing generalizations, dealing with the complexity of the information (e.g. calcu-

lating sum parameters)

All methods mentioned may include inaccuracy or fuzzy information. Uncertain-

ties as well as underlying assumptions ask for transparency, clearly reproducing the

process of integration, highlighting the methods used and the paradigms followed.

Additionally, visualization, presenting the results of an integrated model is the basis

of all discussions of the significance of the results (Turk 1992).

In the following the above mentioned methods are explained in detail:

a) Spatial Joining

The simplest way of joining data in a GIS is to upload geo-referenced files and

combine them in a map. There are two common kinds of geo-reference: coordinate

systems, defining position on the globe, and map projections, describing the

position on a plane. To couple data from different systems and projections (and

there are a lot of them) detailed metadata on methods, dates and sizes are needed to

transform a data set from one coordinate system to another. Metadata are “data

about data”, used to describe the definition, structure and administration of all

contents of a data file in its context. Finally, combining geo-files that establish

and maintain metadata is a basic requirement.

For joining non-georeferenced data, GIS offer two kinds of functions: Either, by

connecting data by known identifiers like attributes of places (or names of locations

as towns or water bodies), or by an ID or name of e.g. a sample station. Rules are

offered to either join objects that intersect each other, or where one object

completely falls inside another one. Both are feasible techniques for coupling

data and models. The result of joining attributes or locations adds to the input layer.

Joining data into a GIS by their coordinates is a common procedure. Assuming

that the position of a station is given as geographic longitude and latitude in

degrees, minutes and seconds, this information can be used to add an x-y-feature

in a GIS. As a rule, GIS uses decimal degrees, so minutes and seconds have to be

converted into decimal degrees. To fit the points from a coordinate system (e.g.

survey data from the investigation area) to a given layer in the GIS that is available

as a map projection, the positions have to be transformed. The coordinates of the

points are projected to the map, considering details like date, zero meridian, and
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excursion. Transforming data from one grid to another is a critical job of GIS and a

challenge for the administration of data and their meta-information. A fitting

coordinate system and a fitting projection of the data respectively, is a core issue

of spatial data especially at the boundaries of spatial entities.

b) Spatial Interpolation

Transformation, conversion or the translation of data from one unit or level to

another is the next step of coupling: e.g. transform frequencies to densities, sum-

marize number and abundance of species to the occurrence of communities in

relation to land cover patterns. Most important for the process of integration is

the interpolation of single data-points to area-wide information. Interpolation

creates a surface, a regionalization, from point-data by geostatistical operations.

There are several types of interpolation methods, each with distinct features that

treat the data differently and depend on the special characteristics of the data. When

applying interpolation methods, one must check whether the source data will

change, or the method is subjective (hence, a human interpretation) or objective,

and whether the changes between points are abrupt or gradual. Besides triangulated

irregular networks used to construct digital elevation models, there are other

interpolation techniques such as IDW (Inverse Distance Weighted), kriging (inter-

polate a random field), and spline (approximate complex shapes) which are widely

used (Fortin et al. 2009). In a more ecological context, nearest-neighbour interpo-

lation is a simple method of multivariate interpolation in one or more dimensions.

The final result of an interpolation process is a new layer.

It is common to have interpolated point measurements of annual rainfall (see

Fig. 22.3b) with IDW. IDW assigns values to unknown points (of an area) by using

values from a widespread set of known points. The value at the unknown point is

estimated by weighting the sum of N known values. Most GIS-tools tend to dump

interpolations as a grid-file, bound by given lines like edges of the investigation

area.

c) Spatial Classification

A spatial analysis characterizing distinct areas by information from other layers is

one of the core features of a GIS (see Fig. 22.4). The values of one layer are

separated by patterns from another layer and then statistically analysed. Thus, the

average character of a larger discrete object can be calculated based on regionalized

data. This function results in new attributes added to the analysis layer.

GIS offer a variety of geo-processing features, all dealing with the management

of the data:

l Dissolve aggregates features with the same value of an attribute
l Clip cuts features out of a input layer without joining the attributes
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l Union combines features from different layers
l Merge appends features of different files by attributes
l Intersect cuts features out of an input layer and joins the attributes

The latter is commonly used to aggregate information from one layer by objects

to another. Having interpolated precipitation as a grid and the geometries of the

catchments in an area, the information in a GIS can easily be intersected. The GIS

either calculates the mean value within (underneath) a geometry, adding this result

to the attributes of the file, assuming that the separate catchments will be modelled

as a whole; or cuts the intersection of the catchments and iso-surfaces of values

from the grid, assuming different allocations. The latter aspect requires that the

raster (or grid) is being converted into a feature file, following adjustable

preferences on classification of the values.

d) Spatial Aggregation

Aggregation aims at the simplification of data. It joins existing data based on their

characteristics by calculating parameters, for e.g. mean direction of currents,

maximum wave height.

Generalization aggregates objects by combining or composing them, based on

specific (spatial) attributes. Data from different sources or dissimilar measurements

can be calculated to a characteristic factor or typified in classes or ranges. Results of

these functions are new layers, larger than the input layers.

22.3.2 Handling Dynamics

Maps, the primary output of a GIS, are static representations of ecological systems

and landscapes, using the topography of their components. In contrast, dynamic

data contain changing numbers, positions and states of entities, altering their

quantities and qualities in space and time. Typically, series of point measurements

Fig. 22.4 Basic design of

the media integration of G-
CIEMS. Data from different

media and different

geographical shapes joined by

projecting areas or length

between the grid cells,

catchments and river

segments (Suzuki et al. 2004)
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are stored in a database, while two-dimensional quantifications are saved in one

(or several) image file(s). In both cases, dynamics (the changing character of the

objects) are not originally included in the files. The description of the movement of

a water body is as well the result of joining single measurements similar as the

changes of a habitat or air circulation. Calculations of changes of quantities over

time result in speed, rates and directions of changes.

If and how a model is dynamic (just using a pre-calculated file describing the

dynamics of an entity, or continuously executing calculations directly with

the model) depends on the architecture of the GIS model framework of the IEM:

the tighter the coupling between model, GIS and data is (see Sect. 22.2) the easier

GIS and model(s) can exchange data. A loose coupling via data files might be

limited to a stepwise calculation of a dynamic process, especially considering the

lack of (standardized) appropriate file structure. A tight coupling might evoke the

tight embedding of the model within a GIS or vice versa.

Actually, GIS need some technical and conceptual extensions to deal with

dynamics (Derby et al. 2005). Again, GIS uses methods of integration to access

continuous data. The location of the underlying data is the key to (spatially) join

(see Sect. 22.3) time series as well as to merge periodic data sets. By spatially

matching multiple layers or periodic data GIS are able to calculate, to analyse, and

to model spatial relationships over time, identifying trends, patterns and changes

within a defined location. The GIS matches layers of data from the same area by

their geo-position; one data set laying on top of the other. The difference between

the superimposed data layers yields the delta needed to calculate parameters of

dynamics. Besides the simple calculation of the difference between the quality

of two (or more) layers, GIS offers the calculations of distances, length and areas of

the objects that changed.

Temporal/Spatial Aggregation

In addition to one-dimensional point data files frommeasurements and two-dimensional

data frommappings and remote sensing stored in raster or vector files, model data most

commonly are stored in n-dimensional data arrays. Platform-independent data inter-

faces like netCDF (Network Common Data Format) offer a sophisticated method to

store data as well as metadata. Time series in multi-dimensional files accessed via

interfaces, enable the GIS to cut single temporal layers from the file. Processing

complex dynamic data requires the aggregation of information from multipart files

(Shao et al. 2000). Integration necessitates methods to quantify and qualify the changes

and to adjust the parameters of models capturing field data.

Data analysis generalizes changes within the arrays, analysing speed, location

and extension of the changes. Beyond the single change from one time-step to the

next, general trends and directions are relevant to understand the system observed.

Boundary layers, diffusion of pollutants and movement of organisms are resulting

topics.
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Identifying the characteristic aspect that most likely describes the tendency of a

data series is one of the core challenges of data analysis. In contrast to time, space

enables for-and-back dynamics: an entity apparently might move aimlessly but is

heading in an overall direction. Plotting single observations (or a calculation from a

model) of the movement of an entity in a GIS-map (by joining them), makes

directions of spatial trends obvious and calculable.

Scenarios

Modelling dynamics, especially projecting known behaviour of an ecosystem to a

probable future, must deal with inaccuracies and uncertainties (see also Chap. 2 on

Model Development). Methodically immanent inaccuracies are in the end the result

of the complexity of the systems we observe: the more parameters a monitoring

involves, the more variables a model calculates, the bigger the methodical error is

likely to be. Calculating an area-wide parameter based on a limited number of

measurement points increases the propagated error, although each measurement

might be accurate. That especially applies for projections of the development of

highly dynamic components of ecosystems like meteorological events. Describing

scenarios is an appropriate method in dealing with these uncertainties and increases

the relevance of a projection. Descriptions can be used to estimate the spectrum of

possible future scenarios, and determine boundary conditions of the simulations

scenarios, which fix the edges of complex IEM. Comparing the results of calcula-

tions based on different scenarios gives a hint about the possible dynamics of an

ecological system.

22.4 Example Applications

Awide range of IEM exists worldwide. The spectrum of IEM, in a broad sense, spans

from global world models via regional landscape models up to sophisticated deci-

sion support systems. Classic examples for world models are the computer simula-

tions world3 – more system oriented than spatially explicit – used by the Club of

Rome (The Limits of Growth, Meadows et al. 1972) and the spectrum of models

used by the IPCC to describe and project the ongoing climate change (IPCC 2007).

With the increasing power available with GIS and the desire for integrated

approaches for management, many example applications have been developed that

address problems in atmosphere–surface systems, hydrology, forestry and biology

(see e.g. Basnyat et al. 2000; DeVantier et al. 1993; Goodchild 1993, 1996; Haan

1996; Su 1997). The development of IEM, now using the GIS capabilities to be more

spatially explicit, does not end with an increasing number of decision support

systems dealing with questions of resource management and environmental policy

support (Denzer 2005; Freda 1995; Keen 1978; Lam et al. 2004; Struss 2009).
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As integrated approaches are an integral component of e.g. European politics and

legal frameworks, the demand for IEM increased significantly in the last years. This is

highlighted by diverse DSS for river basin management plans resulting from the legal

requirements of the Water Framework Directive (WFD). Due to historic development

as well as good funding and early need of management, hydrodynamic models acted as

a cutting edge of model integration. As many ecological models take hydrology into

account, hydrodynamic models are an integral part of environmental modelling and

many approaches in IEMare derived fromhydrological applications.GIS-basedmodels

dealing with emissions in catchments are good and common examples for IEMs.

MONERIS

MONERIS (Modelling Nutrient Emissions in River Systems) is an example of a

model calculating the water quality in catchment areas. The model addresses three

goals:

l Identifying the sources and pathways of nutrient emissions at the smallest

calculation units level.
l Analysing the transport and the retention of nutrients in river systems.
l Providing support for examining management scenarios of different adaptation

measures.

MONERIS evaluates emissions of nutrients from point sources as well as from

diffuse sources into surface waters. As Fig. 22.5 illustrates, it integrates many sub-

systems: Beginning with the atmospheric deposition, paths of nutrients via urban

areas, overland run-off as well as effects of erosion, drainage and groundwater are

represented.

As point data (e.g. waste water treatment plants), areal information (e.g. soil data),

and administrative information (like statistical data for districts), are integrated, the

application of geographic information systems (GIS) is crucial. The GIS integrates

the results, although theMONERIS system uses only classical database management

to join the data and simple spreadsheet processing for calculations.

For scenarios the model evaluates the efficiency of management measures,

assigning the measures applied on analytical units to catchment level. The

multiple measures implemented by the user can be based on analytical units or

cover larger areas, predicting the effect of measures on loads in the whole

catchment. MONERIS has been applied to numerous river systems: the Axios,

Danube, Daugava, Elbe, Odra, Po, Rhine, Vistula, all of Germany and river

catchments in Canada, Brazil and China (Behrend et al. 2005; Behrendt et al.

2000; Behrendt et al. 1999; Schreiber et al. 2005; von Sperling et al. 2007: Xu

2004). MONERIS is an example for a loose coupling approach, using GIS

preferentially to aggregate both, input data from measurements and information

calculated by the (sub)models.
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G-CIEMS

Geo-Referenced Multimedia Environmental Fate Model (G-CIEMS) is a dynamic

forecasting model. Suzuki et al. (2004) applied a GIS to make the model spatially

resolved, georeferenced and multi-medial. The fate model projects explicit information

of the distributions of chemicals in the media air, waters, and soils. Transports between

different media with topographically different shapes are calculated based on the

projected area or distance. The case study for Japan was based on air grid cells,

catchments and river segments performing the projection for air pollutants. G-CIEMS
calculates exposure-weighted averaged concentrations in air to approximate the
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exposure of the population. In this case, the implication for the use of an IEM approach

was to provide more accurate exposure estimation with distribution information, using

generally available data sources. Suzuki et al. (2004) highlight with the G-CIEMS
approach that a geo-referenced and spatially highly resolved all-encompassing approach

can result in higher (within the factor of 2–3) accuracy of exposure estimation as

compared to the results from a monitoring approach. Figure 22.6 illustrates the general

information flowwithin the approach.G-CIEMS is an example for a tighter coupling of

models and databases, using GIS to join data from different media (see Fig. 22.4).

WadBOS

The information system WadBOS developed by RIKS (Research Institute for

Knowledge Systems, Buuren et al. 2002), offers support to decision makers in the

Dutch Waddenzee area, a coastal zone of tidal flats located in the southern North

Sea. This DSS features an integrated model representing the ecological and eco-

nomic functions of the Wadden Sea system. The submodels represent processes

operating at different time scales, varying from daily to annually, and they charac-

terize processes operating at three different spatial scales: the entire sea, 12 homo-

geneous compartments within the sea, and small cellular units. TheWadBOS system
relies on GIS information for its inputs, but its models use economic, demographic

and ecological data from other sources. Its different temporal and spatial scales

correspond to the different organizational levels: e.g. the short-term, local impact of

the disturbance of breeding birds by boats on the lower, more detailed scale of

habitats projected on the higher temporal and spatial scale of management and

policy, to generalize effects per breeding season and different protection zones.

As RIKS developed WadBOS for laypersons, it is notably user-friendly. It has

remarkable interactive capabilities like many editable parameters. GIS capabilities

Fig. 22.6 Transformation of the geographical structures of the sub-catchments and river segments

(centre) to the river network (left) and the soil compartments (right) within G-CIEMS (Suzuki

et al. 2004)
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integrated in the WadBOS framework allow the (geo)graphical representation of its

dynamic output (Fig. 22.7). In addition, the system is highly transparent, as a docu-

mentation is available for any module of the system. WadBOS can perform different

spatial analyses, however, its communication and learning capabilities are at least as

important.WadBOS is an example for a tight coupled IEM, were GIS and submodels

are embedded in an enclosed software environment.

22.5 Conclusions and Future Prospects

GIS enable the assessment of data and models thus facilitating many technical

requirements of model integration. Today, different software and modelling frame-

works offer remarkable capacity for the technical (and conceptual) development of

the Integrated Environmental Modelling (IEM) systems (Filippi et al. 2004).

Fig. 22.7 Screenshot ofWadBOS: Zoning maps for boating in relation to the impact of boating on

Eiderducks

Source: http://www.riks.nl
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Thereby, they improve the recognition, description, and evaluation of the charac-

teristics of the ecosystems in focus. The progress made in the technical develop-

ment of GIS, model environments and frameworks, and the technical and

conceptual problems that are being overcome in IEM imply a positive future

development for these methods (Pullar 2004; Rebolj et al. 1999). GIS may be

applied as a form of decision support systems capable to manage diverse scenarios

based on their location, showing options for actions and the potential consequences,

and highlighting developments.

Using typical GIS-Software as a main part of integrated models has its pros and

cons: On the one hand, GIS provide flexible and approachable techniques to join

scientific (simulation) models with management applications, which allows to easily

add new data, models or knowledge. Expertise gained in a certain model is portable to

another site, time, or political and legal framework. Common GIS are not yet

primarily dealing with dynamics like changing size of an entity or changing entities

over time. Nevertheless, analysing dynamics by describing allocation, dispersal and

distribution as well as patterns, boundaries and shifts is a main aim of the application

of GIS. On the other hand, the intense use of GIS for model integration leads to a

fixed technical (and conceptual) framework. To some extent GIS-applications define

and delimit integrative approaches, giving quasi-standards of data, their format and

the means of manipulation and exchange. Rather than contributing services and tools

for analysis, management and visualization of spatial data to model integration, GIS

are often understood as the technical and conceptual frameworks for environmental

modelling. However, dealing with 3D and 4D data is still a bottleneck of actual GIS.

Still, developing widely accepted technical structures and conceptual issues

across disciplines is a challenge (Hoch et al. 1998). Once the development and

application of IEM has become a routine tasks, we can have a closer look at our

modelling essentials itself. Finally, we can dare to think about approaching some of

the technical and conceptual conventions in different ways.

The issues arising from new environmental directives (e.g. Kay et al. 2006;

Borja et al. 2006) show the relevance of integrating GIS and modelling approaches

and point to what is expected from models if they are to offer adequate information

to support decisions. Many of the issues refer particularly to spatial scales and

organizational levels. They serve as important conditions of monitoring pro-

grammes and the construction of integrated models and may specify the relevance

of information, knowledge and decisions.

Additionally, integration also means joining information and knowledge, and –

with the above-mentioned background of new legal frames – sharing it. Transpar-

ency, awareness raising, and participation are crucial objectives of sustainability

and integrative science. In this context, transparency is understood as clearly

communicating the background and methodology of any model to the public and

to make accessible the underlying data and evaluation approaches. Awareness

raising could mean to enable the stakeholders to use a model to learn about the

system (Wang et al. 2005). Participation in IEM allows stakeholders to join the

decision-making process by e.g. defining their own model parameters, scenarios

and options for calculation.
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Despite current developments, model integration is not a new approach. The

combining of models and GIS has been done for many years. Appropriate integra-

tion means coupling model approaches of single subsystems to a holistic model that

describes the systems as a whole. Appropriate integration also means integrating

characteristics of the systems like dynamics and spatial distribution, indicating and

evaluating the states and impacts of the systems. Moreover, appropriate integration

helps to explicitly define goals, methods and paradigms of the integration process.

320 D. Kraft



Part IV

Integrative Approaches in Ecological
Modeling



Chapter 23

How Valid Are Model Results? Assumptions,

Validity Range and Documentation

Hauke Reuter, Fred Jopp, Broder Breckling, Christoph Lange,

and Gerd Weigmann

Abstract In the previous chapters we have described a spectrum of different model-

ling techniques and application examples. Now we return to overarching aspects

which are relevant for model developments of different types. Model validity and

considerations which conclusions can be derived from model results are presented

jointly for different modelling techniques and application fields. Furthermore, we

discuss adequate means of communicating the models to others. The overall views

are largely theory-based and show that knowledge on the theoretical background can

present an important guidance to making the most appropriate use of ecological

modelling results.

23.1 The Last Stage of Development: Limits of Reliability

In the first chapter of this book we started the introduction of ecological modelling

by pinpointing the possible discordance in the relationship of formalized models

and real-world ecological objects. When assessing the quality of models and

model results, we have to keep this in mind. The structure of an ecological

model does not represent the structure of the real ecological objects one-to-one.

It is a formalized extract to represent ecological interactions. When discussing the

limits of reliability for the developed construct, it is important to be aware of this

difference. A computer model is not a neutral, objective compound. It is based on

the underlying assumptions of model development (Chaps. 1 and 2). A relevant

but frequently forgotten part of model development derives from the abstraction

concept which underlies the modelling approach. The first step to evaluate the
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validity of the model therefore is to estimate how well the given ecological

context conforms to what the chosen modelling approach actually can capture.

Hence, three questions need to be considered when starting to assess the quality of

a computer model (1) what are the underlying assumptions of the model and (2)

how do these assumptions relate to the model results of the specific case, and (3)

do the boundary conditions hold?

The importance can be well illustrated with ordinary differential equation (ODE)

models (Chap. 6). Characteristic for ODEs are functional relations of a limited

number of variables. When using these relations within an ecological context, in

most implementations it is assumed that heterogeneous structures and activities can

be functionally represented in form of homogeneous variables. The degree to which

this assumption holds is very important for the validity of the results. ODEs are

frequently used to describe population growth or density. Starting from an Eulerian
perspective (see Turchin 1998), for a population study a point in space can be

focussed and the fluxes or the numbers of dispersing population members are

counted for this point. The counts (f.i., the bypassing individuals of the population)

are summarized and averaged over the inspected time interval. In physics the

density of particles in a liquid may be measured this way. A question that needs

to be considered is how reasonable it is in a particular application to assume that

population density can be measured with such an approach? This crucially depends

on species characteristics and behaviour. What might be operational for certain

unicellular organisms in an homogeneous medium may be inappropriate for colo-

nial birds – with many situations in between where the degree of adequacy is an

issue to be carefully examined.

When we have assessed these questions we can proceed to step 2: in what

way do the specific assumptions interfere with the model outcomes? What we

have at hand is a formal abstraction, not the biological objects themselves. That

is, the model does not give us information about the area in which the population

was recorded, specific properties of the individuals, their possible interactions,

spatial heterogeneities in the environment or temporal/seasonal differences –

unless specifically implemented. Model representation focuses, e.g. only on the

temporal changes of the sheer numbers as they were recorded in the point of

interest.

The third aspect refers to the problem delimitation. In constructing the model,

decisions have been made as to which aspects to include, and which ones to leave

out of consideration. In a specific application or repetition of a situation it may well

be the case that unexpected external influences play a role which were not consid-

ered during development. In most of the practical cases where model predictions do

not hold, this implicit ceteris paribus condition was not valid (see Sect. 23.4.1).

In all further steps of the assessment of specific model qualities, e.g. how it fits

to empirical data and situations, the answers of the questions about assumptions

and interactions will be of great value to judge the reliability limits of a devel-

oped model. Biological relevance and plausibility are crucial aspects in model

evaluation.
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23.2 Working with Model Results

Within the process of constructing a model, ecological processes usually have to be

quantified in extensive measurement activities, handbooks have to be consulted,

code has to be written, debugged and sometimes, the reasons for unexpected model

behaviour have to be analyzed, understood and eventually corrective action has to

be taken (Chap. 2). Once the primary part of the developmental work is done and

after achieving first results, the work enters a further stage of development: securing

the specific correctness of the model results and then, continuing to work with the

assessed model and its results. Now, we need to understand what the model results

mean, how robust and reliable they are. This process is frequently referred to as

validation. Depending on the model complexity this part can be as demanding and

relevant as the primary model development itself.

Validation of differential equation-based models has a long history (see e.g. Power

1993). For other model types specific evaluation approaches exist, which are accom-

panied by a large body of literature on specific aspects of model analysis (e.g. Rykiel

1996; Klepper 1997; Sargent 1998; Jager and King 2004). On this basis, some general

steps of quality assurance for models can be deduced for most approaches (Jakeman

et al. 2006). In this context we discuss the principles of parameter identification,

sensitivity analysis and the process of model validation. Finally, we will give some

suggestions on how to scientifically communicate model structures and model results.

We explicitly do not emphasize the usage of the term verification which is occasion-

ally applied in the context of model evaluation (Oreskes et al. 1994; Mitro 2001). The

term verification derives from the Latin verificare which stands for making true.
Philosophers are very careful in using the term truth. Can a model represent the

truth? In itself it can be formally and mathematically correct which is the reason

that the term verification is sometimes used for ensuring a mathematical correct

formulation of the model (e.g. Oreskes et al. 1994). There is always a necessary

deviation between model representation and represented reality, between explanans
(the statement that explains) and explanandum (the context that is explained).

Modellers as well as those who apply models must be aware that a formal construct

developed for a system representation and real things as they are, do not necessarily
coincide. They are not identical. A model can capture eventually some of nature’s

interesting properties, but not on the basis of a true identity. The important point is to

find out to what degree a similarity can be expected. In our opinion, this is indicated

better in the term validation than in the term verification, though the latter sometimes

is favoured in the literature (e.g. Sargent 1998; Manson 2003).

23.3 Assuring Correctness of Model Results

The protocol for model analysis follows certain steps, in particular, the specification

for model parameters, their possible ranges, and the analysis of the model behaviour

under specified assumptions (Sect. 2.4 and Fig. 23.1). These steps are based on
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a preceding assessment of the specific range of contexts for which the model can

provide reliable results. Discussing the numerical correctness of the result is an

important point of model evaluation. In most (practically all) of the ecologically

relevant cases, the mathematical correctness of the executed simulation cannot be

mathematically proven (Hawking 1988; Oreskes et al. 1994). Therefore, it is a

matter of plausibility analysis to estimate whether the results appear sufficiently

reliable. This is of specific importance for differential equation models, but also

plays a role for other modelling techniques. The following approaches are fre-

quently used to investigate the numerical correctness – they give hints to increase

our trust in the model results but without representing a proof of correctness:

l A relatively laborious way would be to implement the same model on a different

hardware- and software platform (on a different computer and/or with a different

simulation software, compiler).
l It is less laborious to change step width of model calculation and/or the integra-

tion method. This will usually lead to slightly different results. If the differences

are not meaningful, the numerical approximation can be considered as appropri-

ate for the aim of the investigation.

Fig. 23.1 Basic steps to ensure model accuracy. The sequence of steps may be changed depending

on model purpose and assessment routines
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l What should be done in addition is a consideration of the expected dynamics:

Does the model contain conditions under which critical phases occur – are there

extreme changes in very short time intervals? Are there higher order nonlinea-

rities which are important during particular phases of the simulated time? If this

is the case or it could occur under particular boundary conditions this represents

a challenge for numerical correctness, and all indicated phases should be inves-

tigated in detail.
l For critical phases the model behaviour in extreme (but still plausible) situations

should be looked at, e.g. by running the model with a higher resolution for the

critical conditions. The time span when a population outbreak or collapse occurs

can be an example for a critical phase of model development.
l Are there hints for the occurrence of chaotic dynamics (e.g. the occurrence of

continuing endogenous changes of amplitude and frequency without an imple-

mented stochasticity)? For chaotic dynamics infinitely small changes are suc-

cessively amplified. These models usually are not suitable for long-term

projections other than statistical interpretations.

In ecology, most of the dynamic processes we deal with do not involve numeric

extremes and run relatively smoothly, however, relevant differences of a correct

and a numerically approximated result can even be observed in quite simple cases.

The Lotka–Volterra equations for a predator prey interaction (see 6.11) can be used

for a demonstration. The “true” solutions of the equations are accessible through

mathematical integration – unlike most of the other more complex cases. Therefore,

we know that the model result is a closed trajectory with constant amplitude. Using

the Euler integration routine for simulating the equations, errors accumulate and

yield an oscillatory pattern with successively increasing amplitude. Reducing the

integration step width improves the situation only gradually. Even for extremely

small intervals the effect is still observable. Changing to the Runge Kutta 4th order

integration, the results are considerably better. For beginners it can be an interesting

and instructive exercise to start such a simulation experiment and to recognize that

numeric artefacts are not only a myth and model results must be analyzed carefully

before drawing conclusions.

23.3.1 Model Structure and Parametrization: The Issue
of Aggregated Parameters

Model parameters do not necessarily derive from direct measurements. In particular,

in equations which describe population dynamics (e.g. Chaps. 6, 7, 9), parameters

usually represent aggregated averages of a larger set of phenomena, e.g. the overall

lifespan, mean population increase or specific tolerance ranges. Sometimes, they can

be determined empirically for a specific set of individuals but rarely for the whole

population. Regardless of their origin, either from a field campaign or even from

further assumptions (“educated guess”), such parameters for aggregated phenomena,
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can play a crucial role for the overall system dynamics. When these parameters

aggregate many external and internal influences, the resulting high context speci-

ficity will limit the global applicability of the model and its outcome. If an

underlying mechanism can be assumed and measurement data are available, it

is frequently possible to determine which parameter value would be best to

minimize the differences between modelled and observed data. In the sensitivity

analysis it is possible to resolve which parameters are most critical for further

adjustments.

23.3.2 Calibration

Calibration (also referred to as “parameter identification”) is a procedure in which

model parameters are changed to minimize the difference of the model output and a

given set of measurement values. For this purpose, a fully developed, executable

ecological model must be available. In addition, a target dataset is required that

demarcates the output which the model should generate in case of an ideal fit. It is

important to ensure that this dataset is independent of the measurements which were

used for model specification, because otherwise it would strongly limit any conclu-

sion on the reliability of the identification process.

Systematically, parameter values are varied, applied to the model and the

outcome is compared, to see whether the fit was improved. The direction and extent

of the change is then used to calculate a new set of parameter values which is again

tested in an iterative procedure in which the quality of the fit can be expressed

quantitatively (Janssen and Heuberger 1995).

As with other optimization processes, it is not guaranteed that the iterative

procedure always finds the best overall fit when stopping at an extreme value.

Therefore, it is usually advisable to start parameter identification as close as

possible to the assumed values, and repeat the procedure with a number of slightly

different starting points to assess whether the results remain comparable. Often we

can find a strong dependency between model complexity and data requirements.

Lack of data and the use of over-parameterized models may also limit the success of

model calibration (see, e.g. Marsili-Libelli and Checchi 2005).

Although most of the established optimization techniques have been originally

developed and applied for differential equation-based models as these regularly

operate with aggregated parameters, there are also adapted calibration processes

being developed for individual-based models IBM (e.g. Pereira et al. 2008), which

operate in analogy, i.e. change quantities in model specification and compare the

results with regard to an optimality criterion.

The approach of machine learning (see Chap. 19) conceptually expands the

approach beyond a variation and adaptation of parameter values. In addition also

functional expressions (e.g. different forms of nonlinearity) are changed and then

tested, as to whether this would lead to an improved approximation of the target

values.
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23.3.3 Sensitivity Analysis

After identifying the most adequate model parameters, the procedure of sensitivity

analysis provides information about how the model results depend on specific

parameter values. In further model development procedures these parameters

should receive the highest attention and precision in acquisition effort.

The sensitivity to a given parameter change constitutes an inherent property of

the developed model. Its analysis implies a systematic variation and combination of

parameters. For a given standard model setting the simulations are repeated with

one of the parameters marginally increased or decreased by some defined amount,

e.g. �10% of the starting value. The larger the deviation caused by the minimally

changed value, the more sensitive the model is with regard to this parameter (see

Fig. 23.2). Such a sensitivity test can be done successively for any chosen set of

parameters.

Usually it turns out that many parameters have only relatively small influence,

while only a few drastically change the model outcome. Relatively inert parameters

can then be considered for elimination in a following model simplification process.

For differential equation models it is not uncommon for the fourth or fifth decimal of

a sensitive parameter to change the results by fifty percent or more. Many statistical

approaches have been applied for sensitivity analysis or have explicitly been devel-

oped for specific fields of model testing (e.g. different multivariate approaches,

Klepper 1997; spatial aspects of sensitivity analysis, Jager and King 2004).

It has to be noted that the results of a sensitivity analysis are not globally valid:

they can be applied only to the given set of parameter values for which the procedures

were performed. If more than one parameter is changed simultaneously, model

sensitivity may significantly vary between the different settings. Frequently, the result

Fig. 23.2 Sensitivity analysis: If a standard model run yields the upper curve and a slight

deviation of one parameter yields the curve below, then the difference of both at a selected point

in time (drawn along the x-axis) represents the sensitivity of the model with regard to the changes

of the according parameter. Sensitivities of the parameter used in a model can be compared for the

sensitivity of the model to parameter changes. Usually, the sensitivity is calculated for a specific

point in time. For another example see e.g. Jepsen et al. (2005, Fig. 4)
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for one set of parameters provides some orientation also for the surrounding, even if,

in a strict mathematical sense, sensitivity analysis has a zero-dimensional validity

with respect to the parameter space. Thus, it should be re-applied for any introduction

of new parameters or other changes to the original model system.

To cope with the context specificity of sensitivity analysis, multi-parameter

approaches for analysing the mutual influence of parameter combinations on model

results are applied (e.g. Van Griensven et al. 2006; Makler-Pick et al. 2010). For

models with a low number of parameters it may be feasible to analyse most of the

possible combinations. For more complexmodels this could by far exceed the number

of possible setups. Thus, it is very important to explicitly control the necessary number

of selected parameters for sensitivity analysis and employ techniques to reduce the

number of required model runs and replicates.

The concept of sensitivity analysis can also be extended to models where

dynamics are substantially determined by the inherent rules and less by external

parameters: when models depict individual interactions this could lead to the

change of a behavioural rule or it could even involve the structure of the model

itself (Jakeman et al. 2006).

23.3.4 Model Validation

Model validation tries to identify how reasonable, reliable and precise model results

are with respect to the scientific focus and the intended use and purpose. Not for all

desirable situations such a concept can be realized in the strict sense (Konikow and

Bredehoeft 1992). Besides assuring numerical correctness, specific investigations

of model properties and of their relation with the ecological context (i.e. the

appropriate degree of ecological realism) can help to decide to reject or accept a

model. If a model was created to depict a specific situation, further assessment is

mandatory to determine to what degree the model application is generalizable (see

e.g. Rykiel 1996). A large number of approaches exist to test model predictions and

validity ranges (Sargent 1998; Troitzsch 2004; Martis 2006). Different approaches

are applied for validating models (Table 23.1 gives examples from recent model-

ling literature) which we will be explained in the following subsections.

Comparison of Model Results with Independent Datasets

An essential step in validating the model results is to compare the outputs with

independent datasets which previously have not been used in the model develop-

ment process. Such a comparison is considered a standard procedure (see e.g.

Fig. 23.3). This comparison can be based on a split dataset using the parts not

previously used in parametrization and calibration, or may apply cross validation

techniques, in which iteratively different subsets of the data are used for analysis

(training set) and validation (validation set, see also Chap. 14). Aside from cross
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Table 23.1 Recent examples of model analysis approaches. The table illustrates the large range of

techniques and different approaches used in model validation

Topic and modelling

approach

Model evaluation approach Reference

Movement and distribution

of elks; Individual-based

Model (IBM)

Multi-step approach which comprised

testing of the developed model and the

external ecosystem model SAVANNA

Rupp and Rupp (2010)

Visual accordance of spatio-temporal

patterns of habitat use between model

and observation on different

organization levels

Comparison of density maps and

accordance of movement corridors

Correlation of space use with

environmental factors (snow cover) for

simulated animals and independent

samples with simple statistical tests

Suitability of habitats for

forest passerines; Spatial

Distribution Models

(SDM)

Analysis of Habitat suitability in relation

to demographic data

Rittenhouse et al.

(2010)

Habitat suitability index was integrated

into a general linear model framework.

Testing and validation was done

between the different models

Prediction of copepod

community dynamics,

biological–physical

coupled population

model

Genetic algorithms for parametrization of

copepod properties

Record et al. (2010)

Statistical comparison (root mean square

difference) of model predictions with

independent datasets from different

years

Despite varying results from genetic

algorithms, data fit may be equally

well

Investigation of causal

factors which facilitate

the spread of plague;

IBM

Structural validation which focuses on the

correctness of process representation

and not exclusively on the accuracy of

dynamics as data to compare results

are scarce

Laperriére et al. (2009)

Qualitative assessment of key model

properties (e.g. secondary infections,

contact frequency) to variation in input

parameters

Testing models for

prediction of the

distribution of invasive

plants; Different

modelling approaches

Comparison of model results with data

previously not used in model

parameterization.

Evangelista et al.

(2008)

Statistical evaluation e.g. using presence

and absence data, maximized Kappa to

measure the proportion of correctly

classified points and the area under

Receiver-operating characteristic

(ROC) curves (AUC) for threshold-

independent values

(continued)
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validation also other approaches which make privileged use of independent datasets

for validation can strongly reduce the risk of asking thewrong questions or following

hypotheses which seem to be reasonably suggested by the original data (i.e. getting

the right answer to the wrong question, type III errors, see Mosteller 1948).

Table 23.1 (continued)

Topic and modelling

approach

Model evaluation approach Reference

Sustainable production of

mussel aquaculture; Box

ecosystem model

coupled with a

hydrodynamic model

Set-up of 2 year experiments to compare

key variables (mussel growth, nitrate,

phytoplankton concentrations) from

model results with experimental data

Grant et al. (2007)

Visualization of plotted data from

experiments and models

Hatching of eggs and

survival time of

herbivore soil-dwelling

insects; Partial

differential equations

Application of the model to other insect

taxa

Johnson et al. (2007)

Visualization of plotted data from

experiments and models

Dynamics of a woodpecker

population; IBM

Qualitative assessment of model

performance as location used by the

birds are not completely independent

(e.g. part of time series)

Schiegg et al. (2005)

Comparison of secondary model

predictions (e.g. natal dispersal

distance, population structure) with

descriptive statistics

Prediction of distribution

and density of badger

sets; (SDM)

Statistical validation with ROC curve

using density data from two

independent sites

Jepsen et al. (2005)

Model accuracy as a proportion of

correctly classified cells (locations)

Fig. 23.3 Illustration of the development of a fictional plant population. Crosses represent

measurement data, the solid line model output and the arrows precipitation events: (a) (left) The
measurement points were used for model development, the fit it relatively good. (b) (right) shows
an independent dataset with a different precipitation regime (arrows) which was not used during

model development. The fit is less good and indicates, that for model validation the precipitation

response might be reconsidered to improve the application range of the model. For instance, Rupp

and Rupp (2010) (Fig. 7) illustrate the application of the approach with empirical data
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The task of comparing the model output with independent datasets can be focused

into the substantial question of statistics, namely whether two samples (the result of

the model and the independent data) are derived from the same population. Evidently,

this is a further source of uncertainties and even errors in the qualitative assessment of

the model. Applying statistical tests to data can be viewed as modelling of the

underlying properties of their distributions. Therefore such testing implies an addi-

tional step of abstraction and reduction of information of data. In fact, what one does

is to model the independent data and extracting certain test statistics which are then

compared with the corresponding model of the data as generated by a model using

ecological data. The more links such a chain of data manipulation has, the more

caution is necessarily concerning the interpretation of their final results.

In applying statistical tests for model evaluation the user is prone to the usual

errors and pitfalls of statistics. Among those might be the risk to underrepresent the

actual shape of the data distribution with the test statistics and, in consequence, to

assume a common population of the samples. This phenomenon has been elaborately

demonstrated by Anscombe (1973), who has shown that critical qualities of distribu-

tions, like mean and variance of a dataset’s x and y, the correlation between x and y, as
well as the linear regression line can be identical in four vastly different datasets.

Another usual problem arises from datasets that violate fundamental assump-

tions of the applied statistical tests. For parametric tests this is mainly the assump-

tion of normality of data. Normality might be achieved by certain transformation

techniques, but sometimes one has to refer back to non-parametric tests, e.g. when

testing categorial data. Though there is no normality assumption for non-parametric

tests, there still are assumptions about data distribution that can be violated (see e.g.

Jopp and Lange 2007). Therefore, a generalized “assumption of no assumption” for

non-parametric statistics is not appropriate.

Among users of statistics there seems to be a firm belief in a p < 5% for

significant test results. While this is far from being irrational, there are more

important lessons to be learned for the proper application of statistics, especially

regarding natural science data: Nothing in statistics is unquestionable, not even the

desire of a p < 5% (Stoehr 1999). In contrast, it is far more important to always

refer back to the ecological sources of the data and to interpret them according to

the available biological knowledge. There are examples where using any statistics

at all will lead you to the wrong conclusions, because statistics is inherently

ignorant of the involved scientific disciplines. This is the reason why, in some

cases, alternative approaches, like structural model validation, might be more

appropriate than a straight statistical validation.

Structural Model Validation

Structural validation investigates in how far the model mechanisms reproduce the

proposed characteristics of the studied ecological context as described by the

conceptual model. Thus the model should not only reproduce the observed system

behaviour but also reflect the causal mechanisms and processes in which the real
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system operates to generate this behaviour (Troitzsch 2004). This approach is

mostly applicable for model systems which allow to represent self-organization

processes and where higher-level properties emerge from the interaction of lower-

level entities (IBM, Chap. 12). When it can be ensured that no type III error is made

(see above), such a consistency check for key processes and dynamics on different

hierarchical levels increases the probability that the system behaviour has been

represented correctly and results are reliable within the applied conceptual system.

An example for a structural validation was presented by Laperriére et al. (2009)

who modelled the spread of plague with an IBM. Although the processes leading to

disease outbreaks and the role of the different components of the infection system

are well known, the data for the investigated case on the island of Madagascar are

scarce with low temporal resolution, which is not uncommon for ecological data

(Jopp and Lange 2007). Therefore, the model validation process was performed

more in a conceptional way rather than testing a one-to-one accuracy: various input

scenarios (e.g. prevalence levels in recipients) were linked to model output and a

comparison of sufficiently general characteristics of the target systems (e.g. thresh-

old levels) was performed.

Structural validation allows to test theory-drivenmodels. It is often performedwith

expert knowledge or when the direct participation of stakeholders is desirable. In the

latter case, model results are evaluated by experts for their consistency. Another way

of doing this is to perform a Turing test, where the experts have to decide whether the

results derive from simulations or from real-world field investigations.

23.3.5 Limits of Validation and Validity Range

The described approaches help to learn more about the conditions under which a

model can be used and how eventually critical points can be avoided. Usually there

are no sharp boundaries of amodel’s validity range. It is more reasonable to consider a

gradual range of certainty depending on the given conditions. Therefore, frequently

models informmore about potential outcomes rather than providing a strict prognosis.

Experience shows that ecological prognoses are difficult. Models usually are stronger

in providing if–then information: if the model assumptions hold, then a specific

result can be expected. However, whether the given structure and parameter values

are actually the optimal description for a specific case remains difficult to foresee.

23.4 Assessment of Higher-Level Model Implications

Validation attempts to directly relate model output with ecological observations. It

is also possible, and for some model approaches useful, to include more indirect and

conceptual analyses which investigate model implications on higher organizational

levels, and thereby, extend the possible range of validation applications.
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Many ecological situations depend on very specific local conditions and are hence

difficult to reproduce: an example for this would be a pronounced spatial heteroge-

neous distribution which is partially amplified through biotic activities. Or as in

standard models of plankton algae population dynamics: it is difficult to meet all

responses to the influencing conditions and thus to simulate specific site conditions.

However, the quality of a model could be assessed by comparing the frequency of

certain situations (e.g. population outbreaks or occurrences of the maxima of a

particular species) in a larger time span and analyse whether repeated model applica-

tions with randomly varying input would lead to comparable distributions. Thus, for

many complex situations it is possible to develop reasonable models which might not

be able to directly describe a particular development of a process but at least capture

and formalize certain general characteristics. In this case, validation procedures

which operate on higher-level characteristics can be of great help (see e.g. Sect 12.4).

23.4.1 Scenario Calculations and the Validity Window

In situations where it is not possible to predict precise developments it can be useful

to investigate scenarios (see Chap. 22). In the context of ecological modelling this

means to consider a set of assumptions and then use a model to calculate the

implications of the considered assumptions. In other chapters you find interesting

examples for scenario calculations, e.g. in Chap. 2 a model shows the implications

of carabid beetle dispersal. This model analyses the colonization success of beetles

for several different scenario settings with different stepping stones in an adverse

landscape surrounding (Fig. 2.6). Another example relates to the nutrient retention

capacity simulated under the assumption of different agricultural processing inten-

sities (Fig. 2.7, nitrogen leaching in industrial agriculture and in green agriculture

simulated with the WASMOD modelling system).

A seemingly negative result of a scenario calculation would be to find out that

certain expected model results are not compatible or consistent with particular input

conditions. This frequently limits the window of expectation in an interesting way,

as it helps us to understand more details of the investigated ecological processes and

relates them to a larger context.

In other cases of model validation we can find out how far the conditions can be

varied before the output becomes ecologically unreasonable. For temporal and spatial

extrapolations it is important to note that, again, a ceteris paribus condition is used.

Thismeans that all basic relations and processeswhich are not explicitly changed in the

scenario setup are kept unchanged, and that all external influences which are consid-

ered only implicitly, remain the same, hence ignoring potential changes in processes,

reactions of organisms or structural relationships. It is in the responsibility of the

modeller to consider and document this thoroughly when extrapolating the results.

For complex ecological situations it is interesting to see that to a surprisingly

large extent the degree of freedom is relatively limited. Selecting biologically
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plausible parameters within a certain range often leads to reasonable results without

elaborated fine-tuning. A reason for this is that, on the level of the single organisms,

processes operate with a certain robustness, as depending on constricting extreme

precisions would frequently conflict with the sustainability of the general condi-

tions for existence. On the other hand, the occurrence of extreme sensitivities

frequently indicates that highly aggregated process descriptions were used. Ratz

(1995) illustrates in a forest fire model that model assumptions are likely to be

unrealistic if the result depends on extremely fine-tuned parameter (in this case

within a linear model), whereas other assumptions (here, the introduction of a

nonlinearity) makes the model considerably less sensitive to changes in parameter-

ization. Hence, we can state that beyond limits of plausibility for biological para-

meters the results frequently turn unrealistic.

23.4.2 Result-Probability Distributions, Parameter Ranges
and Phase Transitions

Often, not just one specific simulation result is of interest, but instead we have to

deal with a whole class of simulation output resulting from systematic tests of

varied initial conditions, parameter ranges or external influences. Such an approach

is frequently used for dynamic systems in all fields of application. When for a given

system the outcome cannot be predicted with a high precision, frequently it is

possible to specify a probability range which can be derived through a large number

of model re-runs with varied parameters or initial conditions.

Frequently, an unevenly distributed probability density structure can be found

and characteristic spatio-temporal probability structures emerge. Structures can

comprise heterogeneous output densities, phase transitions between different

dynamic or structural regimes and gaps in which it is improbable to find the model’s

state. Without specific reference to this concept, it has been used in a previous

chapter (see Fig. 1.4). It shows the result of re-iterations of a small equation-based

system with a successively changed input parameter and shows the response space

which exhibits a complex fractal structure.

23.5 Model Documentation and Communication

Modelling involves complex interaction networks (Reuter et al. 2008).While a short

formula can be relatively easily surveyed, it is a challenge of its own for most of the

practically relevant ecological applications to bring them in a form that conforms to

scientific standards, including an independent confirmation of the results. This

marks the difference between art and science: while an artist is happy with a unique
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product, a scientific result is not valid if it is not independently reproducible by other

researchers.

In ecological modelling we are faced with the problem that often the model code is

too long to fit into the usual format of a scientific publication. Though this situation

has improved significantly through internet-based model repositories, some authors

still prefer to keep the source code of their model confidential. Though this excludes

the model in a strict sense from the scientific discourse, it is possible to specify the

employed relations in a way that an independent re-programming (eventually on a

different software and hardware base) should be possible and can arrive at qualita-

tively (or even quantitatively) comparable results. Describing a model in such a way

that the reader knows which relations have been used for model specification is

crucial for the scientific discourse. How models should be documented is in itself a

topic of a discourse. The ecological modelling practice has arrived at practical

solutions which can be found in the respective literature (see e.g. the Journal

“Ecological Modelling”).

It is largely a matter of consensus which issues are required for model docu-

mentation in the scientific literature. The same general requirements hold as in

other fields of science, which we summarize here with respect to the usual

organization of a scientific paper. Good examples where the organization of

scientific communication can be studied are Day and Gastel (2006); McMillan

(2006); Alley (1996), and Goben and Swan (1990). Therefore, we concentrate on

the particular aspects which relate to the necessary documentation for ecological

model issues. In general, the “Authors Instructions” of the particular journals

provide additional technical information regarding the requirements and formal

standards of a journal.

The Abstract

Is the first part and should be written when the paper is finalized, outlining what the

article offers to the reader specifying the topics dealt with and for which aspects

results are provided and discussed and why they are relevant.

The Introductory Part

This part should contain a clear specification of the problem that was investigated.

What makes the problem scientifically relevant? For this, a consideration of

previous work and the state-of-the-art on which the developed model builds is

necessary. With respect to the model development a description (or reference) of

the performed systems analysis is important. This section should contain the

identified system components, the relevant processes and their interrelations.

Depending on the focus of the publication this part might also be placed in the

following section.
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The Material and Methods Section

Here a description is expected as to how and where the data were acquired and a

detailed documentation of model design and processes should be given. This can be

done either through an extensive model description (underlying assumptions,

equations, relations, semantic structures) or through the quotation of a technical

paper published (or available) elsewhere. If applicable, an explanation of the

acquisition of the database used for model calibration and validation should be

provided. The description should mention also the technical means, the specifica-

tion of the hardware and software that was used.

Model Description Section

If a model is not only applied but scientifically described for the first time, the

material and methods section can be shorter and a separate section for the model

description should be inserted. The equations or the formal specifications have to be

described in a way that (in an ideal case) the reader can re-programme the model on

the basis of the description. Thus model documentation should contain relevant

parts of the model and the performed simulations. Eventually these are:

l The used software versions, programming language, libraries, compiler,

operating system and hardware requirements.
l A detailed model description comprising:

1. An overview on the model structure with sub-modules (if applicable). A

structural diagram and flow charts (see Sect. 2.1), eventually with sub-

diagrams which illustrate crucial details.

2. Information on the mathematical equations and applied rules systems; this

should also include the integration methods (in case of differential equations)

or scheduling information (for discrete models).

l Parameters for the basic simulations. Eventually a distinction of parameters into

those referring directly to model processes and those constituting external or

environmental influences should be pursued. This part should also contain a

justification of parameters and relation to empirical studies and knowledge.
l Initial conditions for standard simulations.
l Results from sensitivity analysis and validation procedures.
l Initial conditions and parameters for further calculations and definition of

scenario configurations.

Due to the wide range of different model types and intentions it is unreasonable

to always follow the same standardized scheme of model documentation, as it needs

to be meaningfully adjusted to specific needs. In some cases standardization (e.g.

Grimm et al. 2006; Schmolke et al. 2010) can provide an orientation as to which

parts should be included in a comprehensive model description. We regard it as

sufficient to fulfil the overall requirement of reproducibility and established
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standards of scientific communication. In our opinion, modelling does not pose

conditions other than those relevant in science in general. The development of

easily accessible repositories improves the conditions to allow scientific peers to

exchange models and to independently verify the correctness of given results.

Frequently, some extended parts which are not directly necessary for the direct

understanding of model organization and functioning can be placed in an annex or

as accompanying material on the internet. Specialized scientific journals have

standards on how to document the model code itself and how to allow in a crucial

case an investigation that could prove that the results are actually obtained through

the model application (and not fictitious). If the code is treated as proprietary, it

must be held available in the case of the requirement for formal inspection. In case

that there should be reason to investigate the integrity of the scientific work, the

authors must be able to prove to have followed the scientific code of conduct.1

Results Section

Model output can be represented within figures, tables or statistics, frequently in

comparison with empirical data. The specific algorithms used for their generation

should be explained in the text. If the text has a more methodological focus, the

results of sensitivity analysis and the model validation are also expected here.

Discussion Section

The discussion should encompass the model development (if applicable) and the

results to the research question as posed in the introduction and compared with

findings of other authors in the same or related fields. Validity considerations and

application ranges are of special interest here, as well as the relevance of the results

for further application and development.

23.6 Concluding Remarks

It is important to be aware that the model development does not end with code

writing. Following the availability of a fully functional model, an extended phase

of model evaluation is necessary which comprises the model calibration and

determination of parameters, the identification of model sensitivity to changes

of single parameters or a combination of parameters and the comparison of

model performance and structure with empirically determined values and causal

1e.g. US National Science Foundation (http://www.nsf.gov/bfa/dias/policy/rcr.jsp), German Science

Foundation (http://www.dfg.de/foerderung/rechtliche_rahmenbedingungen/gwp/index.html).
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relationships. This includes determining the limits of validity and reliability for the

model.

The development of models allows asking further questions, adding new

features and testing additional conditions. As with the case of Lake Glumsø

(Chap. 19), a model can inspire scientific development for decades after its first

publishing, not only through direct extensions but also through combinations

with new techniques, eventually also inspiring ecological as well as technical

development.

In this regard, model validation explores the contribution of a model to expand

ecological knowledge, to estimate the potential to answer questions and eventually

to facilitate the emergence of new opportunities for continuation.
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Chapter 24

Perspectives in Ecological Modelling

Fred Jopp, Broder Breckling, Hauke Reuter, and Donald L. DeAngelis

24.1 Ecological Modelling: A Matured Discipline

In the chapters of this textbook we have presented a broad panorama of the network

of discourse from which Ecological Modelling emerged and grew. Starting from the

very early days, we have proceeded to give an overview of a wide spectrum of

currently available approaches. Then, after looking at a selection of prominent

model applications, we discussed how to assess model validity.

In the beginning, ecological modelling was largely influenced by approaches

outside of biology. Ecology was one of the disciplines that started relatively late to

use quantitative methods and theory. One relevant impetus for considering quanti-

tative relations came from economics (Malthus 1798). Quantification of human

interference with natural systems has always been relevant in agriculture. With the

development of agricultural chemistry (Liebig 1831), the targeted adaptation of

quantitative methods to production-oriented ecosystems became important. The

quest to understand density-dependent regulation (Verhulst 1838; Pearl 1927),

predator–prey interactions, and species competition sparked the borrowing of

differential equations from classical mechanics (Lotka-Volterra equations; Lotka

1925; Volterra 1926) to analyze ecological dynamics. While the differential equa-

tion approach was successfully applied to areas of population ecology, it was

structurally not as adequate for addressing the heterogeneity within populations

(e.g., age, size and spatial structure) as it was for addressing dynamic and equilib-

rium behaviour at the level of whole populations and simple food webs. While

analysis of food webs tended to be dominated by a few standardized approaches,

such as energy or biomass budget models (Chap. 5, Ecopath), a wider variety of

approaches emerged to deal with heterogeneity within populations. The challenge

that drove methodological development for a number of decades was how to cope

with the difficulties of representing temporal and spatial heterogeneities. With the

development of object-oriented approaches (Dahl et al. 1968; Kaiser 1976, 1979;
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Hill 1996) and its import into ecological modelling (Hogeweg and Hesper 1983;

Huston and DeAngelis 1988; DeAngelis and Gross 1992; Wolff 1994). It is reason-

able to state that there now exists an adequate spectrum of approaches to deal

with the broad spectrum of problems in ecology, and these approaches can be

applied individually or in combination with other approaches, whatever is required

by the problem.

This successful development of a highly flexible repertoire of quantitative

approaches is why we consider ecological modelling to be a mature discipline. It

consists of a large body of methodologies appropriate for the full spectrum of

ecological research, from the assessment of small-scale and short-term individual

behavioural pattern (autecology) through various scales and levels of organization

(population, ecosystems, landscapes and biomes) up to processes on the biosphere

level. Because of the wide range of approaches available, both the student who is

interested getting his or her bearings in this field, and the researcher already

working in ecology, need some help and orientation to identify the most reasonable

approaches for a given problem.

24.2 Model Categorization Provides an Orientation

but Hybridization and Mixing of Approaches

Remain Constitutive

The model categorization we have developed in this text for such orientation is not

an ontological one and the structure we used is not mandatory, as it does not

constitute the only reasonable approach. Our design is somewhat subjective and

only one of a number of possible ways of presenting an overview. All models have

the common property that they can represent an existing or an imaginary ecologi-

cal situation in a formal setting that uses particular forms of abstraction. The

process of abstraction entails selecting and conceptually isolating particular rela-

tions from their natural interaction context, while leaving other relations out of

consideration. Since ecology deals with such a wide variety of different situations,

the modeller is required to have not only a profound expertise in ecology but also

needs special creativity in how to handle abstractions. A given modelling applica-

tion does not necessarily need to fall fully into one of the prototypical categories

of model types outlined above. “Model hybridization” is a frequent feature

employed in modelling practice. Thus, modelling applied to ecological problems

is not a cookbook discipline of routine applications and standard procedures. It

does require a background of knowledge of what the scientific standards for

models are and how to apply them in a specific ecological situation, but major

contributions to science usually involve innovative modelling. Thus, model cate-

gorization has a largely didactical and educational purpose. In the actual practice

of science, such categorizations play more a role for orientation rather than for

imposing strict rules.
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We presented our categorization system of ecological models without ignoring

that a strict categorization might result not only in logical problems (see Chaps. 2

and 4) but could also lead to inadequate practical results. As far as we see this issue,

sharp boundaries between model types are not reasonable. For intellectual inspira-

tion such categories are only important insofar as they help to identify and

understand real world processes.

24.3 Structurally and Functionally Realistic Model

Construction Tends to Generate Stable Model

Behaviour

From the experience of many years of applying models, using different techniques

and approaches, we arrived at an interesting conclusion. The more abstract a

model is, i.e. the more it ignores the structural heterogeneities of the system being

modelled, the more effort is required to parameterize it to meet a specific situation.

On the other hand, if the model adequately represents the structural characteristics of

the system being modelled, parameterization frequently tends to be not such a

difficult matter. That is, model behaviour is not too sensitive to parameter choice,

and it is relatively easy to decide on the range of parameters that are biologically

reasonable. With the appropriate caution, this observation can be turned around:

if we observe crucial sensitivities in a model, it may be a hint that it might be

structurally inappropriate for the way the ecological system actually operates. Why

this can often be the case is explained below.

Organisms that cannot complete their whole life cycle within the environment that

is available to themwill quickly vanish from the community of a particular ecosystem.

Only organisms that are compatible with a particular environmental setting, and the

uncertainty and variability it involves, can persist in the particular system. The

considerable losses of biodiversity that accompany environmental alterations indicate

that the persistence of organisms is not a trivial issue. It also implies that existence

requires an environment that meets stringent conditions. In particular, environmental

properties are needed that can maintain sufficient population densities as well as

prevent mass proliferations and the resulting overall system instabilities that might

lead to collapses. This can be considered as a standard situation, fromwhich of course,

exceptions and deviations exist.

Now, modelling such a situation may be difficult. Maintaining a model system in

reasonably stable conditions often requires very careful fine-tuning of the model to

meet those observed conditions. It is quite likely that in order to make the model

mimic those observed conditions, one needs to apply mechanisms in the model that

differ from the way the biotic system actually functions. With differential equation

based models it is a frequent experience that parameter fine-tuning is required to an

extent that is biologically unreasonable (for example, if making the model system

behaviour properly depends on the fifth decimal of a parameter).
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With object-oriented modelling, however, it is usually possible to approximate

the actual structure to the ecological system quite well (see Chap. 12). Conse-

quently, the model results tend to be surprisingly robust when parameterization is

chosen according to biologically realistic values. The robustness of model results

can be related to the appropriateness of the model assumptions with regard to the

problem under investigation.

When one begins to work on an ecological model, one is seldom completely free

to choose its logical structure. The core task of the modelling effort is to concentrate

on the main driving forces of the complex ecological dynamics that one wants to

describe, and so one is compelled to include only the necessary structural compo-

nents. In other words: Modelling usually should follow Ockham’s razor and one

should prefer the simplest explanation that conforms to the observations. This

implies that it may be necessary to change and adapt the structure of a model

when this is ecologically required (see Chap. 12). By a change which is ecologi-
cally required, we mean that either relevant changes in the modelled object

structure of biological entities (e.g. status or motivation of the individual) or the

modelled environmental structure (e.g. temporal and/or spatial) of the simulated

model universe have to be made. With equation-based models, which are mainly

parameter driven (see Chaps. 6 and 7), it is frequently more difficult to adapt the

model interaction structure, than with the object-oriented approach.

24.4 Across-Scale Modelling and Multi-level Modelling

How simple and straightforward the first ecological models of Verhulst in the

nineteenth century now seem – the increase of a population in time is proportional

to the population itself minus a constant times the square of the population size

and – voilá! – logistic growth emerges. Current progress in modelling is not just

a matter of adding building blocks to this ancestral model. The focus of scientific

progress in ecological modelling is on developing modelling systems that success-

fully can deal with the emergence of qualitatively new and unexpected properties

that arise from the interaction of particular components. This is a frequent result in

object-oriented modelling; e.g., model predators are allowed to randomly consume

prey, both populations proliferate – and wow! – the whole spatial area/community

enters into coherent oscillations. Though the emerging spatio-temporal pattern is

not a property of any single individual interaction, it emerges as a result of the

overall ongoing activity.

Starting from the interactions of individuals and their behaviours, through popu-

lation dynamics, community structure development, ecosystem and landscape

processes, and on upwards to the biosphere scale; each step is characterized by self-

organization effects that result in emergent properties (Jantsch 1980). The modelling

of self-organization processes, is, in our opinion, the supreme objective of eco-

logical modelling and allows to achieve a deeper understanding of how natural

processes interrelate (e.g. Kauffman 1993; Gell-Mann 1994). Approximating these
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interdependencies that occur in the form of emergent phenomena makes ecological

modelling the major approach for reconstructing ecological entities in terms of struc-

tural and functional relations.

The understanding of emergent properties is basically linked with across-scale

modelling and the combination of model descriptions on different organizational

levels. Within the modelling workflow, the natural processes are abstracted and

reconstructed in computable program code, which allows for arbitrary numbers of

repetitions under varying boundary and initial conditions. Aside from the pure

coding process, which can in principle be automated using our current under-

standing of artificial intelligence, we believe that the moment of inspiration,

which enables the researcher to formulate the ecological hypotheses, will remain

the genuine and authentic domain of the modeller. The better science becomes in

simulating the dynamics of complex ecological phenomena across scales and levels

as theoretically formulated processes, the more relevant the next task will become.

This is to expand our understanding of how processes and succession of natural

systems respond and interact with human interferences, and vice versa: how eco-

system dynamics set boundary conditions and thus influence self-structuring pro-

cesses of social activities and systems. However, this is by no means a trivial task.

24.5 Coupling Models of Natural and Human Systems

It is notoriously difficult to model the interaction of human subjects with each

other. If our current understanding were better here, we would not stumble blindly

into economic surprises and crises. The ongoing current crisis teaches how far

away we are from such a crucial system understanding. Nevertheless, the feedback

between social processes and ecological dynamics is one of the most demanding

current fields of interdisciplinary research and development (see Costanza 1991).

The relation of natural and social dynamics is a new interdisciplinary approach,

called social-ecological research, which tries to connect ecological transformation

of the society with social justice and economic demands (e.g. PT DLR 2008).

Due to the increase of the economic and ecological pressures on natural and

human systems, the question arises whether the modelling of “symbiotic” entities,

like agro-ecological systems and the associated social structures (of the farmers

as a starting point) would not gain from being depicted together? Imagine, as an

example, the situation of the introduction of genetically modified oilseed rape in an

agronomic system of Southern Europe, where all the hybridization partners have

their centres of origin and, hence, might give rise to a new variety of, e.g. herbicide

resistant weeds. In this context, also other new evolutionary implications and self-

organized dispersal events may be imagined. Would not the outcome of such a

field trial with, for instance, genetically-modified oilseed rape have impacts on the

societal structure of the participating farmers (Knispel et al. 2008; Beckie et al.

2003)? Surely this would be the case, and hence, models that work on these

phenomena should reasonably be coupled (see Reuter et al. 2010).
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24.6 Modelling Complex Ecological Dynamics: Predictions

About Its Future!

Ecological Modelling will improve and expand. Models will further increase in

their ability to represent the complexity of nature. Model generation, at least for the

repetitive parts of models, will be conducted to a greater extent by employing

artificial intelligence in model development. Iteration processes will be to a larger

extent enabled to iterate iterations, i.e., to proceed to a meta-iteration level. Model-

based adaptive management strategies will further improve. On-site or remote

sensor driven system interfacing will improve, as well. But will this overall

development allow more precise predictions of nature? In some limited fields this

could be the case. But concerning strategic issues, nature will remain the source of

surprise that it always has been. One of the surprises about modelling: Model-based

argumentation can help to explain why this is the case.

Certain small-scale molecular level interactions in non-linear, energy dissipating

systems can give rise to altered behaviour, which is then successively amplified to

macroscopic levels. Looking at the detailed processes, we can well understand

WHY evolutionary processes as a basis of ecological dynamics will proceed in

setting alternating goal functions towards which adaptation then proceeds in con-

tinuously changing directions. We may also understand the HOW of the processes.

Fig. 24.1 Different views of the Zugspitze (Bavarian Alps), highest peak in Germany. The site is

located in the Wetterstein Mts. range in the Northern Limestone Alps
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But due to the complex nature of the participating processes, an anticipation of the

exact WHERETO will remain limited in the future.

For those who consider models as a crucial means to get the entire range of

relevant natural dynamics under anticipatory control, this is certainly a disappoint-

ing perspective. Natural self-organization will continue to create qualitatively new

relations, system behaviours and organismic properties. Society is not operating on

a passive substrate but is required to interact with its living and changing environ-

ment. For science this remains a real challenge: Ecological modelling will not run

out of demanding new questions that urgently require investigation, in order to

come up with new solutions in managing and developing natural resources in

a more sustainable way. Ecological modellers are not likely to run out of job

opportunities and will continue to contribute new options to enable reasonable

interaction pattern of social requirements and natural dynamics. Modelling will

require successive updating of its repertoire of methods and applications.

Often, the hallmark of natural science is assessed in terms of its ability to make

predictions, which, in turn, can be studied and confirmed by experiments. Eco-

logical models are often applied to cases where concluding experiments are not

possible, such as the effects of global climate change, but where appropriate

predictions are vital. In the light of the famous quote “predictions are difficult,

specifically about the future!”, how much confidence do we have in using ecologi-

cal models for predictions about real world systems?

As in (Fig. 24.1), showing different perspectives of the mountain peak Zugspitze,

there are different possible views, attitudes and opinions regarding the role, reli-

ability and relevance of models in ecology.

Your own approach and practise in modelling will help to determine which

views and perspectives are to be favoured!
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Glossary

Additional terms and definitions are available from www.mced-ecology.org

Agent-based Modelling Modelling concept which emerged predominantly in the

context of the social sciences to depict human interactions. It uses the same basic

concept as individual-based modelling (which emerged in ecology). Both terms can

be used synonymously.

Alternative Stable States Concept that describes ecological systems with

diverse stable states that depend on key drivers. The system can change from one

state to another (e.g. algae- vs. coral-dominated reef systems), when a critical

threshold is exceeded; this phenomenon is addressed as phase-shift or regime

shift ( ! hysteresis).

Artificial Intelligence Visionary branch of informatics that deals with the autom-

atization of intelligent behaviour, important in research and development; origi-

nally based on the idea of mimicking human-like intelligence.

Autonomously Acting Agents Autonomously Acting Agents in ! agent-based
modelling, system behaviour emerges on the basis of the interaction of “agents”

which change their state as a response to external influences and their internal

conditions. The concept is comparable to individual-based modelling, in which the

low-level component is referred to as individual.

Bayesian Inference A method of modern statistics, based on the Bayses’ Theo-

rem, which describes the relation of two reverse conditional probabilities.

Beer-Lambert Function Basic absorptiometric law that describes the absorption

of light dependent on the concentration of an absorbing component in the material

through which the light is travelling.

Black-Box Approach In general, this is any kind of machinery or construct in

which only input/output relations are focused on, without requiring considerations

of internal operation.
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Bootstrapping A resampling with replacement method in statistics for drawing

conclusions from data that are subject to random variation.

Bray-Curtis Index An ecological metric that is used to describe the dissimilarity

of different sites using the species number at each site in relation to the total species

number.

Carrying Capacity A population size which does not allow a further increase

because of resource or environmental limitations.

Cause-Effect Chain The philosophical assumption that any effect has an ante-

cedent cause, allows a chain- or net-like arrangement of observed interactions that

are considered for modelling or other forms of description.

Chaotic Dynamics Special behaviour of dynamic systems with strong depen-

dency on initial conditions which can make long-term predictions impossible.

Classical Logic Logic is a subfield of mathematics concentrated on aspects of

reasoning. Classical logic is based on a number of axioms: law of identity (if a

statement is true, then it is true), law of the excluded middle (a statement is either

true or false), law of non-contradiction (a statement cannot be both true and false).

Classical logic is bivalent: the truth value of a statement may only be either true or

false. Statements can be connected by logical operators (and, or, if..then, ...), whose

definition allows to identify the truth value of the resulting statement. There are also

types of nonclassical, multivalued logic, e.g. fuzzy logic, which rejects the laws of

excludedmiddle and non-contradiction, allowing a statement to be both true and false.

Computer Scenarios In computer experiments, different sets of conditions are

grouped into alternative cases and the reaction of the model components to the

variation of these characteristics is assessed through simulation. Scenarios are

widely used to evaluate the outcomes of possible future situations (e.g. global

climate change situation at increased temperatures) on the target variables.

Cybernetics This is an interdisciplinary approach of control and regulation of

complex systems, like machinery or living organisms, founded by Norbert Wiener.

A classic example is the regulation of temperature by a thermostat.

Ecological Niche Describes the position of a species in a formalized multi-

dimensional space of environmental variables and variables describing resource

requirements – e.g. the tolerated range of temperature, salinity, or minimum

quantities of soil nutrients.

Ecosystem Indicators Measurable features in management and conservation

ecology which are used to document certain ecosystem states (like ecosystem
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health). An indicator has to be measurable more easily than the target that it

indicates. To be usable as an indicator, it needs to have a defined relationship to

the ecological condition that is indicated.

Ecosystem Resilience The ability of an ecological system to resist external

disturbances and to maintain its primary state with state variables, driving variables,

and parameters. To trigger a ! phase-shift the disturbance has to be stronger in

higher resilient systems.

Eigenvalue It is a number l satisfying the equation Av = lv, the non-zero

vector v being the eigenvector of the ! square matrix A. In general, a matrix

acts on a vector by changing both its magnitude and its direction. A matrix acts on

an eigenvector by multiplying its magnitude by a factor, which is positive if its

direction is unchanged and negative if its direction is reversed. This factor is the

eigenvalue associated with that eigenvector. They both give important information

about the matrix, and can be used e.g. in matrix factorization.

Eigenvector See eigenvalue.

Emergent Properties On the basis of interactions between lower-level compo-

nents, new qualities can appear on higher hierarchical integration levels which

represent more than the sum of the constituting elements.

Exergy A thermodynamical concept, that indicates the sum of the energy in a

system that can realize work, when the system is brought into a thermodynamic

equilibrium.

Feedback Process It describes the mechanism in a ! cause-effect chain, in
which the output signal loops back and influences the input conditions.

Fractal A geometric term to describe objects which show self-similarity on

different levels of magnification. Any part of the object thus has the same type of

basic pattern/structure as the whole. The geometry of many natural phenomena like

coastlines, snowflakes, clouds, dispersal pathways, can be described using fractal

geometry. Plotting the measured quantities versus scale on a log-log graph gives a

straight line with the slope indicating the fractal dimension.

Functional Groups Collection of organisms that respond to environmental stimuli

in a similar way or have similar properties with respect to the investigated questions.

Gaussian Distribution A very common continuous probability distribution,

based on the central limit theorem stating that a collection of independent random

variables with n ! 1, is normally distributed around a single mean value (normal

distribution).
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General Systems Theory An interdisciplinary approach for explaining complex

phenomena by their system’s character, founded by the biologist Ludwig von

Bertalanffy, closely related to ! cybernetics.

Generic Model A model that describes general properties of an ecological

system and can be easily adapted to different specific situations.

Goal Functions In the ecological context adapted principles from thermodynamics

to describe systems being far from equilibrium and which have the tendency to

develop towards a particular state.

Hierarchy Theory This was derived from! general systems theory to deal with
complexities in a system that is spanned over a range of hierarchical interacting

levels in space and time. For ecology, these principles were successfully adapted

since the works of Allen and Starr during the 1980s.

Hysteresis For systems with a memory effect, the strong correlation between

input signal and output reaction can be impaired. Then, multiple systems’ states can

shift rapidly from one state to another. As a consequence, predictions for future

time intervals might be impossible.

Inference This (in logic) is the transition from premises to conclusion, in such

a way that they are logically connected. The typical form of the logical connection

for inference is the so-called modus ponens: “if p then q”: premises are taken and

a conclusion is returned. If the premises are true, they guarantee the truth of the

conclusion. An inference system is composed by a set of “if...then” rules, and it

provides the support for mapping from a given input to an output.

Information Criteria Measure of the goodness of fit of a statistical model which

formally describes the relation between model complexity and accuracy. Some

examples are the Akaike’s information criteria (AIC), the area under the curve

(AUC), the coefficient of determination (R2), or the Nash-Sutcliffe model effi-

ciency coefficient.

Intermediate Disturbance Hypothesis Concept that hypothesizes that local

species diversity is highest for intermediate levels of disturbance; because very

low disturbance levels favour competitively superior species, whereas exception-

ally high disturbance levels increase the risk of extinction for most of the species.

Lacunarity Analysis Statistical analysis to describe the scale-dependent distri-

bution of gap sizes.

Landscape Fragmentation A major threat to local biodiversity relates to the

fragmentation of former coherent habitats as population size may fall below a

critical threshold and dispersal and exchange between populations may be reduced

or prevented.
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Landscape Metrics General term that is used for the available collection of

metrics for analyzing and interpreting landscape composition and configuration.

Metapopulation An ecological concept describing the overall dynamics of a

number of sub-populations in space and time. It assumes partially independent

dynamics of the sub-populations, a risk of local extinction and recolonization

events. Thus the overall population may survive under conditions where the sub-

populations would go extinct. In nature conservation this concept has also been

discussed in the context of increasing ! landscape fragmentation.

Michaelis-Menten Equation Mathematical model for enzyme kinetics which

quantitatively relates the reaction speed of the enzyme-substrate complex to the

substrate concentration.

Monod Kinetics Mathematical model that describes enzymatically mediated

chemical reactions depending on the concentration of the substrates. See also !
Michaelis-Menten kinetics.

Monte Carlo Approach Stochastic procedure, based on the law of large num-

bers; uses repeated random sampling techniques to solve complex problems

numerically.

Nonlinear Systems This do not react proportionally to input signals in every case

and usually cannot be solved by first order equations. Many ecological relationships

are nonlinear, e.g. predator-prey population interactions tend to be proportional to

the product of the population sizes.

Numerical Approximation When no explicit analytical solution exists for a

mathematical problem or the solution cannot be obtained without reasonable

costs, numerical computing can be introduced for calculating close estimates.

Percolation Theory Percolation describes the movement of entities or fluids in

porous materials. In landscape ecology it has been used to describe the movement

of organisms in fragmented landscapes and to detect critical levels of connectivity

between habitat patches.

Phase Shifts See alternative stable states and hysteresis.

Phenotypic Plasticity The ability of an organism to change its phenotype (physi-

cal shape) in response to changes in the environmental conditions.

Poisson Distribution A discrete probability distribution that can be obtained by

performing repeated random experiments (e.g. Bernoulli experiments) where

occurrence is independent of the former events.

Glossary 353



Population Viability Analysis A mathematical tool often applied in conserva-

tion biology, which calculates the probability that a population becomes extinct

under a set of environmental conditions within a given time span.

Random Walk Mathematical description of a trajectory which is constructed

from successive random elements. In ecology it is often used to describe the

movement of organisms.

Self-Organization A process in which an overall systems state emerges from

parallel and distributed interaction of its constituent elements without any central

steering instance. Usually, nonlinear and nonequilibrium processes are involved.

Many ecosystem states can be described as a result of self-organized processes.

Social-Ecological Systems A combined system of social and ecological compo-

nents and drivers which interact and give rise to results which could not be

understood on the basis of sociological or ecological considerations alone.

Soft Computing An emerging computer science area, inspired by biological

systems and human mind, used to model complex systems arising in management

science, medicine, biology and ecology. It consists of a variety of techniques,

including fuzzy logic, neural networks, genetic algorithms, Bayesian networks.

They all differ from conventional (hard) computing since they tolerate uncertainty,

partial truth, approximation, lack of categoricity, and imprecision to achieve trac-

tability, robustness and low solution cost. Soft computing approaches emulate

characteristics of human reasoning such as the learning, training, and other types

of high-order cognitive power.

SquareMatrix This is a matrix which has the same number of rows and columns.

An n�n-matrix is a square matrix of order n. The Identity Matrix In is a square

matrix of order n in which all elements on the main diagonal are equal to 1 and

all other elements are equal to 0. The inverse A–1 of a square matrix is defined as:

A � A–1 = In. If an inverse exists, A is called invertible or non-singular.

State Variable In dynamical systems, it is understood that the state of the system

is completely characterized by the states of the variables within the system.

Trophic Efficiency The ratio of production which relates one trophic level in

terms of energy and biomass with the adjacent level.

Trophic Level The hierarchical position which an organism occupies in the

trophic web structure.

Weibull Distribution A continuous probability distribution in statistics that is

used to describe, e.g. lifespans and failure rates of compound aggregates in analytical

quality assurance procedures.

354 Glossary



References

Aars J, Ims R (2002) Intrinsic and climatic determinants of population demography: the winter

dynamics of tundra voles. Ecology 83:3449–3456

Abel DJ, Kilby PJ, Davis JR (1994) The systems integration problem. Int J Geogr Inf Syst 8

(1):1–12

Abelson H, diSessa AA (1982) Turtle geometry. MIT Press, Cambridge

Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the

order of trait divergence. Ecology 87:S50–S61

Adriaenssens V, De Baets B, Goethals PLM, De Pauw N (2004) Fuzzy rule-based models for

decision support in ecosystem management. Sci Total Environ 319:1–12

Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press,

Chicago

Allen KR (1971) Relation between production and biomass. J Fish Res Board Can 28:1573–1581

Allen LJS (2003) An introduction to stochastic processes with applications to biology. Pearson,

Upper Saddle River, NJ

Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of

Chicago Press, Chicago

Allen TFH, Starr TB (1992) Towards a unified ecology. Columbia University Press, New York

Alley M (1996) The craft of scientific writing, 3rd edn. Prentice Hall, New Jersey [and accom-

panying web site: http://filebox.vt.edu/eng/mech/writing/]

Alpaydin E (2010) Introduction to machine learning, 2nd edn. MIT Press, Cambridge, MA

Alstad DN (2007) Populus. Simulations of population biology; at http://www.cbs.umn.edu/populus/,

University of Minnesota

Altunkaynak A, Ozger M, Calkmakci M (2005) Fuzzy logic modelling of the dissolved oxygen

fluctuations in Golden Horn. Ecol Modell 189:436–446

Andersen KP, Ursin E (1977) A multispecies extension to the Beverton and Holt theory of fishing,

with accounts of phosphorus circulation and primary production. Medd Fra Dan Fisk Hav NS

7:319–435

Anderson TR (2005) Plankton functional type modelling: running before we can walk? J Plankt

Res 27(11):1073–1081

Andrieu B (guest ed) (1999) Architectural modelling of plants. Agronomie (Special issue)

19:161–328

Ang JPO, De Wreede RE (1990) Matrix models for algal life history stages. Mar Ecol Progr Ser

59:171–181

Anscombe FJ (1973) Graphs in statistical analysis. Am Stat 27:17–21

Appice A, Dzeroski S (2007) Stepwise induction of multi-target model trees. In: Kok JN,

Koronacki J, Lopez de Mantaras R, Matwin S, Mladenic D, Skowron A (eds) ECML 2007.

LNCS 4701, pp 502–509. Springer, Heidelberg
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Todorovski L, Džeroski S, Kompare B (1998) Modelling and prediction of phytoplankton growth

with equation discovery. Ecol Modell 113:71–81

Toffoli T, Margolus N (1987) Cellular automata machines. MIT Press, Cambridge, MA

Travers M, Shin YJ, Jennings S, Cury P (2007) Towards end-to-end models for investigating the

effects of climate and fishing in marine ecosystems. Progr Oceanogr 75:751–770

Trexler JC, Loftus WF, Jordan F, Chick JH, Kandl KL, McElroy TC, Bass OL Jr (2002) Ecological

scale and its implications for freshwater fishes in the Florida Everglades. In: Porter JW, Porter

384 References



KG (eds) The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem

sourcebook. CRC Press, Boca Raton, pp 153–181

Trexler JC, Loftus WF, Perry S (2005) Disturbance frequency and community structure in a

twenty-five year intervention study. Oecologia 145:140–152

Troitzsch KG (2004) Validating simulation models. In: Horton G (ed) 18th European simulation

multiconference. Networked Simulations and Simulation Networks. SCS Publ House, Erlan-

gen, pp 265–270
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von Linné C (1748) Systema naturae. Kiesewetter & Vandenhoeck, Stockholm

von Sperling DL, Behrendt H (2007) Application of the Nutrient Emission Model MONERIS to

the Upper Velhas River Basin, Brazil. In: Gunkel G, Sobral M (eds) Reservoirs and river basins

management: exchange of experience from Brazil, Portugal and Germany. Universit€atsverlag
TU Berlin, Berlin, pp 265–279

Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) (2007) Functional-structural plant

modelling in crop production. Springer, Dordrecht

Wager H (1911) On the effect of gravity upon the movements and aggregation of Euglena viridis
Ehrb., and other micro-organisms. Philos Trans R Soc Lond B 201:333–390

Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology

86:1975–1987

Wainwright J, Mulligan M (2004) Environmental modelling – finding simplicity in complexity.

Wiley, Chichester

Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of exploited ecosystems

from trophic mass-balance assessments. Rev Fish Biol Fish 7:139–172

Walters C, Pauly D, Christensen V, Kitchell JF (2000) Representing density dependent conse-

quences of life history strategies in aquatic ecosystems: EcoSim II. Ecosystems 3:70–83

Wang Q, Malanson GP (2007) Patterns of correlation among landscape metrics. Phys Geogr

28:170–182

Wang X, Homer M, Dyer SD, White-Hull C, Du C (2005) A river water quality model integrated

with a web-based geographic information system. J Environ Manage 75(3):219–228

Ward G, Hastie T, Barry S, Elith J, Leathwick JR (2009) Presence-only data and the EM algorithm.

Biometrics 65:554–563

Weinberger HF (1978) Asymptotic behavior of a model in population genetics. Lect Notes Math

648:47–96

WGBU (1997) World in transition: the research challenge. German Advisory Council on Global

Change, Annual Report 1996, Springer Verlag, Berlin

White LP (1971) Vegetation stripes on sheet wash surfaces. J Ecol 59:615–622

White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling

approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199

White R, Engelen G, Uijee I (1997) Cell automata fractal urban form cellular modelling approach

evolution urban land use patterns Environ Plan 24:323–343

Wickham JD, Riitters KH (1995) Sensitivity of landscape metrics to pixel size. Int J Remote Sens

16:3585–3594

Wickham JD, Stehman SV, Smith JH, Yang L (2004) Thematic accuracy of the 1992 National

Land-Cover Data for the western United States. Remote Sens Environ 91:452–468

Williams MR, Filoso S, Lefebvre P (2004) Effects of land-use change on solute fluxes to

floodplain lakes of the central Amazon. Biogeochem 68:259–275

Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean

square error (RMSE) in assessing average model performance. Clim Res 30:79–82

Winberg GG (1956) Rate of metabolism and food requirements of fishes. Translation Series of

Fisheries Research Board of Canada, p 253

Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan

Kaufmann, San Francisco

386 References

http://icesjms.oxfordjournals.org/cgi/reprint/3/1/3.pdf
http://icesjms.oxfordjournals.org/cgi/reprint/3/1/3.pdf


Wolff WF (1994) An individual-oriented model of a wading bird nesting colony. Ecol Modell

72:75–114

Wolff M (2006) Biomass flow structure and resource potential of two mangrove estuaries: insights

from comparative modelling in Costa Rica and Brazil. Rev Biol Trop 54(1):69–86

Wolfram S (1994) Cellular automata and complexity: collected papers. Addison-Wesley,

New York

Worthington E (1975) The evolution of IBP, International biological programme synthesis series.

Cambridge University Press, Cambridge

Wright PJ, Neat FC, Gibb FM, Gibb IM, Thoradarson H (2006) Evidence for metapopulation

structuring in cod from the west of Scotland and North Sea. J Fish Biol Suppl C 69:181–199

Xu P (2004) Nutrient emissions into the Taihu Lake from the Southern Catchments. DAAD, p 28

Yang LM, Stehman SV, Smith JH, Wickham JD (2001) Thematic accuracy of MRLC land cover

for the eastern United States. Remote Sens Environ 76:418–422

Yniguez A, DeAngelis DL, McManus J (2008) Allowing macroalgae growth forms to emerge: use

of an agent-based model to understand the growth and spread of macroalgae in Florida coral

reefs, with emphasis on Halimeda tuna. Ecol Modell 216:60–74

Yokozawa M, Hara T (1999) Global versus local coupling models and theoretical stability analysis

of size-structure dynamics in plant populations. Ecol Modell 118(1):61–72

Young OR (2003) Environmental governance: the role of institutions in causing and confronting

environmental problems. Int Environ Agreem P 3:377–393

Zabel CJ, Dunk JR, Stauffer HB, Roberts LM, Mulder BS, Wright A (2003) Northern spotted owl

habitat models for research and management application in California (USA). Ecol Appl

13:1027–1040

Zalewski M (2002) Ecohydrology – the use of ecological and hydrological processes for sustain-

able management of water resources. Hydrolog Sci J 47(5):823–832

Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle River, New Jersey

Zhang J, Gurkan Z, Jørgensen SE (2010) Application of eco-exergy for assessment of ecosystem

health and development of structurally dynamic models. Ecol Modell 221:693–702

Zuo W, Lao N, Geng Y, Ma K (2008) GeoSVM: an efficient and effective tool to predict species’

potential distribution. J Plant Ecol 1:143–145

Zurell D, Jeltsch F, Dormann CF, Schr€oder B (2009) Static species distribution models in

dynamically changing systems: how good can predictions really be? Ecography 32:733–744

References 387



Index

A

Abax parallelepipedus, 22
Abstract representations, 5

Acari, 205

Across Trophic Level System Simulation

(ATLSS), 295–297

Activator–inhibitor, 99

Age distribution, 20

Age-structured population dynamics model,

56, 120, 281

Agent-based models (ABMs), 164

Aggregated parameters, 327

Aggregation, diffusion-limited, 113

simplification of data, 312

Agro-ecology, 204, 345

Akaike’s information criterion (AIC),

189, 352

Algae, filamentous, 148

ALGOL (ALGOrithmic Language), 37

All purpose approach, 49

Allee effect, 96

Alnus glutinosa, 52
Alternative equilibrium, 77

Alternative stable states, 85

American alligator, 297

American crocodile, 297

Ammonium, 271

Apple snails, 299

Asio otus, 175
Attractor, 75, 87

AU model, 56

Autonomous system, 77

Auxiliaries, 48

B

Basin of attraction, 75, 88

Beetle dispersal, 20

Belousov-Zhabotinskii reaction, 93

Benthic layer, 280

Bifurcations, 84

Biocoenosis, 275

BIODEPTH, 115

Biomass, changes, time-series trends, 64

decrease in food chain, 258

Biophysical models, 280

Bituminaria bituminosa, 116
Black box approach, 6

Boosted Regression Trees (BRT), 185

Bornh€oved Lakes, nitrogen leaching, 23

Bornh€oved Lakes Ecosystem Research, 23, 277

Bottom-up control, 258

Brassica napus, 206, 235
Bt-maize, 204

C

C4.5/C5.0, 202
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