
G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 246–261, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Exploration of SWRL Rule Bases through Visualization,
Paraphrasing, and Categorization of Rules

Saeed Hassanpour, Martin J. O’Connor, and Amar K. Das

Stanford Center for Biomedical Informatics Research,
MSOB X215, 251 Campus Drive, Stanford, California, USA 94305
{saeedhp,martin.oconnor,amar.das}@stanford.edu

Abstract. Rule bases are increasingly being used as repositories of knowledge
content on the Semantic Web. As the size and complexity of these rule bases
increases, developers and end users need methods of rule abstraction to facili-
tate rule management. In this paper, we describe a rule abstraction method for
Semantic Web Rule Language (SWRL) rules that is based on lexical analysis
and a set of heuristics. Our method results in a tree data structure that we ex-
ploit in creating techniques to visualize, paraphrase, and categorize SWRL
rules. We evaluate our approach by applying it to several biomedical ontologies
that contain SWRL rules, and show how the results reveal rule patterns within
the rule base. We have implemented our method as a plug-in tool for Protégé-
OWL, the most widely used ontology modeling software for the Semantic Web.
Our tool can allow users to rapidly explore content and patterns in SWRL rule
bases, enabling their acquisition and management.

Keywords: Rule Management, Rule Abstraction, Rule Patterns, Rule Visuali-
zation, Rule Paraphrasing, Rule Categorization, Knowledge Representation,
OWL, SWRL.

1 Introduction

Rules are increasingly being used to represent knowledge in ontology-based systems
on the Semantic Web. As the size of such rule bases increases, users face a perennial
problem in understanding and managing the scope and complexity of the specified
knowledge. To support rapid exploration of rule bases and meet the scalability goals
of the Semantic Web, automated techniques are needed to provide simplified
interpretations of rules as well as high-level abstractions of their computational
structures. In particular, rule paraphrasing and rule visualization can help non-
specialists understand the meaning of logically complex rules. Abstraction of
common patterns in rule bases can also enable automatic or semi-automatic
categorization of rules into related groups for knowledge management. Such
categorized patterns could ultimately form the basis of rule elicitation tools that guide
non-specialists entering new rules.

We are addressing the need for such rule management solutions in our development
of tools for the Semantic Web Rule Language (SWRL) [35]. In prior work, we devel-
oped SWRLTab [37], a plug-in for editing SWRL rule bases within Protégé-OWL [38].

 Exploration of SWRL Rule Bases 247

Protégé-OWL is freely available, open-source knowledge management software that is
widely used to specify OWL ontologies for Semantic Web applications. In this paper,
we describe a novel approach for exploration of SWRL rule bases through three related
techniques: (1) rule visualization, (2) rule paraphrasing, and (3) rule categorization.
These three techniques are based on a method of syntactic analysis of SWRL rules. We
use the data structure output of this analysis to graphically present the structure of a rule
for rule visualization. We use the structural information, along with general heuristics,
to paraphrase SWRL rules into simplified, readable English statements. We also apply a
pattern recognition algorithm to the structural information to automatically categorize
rules into groups that share a common syntactic representation. We show how these
techniques can be used to support exploration and analysis of SWRL rule bases, allow-
ing users to more easily comprehend the knowledge they contain. We evaluate the use
of our approach by applying these techniques to several biomedical ontologies that con-
tain SWRL rule bases. Finally, we discuss the development of a Protégé-OWL plug-in,
called Axiomé that provides these three management techniques for users and develop-
ers of SWRL rule bases.

2 Background

OWL [34] is the standard ontology language of the Semantic Web and is rapidly be-
coming one of the dominant ontology languages in the development of knowledge
bases. OWL provides a powerful language for building ontologies that specify high-
level descriptions of Web content. These ontologies are created by constructing hierar-
chies of classes describing concepts in a domain and relating the classes to each other
using properties. OWL also provides a powerful set of axioms for precisely defining
how to interpret concepts in an ontology and to infer information from these concepts.

The Semantic Web Rule Language (SWRL) [35] is an extension to the OWL lan-
guage to provide even more expressivity. The SWRL language allows users to write
Horn-like rules that can be expressed in terms of OWL concepts and that can reason
about OWL individuals. SWRL thus provides deductive reasoning capabilities that
can infer new knowledge from an existing OWL ontology. For example, a SWRL rule
expressing that a person with a male sibling has a brother can be defined using the
concepts of ‘person’, ‘male’, ‘sibling’ and ‘brother’ in OWL. Intuitively, the concept
of person and male can be captured using an OWL class called Person with a sub-
class Male; the sibling and brother relationships can be expressed using OWL proper-
ties hasSibling and hasBrother, which are attached to Person. The rule in
SWRL would be1:

Person(?x) ^ hasSibling(?x,?y) ^ Male(?y) → hasBrother(?x,?y)

Eecuting this rule would have the effect of setting the hasBrother property of x to
y. Similarly, a rule that asserts that all persons who own a car should be classified as
drivers can be written as follows:

Person(?p) ^ hasCar(?p, true) → Driver(?p)

1
 The SWRL Submission [35] does not detail a standard syntax for language presentation; the
examples shown in this paper reflect the presentation syntax adopted by the Protégé-OWL
SWRL Editor.

248 S. Hassanpour, M.J. O’Connor, and A.K. Das

This rule would be based on an OWL ontology that has the property hasCar and the
class Driver. Executing this rule would have the effect of classifying all car-owner
individuals of type Person to also be members of the class Driver.

One of SWRL’s most powerful features is its ability to support user-defined meth-
ods or built-ins [37]. A number of core built-ins for common mathematical and string
operations are defined in the SWRL W3C Submission. For example, the built-in
greaterThan can be used to determine if one number is greater than another. A
sample SWRL rule using this built-in to help classify as adults any person who has an
age greater than 17 can then be written as:

Person(?p)^ hasAge(?p,?age) ^ swrlb:greaterThan(?age,17) → Adult(?p)

When executed, this rule would classify individuals of class Person with a hasAge
property value greater than 17 as members of the class Adult.

SWRL rules can also establish relationships between entities in an ontology. For
example, the following rule from the California Driver Handbook [36] provides Cali-
fornia’s driving regulations about minor visitors:

An individual under the age of 18 as a potential driver of a vehicle with a weight of
less than 26,000 lbs if they possess an out-of-state driver’s license and are visiting the
state for less than 10 days.

can be written in SWRL as:

Person(?p) ^ has_Driver_License(?p,?d) ^ issued_in_State_of(?d,?s) ^
swrlb:notEqual(?s,"CA") ^ has_Age(?p,?g) ^ swrlb:lessThan(?g,18) ^
number_of_Visiting_Days_in_CA(?p,?x) ^ swrlb:lessThan(?x,10) ^ Car(?c)
^ has_Weight_in_lbs(?c,?w) ^ swrlb:lessThan(?w,26000) →
can_Drive(?p,?c)

As mentioned, all classes and properties referred to in this rule must preexist in an
OWL ontology.

Table 1. SWRL atom types and example atoms from the Californian Driver Handbook rule

SWRL Atom Type Example Atom

Class atom Person(?p), Car(?c)

Individual property atom

has_Driver_License(?p,?d)

issued_in_State_of(?d,?s)

can_Drive(?p,?c)

Same/Different atom
sameAs(?x, ?y)

differentFrom(?x, ?y)

Datavalued property atom

has_Age(?p,?g)

number_of_Visiting_Days_in_CA(?p,?x)

has_Weight_in_lbs(?c,?w)

Built-in atom
swrlb:notEqual(?s,"CA")

swrlb:lessThan(?g,18)

Data range atom xsd:double(?x)

 Exploration of SWRL Rule Bases 249

As can be seen from these examples, SWRL rules have a simple Horn-like rule
structure. A rule is composed of a body and a head, each of which contain conjunc-
tions of atoms. SWRL does not support disjunction. There are six main types of
SWRL atoms defined in the W3C Submission for SWRL. Table 1 lists these atom
types and provides example atoms based on the previous rule from the California
Driver Handbook.

3 Related Work

Rule management is a very active application area in the business rules domain. These
systems are used to define, execute, monitor and maintain the rules used by opera-
tional systems [30]. There are a wide variety of commercial rule management
tools, which are used to help business organizations standardize and enhance the visi-
bility and consistency of their rule bases. These tools typically provide business
user-friendly rule formats, multiple data models for rules implementation, rule testing
and refinement, high level rules management interfaces and editors, in addition
to other capabilities such as rules versioning, access control, and justification
capabilities [31, 32].

Rules are increasingly being used for knowledge management in combination with
ontologies [1-3]. As these rule bases grow larger, standard business rule management
solutions are being investigated to deal with the resulting complexity. The intimate
interactions between rules and the underlying ontology formalisms often require
novel solutions [4, 5], however. In particular, the formal underpinnings of the tech-
nologies can sometimes be exploited to automatically infer information that may not
be possible with the more loosely coupled interactions that are typical between busi-
ness rules and underlying data.

Some of the traditional approaches used with expert systems can be utilized for
certain management tasks. For example, a substantial amount of work has been done
in automatic extraction of rules from data [6-11, 33]. Comparatively little work has
been done in mining rule bases themselves to assist user comprehension. Rule argu-
mentation techniques [12-15] do typically examine the relationships between rules in
a rule base. However, these techniques do not focus on making the rule bases them-
selves easier to understand. Instead, the goal is to explain the reasoning steps that
have been operationalized by the rules. Similarly, descriptive user-friendly text has
been used in expert systems to explain the behavior of systems [16, 18], but, again,
these textual descriptions have not primarily aimed to explain rule bases and their
structure. Other work on rule visualization has mostly focused on showing the con-
nections between rules themselves or and ontology entities or connections between
rules and their supporting data, not the structure of the rules bases [19, 20]. UML-
based visualization techniques have been used in the business rules domain [43, 44]
but these methods are typically designed to provide very detailed views of rule inter-
actions and are not designed for high level rule base exploration.

Principled methods to examine structural patterns in rule bases may significantly
aid user comprehension. These approaches can help users to rapidly explore and un-
derstand large unfamiliar rule bases. They can also be used to help users understand
their own rule bases and spot non-obvious knowledge patterns, which can ultimately
help them better structure both the rule bases and the associated ontologies.

250 S. Hassanpour, M.J. O’Connor, and A.K. Das

4 Methods

In Section 4.1, we discuss a rule abstraction method that parses a SWRL rule and
provides as output a tree data structure to represent the rule. We then describe how
we use this data structure to visualize, paraphrase and categorize SWRL rules,
respectively, in Sections 4.2, 4.3 and 4.4. In Section 4.5, we present a plug-in for
Protégé-OWL that supports these three techniques.

4.1 Rule Abstraction

As a first step in our rule management approach, we apply a rule abstraction method
to analyze the syntactic structure of a SWRL rule. This method scans the atoms in the
body and head of each rule using lexical analysis, reorders the atoms using a set of
heuristics, and maintains them in a tree data structure.

Table 2. SWRL atom types and their corresponding rule abstraction priority

SWRL Atom Type Priority

Class atom 1

Individual property atom 2

Same/Different atom 3

Data-valued property atom 4

Built-in atom 5

Data range atom 6

We give each of the six main types of SWRL atom (shown in Table 2) an ordinal

ranking from 1 to 6 that indicates an intuitive sense of the semantic importance of
each atom type. Class atoms (e.g., Person(?p)) are given the highest priority since
they typically refer to the entities of primary interest in a rule. This ranking is fol-
lowed by object property atoms (e.g., Can_Drive(?x,?y)), which capture relation-
ships between these entities. Same as and different from atoms indicate relationships
of similarity or difference between entities and are given a lower priority because
their use is typically complementary to the use of object property atoms. Data valued
atoms (e.g., has_Age(?x,?y)) specify the values of properties of particular entities,
so are given less priority than inter-entity relationships. Built-in and data range prop-
erties operate on these data values so are hence given a lower ordering.

We then reorder the atoms in the head and body of each rule using these priorities.
Figure 1 shows the resulting representation for the body of our sample California
Driver Handbook rule.

After performing this atom reordering, we build a tree data structure that reflects
the information captured by the variable chains in the rule together with the priority
information associated with each atom. These trees are generated by a depth-first

 Exploration of SWRL Rule Bases 251

Fig. 1. Example tree data structure that uses a set of priority heuristics to reorder atoms for the
sample rule from the California Driver Handbook. The left-hand column (orange boxes) con-
tains variables used in the first position of a SWRL predicate. The atom number (blue boxes)
represents the original ordering provided in the SWRL rule.

search of each variable chain in a rule. Once a variable is chosen as a root of a par-
ticular tree, atoms that contain that variable as their first argument are created as
nodes of the tree at the same level. Any variables that appear as the second arguments
of atoms are used to recursively expand the tree to the next level. Loops are avoided
by keeping track of atom use.

If several variables share atoms with the same priority we break the tie by giving a
higher priority to the variable with a longer list of atoms that start with that variable.
If there still is a tie, we use the original ordering of atoms that the rule writer used in
creating the rule to determine the first variable to expand. For trees with multiple dis-
connected roots we chose a new root from atoms not contained in earlier trees and
begin the process again. We continue this process until we have scanned all the atoms
in the atom list.

4.2 Rule Visualization

Our canonical representation of a SWRL rule can be used to provide a visual repre-
sentation of the rule. Figure 2 show the visual representation of this data structure for
the California Driver Handbook sample rule. This representation allows complex
rules that have many classes and properties to be shown as an easily understood
nested diagram. In Section 4.5, we show how this graphical representation is used to
visualize and browse individual rules in the Axiomé rule management Protégé-OWL
plug-in.

252 S. Hassanpour, M.J. O’Connor, and A.K. Das

Fig. 2. Data structure showing a reorganization of atoms for the California Driver Handbook
sample rule based on the described priority heuristics and variable chains

4.3 Rule Paraphrasing

We also use the tree data structure created by the rule abstraction method to generate
paraphrases of SWRL rules, which are more understandable than the syntactic form.
We have developed a textual template for each type of atom to generate these para-
phrases. The templates use the first atom argument as the subject and the second
argument (if any) as the object of sub phrases. An atom’s predicate is used in an ap-
propriate form in the template to convey the semantics. In general, we use the name of
the underlying OWL classes and properties when generating paraphrases, but we can
also support the use of OWL annotations to provide these names. We use heuristics
for special cases such as property predicate names or annotation text starting with
“has”, articles before letters, and predicates beginning with silent ‘h’. The ordering of
paraphrased atoms is based according to their position in the rule abstraction tree and
the paraphrased atoms are connected with appropriate conjunctions. Indentation is
used to indicate atom depth. The same margins are used for phrases that are in the
same tree level. Each successively deeper level has a larger margin.

Built-in atoms require more elaborate processing because SWRL built-ins can have
a variable number of arguments and it is generally not possible to automatically para-
phrase the built-in operation by simply using its name. So in the case of built-ins we
have defined an annotation ontology that can be used to associated text with a built-in
that can be used directly in paraphrases. We have defined annotations for a set of the

 Exploration of SWRL Rule Bases 253

standard built-ins defined in the core SWRL built-in ontology [37]. We specially
process some standard mathematical operators such as less than and equal and gener-
ate condensed paraphrases that omit the mention of some variables to produce more
concise text.

For sameAs atoms we make the equality between the variables in the rule explicit
when paraphrasing. While we are scanning the atom list to build the tree data struc-
ture we note variable pairs that are described to be the same as each other with the
sameAs atom. After building the tree we then merge the entries that have been noted
to be the same. We also scan the pair list to discover the pairs that are not mentioned
explicitly to be the same in the rule but can be inferred to be the same based on the
transitivity of the sameAs property. These new discovered pairs are also added to
the sameAs pairs list. In paraphrasing the rule we then use only one variable name for
the equivalent variables.

Our paraphrasing approach can produce concise and easy-to-read English forms of
SWRL rules. The following, for example, is the text that is generated for our sample
rule earlier California Driver Handbook (see Section 2):

IF
 "p" IS A Person
 AND "p" HAS Driver License "d"

WHERE "d" Issued in State of "s" WHERE "s" IS NOT EQUAL-
TO "CA"

 AND "p" HAS Age LESS THAN 18
 AND "p" HAS VALUE "x" FOR Number of Visiting Days in CA WHERE-

"x" IS LESS THAN 10

AND IF
 "c" IS A Car
 AND "c" HAS Weight in lbs "w" WHERE "w" IS LESS THAN 26000

THEN

 "p" Can Drive "c"

Our rule management tool, Axiomé, can generate English paraphrases of rules as a
part of the Protégé-OWL plug-in.

4.4 Rule Categorization

We can use the tree data structure to categorize SWRL rules based on the patterns of
atoms used. To undertake this rule management technique, we first establish a rule
signature for each SWRL rule to capture the structure of the atoms in our abstracted
representation. The rule signature is based on a regular expressions language that is
composed of an alphabet Σ, and a set of quantifiers Q, such that:

Σ = {1, 2, 3, 4, 5, 6}
Q = {-, ^, (), #, +}

Literals in the alphabet Σ represent each of the six main atom types in Table 1. The

quantifiers Q are used in the following ways: (1) ‘-‘ separates the atoms in the body
from the atoms in the head; (2) ‘^’ separates different trees; (3) parenthesis pairs are
placed around direct descendants of a node; (4) a ‘#’ is used to expansion of an atom in
the data structure and is placed before the next level’s atoms; and (5) A ‘+’ is used to
show repeated use of the same atoms. Table 3 summarizes the role of each quantifier.

254 S. Hassanpour, M.J. O’Connor, and A.K. Das

Table 3. Signature quantifiers in rule signature regular expression language

Rule Quantifier Role

- Body-Head separator

^ Tree separator

() Direct descendents of a node

Node expansion

+ Repetition

Consider, for example, rule from family history ontology, which defines a paternal

aunt relationship:

has_natural_father(?a,?b) ^ has_natural_sister(?b,?c) →
has_paternal_aunt(?a,?c)

Each atom in this rule is an individual property atom. Using the rule abstraction
method from section 4.1 we can generate a tree structure for the rule, which can be
paraphrased as:

IF
 "a" HAS Natural Father "b"
 WHERE "b" HAS Natural Sister "c"

THEN
 "a" HAS Paternal Aunt "c"

The rule signature is represented:

(2#(2))-(2)

Using the notations of our regular expressions language, we can define the signature
of the example rule California Driver Handbook as:

(12#(2#(5))4+#(5)#(5))^(14#(5))-(2)

We then use these signatures to group rules into categories. In the Axiomé rule man-
agement tool, we support invocation of this categorization technique and graphically
show the resulting categories in a tree table.

4.5 Rule Management Tool

We have implemented the three rule-management techniques in a tool called Axiomé,
Axiomé is developed as a Protégé-OWL plug-in with functional areas for each of
these techniques. These are available as sub-tabs within the plug-in: (1) a Rule Visu-
alization tab to visualize individual rules; (2) a Rule Paraphrasing tab that displays an
English-like text explanation for each rule; and (3) a Rule Categorization tab to auto-
matically categorize rules in a rule base. A Rule Browser component is permanently
displayed to show a tree-table representation of the SWRL rules in an ontology. This
tree-table enables users to explore the rule base and lunch any of three sub-tabs for the
rule being explored.

 Exploration of SWRL Rule Bases 255

Fig. 3. An screenshot from Axiomé plug-in with three tabs and the SWRL rule browser. Figure
shows the paraphrasing tab for one of the rules in the family history ontology.

5 Results

To evaluate the usefulness and efficacy of our visualization, paraphrasing and catego-
rization techniques, we applied our method to four OWL ontologies containing
SWRL rules bases. Each of these ontologies was developed as part of a biomedical
application and designed by a knowledge engineer or domain expert who was not one
of the authors.

The first set of rules that we analyzed is part of an ontology for family medical his-
tory [39]. This rule base is composed of 146 rules, which define possible relations
between people in a family. We applied our method on the rule base to generate and
visualize the data structures and paraphrase them. Our categorization method found
four types of rule signatures and thus divides the rule base into four groups. The num-
ber of members in each group and their signatures are shown in Table 4. Because the
rule base contains general knowledge about family relatedness, we were able to verify
the integrity and clarity of these results directly.

Table 4. Rule categorization for family history ontology

Rule signature
Number of instances in the rule

base
Examples

(2#(2))-(2) 110 Two link relations, e.g., Uncle and Aunt

(12)-(2) 22 One link relations, e.g., Son and Daughter

(2#(2#(2)))-(2) 8
Three link relations, e.g., Great Grandfa-

ther/Grandmother

(12+)^(2+)-(2) 6
Natural/half relations, e.g., Half

Brother/Sister

Total Number of rules in the rule base: 146 -

256 S. Hassanpour, M.J. O’Connor, and A.K. Das

Given space limitations, we provide one example in this paper for paraphrasing and
signature generation using a representative rule from the family history ontology. Our
sample rule defines a ‘paternal maternal’ great grandfather through the following ancestry:

has_natural_father(?a,?b) ^ has_natural_mother(?b,?c) ^
has_natural_father(?c,?d) →
has_paternal_maternal_great_grandfather(?a,?d)

The rule is graphically structured by the Axiomé tool as shown in Figure 3.

Fig. 4. Axiomé tool as a Protege-OWL plug-in tab, showing a visualization of a simple rule
from the family history ontology

The text generated by our paraphrasing method for this rule is:

IF
 "a" HAS natural father "b"
 WHERE "b" HAS natural mother "c"
 WHERE "c" HAS natural father "d"

THEN
 "a" HAS paternal maternal great grandfather "d"

And the rule signature is:

(2#(2#(2)))-(2)

The second rule base we evaluated was developed as part of an ontology of disease
phenotypes, or genetically relevant clinical characteristics, for the neurodevelopmental
disorder of autism. The ontology and rules will support concept-based querying of the
National Database of Autism Research (NDAR), a public resource funded by the Na-
tional Institutes of Health for archiving, sharing, and analyzing data collected in autism
research [40]. NDAR uses the ontology as an information model representing research
and clinical data about study subjects and as a domain ontology that defines terms and
relationships in autism. The SWRL rules define how each phenotype is to be derived

 Exploration of SWRL Rule Bases 257

from a set of clinical findings. The terms, relationships, and abstractions for building
the autism ontology are gathered by a literature search of the PubMed database [41].

We applied our categorization technique to the SWRL rules in the autism ontol-
ogy to find rule signatures. The 14 rules in the current rule base are divided into
five groups; one of the groups contains 6 rules with a common structure. The
signature and the numbers in each group are shown in Table 5. To check the valid-
ity of our results, we asked the developer of the autism ontology to review
them. The developer confirmed that our graphical representation and English
paraphrases of the rules are semantically equivalent to those in the rule base, and
that our categories include the two major types of patterns he used to develop the
rule base.

Table 5. Rule categorization for autism ontology

Rule Signature Number of instances in the rule base

(14+)^(5+)-(12+4+) 6

(14#(5))^(4+)-(12+4+) 3

(14+#(5))^(4)-(12+4+) 2

(14+)^(5)^(5+)-(12+4+) 2

(14+#(5))-(12+4+) 1

Total Number of rules in the rule base: 14

The third rule base to which we applied our method was part of a heart disease

ontology developed at Stanford Medical School in collaboration with the European
Union HEARTFAID project. The resulting THINHeart ontology contains 70
SWRLrules, each of which classifies heart conditions based on presumed cause. A
domain expert encoded each of these 70 definitions using a single template. When we
applied our categorization technique to the rule base, we found that all 70 rules
matched a single rule signature, shown in Table 6.

Table 6. Rule categorization for THINHeart ontology

Rule Signature Number of instances in the rule base

(14)-(2) 70

Total Number of rules in the rule base: 70

We applied our method to a fourth biomedical ontology that contained 63 rules to

assess a patient’s response to cancer treatment over time [42]. Our categorization
method divided the rules into 41 groups; 37 of these groups contain less that 3 rules.
Table 7 shows the rule signatures for the groups that had 3 rules or more. We con-
firmed with the ontology developers that the SWRL rules were intentionally written
to fit into a set of distinct rule templates by analyzing and merging rules with the
same structures during the authoring process.

258 S. Hassanpour, M.J. O’Connor, and A.K. Das

Table 7. Rule categorization for cancer response assessment ontology

Rule Signature Number of instances in the rule base

(12#(2#(5))4#(5))^(12)^(12#(2+4))-(12) 7

(1+2#(2#(5)))^(12)^(12#(2+))^(5)^(5+)-
(12+)^(2) 4

(1+2#(2#(5)))^(12)^(12#(2))-(12) 4

(12#(12#(2#(5))))^(12#(2))-(12) 3

8 categories with 2 members 2

29 categories with 1 member 1

Total Number of rules in the rule base: 63

6 Discussion

Research on rule representation and rule management has been an active area of work
in expert systems, active database systems, association rule mining, and business sys-
tems. Rule bases also play an increasingly important role in encoding declarative
knowledge within ontology-based systems on the Semantic Web. In this paper, we
present work we are undertaking to enable analysis and management of rule bases as
part of providing SWRL tool support. We propose a rule abstraction approach that
uses a tree data structure to represent a SWRL rule. We have shown that this simple
data structure can enable three techniques for visualization, paraphrasing, and catego-
rization of rules. This analytic approach is similar to prior work on static code analy-
sis and formal methods verification [21-25]. Related methods from this field, such as
model checking, data-flow analysis and abstract interpretation, could also be applied
to perform rule base analysis and integrity checking of the rule base and ontology.

In addition to creating a plug-in tool within Protégé-OWL to make our method
available to developers of SWRL rule bases, we applied the method to four existing
biomedical ontologies with SWRL rule bases. We have checked the visualization and
paraphrasing output of our method for each ontology, and ensured that the outputs
accurately represent the rules and have face validity. We are planning a more exten-
sive user evaluation of the Axiomé tool. Our initial application of the method to the
four available ontologies was revealing about the nature of the categorizations that
were created. In the family history and autism ontologies, the method revealed multi-
ple patterns of rule signatures that we could verify as being valid ourselves or with the
developers of the ontology.

The discovery of such ‘hidden’ rule signatures may enable rule elicitation. The
most common rule elicitation methods are performed by knowledge engineers [26,
27]. Another common approach is using domain experts to provide predefined tem-
plates and categories for rules or to ask fixed questions to make the rule elicitation
easier and semi-automated [28, 29]. This approach may be limited by the skill of the
domain expert who provides the templates and the questions. Our rule categorization
approach can be used during ontology and rule base development as an alternative
method to create the design of templates. As the development of a rule base occurs,
common groups of rules may be found based on their signature. The signature can

 Exploration of SWRL Rule Bases 259

then be used to create a template, which domain experts can employ to specify new
rules. A rule elicitation interface using the rule signatures could also interactively
suggest to users how many and what types of atoms a rule might have based on what
the user has partially specified for the rule. Such suggestions may speed rule base
development and increase the quality of the content.

The other two ontologies that we analyzed in this paper contained rule bases for
which the developers had used one or more rule templates, although they were not
explicitly represented or constrained by a user interface. We observed that our cate-
gorization method accurately identified rule templates. As a result, our categorization
method could be used for post hoc analysis of a rule base to ensure that the rules do
match known templates. Our rule management approach could be extended to support
the design of templates that are based on ontology class restrictions rather than syn-
tactic structure alone. For example, in the case of the cancer response assessment
ontology, we can divide the classes and properties of the ontology into several inde-
pendent sub-ontologies, and categorize the rules based on the sub-ontologies that they
cover. Such an approach was of particular interest to the developers of the cancer
response assessment ontology who are seeking further approaches to reducing the
number of templates needed for rule elicitation by domain experts.

Finally, we believe that creating a simple data structure to represent rules provides
an opportunity to perform machine learning on rule bases and to discover frequently
occurring or higher level patterns among the rule signatures. We are thus planning to
use powerful and sophisticated classifiers such as support vector machines, genetic
algorithms and artificial neural networks in our future work.

Acknowledgments. The authors would like to thank Richard Waldinger for his com-
ments on this work and manuscript, and Jane Peace, David Kao, and Mia Levy for
sharing their ontologies for our analysis. This research was supported in part by NIH
grant 1R01LM009607.

References

1. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Ontologies for Enterprise
Knowledge Management. IEEE Intelligent Systems 18(2), 26–33 (2003)

2. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent sys-
tems 16(2) (2001)

3. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology Based Context Modeling and
Reasoning using OWL. In: Proceedings of the Second IEEE Annual Conference on Perva-
sive Computing and Communications Workshops, PERCOMW, vol. 18. IEEE Computer
Society, Washington (2004)

4. Ostrowski, D.A.: Rule Definition for Managing Ontology Development. Advances in Rule
Interchange and Applications, 174–181 (2007)

5. Dou, D., McDermott, D., Qi, P.: Ontology translation on the Semantic Web. Journal on
Data Semantics (JoDS) II, 35–57 (2005)

6. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: ECAI 2000,
Proceedings of the 14th European Conference on Artificial Intelligence. IOS Press,
Amsterdam (2000)

260 S. Hassanpour, M.J. O’Connor, and A.K. Das

7. Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: Horrocks, I.,
Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 264–278. Springer, Heidelberg (2002)

8. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
Appeared in KDD 1998, New York (1998)

9. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned
data. In: Proceedings of the Eighth ACM SIGKDD international Conference on Knowl-
edge Discovery and Data Mining, Edmonton, Alberta, Canada (2002)

10. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining — a
general survey and comparison. SIGKDD Explor. Newsl. 2, 1 (2000)

11. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-Based Rule Mining in Large,
Dense Databases. Data Min. Knowl. Discov. 4, 2–3 (2000)

12. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In:
Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multi-
agent Systems, Hakodate, Japan (2006)

13. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach.
Theory Pract. Log. Program. 4(2), 95–138 (2004)

14. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial
Intelligence 171(10-15), 619 (2007)

15. Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,
Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowl. Eng. Rev.
21(4), 293–316 (2006)

16. Core, M.G., Lane, H.C., van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building
explainable artificial intelligence systems. In: Proceedings of the 18th Conference on
Innovative Applications of Artificial Intelligence (IAAI 2006), Boston, MA (2006)

17. Johnson, W.L.: Agents that explain their own actions. In: Proc. of the Fourth Conference
on Computer Generated Forces and Behavioral Representation, Orlando, FL (1994)

18. Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for
small-unit tactical behavior. In: Proceedings of the 16th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI 2004), San Jose, CA, pp. 900–907 (2004)

19. Wong, P.C., Whitney, P., Thomas, J.: Visualizing Association Rules for Text Mining. In:
Proceedings of the 1999 IEEE Symposium on information Visualization. INFOVIS,
p. 120. IEEE Computer Society, Washington (1999)

20. Blanchard, J., Guillet, F., Briand, H.: Exploratory Visualization for Association Rule
Rummaging. In: KDD 2003 Workshop on Multimedia Data Mining (MDM 2003) (2003)

21. Pfleeger, S.L., Hatton, L.: Investigating the Influence of Formal Methods. Computer 30(2),
33–43 (1997)

22. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis support for
software engineering activities. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Con-
cept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer, Heidelberg (2005)

23. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation.
PLDI 2003, San Diego, California, USA, pp. 196–207. ACM, New York (2003)

24. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic programming
errors. Softw. Pract. Exper. 30(7), 775–802 (2000)

25. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs Using
Static Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp.
77–101. Springer, Heidelberg (1995)

 Exploration of SWRL Rule Bases 261

26. Leite, J.C., Leonardi, M.C.: Business Rules as Organizational Policies. In: Proceedings of
the 9th international Workshop on Software Specification and Design. International Work-
shop on Software Specifications & Design, p. 68. IEEE Computer Society, Washington
(1998)

27. Wright, G., Ayton, P.: Eliciting and modelling expert knowledge. Decis. Support
Syst. 3(1), 13–26 (1987)

28. Mechitov, A.I., Moshkovich, H.M., Olson, D.L.: Problems of decision rule elicitation in a
classification task. Decis. Support Syst. 12(2), 115–126 (1994)

29. Larichev, A.I., Moshkovich, H.M.: Decision support system “CLASS” for R&D planning.
In: Proceedings of the First International Conference on Expert Planning Systems, Brigh-
ton, England, pp. 227–232 (1990)

30. Business Rule Management Systems, http://en.wikipedia.org/wiki/BRMS
31. SAP NetWeaver,

https://www.sdn.sap.com/irj/sdn/nw-rules-management
32. ILOG, http://www.ilog.com/products/businessrules/
33. Park, S., Lee, J.K.: Rule identification using ontology while acquiring rules from Web

pages. Int. J. Hum. Comput. Stud. 65(7), 659–673 (2007)
34. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview.

W3C Recommendation (February 10, 2004), http://www.w3.org/TR/2004/
REC-owl-features-20040210/

35. SWRL Submission, http://www.w3.org/Submission/SWRL/
36. California Driver Handbook, http://www.dmv.ca.gov/pubs/dl600.pdf
37. O’Connor, M.J., Musen, M.A., Das, A.: Using the Semantic Web Rule Language in the

Development of Ontology-Driven Applications. In: Handbook of Research on Emerging
Rule-Based Languages and Technologies: Open Solutions and Approaches, ch. XXII. IGI
Publishing (2009)

38. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An
open development environment for semantic web applications. In: Proceedings of the
Third International Semantic Web Conference, Hiroshima, Japan, pp. 229–243 (2004)

39. Peace, J., Brennan, P.F.: Instance testing of the family history ontology. In: Proceedings of
the American Medical Informatics Association (AMIA) Annual Symposium, Washington,
DC, p. 1088 (2008)

40. Young, L., Tu, S.W., Tennakoon, L., Vismer, D., Astakhov, V., Gupta, A., Grethe, J.S.,
Martone, M.E., Das, A.K., McAuliffe, M.J.: Ontology-Driven Data Integration for Autism
Research. In: Proceedings of the 22nd IEEE International Symposium on Computer-Based
Medical Systems, IEEE CBMS (2009)

41. Tu, S., Tennakoon, L., O’Connor, M., Shankar, R., Das, A.: Using an integrated ontology
and information model for querying and reasoning about phenotypes: the case of autism.
In: Proceedings of the American Medical Informatics Association (AMIA) Annual Sym-
posium, Washington, DC, pp. 727–731 (2008)

42. Levy, M.A., Rubin, D.L.: Tool support to enable evaluation of the clinical response to
treatment. In: Proceedings of the American Medical Informatics Association (AMIA) An-
nual Symposium, Washington, DC, pp. 399–403 (2008)

43. Kulakowski, K., Nalepa, G.J.: Using UML state diagrams for visual modeling of business
rules. In: International Multiconference on Computer Science and Information Technol-
ogy, 2008. MCSIT 2008, October 20–22, pp. 189–194 (2008)

44. Lukichev, S.: Visual Modeling and Verbalization of Rules, KnowledgeWeb PhD Sympo-
sium (2006)

	Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules
	Introduction
	Background
	Related Work
	Methods
	Rule Abstraction
	Rule Visualization
	Rule Paraphrasing
	Rule Categorization
	Rule Management Tool

	Results
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

