

Lecture Notes in Computer Science 5858
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Guido Governatori John Hall
Adrian Paschke (Eds.)

Rule Interchange
and Applications

International Symposium, RuleML 2009
Las Vegas, Nevada, USA, November 5-7, 2009
Proceedings

13

Volume Editors

Guido Governatori
National ICT Australia
Queensland Research Laboratory
PO Box 6020
St Lucia 4067, Queensland, Australia
E-mail: guido.governatori@nicta.com.au

John Hall
Model Systems
15-19 Cavendish Place
London W1G 0DD, UK
E-mail: john.hall@modelsys.com

Adrian Paschke
Freie Universität Berlin
FB Mathematik und Informatik
Institut für Informatik
AG Corporate Semantic Web
Königin-Luise-Str. 24/26
14495 Berlin, Germany
E-mail: paschke@inf.fu-berlin.de

Library of Congress Control Number: 2009936145

CR Subject Classification (1998): D.3.1, F.3.2, H.5.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-04984-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04984-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12776832 06/3180 5 4 3 2 1 0

Preface

The 2009 International Symposium on Rule Interchange and Applications
(RuleML 2009), collocated in Las Vegas, Nevada, with the 12th International
Business Rules Forum, was the premier place to meet and to exchange ideas
from all fields of rules technologies. The aims of RuleML 2009 were both to
present new and interesting research results and to show successfully deployed
rule-based applications. This annual symposium is the flagship event of the Rule
Markup and Modeling Initiative (RuleML).

The RuleML Initiative (www.ruleml.org) is a non-profit umbrella organiza-
tion of several technical groups organized by representatives from academia,
industry and public sectors working on rule technologies and applications. Its
aim is to promote the study, research and application of rules in heterogeneous
distributed environments such as the Web. RuleML maintains effective links
with other major international societies and acts as intermediary between var-
ious ‘specialized’ rule vendors, applications, industrial and academic research
groups, as well as standardization efforts from, for example, W3C, OMG, and
OASIS. To emphasize the importance of rule standards RuleML 2009 featured,
besides a number of tutorials on various rule aspects, a tutorial and a workshop
dedicated to the newly released W3C Rule Interchange Format (RIF).

After a series of successful international RuleML workshops and conferences,
the RuleML Symposium, held since 2007, constitutes a new kind of event where
the Web rules and logic community joins the established, practically oriented
business rules forum community (www.businessrulesforum.com) to help the cross-
fertilization between Web and business logic technology. The symposium sup-
ports the idea that there is a successful path from high-quality research results
to applied applications. It brings together rule system providers, representatives
of, and participants in, rule standardization efforts and open source rule commu-
nities, practitioners and technical experts, developers, users, and researchers, to
exchange new ideas, practical developments and experiences on issues pertinent
to the interchange and application of rules.

The contributions in this volume include the abstracts of the three invited
keynote presentations, five introductory/survey track papers by the track chairs
introducing the topics of the RuleML 2009 tracks and a selection of 12 full papers
and 17 short papers chosen from a pool of 56 submissions, from 14 countries.
The accepted papers address a wide range of rule topics, including traditional
topics, such as complex event processing using rules (a RuleML stronghold with
several past invited speakers form the area and many past papers on this topic),
to rules for transformations and rule extraction, applications of rule systems to
handle data and processes, investigations on how to deploy rules on the Web to
use of rules to model uncertainty and norms.

VI Preface

The accepted papers were carefully selected after a rigorous peer-review pro-
cess where each paper was evaluated by a panel of five members of the interna-
tional Programme Committee. Each paper received a minimum of three reviews.
We thank the referees for their effort and very valuable contribution; without
them it would not be possible to maintain and improve the high scientific stan-
dard the symposium has now reached. We thank the authors for submitting good
papers, responding to the reviewers’ comments, and abiding by our production
schedule. We thank the keynote speakers for their interesting talks. And we
thank the Business Rules Forum organizers for enabling this fruitful collocation
of the 12th Business Rules Forum and RuleML 2009.

The real success of rule technology will be measured by the applications
that use the technology rather than the technology itself. To place emphasis
on the practical use of rule technologies, RuleML 2009 continued the tradition
of hosting the International Rule Challenge. The challenge offered participants
the opportunity to demonstrate their commercial and open source tools, use
cases, benchmarks, and applications. It was the ideal forum for those wanting
to understand how rules technology can produce benefits, both technically and
commercially.

The RuleML 2009 Symposium was financially supported by industrial compa-
nies and research institutes and was technically supported by several professional
societies. We thank our sponsors, whose financial support helped us to organize
this event, and whose technical support enabled us to attract many high-quality
submissions.

At the conference, the Programme Committee awarded prizes for the best
paper, and for the best entry and runner up for the International Rule Challenge.
The results are available at www.ruleml.org.

August 2009 Guido Governatori
John Hall

Adrian Paschke

Conference Organization

General Chair

Adrian Paschke Freie Universität Berlin, Germany

Programme Chairs

Guido Governatori NICTA, Australia
John Hall Model Systems, UK

Liaison Chair

Hai Zhuge Chinese Academy of Sciences, China

Publicity Chair

William Langley NRC-IRAP, Canada

Track Chairs

Rule Transformation and Extraction
Erik Putrycz Apption Software, Canada
Mark Linehan IBM, USA

Rules and Uncertainty

Matthias Nickles Univiversity of Bath, UK
Davide Sottara University Bologna, Italy

Rules and Norms
Thomas Gordon Fraunhofer FOKUS, Germany
Antonino Rotolo CIRSFID, University of Bologna, Italy

Rule-Based Game AI
Benjamin Craig National Research Council, Canada
Weichang Du University of New Brunswick, Canada

VIII Organization

Rule-Based Event Processing and Reaction Rules

Alex Kozlenkov Betfair Ltd., UK
Adrian Paschke Freie Universität Berlin, Germany

Rules and Cross-Industry Standards

Tracy Bost Valocity, USA
Robert Golan DBMind, USA

RuleML Challenge

Yuh-Jong Hu National Chengchi University, Taiwan
Ching-Long Yeh Tatung University, Taiwan
Wolfgang Laun Thales Rail Signalling Solutions GesmbH,

Austria

Programme Committee

Asaf Adi
Hassan Ait-Kaci
Grigoris Antoniou
Sidney Bailin
Matteo Baldoni
Cristina Baroglio
Claudio Bartolini
Nick Bassiliades
Bernhard Bauer
Mikael Berndtsson
Jean Bezivin
Pedro Bizarro
Jonathan Bnayahu
Harold Boley
Peter Bollen
Adrian Bowles
Jordi Cabot
Carlos Castro
Donald Chapin
Federico Chesani
Horatiu Cirstea
Claudia d’Amato
Mike Dean
Jens Dietrich
Juergen Dix
Daniel Dougherty
Schahram Dustdar

Andreas Eberhart
Jenny Eriksson Lundström
Opher Etzion
Todd Everett
Maribel Fernandez
Dragan Gasevic
Adrian Giurca
Neal Hannon
Marek Hatala
Ioannis Hatzilygeroudis
Stijn Heymans
Minsu Jang
Claude Kirchner
Yiannis Kompatsiaris
Manolis Koubarakis
Rick Labs
Holger Lausen
Heiko Ludwig
Thomas Lukasiewicz
Ian Mackie
Mirko Malekovic
Christopher Matheus
Craig McKenzie
Jing Mei
Zoran Milosevic
Anamaria Moreira
Leora Morgenstern

Organization IX

Jörg Müller
Chieko Nakabasami
Ilkka Niemelä
Jeff Pollock
Alun Preece
Maher Rahmouni
Dave Reynolds
Graham Rong
Markus Schacher
Marco Seiriö
Rachael Sokolowski
Jorge Sousa Pinto
Silvie Spreeuwenberg
Giorgos Stamou

Giorgos Stoilos
Nenad Stojanovic
Umberto Straccia
Heiner Stuckenschmidt
Terrance Swift
Vagan Terziyan
Jan Vanthienen
Paul Vincent
George Vouros
Kewen Wang
Segev Wasserkrug
Nikolaus Wulff
Ching Long Yeh

External Reviewers

Anirban Basu
Tristan Behrens
Carlos Chesñevar
Stamatia Dasiopoulou
Pablo Fillottrani
Efstratios Kontopoulos
Emilian Pascalau
Ruth Raventós

X Organization

RuleML 2009 Sponsors & Partners

Silver Sponsors

Bronze Sponsors

Partner Organisations

Organization XI

Media Partners

Table of Contents

Keynote Speakers (Abstracts)

Bringing Order to Chaos: RIF as the New Standard for Rule
Interchange . 1

Sandro Hawke

Why Rules Matter in Complex Event Processing. . . and Vice Versa 2
Paul Vincent

Terminology: The Semantic Foundation for an Organizations
Executable Rules . 3

Donald Chapin

Rule Systems on the Web

Challenges for Rule Systems on the Web . 4
Yuh-Jong Hu, Ching-Long Yeh, and Wolfgang Laun

A Modest Proposal to Enable RIF Dialects with Limited Forward
Compatibility . 17

Ch. de Sainte Marie

RIF RuleML Rosetta Ring: Round-Tripping the Dlex Subset of Datalog
RuleML and RIF-Core . 29

Harold Boley

WellnessRules: A Web 3.0 Case Study in RuleML-Based Prolog-N3
Profile Interoperation . 43

Harold Boley, Taylor Michael Osmun, and Benjamin Larry Craig

Rule-Based Event Processing and Reaction Rules

Rule-Based Event Processing and Reaction Rules . 53
Adrian Paschke and Alexander Kozlenkov

Correlating Business Events for Event-Triggered Rules 67
Josef Schiefer, Hannes Obweger, and Martin Suntinger

Semantic Rule-Based Complex Event Processing . 82
Kia Teymourian and Adrian Paschke

XIV Table of Contents

General Rule Topics

Generation of Rules from Ontologies for High-Level Scene
Interpretation . 93

Wilfried Bohlken and Bernd Neumann

RBDT-1: A New Rule-Based Decision Tree Generation Technique 108
Amany Abdelhalim, Issa Traore, and Bassam Sayed

Process Materialization Using Templates and Rules to Design Flexible
Process Models . 122

Akhil Kumar and Wen Yao

Rule Transformation and Extraction

Introduction to “Rule Transformation and Extraction” Track 137
Mark H. Linehan and Eric Putrycz

An SBVR Framework for RESTful Web Applications 144
Alexandros Marinos and Paul Krause

Towards an Improvement of Software Development Processes through
Standard Business Rules . 159

José L. Mart́ınez-Fernández, Paloma Mart́ınez, and
José C. González-Cristóbal

A Rule-Based System Implementing a Method for Translating FOL
Formulas into NL Sentences . 167

Aikaterini Mpagouli and Ioannis Hatzilygeroudis

An Empirical Study of Unsupervised Rule Set Extraction of Clustered
Categorical Data Using a Simulated Bee Colony Algorithm 182

James D. McCaffrey and Howard Dierking

Transformation of Graphical ECA Policies into Executable PonderTalk
Code . 193

Raphael Romeikat, Markus Sinsel, and Bernhard Bauer

Session 6

A Rule-Based Approach to Match Structural Patterns with Business
Process Models . 208

Jens Müller

Usage of the Jess Engine, Rules and Ontology to Query a Relational
Database . 216

Jaroslaw Bak, Czeslaw Jedrzejek, and Maciej Falkowski

Table of Contents XV

An XML-Based Manipulation and Query Language for Rule-Based
Information . 231

Essam Mansour and Hagen Höpfner

Exploration of SWRL Rule Bases through Visualization, Paraphrasing,
and Categorization of Rules . 246

Saeed Hassanpour, Martin J. O’Connor, and Amar K. Das

TomML: A Rule Language for Structured Data . 262
Horatiu Cirstea, Pierre-Etienne Moreau, and Antoine Reilles

Geospatial-Enabled RuleML in a Study on Querying Respiratory
Disease Information . 272

Sheng Gao, Harold Boley, Darka Mioc, Francois Anton, and
Xiaolun Yi

Session 7

Rules and Norms: Requirements for Rule Interchange Languages in the
Legal Domain . 282

Thomas F. Gordon, Guido Governatori, and Antonino Rotolo

A Java Implementation of Temporal Defeasible Logic 297
Rossella Rubino and Antonino Rotolo

Fill the Gap in the Legal Knowledge Modelling . 305
Monica Palmirani, Giuseppe Contissa, and Rossella Rubino

The Making of SPINdle . 315
Ho-Pun Lam and Guido Governatori

Session 8

Approaches to Uncertain or Imprecise Rules - A Survey 323
Matthias Nickles and Davide Sottara

Fuzzy Reasoning with a Rete-OO Rule Engine . 337
Nikolaus Wulff and Davide Sottara

Towards Modelling Defeasible Reasoning with Imperfection in
Production Rule Systems . 345

Davide Sottara, Paola Mello, and Mark Proctor

Author Index . 353

Bringing Order to Chaos: RIF as the New
Standard for Rule Interchange

Sandro Hawke

World Wide Web Consortium (W3C) at MIT
sandro@w3.org

Abstract. As the W3C Rule Interchange Format (RIF) nears comple-
tion, we consider what it offers users and how it may change the design
of systems and change the industry. More than just a standard XML for-
mat for rules, RIF is integrated with the W3C Semantic Web technology
stack, offering a vision for combining some of the best features of the Web
with the best features of rule systems. RIF is designed to directly han-
dle rule bases which use only standard features, but it can be extended.
Some example extensions and possible areas for future standards work
will be discussed.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Why Rules Matter in Complex Event
Processing. . . and Vice Versa

Paul Vincent

TIBCO
pvincent@tibco.com

Abstract. Many commercial and research CEP solutions are moving
beyond simple stream query languages to more complete definitions of
“process” and thence to “decisions” and “actions”. And as capabilities
increase in event processing capabilities, there is an increasing realiza-
tion that the humble “rule” is as relevant to the event cloud as it is to
specific services. Less obvious is how much event processing has to of-
fer the process and rule execution and management technologies. Does
event processing change the way we should manage businesses, processes
and services, together with their embedded (and hopefully managed)
rulesets?

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Terminology: The Semantic Foundation for an
Organizations Executable Rules

Donald Chapin

Business Semantics Ltd
Donald.Chapin@BusinessSemantics.com

Abstract. For rules to be applied consistently they have to be expressed
consistently — they need common terminology. It is also essential that
the semantics and organizations business definitions, policies and rules
is carried forward into the IT systems that support the organization.

This talk introduces the general principles of terminology and the role
played by terminology in Semantics of Business Vocabulary and Business
Rules (SBVR), the specification published by the Object Management
Group (OMG) in 2008.

The major topics are:

– Introduction to the discipline of terminology (sister discipline of
lexicography) and the fundamentals of ISO terminology standards.
The terminology capabilities that SBVR adds to ISO terminology
standards.

– The significance of the industry trend to use terminology to improve
communication and the quality of document/content authoring.

– How SBVR supports the people who operate the organization in
specifying the meaning of business policies and rules in the termi-
nology they use every day.

– An overview of the transformation from an organization’s business
policies and rules —as expressed in its managed terminology —
to executable data and rules, while maintaining the organizations
semantics.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, p. 3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Challenges for Rule Systems on the Web

Yuh-Jong Hu1, Ching-Long Yeh2, and Wolfgang Laun3

1 Emerging Network Technology (ENT) Lab.
Department of Computer Science

National Chengchi University, Taipei, Taiwan
hu@cs.nccu.edu.tw

2 Department of Computer Science Engineering
Tatung University, Taipei, Taiwan

chingyeh@cse.ttu.edu.tw
3 Thales Rail Signalling Solutions

GmbH, Austria
wolfgang.laun@gmail.com

Abstract. The RuleML Challenge started in 2007 with the objective of
inspiring the issues of implementation for management, integration, in-
teroperation and interchange of rules in an open distributed environment,
such as the Web. Rules are usually classified as three types: deductive
rules, normative rules, and reactive rules. The reactive rules are further
classified as ECA rules and production rules. The study of combina-
tion rule and ontology is traced back to an earlier active rule system for
relational and object-oriented (OO) databases. Recently, this issue has
become one of the most important research problems in the Semantic
Web. Once we consider a computer executable policy as a declarative
set of rules and ontologies that guides the behavior of entities within a
system, we have a flexible way to implement real world policies with-
out rewriting the computer code, as we did before. Fortunately, we have
de facto rule markup languages, such as RuleML or RIF to achieve the
portability and interchange of rules for different rule systems. Otherwise,
executing real-life rule-based applications on the Web is almost impos-
sible. Several commercial or open source rule engines are available for
the rule-based applications. However, we still need a standard rule lan-
guage and benchmark for not only to compare the rule systems but also
to measure the progress in the field. Finally, a number of real-life rule-
based use cases will be investigated to demonstrate the applicability of
current rule systems on the Web.

1 Introduction

The RuleML Challenge competitions started in 20071, so the RuleML-2009 Chal-
lenge will be the third year for the rule system competition. We offer participants
the chance to demonstrate their commercial and open source tools, use cases, and
applications for rule related technologies. For the past two RuleML Challenge
1 RuleML-2007 Challenge, http://2007.ruleml.org/index-Dateien/Page787.htm

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 4–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Challenges for Rule Systems on the Web 5

competitions, only a minimum set of requirements was given for evaluating the
submitted demo systems. The criteria were that declarative rules should have
to play a central role in the application, and that the demo systems should
preferably be embedded into a Web-based or distributed environment, etc. The
Challenge winners were selected and 1st and 2nd places were awarded with pres-
tigious prizes.

The RuleML-2009 Challenge follows similar processes and the evaluation cri-
teria are the same as in the previous two events. But we consider inviting more
participants to submit their rule related systems in this year. In the RuleML-2009
Challenge, we organize events as two tracks, one is by invitation, to demonstrate
a commercial or open source environment for its rule systems, and the other is
open to general public for a real system competition. In addition to the demo
systems with reports submitted to the RuleML Challenge website2, it is also
possible to submit demo papers describing research and technical details, and
the selected papers will be published in additional special Challenge proceed-
ings, such as CEURS. A final selection of revised papers from the Challenge
proceedings will be resubmitted to a special issue of a journal for publishing.
In this RuleML Challenge survey paper, we point out the possible research and
implementation challenges for rule systems on the Web that are related to the
Challenge competition events in the forthcoming years.

1.1 Challenges for Rule Systems

Rules as human understandable policies are everywhere in our daily life to im-
pose human behaviors. For example, before you take a flight, you need to read
airline check-in and boarding time rules in the policy statement of your booking
itinerary receipt. If you violate any rule you might miss your plane. Related
situations in this scenario of using rules are early-bird conference registration,
special discount hotel reservation, payment and refund policies, etc. These rules
as policies are represented as human understandable natural language. However,
we still need to transform these natural language policies into computer pro-
gramming rules for computer system understanding and automatic execution.
Sometimes, not all of the rules imposed on a human are necessarily and possi-
bly represented as software programs to accomplish automatic execution in our
computer systems. Usually, these rules restrict only human behavior, without di-
rect connection with any software system. For example, we have law for privacy
protection and digital rights management but not all of privacy rights and dig-
ital rights for human are required to be represented and evaluated in computer
systems.

There are several challenges while implementing rule systems on the Web.
Rules should be allowed to cope with the data model, such as RDB/OO-DB, or
a knowledge base, such as an ontology, to permit query and modification ser-
vices on the data models. Policies imposed on human behavior are declared in
some policy language by the combination of rules and an ontology (or database),
and these policies can be automatically interpreted and executed by a computer.
2 http://ruleml-challenge.cs.nccu.edu.tw

6 Y.-J. Hu, C.-L. Yeh, and W. Laun

There should be a standard language and framework for rule systems to enable
rule interchange services on the Web. A certain number of use cases are easily
represented and executed by rule and ontology reasoning engines with rule in-
terchange and ontology merging standards to ensure rule interoperability and
ontology compatibility.

In the early computer development stage, imperative programming languages
such as C and Java were used to represent rules and execute them on a com-
puter system. But these rules are inflexible and not easy to maintain when they
are distributed on the Web and require interchange and integration between
rule systems. Moreover, imperative programming languages are not appropriate
to express concepts of human policies as computerized rules. Recently, people
use declarative programming to specify the rules and execute them automati-
cally, where XML is used as a standard syntax representation for interchange of
declarative rules, such as RuleML [1], RIF [2], etc.

Even though an XML-based standard rule language and framework provides
rule interchange service, pure XML cannot specify a well-defined semantics for
rules. So people in the standard rule community constructed a logic foundation
behind rule languages and their framework, to preserve the integrity of syntax
and semantics of rules interchange for various rule systems. Similarly, OMG
SBVR intends to define the vocabulary and rules for documenting semantics of
business vocabulary, facts, and rules, as well as an XMI schema for interchange
of business vocabularies and rules among organizations and between software
tools3.

In this paper, we first introduce the classification of rules, then, in section 2,
we address the issue of rules, and databases and ontologies . In section 3, the
current status of a declarative policy as the combination of ontology and rules
will be introduced. In addition, Semantic Web Service (SWS) processes also
require a declarative policy to express and execute Web Service rules to control
information sharing and service execution. In section 4, we examine current
different rule management systems and engines. In section 5, we investigate
different rule interchange languages. In section 6, we look into the use cases that
are possibly represented and executed by the rule systems. Finally, we conclude
this study in section 7.

2 Rule and Data Model

2.1 The Classification of Rules

Rules are classified as three types: deductive rules (or derivation rules), nor-
mative rules (or integrity rules), and reactive rules (or active rules). One can
use deductive rules and facts to trigger a forward or backward reasoning en-
gine to derive implicit facts. Normative rules pose constraints on the data or
on the business logic to ensure their consistency in the database or knowledge

3 http://www.omg.org/spec/SBVR/1.0/

Challenges for Rule Systems on the Web 7

base. Without reactive rules, we cannot update a database or knowledge base
by using deductive rules only.

Reactive rules are further subdivided into event-condition-action (ECA) rules
and production rules. ECA rules are rules of the form ON Event IF Condition
DO Action, where Action should be executed if the Event occurs, provided that
the Condition holds. Production rules are rules of the form IF Condition DO
Action, where Condition queries the working memory containing the data on
which the rules operate. Action should be executed whenever a change to the
underlying database makes Condition true [2].

In reactive rules, we verify the satisfaction of conditions and also execute the
action whenever message arrival or timer event triggers the rule. Declarative
rules extend their executive power by the combination of rule semantics and
imperative programming in the action part.

2.2 Rules and Databases

As early as 1980, Ullman pointed out the principles of the integration of database
and knowledge base systems [3] [4]. The foundation of database is relation algebra
with SQL as a declarative database query language. However, first order logic
(FOL) was also proposed as a way to represent “knowledge” and as a language
for expressing operations on relations. The roots of relational theory is logic, and
so we cannot deny that the foundation of relational DBMS is based on logic [5].
The simplest data model of FOL is “Datalog”, which was coined to suggest a
version of Prolog suitable for database systems where it does not allow function
symbols in Datalog’s predicate arguments. In the IDEA methodology, deductive
rules and reactive rules were built on top of the object-oriented (OO) database
as a way to express operations on the OO data model [6].

2.3 Rules and Ontologies

Concepts of the Semantic Web have been proposed by Tim Berners-Lee et al.
since 2001 [7]. Graph-based RDF(S), including RDF and RDF-schema were the
first standardized ontology languages to represent an ontology’s schema and
instances. Then, standardized ontology languages based on Description Logic
(DL) [8], i.e., OWL-DL (later OWL 2), enhanced RDF(S) that plays the major
role of knowledge representation for the Semantic Web. However, the logic pro-
gram (LP) rule language was also introduced because of the limited expressive
power of a DL-based ontology language in some situations, such as property
chaining, and the manipulation of events, states, and actions.

Initially, the “rule” layer was laid on top of the “ontology” layer in the Seman-
tic Web layered architecture but it has undergone several revisions reflecting the
evolution of layers4. The most recent layered architecture of rule and ontology
layers is one where they sit side by side to reflect their equal status but with some
basic assumption differences between ontology and rule, such as the open world

4 http://www.w3.org/2007/03/layerCake.svg

8 Y.-J. Hu, C.-L. Yeh, and W. Laun

assumption (OWA) vs. the closed world assumption (CWA), or the non-unique
name assumption (non-UNA) vs. the unique name assumption (UNA) [9].

It will be a challenge to resolve these basic assumption differences when we
combine rule and ontology to execute rule systems on the Web.

Rules and RDF(S). Inspired from F-Logic, TRIPLE5 was one of the earli-
est rule languages using Horn rules to access the RDF datasets. Another rule
language called Notation3 (N3) uses a CWA forward reasoning engine to access
the ontologies generated from RDF(S)6. SPARQL is another W3C standardized
query language for querying RDF datasets. SPARQL queries are represented
as Datalog rules so SPARQL’s CONSTRUCT queries are viewed as deductive
rules, which create new RDF triples from the RDF datasets.

Rules and OWL. In addition to the Semantic Web Rule Language (SWRL)
[10], Rule Interchange Format (RIF) is an emerging rule interchange language
from W3C RIF WG [2]. It intends to provide core and extend languages with
a common exchange syntax for all of the classification rule languages, i.e., de-
ductive, normative, and reactive rules. The requirements of integrating different
types of rules with possible data (and meta data) accessing representation, i.e.,
RDB, XML, RDF, and OWL, drive the development of a RIF core interchange
format, theRIF Core, and its extensions, RIF dialects. Another recent develop-
ment is to combine RIF and OWL 2 in RIF, RDF, and OWL that specifies the
interactions between RIF, RDF and OWL for their compatibilities7.

2.4 Combination of Rule and Ontology

A one-way knowledge flow exists from an ontology module to a rule module
for knowledge acquisition, where an ontology module’s instances are imported
as basic facts and filtered with conditions in the rules. This passive knowledge
query only uses deductive rules. If a rule engine derives implicit new facts not
in an ontology module and furthermore updates new facts back to an ontology
module, then it provides another reverse knowledge flow from a rule module
to an ontology module. In this two-way knowledge flow process, normative and
reactive rules are also required to check the knowledge consistency and trigger
the message passing for updating the ontology’s knowledge base.

The idea of combining rules and ontologies is to fulfill a goal of two-way knowl-
edge flow. The combination is classified as two types: tightly coupled integration
and loosely coupled integration [11]. In the tightly coupled integration model,
all of the terms in the rule’s body and head are specified in the ontology schema,
but in the loosely coupled integration model we do not have this requirement. So,
some rules have their own defined terms in the rules’ body or head. This loosely
coupled integration model enhances the expressive power of ontology and rule
as compared to the tightly coupled one.
5 http://triple.semanticweb.org/
6 http://www.w3.org/2000/10/swap/doc/cwm
7 http://www.w3.org/2005/rules/wiki/OWLRL

Challenges for Rule Systems on the Web 9

Description Logic Program (DLP) [12] and SWRL are two well-known tightly
coupled integration models. In general, both DL and LP are subsets of FOL in
knowledge representation but each has its own part that cannot be expressed in
the other part. DLP only takes intersection of DL and LP so knowledge repre-
sentation in this model is limited. In SWRL, the major knowledge representation
is OWL-DL with additional Datalog rules from LP to enhance the lack of prop-
erty chaining in OWL-DL. In SWRL, DL-safe is the condition where variables
occurring in each rule’s head are also required to occur in its body to ensure
the decidable reasoning of the rule engine. The availability of SWRL rule and
ontology integration development in the popular Protégé environment8 makes
the SWRL model the most attractive one for people to use.

In the loosely coupled integration, DL-log [13], AL-log [14], and DL+Log [15]
are three well-known models. In these models, rules are extended to Horn rules.
Besides, not all of the terms in rules are required from ontology so rule module in
these models provides more powerful knowledge representation and rule reason-
ing than the ones in SWRL. However, none of loosely coupled integration models
provide standardized XML markup languages and a development environment,
as SWRL does in Protégé. Obviously, this will be a challenge to represent and
execute rule systems for loosely coupled integration on the Web. Moreover, the
reactive rules [16] have not been seriously considered in all of the ontology and
rule integration models. This will be the biggest impediment to implement rule
and ontology systems for distributed applications on the Web.

3 Policy as Ontology and/or Rule

Since computers understand the data semantics in the Semantic Web, people
are much more satisfied with the search results when a semantic search engine is
fully developed. Policy-aware Web extends Semantic Web that provides comput-
erized policies, such as privacy protection or digital rights management policies
for computers to understand and execute automatically [17]. However, pure rule
and/or ontology languages are not explicit enough to represent policies that reg-
ulate human behavior in the real world. We need a well-defined policy language
that describes the concepts of rights, obligation, conditions, resources, etc. be-
tween resource owner and user to represent and execute access control policies
of resources on the Web.

Following [18], policies are considered as knowledge bases, allowing deontic
classes, properties, and access control rules. This has the advantage that many
operations are automated, thereby reducing ad hoc program coding to a mini-
mum and enabling automated documentation. Regulations imposed on human
behavior and activity are simulated by computerized policies that are specified
by using policy languages, such as Rei or KAoS [19]. The semantics of these
policy languages is only DL-based, and needs to be further extended by using
LP-based semantics of rule languages, such as RuleML, RIF or Protune [20].
Recently, AIR (AMORD In RDF) is a policy language that considers using both
8 http://protege.stanford.edu/

10 Y.-J. Hu, C.-L. Yeh, and W. Laun

RDF ontology language and N3 rule language for the privacy protection policy
execution9.

3.1 Policy for Semantic Web Services

The idea of Web Services in the SOA of distributed software systems has be-
come a tremendous success. Semantic Web Services (SWS) employ Semantic
Web technology in the Web Services area: service functionality, service inputs
and outputs, preconditions and effects, etc.; all are expressed and executed in
knowledge representation languages, i.e., ontology and rule languages [21]. A
policy can be considered in the SWS because of using similar ontology and rule
languages’ semantics on the Policy-aware Web. Thus policies are represented
and executed as Web Service rules for the compliance of human regulations to
control information sharing and service execution.

One of the challenges to implement rule systems on the Policy-aware Web is
how to design and implement rules as computerized policy by the integration
of rule and ontology. This computerized policy imitates human regulation for
controlling information sharing and service execution for a composite web ser-
vice on the Web. And the ultimate goal is the satisfaction of legal regulation
compliance from the execution of a computerized policy. This idea is similar to
the Legal Knowledge Interchange Format (LKIF) proposed in the past EU FP6
project [22].

4 Rule Management Systems and Engines

Before looking into the details of rule management systems, we need to decide
about a rule management systems implementation platform. If we choose a rule
system that is also embedded in the Semantic Web development environment,
then we have several advantages. First, it provides sufficient facilities to imple-
ment subsystems for rules and the data model. Second, both the ontology and
rule languages used in the Semantic Web are complementary to each other so
we can leverage on the declarative knowledge representation. Third, we have a
standard query language or a rule language to support the access of underlying
knowledge bases for ontology or rule bases. Finally, if applications are embed-
ded in Java or some other popular imperative programming language, we have
language typing, control flow, and interaction mechanism available for the im-
plementation of application system on the Web.

4.1 Rule Systems in the Semantic Web Framework

The SemWebCentral10 is one of the well-known websites providing Open Source
development tools for the Semantic Web. The Semantic Web system develop-
ment framework can be subdivided into three subsystem modules: an applica-
tion module, a controller module and a view module. The application module
9 http://dig.csail.mit.edu/TAMI/2007/amord/air-specs.html

10 http://www.semwebcentral.org/

Challenges for Rule Systems on the Web 11

contains reasoning functions, including task and inference, domain schema and
knowledge base. The controller module handles interactions with the user and
functions in the application model. The view module provides output for the
user. The Semantic Web system development framework usually includes two
development parts, one is for ontology and the other is for rule. For example,
Protégé has been successfully developed for ontology and rule, such as Jena11

and Jess12. The Jena rule engine was integrated in the Semantic Web system
development framework Protégé for having rule-based inference with the access
to knowledge base in the ontologies of RDF and OWL13. In addition, the sys-
tem for development of ontology and rule combination, such as SWRL is also
available in the Protégé with SWRLTab14.

4.2 Standalone Rule Systems

A number of standalone rule systems have been investigated by the RIF Working
Group15. A rule system is defined as a piece of software that implements or
supports a rule language in some way (e.g., a rule engine or a rule editor). Among
the RIF list, some rule systems are developed for commercial usage but others
are for open source purposes. Based on the classification of rule types, some rule
systems are developed for a deductive rule engine but others are implemented
for a reactive rule engine.

Commercial Rule Systems. IBM ILOG Business Rule Management Systems
(BRMS)16 provides a complete BRMS for analysts, architects and developers,
featuring tools of rule authoring and rule management besides its rule engine.
In fact, ILOG JRules is one of the best-known production rule systems. JBoss
Drools17 Enterprise BRMS is a well-known open source rule system which pro-
vides perfect integration with the service-oriented architecture (SOA) Web ser-
vice solutions. On the other hand, existing rule systems, such as Prova18 and
ruleCore19 are also available for ECA rules inference. For more details about
reactive rules on the Web please refer to [16].

Some commercial rule systems are developed from a matured prototype of
the Semantic Web middleware, such as OntoBroker20. Oracle Business Rules
integrates with the Business Process Execution Language (BPEL) and tries to
enrich decision making for processes in the SOA21. In general, commercial rule

11 http://jena.sourceforge.net/
12 http://www.jessrules.com/
13 http://protege.stanford.edu/plugins/owl/jena-integration.html
14 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
15 http://www.w3.org/2005/rules/wg/wiki/List of Rule Systems
16 http://ilog.com/products/businessrules/index.cfm
17 http://www.jboss.com
18 http://www.prova.ws
19 http://www.rulecore.com
20 http://www.ontoprise.de
21 http://www.oracle.com/technology/products/ias/business rules/index.html

12 Y.-J. Hu, C.-L. Yeh, and W. Laun

systems use proprietary rule languages for the development of the rule bases
so we need a standard rule interchange language, such as RIF to obtain rule
interoperability among these rule systems.

Academic Rule Systems. The academic ECA rule system XChange, with its
integration of the Web query language Xcerpt, provides the access of data sources
to obtain information on the dynamic Web. Other academic rule systems are de-
ductive reasoning rule engines, such as jDREW and its object-oriented extension
OO jDREW22. An Object-Oriented Knowledge Base Language FLORA-2 pro-
vides frame-based logic reasoning engine with the knowledge base development
environment23.

Logic programming systems are also used to develop rule-based applications.
For example, Logic Programming Associates Prolog provides a complete rule
development environment with a graphical interface for rule editing24. Thea is a
Prolog library for generating and manipulating OWL content on the Semantic
Web. The Thea OWL parser uses SWI-Prolog’s Semantic Web library for parsing
RDF/XML serialization of OWL documents into RDF triples, and then it builds
a representation of the OWL ontology25.

One of the challenges for implementing rule systems on the Web is to be
aware of the current rule management systems, including commercial and aca-
demic ones, and, furthermore, an understanding of their system features and
which rule type reasoning they can support. Moreover, we need to investigate
the possible application domains they intent to accomplish through the under-
lying rule interchange standard.

4.3 Performance Benchmark for Rule Systems

It is not easy to propose an acceptable measurement benchmark to evaluate
the performance of current rule systems because rule systems vary considerably
with respect to rule syntax and features. In [23], a set of benchmarks were pro-
posed for analyzing and comparing the performance of numerous rule systems.
In this OpenRuleBench, they include five rule technologies to compare with:
Prolog-based, deductive databases, production rules, triple engines, and general
knowledge bases. Jena and OntoBroker we mentioned before were also two of the
selective rule systems in their comparison list. We envision that the benchmark
performance evaluation output will be just one of the criteria for people to decide
for which rule system they are going to adopt in their application development.

5 Rule Interchange Languages

In early expert systems, a specific language, such as Prolog or LISP was used to en-
code expert domain knowledge into rules and facts, for execution in a standalone
22 http://www.jdrew.org/oojdrew/
23 http://flora.sourceforge.net/
24 http://www.lpa.co.uk/
25 http://www.semanticweb.gr/TheaOWLLib/

Challenges for Rule Systems on the Web 13

system. However, when rules and facts are created in different rule systems and
distributed on the Web, we need a rule standard exchange language for the inter-
change of heterogeneous rule formats. Otherwise, we cannot implement an appli-
cation, such as composite (semantic) web services that might require rules created
and distributed in the different rule systems [21]. Therefore, a common rule for-
mat facilitates decision making on the network environment with multiple rule for-
mats. For example, the therapeutic guideline recommendation rules for diabetes
type 2 are constructed with the combination of clinical and therapeutic criteria as
the condition part and therapeutic options as the actions. When users or organi-
zations switch rules from one rule product to another, they can employ the rule
interchange technologies without re-developing their rules.

Proposed rule interchange languages include RuleML [1], REWERSE Rule
Markup Language (R2ML) [24], and W3C RIF26, where R2ML attempts at in-
tegrating aspects of RuleML, SWRL, and Object Constraint Language (OCL).
The most recent W3C RIF27 was proposed to achieve the objective of rules in-
terchange and interoperability for major rule systems. These rule interchange
languages provide XML schemata to guarantee the comparability of rule syntax
and semantics from source to target rule systems and vice versa. The other im-
portant rule language is Semantics of Business Vocabulary and Business Rules
(SBVR), submitted by Business Rule Group (BRG) to OMG on the standard-
ization of semantics for business vocabulary and rules28.

One of the challenges to apply rule systems on the Web is to finalize a rule
interchange language to provide a rule interchange framework and format of
rules for current major rule systems. When agents proceed towards a two way
rule interchange, a rule interchange language with the framework ensures the
compatibility of rules’ syntax and semantics between rule systems. The related
challenge is the requirement to have a software development system and a run-
time environment for people to build, design, and implement standardized rule
interchange formats to automatically extract and transform rules from different
rule systems on the Web.

6 Use Cases with Rules

Rules are used to express computational or business logic in the information
systems which do not have explicit control flow, so rules are more suitable for
execution in the dynamic situations for business collaborations. Along with the
rapid development of the Web, multiparty collaborations for carrying out busi-
ness services in this environment are more significant than ever before. For ex-
ample, when a credit card transaction is requested from a merchant, a customer
needs a payment authorization from the merchant and the card issuer (the bank)
to accomplish a successful transaction service. In this case, both merchant and
bank have their own policies as rules to conduct their authorization processes.
26 http://www.w3.org/TR/rif-bld/
27 http://www.w3.org/2005/rules/wiki/RIF Working Group
28 http://www.businessrulesgroup.org/sbvr.shtml

14 Y.-J. Hu, C.-L. Yeh, and W. Laun

If both parties are required to combine their policies, we hope they can trans-
form the rules into a formal common rule format, such as RIF. For example,
rules from the bank are directly imported by the merchant and processed with
his local rule engine to derive an authorization decision. In addition, this situ-
ation can be extended to other relevant web services for conducting composite
web services. Another use case is a seller, posting his price discount and refund
policies for execution as rules on his website, to attract potential customers for
making a purchase decision from his selling goods. Moreover, a vendor advertises
his lead time policies in formal rules to attract customers and also as a part of
contract negotiation in the supply chain management.

Use cases such as the ones we have shown above are categorized by the W3C
RIF Working Group as a type of policy-based transaction authorization policy
for access control with the interchange of human-oriented business rules. Several
other interesting use cases focusing on different application domains are also
available on this website29. Another interesting use case study was proposed
by the Business Rule Group (BRG) to use SBVR for illustrating business rule
concepts of EU-Rent, EU-Fly, and EU-Stay. They are available on the BRG
website30. The challenge here is whether we have enough use cases that can be
accomplished by current rule systems on the Web to convince people to adopt
and use this technology.

7 Conclusion

In this study, we outlined the objectives of RuleML-Challenge competitions
started in 2007. Alos, we have elaborated the possible research and implemen-
tation challenges for rule systems on the Web that are closely related to the
Challenge competition events in the forthcoming years.

The first challenge is to perfectly implement rule systems with the data model,
either from a relational or object-oriented database or from a DL-based knowl-
edge base. The second challenge is to enable computerized policies, created in
a policy language that is compliant with human legal regulations. In addition
to the legalized policy implementation with policies created from the policy lan-
guage, computerized policy can be shown as a combination of ontology and/or
rule languages for the purpose of information sharing and web service execu-
tion. The third challenge is full awareness of current available commercial and
open source rule management systems and, moreover, finding out the pros and
cons of each rule system by a standard evaluation benchmark to verify its scal-
ability and performance. The fourth challenge is to achieve rule interoperability
using available rule interchange languages for rules created and distributed on
the Web. The fifth challenge is to demonstrate sufficient use cases implemented
from rule systems, while interchanging their rules through one of rule interchange
language.

29 http://www.w3.org/2005/rules/wg/wiki/Use Cases
30 http://www.businessrulesgroup.org/egsbrg.shtml

Challenges for Rule Systems on the Web 15

Acknowledgements

This research was partially supported by the NSC Taiwan under Grant No. NSC
95-2221-E004-001-MY3 and NSC 98-2918-E-004-003.

References

1. Boley, H.: The ruleML family of web rule languages. In: Alferes, J.J., Bailey, J.,
May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 1–17. Springer,
Heidelberg (2006)

2. Boley, H., Kifer, M., Pătrânjan, P.-L., Polleres, A.: Rule interchange on the web.
In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-
L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 269–309. Springer,
Heidelberg (2007)

3. Ullman, D.J.: Principles of Database and Knowledge-Base Systems Volume I. Com-
puter Science Press, Rockville (1988)

4. Ullman, D.J.: Principles of Database and Knowledge-Base Systems Volume II.
Computer Science Press, Rockville (1989)

5. Date, C.J.: Logic and Databases: The Roots of Relational Theory. Trafford Pub-
lishing (2007)

6. Ceri, S., Fraternali, P.: Designing Database Applications with Objects and Rules:
The IDEA Methodology. Addison-Wesley, Reading (1997)

7. Berners-Lee, T., et al.: The semantic web. Scientific American (2001)
8. Brachman, J.R., Levesque, H.J.: Knowledge Representation and Reasoning. Mor-

gan Kaufmann, San Francisco (2004)
9. Patel-Schneider, F.P., Horrocks, I.: A comparison of two modelling paradigms in

the semantic web. Journal of Web Semantics, 240–250 (2007)
10. Horrocks, I., et al.: SWRL: A semantic web rule language combining OWL and

RuleML (2004)
11. Maluszynski, J.: Hybrid integration of rules and DL-based ontologies. In: Maluszyn-

ski, J. (ed.) Combining Rules and Ontologies. A survey. EU FP6 Network of Ex-
cellence (NoE), pp. 55–72. REWERSE (2005)

12. Grosof, N.B., et al.: Description logic programs: Combining logic programs with
description logic. In: World Wide Web 2003, Budapest, Hungary, pp. 48–65 (2003)

13. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 549–563. Springer, Heidelberg (2004)

14. Donini, M.F., et al.: AL-log: Integrating datalog and description logics. Journal of
Intelligent Information Systems 10, 227–252 (1998)

15. Rosati, R.: DL+log: Tight integration of description logics and disjunctive dat-
alog. In: Proc. of the 10th International Conference on Principles of Knowledge
Representation and Reasoning, KR (2006)

16. Berstel, B., Bonnard, P., Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactive rules on the
web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan,
P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 183–239. Springer,
Heidelberg (2007)

17. Weitzner, D.J., et al.: Creating a policy-aware web: Discretionary, rule-based ac-
cess for the world wide web. In: Ferrari, E., Thuraisingham, B. (eds.) Web and
Information Security, pp. 1–31. Idea Group Inc., USA (2006)

16 Y.-J. Hu, C.-L. Yeh, and W. Laun

18. Bonatti, P., Olmedilla, D.: Policy language specification, enforcement, and inte-
gration. project deliverable D2, working group I2. Technical report, REWERSE
(2005)

19. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
web languages for policy representation and reasoning: A comparison of KAoS, Rei,
and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

20. Antonious, G., et al.: Rule-based policy specification. In: Security in Decentralized
Data Management, Springer, Heidelberg (2007)

21. Studer, R., Grimm, S., Abecker, A.: Semantic Web Services: Concepts, Technolo-
gies and Applications. Springer, Heidelberg (1990)

22. Gordon, F.T.: The legal knowledge interchange format (LKIF). Estrella deliverable
d4.1, Fraunhofer FOKUS Germany (2008)

23. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the perfor-
mance of rule engines. In: Word Wide Web 2009, pp. 601–610 (2009)

24. Wagner, G., Damásio, C.V., Antoniou, G.: Towards a general web rule language.
International Journal Web Engineering and Technology 2 (2005)

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 17–28, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Modest Proposal to Enable RIF Dialects with Limited
Forward Compatibility

Ch. de Sainte Marie

IBM, 9 rue de Verdun, 94250 Gentilly, France
csma@fr.ibm.com

Abstract. We introduce the notion of limited forward compatibility, and we
argue for its usefulness. We describe, and argue for, a low cost, non-disruptive,
extensible implementation, using XSLT to specify individual transforms, a
new XML format to associate them with individual RIF constructs, and the RIF
import mechanism to convey the fallback information from RIF producer
to RIF consumer. We argue, also, for consumer-side fallbacks, as opposed to
producers-side approaches such as mandatory least dialect serialization.

Keywords: rule interchange, W3C RIF, extensibility, forward compatibility,
fallback transforms, XSLT.

1 Introduction

The rule interchange format (RIF) working group of W3C has published recently the
specifications of the first three RIF dialects: RIF Core [1], RIF basic logic dialect [2]
(RIF-BLD) and RIF production rule dialect [5] (RIF-PRD). The rule interchange for-
mat aims at providing a common, standard XML serialization for many different rule
languages, “allowing rules written for one application to be published, shared, and re-
used in other applications and other rule engines” [7], in a semantics preserving way.

The working group has also published a list of requirements for a rule interchange
format [4], that provide useful insight in the design and architecture principles that the
group adopted.

The “Rule language coverage” requirement explains and clarifies the notion of RIF
dialects: “Because of the great diversity of rule languages, no one interchange lan-
guage is likely to be able to bridge between all. Instead, RIF provides dialects which
are each targeted at a cluster of similar rule languages. RIF must allow intra-dialect
interoperation, i.e. interoperability between semantically similar rule languages (via
interchange of RIF rules) within one dialect, and it should support inter-dialect inter-
operation, i.e. interoperation between dialects with maximum overlap” [4]; whereas
the “Semantic precision” requirement explains the specific role of the RIF Core dialect
[1]: “RIF core must have a clear and precise syntax and semantics. Each standard RIF
dialect must have a clear and precise syntax and semantics that extends RIF core” [4].

Any conformant implementation of any RIF dialect must, therefore, be able to
process any RIF Core document: RIF dialects are backward compatible by design.
But what about forward compatibility?

18 C. de Sainte Marie

RIF Core should also provide, by design, a bottom-line bridge between any two
RIF dialects: any document that is conformant to a RIF dialect A, and that could be
represented equivalently in a conformant RIF Core document can be processed as a
conformant document by any implementation of any other RIF dialect B. But, as we
will see, this is not the case, even considering only the two published extensions of
RIF Core, that is RIF-BLD and RIF-PRD.

In this paper, we consider, more specifically, the extensibility requirement, “Exten-
sible Format”: “It must be possible to create new RIF dialects which extend existing
dialects (thus providing backward compatibility) and are handled gracefully by sys-
tems which support existing dialects (thus providing forward compatibility)” [4].

A specification is said to be forward compatible if a conformant implementation
will process data produced by any future version according to the specification of that
future version. Accordingly, a RIF dialect would be considered forward compatible if
a conformant implementation could process instances of any future or unknown ex-
tension according to the specification of that extension. By contrast,, backwards com-
patibility is the ability to process data produced by any past version according to the
specification of that past version.

Forward compatibility for RIF dialects requires, obviously, that the way a dialect is
expected to handle extensions be specified along with the extensions themselves.
Since, presumably, the semantics of most of the constructs that extend a RIF dialect
will not be axiomatizable using that dialect, the only practical way to achieve forward
compatibility seems to be for the extending dialect to specify how each new construct
must be translated into the extended dialect.

For the same reason, for most extending constructs, fully semantics-preserving
fallback translation will not be possible, and a general mechanism to enable RIF with
useful, even if lossy, semantic fallbacks would require features, such as some kind of
system to describe and qualify the impact of the fallback on the semantics.

These are out of the scope of this paper. More modestly, the ideas presented here
aim at enabling W3C rule interchange format (RIF) with a lightweight, easy to im-
plement, limited syntactic forward compatibility mechanism.

In the remainder of this paper, after describing a motivating example (section 2),
we define what we call “limited forward compatibility”, first, and describe our light-
weight, low-cost proposal for enabling RIF dialects with such limited forward com-
patibility (section 3). In section 4, we discuss the benefits of our proposal, especially
with respect to other possible approaches. In section 5, we examine implementation
issues, before concluding (section 6).

2 Motivating Example

Consider the production rule that states that, for each value of an integer variable x
between 1 and 5, P(x) must be asserted in the facts base. In RIF-PRD/XML, the rule
can be represented as follows1:

1 The RIF/XML representation of the reference to the externally defined predicate pred:list-

contains(List(1 2 3 4 5) x) is the same whether in a RIF-PRD or a RIF-Core document. The
same holds for the RIF/XML representation of the predicate P(x). They have no impact on
the example and they are replaced, here, with a more concise non-XML representation.

 A Modest Proposal to Enable RIF Dialects with Limited Forward Compatibility 19

 <Forall>
 <declare> <Var>x</Var> </declare>
 <formula>
 <Implies>
 <if> pred:list-contains(List(1 2 3 4 5) x) </if>
 <then>
 <Do>
 <actions ordered=’yes’>
 <Assert> <target> P(x) </target> </Assert>
 </actions>
 </Do>
 </then>
 </Implies>
 </formula>
 </Forall>

Consider, now, the Datalog rule that states that, forall x, if x is an integer between 1
and 5, then P(x) is true. In RIF-Core/XML, that rule can be represented as follows:

 <Forall>
 <declare> <Var>x</Var> </declare>
 <formula>
 <Implies>
 <if> pred:list-contains(List(1 2 3 4 5) x) </if>
 <then> P(x) </then>
 </Implies>
 </formula>
 </Forall>

The two rules are effectively equivalent, in the sense that, given any set of facts F, the
final state of the facts base reached when executing the production rule under the RIF-
PRD operational semantics with F as the initial state of the facts base will be identical
to the minimal model that satisfies the conjunction of F and the Datalog rule, under
the RIF-Core model theoretic semantics.

A conformant RIF-PRD implementation must accept the RIF-Core rule, since RIF-
PRD extends RIF-Core.

But a conformant RIF-Core implementation will reject the RIF-PRD representa-
tion, because the Do and the Assert constructs are undefined ni RIF-Core. And a
conformant RIF-BLD implementation will also reject the RIF-PRD rule, for the same
reasons, although, in its RIF-Core form, it is perfectly valid and equivalent under the
RIF-BLD semantics, as well.

3 Limited Forward Compatibility

Of course, the conclusion of the production rule under RIF-PRD semantics has a
RIF/XML representation that uses only RIF Core constructs and that results in the
representation of a rule that is effectively equivalent under RIF-Core semantics
only because the only action is the assertion of a predicate, and the RIF/XML repre-
sentation of the production rule uses, otherwise, RIF-Core constructs only (e.g., no
negation in the condition, etc).

20 C. de Sainte Marie

The example shows that, even if the complete semantics of an extending construct
cannot be expressed in the extended dialect, there might be contexts where an equiva-
lent expression for the extending construct exists in the extended dialect. Here, the
complete semantics of the RIF-PRD Do construct cannot be expressed in the RIF-
Core dialect that RIF-PRD extends, but, when the only action is the assertion of a
predicate, and the RIF/XML representation of the production rule uses, otherwise,
only RIF-Core constructs, the conclusion of the production rule under RIF-PRD se-
mantics has a RIF/XML representation that uses only RIF Core constructs and that
results in the representation of a rule that is effectively equivalent under RIF-Core
semantics.

We call: limited forward compatibility, the possibility, for an implementation of a
RIF dialect, to process any extension of that dialect, in every RIF document where the
extension is conservative; that is, in every document that can be rewritten to remove
all the extension-specific constructs, without changing the intended effective seman-
tics of the RIF document being processed.

Definition (limited forward compatibility). Let D be a RIF dialect that extends an-
other RIF dialect, E. D provides limited forward compatibility to E, if D provides a
fallback translation for all the specific cases where the semantics of a construct d that
belongs to D but not to E, happens to be expressible in E.

RIF dialects could be enabled with limited forward compatibility by associating a
fallback property to every single RIF construct, say, where the allowed values of the
property would be:

• reject, meaning that there is no fallback to the construct, and that an implemen-
tation that does not know the element must reject the document. The default value
for the fallback property, when it is unknown, is reject;

• ignore, meaning that an implementation that does not know the element can
ignore it and its content;

• zoom-in, meaning that the proper fall-back for the element is contextual to its
content, and that it will be indicated by a sub-element. The element itself can be
ignored by an implementation that does not know it, but not its sub-elements. If the
element has no sub-element, then the fallback is ignore;

• the specification of a transform, such that the fallback is the new RIF document
that results from applying the transform to the original RIF document.

Examples

• The fallback for RIF-PRD inflationary negation construct, INeg, can be reject:
there is no case or context where it can be rewritten using only RIF-Core
constructs;

• The fallback for the RIF-PRD Priority element is always ignore. Indeed,
either the conflict resolution strategy can be ignored, and so does the priority asso-
ciated with rules or group of rules; or the conflict resolution strategy cannot be ex-
pressed in RIF-Core, and the document will be rejected anyway; or there is a way
to rewrite the RIF-PRD document as a Core document with the same semantics,
but without a conflict resolution strategy, and the priorities will be removed during
the rewrite;

 A Modest Proposal to Enable RIF Dialects with Limited Forward Compatibility 21

• The value of the fallback property associated with the RIF PRD behavior ele-
ment is zoom-in: either a conflict resolution is specified, and the appropriate
fallback depends on the conflict resolution, or the behavior element contains
only a Priority sub-element, which can be ignored, and the behavior ele-
ment itself can be ignored; or it is empty, and it can be ignored;

• The value of the fallback property for the RIF-PRD ConflictResolution
element has to be the specification of a fallback transform, since the appropriate
fallback depends on the value of the text content of the element: if the conflict
resolution that is specified can be ignored, e.g. rif:forwardChaining, the
whole element will be removed; otherwise, the document must be rejected2;

• The value of the fallback property for the RIF-PRD Do construct is the specifica-
tion of a transform that replaces the <Do>…</Do> pair of tags by <And>…
</And>. It will be ignore for the RIF-PRD elements actions and Assert,
and another transform for the target element, that replaces the <target>…
</target> pair with <formula>…</formula>. All the other elements that
can be contained in a Do construct and that are specific to RIF-PRD would have
reject as their fallback property.

 Given the RIF-PRD fragment on the left and the specification of the transforms, an
appropriate processor will produce the RIF-Core fragment on the right:

<Do> --transform--> <And>
 <actions ordered="yes"> ---ignore--->
 <Assert> ---ignore--->
 <target> --transform--> <formula>
 Assertion 1 (belongs to RIF-Core) Assertion 1
 </target> --transform--> </formula>
 </Assert> ---ignore--->
 … … …
 </actions> ---ignore--->
</Do> --transform--> </And>

• Other examples where the value of the fallback property is the specification of a
transform are the RIF-PRD pattern construct and the RIF-BLD Name element.

In none of the cases mentioned above where the fallback property is the specification
of a transform, does the transform need to be conditional. A RIF-PRD Do, for in-
stance, can be replaced by an And tag whether or not the rule that contains it can be
represented in RIF-Core: of course, this may produce an invalid RIF document, if the
element contains sub-elements that cannot be ignored or transformed into RIF-Core

2 From the point of view of this limited forward compatibility proposal, it would be a more

extensible design to use the tag of a, possibly empty, element to indicate the intended conflict
resolution strategy, rather than a URI: a specific fallback could thus be associated to each
conflict resolution strategy identifier, and a dialect that extends the set of accepted conflict
resolution strategies could define the fallbacks only for the extension, instead of having to
redefine the fallback for the ConflictResolution element. The pseudo-schema defini-
tion for the behavior element, according to this design, would be: <behavior>
xs:any? Priority? <behaviour>, where xs:any must by an XML element that
identifies a conflict resolution strategy (such as <rif:ForwardChaining/>).

22 C. de Sainte Marie

compatible constructs. But the containing RIF document will be rejected anyway, in
that case, because the fallback of these sub-elements can only be reject.

Notice that the zoom-in and ignore values are not absolutely necessary, as the
corresponding behaviour could be implemented with a simple fallback transform. But
using them may avoid unnecessary calls to a processor, when a RIF document con-
tains no fallback transform otherwise.

4 Discussion

4.1 Is Limited Forward Compatibility Useful?

A first question is whether the proposed mechanism satisfies, formally, the RIF “Ex-
tensible format” requirement that we mentioned in the introduction, since it enables
only syntactic fallbacks for semantically equivalent forms. We mentioned, in the
introduction, that semantically lossy fallback could be envisioned, but that they were
out of the scope of this paper. On the other hand, the kind of forward compatibility
that the designers of RIF had in mind does not require them, as is further clarified in
the “Default behavior” requirement: “RIF must specify at the appropriate level of
detail the default behavior that is expected from a RIF compliant application that
does not have the capability to process all or part of the rules described in a RIF
document, or it must provide a way to specify such default behavior” [4].

Where a semantically preserving syntactic transform cannot be provided, the de-
fault behaviour is to gracefully reject the document. And the proposed mechanism,
therefore, satisfies the requirements.

But, beyond the formal satisfaction of a requirement, the more important questions
are, of course, whether the very concept of limited forward compatibility is useful
at all.

Indeed, a default behaviour is already specified for the published RIF dialects
(RIF-Core [1], RIF-BLD [2] and RIF-PRD [5]) to handle extensions, since the con-
formance clauses relative to these dialects specify that “a conformant RIF-Core (resp.
RIF-BLD, RIF-PRD) consumer must reject all inputs that do not match the syntax
of RIF-Core (resp. RIF-BLD, RIF-PRD).” However, our limited forward compatibil-
ity proposal extends, unarguably, the interoperability between RIF dialects, and,
therefore, their usefulness.

4.2 Consumer-Side Fallback vs. Producer-Side Fallbacks

When discussing RIF implementations and applications3, it is often useful to distin-
guish between:

3 In this paper, we call: RIF implementation, a processor that translates between a custom rule

language and a RIF dialect. This view is based on the, so-called, “translation paradigm” that is
one of RIF’s design principles, as reflected in the “Translators” requirement: “For every
standard RIF dialect it must be possible to implement translators between rule languages
covered by that dialect and RIF without changing the rule language” [4]. We call: “RIF ap-
plication”, an application that includes a RIF implementation, and that can, therefore, receive
and use RIF input.

 A Modest Proposal to Enable RIF Dialects with Limited Forward Compatibility 23

• the producer implementation, that is, the implementation that produces a RIF
document, e.g. by serializing rules written in a custom rule language in RIF/XML;
and

• the consumer implementation, that is, the implementation that retrieves and uses
a RIF document, e.g. by de-serializing it in the same or another custom rule
language.

Our proposal assumes that fallbacks are processed on the consumer side. It could be
argued that the fallback should be handled by the producer implementation, instead.
That approach, that we will call: mandatory least dialect serialization, would require
that, whenever a construct, d, in a dialect D can be expressed using only constructs
from a dialect D’ that D extends and that does not include d, conformant producer
implementations of D must produce the D’ RIF/XML. The argument in favor of such
a requirement is that the burden of additional implementation complexity should be
on the party that requires the added expressiveness.

There are, however, a number of strong arguments in favor of customer-side fall-
backs, as opposed to mandatory least dialect serialization.

Mandatory least dialect serialization would require that the conformance clauses of
the published RIF dialects be modified, and that the fallback transforms be specified
normatively as part of the specification of the dialects. In other words, that would
require changes in published specifications, which is not practical. We will see in the
next section, where we discuss implementation issues, that consumer-side fallbacks
can be implemented without impact on the specification of RIF dialects.

More significantly, mandatory least dialect serialization does not scale. RIF-PRD
and RIF-BLD implementers may have only a few fallbacks to take into account to
provide limited forward compatibility to Core, but the complexity of implementation
is likely to grow wildly in future extensions with more "industrial strength" expressive
power, as such exceptions will have to be taken into account in a cumulative way.

Consumer-side fallbacks, on the other hand, is scalable because a dialect D that ex-
tends a dialect E has only to specify the fallbacks that provide limited forward com-
patibility of E with respect to D, and implementers of D have only to care about the
syntax and semantics of D; whereas mandatory least dialect serialization requires that
implmenters take care of the limited forward compatibility with respect to D of E, and
of all the dialects that are extended by E as well).

Of course, there is a cost: the consumer implementations outside the family of rule
languages catered to by a dialect D (that is, consumer implementation that interoper-
ate with D producer implementation through a dialect that is extended by D) bears the
burden that a RIF document may have to go through cascading transforms before
being consumed, thus impacting the performance of the interchange negatively. But,
presumably, a RIF dialect will be used, mostly, for rule interchange amongst users of
rule languages in the same family (that is, the family catered to by that dialect), and
exceptionally for rule interchange with dialects in a different family.

On the other hand, consumer-side fallbacks are user-friendlier than producer-side
ones, like, e.g., mandatory least dialect serialization. Producer-side fallbacks will lose
the idioms, in a dialect, that have no impact on the formal semantics, but that make it
easier to implement translators to and from rule languages in the target family (be-
cause they share the same structure and idiosyncrasy). Loosing the idiomatic structure

24 C. de Sainte Marie

and organisation of a rule may obscure the intent or even meaning of the rule, once
the RIF document is translated back into the consumer's rule language, thus adversely
affecting communication as well as round-tripping. More importantly, removing such
idioms may adversely affect the affect the performance of the rules, even if they do
not change the end result. For instance, RIF-PRD nested Forall and binding pat-
tern formulas preserve the order and conditions by which variables are bound in the
original rule, and producer-side least dialect serialization would flatten the nested
structure and merge the binding formulas indiscriminately in the condition, and lose
information that makes a difference when executing the rules.

Producer-side fallback makes idiomatic syntax extensions pointless, and, thus, use-
less. Consumer-side fallback makes idiomatic syntax extensions useful: a widely
deployed consumer-side fallback mechanism would increase the appeal of developing
idiomatic extensions of RIF dialects.

We believe that the possibility to use an idiomatic extension inside one’s commu-
nity, without renouncing inter-operability with the rest of the world, increases the
appeal of RIF as a whole4; and, as a likely consequence, its adoption. Widespread use
of a consumer-side fallback mechanism, such as the one we propose in this paper,
would, therefore, increase the overall utility and value of RIF5.

Finally, in addition to being useful and to offering more and better benefits, con-
sumer-side fallbacks are a better design for limited forward compatibility than pro-
ducer-side mandatory least dialect serialization. The main reason is that mandatory
least dialect serialization violates the design principle that the same construct should
not be used with different semantics in different dialects. Indeed, replacing a RIF-
PRD Do construct in a rule’s conclusion by a RIF-Core And construct, does not
change the semantics of RIF-PRD, and the And construct, for a RIF-PRD consumer
application, is only a Do in disguise, with the semantics of the Do construct: for in-
stance, the individual assertions will be ordered. That order is irrelevant and the rule
will produce the same result with any ordering. But this shows that mandatory least
dialect serialization effectively requires that the And construct be used with different
semantics in RIF-Core and RIF-PRD.

On the contrary, consumer-side fallback from RIF-PRD to RIF-Core will either pro-
duce valid RIF-Core, for consumption by a RIF-Core implementation, where the And
construct in the conclusion is interpreted according to its semantics in RIF-Core; or it
will produce an invalid document (from a RIF-Core viewpoint) that will be rejected6.

4 Notice that, in this respect, idiomatic extensions include idiomatic XML serialization: the

normative RIF/XML syntax is rather verbose, and the possibility to use a compact idiomatic
XML serialization is likely to appeal to some users communities.

5 Notice that such a consumer-side fallback mechanism could also be used to cater to RIF-
compatible legacy or proprietary XML serialization format, thus easing the transition to RIF
and making the adoption of RIF more appealing to communities that have already their own
XML rule interchange format (provided that it is compatible with RIF).

6 From this point of view, backward compatibility should also be interpreted in terms of con-
sumer-side fallbacks, even if actual implementations will, presumably, not translate explicitly
a RIF document that contains extensions into one that does not, before consuming it: a RIF-
PRD implementation, for instance, will, presumably, not translate explicitly the And con-
struct in the conclusion of a rule in a RIF-Core document into a Do, before consuming it as a
RIF-PRD document.

 A Modest Proposal to Enable RIF Dialects with Limited Forward Compatibility 25

5 Implementation Issues

5.1 Specification and Interchange of Fallback Transforms: RIF or XSLT?

Sandro Hawke suggested [3] that the fallback transforms, being essentially rewriting
rules, could be interchanged in RIF, using the fact the RIF documents can be seen a
sets of RIF frames, or object-attribute-value triples, thanks to the RIF/XML syntax
being essentially in the alternating normal form [6]. Class elements (starting with an
upper case letter) are the objects) and role elements (starting with a lower case letter)
represent the attributes.

The idea is that consumer implementations would run the rules; e.g the fallback
transforms from RIF-PRD to RIF-Core would be written in RIF-Core, so that a RIF-
Core consumer implementation could implement the transforms.

However appealing the idea, we see two major problems with that approach. A
first problem is that it works only if the consumer application is a rule engine, which
is not necessarily the case: it might be, e.g. a rule viewer or a rule editor. On the other
hand, there are quite a few free XSLT processors available, and running a RIF docu-
ment through an XSLT processor as a pre-processing step would be a minimal change
to existing implementations.

In terms of performance, we have no reason to believe that the cost of running a RIF
document through an XSLT processor should be higher than the cost of running the
RIF document that contains the transforms through the consumer RIF implementation,
plus the cost of running the RIF document to be consumed through a rule-based
application running the, thus translated, rewriting rules.

A more fundamental problem with using RIF as the interchange medium for fall-
back rewriting rules, is that the rules must be, always, written in a RIF dialect imple-
mented by the target consumer application. That means that all fallback rewriting
rules for each RIF dialect must be made available:

• either in each of the RIF dialects to which they provide a relevant fallback;
• or in RIF Core (since any RIF implementation is a RIF-Core implementation).

The second alternative does not seem feasible: rewriting rules do not seem to be ex-
pressible in RIF-Core (and, generally, in monotonic dialects). The first alternative is
unlikely to scale well, and, has the same feasibility problem as the second alternative
with respect to the monotonic dialects.

If the fallbacks are done in XSLT, fallback information is required, for each RIF
dialect, only with respect to the RIF dialects that it extends immediately7. XSLT
stylesheets can, then, be cascaded to reach RIF dialects that are farther away from the
dialect of the producer implementation.

Thus, we believe that XSLT is a better choice than RIF as an interchange medium
for the fallback transforms.

Notice that the following proposition holds for every extension to RIF-Core
in RIF-PRD and in RIF-BLD: for every single element in an extension, if there is a

7 Or the “closest” RIF dialects, if we extend the approach to limited “sidewards” compatibility,

to provide transforms between two dialects where one is not an extension of the other.

26 C. de Sainte Marie

fallback transform, then there is an XSLT stylesheet that implements that transform
and that can be always executed irrespective of whether there is a valid fallback for
all the contained and containing constructs. While we do not prove it here, we con-
jecture that it holds generally (that is, beyond RIF-Core, RIF-PRD and RIF-BLD).
The implication is that, in many cases, the required XSLT transforms will be very
simple8.

5.2 Conveying the Fallback Information from RIF Producers to RIF
Consumers

Orthogonal to the question of the interchange format for the fallback information,
there is the question of how the fallback information can be conveyed from the pro-
ducer of a RIF document to a RIF consumer that needs that information to exploit the
document.

A first possibility would be to include the fallback information directly in the
RIF/XML, e.g. by adding an optional fallback attribute, to represent the fallback
property as described in section 0, above. The allowable values of the attribute are
reject (default), ignore, zoom-in, or an URL that dereferences to an XSLT
stylesheet when the value of the property is the specification of a fallback transform.

The drawbacks of that approach are that:

• it requires extensive modifications in the specification of published RIF dialects
and in existing consumer implementations;

• It bloats noticeably the already verbose RIF/XML syntax.

Another possibility, suggested by Sandro Hawke [3], would be to define a file format
for fallbacks and to associate an URL to the RIF namespace where RIF consumer
implementations can retrieve the fallback information associated with each RIF con-
struct in any RIF dialect.

A major benefit of that approach is that it would provide a central repository where
all the XML construct in the RIF namespace would be identified. Information regard-
ing the first dialect to specify the construct could be included, making it a useful place
for designer of new RIF dialect, to make sure that they reuse existing constructs
where appropriate, and do not reuse the name of existing constructs with different
syntax or semantics. E.g., using the prefix xtan:9 for the namespace in which the
format of the repository is defined:

<xtan:element name="rif:And">
 <xtan:definedBy dialect="RIF-Core"/>
</xtan:element>

In addition, fallback information could be targeted, e.g. for the case of RIF dialect that
extends two incompatible RIF dialects, or for the case where a RIF dialect offers, for
a specific construct fallback transforms towards dialects in different branches, not
only to dialects that it extends:

8 An example of a complete XSLT stylesheet that specifies the RIF-PRD Do to RIF-Core And

transform is provided in [8].
9 XTAN is the name S. Hawke proposes for XML fallback transformation. Notice that the

proposal is not limited to use for RIF.

 A Modest Proposal to Enable RIF Dialects with Limited Forward Compatibility 27

<xtan:element name="rif:Do">
 <xtan:definedBy dialect="RIF-PRD"/>
 <xtan:fallback target="RIF-Core">
 http://www.w3.org/.../fallbacks/prd2core.xsl
 </xtan:fallback>
</xtan:element>

Another benefit of such a fallback file format is it can take into account additional
cases such as a dialect that extends an element defined by another dialect by adding
an optional attribute (to extend the semantics), e.g.

 <xtan:element name="rif:Foo">
 <xtan:definedBy dialect="D">
 ...
 <xtan:attribute name="bar">

 <xtan:added-by dialect="E"/> <!-- where E extends D,
 directly or indirectly -->

 <xtan:fallback target="...">...</fallback>
 </xtan:attribute>
 <xtan:element>

The impact of that approach on existing implementations is minimal: nothing changes
in the RIF/XML, so that producer implementations are not impacted at all. Un-
enabled consumer implementations would simply reject RIF documents that are not
valid in any of the RIF dialects that they can handle. On the other hand, when pre-
processing a RIF document and finding an element it does not know, an enabled con-
sumer implementation would retrieve, from the repository, the fallback targeted to
one of the dialects it can handle, if any (where not finding one means reject), apply
the relevant transform, and so on.

The one drawback that we see with the central repository approach is that it re-
quires… a central repository. Even assuming that W3C or a similar organisation
would own and maintain such a repository, the approach works only for standards
extensions: it does not work for proprietary, custom or ad hoc extensions.

This restriction can be relaxed using the import mechanism in RIF. We propose to
define a fallback profile for the Import construct, meaning that the URL in the
location is a file containing fallback information potentially useful to consumers
of the importing RIF document. All the fallback information could be conveyed this
way, or only the non-standard one, if a repository of standard constructs is, eventu-
ally, associated with the RIF namespace.

6 Conclusion

Based on earlier effort by the RIF working group, we have introduced the notion of
limited forward compatibility, and we have argued for its usefulness. We have also
described and argued for a low cost implementation, using XSLT to specify individ-
ual transforms, a new XML format to associate them with individual RIF constructs,
and the RIF import mechanism to convey the fallback information from RIF producer
to RIF consumer. We have argued for consumer-side fallbacks, as opposed to produc-
ers-side approaches such as mandatory least dialect serialization.

28 C. de Sainte Marie

We hope that we have argued convincingly. But limited forward compatibility,
however useful it might be, works only with extensions that are conservative in some
well-identified contexts: more complete forms of forward comaptibility would be,
arguably, much more useful.

A final benefit of the approach proposed in this paper is that it extends easily to
more complete forms of forward and sideward compatibility. Some fallback trans-
forms can be readily implemented based on our proposal, e.g. crispification of fuzzy
or uncertain rules [9] by ignoring the constructs that bear the information about uncer-
tainty10. Of course, new constructs would have to be added in the fallback XML
format, for such semantic fallbacks, e.g. to provide indication of the severity of the
impact on the semantics, as proposed by Sandro Hawke [3].

Already useful by itself, limited forward compatibility, implemented following the
approach that we propose, would be an enabler for the future development and
deployment of more complete forms of forward compatibility.

References

1. Boley, H., et al. (eds.): RIF Core dialect, W3C last call draft (July 2009),
http://www.w3.org/TR/rif-core/

2. Boley, H., Kifer, M. (eds.): RIF basic logic dialect, W3C last call draft (July 2009),
http://www.w3.org/TR/rif-core/

3. Hawke, S.: Unpublished draft, http://www.w3.org/2005/rules/wg/wiki/
Arch/Extensibility2, http://www.balisage.net/Proceedings/html/
2008/Hawke01/Balisage2008-Hawke01.html

4. Paschke, A., et al. (eds.): RIF use cases and requirements, W3C public working draft. Lat-
est version, http://www.w3.org/TR/rif-ucr/

5. de Sainte Marie, C., Hallmark, G., Paschke, A. (eds.): RIF production rule dialect, W3C
last call draft (July 2009), http://www.w3.org/TR/rif-prd

6. Thompson, H.: Normal Form Conventions for XML Representations of Structured Data
(October 2001), http://www.ltg.ed.ac.uk/~ht/normalForms.html

7. W3C Rule interchange format working group charter,
http://www.w3.org/2005/rules/wg/charter.html

8. http://www.w3.org/2005/rules/wiki/FallbackDo2And.xsl
9. Zhao, J., Boley, H.: Uncertainty Treatment in the Rule Interchange Format: From Encod-

ing to Extension. In: 4th Intl. Workshop on Uncertainty Reasoning for the Semantic Web
(URSW) (October 2008), http://c4i.gmu.edu/ursw/2008/papers/
URSW2008_F9_ZhaoBoley.pdf

10 Considering such extensions makes it even clearer why any transform to enable forward or

sideward compatibility, limited or not, must be applied at the consumer, not the producer
side.

RIF RuleML Rosetta Ring: Round-Tripping the
Dlex Subset of Datalog RuleML and RIF-Core

Harold Boley

Institute for Information Technology
National Research Council of Canada
Fredericton, NB, E3B 9W4, Canada

Abstract. The RIF RuleML overlap area is of broad interest for Web
rule interchange. Its kernel, Dlex, is defined syntactically and seman-
tically as the common sublanguage of Datalog RuleML and RIF-Core
restricted to positional arguments and non-conjunctive rule conclusions,
and allowing equality plus externals in rule premises (only). Semantics-
preserving mappings are then defined between the Dlex subset of the RIF
Presentation Syntax and RIF/XML, RIF/XML and RuleML/XML, as
well as RuleML/XML and the Prolog-like RuleML/POSL. These map-
pings are the basis for RIF RuleML feature comparison and translation.
The slightly augmented mappings can be composed into a (‘Rosetta’)
ring for round-tripping between all pairs of Dlex representations.

1 Introduction

The RuleML family of languages [Bol07] has recently been enhanced by RIF
dialects starting with the Basic Logic Dialect [BK09a]. As RuleML moves to
version 1.0 and RIF to Recommendation, the overlap area between RIF and
RuleML is of broad interest for Web rule interchange. In this paper, we focus on
its kernel, Dlex, defined as the common sublanguage of Datalog RuleML [Bol06]
and RIF-Core [BHK+09] restricted to positional arguments and non-conjunctive
rule conclusions, and allowing equality plus externals – built-ins as defined in
RIF-DTB [PBK09] – in rule premises (only).

To advance RIF RuleML development and interoperation, we define
semantics-preserving mappings within this overlap, in particular within Dlex.
These include central mappings bridging RIF/XML and RuleML/XML, map-
pings between the RIF Presentation Syntax and RIF/XML, as well as mappings
between RuleML/XML and the Prolog-like RuleML/POSL. The slightly aug-
mented mappings can be composed into a (‘Rosetta’) ring for round-tripping
between all pairs of Dlex representations.

This study on the Dlex kernel and its mappings includes a RIF RuleML fea-
ture comparison, acts as a specification of concrete translators between RIF

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 29–42, 2009.
© Springer-Verlag Berlin Heidelberg 2009

30 H. Boley

and RuleML, and helps in language convergence; definitions of an ‘even’ predi-
cate exemplify.1 Moreover, it prepares identifying the largest common subset of
Datalog RuleML and RIF-Core, also to include “slotted” (RuleML) or “named”
(RIF) arguments as well as objects/frames.

First, we formalize the syntax and semantics of Dlex by specializing relevant
definitions of RIF-BLD [BK09a], since the specialization of RIF-BLD to RIF-
Core is currently only done ‘by exclusion’ [BHK+09]. This formalization can be
seen both as a new RIF dialect, RIF-Dlex, and a new RuleML sublanguage,
Dlex RuleML.We focus on Dlex since (1) it contains Datalog [CGT89], which is
close to relational databases with recursive views, (2) with equality plus exter-
nals added, it is relevant to various commercial rule systems, (3) it is a kernel
of RIF and RuleML, also helping to understand and converge their larger sub-
sets. Because RIF-Core (and even RIF-BLD) does not support negation, its Dlex
sublanguage does not either (cf. section 6). Following RuleML’s SWSL subfam-
ily2 and RIF’s overall design, Dlex uses Hilog/Relfun-like higher-order syntactic
sugar with individual (Ind) and predicate (Rel) symbols merged into a single
set of constant (Const) symbols. The Dlex formalization provides a foundation
for RIF RuleML mapping as needed for our round-tripping.

Second, instead of defining pairwise Dlex mappings or mappings to and fro a
distinguished Dlex representative, we define a neutral ‘mapping ring’, enabling
round-tripping between all of these languages using compositions that chain one
to four mappings. The mappings that have XML as their sources can be refined
to XSLT translators. The other ones are handled by text parsers and generators.

We focus on a mapping χdlex from RIF Presentation Syntax to RIF/XML
[BK09a], a mapping ξdlex from RIF/XML to Fully Striped RuleML/XML, and a
mapping πdlex from Stripe-Skipped RuleML/XML to RuleML/POSL. A further
mapping σdlex from Fully Striped to Stripe-Skipped RuleML/XML essentially
omits all (lower-case) role tags.3 For a closed ring , a final (text-to-text) map-
ping ωdlex from RuleML/POSL to RIF Presentation Syntax can omit/change
separators and insert RIF Documents, Groups, etc. For an open ring , the 4-
mapping composition πdlex◦σdlex◦ξdlex◦χdlex can instead be complemented by
the inverse composition χdlex

−1◦ξdlex−1◦σdlex
−1◦πdlex

−1.
The rest of the paper is organized as follows. Dlex will be defined next. The

syntax, in section 2; the semantics, in section 3. The mappings of the RIF Presen-
tation Syntax to RIF/XML (χdlex) to RuleML/XML (ξdlex) to RuleML/POSL
(πdlex) will then be specified for Dlex via two chains of tables, and their in-
verses discussed (for semantics preservation and open-ring round-tripping). The
chain in section 4 defines those mappings for the Condition Language (conjunc-
tive queries, as in rule premises); the other, in section 5, for the Rule Language
(entire rules and rulebases); we will omit annotations and their mappings. Con-
clusions will be given in section 6.

1 http://ruleml.org/rif/dlex/RIFRuleMLRosettaEven
2 http://www.w3.org/Submission/SWSF-SWSL
3 The inverse σdlex

−1 of σdlex is more difficult as it infers and inserts role tags; see
http://ruleml.org/0.89/#XSLT-BasedNormalizer.

RIF RuleML Rosetta Ring: Round-Tripping Dlex 31

2 Syntax of Dlex

We begin with defining the syntax of Dlex, starting from the alphabet, proceed-
ing to terms, and then to formulas.

2.1 Alphabet of Dlex

Definition 1 (Alphabet). The alphabet of the Dlex presentation syntax con-
sists of

– a countably infinite set of constant symbols Const
– a countably infinite set of variable symbols Var (disjoint from Const)
– connective symbols And and :-
– the quantifier Forall
– the symbols = and External
– the symbols Group and Document
– the auxiliary symbols (,), <, >, and ˆˆ.

The set comprising the connective symbols, Forall, = and External, etc., is
disjoint from Const and Var. Variables are written as Unicode strings preceded
with the symbol “?”.

Constants are written as "literal"ˆˆsymspace, where literal is a sequence
of Unicode characters and symspace is an identifier for a symbol space. �

2.2 Terms

Dlex defines several kinds of terms: constants and variables, positional terms,
plus equality and external terms.

In the next definition, the phrase base term refers to simple or positional
terms, or to terms of the form External(t), where t is a positional term.

Definition 2 (Term)

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple term.
2. Positional terms. If t ∈ Const and t1, ..., tn, n≥0, are base terms then t(t1

... tn) is a positional term.
Positional terms correspond to the usual terms and atomic formulas of clas-
sical first-order logic.

3. Equality terms. t = s is an equality term, if t and s are base terms.
4. Externally defined terms. If t is a positional term then External(t) is an

externally defined term.
External terms are used for representing built-in functions and predicates. �

2.3 Formulas

Dlex distinguishes certain subsets of the set Const of symbols, including subsets
of predicate symbols and function symbols.

32 H. Boley

Any term of the form p(...), where p is a predicate symbol, is also an atomic
formula . Equality terms are also atomic formulas. An externally defined term
of the form External(ϕ), where ϕ is an atomic formula, is also an atomic
formula, called an externally defined atomic formula. Note that simple terms
(constants and variables) are not formulas.

More general formulas are constructed out of atomic formulas with the help
of logical connectives.

Definition 3 (Formula)
A formula can have several different forms and is defined as follows:

1. Atomic: If ϕ is an atomic formula then it is also a formula.
2. Condition formula: A condition formula is either an atomic formula or

a formula that has the form of a conjunction: If ϕ1, ..., ϕn, n ≥ 0, are
condition formulas then so is And(ϕ1 ... ϕn), called a conjunctive formula.

3. Rule implication: ϕ :- ψ is a formula, called rule implication, if:
– ϕ is an atomic formula that is not an equality term,
– ψ is a condition formula, and
– the atomic formula in ϕ is not an externally defined term (i.e., a term of

the form External(...)) and does not have such a term as an
argument.

4. Universal rule: If ϕ is a rule implication and ?V1, ..., ?Vn, n>0, are distinct
variables then Forall ?V1 ... ?Vn(ϕ) is a universal rule formula. It is
required that all the free variables in ϕ occur among the variables ?V1 ...
?Vn in the quantification part. An occurrence of a variable ?v is free in ϕ if it
is not inside a substring of the form Q ?v (ψ) of ϕ, where Q is a quantifier
(Forall) and ψ is a formula. Universal rules will also be referred to as Dlex
rules.

5. Universal fact: If ϕ is an atomic formula that is not an equality term and
?V1, ..., ?Vn, n>0, are distinct variables then Forall ?V1 ... ?Vn(ϕ) is a
universal fact formula, provided that all the free variables in ϕ occur among
the variables ?V1 ... ?Vn.

Universal facts are treated as rules without premises.
6. Group: If ϕ1, ..., ϕn are Dlex rules, universal facts, variable-free rule im-

plications, variable-free atomic formulas, or group formulas then Group(ϕ1

... ϕn) is a group formula.
Group formulas are used to represent sets of rules and facts. Note that

some of the ϕi's can be group formulas themselves, which means that groups
can be nested.

7. Document: An expression of the form Document(directive1 ... directiven
Γ) is a Dlex document formula (or simply a document formula), if
– Γ is an optional group formula; it is called the group formula associated

with the document.
– directive1, ..., directiven is an optional sequence of directives. We will

assume this sequence [BK09a] to be empty for simplicity. �

RIF RuleML Rosetta Ring: Round-Tripping Dlex 33

The Dlex Condition Language comprises formulas according to definition 3,
items 1 and 2; its Rule Language is the superset defined via formulas 4-7.

3 Semantics of Dlex

Given the syntax, we now define the semantics of Dlex via semantic structures
and the interpretation of formulas, finishing with logical entailment.

3.1 Semantic Structures

We will use TV to denote {t,f}, the set of truth values used in the semantics.
The key concept in a model-theoretic semantics of a logic language is the notion
of semantic structures, which is defined below.

Definition 4 (Semantic structure). A semantic structure, I, is a tuple
of the form <TV, D, Dind, Dfunc, IC, IV, IF, I=, Iexternal, Itruth>. Here D
is a non-empty set of elements called the domain of I, and Dind, Dfunc are
nonempty subsets of D. Dind is used to interpret the elements of Const that
occur as individuals and Dfunc is used to interpret the constants that occur as
function symbols. As before, Const denotes the set of all constant symbols and
Var the set of all variable symbols.

The remaining components of I are total mappings defined as follows:

1. IC maps Const to D.
This mapping interprets constant symbols. In addition, it is required that:

– If a constant, c ∈ Const, is an individual then it must be that IC(c) ∈Dind.
– If c ∈ Const, is a function symbol then it must be that IC(c) ∈ Dfunc.

2. IV maps Var to Dind.
This mapping interprets variable symbols.

3. IF maps D to functions D*ind → D (here D*ind is a set of all finite se-
quences over the domain Dind).

This mapping interprets positional terms. In addition:
– If d ∈ Dfunc then IF(d) must be a function D*ind → Dind.
– This implies that when a function symbol is applied to arguments that

are individual objects then the result is also an individual object.
4. I= is a mapping of the form Dind × Dind → D.

It gives meaning to the equality operator.
5. Itruth is a mapping of the form D → TV.

It is used to define truth valuation for formulas.
6. Iexternal is a mapping that is used to give meaning to External terms. It

maps symbols in Const designated as external to fixed functions of appropri-
ate arity. Typically, external terms are invocations of built-in functions or
calls to external definitions, and their fixed interpretations are determined
by the specification of those built-ins and external definitions.

34 H. Boley

We also define the following generic mapping from terms to D, which we de-
note by I (this is the same symbol as the one used to denote semantic structures,
but note the different font).

– I(k) = IC(k), if k is a symbol in Const
– I(?v) = IV(?v), if ?v is a variable in Var
– I(f(t1 ... tn)) = IF(I(f))(I(t1),...,I(tn))
– I(x=y) = I=(I(x), I(y))
– I(External(p(s1 ... sn))) = Iexternal(p)(I(s1), ..., I(sn)). �

3.2 Interpretation of Formulas

It can now be established how semantic structures determine the truth value of
Dlex formulas, excluding group and document formulas [BK09a] for simplicity.
Here we define a mapping, TValI , from the set of all formulas to TV .

Definition 5 (Truth valuation). Truth valuation for well-formed formulas
in Dlex is determined using the following function, denoted TValI :

1. Positional atomic formulas: TValI(r(t1 ... tn)) = Itruth(I(r(t1 ... tn)))
2. Equality: TValI(x = y) = Itruth(I(x = y)).

– To ensure that equality has precisely the expected properties, it is required
that TValI(x = y) = t if and only if I(x) = I(y).

3. Externally defined atomic formula: TValI(External(t))=Itruth(Iexternal(t)).
4. Conjunction: TValI(And(c1 ... cn)) = t if and only if TValI(c1) = ... =

TValI(cn) = t. Otherwise, TValI(And(c1 ... cn)) = f.
The empty conjunction is treated as a tautology, so TValI(And()) = t.

5. Quantification:
– TValI(Forall ?v1 ... ?vn (ϕ)) = t if and only if for every I*, de-

scribed below, TValI∗(ϕ) = t.
Here I* is a semantic structure of the form <TV, D, Dind, Dfunc, IC, I*V,
IF, I=, Iexternal, Itruth>, which is exactly like I, except that the mapping I*V,
is used instead of IV. I*V is defined to coincide with IV on all variables
except, possibly, on ?v1,...,?vn.

6. Rule implication:
– TValI(conclusion :- condition) = t, if either TValI(conclusion)=t or

TValI(condition)=f.
– TValI(conclusion :- condition) = f otherwise. �

3.3 Logical Entailment

We now define what it means for a set of Dlex rules (in a group or a document
formula) to entail another Dlex formula. In Dlex we are mostly interested in
entailment of condition formulas, which can be viewed as queries to Dlex groups

RIF RuleML Rosetta Ring: Round-Tripping Dlex 35

or documents. In the definitions, the symbol |= will generically stand for models
or for entails.

Definition 6 (Models). A semantic structure I is a model of a formula, ϕ,
written as I |= ϕ, iff TValI(ϕ) = t. �

Definition 7 (Logical entailment). Let ϕ and ψ be formulas. We say that ϕ
entails ψ, written as ϕ |= ψ, if and only if for every semantic structure I for
which both TValI(ϕ) and TValI(ψ) are defined, I |= ϕ implies I |= ψ. �

4 Mapping of the Dlex Condition Language

We proceed to formalizing the chain of semantics-preserving Dlex mappings
χdlex, ξdlex, and πdlex for the Condition Languages of Datalog RuleML and
RIF-Core.

A Dlex mapping µ is semantics-preserving if for any pair ϕ, ψ of Dlex
formulas for which ϕ |=K ψ is defined, ϕ |=K ψ if and only if µ(ϕ) |=L µ(ψ). Here
|=K and |=L denote logical entailment in, respectively, the source language K and
target language L of µ.

In each table below defining a mapping µ, each row specifies a translation
µ(column1) = column2. The bold-italic symbols represent metavariables. (A
sequence of terms containing metavariables with subscripts is indicated by
an ellipsis.) column2 often contains applications of the mapping µ to these
metavariables. When an expression µ(metavar) occurs in column2, it should
be understood as a recursive application of µ to metavar . The result of such
an application is substituted for the expression µ(metavar). The µ inverse,
µ−1, is obtained by reading the table right-to-left while replacing right-hand-
side recursive µ applications with corresponding left-hand-side recursive µ−1

applications.

4.1 Conditions from RIF Presentation Syntax to RIF/XML

The text-to-XML mapping χdlex from the RIF Presentation Syntax of Dlex to
RIF/XML specializes a mapping χcore for RIF-Core, which itself is a specializa-
tion of χbld from [BK09a]. We will thus start the mapping chain with the subset
of the RIF Presentation Syntax that was defined as the Dlex Presentation Syntax
in section 2 and used to specify the Dlex semantics in section 3.

Since the RIF Presentation Syntax is context sensitive, the mapping χdlex
must differentiate between terms that occur in the position of individuals and
terms that occur as atomic formulas. To this end, the terms that occur in the
context of atomic formulas are denoted by expressions of the form pred(...) and
those that occur as individuals are denoted by expressions of the form func(...).
In RIF-Core, however, func(...) is only needed for built-in calls.

36 H. Boley

RIF Presentation Syntax RIF/XML

And (
conjunct 1
. . .
conjunct n
)

<And>
<formula>χdlex(conjunct 1)</formula>
. . .

<formula>χdlex(conjunct n)</formula>
</And>

External (
atomexpr

)

<External>
<content>χdlex(atomexpr)</content>

</External>

pred (
argument 1
. . .
argument n

)

<Atom>
<op>χdlex(pred)</op>
<args ordered="yes">

χdlex(argument 1)
. . .
χdlex(argument n)

</args>
</Atom>

func (
argument 1
. . .
argument n

)

<Expr>
<op>χdlex(func)</op>
<args ordered="yes">

χdlex(argument 1)
. . .
χdlex(argument n)

</args>
</Expr>

left = right
<Equal>

<left>χdlex(left)</left>
<right>χdlex(right)</right>

</Equal>

"unicodestring"ˆˆsymspace <Const
type="symspace">unicodestring</Const>

?unicodestring <Var>unicodestring</Var>

The table shows that the functional-style terms of the RIF Presentation Syntax
are mapped to RIF/XML elements by inserting role tags such as formula in And
terms. The Atom and Expr elements serialize n-ary pred(...) and func(...) appli-
cations, respectively, using two role tags and moving the n-ary branching under-
neath the second role tag, args. Since the RIF/XML serializationprovides explicit
markup, the unique inverse χdlex

−1 is easily obtained. The round-tripping compo-
sition χdlex

−1◦χdlex is the identity, so χdlex is semantics-preserving.

4.2 Conditions from RIF/XML to RuleML/XML

The XML-to-XML mapping ξdlex from RIF/XML to RuleML/XML is central to
our chain of mappings, as it allows to compare, and bridge between, the kernels of
RIF and RuleML. To reduce the mapping ‘distance’, Fully Striped RuleML/XML
is used as the target (i.e., second column) of ξdlex. Stripe-skipping via a mapping
σdlex (cf. section 1) can then be employed to obtain the more compact Stripe-
Skipped RuleML/XML, chaining to the source (i.e., first column) of the mapping
πdlex in section 4.3.

RIF RuleML Rosetta Ring: Round-Tripping Dlex 37

RIF/XML RuleML/XML (Fully Striped)

<And>
<formula>conjunct1</formula>
. . .
<formula>conjunctn</formula>

</And>

<And>
<formula>ξdlex(conjunct 1)</formula>
. . .

<formula>ξdlex(conjunct n)</formula>
</And>

<External>
<content>atomexpr</content>

</External> ξdlex(atomexpr)

<Atom>
<op>ξdlex(pred)</op>
<args ordered="yes">

ξdlex(argument 1)
. . .
ξdlex(argument n)

</args>
</Atom>

<Atom>
<op>ξdlex(pred)</op>
<arg index="1">

ξdlex(argument 1)
</arg>

. . .
<arg index="n">

ξdlex(argument n)
</arg>

</Atom>

<Expr>
<op>ξdlex(func)</op>
<args ordered="yes">

ξdlex(argument 1)
. . .
ξdlex(argument n)

</args>
</Expr>

<Expr>
<op>ξdlex(func)</op>
<arg index="1">

ξdlex(argument 1)
</arg>

. . .
<arg index="n">

ξdlex(argument n)
</arg>

</Expr>

<Equal>
<left>left</left>
<right>right</right>

</Equal>

<Equal>
<left>ξdlex(left)</left>
<right>ξdlex(right)</right>

</Equal>

<Const
type="st">unicodestring</Const>

<Const
type="st">unicodestring</Const>

<Var>unicodestring</Var> <Var>unicodestring</Var>

As can be seen in the table, the commonalities between RIF and RuleML
prevail, but the following differences should be noted:

While RIF employs External wrappers around every built-in call, RuleML
makes the distinction between user-defined and built-in calls via an optional at-
tribute on the operators (not shown here). A RIF advantage here may be explicit-
ness. The RuleML advantage is, as in Lisp, that there is no need to (structurally)
change the syntax at all call occurrences when a user-defined operator becomes
‘compiled’ into a built-in. Note that the RIF built-ins themselves, currently in
version RIF-DTB 1.0 [PBK09], are adopted by RuleML: Unlike the earlier SWRL
built-ins, which write n-ary functions as (1+n)-ary relations [HPSB+04], func-
tional RIF built-ins remain functions. While RIF uses an args role tag around
the sequence of all arguments to predicates and functions, RuleML uses arg
role tags around each argument separately, which can be omitted thanks to

38 H. Boley

stripe-skipping. We propose that both the RIF and RuleML methods should be
permitted in RIF RuleML. While RIF Constants use symbol spaces as values of
their mandatory type attribute, RuleML Individuals and neutralized Constants
use optional types, which can be symbol spaces.

Taking care of these differences, the unique inverse ξdlex
−1 can be obtained,

making ξdlex semantics-preserving.

4.3 Conditions from RuleML/XML to RuleML/POSL

The XML-to-text mapping πdlex from Stripe-Skipped RuleML/XML to RuleML/
POSL generates Prolog-like conditions (where, however, variables are indicated
by a “?”-prefix rather than by capitalization).

RuleML/XML (Stripe-Skipped) RuleML/POSL

<And>
conjunct 1
. . .
conjunct n-1
conjunct n

</And>

πdlex(conjunct 1),
. . .

πdlex(conjunct n-1),
πdlex(conjunct n)

<Atom>
pred
argument 1
. . .

argument n-1
argument n

</Atom>

πdlex(pred) (
πdlex(argument 1),
. . .
πdlex(argument n-1),
πdlex(argument n)

)

<Expr>
func
argument 1
. . .

argument n-1
argument n

</Expr>

πdlex(func) (
πdlex(argument 1),
. . .
πdlex(argument n-1),
πdlex(argument n)

)

<Equal>
left
right

</Equal>

equal (
πdlex(left),
πdlex(right))

<Const
type="st">unicodestring</Const> unicodestring :st

<Var>unicodestring</Var> ?unicodestring

Note that the type attribute of RIF RuleML XML serializations becomes a
“:”-infix in POSL, which – closing the mapping ring with mapping ωdlex – in
RIF Presentation Syntax is written as a “ˆˆ”-infix. As a term-type separator, the
POSL use of “:” is modeled on “:” in sorted logics, while the Presentation Syntax
use of “ˆˆ” is modeled on N3/Turtle (where “:” is needed for namespaces).

The generator πdlex is semantics-preserving since it can be uniquely inverted
to the parser πdlex

−1, although parsing is more difficult, as always. Both πdlex

RIF RuleML Rosetta Ring: Round-Tripping Dlex 39

and the inverse text-to-XML mapping πdlex
−1 are supported by online transla-

tors under a single GUI (http://www.ruleml.org/posl/converter.jnlp).

5 Mapping of the Dlex Rule Language

We now extend the chain of Dlex Condition Language mappings χdlex, ξdlex,
and πdlex of section 4 to a chain of semantics-preserving Dlex Rule Language
mappings for Datalog RuleML and RIF-Core.

5.1 Rules from RIF Presentation Syntax to RIF/XML

The mapping χdlex of section 4.1 from the RIF Presentation Syntax to RIF/XML
is extended here for rules.

RIF Presentation Syntax RIF/XML

Document(
group

)

<Document>
<payload>χdlex(group)</payload>

</Document>

Group(
clause 1
. . .
clause n

)

<Group>
<sentence>χdlex(clause 1)</sentence>
. . .

<sentence>χdlex(clause n)</sentence>
</Group>

Forall
variable 1
. . .
variable n (

rule
)

<Forall>
<declare>χdlex(variable 1)</declare>
. . .

<declare>χdlex(variable n)</declare>
<formula>χdlex(rule)</formula>

</Forall>

conclusion :- condition
<Implies>

<if>χdlex(condition)</if>
<then>χdlex(conclusion)</then>

</Implies>

The table rows map through a RIF Document, via a Group and Foralls, down
to the level of “:-”-rules. The extended RIF/XML serialization again provides ex-
plicit markup, so that the unique inverse χdlex

−1 and the semantics-preservation
property of χdlex are easily obtained.

5.2 Rules from RIF/XML to RuleML/XML

The central mapping ξdlex of section 4.2 from RIF/XML to RuleML/XML is
similarly extended for rules.4

4 Regarding the last table row, the RuleML 0.91 upgrade to 0.95 adopts the RIF role
tags <if> ... <then>, also long contemplated in RuleML, instead of <body> ... <head>.

40 H. Boley

RIF/XML RuleML/XML (Fully Striped)

<Document>
<payload>group</payload>

</Document>

<RuleML>
<performative index="1">

<Assert>
<formula>

ξdlex(group)
</formula>

</Assert>
</performative>

</RuleML>

<Group>
<sentence>clause1</sentence>
. . .
<sentence>clausen</sentence>

</Group>

<Rulebase>
<formula>ξdlex(clause 1)</formula>
. . .

<formula>ξdlex(clause n)</formula>
</Rulebase>

<Forall>
<declare>variable1</declare>
. . .
<declare>variablen</declare>
<formula>rule</formula>

</Forall>

<Forall>
<declare>ξdlex(variable 1)</declare>
. . .

<declare>ξdlex(variable n)</declare>
<formula>ξdlex(rule)</formula>

</Forall>

<Implies>
<if>condition</if>
<then>conclusion</then>

</Implies>

<Implies>
<if>ξdlex(condition)</if>
<then>ξdlex(conclusion)</then>

</Implies>

Again, the commonalities between RIF and RuleML prevail, but there are
the following differences: The first row maps the RIF root element Document to
the RuleML root element RuleML, which permits (ordered) transactions of per-
formatives including Asserts. The second row maps a RIF Group to a RuleML
Rulebase. While a general RIF Document can also contain directives for a base,
prefixes, and imports, a general RuleML root can also contain Query and Retract
transactions. But for our special case the unique inverse ξdlex

−1 can be obtained,
keeping ξdlex semantics-preserving.

5.3 Rules from RuleML/XML to RuleML/POSL

The mapping πdlex of section 4.3 and the online translators from Stripe-Skipped
RuleML/XML to RuleML/POSL are likewise extended for rules.

RuleML/XML (Stripe-Skipped) RuleML/POSL

<RuleML>
<Assert>
group

</Assert>
</RuleML>

πdlex(group)

continued on next page

RIF RuleML Rosetta Ring: Round-Tripping Dlex 41

continued from previous page
<Rulebase>
clause 1
. . .
clause n

</Rulebase>

πdlex(clause 1)
. . .

πdlex(clause n)

<Forall>
<declare>variable1</declare>
. . .
<declare>variablen</declare>
<formula>rule</formula>

</Forall>

πdlex(rule)

<Implies>
condition
conclusion

</Implies>

πdlex(conclusion) :- πdlex(condition).

Note that the RuleML, Assert, and Rulebase levels are understood in POSL.
Similarly, RuleML/XML (optionally) and RuleML/POSL (always) make the
same universal closure assumption as Prolog, so the row for Forall is rarely
needed. Finally, RuleML/POSL “:-”-rules are terminated by Prolog-style pe-
riods, unlike those in RIF Presentation Syntax (cf. section 5.1). The genera-
tor πdlex has a parser inverse πdlex

−1 preserving the semantics (http://www.
ruleml.org/posl/converter.jnlp).

6 Conclusion

The Dlex kernel of the RIF RuleML overlap studied here revealed commonalities
and differences between the two languages, enabling round-tripping and conver-
gence. This positional Dlex can now be expanded for the remaining syntactic
features of Datalog RuleML / RIF-Core, including slotted/named arguments,
objects/frames, and IRIs as attributes/elements. Since our Dlex mappings al-
ready include (interpreted) function symbols for external calls, the study should
also be extended to the overlap of Hornlog RuleML and RIF-BLD using (unin-
terpreted) function symbols for Herbrand terms.

In the RuleML family, Datalog RuleML is complemented by Naf Datalog
RuleML, a sublanguage with the often needed Negation as failure, which is also
carried through to Naf Hornlog RuleML. Corresponding RIF Non-Monotonic
Dialects are called for as well, specializing default negation in the RIF Frame-
work for Logic Dialects [BK09b]. Since Naf constructs are wide-spread in prac-
tice, most rule engines have implemented them (including Scoped Naf in cwm
[BLCK+08]), so their interoperation is already a focus of RIF RuleML efforts
(cf. use case: http://ruleml.org/WellnessRules).

On the next level, the development of the RIF Production Rule Dialect to-
wards a RIF Reaction Rule Dialect aligned with Reaction RuleML will pro-
vide further opportunities for joint work between W3C, OMG, and RuleML, as
needed by the industry.

42 H. Boley

Acknowledgements

Many thanks go to Michael Kifer and all colleagues in the W3C RIF Working
Group and in the RuleML Technical Groups for continued collaboration on Web
rule interchange. NSERC is thanked for its support through a Discovery Grant.

References

[BHK+09] Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds,
D.: RIF Core Dialect. W3C Working Draft (July 2009),
http://www.w3.org/2005/rules/wiki/Core

[BK09a] Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft (July
2009), http://www.w3.org/2005/rules/wiki/BLD

[BK09b] Boley, H., Kifer, M.: RIF Framework for Logic Dialects. W3C Working
Draft (July 2009), http://www.w3.org/2005/rules/wiki/FLD

[BLCK+08] Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic:
A Logical Framework For the World Wide Web. Theory and Practice of
Logic Programming (TPLP) 8(3) (May 2008)

[Bol06] Boley, H.: The RuleML Family of Web Rule Languages. In: Alferes, J.J.,
Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187,
pp. 1–17. Springer, Heidelberg (2006)

[Bol07] Boley, H.: Are Your Rules Online? Four Web Rule Essentials. In: Paschke,
A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 7–24. Springer,
Heidelberg (2007)

[CGT89] Ceri, S., Gottlob, G., Tanca, L.: What You Always Wanted to Know
About Datalog (And Never Dared to Ask). IEEE Trans. on Knowledge
and Data Eng. 1(1) (March 1989)

[HPSB+04] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B.,
Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission (May 2004), http://www.w3.
org/Submission/SWRL/

[PBK09] Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-ins 1.0. W3C
Working Draft (July 2009), http://www.w3.org/2005/rules/wiki/DTB

WellnessRules: A Web 3.0 Case Study in
RuleML-Based Prolog-N3 Profile Interoperation

Harold Boley, Taylor Michael Osmun, and Benjamin Larry Craig

Institute for Information Technology
National Research Council of Canada
Fredericton, NB, E3B 9W4, Canada

Abstract. An interoperation study, WellnessRules, is described, where
rules about wellness opportunities are created by participants in rule
languages such as Prolog and N3, and translated within a wellness com-
munity using RuleML/XML. The wellness rules are centered around
participants, as profiles, encoding knowledge about their activities con-
ditional on the season, the time-of-day, the weather, etc. This distributed
knowledge base extends FOAF profiles with a vocabulary and rules about
wellness group networking. The communication between participants is
organized through Rule Responder, permitting wellness-profile transla-
tion and distributed querying across engines. WellnessRules interoper-
ates between rules and queries in the relational (Datalog) paradigm of
the pure-Prolog subset of POSL and in the frame (F-logic) paradigm
of N3. An evaluation of Rule Responder instantiated for WellnessRules
revealed acceptable Web response times.

1 Introduction

Web 2.0 combined with Semantic Web techniques is currently leading to Web 3.0
techniques. As part of NRC-IIT’s Health & Wellness and Learning & Training
efforts, we are exploring Wellness 3.0, employing Web 3.0 rules plus ontologies
to plan wellness-oriented activities and nutrition.

We focus here on WellnessRules1, a system supporting the management of well-
ness practices within a community based on rules plus ontologies. The idea is the
following. As in Friend of a Friend (FOAF)2, people can choose a (community-
unique) nickname and create semantic profiles about themselves, specifically their
wellness practices, for their own planning and to network with other people sup-
ported by a system that ‘understands’ those profiles. As in FindXpRT [LBBM06],
such FOAF-like fact-only profiles are extended with rules to capture conditional
person-centered knowledge such as each person’s wellness activity depending on
the season, the time-of-day, the weather, etc. People can use rules of
various refinement levels and rule languages ranging from pure Prolog to N3, which
will be interoperated through RuleML/XML [Bol07]. Like our (RuleML-20xy)

1 http://ruleml.org/WellnessRules/
2 http://www.foaf-project.org/

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 43–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://ruleml.org/WellnessRules/
http://www.foaf-project.org/

44 H. Boley, T.M. Osmun, and B.L. Craig

SymposiumPlanner [CB08] (and unlike FindXpRT), WellnessRules is based on
Rule Responder [PBKC07, CB08], which is itself based on the Mule Enterprise
Service Bus (ESB).

We will discuss an example where John (p0001) advertises Prolog-style rules
on his wellness community profile, including a refinement of the following: p0001
may do outdoor running if it is summer and not raining. Hence, Peter and Paul
can find p0001 via Prolog or N3 queries to Rule Responder expressing their
own preferences, so that an initial group might be formed. Interoperating with
translators, WellnessRules thus frees participants from using any single rule lan-
guage. In particular, it bridges between Prolog as the main Logic Programming
rule paradigm and N3 as the main Semantic Web rule paradigm.

The distributed nature of Rule Responder profiles, each queried by its own
(copy of an) engine, permits scalable knowledge representation and processing.
Since participants of a wellness community are supposed to meet in overlapping
groups for real-world events such as skating, this kind of community (unlike a
virtual-only community) has a maximal effective size (which we estimate to be
less than 1000 participants). Beyond that size, it can be split into two or more
subcommunities based on preferred wellness practices, personal compatibility,
geographic proximity, etc. Rule Responder support thus needs to extend only to
that maximal size, but can be cloned as subcommunities emerge.

The rest of the paper is organized as follows. Section 2 discusses the hybrid
global knowledge bases of WellnessRules. Section 3 explains its local knowledge
bases distributed via Rule Responder. Section 4 focusses on the interoperation
between Prolog and N3. Section 5 explains and evaluates Rule Responder query-
ing of WellnessRules knowledge. Section 6 concludes the paper.

2 Hybrid Global Knowledge Bases in WellnessRules

WellnessRules employs a hybrid combination [Bol07] of ontologies and rules.
While the entire ontology and a portion of the rulebase is globally shared by
all participants (agents), the other portion of the rulebase is locally distributed
over the participants (agents).

As its (light-weight) ontology component, WellnessRules employs subClassOf
taxonomies. We reuse parts of the Nuadu ontology collection [SLKL07], mainly
the Activity and Nutrition ontologies. WellnessRules currently employs an
Activity taxonomy using Nuadu classes Running, Walking, WaterSports sub-
suming SwimmingCalm, WinterSports subsuming IceSkating, and Sports sub-
suming a WellnessRules class Baseball, as well as WellnessRules classes Hiking,
and Yoga. The corresponding RuleML-/N3-readable RDFS subClassOf state-
ments are shared at http://ruleml.org/WellnessRules/WR-Taxonomy.rdf.

As its rule component, WellnessRules employs Naf Datalog POSL and N3
with scoped Naf. We restrict the use of Naf Datalog POSL to atoms with
positional arguments, leaving F-logic-like frames with property-value slots to
N3, thus demonstrating the range of our approach through complementary rule
styles. For that reason, the POSL syntax corresponds to pure-Prolog syntax

http://ruleml.org/WellnessRules/WR-Taxonomy.rdf

WellnessRules: Web 3.0 Profile Interoperation 45

except that POSL variables are prefixed by a question mark while Prolog vari-
ables are upper-cased.

This Datalog POSL sublanguage uses (positional) n-ary relations (or, pred-
icates) as its central modeling paradigm. N3 instead uses (unordered) sets of
binary relations (or, properties) centered around object identifiers (OIDs, in the
role of ‘subjects’ in N3).

For example, this is a global 4-ary meetup fact:

meetup(m0001,walk,out,conniesStation).

Similarly, this is its slotted counterpart:

:meetup_1

rdf:type :Meetup;

:mapID :m0001;

:activity :run;

:inOut :out;

:location :conniesStation.

Both express that one meetup for walk activities of the supported wellness com-
munity is conniesStation as found on map m0001.

An example of a global POSL rule defines a participation as follows:

participation(?ProfileID,?Activity,?Ambience,?MinRSVP,?MaxRSVP) :-

groupSize(?ProfileID,?Activity,?Ambience,?Min,?Max),

greaterThanOrEqual(?MinRSVP,?Min),

lessThanOrEqual(?MaxRSVP,?Max).

As in FindXpRT, the first argument of a WellnessRules conclusion predicate
always is the person the rule is about. Similar to Prolog, the rule succeeds for
its five positional arguments if the acceptable groupSize of the participant with
?ProfileID, for an ?Activity in an ?Ambience, is between ?Min and ?Max,
and the emerging group has size between ?MinRSVP ≥ ?Min and ?MaxRSVP ≤
?Max, where greaterThanOrEqual and lessThanOrEqual are SWRL built-ins
as implemented in OO jDREW 0.961.

The corresponding global N3 rule represents this in frame form as follows:

{

?rsvpQuery

rdf:type :RSVPQuery;

:profileID :p0001;

:minRSVP ?MinRSVP;

:maxRSVP ?MaxRSVP.

?groupSize

rdf:type :GroupSize;

:profileID ?ProfileID;

:activity ?Activity;

:inOut ?Ambience;

:min ?Min;

:max ?Max.

46 H. Boley, T.M. Osmun, and B.L. Craig

?MinRSVP math:notLessThan ?Min.

?MaxRSVP math:notGreaterThan ?Max.

}

=>

{

_:participation

rdf:type :Participation;

:profileID :p0001;

:activity ?Activity;

:inOut ?Ambience;

:min ?MinRSVP;

:max ?MaxRSVP.

}.

Here, the first premise passes the input arguments ?MinRSVP and ?MaxRSVP into
the rule (cf. its use in section 5). The remaining premises correspond to those
in the POSL version, where math:notLessThan and math:notGreaterThan are
N3 built-ins as implemented in Euler.

The global OA rulebase is being maintained in both languages at
http://ruleml.org/WellnessRules/WR-Global.posl and *.n3.

3 Locally Distributed Knowledge Bases in WellnessRules

Each PA has its own local rules, which were selected from profiles created by
participants of the NRC-IIT Fredericton wellness community.

This is an example of a local POSL rule from the PA rulebase of a participant
p0001, defining the main predicate myActivity for running:

myActivity(p0001,?:Running,out,?MinRSVP,?MaxRSVP,?StartTime,?EndTime,

?Place,?Duration,?Level) :-

calendar(p0001,?Calendar),

event(?Calendar,?:Running,possible,?StartTime,?EndTime),

participation(p0001,run,out,?MinRSVP,?MaxRSVP),

season(?StartTime,summer),

forecast(?StartTime,sky,?Weather),

notEqual(?Weather,raining),

map(p0001,?Map),

meetup(?Map,run,out,?Place),

level(p0001,run,out,?Place,?Duration,?Level),

fitness(p0001,?StartTime,?ExpectedFitness),

greaterThanOrEqual(?ExpectedFitness,?Level),

goodDuration(?Duration,?StartTime,?EndTime).

The rule conclusion starts with the person’s profile ID, p0001, followed by the
kind of activity, run, and its ambience, outdoors, followed by variables for the
group limits ?MinRSVP and ?MaxRSVP, the earliest ?StartTime and ?EndTime, its
actual ?Duration and its ?Level. The rule premises query p0001’s ?Calendar,
an event of a possible (or tentative) ?:Running (the anonymous variable “?”

http://ruleml.org/WellnessRules/WR-Global.posl
*.n3

WellnessRules: Web 3.0 Profile Interoperation 47

has type Running), the participation (see above), an appropriate season and
forecast, p0001’s ?Map, a meetup ?Place, the required level less than the
expected fitness, as well as a goodDuration.

The corresponding local N3 rule is given abridged below (complete, online at
http://ruleml.org/WellnessRules/PA/p0001.n3):

{

...

?forecast

rdf:type :Forecast;

:startTime ?StartTime;

:aspect :sky;

:value ?Weather.

?Weather log:notEqualTo :raining.

...

}

=>

{

_:myActivity

rdf:type :MyActivity;

:profileID :p0001;

:activity :Running;

:inOut :out;

:minRSVP ?MinRSVP;

:maxRSVP ?MaxRSVP;

:startTime ?StartTime;

:endTime ?EndTime;

:location ?Place;

:duration ?Duration;

:fitnessLevel ?FitnessLevel.

}.

The online version of the above POSL rule employs the premise
naf(forecast(?StartTime,sky,raining)) instead of separate forecast and
notEqual premises. For the N3 online version, the above log:notEqualTo built-
in call is more convenient. An irreducible Naf used in POSL’s online version adds
the following premises in the myActivity rule (after the current event premise):

yesterday(?StartTime,?StartTimeYtrday,?EndTime,?EndTimeYtrday),

naf(event(?Calendar,?:Running,past,?StartTimeYtrday,?EndTimeYtrday))

They make sure that p0001’s calendar does not contain a running event on the
day before. The counterpart in N3 could use log:notIncludes, which in Euler,
as in our online version, is replaced with e:findall, checking that the result is
the empty list, ‘()’.

The resulting PA rulebases, which require Datalog with Naf and N3 with
‘()’-e:findall, are being maintained in both of these languages at http://

http://ruleml.org/WellnessRules/PA/p0001.n3
http://ruleml.org/WellnessRules/PA

48 H. Boley, T.M. Osmun, and B.L. Craig

ruleml.org/WellnessRules/PA, e.g. those for p0001 at http://ruleml.org/
WellnessRules/PA/p0001.posl and *.n3.

4 Cross-Paradigm Rulebase Alignment and Translation

The WellnessRules case study includes a testbed for the interoperation (i.e.,
alignment and translation) of rulebases in the main two rule paradigms:
Prolog-style (positional) relations and N3-style (slotted) frames. In our inter-
operation methodology, we make iterative use of alignment and translation: An
initial alignment permits the translation of parts of a hybrid knowledge base.
This then leads to more precise alignments, which in turn leads to better trans-
lations, etc. Using this methodology for WellnessRules, we are maintaining a
relational as well as a frame version of the rules, both accessing the same, inde-
pendently maintained, RDFS ontology.

For rulebase translation, we first use a pair of online translators (http://
ruleml.org/posl/converter.jnlp) between the human-oriented syntax POSL
and its XML serialization in OO RuleML. Based on the RDF-RIF combinations
in [dB09], similar translators are being developed between N3, RIF, and RuleML.

The interoperation between WellnessRules PAs that use different rule
paradigms is then enabled by RuleML, which has sublanguages for both the
relational and the frame paradigms, so that the cross-paradigm translations can
use the common XML syntax of RuleML.

The alignment of sample relations and frames in sections 2 and 3 suggests
translations between both paradigms. We consider here translations that are
‘static’ or ‘at compile-time’ in that they take an entire rulebase as input and
return its entire transformed version. We can thus make a ‘closed-arguments’
assumption of fixed signatures for relations and frames. In particular, the arity
of relations cannot change at run-time and no slots can be dynamically added
or removed from a frame. The translations work in both directions:

Objectify (Prolog to N3): Mapping from an n-ary relation rel to a frame,
this constructs a new frame with a generated fresh OID rel j, where j > 0 is
the first integer making rel j a unique name, and with the argument positions
p 1, p 2, . . ., p n as slot (or property) names.

Positionalize (N3 to Prolog): Mapping from a frame to a relation, this con-
structs a new relationship with the first argument taking the frame OID and
the remaining arguments taking the slot values of the sorted slot names from all
frames of OID’s class (null values for properties not used in the current frame).

Formally, positionalizing is specified as follows, using POSL’s frame notation
with slot arrows (->) and an OID separated from its slots by a hat (ˆ):

1. Unite all slot names from all frames whose OID is an instance of a class cl
into a finite set SNcl of ncl elements.

2. Introduce (SNcl,<) as a total order ‘<’ over SNcl, where ‘<’ usually is the
lexicographic order. Assume without loss of generality that the elements of
SNcl are prop1 < ... < propncl

.

http://ruleml.org/WellnessRules/PA
http://ruleml.org/WellnessRules/PA/p0001.posl
http://ruleml.org/WellnessRules/PA/p0001.posl
*.n3
http://ruleml.org/posl/converter.jnlp
http://ruleml.org/posl/converter.jnlp

WellnessRules: Web 3.0 Profile Interoperation 49

3. For each frame frel = cl(oidˆpropk1->TERMk1 ;...;propkm->TERMkm) as-
sume without loss of generality that propk1 < ... < propkm . Replace frel by
a relation frel’ = cl(oid,TERMCOMP1,...,TERMCOMPncl

), where for 1 ≤
i ≤ ncl and 1 ≤ j ≤ m we have TERMCOMPi = TERMkj if i = kj and
TERMCOMPi = ⊥ otherwise (‘⊥’ is the null value formalized as the bottom
element of the taxonomy, e.g. owl:NOTHING, which is equal only to itself,
not to any other sort, constant, or variable).

Step 3 can be thought of as ‘replenishing’ the lexicographically sorted slots
of a frame frel with slots propx->⊥ for all slot names propx ‘missing’ for their
class cl, and then making cl the relation name, inserting the oid, and omitting
all slot names (keeping only their slot values).

An XSLT implementation of such a translator is available online (http://
ruleml.org/ooruleml-xslt/oo2prml.html).

For the translation of a rule, the above relation-frame translation is applied
to the relation (frame) in the conclusion and to all the relations (frames) in the
premises. For a rulebase the translation then applies to all of its rules.

With the above-discussed human-oriented syntax translators, rulebases con-
taining rules like the myActivity rule in section 3 can thus be translated via
Prolog, POSL, RuleML (relations, frames), and N3. These translators permit
rule and query interoperation, via RuleML/XML, for the Rule Responder in-
frastructure of WellnessRules communities.

5 Distributed Rule Responder Querying of WellnessRules

WellnessRules instantiates the Rule Responder multi-agent architecture as fol-
lows: Rule Responder’s virtual organization is instantiated to a wellness commu-
nity. An organizational agent (OA) becomes an assistant for an entire wellness
community. Each personal agent (PA) becomes an assistant for one participant.
Fig. 1 describes the OA/PA metamodel of WellnessRules for the activity and
nutrition profiles of participants. Newcomers and participants can assume the
role of an external agent (EA), (indirectly) querying participants’ profiles.

Rule Responder uses the following sequence of steps: An EA asks queries to an
OA. The OA maps and delegates each query to the PA(s) most knowledgeable
about it. Each PA poses the query to its local rulebase plus ontology, sending
the derived answer(s) back to the OA. The OA integrates relevant answers and
gives the overall answer(s) to the EA, by default not revealing the coordinates
of the answering PA(s).

In this way, the OA acts as a mediator that protects the privacy of profiles of
participants in a wellness community. Participants within the same community
can of course later decide to reveal their real name and open up their wellness
profiles for (direct) querying by selected other participants.

The above Rule Responder steps have been instantiated earlier, including to
the SymposiumPlanner system [CB08].

On the basis of Rule Responder the knowledge bases of sections 2 and 3 can be
queried, using the translators of section 4 for interoperation. The implemented

http://ruleml.org/ooruleml-xslt/oo2prml.html
http://ruleml.org/ooruleml-xslt/oo2prml.html

50 H. Boley, T.M. Osmun, and B.L. Craig

Fig. 1. WellnessRules OA/PA metamodel

Rule Responder for WellnessRules is available for online use at http://ruleml.
org/WellnessRules/RuleResponder/.

For example, this is a POSL query regarding p0001’s wellness profile, for
execution by a top-down engine such as OO jDREW TD:

myActivity(p0001,?:Running,out,1:Integer,20:Integer,"2009-06-10T10:15:00",

"2009-06-10T11:15:00",?Place,?Duration,?Level)

It uses the rule from sections 3 to check whether p0001 will possibly be
?:Running, outdoors, in a group of 1:Integer to 20:Integer, between
start time "2009-06-10T10:15:00" and end time "2009-06-10T11:15:00".
Using further rules and facts from p0001’s profile (http://ruleml.org/
WellnessRules/PA/p0001.posl), it produces multiple solutions, binding the
meetup ?Place, the ?Duration, and the required fitness ?Level.

The corresponding N3 query for execution by a bottom-up engine such as
EulerSharp EYE uses a temporary fact to pass the input arguments:

:rsvpQuery

rdf:type :RSVPQuery;

:profileID :p0001;

:minRSVP 1;

:maxRSVP 20.

The N3 query itself then is as follows:

@prefix : <wellness_profiles#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

_:myActivity

rdf:type :MyActivity;

:profileID :p0001;

:activity :Running;

:inOut :out;

:minRSVP ?MinRSVP;

http://ruleml.org/WellnessRules/RuleResponder/
http://ruleml.org/WellnessRules/RuleResponder/
http://ruleml.org/WellnessRules/PA/p0001.posl
http://ruleml.org/WellnessRules/PA/p0001.posl

WellnessRules: Web 3.0 Profile Interoperation 51

:maxRSVP ?MaxRSVP;

:startTime "2009-06-10T10:15:00";

:endTime "2009-06-10T11:15:00";

:location ?Place;

:duration ?Duration;

:fitnessLevel ?FitnessLevel.

After declaring two prefixes, it builds an existential ‘()’ node, :myActivity, us-
ing slots for the fixed parameters and the fact-provided ?MinRSVP and ?MaxRSVP
bindings to create slots with the ?Place, ?Duration, and ?Level bindings.

An evaluation of the response times of the Mule infrastructure and the Rule
Responder engines (OO jDREW, Euler, and Prova) instantiated for Wellness-
Rules has been conducted using the previously discussed scenario. We found that
this Rule Responder instantiation operates with acceptable Web response times.

Specifically, the execution times for the above myActivity query in Euler
(N3), OO jDREW (POSL), and Rule Responder on average were 157ms, 1483ms,
and 5053ms, respectively, measured as the Java system time, running in Java
JRE6, Windows XP Professional SP3, on an Intel Core 2 Duo 2.80GHz processor.

For this and similar WellnessRules queries, the major contribution to the over-
all execution time has come from the ESB (Mule), which is not the focus of this
work. Rule Responder operates using a star-like connection architecture, where
the OA dispatches network traffic to and fro the most appropriate PA. A sepa-
rate study in distributed querying has worked on minimizing this communication
overhead.3

The above query could be specialized to produce exactly one solution, e.g. by
changing the parameter outdoors to indoors. It would fail for ?MaxRSVP greater
than 20. Using such queries, WellnessRules participants can check out profiles
of other participants to see if they can join an activity group.

6 Conclusion

The WellnessRules case study demonstrates FOAF-extending Web 3.0 profile in-
teroperation between a pure Prolog subset (Datalog with Naf) and N3 through
RuleML/XML. With all of its source documents available, it has become a ma-
jor use case for exploring various aspects, including scalability, of (distributed)
knowledge on the Web (3.0), starting with derivation rules and light-weight on-
tologies. While WellnessRules so far has probed the OO jDREW, Euler, and
Prova engines, its open Rule Responder architecture will make it easy to bring
in new engines. A GUI can generate rule profiles, e.g. extending FOAF-a-Matic.4

WellnessRules currently emphasizes rulebase translation and querying. These
constitute basic services that we intent to extend by superimposed update ser-
vices, e.g. for changing calendar entries for activities from status possible to
planned; this will require production rules. The next extension will be relevant

3 http://ruleml.org/papers/EvalArchiRule.pdf
4 http://www.ldodds.com/foaf/foaf-a-matic

http://ruleml.org/papers/EvalArchiRule.pdf
http://www.ldodds.com/foaf/foaf-a-matic

52 H. Boley, T.M. Osmun, and B.L. Craig

for performing wellness events, which will call for event-condition-action rules.
Both of these extended rule types are covered by Reaction RuleML [PKB07].

This case study will also provide challenges for RIF [BK09]: WellnessRules’
current derivation rules, for RIF-BLD5 implementations; its planned production
rules, for RIF-PRD6 updates & implementations; and its envisioned reaction
rules, for a possible RIF Reaction Rule Dialect (RIF-RRD).

Acknowledgements

We thank the wellness community at NRC-IIT Fredericton for their advice &
enthusiasm. Thanks also go to Jos de Roo for his help with the Euler engine.
NSERC is thanked for its support through a Discovery Grant for Harold Boley.

References

[BK09] Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft (July
2009), http://www.w3.org/2005/rules/wiki/BLD

[Bol07] Boley, H.: Are Your Rules Online? Four Web Rule Essentials. In: Paschke,
A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 7–24. Springer,
Heidelberg (2007)

[CB08] Craig, B.L., Boley, H.: Personal Agents in the Rule Responder Architec-
ture. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008.
LNCS, vol. 5321, pp. 150–165. Springer, Heidelberg (2008)

[dB09] de Bruijn, J.: RIF RDF and OWL Compatibility. W3C Working Draft
(July 2009), http://www.w3.org/2005/rules/wiki/SWC

[LBBM06] Li, J., Boley, H., Bhavsar, V.C., Mei, J.: Expert Finding for eCollaboration
Using FOAF with RuleML Rules. In: Montreal Conference of eTechnologies
2006, pp. 53–65 (2006)

[PBKC07] Paschke, A., Boley, H., Kozlenkov, A., Craig, B.: Rule Responder: RuleML-
Based Agents for Distributed Collaboration on the Pragmatic Web. In: 2nd
ACM Pragmatic Web Conference 2007. ACM, New York (2007)

[PKB07] Paschke, A., Kozlenkov, A., Boley, H.: A Homogenous Reaction Rule Lan-
guage for Complex Event Processing. In: Proc. 2nd International Work-
shop on Event Drive Architecture and Event Processing Systems (EDA-PS
2007), Vienna, Austria (September 2007)

[SLKL07] Sachinopoulou, A., Leppänen, J., Kaijanranta, H., Lähteenmäki, J.:
Ontology-Based Approach for Managing Personal Health and Wellness In-
formation. In: Engineering in Medicine and Biology Society (EMBS 2007).
29th Annual Int’l Conference of the IEEE (August 2007)

5 http://www.w3.org/2005/rules/wiki/BLD
6 http://www.w3.org/2005/rules/wiki/PRD

http://www.w3.org/2005/rules/wiki/BLD
http://www.w3.org/2005/rules/wiki/SWC
http://www.w3.org/2005/rules/wiki/BLD
http://www.w3.org/2005/rules/wiki/PRD

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 53–66, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Rule-Based Event Processing and Reaction Rules

Adrian Paschke1 and Alexander Kozlenkov2

1 Freie Universitaet Berlin
Institut for Computer Science
AG Corporate Semantic Web

Koenigin-Luise-Str. 24/26, 14195 Berlin, Germany
Paschke@inf.fu-berlin.de

2 Betfair Ltd. London
alex.kozlenkov@betfair.com

Abstract. Reaction rules and event processing technologies play a key role in
making business and IT / Internet infrastructures more agile and active. While
event processing is concerned with detecting events from large event clouds or
streams in almost real-time, reaction rules are concerned with the invocation of
actions in response to events and actionable situations. They state the conditions
under which actions must be taken. In the last decades various reaction rule and
event processing approaches have been developed, which for the most part have
been advanced separately. In this paper we survey reaction rule approaches and
rule-based event processing systems and languages.

1 Introduction

Reaction rules and event processing technologies have been investigated comprehen-
sively over the last decades. Different rule-based approaches for reactive event proc-
essing have been developed, which have for the most part proceeded separately and
have led to different formalisms and languages:

• Production rule systems have been investigated comprehensively in the realms of
expert systems since the 1980s and successfully applied commercially. They
typically implement a forward-chaining operational semantics for Condition-
Action rules where changing conditions trigger update actions.

• Active databases in their attempt to combine techniques from expert systems and
databases to support automatic triggering of global rules in response to events
and to monitor state changes in database systems have intensively explored and
developed the Event-Condition-Action (ECA) paradigm and event algebras to
compute complex events and trigger reactions according to global ECA rules.

• In event/action logics, which have their origins in the area of knowledge representa-
tion (KR) and logic programming (LP), the focus is on the formalization of ac-
tion/event axioms and on the inferences that can be made from the happened or
planned events/actions. They define a declarative, often model-theoretic, semantics.

• Rule-based Event Processing Languages are aiming at a combination of Complex
Event Processing (CEP) for real-time event detection and reaction rules for

54 A. Paschke and A. Kozlenkov

declarative representation and intelligent reaction. They often use event notifica-
tion and messaging systems, such as Enterprise Service Bus (ESB), to facilitate
the communication of events in a distributed environment. Typically, the interest
here is in a context-dependent event sequence which follows e.g. a communica-
tion protocol or coordination workflow, rather than in single event occurrences
which trigger immediate reactions.

• Rule markup languages, such as the quasi-standard RuleML, are the vehicle for
using rules on the Web and in other distributed systems. They allow publishing,
deploying, executing and communicating rules in a network. They may also play
the role of a lingua franca for exchanging rules between different systems and
tools.

In this paper we give a survey of these major lines of reaction rule approaches and
event processing systems of the past decades.

2 Production Rule Systems and Update Rule Programs

Production rules have become very popular as a widely used technique to implement
large expert systems in the 1980s for diverse domains such as troubleshooting in tele-
communication networks or computer configuration systems. Classical production
rule systems and most database implementations of production rules [21-23] typically
have an operational or execution semantics defined for them. There are many for-
ward-chaining implementations and many well-known forward-reasoning engines for
production rules such as IBM ILOG’s commercial jRules system, Fair Isaac/Blaze
Advisor, CA Aion, Oracle Haley, ESI Logist or popular open source solutions such as
OPS5, CLIPS or Jess which are based on the RETE algorithm. In a nutshell, this algo-
rithm keeps the derivation structure in memory and propagates changes in the fact and
rule base. This algorithm can be very effective, e.g. if you just want to find out what
new facts are true or when you have a small set of initial facts and when there tend to
be lots of different rules which allow you to draw the same conclusion. There are
several optimized successor algorithms based on Rete such as TREAT [87] and
LEAPS [88] being two examples and variations on Rete are implemented in many
current production rule engines.

Although production rules might simulate derivation rules via asserting a conclusion
as consequence of the proved condition, i.e. “if Condition then assert Conclusion”, the
classical and most commercial production rule languages are less expressive since they
lack a clear declarative semantics, suffer from termination and confluence problems of
their execution sequences and typically do not support expressive non-monotonic fea-
tures such as classical or negation-as-finite failure or preferences, which makes it
sometimes hard to express certain real life problems in a natural and simple way.

However, several extensions to this core production systems paradigm have been
made which introduce e.g. negations (classical and negation-as-finite failure) [24] and
provide declarative semantics for certain subclasses of production rules systems such
as stratified production rules. It has been shown that such stratified production sys-
tems have a declarative semantics defined via their corresponding logic program (LP)
into which they can be transformed [25] and that the well-founded, stable or preferred
semantics for production rule systems coincide in the class of stratified production

 Rule-Based Event Processing and Reaction Rules 55

systems [24]. Stratification can be implemented on top of classical production rules in
from of priority assignments between rules or by means of transformations into the
corresponding classical ones. The strict definition of stratification for production rule
systems has been further relaxed in [26] which defines an execution semantics for
update rule programs based upon a monotonic fixpoint operator and a declarative
semantics via transformation of the update program into a normal LP with stable
model semantics.

Closely related are also logical update languages such as transaction logics and in
particular serial Horn programs, where the serial Horn rule body is a sequential exe-
cution of actions in combination with standard Horn pre-/post conditions. [27] These
serial rules can be processed top-down or bottom-up and hence are closely related to
the production rules style of “condition update action”. Several approaches in the
active database domain also draw on transformations of active rules into LP deriva-
tion rules, in order to exploit the formal declarative semantics of LPs to overcome
confluence and termination problems of active rule execution sequences. [28-30]. The
combination of deductive and active rules has been also investigated in different ap-
proaches mainly based on the simulation of active rules by means of deductive rules.
[17, 18] Moreover, there are approaches which directly build reactive rules on top of
LP derivation rules such as the Event-Condition-Action Logic Programming language
(ECA-LP) which enables a homogeneous representation of ECA rules and derivation
rules [31, 58,79-84].

Although production rules react to condition state changes and have no explicit
formalization of events, as e.g. in ECA rules, recent extensions of production rule
systems with object model and external fact updates, such as TIBCO’s Business
Events [74] and Drools [75], are extended to Complex Event Processing (CEP). Ex-
plicit event types and classes are defined in the production rule declarations. New
event data instances are dynamically added to the fact base / working memory. The
instances of event declarations are filtered and joined in the production rule condi-
tions via typed pattern matching and if they pass the condition list the action part of
the rule is triggered. In short, the condition part of production rules is used to define
event filters and event processing is done via pattern matching.

3 Active Databases and ECA Rule Systems

Active databases [76] are an important research topic due to the fact that they find
many applications in real world systems and many commercial databases systems
have been extended to allow the user to express active rules whose execution can
update the database and trigger the further execution of active rules leading to a cas-
cading sequence of updates (often modeled in terms of execution programs). Several
active database systems have been developed, e.g. ACCOOD [1], Chimera [2], ADL
[3], COMPOSE [4], NAOS [5], HiPac [6]. These systems mainly treat event detection
and processing purely procedural and often focus on specific aspects. In this spirit of
procedural ECA formalisms are also systems such as AMIT [7], RuleCore [8] or JEDI
[9]. Several papers discuss formal aspects of active databases on a more general level
– see e.g. [10] for an overview. Several event algebras have been developed, e.g.
Snoop [11], SAMOS [12], ODE [4], where one can create complex nested expres-
sions, using operators like And, Or, Sequence, and others.

56 A. Paschke and A. Kozlenkov

The object database ODE [4] implements event-detection mechanism using finite
state automata.

Another early active database system is HiPAC [6]. It is an object-oriented database
with transaction support. HiPAC can detect events only within a single transaction.
Global event detectors are proposed which detect complex events across transaction
boundaries and over longer intervals, but no further details are given.

SAMOS [12] combines active and object-oriented features in a single framework
using colored Petri nets. Associated with primitive event types are a number of pa-
rameter-value pairs by which events of that kind are detected. SAMOS does not allow
simultaneous atomic events.

Snoop [11] is an event specification language which defines different restriction
policies that can be applied to the operators of the algebra. Complex events are strictly
ordered and cannot occur simultaneously. The detection mechanism is based on trees
corresponding to the event expressions, where primitive event occurrences are in-
serted at the leaves and propagated upwards in the trees as they cause more complex
events to occur. Snoop has a detection-time-based semantics which only considers the
time of event detection. This operational time point semantics poses problems with
nested sequences as pointed out in [31, 58, 79, 80] and in [77]. Interval-based seman-
tics for Snoop has been defined in SnoopIB [78].

Sentinel [85] is an active object-oriented database implementing complex event de-
tection for the Snoop operators. Event detection is done in a directed acyclic graph
which is constructed from event expressions. Complex events are represented as
graph nodes which like to the sub-nodes of their sub-expressions.

An Even Calculus based Interval-based semantics implementing Snoop like event
algebra operators was proposed in [31, 58, 79-82].

There has been a lot of research and development concerning knowledge updates
in active rules (execution models) in the area of active databases and several tech-
niques based on syntactic (e.g. triggering graphs [13] or activation graphs [14]) and
semantics analysis (e.g. [15], [16]) of rules have been proposed to ensure termination
of active rules (no cycles between rules) and confluence of update programs (always
one unique minimal outcome).

The combination of deductive and active rules has been also investigated in differ-
ent approaches manly based on the simulation of active rules by means of deductive
rules [17-19]. In [86] deductive rules are utilised for creating implicit events. In [81-
83] a homogeneous reaction rule language for ECA rules was proposed. This ap-
proach presents a declarative logical semantics for ECA rules and combines complex
event and action calculus, formalisation of reaction rules in combination with other
rule types such as derivation rules, integrity constraints, and transactional knowledge
updates.

In contrast to event notification systems and distributed rule-based complex event
processing systems, the ECA rules in active databases are typically defined with a
global scope and react on internal events of the reactive system such as changes in the
active database. However the ECA rule style and event algebra operators have been
adopted in reaction rules and rule-based event processing languages (EPLs).

 Rule-Based Event Processing and Reaction Rules 57

4 Temporal Knowledge Representation Event / Action /
Transition Logic Systems

Another language dimension to events and actions which has for the most part pro-
ceeded separately has the origin in the area of knowledge representation (KR) and
logic programming (LP) with close relations to formalisms of process and transition
logics. Here the focus is on the development of axioms to formalize the notions of
actions or events and causality, where events are characterized in terms of necessary
and sufficient conditions for their occurrences and where events/actions have an effect
on the actual knowledge states, i.e. they transit states into other states and initiate /
terminate changeable properties called fluents. Instead of detecting the events as they
occur as in the active database domain, the KR approach to events/actions focuses on
the inferences that can be made from the fact that certain events are known to have
occurred or are planned to happen in future. This has led to different views and termi-
nologies on event/action definition and event processing in the temporal event/action
logics domain. Reasoning about events, actions and change is a fundamental area of
research in AI since the events/actions are pervasive aspects of the world in which
agents operate enabling retrospective reasoning but also prespective planning. A huge
number of formalisms for deductive but also abductive reasoning about events, ac-
tions and change have been developed. The common denominator to all this formal-
isms and systems is the notion of states a.k.a. fluents [34] which are changed or transit
due to occurred or planned events/actions. Among them are the event calculus [35]
and variants such as the interval-based Event Calculus [31, 58, 79-82], the situation
calculus [36, 37], features and fluents [34], various (temporal) action languages [38-
42], fluent calculi [43, 44] and versatile event logics [45]. Most of these formalisms
have been developed in relative isolation and the relationships between them have
only been partially studied, e.g. between situation calculus and event calculus or tem-
poral action logics (TAL) which has its origins in the features and fluents framework
and the event calculus.

Closely related and also based on the notion of (complex) events, actions and states
with abstract models for state transitions and parallel execution processes are various
process algebras like TCC [46], CSS [47] or CSP [48], (labelled) transition logics
(LTL) and (action) computation tree logics (ACTL) [49, 50]. In [89] Calculus of
Communicating Systems (CCS) was chosen to formally specify complex actions, and
reason about their behavioural aspects. As a part of the Process Algebra family, CCS
is suitable for the high-level description of interactions, communications, and syn-
chronizations between a collection of concurrent processes, and hence an appropriate
mechanism for reactive systems in general.

Related are also update languages [18, 31, 51-57] and transaction logics [27] which
address updates of logic programs where the updates can be considered as actions
which transit the initial program (knowledge state/base) to a new extended or reduced
state hence leading to a sequence of evolved knowledge states. Many of these update
languages also try to provide meaning to such dynamic logic programs (DLPs). Sev-
eral Datalog extensions such as the LDL language of Naqvi and Krishnamurthy [52]
which extends Datalog with update operators including an operational semantics for
bulk updates or the family of update language of Abiteboul and Vinau [53] which has
a Datalog-style have been proposed. A number of further works on adding a notion of

58 A. Paschke and A. Kozlenkov

state to Datalog programs where updates modelled as state transitions close to situa-
tion calculus has been taken place [18, 51].

The situation calculus [60] is a methodology for specifying the effects of elemen-
tary actions in first-order logic. Reiter further extended this calculus with an induction
axiom specified in second-order logic for reasoning about action sequences. Apply-
ing, this Reiter has developed a logical theory of database evolution [61], where a
database state is identified with a sequence of actions. This might be comparable to
the Event Calculus, however, unlike the EC the situation calculus has no notion of
time which in many event-driven systems is crucial, e.g. to define timestamps, dead-
line principles, temporal constraints, or time-based context definitions.

Transaction Logics [27] is a general logic of state changes that accounts for data-
base updates and transactions supporting order of update operations, transaction abort
and rollback, savepoints and dynamic constraints. It provides a logical language for
programming transactions, for updating database views and for specifying active
rules, also including means for procedural knowledge and object-oriented method
execution with side effects. It is an extension of classical predicate calculus and
comes with its own proof theory and model theory. The proof procedure executes
logic programs and updates to databases and generates query answers, all as a result
of proving theorems. Although it has a rich expressiveness in particular for combining
elementary actions into complex transactional ones it primarily deals with database
updates and transactions but not with general event processing functionalities in style
of ECA rules such as situation detection, context testing in terms of state awareness or
external inputs/outputs in terms of event/action notifications or external calls with
side effects.

Multi-dimensional dynamic logic programming [54], LUPS [55], EPI [56], Kabul
[57] Evolp [55], ECA-LP [32] are all update languages which enable intensional up-
dates to rules and define a declarative and operational semantics of sequences of dy-
namic LPs. While LUPS and EPI support updates to derivation rules, Evolp and Ka-
bul are concerned with updates of reaction rules.

However, to the best of our knowledge only ECA-LP [31, 58, 79-82] supports a
tight homogenous combination of reaction rules and derivation rules enabling transac-
tional updates to both rule types with post-conditional (ECAP) verification, valida-
tion, integrity tests (V&V&I) on the evolved knowledge state after the update
action(s). Moreover, none of the cited update languages except of ECA-LP supports
complex (update) actions and events as well as external events/actions. Moreover
these update languages are only concerned on the declarative evolution of a knowl-
edge base with updates, whereas the Event Calculus as used in ECA-RuleML/ECA-
LP is developed to reason about the effects of actions and events on properties of the
knowledge systems, which hold over an interval.

5 Rule-Based Event Processing Languages and Event Notification
Systems

Event processing has many historical roots, as described in the previous sections. In
the last years the overarching discipline (Complex) “Event Processing” has been in-
troduce, which summarizes all technologies to achieve actionable, situational knowl-
edge from events in real-time or almost real- time. Here Complex Event Processing

 Rule-Based Event Processing and Reaction Rules 59

(CEP) and Event Stream Processing (ESP) are concerned with the handling of events.
ESP addresses the extraction of events from an event stream with emphasis on effi-
ciency for high throughput and low latency. Processing is done by analyzing the data
of the events and selecting appropriate occurrences. CEP, on the other hand, is more
focused on complex patterns of events in event clouds with partial temporal order.
Detecting complex event patterns (a.k.a. complex event types) and situations (com-
plex event + conditional context), i.e. detecting transitions in the universe (a so called
event cloud [90]) that requires reaction either “reactive” or “proactive” is one of the
basic ideas of CEP. A complex event pattern describes the detection condition of a
complex event which is derived from low level events that occur (real-time view) or
have been happened (retrospective view) in specific combinations. This process of
event selection, aggregation, hierarching and event abstracting for generating higher
level events is called “Complex Event Processing”.

Stemming from the operational level of network management and IT infrastructure
management (ITIM) event correlation systems / engines such as IBM Tivoli Event
Console [91], HP OpenView Event Correlation Services [92], VERITAS NerveCenter
[93], SMARTS InCharge [94], and the ongoing work on realizing the Common Event
Infrastructure [95], are designed to primarily handle network events and events on the
IT infrastructure level.

The event languages from active database systems (see previous section) support
event algebra operators to describe complex event types that can be applied over the
event clouds and event instance histories in real time. The active mechanisms in these
systems serve to detect and react to updates in the database that may jeopardize the
data integrity, or to execute some business-related application logic.

A closely related ESP area is sequence databases which extend the database query
languages such as SQL with means to search for sequential patterns. Examples are the
time series systems, such as the analytic functions in Oracle [96] or the time-series
data blades in Informix [97]. Sequences are supported as user-defined types (UDF)
and stored in tuple fields. Users are provided with a library of functions that can be
invoked from SQL queries. However, the functions provided are rather general and do
not support a more complex and dedicated class of queries. Another approach seeks to
extend SQL to support sequenced data. Such extensions were first proposed for the
PREDATOR system (SEQUIN [98]). SRQL [99] extended the relational algebra with
sequence operators for sorted relations, and added constructs to SQL for querying
sequences. Then, more powerful extensions for pattern recognition over sorted rela-
tions were proposed for SQL-TS [100,101]. It also proposed techniques for sequence
queries optimizations. A recent approach extending SQL is the Continuous Query
Language (CQL) [102] which is a declarative query language for data streams in Data
Stream Management Systems. CQL is developed in the STREAM project at Stanford
University. In summary, these works are aimed at finding more general solutions for
sequence data. They do not take into account the specifics of the event data.

Various Event Processing Languages (EPLs) for CEP and ESP have been devel-
oped in the last years. There are SQL-like EPLs such as CQL [102], Aleri [103],
Coral8 CCL [104], Streambase [105], Esper [106]; rule-based EPLs such as Reaction
RuleML [108], Prova [107], Tibco Rules [74], Drools [75], XChangeEQ [72], Rule-
Core [8], , or the AMIT SMRL [7]; agent oriented EPLs such as Agent Logic [110],
EventZero [109], Spade [111] special, scripting languages such as Netcool Impact

60 A. Paschke and A. Kozlenkov

[112], Apama [113]; and GUI-based approaches with 3GL (e.g. Java) code respec-
tively EPL code generation. There is ample evidence that there is no single EPL
which is best suited for all domains, but that different representation approaches are
needed such as rule-based EPLs for describing higher-level conditional business event
patterns and pattern-matching SQL-like EPLs for defining patterns of low-level ag-
gregation views according to event types defined as nested queries.

In distributed environments such as the Web with independent agent / service
nodes and open or closed domain boundaries event processing is often done using
high-level event notification and communication mechanisms based on middleware
such as an enterprise service bus (ESB). Systems either communicate events and
event queries (e.g. on event streams) in terms of messages using a particular transport
protocol/language such as JMS, HTTP, SOAP, JADE etc. according to a predefined
or negotiated communication/coordination protocol [32] and or they might subscribe
to publishing event notification servers which actively distribute events (push) to the
subscribed and listening rule-based agents. Typically the interest here is in the par-
ticular and complex event sequence or event processing workflow which possibly
follows a certain communication or workflow-like coordination protocol, rather than
in single event occurrences which trigger immediate reactions as in the active data-
base trigger or ECA rules. As a result reactive rules which build on (complex) events
are typically local to a particular context, e.g. within a particular service/agent/node
conversation. That is, the communicated events contribute to the detection of a com-
plex event situation which triggers a local reaction within a context (a conversation
waiting for at least three sequential answers or requests). Rule Responder [114] is
a rule-based ESB middleware for distributed intelligent rule-based CEP and rule
inference agents / services on the Web.

6 Reaction Rule Markup and Interchange Languages

Concerning mark-up languages for reactive rules several proposals for update lan-
guages exist, e.g. XPathLog [63], XUpdate [64], XML-RL [65] or an extension to
XQuery proposed by Tatarinov et.al. [66]. This has been further extended with gen-
eral event-driven and active functionalities for processing and reasoning about arbi-
trary events occurring in the Web and other distributed systems as well as triggering
actions. Most of the proposals for an ECA or reactive web language are intended to
operate on local XML or RDF databases and are basically simply trigger approaches,
e.g. Active XML [67], Active Rules for XML [68], Active XQuery [69] or the ECA
language for XML proposed by Bailey et.al [70] as well as RDFTL for RDF [71].
XChange [72] is a high level language for programming reactive behaviour and dis-
tributed applications on the Web. It allows propagation of changes on the Web
(change) and event-based communication (reactivity) between Web-sites (exchange).
It is a pattern-based language closely related to the web query language Xcerpt with
an operational semantics for ECA rules of the form: “Event query Web query
Action”. Events are represented as XML instances that can be communicated and
queried via XChange event messages. Composite events are supported, using event
queries based on the Xcerpt query language [73] extended by operators similar to an
event algebra applied in a tree-based approach for event detection.

 Rule-Based Event Processing and Reaction Rules 61

Reaction RuleML [108, 116] is the quasi-standard for reaction rules. It is a general,
practical, compact and user-friendly XML- serialized sublanguage of RuleML
(http://ruleml.org) for the family of reaction rules. It incorporates various kinds of
production, action, reaction, and KR temporal/event/action logic rules as well as
(complex) event/action messages into the native RuleML syntax. Rule Responder
[114, 117] is a middleware for distributed intelligent rule-based CEP and Pragmatic
Web inference agents / services on the Web. It uses Reaction RuleML as standard rule
interchange format.

IBM Situation Manager Rule Language (SMRL) [7] is a markup language for
describing situations, which are semantic concepts in the customers’ domain of dis-
course and syntactically equivalent to (complex) event patterns. The Situation Man-
ager is part of the Amit (Active Middleware Technology) framework. Events
in SMRL have a flat structure, and have a unique name and attributes that can be
standard or user defined. The conceptual model defines an event type generalization
hierarchy.

ruleCore Markup Language (rCML) is used for specification of events and ECA
rules in ruleCore [8]. Like in SMRL, in ruleCore terminology a composite event is
called a situation and the main focus ruleCore is situation detection. Two different
event types are supported in rCML: basic events and composite events.

The W3C Rule Interchange Format (RIF) [115] is an effort, influenced by
RuleML, to define a standard Rule Interchange Format for facilitating the exchange of
rule sets among different systems and to facilitate the development of intelligent rule-
based application for the Semantic Web. For these purposes, RIF Use Cases and Re-
quirements (RIF-UCR) have been developed. The RIF architecture is conceived as a
family of languages, called dialects. A RIF dialect is a rule-based language with an
XML syntax and a well-defined semantics. So far, the RIF working group has de-
fined the Basic Logic Dialect (RIF-BLD), which semantically corresponds to a Horn
rule language with equality. RIF-BLD has a number of syntactic extensions with
respect to 'regular' Horn rules, including F-logic-like frames, and a standard system of
built-ins drawn from Datatypes and Built-Ins (RIF-DTB). The connection to other
W3C Semantic Web languages is established via RDF and OWL Compatibility (RIF-
SWC). Moreover, RIF-BLD is a general Web language in that it supports the use of
IRIs (Internationalized Resource Identifiers) and XML Schema data types. The RIF
Working Group has also defined the Framework for Logic Dialects (RIF-FLD), of
which RIF-BLD was shown to be the first instantiation. RIF-FLD uses a uniform
notion of terms for both expressions and atoms in a Hilog-like manner. The RIF Core
dialect is in the intersection of RIF-BLD and the RIF Production Rule Dialect (RIF-
PRD) aligned with OMG's PRR is a dialect addressing RIF production, which will be
further supplemented by a RIF Reaction Rules Dialect (RIF-RRD).

7 Conclusion

In this paper we have surveyed several major approaches in event and action process-
ing, namely ECA style reactive rules stemming from active databases, production

62 A. Paschke and A. Kozlenkov

rules, event/action logics from the KR logic domain, modern rule-based event proc-
essing languages combining CEP and rules technology, and proprietary as well
as general standardized reaction rule markup languages for rule interchange and
serialization.

References

1. Erikson, J.: CEDE: Composite Event Detector in An Active Database, University of
Skövde (1993)

2. Meo, R., Psaila, G., Ceri, S.: Composite Events in Chimera. In: EDBT, Avingnon, France
(1996)

3. Behrends, H.: A description of Event Based Activities in Database Related Information
Systems, Report 3/1995, Univ. of Oldenburg (1995)

4. Gehani, N., Jagadish, H.V., Shmueli, O.: Event specification in an active object-oriented
database. In: Int. Conf. on Management of Data, San Diego (1992)

5. Collet, C., Coupaye, T.: Composite Events in NAOS. In: Dexa, Zürich, Switzerland
(1996)

6. Dayal, U., Buchmann, A., Chakravarty, S.: The HiPAC Project. In: Widom, J., Ceri, S.
(eds.) Active Database Systems. Morgan Kaufmann, San Francisco (1996)

7. Adi, A., Opher, E.: Amit - the situation manager. VLDB Journal 13(2) (2004)
8. RuleCore (2006), http://www.rulecore.com
9. Cugola, G., Nitto, E.D., Fuggeta, A.: Exploiting an event-based infrastructure to develop

complex distributed systems. In: Int. Conf. on Software Engineering (1998)
10. Paton, N., et al.: Formal Specification of Active Database Functionality: A Survey. In:

Sellis, T.K. (ed.) RIDS 1995. LNCS, vol. 985, Springer, Heidelberg (1995)
11. Chakravarthy, S., et al.: Composite Events for Active Databases: Semantics Contexts and

Detection. In: VLDB 1994 (1994)
12. Gatziu, S., Dittrich, K.: Event in an active object-oriented database system. In: Int. Conf.

on Rules in Database Systems, Edinburgh (1993)
13. Aiken, A., Widom, J., Hellerstein, J.M.: Behaviour of database production rules: termina-

tion, confluence and observable determinism. In: Int. Conf. on Management of Data.
ACM, New York (1994)

14. Baralis, E., Widom, J.: An algebraic approach to rule analysis by means of triggering and
activation graphs. In: VLDB 1994 (1994)

15. Baley, J., et al.: Abstract interpretation of active rules and its use in termination analysis.
In: Int. Conf. on Database Theory (1997)

16. Widom, J.: A denotational semantics for starbust production rule language. SIGMOD re-
cord 21(3), 4–9 (1992)

17. Lausen, G., Ludascher, B., May, W.: On Logical Foundations of Active Databases. Lo-
gics for Databases and Information Systems, 389–422 (1998)

18. Zaniolo, C.: A unified semantics for Active Databases. In: Int. Workshop on Rules in Da-
tabase Systems, Edinburgh, U.K (1993)

19. Dietrich, J., et al.: Rule-Based Agents for the Semantic Web. Journal on Electronic
Commerce Research Applications (2003)

20. Hayes-Roth, F.: Rule based systems. ACM Computing Surveys 28(9) (1985)
21. Declambre, L.M.L., Etheredge, J.N.: A self-controlling interpreter for the relational pro-

duction language. In: ACM SIGMOD Int. Conf. on the Management of Data (1988)

 Rule-Based Event Processing and Reaction Rules 63

22. Sellis, T., Lin, C.C., Raschid, L.: Coupling production systems and database systems. In:
ACM SIGMOND Int. Conf. on the Management of Data (1993)

23. Widom, J., Finkelstein, S.J.: Set-oriented production rules in relational database systems.
In: ACM SIGMOND Int. Conf. on the Management of Data (1990)

24. Dung, P.M., Mancaralle, P.: Production Systems with Negation as Failure. IEEE Trans-
actions on Knowledge and Data Engineering 14(2) (2002)

25. Raschid, L.: A semantics for a class of stratified production system programs. Univ. of
Maryland Institute for Advanced Computer Studies-UMIACS-TR-91-114.1: College
Park, MD, USA (1992)

26. Raschid, L., Lobo, J.: Semantics for Update Rule Programs and Implementation in a Re-
lational Database Management System. ACM Transactions on Database Systems 22(4),
526–571 (1996)

27. Bonner, A.J., Kifer, M.: Transaction logic programming (or a logic of declarative and
procedural knowledge). University of Toronto (1995)

28. Baral, C., Lobo, J.: Formal characterization of active databases. In: Int. Workshop on
Logic in Databases (1996)

29. Zaniolo, C.: Active Database Rules with Transaction-Conscious Stable-Model Seman-
tics. In: Int. Conf. on Deductive and Object-Oriented Databases (1995)

30. Flesca, S., Greco, S.: Declarative semantics for active rules. In: Quirchmayr, G., Bench-
Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, p. 871. Springer,
Heidelberg (1998)

31. Paschke, A.: ECA-LP: A Homogeneous Event-Condition-Action Logic Programming
Language, Internet-based Information Systems, Technical University Munich (November
2005), http://ibis.in.tum.de/research/projects/rbsla

32. Paschke, A., Kiss, C., Al-Hunaty, S.: NPL: Negotiation Pattern Language - A Design
Pattern Language for Decentralized Coordination and Negotiation Protocols. In: e-
Negotiations. ICFAI University Press, New Deli (2006),
http://ibis.in.tum.de/research/rbsla/docs/
ICFAI_Chapter_NPL_final.pdf

33. Ogle, D., et al.: The Common Base Event, IBM (2003)
34. Sandewall, E.: Combining Logic and Differential Equations for Describing Real World

Systems. In: KR 1989. Morgan Kaufmann, San Francisco (1989)
35. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Com-

puting 4, 67–95 (1986)
36. Hayes, P., McCarthy, J.: Some philosophical problems from the standpoint of artificial

intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4. Edinburgh Uni-
versity Press, Edinburgh (1969)

37. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamic Systems. MIT Press, Camebridge (2001)

38. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of
Logic Programming 17(2-4), 301–321 (1993)

39. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem prov-
ing to problem solving. Artificial Intelligence, 1971(2), 189–208

40. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Prelimi-
nary report. In: Conf. on Innovative Applications of Artificial Intelligence. AAAI Press,
Menlo Park (1998)

41. Giunchiglia, E., Lifschitz, V.: Action languages, temporal action logics and the situation
calculus. Linköping Electronic Articles in Computer and Information Science 4(040)
(1999)

64 A. Paschke and A. Kozlenkov

42. Doherty, P., et al.: TAL: Temporal Action Logics language specification and tutorial.
Linköping Electronic Articles in Computer and Information Science 3(015) (1998)

43. Hölldobler, S., Schneeberger, J.: A new deductive approach to planning. New Generation
Computing 8(3), 225–244 (1990)

44. Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a solu-
tion to the inferential frame problem. Artificial Intelligence 111, 277–299 (1999)

45. Bennett, B., Galton, A.P.: A unifying semantics for time and events. Artificial Intelli-
gence 153(1-2), 13–48 (2004)

46. Saraswat, V., Jagadeesan, R., Gupta, V.: Timed default concurrency constraint program-
ming. Journal of Symbolic Computation 22(5/6) (1996)

47. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
48. Hoare, C.A.R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs

(1985)
49. Meolic, R., Kapus, T., Brezonic, Z.: Verification of concurent systems using ACTL. In:

IASTED Int. Conf. on Applied Informatics (AI 2000), Anaheim, Calgary.
IASTED/ACTA Press (2000)

50. Meolic, R., Kapus, T., Brezonic, Z.: An Action Computation Tree Logic With Unless
Operator. In: Proc. of South-East European Workshop on Formal Methods (SEEFM
2003), Thessaloniki, Greece (2003)

51. Ludäscher, B., Hamann, U., Lausen, G.: A logical framework for active rules. In: Int.
Conf. on Management of Data, Pune, India (1995)

52. Naqvi, S., Krishnamurthy, R.: Database updates in logic programming. In: ACM Sympo-
sium on Principles of Database Systems. ACM, New York (1988)

53. Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. Journal of
Computer and System Science 43, 62–124 (1991)

54. Leite, J.A., Alferes, J.J., Moniz Pereira, L.: On the use of multi-dimensional dynamic
logic programming to represent societal agents’ viewpoints. In: Brazdil, P.B., Jorge,
A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, p. 276. Springer, Heidelberg (2001)

55. Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving logic programs. In: Flesca,
S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, p. 50.
Springer, Heidelberg (2002)

56. Eiter, T., et al.: A framework for declarative update specification in logic programs. In:
IJCAI (2001)

57. Leite, J.A.: Evolving Knowledge Bases. Frontiers in Artificial Intelligence and Applica-
tions 81 (2003)

58. Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal interval-
based KR Event/Action Logics and Transactional Update Logics, IBIS, Technische Uni-
versität München, Technical Report, 11/2005 (2005)

59. Ludascher, B.: Integration of Active and Deductive Database Rules, Phd thesis, in Insti-
tut für Informatik, Universität Freiburg, Germany (1998)

60. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence 4, 463–502 (1969)

61. Reiter, R.: On specifying database updates. Journal of Logic Programming 25(1), 53–91
(1995)

62. Paschke, A., Bichler, M.: SLA Representation, Management and Enforcement - Combin-
ing Event Calculus, Deontic Logic, Horn Logic and Event Condition Action Rules. In:
EEE 2005, Hong Kong, China (2005)

63. May, W.: XPath-Logic and XPathLog: A logic-programming style XML data manipula-
tion language. Theory and Practice of Logic Programming 4(3) (2004)

 Rule-Based Event Processing and Reaction Rules 65

64. Initiative, X.D.: XUpdate - XML Update Language (2000),
http://www.xmldb.org/xupdate/

65. Liu, M., Lu, L., Wang, G.: A Declarative XML-RL Update Language. In: Song, I.-Y.,
Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 506–
519. Springer, Heidelberg (2003)

66. Tatarinov, I., et al.: Updating XML. ACM SIGMOD, 133–154 (2001)
67. Abiteboul, S., et al.: Active XML: Peer-to-Peer Data and Web Services Integration. In:

VLDB (2002)
68. Bonifati, A., Ceri, S., Paraboschi, S.: Pushing Reactive Services to XML Repositories

Using Active Rules. In: WWW 2001 (2001)
69. Bonifati, A., et al.: Active XQuery. In: Int. Conf. on Data Engineering, ICDE (2002)
70. Bailey, J., Poulovassilis, A., Wood, P.T.: An Event-Condition-Action Language for

XML. In: WWW 2002 (2002)
71. Papamarkos, G., Poulovassilism, A., Wood, P.T.: RDFTL: An Event-Condition-Action

Rule Language for RDF. In: Hellenic Data Management Symposium (HDMS 2004)
72. Bry, F., Patranjan, P.L.: Reactivity on the Web: Paradigms and Applications of the Lan-

guage XChange. In: ACM Symp. Applied Computing (2005)
73. Schaert, S.: A Rule-Based Query and Transformation Language for the Web, Phd thesis,

in Institute for Informatics, University of Munich (2004)
74. TIBCO Business Events 3.0, http://www.tibco.de/software/

complex-event-processing/businessevents/ (accessed August 2009)
75. jBoss Drools, http://jboss.org/drools/ (accessed August 2009)
76. Paton, N.W., D__az, O.: Active database systems. In: ACM Comput. Surv. ACM Press,

New York (1989)
77. Galton, A., Augusto, J.C.: Two approaches to event definition. In: Hameurlain, A.,

Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556.
Springer, Heidelberg (2002)

78. Adaikkalavan, R., Chakravarthy, S.: Snoopib: Interval-based event specification and de-
tection for active databases. Data Knowl. Eng. 59(1), 139–165 (2006)

79. Paschke, A.: Eca-lp / eca-ruleml: A homogeneous event-condition-action logic pro-
gramming language. CoRR, abs/cs/0609143 (2006)

80. Paschke, A.: Eca-ruleml: An approach combining eca rules with temporal interval-based
kr event/action logics and transactional update logics. CoRR, abs/cs/0610167 (2006)

81. Paschke, A.: A homogenous reaction rule language for complex event processing. In:
Proc. 2nd International Workshop on Event Drive Architecture and Event Processing
Systems, EDA-PS (2007)

82. Paschke, A.: Eca-lp / eca-ruleml: A homogeneous event-condition-action logic pro-
gramming language. In: RuleML 2006, Athens, Georgia, USA (2006)

83. Paschke, A.: Rule-Based Service Level Agreements - Knowledge Representation for
Automated e-Contract, SLA and Policy Management. In: IDEA, Munich (2007)

84. Paschke, A., Bichler, M.: Knowledge representation concepts for automated sla man-
agement. Decis. Support Syst. 46(1), 187–205 (2008)

85. Chakravarthy, S.: Sentinel: An object-oriented dbms with event-based rules. In:
Peckham, J. (ed.) SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, pp. 572–575. ACM Press, New York (1997)

86. Bry, F., Eckert, M.: Towards formal foundations of event queries and rules. In: Second
Int. Workshop on Event-Driven Architecture, Processing and Systems EDA-PS (2007)

87. Miranker, D.P.: TREAT: a new and e_cient match algorithm for AI production systems.
Morgan Kaufmann Publishers Inc., San Francisco (1990)

66 A. Paschke and A. Kozlenkov

88. Batory, D.: The leaps algorithms. Technical report, Austin, TX, USA (1994)
89. Behrends, E., Fritzen, O., May, W., Schenk, F.: Combining eca rules with process alge-

bras for the semantic web. In: RuleML (2006)
90. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems. Addison-Wesley, Reading (2002)
91. IBM Tivoli Enterprise Console - documentation (2001)
92. Sheers, K.: HP OpenView event correlation services. Hewlett Packard Journal 47.5, 31–

42 (1996)
93. VERITAS NerveCentertm VERITAS Software (1999),

http://eval.veritas.com/Webfiles/docs/NCOverview.pdf
94. Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust event

correlation. IEEE Communications Magazine 34.5, 82–90 (1996)
95. Common Base Event Infrastructure, IBM (2003)
96. Oracle8 Time Series Data Cartridge, White Paper (February 1998)
97. IBM Informix Time Series Data Blade Module, User Guide, V.4.0 (2001)
98. Shadri, P., Livny, M., Ramakrishnan, R.: Sequence Query Processing. In: SIGMOD, pp.

430–441 (1994)
99. Ramakrishnan, R., et al.: SQRL: Sorted Relational Query Language. In: SSDBM 1998,

pp. 84–95 (1998)
100. Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Optimization of Sequence Queries in Data-

base Systems (2001)
101. Sadri, R.: Optimization of Sequence Queries in Database Systems., PhD Thesis, UCLA

(2001)
102. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,

Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and
Approximation in a Data Stream Management System, Stanford (2002)

103. Aleri, http://www.aleri.com/ (accessed August 2009)
104. Coral 8, http://www.coral8.com/ (accessed August 2009)
105. Streambase, http://www.streambase.com/ (accessed August 2009)
106. Esper, http://www.espertech.com/ (accessed August 2009 -08-25)
107. Prova, http://prova.ws (accessed August 2009)
108. Reaction RuleML, http://reaction.ruleml.org (accessed August 2009)
109. EventZero, http://www.eventzero.com/ (accessed August 2009)
110. AgentLogic, http://www.agentlogic.com/ (accessed August 2009)
111. Hirzel, M., Andrade, H., Gedik, B., Kumar, V., Losa, G., Soulé, R., Wu, K.-L.: SPADE

Language Specification, Published In: IBM Technical Report RC24760 in (2009)
112. IBM Netcool, http://www-01.ibm.com/software/tivoli/products/

netcool-impact/ (accessed August 2009)
113. Apama, http://web.progress.com/apama/index.html (accessed 2009)
114. RuleResponde, http://responder.ruleml.org (accessed 2009)
115. W3C RIF, http://www.w3.org/2005/rules/wg (accessed 2009)
116. Paschke, A., Boley, H.: Rules Capturing Event and Reactivity. Handbook of Research on

Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches
(March 2009)

117. Braubach, L., Pokhar, A., Paschke, A.: Rule-Based Concepts as Foundation for Higher-
Level Agent Architectures. Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches (March 2009)

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 67–81, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Correlating Business Events for Event-Triggered Rules

Josef Schiefer, Hannes Obweger, and Martin Suntinger

UC4 Senactive Software GmbH, Prinz-Eugen-Strasse 72,
1040 Vienna, Austria

{josef.schiefer,hannes.obweger,martin.suntinger}@uc4.com

Abstract. Event processing rules may be prescribed in many different ways, in-
cluding by finite state machines, graphical methods, ECA (event-condition-
action) rules or reactive rules that are triggered by event patterns. In this paper,
we present a model for defining event relationships for event processing rules.
We propose a so-called correlation set allowing users to graphically model the
event correlation aspects of a rule. We illustrate our approach with the event-
based system SARI (Sense and Respond Infrastructure) which uses correlation
sets as part of rule definitions for the discovery of event patterns. We have fully
implemented the proposed approach and compare it with alternative correlation
approaches.

Keywords: Rule Management, Event Correlation, Event Processing.

1 Introduction

Operational business systems, such as enterprise resource planning and process man-
agement systems are able to report state changes within a business environment as
business events. The state changes might occur with the execution of business opera-
tions or the completion of customer requests. These events can be used as indepen-
dent triggers for activities as well as for reports or mining purposes using systems
with an event-driven architecture (EDA). Event-based systems integrate a wide range
of components into a loosely-coupled distributed system with event producers which
can be application components, post-commit triggers in a database, sensors, or system
monitors, and event consumers such as application components, device controllers,
databases, or workflow queues. Thus, event-based systems are seeing increasingly
widespread use in applications ranging from time-critical systems, system manage-
ment and control, to e-commerce.

The process of defining a relationship between events and implementing actions to
deal with the related events is known as event correlation. Event correlation in the
business domain is a technique for collecting and isolating related data from various
(potentially lower level) events in order to condense many events each holding a frac-
tion of information into a meaningful business incident. The correlated information
can then be used for discovering business patterns, such as business opportunities or
exceptional situations. In many cases, this “aggregated” information can be published
again as an event to the messaging middleware. Hence, series of enrichment steps are
possible triggering activities on various levels of abstraction.

68 J. Schiefer, H. Obweger, and M. Suntinger

Many existing SQL-based approaches use joins for correlating events [1][3][5].
Thereby, events are processed as tuples which are joined when correlating them simi-
lar to the way it is done in relational databases. Although many people in the data
management community are familiar with this approach, it has several drawbacks for
event processing. Relational databases use foreign-key relationships and indices for
creating optimal query execution plans. As such relationships are not available be-
tween event objects, it is difficult to build effective query execution plans for event
streams. Within this paper, we show a correlation approach, which allows to model
relationships between events for correlating them already during the event processing.
Existing event-based systems do not allow the user to reuse correlations for defining
rules in event-driven applications. With our approach, we try to fill the gap that exist-
ing event-based systems do not capture correlation information as separate meta-data
and, thereby, loose many advantages for optimizing the rule processing. Event corre-
lation is challenging due to the following reasons:

− Correlated business events can be processed by multiple rules for evaluating con-
ditions, calculating metrics or discovering event patterns.

− Correlated events can occur at different points in time, requiring a temporary sto-
rage of correlated event data that is transparent for rules.

− Business events occur in various source systems and different formats. Nonethe-
less, they must be captured and correlated with minimal latency and minimal op-
erational system impact.

− The event correlation should be independent from the execution systems or proto-
cols.

− Late arrival of events due to network failures or downtimes of operational systems
within heterogeneous and distributed software environments are common situa-
tions that have to be considered for the event correlation and for the rule
processing.

− Only relevant event data for applications and users must be unified, transformed,
and cleansed before they are correlated. In many situations, only a small set of se-
lected event attributes are needed for the correlation.

The presented approach is generic and thus applicable in various application do-
mains. Throughout the paper we discuss different application examples based on real-
world business scenarios.

The remainder of this paper is organized as follows: Section 2 discusses related
work. In Section 3, we discuss event-triggered rules and show how they are used in
event-based system. Section 4 discusses correlation sets and correlation bands for
modeling event relationships. How correlation sets and correlation bands are managed
in runtime is discussed in Section 5. We furthermore present a real-world application
from the logistics domain in Section 6. Finally, in Section 7, we conclude this paper
and provide an outlook to future research.

2 Related Work and Contribution

The key characteristic of an event-based system is its capability of handling complex
event situations, detecting patterns, aggregating events and making use of time win-
dows for collecting event data over a period of time. Event correlation plays a crucial

 Correlating Business Events for Event-Triggered Rules 69

role for performing these tasks. In the following, we provide an overview of the corre-
lation capabilities of event processing engines.

Esper [5] is an Open Source event stream processing solution for analyzing event
streams. It has a lightweight processing engine and is currently available under GPL
licence. Esper supports conditional triggers on event patterns and SQL queries for
event streams. Event correlation can be performed by joining the attributes of events.

Borealis and Aurora [1] are further examples of stream processing engines for
SQL-based queries over streaming data with efficient scheduling and QoS delivery
mechanisms. Medusa [17] focuses on extending Aurora’s stream processing engine to
distribute the event processing. Borealis extends Aurora’s event stream processing
engines with dynamic query modification and revision capabilities and makes use of
Medusa’s distributed extensions. All of these stream engines use joins for correlating
events.

RuleCore [12][14] is an event-driven rule processing engine supporting Event
Condition Action (ECA) rules and providing a user interface for rule building and
composite event definitions. In RuleCore, event correlation settings are embedded in
the rule definition, which are used by the rule engine during the event processing.
Chen et al. [4] show an approach for rule-based event correlation. In their approach,
they correlate and adapt complex/structural XML events corresponding to an XML
schema. The authors describe an approach for translating hierarchical structured
events into an event model which uses name-value pairs for storing event attributes.

AMIT [2] is an event stream engine whose goal is to provide high-performance
situation detection mechanisms. AMIT offers a sophisticated user interface for model-
ling business situations based on the following four types of entities: events, situa-
tions, lifespans and keys. In AMIT, lifespans allow the definition of time intervals
wherein specific patterns of correlated events can be detected.

Detecting and handling exceptional events also plays a central role in network
management [6]. Alarms indicate exceptional states or behaviors, for example, com-
ponent failures, congestion, errors, or intrusion attempts. Often, a single problem will
be manifested through a large number of alarms. These alarms must be correlated to
pinpoint their causes so that problems can be addressed effectively. Many existing
approaches for correlating events have been developed from network management.
Event correlation tools help to condense many events, which individually hold little
information, to a few meaningful composite events.

Rule-based analysis is a traditional approach to event correlation with rules in the
“conclusion if condition” form which are used to match incoming events often via an
inference engine. Based on the results of each test and the combination of events in
the system, the rule-processing engine analyzes data until it reaches a final state [16].

Another group of approaches incorporate an explicit representation of the structure
and function of the system being diagnosed, providing information about dependen-
cies of components in the network [8] or about cause-effect relationships between
network events. The fault discovery process explores the network model to verify
correlations between events. NetFACT [7] uses an object-oriented model to describe
the connectivity, dependency and containment relationships among network elements.
Events are correlated based on these relationships. Nygate [11] models the cause-
effect relationships among events with correlation tree skeletons that are used for the
correlation.

70 J. Schiefer, H. Obweger, and M. Suntinger

In spite of intensive research in the past years for correlating events in the event
and network management domain, there is, to our knowledge, no existing approach
that allows to model relationships between business events for correlation purposes in
order to support functions for the event processing. In many event-based systems, the
relationship information of events is buried in query statements or programming code.

This paper is an attempt to show an approach which allows to externalize event re-
lationship information in order to utilize this information for later reuse. We believe
that information on how events are correlated is fundamental for processing and ana-
lyzing events and is, in current event-based systems, not appropriately managed. We
propose a correlation model for defining relationships between events which can be
used by event-based system for rule processing tasks which require correlated events.
With our approach, event-based systems are able to capture correlation concerns with
a separate model without increasing the complexity of the rule model. The captured
correlation information is then used the processing of various rules.

3 Event-Triggered Rules

Event-triggered rules prescribe actions to be taken whenever an instance of a given
event pattern is detected. While the typical users of event stream queries are develop-
ers, event-triggered rules try to describe event patterns on a more abstract level and
link event-patterns with business actions. Event-triggered rules require event correla-
tion for the detection of event patterns over a time period as well as for tracing the
actions triggered by rules [13].

In an event-based system, information about business activities is encapsulated in
events, which capture attributes about the context when the event occurred. Event
attributes are items such as the agents, resources, and data associated with an event.
For example, in an online betting scenario, a typical bet placement event could have
the following attributes as context information: account ID, amount, market, league,
sport event ID, odds, and bet type. For the rule processing, it is important to correlate
temporally and semantically related events. Event attributes, i.e., data from the con-
text of an event, can be used to define such relationships.

The rule engine uses the correlated events for discovering event patterns. When
event patterns are matched, the rule engine instantly responds to the source systems.
Fig. 1 illustrates the system architecture and essential data processing flows from the
source system to the event-based system and vice-versa. The event-based system
receives events on notable occurrences such as bet placements via unified interfaces
to the betting platform and legacy systems. It can evaluate the received events and, if
necessary, respond in real time by carrying out automated decisions [6]. The commu-
nication between the source systems and the event-based system is always asynchron-
ous, avoiding a tight coupling between the systems.

Transactional data, such as a bet placement, is propagated and continuously
integrated as an event stream. The event-based system correlates the events of the
event stream and continuously calculates metrics and scores. Finally, the rule engine
of event-based systems applies ECA rules on the correlated event sequences and
calculated metrics and scores.

 Correlating Business Events for Event-Triggered Rules 71

Fig. 1. Event-Driven Rule Engine for Monitoring a Betting Platform

In the following, we show a model for defining event relationships for event-
triggered rules with so-called correlation sets. The rules use correlation sets for defin-
ing correlation concerns in separate model. During runtime the rule engine uses the
rule and correlation model for the pattern detection.

4 Correlation Sets

An activity spanning a period of time is represented by the interval between two or
more events. For example, a transport might have a TransportStart and TransportEnd
event pair. Similarly, a shipment could be represented by the events ShipmentCreated,
ShipmentShipped and multiple transport event-pairs. For purposes of maintaining
information about business activities, events capture attributes about the context when
the event occurred. Event attributes are items such as the agents, resources, and data
associated with an event, the tangible result of an action (e.g., the result of a transport
decision), or any other information that gives character to the specific occurrence of
that type of event. Elements of an event context can be used to define a relationship
with other events. We use correlation sets for modeling these event relationships
between events of business activities.

In SARI, correlations between events are declaratively defined in a correlation mod-
el (correlation sets), which is used by the correlation engine during runtime. Correla-
tion sets are able to define relationships based on matching methods for correlating
attributes among event types. Correlation sets have a set of correlation bands which
define a sequence of events which use the same matching approach for the event corre-
lation. For instance, if we want to correlate order events with transportation events (of
the same order), we might have one band defining the correlation between order events
(e.g. OrderCreated, OrderShipped, OrderFulfilled) and a second band defining the
correlation between transport events (e.g. TransportStart, TransportEnd).

SARI supports various types of correlation bands, such as elementary correlation,
knowledge-based correlation, self-referencing correlation, language-specific correlation

72 J. Schiefer, H. Obweger, and M. Suntinger

Fig. 2. Illustrates the application of a method of correlating events in a stream of events where
E represents an event. Each event E has an identifier T, S, M etc. for the type of its event and at
least one attribute A1, B1, etc. of this event.

Fig. 3. Shows a correlation set with multiple correlation bands correlating events from different
sources or domains. The idea of correlation bands is to capture semantically closely related
events in a separate correlation arrangement. The correlation set is able to link multiple bands,
thereby correlating the events of all its bands.

Fig. 4. Correlation Meta Model

 Correlating Business Events for Event-Triggered Rules 73

and bridges for correlation sets. Fig. 4 shows the meta model for correlation sets. An
elementary correlation band (CB) uses correlation tuples for defining relationships be-
tween event types based on matching event attributes. Knowledge-based correlation
bands use a semantic model for defining the event relationships. Self-referencing corre-
lation bands associate events based on reference information held by events (in other
words, each event “knows” about its correlated events). Language-specific correlation
bands use programming or query languages for defining event relationships. Correlation
set bridges are a special kind of correlation bands which function as proxies for chaining
multiple correlation sets. In other words, a correlation set bridge establishes a link be-
tween stand-alone correlation sets for correlating them. In the following sections, we
define the various types of correlation bands in more detail.

4.1 Elementary Correlation Band

Elementary correlation bands define a direct relationship between events based upon
matching event attributes. An event stream consists of events which conform to event
types , , … , . Each event type in defines a set of event attributes .
A relationship between events is defined by associating an attribute of an
event type with attributes of one or more other events. Formally, an elementary
correlation set is defined as follows:

Elementary Correlation Band , , where:

: a set , , … , of event types of an event stream.
: a set , , … , of sets of attributes as defined by the event types in .

Each event type has its own set of attributes.

: a set , , … , of correlation tuples , , … , , which

define relationships between one or more event types from by associating
their attributes.

Fig. 5 shows a relationship between TransportStart and TransportEnd events. The

relationship is defined by associated attributes (TransportId) of the two event types. A
relationship may include one or more correlating attributes which are part of correla-
tion tuples. In other words, a correlation tuple defines attributes from different event
types which have to match in order to correlate. A correlation set may include one or
more event types which define relationships with correlation tuples.

Fig. 5. Elementary Correlation Band Example

74 J. Schiefer, H. Obweger, and M. Suntinger

4.2 Self-referencing Correlation Band

When using self-referencing correlation bands, relationships between events are de-
fined by the correlated events themselves. In self-referencing correlations, each event
is able to create a link to other events by holding a unique identifier of each related
event. For elementary correlation bands, we used attributes of the event context for
modeling event relationships. Thereby, a user has to know which event attributes are
appropriate for defining the relationships. Self-referencing correlation bands do not
make this assumption and allow events to directly reference other events. Formally, a
self-referencing correlation set is defined as follows:

Self-Referencing Correlation Band , , , where:

: a set of event types of an event stream.
: a set , , … , of sets of attributes as defined by the event types in .

Each event type has its own set of attributes.
: an attribute that uniquely identifies an event. This attribute must be shared

among all event types, i.e., 1, … , .
: a set of attributes , , … , , , that is used to define relation-

ships between events by having the value of another event’s -attribute.

In the following example, we extend our previous elementary correlation band of
transport events with the corresponding shipment events ShipmentCreated and Ship-
mentShipped. For the correlation of the two shipment events, each ShipmentCreated
event directly references a ShipmentShipped event using a unique event identifier.

Fig. 6. shows a self-referencing correlation band. It includes event types with additional header
attributes for a global unique event ID and a correlation ID which is used to directly reference
other events. The advantage of self-referencing correlation sets is that relationships between
events can be defined independently of the event context (which is given by the event attributes).
Nevertheless, a consequence from wiring events directly is that the event producer has to track
any generated events in order to be able to set the correct references for the event objects.

 Correlating Business Events for Event-Triggered Rules 75

4.3 Knowledge-Based Correlation Band

A knowledge-based correlation set is a special case of an elementary correlation set. It
defines an inferred relationship between events and associates a set of events by using
semantic knowledge for correlating them. In other words, instead of directly associat-
ing a set of events by defining their relationships based solely upon the event
attributes, knowledge-based correlation sets use algorithms which allow incorporating
external knowledge for correlating events. These algorithms can use external databas-
es, semantic networks or knowledge maps for inferring a relationship between events.
Formally, a knowledge-based correlation set is defined as follows:

Knowledge-Based Correlation Band , , where:

: a set of event types of an event stream.
: a set , , … , of sets of attributes as defined by the event types in .

Each event type has its own set of attributes.
: a knowledge base which uses sets of attributes from to define relation-

ships between events by inferring that two or more events are correlating.

The following example (see Fig. 7) shows two event types with an inferred rela-
tionship. We assume that we want to correlate the events for job openings and job
applications which have a matching job description and objectives. Since the job
description of a company and the job objectives of an application are usually captured
as full-text, an algorithm has to decide based upon a semantic model whether a job
description and the job objectives of an application are matching.

An approach for semantic event correlation was presented by Moser et al. [10].
They present three types of semantic correlation: 1) basic semantic correlation, 2)
inherited semantic correlation, and 3) relation-based semantic correlation. For the first
two kinds of semantic correlations, ontologies are used to find matching terms that
share the same (inherited) meaning. Relation-based semantic correlations use mod-
eled relations defined in ontologies for the correlation process.

Fig. 7. Knowledge-Based Correlation Band

4.4 Language-Specific Correlation Band

Language-Based correlation bands use a language for defining the correlation. Many
existing event-based systems use this type of correlation for querying event streams
[1][5]. SQL-based query languages have become popular in recent years, which use

76 J. Schiefer, H. Obweger, and M. Suntinger

join operations in order achieve event correlations. When using language-based corre-
lation bands, only the correlation capabilities of the language are being used. In other
words, language-based correlation bands use a language to specify relationships
between events. The relationship information is embedded within the language and
only the correlation or query engine is able to interpret the language to perform the
correlation.

When using SQL-based query languages, the correlation band would use join oper-
ations for defining relationships between events. The language must be able to accept
a set of input event streams and must generate an output stream with the correlated
event data. The following example shows the correlation of customer and supplier
events which occur within a certain time window [5].

SELECT A.transactionId, B.customerId,
 A.supplierId,
 B.timestamp - A.timestamp,
FROM TxnEventA.win:time(30 minutes) A,
 TxnEventB.win:time(30 minutes) B
WHERE A.transactionId = B.transactionId

An advantage of a language-based approach is that the language can be used for

manipulations, calculations, or filtering of event data which is required for the corre-
lation process. In addition, many SQL-based languages gain further expressiveness by
providing powerful time window or join operations.

4.5 Correlation Set Bridge

A correlation set bridge allows linking existing correlation sets, each having its own
set of correlation bands. Thereby, correlation set bridges allow combining existing
correlation sets in order to extend their correlation scope. Formally, a bridged correla-
tion set is defined as follows:

Correlation Set Bridge where:
: a set of correlation sets which should be linked.

The correlation set bridge will create a super-correlation set which includes all cor-

relation bands of its child correlation sets. We want to extend the previous example
with self-referencing correlation bands. We assume that the self-referencing correla-
tion band of shipment events and all transport related events have been modeled in a
separate correlation set. By using correlation set bridges, shipment events can be
correlated with the transport events by virtually creating a super correlation set in-
cluding all correlation bands. Conjunct event types (in our example the Shipment-
Shipped event type) are used to create the bridge and expand the correlation scope by
reusing existing correlation sets.

5 Correlating Events with Correlation Sets

In the following, we present an overview of the SARI correlation engine for correlat-
ing events with correlation sets in a distributed computing environment. Event

 Correlating Business Events for Event-Triggered Rules 77

correlation requires state information about the events being processed in order to
determine which events are correlating. For each correlation band of a correlation set,
SARI is creating a correlation session for collecting state information. If the correla-
tion engine is able to link correlation bands, the corresponding sessions will be
merged. In other words, correlation state information can evolve over time for differ-
ent correlation bands which are combined as soon as events are correlated.

Another advantage of using correlation sessions is that they enable event correla-
tion within a distributed and continuous event stream processing environment. Fig. 8
shows a distributed event-based system with a correlation service that manages corre-
lation sessions for multiple nodes. Each node of the system performs event processing
tasks which might require event correlations. When an event correlation is necessary,
the node will access the correlation service in order to activate a session for each set
of correlating events. The correlation service will synchronize the session access. The
correlation session can be used by the node to store arbitrary data such as the corre-
lated events or only some of their key information. For further details on managing
the lifecycle of correlation sessions for distributed event-based systems refer to
McGregor et. al [9].

Fig. 8. Managing Correlations with Sessions

6 SARI Application Scenario

In this section, we present an example from the transportation and logistics domain.
We show the modeling of SARI rules as well as how to validate and visualize rule
processing results.

Fig. 9 shows the example’s correlation set in the graphical rule editor of SARI.
With the SARI rule editor, users can easy link attributes from a set of event types.
Thereby, the rule editor automatically generates the resulting correlation band. Below

78 J. Schiefer, H. Obweger, and M. Suntinger

the graphical editor, the resulting correlation bands are listed. For this example, we
have separate correlation bands for both the transport and the shipment, which are
combined by the correlation set. The modeled correlation set can be now assigned to
an arbitrary number of SARI rules for detecting patterns from a correlated set of
events. SARI rules allow defining complex event patterns, which use event conditions
and timers for triggering response actions. Event conditions and timers can be arbitra-
rily combined with logical operators in order to model complex situations. Response
actions are triggered when preconditions evaluate to true.

Fig. 9. Correlation Set Editor

Fig. 10 shows a SARI rule which monitors the transports of carrier 1200 airfare
transports from Munich. If the shipment arrives more than 30 minutes late, two re-
sponse actions are triggered: 1) an alert event is generated, and 2) a carrier satisfaction
score is decreased. For correctly correlating the shipment and transport events, a user
can refer to the correlation set from the previous section in the rule properties. A de-
tailed discussion on the elements of SARI rules is given by Schiefer et. al in [13].

 Correlating Business Events for Event-Triggered Rules 79

Fig. 10. SARI Rule – Transport Monitoring

6.1 Visualization of Rule Processing Results

SARI provides interactive visualizations of event streams to support business analysts
in exploring business incidents. In the following, we show the event-tunnel visualiza-
tion framework [15] for visualizing correlated events and validating rules. The event-
tunnel is based on the metaphor of considering the event stream as a cylindrical
tunnel, which is presented to the user from multiple perspectives. The visualization is
able to display relationships between events which can be used for discovering root
causes and causal dependencies of event patterns. The event-tunnel supports different
types of placement policies for arranging events in the event tunnel. The centric
event-sequence placement-policy (CESP policy), for instance, is focused on se-
quences of correlated events, such as the events of a business process instance. The
policy plots event sequences over time (from the tunnel inside to the outer rings) and
avoids overlapping events by clock-wise positional shifts. This technique results in
characteristic patterns being abstract visual representations of business transactions.

Fig. 12 shows a screenshot of the 3D event-tunnel view for the events of a ship-
ment process. While bullets represent events, the colored bands between them
highlight correlation bands. The display of correlated events enables an abstract re-
presentation of underlying business transactions with characteristic patterns. If a rule
generated some output (for instance an alert), it is displayed as part of the correlated
event sequence. Business analysts can highlight events with characteristics of interest
(e.g., delayed shipments, shipments with a triggered alert) for deeper analysis. Based
on event correlations, it is possible to drill through the data, navigating to related

80 J. Schiefer, H. Obweger, and M. Suntinger

Fig. 11. Event-Tunnel Visualization of Correlated Events

(i.e., correlated) events which enables intuitive tracking of business incidents and root
cause analyses. For more information on the event-tunnel, the CESP algorithm and
evolving graphical patterns, readers may refer to Suntinger et. al [15].

7 Conclusion and Future Work

In large organizations, huge amounts of data are generated and consumed by business
processes or human beings. Business managers need to respond with up-to-date in-
formation to make timely and sound business decisions. This paper described an ap-
proach for modeling relationships between events with correlation sets with the aim
of correlating data from event streams for rule processing. We introduced various
types of correlation sets and illustrated the usage of correlation sets with the SARI
system and various types of applications. Our approach eases the separation of corre-
lation concerns from rules, thereby making them more manageable and useful in a
wide range of contexts. The work presented in this paper is part of a larger, long-term
research effort aiming at developing an event stream management platform called
SARI. A key focus of this future research work will be the automatic discovery of
relationships and similarities between events and event sequences.

 Correlating Business Events for Event-Triggered Rules 81

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design
of the Borealis Stream Processing Engine. In: Proc. of the Conf. on Innovative Data
Systems Research, Asilomar, CA, USA, pp. 277–289 (2005)

2. Adi, A., Etzion, O.: AMIT - the situation manager. The VLDB Journal 13(2), 177–203
(2004)

3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data
Stream Systems. In: Proc. of 21st PODS, Madison, Wisconsin (May 2002)

4. Chen, S.K., Jeng, J.J., Chang, H.: Complex Event Processing using Simple Rule-based
Event Correlation Engines for Business Performance Management. In: CEC/EEE (2006)

5. Esper, http://esper.sourceforge.net (2007-03-10)
6. Feldkuhn, L., Erickson, J.: Event Management as a Common Functional Area of Open

Systems Management. In: Proc. IFIP Symposium on Integrated Network Management.
North-Holland, Amsterdam (1989)

7. Houck, K., Calo, S., Finkel, A.: Towards a practical alarm correlation system. In:
IEEE/IFIP Symposium on Integrated Network Management (1995)

8. Katzela, I., Schwartz, M.: Schemes for fault identification in communication networks.
IEEE Transactions on Networking (1995)

9. McGregor, C., Schiefer, J.: Correlating Events for Monitoring Business Processes. In: 6th
International Conference on Enterprise Information Systems (ICEIS), Porto (2004)

10. Moser, T., Roth, H., Rozsnyai, S., Biffl, S.: Semantic Event Correlation Using Ontologies.
In: 3rd Central and East European Conference on Software Engineering Techniques
(CEE-SET 2008), Brno (2008)

11. Nygate, Y.A.: Event correlation using rule and object base techniques. In: IEEE/IFIP
Symposium on Integrated Network Management (1995)

12. RuleCore, http://www.rulecore.com/ (2007-03-10)
13. Schiefer, J., Szabolcs, R., Saurer, G., Rauscher, C.: Event-Driven Rules for Sensing and

Responding to Business Situations. In: International Conference on Distributed Event-Based
Systems, Toronto (2007)

14. Seirio, M., Berndtsson, M.: Design and Implementation of an ECA Rule Markup Language.
In: RuleML. Springer, Heidelberg (2005)

15. Suntinger, M., Obweger, H., Schiefer, J., Gröller, E.: The Event Tunnel: Exploring Event-
Driven Business Processes. IEEE Computer Graphics and Applications (October 2008)

16. Wu, P., Bhatnagar, R., Epshtein, L., Bhandaru, M., Shi, Z.: Alarm correlation engine
(ACE). In: Proceedings of the IEEE/IFIP 1998 Network Operations and Management
Symposium (NOMS), New Orleans (1998)

17. Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Balakrishnan, H.:
The Aurora and Medusa Projects. IEEE Data Engineering Bulletin (2003)

Semantic Rule-Based Complex Event Processing

Kia Teymourian and Adrian Paschke

Freie Universität Berlin
Institut for Computer Science
AG Corporate Semantic Web

Königin-Luise-Str. 24/26, 14195 Berlin, Germany
{kia,paschke}@inf.fu-berlin.de

http://www.inf.fu-berlin.de/groups/ag-csw

Abstract. One of the critical success factors of event-driven systems is the capa-
bility of detecting complex events from simple and ordinary event notifications.
Complex events which trigger or terminate actionable situations can be inferred
from large event clouds or event streams based on their event instance sequence,
their syntax and semantics. Using semantics of event algebra patterns defined on
top of event instance sequences for event detection is one of the promising ap-
proaches for detection of complex events. The developments and successes in
building standards and tools for semantic technologies such as declarative rules
and ontologies are opening novel research and application areas in event pro-
cessing. One of these promising application areas is semantic event processing.
In this work we describe our research on semantic rule-based complex events
processing.1

1 Introduction

Detection of events is one of the critical factors for the event-driven systems and e.g.
event-driven business process management (edBPM). The permanent stream of low
level events in business organizations, e.g. in Business Process Management (BPM)
and Business Activity Monitoring (BAM), IT Service Management (ITSM), and IT
Infrastructure Management (ITIM) needs an intelligent real-time event processor with
declarative representation capabilities for defining the detection conditions of complex
events and reaction rules. [15]

The promises of the combination of event processing and semantic technologies,
such as rules and ontologies, which leads to semantic event processing (SCEP), is that
the event processing rule engines now will understand what is happening in terms of
events and (process) states and that they will know what reactions and processes they
can invoke and what events it can signal. In this paper, we describe our ongoing research
on semantic rule-based event processing . The use case of such declarative rule-based
approaches can be for example in business process monitoring, fraud detection and
many other fields which have a need for agile reactive behavior.

1 This work has been partially supported by the ”Inno-Profile Corporate Semantic Web”
project funded by the German Federal Ministry of Education and Research (BMBF)
http://www.corporate-semantic-web.de

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 82–92, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.inf.fu-berlin.de/groups/ag-csw

Semantic Rule-Based Complex Event Processing 83

2 Semantic Events

Real-world occurrences can be defined as events that are happening over space and
time. An event instance is an concrete semantic object containing data describing the
event. An event pattern is a template that matches certain sets of events [7]. Event filters
are constructive views on event sources such as an event cloud or event stream, which
might be materialized in an event database. A filter F is a stateless truth-valued function
that is applied to an event instance sequence. An event instance n matches a filter F if
and only if it satisfies all attribute filters of F [2].

A common model for an event instance is e.g. a structure consisting of attribute/value
pairs like {(type,StockQuote), (name,”Lehman Brothers”), (price,45)}. Events can be
a compound of others events which build the complex events. Complex Event Pro-
cessing (CEP) is about detection of complex events from a cloud of events which are
partially temporal ordered by matching complex event patterns against event instance
sequences.

There are some works like [19] and [1] trying to define a common top ontology
for events using ontology languages such as RDFS [17] or OWL [16]. We investigated
these ontologies and observed that they are trying to find a common set of attributes for
events like: type, actors/agents, place references, time (start and end time, duration).

Instead, we propose that events should be describe by a modular and layered on-
tology model. A shared top ontology for events will capture the top concepts such as
event, time, space, situation etc. Specific domain, application and task ontologies, which
are modular sub-ontologies of the common top ontology, then represent more concrete
specialized concepts. The domain-specific events are modeled as domain classes of
the domain ontology and are in relationships with other classes of other domain on-
tologies. They can have object or data type properties. For example to describe the
above example about the stock price change, an event class for this event can be named
”stock price change”, the names in name/value pairs can be mapped to new attributes
for this event class. Each instance of this class is identified by an URI and is related
with a rdf:type predicate to this class.

The Listing 1.1 shows a set of RDF triples which define an instance of this event:

{ (e v e n t : e 1 0 0 2 , r d f : t y p e , e v e n t : s t o c k p r i c e c h a n g e) ,
(e v e n t : e 1 0 0 2 , stock:Name , s t o c k : L e h m a n B r o t h e r s) ,
(e v e n t : e 1 0 0 2 , s t o c k : h a s P r i c e , ” 45 ”) }

Listing 1.1. Example of an event notification in RDF

A map of the attribute/value pairs to a set of RDF triples (RDF graph) can be used
as event instance. The interesting part of this event data model is the linking of the
existing knowledge (non-event concepts) to the event instances, for example the name
of the stock which the event is about is not identified by a simply string name, but by
an URI which links to the semantic knowledge about the stock. This knowledge can be
used later for the processing of events, e.g. in the condition part of a Event-Condition-
Action (ECA) reaction rule.

84 K. Teymourian and A. Paschke

3 Semantic Event Detection

In our semantic event system an event instance is a set of RDF triples (RDF graph)
and an event pattern is a graph pattern. More complex events are formed by combining
smaller patterns in various ways. A complex conjunctive event filter is a complex graph
pattern of the RDF graph. SPARQL [18] as a graph pattern matching language (RDF
query language) can be exploited for event filtering by writing the event patterns in
terms of SPARQL queries. As a result we get a constructive view over the events in the
event system, which is a RDF database - a so called triple store.

We consider that in a semantic event processing system a part of the knowledge about
the events is a static knowledge about the pre-defined event classes, i.e. the event types
in an event ontology, the other part is as real-time data streams in form of RDF triple
stream which notifies about the occurences of events. The system has to combine these
knowledge references and generate new knowledge. Inferred triples are those triples
which are not in the RDF triple stream but could be inferred from the (event) knowledge
base of the system. Having such an semantic event pattern/filter makes it possible to
detect complex event which is derived from the already happened events in combination
with semantic knowledge of the processing system. For example, someone might be
interested to be informed on any events about the oil companies which are related to the
events of the Lehman Brothers stock prices.

Event notification triples are created by event detectors (or they are generated from
the raw event data). After the generation of notification triples, they are sent to the event
processing system which does the semantic filtering and rule-based inferencing. After
the processing steps, the system decides if the triples should be stored persistently or
simply dropped. This is decided based on a set of consumption policy rules which are
pre-defined for each class of events. These rules can also be used to store the triples on
(distributed) RDF storage clusters (RDF triple stores).

4 CEP Semantics - Interval-Based Event Calculus Event / Action
Algebra

After having described how to semantically query and filter events we will now describe
how to formalize complex event patterns based on a logical knowledge represenation
(KR) interval-based event / action algebra, namely the interval-based Event Calculus
[8,13,12,14,15].

In the interval-based Event Calculus (EC) all events are regarded to occur in a time
interval, i.e. an event interval [e1, e2] occurs during the time interval [t1, t2] where t1 is
the occurrence time of e1 and t2 is the occurrence time of e2. An atomic event occurs in
the interval [t, t], where t is the occurrence time of the atomic event. The interval-based
EC axioms describe when events / actions occur (transient consumption view), happen
(non-transient reasoning view) or are planned to happen (future abductive view) within
the EC time structure, and which properties (fluents or situations) are initiated and/or
terminated by these events under various circumstances.

For the syntax of the interval-based Event Calculus language we adopt a normal
logic programming (LP) syntax [6] with an ISO Prolog like alphabet with functions,

Semantic Rule-Based Complex Event Processing 85

variables, negation etc, called Prova (http://prova.ws). For the interval-based EC
we define a multi-sorted signature.

Definition (Interval-based Event Calculus Signature). The interval-based EC signa-
ture is a multi-sorted signature S defined as a tuple 〈ES , FS , TS , XS ; E, F , T , X,
≤, arity, sort〉 with sorts ES for event type symbols, sorts FS for fluent type symbols,
sorts TS for time interval type symbols, and sorts XS for domain type symbols; T is the
non-empty set of time interval function symbols, called time intervals, E is a non-empty
set of event/action function symbols, called events, F is a non-empty set of fluent function
symbols, called fluents, X is the signature of the used LP language including constant,
function, predicate symbols. The function arity(Ei), arity(Fi), arity(Xi) associates a
non-zero natural number with each event Ei, fluent Fi, and Xi. The arity(Ti) of time
intervals is arity 2. But, for convenience reason and compliance with the classical time
point based Event Calculus a time interval [Ti, Tj] might reduced to a time point with ar-
ity 1 if Ti = Tj . ≤ is a partial ordering defined over the time intervals. The function sort
associates with each k-ary event, fluent or time interval function symbol a k +1-tuple of
sorts. That is, if f is a event, fluent, or time interval function of arity k, then sort(f) is
a k + 1-tuple of sorts sort(f) = (T1, .., Tk, Tk+1) where (T1, .., Tk) defines the sorts of
the domain of f and Tk+1 defines the sort of the range of f , where each Ti is some ESj ,
FSj , or TSj (repetitions are allowed). Similarly, sort(X) gives the sort(s) of X .

This multi-sorted signature allows us considering objects of different nature, such as
events, fluents, time intervals or domain objects which are modeled as different sorts of
individuals in a structure. That is, we assume not just a single universe of discourse, but
several domains (the sorts) in a single multi-sorted structure.

Definition (Interval-based Event Calculus Semantic Structure). A semantic structure is

an interpretation I for the signatureS. It is a tuple of the from 〈D, E
I
, F

I
, T

I
, X

I
, TV I〉.

Here D is a non-empty set called the domain universe of I and the (not necessarily dis-
joint) union of the sorts 〈EI

S ∪ F I
S ∪ T I

S ∪ XI
S〉 is a subset of D. The members of D

are called ”individuals” of I . The other components of I are total mappings defined as
follows:

– E
I

= 〈EI
1 , .., EI

j 〉 is an interpretation of all event function symbols. For each func-
tion symbol Ei, of arity m and sort(Ei) = (ES1 , .., ESm , ESm+1), EI

i is a m-place
function EI

i : Dm → D with EI
i : EI

S1
× ... × EI

Sm
→ EI

Sm+1
.

– F
I

= 〈F I
1 , .., F I

j 〉 is an interpretation of all fluent function symbols. For each func-
tion symbol Fi, of arity m and sort(Fi) = (FS1 , .., FSm , FSm+1), F I

i is a m-place
function F I

i : Dm → D with F I
i : F I

S1
× ... × F I

Sm
→ F I

Sm+1
.

– T
I

= 〈T I
1 , .., T I

2 〉 is an interpretation of all time interval function symbols. For each
function symbol Ti, of arity 2 and sort(Ti) = (TS1 , TS2 , TS3), T I

i is a 2-place func-
tion T I

i : D2 → D with T I
i : T I

S1
× T I

S2
→ T I

S3
.

– X
I

is an interpretation of X in accordance with their sorts.
– Itruth is a mapping of the form D → 〈true, false〉 used to define the truth valuation

for well-formed formulas.

http://prova.ws

86 K. Teymourian and A. Paschke

We now define how a semantic structure, I , determines the truth value TV al(ϕ)
of a formula ϕ. Due to space limitation we are focusing on the main axiom of the
basic interval-based EC, where the basic holdsAt axiom of the classical EC [5] is re-
defined to holdsInterval for temporal reasoning about event intervals which hold be-
tween a time intervals, i.e., an interpretation of the holdsInterval axiom is a mapping
I : [E1, E, l2]× [T 1, T 2]
→ {true, false}.

Definition (Interval-based Event Calculus Truth Valuation). Truth valuation for the
holdsInterval axiom in the interval-based Event Calculus is determined using the function
TV al(holdsInterval(F, T)) : Itruth(F I × T I) where F is an event interval [E1, E2]
and T is a time interval [T 1, T 2].

That is the declarative semantics of the main calculus axiom holdsInterval is given by
interpretations which map event intervals [E1, E2] and time intervals [T 1, T 2] to truth
values.

We now define what it means for an event interval to be instantiated or terminated in
an interval-based Event Calculus program.

Definition (Instantiation and Termination). Let ΣEC be an interval-based EC lan-
guage, DEC be a domain description (an EC program) in ΣEC and I be an in-
terpretation of ΣEC . Then an event interval [E1, E2] is instantiated at time point
T 1 in I iff there is an event E1 such that there is a statement in DEC of the form
occurs(E1, T 1) and a statement in DEC of the form initiates(E1, [E1, E2], T). A
event interval [E1, E2] is terminated at time point T 2 in I iff there is an event E2 such
that there is a statement in DEC of the form occurs(E2, T 2) and a statement in DEC

of the form terminates(E2, [E1, E2], T).

Definition (Interval-based Event Calculus Satisfaction). An interpretation I satisfies
an event interval [E1, E2] at a time interval [T 1, T 2] if I([E1, E2],
[T 1, T 2]) = true and I(¬[E1, E2], [T 1, T 2]) = false.

An interpretation qualifies as a model for a given domain description, if:

Definition (Event Calculus Model). Let ΣEC be an interval-based EC language, DEC

be a domain description in ΣEC . An interpretation I of ΣEC is a model of DEC iff
∀[E1, E2] ∈ F and T 1 ≤ T 2 ≤ T 3 the following holds:

1. If [E1, E2] has not been instantiated or terminated at T 2 in I wrt DEC then
I([E1, E2], [T 1, T 1]) = I([E1, E2], [T 3, T 3])

2. If [E1, E2] is initiated at T 1 in I wrt DEC , and not terminated at T 2 the
I([E1, E2], [T 3, T 3]) = true

3. If [E1, E2] is terminated at T 1 in I wrt DEC and not initiated at T 2 then
I([E1, E2], [T 3, T 3]) = false

The three conditions define the persistence of complex event intervals as time pro-
gresses. That is, only events/actions have an effect on the changeable event interval

Semantic Rule-Based Complex Event Processing 87

states (condition 1) and the truth value of a complex event state persists until it has
been explicitly changed by another terminating event/action (condition 2 and 3). A
domain description is consistent if it has a model. We now define entailment wrt to the
main interval-based EC axiom of holdsInterval:

Definition (Event Calculus Entailment). Let DEC be an interval-based EC domain de-
scription. A event interval [E1, E2] holds at a time interval [1, T 2]T wrt to DEC , writ-
ten DEC |= holdsInterval([E1, E2], [T 1, T 2]), iff for every interpretation I of DEC ,
I([E1, E2], [T 1, T 2]) = true. DEC |= neg(holdsInterval([E1, E2], [T 1, T 2])) iff
I([E1, E2], [T 1, T 2]) = false.

After having introduced the syntax and semantics of the interval-based Event
Calculus we now outline the implementation of the calculus as a meta logic program.
For a full description see [8,13,14].

holdsInterval([E1,E2],[T11,T22]):-
event([E1],[T11,T12]), event([E2],[T21,T22]),
[T11,T12]<=[T21,T22], not(broken(T12,[E1,E2],T21).

The event function event([Event], [Interval]) is a meta-function to translate
instantaneous event occurrences into interval-based events: event([E], [T, T]) :
−occurs(E, T). It is also used in the event algebra meta-program to compute complex
events from occurred raw events according to their event type definitions. The broken
function tests whether the event interval is not broken between the the initiator event
and the terminator event by any other explicitly specified terminating event:

broken(T1,Interval,T2):-
terminates(Terminator,Interval,[T1,T2]),
event([Terminator],[T11,T12]), T1<T11, T12<T2.

Example

occurs(a,datetime(2009,1,1,0,0,1)).
occurs(b,datetime(2009,1,1,0,0,10)).
Query: holdsInterval([a,b],Interval)?
Result: Interval=

[datetime(2009,1,1,0,0,1), datetime(2009,1,1,0,0,10)]

In the example an event a followed by an event b occurs. The holdsInterval returns the
occurrence time interval for the variable Interval. That is, time points/ time intervals,
events/actions and fluents are n-ary literals L or ¬L in the meta program. Remark-
ably, the logic programming rule engine Prova (http://prova.ws) which we are
using supports a typed logic with Java and Description Logics support and provides
query built-ins to external data sources, i.e. events can be e.g. stored and queried from
databases such as an RDF triple store and for efficient time computations the Java Cal-
endar API can be used. [10,9] For instance, the datetime formalization above is using
the Prova ContractLog library which provides an efficient Java-based implementation
of temporal reasoning in Prova logic program - see [10].

Based on this interval-based event logics formalism, we now implement typical event
algebra operators, as can be found e.g. in SNOOP [3], and treat complex events as
occurrences over an interval. In short, the basic idea is to split the occurrence interval

http://prova.ws

88 K. Teymourian and A. Paschke

of a complex event into smaller intervals in which all required component events occur,
which leads to the definition of event type patterns in terms of interval-based event
detection conditions, e.g. the SNOOP sequence operator (;) is formalized as follows
(A; B; C):
detect(e,[T1,T3]):-

holdsInterval([a,b],[T1,T2],[a,b,c]),
holdsInterval([b,c],[T2,T3],[a,b,c]),
[T1,T2]<=[T2,T3].

In order to make definitions of complex events in terms of event algebra operators
more comfortable and remove the burden of defining all interval conditions for a par-
ticular complex event type as described above, we have implemented a meta-program
which implements an interval-based EC event algebra in terms of typical event operators:

Sequence: sequence(E1,E2, .., En)
Disjunction: or(E1,E2, .. , En)
Mutual exclusive: xor(E1,E2,..,En)
Conjunction: and(E1,E2,..,En)
Simultaneous: concurrent(E1,E2,..,En)
Negation: neg([ET1,..,ETn],[E1,E2])
Quantification: any(n,E)
Aperiodic: aperiodic(E,[E1,E2])

Example
Event Pattern is A ; (B ; C): (Sequence)
EC algebra detection rule: detect(e,T) :- event(sequence(a, sequence(b,c)), T).

In this example under strict interpretation of the interval-based EC e.g. the event in-
stance sequence (EIS) {abc} does detect the complex event as defined by the event pat-
tern sequence, {bac} does not detect the event, {acb} does not detect the event, {abac}
does not detect event and {abbabc} does detect one complex event.

Example
Event Pattern is A (A, B,C): (Aperiodic)
detect(e,T):- event(aperiodic(b,[a,c]),T).

Here the EIS {abc} does detect the event, {abbc} does detect the event, but {acbb}
does not detect the event.

For space reasons we have only described the formalization of complex events, but
the interval-based Event Calculus can also used for the definition of complex actions,
e.g. to define an ordered sequence of action executions or concurrent actions (actions
which must be performed in parallel within a time interval), with a declarative semantics
for possibly required rollbacks. For more information see [10,8,14].

We will now illustrate the rule-based event processing approach by a more extensive
example typically found in industry:

Example: A Manager node is responsible for holding housekeeping information about
various servers playing different roles. When a server fails to send a heartbeat for a
specified amount of time, the Manager assumes that the server failed and cooperates
with the Agent component running on an unloaded node to resurrect it. A reaction rule
for receiving and updating the latest heartbeat in event notification style is:

rcvMsg(XID,Protocol,FromIP,inform,heartbeat(Role, RemoteTime)) :-
time(LocalTime)
update(key(FromIP,Role),"occurs(heartbeats(_0, _1, _2, _3)).",

[FromIP, Role, RemoteTime, LocalTime]).

Semantic Rule-Based Complex Event Processing 89

The rule responds to a message pattern matching the one specified in the rcvMsg argu-
ments. XID is the conversation-id of the incoming message; inform is the performative
representing the pragmatic context of the message, in this case, a one-way information
passed between parties; heartbeat(...) is the payload of the message. The body of the
rule enquires about the current local time and updates the record containing the latest
heartbeat from the controller. This rule follows a push pattern where the event is pushed
towards the rule systems and the latter reacts by updating the event information (in the
RDF triple store - not shown here).

A pull-based ECA rule that is activated every second and for each server that fails
to have sent heartbeats within the last second will detect server failures and respond to
it by initiating failover to the first available unloaded server. The accompanying deriva-
tion rules detect and respond are used for specific purpose of detecting the failure and
organizing the response.
eca(

every(’1S’) ,
detect(controller_failure(IP,Role,’1S’)) ,
respond(controller_failure(IP,Role,’1S’))) .

every(’1S’):-
sysTime(T),
interval(timespan(0,0,0,1),T).

detect(controller_failure(IP,Role,Timeout),LocalTimeNow) :-
sysTime(LocalTimeNow),
event(neg(heartbeat(IP,Role,RemoteTime,LocalTime)),holdsAt(status(IP,loaded),T)),
LocalTimeNow-LocalTime > Timeout.

respond(controller_failure(IP,Role,Timeout)) :-
sysTime(LocalTime),
first(holdsAt(status(Server,unloaded),LocalTime)),
add(key(Server),

"happens(loading(_0),_1).",[Server, Local-Time]),
sendMsg(XID,loopback,self,initiate,failover(Role,IP,Server)).

The ECA logic involves possible backtracking so that all failed components will be res-
urrected. The detection conditions for the complex event controllerfailure for a server
with a particular IP are defined in terms of the interval-based Event Calculus algebra,
where the event is detected if there is no heartbeat during the specified timeout while
the server is loaded. The state of each server is managed via an event calculus formulation:
initiates(loading(Server),status(Server,loaded),T).
terminates(unloading(Server),status(Server,loaded),T).
initiates(unloading(Server),status(Server,unloaded),T).
terminates(loading(Server),status(Server, loaded),T).

The current state of each server is derived from the happened loading and unloading
events and used in the ECA rule to detect the first server which is in state unloaded.

Note, as an event instance base for detecting complex events according to the detec-
tion patterns, which are formalized in terms of the event algebra operators as exempli-
fied above, the (distributed) RDF storage clusters are used as active working memory
(active knowledge base). The rule-based event algebra meta program queries event data
via Prova’s SPARQL query built-ins as event facts from the RDF clusters. Using triple
store technology this dynamic integration approach is highly efficient. This approach is
quite similar to using relational databases as event database, but with the major benefit
of providing semantic event meta data and built-in ontological inference.

90 K. Teymourian and A. Paschke

5 Rule-Based CEP Middleware

In this section we describe the main components of the rule-based CEP Enterprise Ser-
vice Bus middleware which we have implemented. As in OMGs model driven architec-
ture (MDA) the middleware distinguishes:

– a platform specific model (PSM) which encodes the rule statements in the language
of a specific execution environment

– a platform independent model (PIM) which represents the rules in a common (stan-
dardized) interchange format (e.g. a markup language)

– a computational independent model (CIM) with rules in a natural or visual
language.

The Prova (http://prova.ws) reaction rule language with the interval-based
Event Calculus meta program formalization is used on the PSM layer as a con-
crete rule-based execution and event processing engine. Several Prova rule en-
gines can be deployed as distributed web-based inference services on the ESB
(http://responder.ruleml.org). The Prova rule engines have dynamic ac-
cess to external data sources and object representations, e.g. using semantic triple
stores as active event data stores. The quasi-standard RuleML/Reaction RuleML
(http://reaction.ruleml.org) is used on the PIM layer as a standardized in-
terchange format between the distributed rule inference engine on the ESB. The ESB

Fig. 1. Rule-based CEP Middleware

http://prova.ws
http://responder.ruleml.org
http://reaction.ruleml.org

Semantic Rule-Based Complex Event Processing 91

is used as object service broker for the rule inference services and as asynchronous
messaging middleware supporting all common transport protocols such JMS, HTTP or
SOAP (or Rest) (more than 30 protocols are supported) between the services. For an
visual RuleML/Reaction RuleML editor on the CIM layer see [10]. Figure 1 illustrates
the architecture of the middleware.

6 Conclusion and Future Works

First ideas for semantic event processing, like [4] or [1], are functionally inadequate
from a event processing process perspective. This inadequacy is due to the lack of do-
main and application specific semantics for events, processes, states, actions, and other
concepts that relate to change over time. Without such formal semantics rules or work-
flow like logic that react to events and govern e.g. (business) processes must remain at
the level of procedural implementation - as it is in most current event processing appli-
cations - rather than declarative knowledge which makes the event-based applications,
services and processes more integrative, adaptable and agile. Capturing domain-specific
events, processes and other aspects of reality that occur and change over time is a fun-
damental challenge which we addressed in a practical manner in this paper.

In this paper we introduced a practical rule-based approach for semantic-enabled
event processing which we implemented based on highly efficient industry-strength
technologies, namely RDF storage clusters (using Triplestore technology), Enterprise
Service Bus (using enterprise service technology), and Business Rules Managment Sys-
tem for Complex Event Processing (based on rule-based event processing technology).
We have described syntax, semantics, implementation and integration of the compo-
nents in the overall architecture. We have already successfully applied our rule-based
event processing in the context of IT Service Management and Service Level Agree-
ments. [10] Our next steps is to apply our semantic rule-based event processing ap-
proach in event-driven Semantic BPM, that is within executable BPEL orchestration
flows as external semantic web services. [11]

References

1. Jans, A.: Unification of geospatial reasoning, temporal logic, & social network analysis in
event-based systems. In: DEBS 2008: Proceedings of the second international conference on
Distributed event-based systems, pp. 139–145. ACM, New York (2008)

2. Pietzuch, P., Mühl, G., Fiege, L.: Distributed Event-Based Systems. Springer, Heidelberg
(2006)

3. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events for active
databases: Semantics contexts and detection. In: VLDB 1994, pp. 606–617 (1994)

4. Etzion, O.: Semantic approach to event processing. In: DEBS 2007: Proceedings of the 2007
inaugural international conference on Distributed event-based systems, pp. 139–139. ACM,
New York (2007)

5. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Comput-
ing 4, 67–95 (1986)

6. Lloyd, J.W.: Foundations of logic programming, 2nd extended edn. Springer-Verlag New
York, Inc., New York (1987)

92 K. Teymourian and A. Paschke

7. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley Longman, Amsterdam (2002)

8. Paschke, A.: Eca-lp / eca-ruleml: A homogeneous event-condition-action logic programming
language. In: RuleML 2006, Athens, Georgia, USA (2006)

9. Paschke, A.: A typed hybrid description logic programming language with polymorphic
order-sorted dl-typed unification for semantic web type systems. In: OWL-2006 (OWLED
2006), Athens, Georgia, USA (2006)

10. Paschke, A.: Rule-Based Service Level Agreements - Knowledge Representation for Auto-
mated e-Contract, SLA and Policy Management. In: IDEA, Munich (2007)

11. Paschke, A., Teymourian, K.: Rule based business process execution with bpel+. In: Proc.
5th International International Conference on Semantic Systems (i-Semantics 2009) (2009)

12. Paschke, A.: Eca-lp / eca-ruleml: A homogeneous event-condition-action logic programming
language. CoRR, abs/cs/0609143 (2006)

13. Paschke, A.: Eca-ruleml: An approach combining eca rules with temporal interval-based kr
event/action logics and transactional update logics. CoRR, abs/cs/0610167 (2006)

14. Paschke, A.: A homogenous reaction rule language for complex event processing. In: Proc.
2nd International Workshop on Event Drive Architecture and Event Processing Systems
(EDA-PS) (2007)

15. Paschke, A., Bichler, M.: Knowledge representation concepts for automated sla management.
Decis. Support Syst. 46(1), 187–205 (2008)

16. W3C. Owl web ontology language, http://www.w3.org/TR/owl-features/
17. W3C. Rdf vocabulary description language, http://www.w3.org/TR/rdf-schema/
18. W3C. Sparql query language for rdf,

http://www.w3.org/TR/rdf-sparql-query/
19. Abdallah, S., Raimond, Y.: The event ontology,

http://motools.sourceforge.net/event/event.html

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/
http://motools.sourceforge.net/event/event.html

Generation of Rules from Ontologies for
High-Level Scene Interpretation

Wilfried Bohlken and Bernd Neumann

Cognitive Systems Laboratory, Department Informatik, University of Hamburg
22527 Hamburg, Germany

{bohlken,neumann}@informatik.uni-hamburg.de

Abstract. In this paper, a novel architecture for high-level scene inter-
pretation is introduced, which is based on the generation of rules from
an OWL-DL ontology. It is shown that the object-centered structure of
the ontology can be transformed into a rule-based system in a native and
systematic way. Furthermore the integration of constraints - which are
essential for scene interpretation - is demonstrated with a temporal con-
straint net, and it is shown how parallel computing of alternatives can
be realised. First results are given using examples of airport activities.

1 Introduction

High-level scene interpretation can be roughly defined as understanding images
or video streams at abstraction levels above single objects. Typical tasks are
traffic scene interpretation in driver assistance systems, criminal acts recogni-
tion, and other monitoring tasks such as airport activity recognition, which is
used as an example domain in this paper. Scene interpretation systems are typ-
ically conceived as knowledge-based systems where extensive high-level knowl-
edge is modelled using declarative knowledge representation techniques. So far,
no standard architecture has emerged. In his long-standing work on traffic scene
interpretation [7,1,2], Nagel developed situation-graph trees, where hierarchi-
cally organized frame-based state descriptions of traffic situations are embedded
in a state-transition structure. A similar structure was also realised by [3,4,8] in
terms of scenarios for recognizing bank robberies or airport activities. Compo-
sitional and taxonomical hierarchies of structure-based configuration systems as
a framework for flexible scene interpretation strategies realising both bottom-
up and top-down interpretation steps are proposed in [10]. Using a hierarchi-
cal framework ranging from the pixel level to high-level semantic structures, a
grammar-based scene interpretation system was developed [17].

The usefulness of high-level symbolic scene interpretation on top of low-level
image processing for activity recognition in video streams was demonstrated
by [6,16]. In this approach the activity models are represented in a self-made,
non-standardized formalism. Scene interpretation for more complex activities,
considered in this paper, calls for for well-founded knowledge representation and
standardized inference procedures.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 93–107, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 W. Bohlken and B. Neumann

This was the motivation to investigate the use of Description Logics (DL) for
scene interpretation [13] and multimedia interpretation and retrieval [11]. It was
shown that a DL system can transparently represent compositional and taxo-
nomical hierarchies (which provide the backbone for scene interpretation) in an
object-centered manner, and that several DL inference services (such as inheri-
tance and classification) can be exploited for the interpretation process. On the
other hand, it is difficult in a DL system to represent constraints between objects,
which are often decisive for defining and recognizing high-level entities. Further-
more, a DL system does not provide a framework for flexible, stepwise scene
interpretation as required for complex applications. In this paper, we propose a
novel architecture for high-level scene interpretation which exploits well-founded
object-centered knowledge representation using OWL-DL, but avoids the limi-
tations of DL systems by transforming knowledge structures into rules in the
rule-based system Jess. This approach promises several advantages:

– High-level knowledge can be represented in OWL in an object-centered trans-
parent manner, scaling well to large knowledge bases.

– The consistency of the knowledge base can be checked automatically using
a DL reasoner connected to OWL (such as Pellet or Racer).

– Logic-based inferences implied by the OWL representation can be automati-
cally translated into corresponding rules and inheritance mechanisms of Jess,
realising the skeleton of a scene interpretation system.

– Constraint processing and other procedural components not representable
in OWL can be realised in the Java background of Jess.

– Data-driven rule-based processing facilitates flexible interpretation as re-
quired for highly variable scenes and realistic image analysis results.

Note that in this architecture, as in most other approaches, high-level scene inter-
pretation is conceived as a process, which takes low-level image analysis results
in terms of primitive objects as input and delivers assertions about the scene as
output, for example ”Aircraft refueling has begun at 13:02:23” for airport activ-
ity monitoring. As in many applications objects cannot be recognized reliably,
it remains the task of high-level interpretation to disambiguate or even correct
low-level classifications. This must be kept in mind when devising high-level
inference rules.

A basic interpretation step is recognizing an aggregate from its parts in ac-
cordance with the compositional hierarchy defined in the OWL knowledge base.
In Section 2, we describe how OWL aggregates are transformed into Jess rules
providing such interpretation steps. Our implementation differs from an auto-
matic transformation of OWL to Jess described in [5] in several respects and
promises advantages with respect to scalability and generality. We also show
how the constraint checks required for aggregate instantiations are embedded
into the rules to be executed in the Java background system.

In Section 3, we describe the basic bottom-up interpretation process based on
the rules generated from the compositional hierarchy. Here, one of the problems is
conflict resolution when several rules can fire. This must be expected throughout
the interpretation process because of several possible lines of interpretation in

Generation of Rules from Ontologies for High-Level Scene Interpretation 95

the face of partial or unspecific evidence. It is shown how parallel interpretation
threads can be generated automatically which terminate either with a valid
interpretation or incomplete as dead ends.

In Section 4, we present an extended example from the airport activity do-
main. Section 5, finally, concludes with a discussion of the results and information
about future work.

2 Rule Generation from Ontology

In the first part of this section, the usage of OWL-DL for an ontology for scene
interpretation is motivated. Then aggregates are introduced as the main repre-
sentational units of the ontology and finally the transformation of aggregates to
Jess rules is presented. In the second part the integration of constraints into the
rule-based system is described using a temporal constraint net.

2.1 Object-Centered Definition of Aggregates

Ontology and OWL DL. To describe scenes at a high conceptual level requires
the expressiveness to define concepts like objects and events (e.g. for interpreta-
tion of video sequences), together with their properties and relations (e.g. tempo-
ral and spatial relations between parts of the scene) [13]. A description language
for a conceptual knowledge base, which is used for scene interpretation, has to
provide the expressiveness to satisfy these requirements. On the other hand, an
ontology, which is developed for the purpose of scene interpretation tasks, is typ-
ically large and difficult to maintain manually. Therefore it is necessary that a
reasoner (like Pellet or Racer) is available to perform automatic checks, e.g. with
respect to class consistency, class equivalence, sub-class relation, disjunctiveness
and global consistency. The description language OWL DL provides the maxi-
mum expressiveness without losing computational completeness (all entailments
are guaranteed to be computed) and decidability (all computations will theo-
retically finish in finite time). Nevertheless the expressiveness is not sufficient
for our purposes, particularly to specify n-ary constraints, but this gap can be
closed with the OWL extension SWRL (Semantic Web Rule Language).1 All in
all, OWL DL has many desirable properties for our purposes, and in the follow-
ing we assume that OWL DL is used for our ontology representation. It is also
worth noting that OWL ontologies have become increasingly popular over the
last years, primarily because of the idea of the Semantic Web, which increases
the availability of tools for creating, publicising and distributing ontologies.

Aggregates. The main concepts in our OWL ontology are physical objects, for
example Vehicle, Person or Equipment, and conceptual objects. These are more
abstract objects, for example events as Vehicle-Enters-Zone or Refueling.
Concepts are related to each other by super-class and sub-class relations, thus,

1 http://www.w3.org/Submission/SWRL

96 W. Bohlken and B. Neumann

forming a taxonomy. Other essential relations for a knowledge base for scene
interpretation are the compositional relations, which express that a concept
may have other concepts as parts inducing a compositional hierarchy. For ex-
ample, the conceptual object Vehicle-Enters-Zone is composed of the concep-
tual objects Vehicle-Outside-Zone and Vehicle-Inside-Zone. Instances (or
individuals in OWL terms) of these parts have to be in a specific temporal re-
lation: an instance of Vehicle-Outside-Zone has to occur before the instance
of Vehicle-Inside-Zone. Another constraint is that the respective instances of
the physical objects Vehicle and Zone of both events are the same. These are
the conceptual constraints. A concept and its parts together with the concep-
tual constraints form an aggregate, given by the following generic structure in a
description logic setting [13]:

Aggregate Concept ≡ Parent Concept1 ... Parent Conceptn
∃≥m1hasPartRole.Part Concept1
...

∃≥mk
hasPartRole.Part Conceptk

conceptual constraints

In Figure 1, a simplified extract of the OWL ontology, used for modelling airport
activities, is shown as a screenshot of Protégé, as pure OWL notation is not
convenient to read. In the left frame the taxonomy is shown and in the right
frame the properties of the selected conceptual object Vehicle-Enters-Zone
are displayed.

Fig. 1. OWL ontology in Protégé

For modelling the conceptual constraints we use SWRL. An example of a
SWRL rule, which expresses the conceptual constraint that instances of the
physical objects Vehicle and Zone have to be the same in both events, is given
below (for simplification the temporal constraints are omitted here.

Generation of Rules from Ontologies for High-Level Scene Interpretation 97

Vehicle-Enters-Zone(?vez) ^
has-part-vehicle-inside-zone(?vez, ?viz) ^
has-part-vehicle(?viz, ?v1) ^
has-part-zone(?viz, ?z1) ^
has-part-vehicle-outside-zone(?vez, ?voz) ^
has-part-vehicle(?voz, ?v2) ^
has-part-zone(?voz, ?z2) ^
->
swrlb:equal(?v1, ?v2) ^
swrlb:equal(?z1, ?z2)

In this way an aggregate hierarchy is modelled with primitive aggregates - like
Vehicle-Inside-Zone - as leaves, which can be directly instantiated based on
visual attributes of physical objects computed by the perceptual components of
the scene interpretation system (see Section 3.1), and more complex aggregates,
defined with aggregates as parts.

Transforming Aggregates to Jess Rules. In this paragraph it will be de-
scribed, how aggregates can be transformed into rules for the rule-engine Jess
in a systematic, automatable way, realising possible interpretation steps and
sustaining the object-centered structure of aggregates.

Scene interpretation cannot be solely modelled as deduction. It has been
shown in [14] that constructing a scene interpretation is essentially a search
problem in the space of possible interpretations defined by the taxonomical and
compositional relations by incrementally instantiating concepts while maintain-
ing consistency. Four kinds of interpretations steps are necessary:

– Aggregate instantiation (moving up a compositional hierarchy).
– Aggregate expansion (moving down a compositional hierarchy).
– Instance specialisation (moving down a taxonomical hierarchy).
– Instance merging (unifying instances obtained separately).

In this paper, we will focus on the first step - aggregate instantiation - which is
a bottom-up step and the backbone for scene interpretation.

A main structuring feature of the Jess rule language is a template, which
can be seen as analogon to a Java class. A template is defined by a name and a
number of slots, which are comparable to member variables of a Java class. In the
first step of the transformation of aggregates to Jess, every concept is defined by
a template with the name of the concept. The slots of the template are defined
corresponding to the properties of the concept with an additional slot name,
which holds the name of the instance (e.g. vehicle 17). Here our approach
differs from the transformation of OWL and SWRL to Jess described in [5],
where the properties are modelled as ordered facts. Ordered facts are simply
Jess lists, which perform an implied template creation. This would mean to lose
the object-centered structure of an aggregate, as the properties are decoupled
from the concept template. The other significant difference is that we keep the

98 W. Bohlken and B. Neumann

OWL taxonomy by defining the templates with extends, which is used to express
inheritance in Jess. In this way the OWL subclass relation of class C and D

C � D (1)

is directly transformed into the template inheritance structure of Jess. In the
realisation described in [5] the template structure is flat and the taxonomy is
emulated by duplicating the facts along the taxonomical hierarchy, which could
lead to problems with scalability.

In the second step of the transformation, a rule is defined for every aggregate
of the OWL ontology. In the predicate part (LHS) of the rule, the parts of
the aggregate are listed together with the slots which are needed to express
the conceptual constraints, as far as possible. With part-of relations it can be
checked that a part is not already integrated into another aggregate instance.
Constraints that go beyond the scope of a single aggregate - for example temporal
constraints - are processed procedurally in the Java part of the system and appear
in the predicate part of the rule as a test function (test conditional element).
This will be described in detail in Section 2.2. In the action part (RHS) of the
rule, the aggregate is instantiated, properties are modified accordingly, and the
temporal constraint net is updated.

An example for a Jess rule for the (simplified) aggregate Refueling is given
below2 (the temporal constraint processing is only sketched here).

(defrule Refueling
?tez-id <-
(Tanker-Enters-Zone (name ?tez)

(has-part-tanker ?v1)
(has-part-zone ?z1)
(part-of-refueling nil))

?dr-id <-
(Do-Refuel (name ?dr)

(has-part-tanker ?v1)
(has-part-zone ?z1)
(part-of-refueling nil)

?tlz-id <-
(Tanker-Leaves-Zone (name ?tlz)

(has-part-tanker ?v1)
(has-part-zone ?z1)
(part-of-refueling nil))

;; check temporal constraints in a test function
=>
;; create new instance of Refueling
(assert

(Refueling (name ?rf-new)
(has-part-tanker-enters-zone ?tez)

2 ?x-id<- is an identifier needed for modification of facts in the RHS part of a rule.

Generation of Rules from Ontologies for High-Level Scene Interpretation 99

(has-part-do-refuel ?dr)
(has-part-tanker-leaves-zone ?tlz)))

;; modify properties of parts
(modify ?tez-id (part-of-refueling ?rf-new))
(modify ?dr-id (part-of-refueling ?rf-new))
(modify ?tlz-id (part-of-refueling ?rf-new))
;; update temporal constraint net

)

2.2 Constraints

Spatial and temporal context play a special part in scene interpretation. But as
already mentioned and shown in [13], it is difficult in a DL system to represent
constraints between conceptual objects, and a DL system does not provide a
framework for flexible, stepwise scene interpretation. In this section the integra-
tion of a global temporal constraint net is introduced which controls the activa-
tion of rules and stepwise aggregate instantiations, maintaining consistency of
the temporal constraints.

Temporal Constraint Net. Temporal constraints are essential in a domain
like airport activity monitoring. For the modelling of temporal relations, we use
the convex time point algebra [15]. The Allen temporal operators used in the
SWRLTemporalOntology3 are not expressive enough for our purposes, because
they only allow the modelling of qualitative relations, whereas the complexity of
our domain requires quantitative models.

The basic format of a temporal relation in the convex time point algebra is

t1 ≥ t2 + c12 (2)

where t1 and t2 are interval-valued time points and c12 is an integer-valued
constant. Using such inequalities, it is possible to model important features of
the temporal structure of a scene model.

Figure 2 illustrates a more detailed aggregate of Refueling. In the OWL on-
tology every concept has two temporal data type properties: has-start-time
for the beginning time point (x-tb) and has-finish-time for the ending time
point (x-te). Other properties are not listed here. The temporal constraints
are as follows. A Tanker-Enters-Fuel-Access-Area event has to occur before
a Tanker-Stopped-In-Fuel-Access-Area event, which has to happen before a
Tanker-Leaves-Fuel-Access-Area event. A Handler-Plugged-Fuel event has
to occur before a Handler-Unplugged-Fuel event. Both events occur during the
Tanker-Stopped-In-Fuel-Access-Area event. Every event has to fulfill a cer-
tain duration. Analog to the conceptual constraints in Section 2.1 also these
temporal constraints can be expressed with SWRL rules in the form of inequali-
ties, mentioned in (2). Part of the SWRL rule for the Refueling aggregate which
3 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalOntology

100 W. Bohlken and B. Neumann

Fig. 2. Aggregate Refueling with time properties

concerns the temporal constraints of Tanker-Stopped-In-Fuel-Access-Area is
given below.

Refueling(?rf) ^
has-part-tanker-stopped-in-fuel-access-area(?rf, ?tsifaa) ^
duration-of-tanker-stopped-in-fuel-access-area(?rf, ?tsifaa-dur) ^
has-Start-Time(?tsifaa, tsifaa-tb) ^
has-Finish-Time(?tsifaa, tsifaa-te) ^
swrlb:add(?sum-tb-dur, ?tsifaa-tb, ?tsifaa-dur) ^
swrlb:greaterThanOrEqual(?tsifaa-te, ?sum-tb-dur) ^
...

Beside the transformation of aggregates to Jess rules, the transformation process
must also generate a temporal constraint net (TCN) out of the SWRL rules. The
outcome is a single global TCN which includes all aggregates modelled in the
OWL ontology. An extract of the TCN concerning the Refueling aggregate, is
shown in Figure 3.

Fig. 3. Temporal constraint net for Refueling

The nodes are time points corresponding to the time marks given in the
SWRL rules. The directed arcs represent inequalities, marked with an offset
which represents the ideal value of the duration. Each node is interval-valued,

Generation of Rules from Ontologies for High-Level Scene Interpretation 101

where the interval denotes the range of the time points which is consistent with
the constraints. Initially the intervals are open-ended, i.e. [−∞ +∞]. When an
aggregate is instantiated - that is when a rule fires - the corresponding nodes will
receive concrete values. For example, if a Tanker-Stopped-In-Fuel-Access-
Area event starts at 27, then the time point tp3-tb will receive the value [27
27]. New values are propagated through the constraint net as follows [12]:

– minima in edge direction: t2min’ = max(t2min, t1min + c12).
– maxima against edge direction: t1max’ = min(t1max, t2max − c12).

A TCN is inconsistent, if for any node tmin > tmax holds.

Implementation of Temporal Constraint Net with Shadow Facts. As
the propagation of values through the constraint net has a procedural character
and can effect all time points - i.e. not only the time points in one single aggregate
- it is reasonable and efficient to implement this in Java, whereas a pure Jess
implementation would be unnecessary complex and intransparent.

To establish a connection between the Java implementation and Jess objects,
all time points and the TCN itself are implemented as shadow facts [9], i.e. ev-
ery time point in Jess has a corresponding time point object in Java.4 The usage
of shadow facts enables Jess to perform reasoning about Java objects. Together
with the integration of the TCN into the rules, a general structure of an aggregate
bottom-up rule can be given schematically as follows (txy denote time points):

(defrule Aggregate-X-Rule
- part1 with t11, t12
- part2 with t21, t22
...
(TCN (tMins $?tMins) (tMaxs $?tMaxs) (OBJECT ?tcn-obj))
(test (call ?tcn-obj propagateAndCheckConsistency

$?tMins
$?tMaxs
t11, t12, t21, t22,...))

=>
- instantiate aggregate X with t31, t32
- modify part-of relations of parts
(call ?tcn-obj update

$?tMins
$?tMaxs
t11, t12, t21, t22,..., t31, t32))

When the TCN is initialised, all time points are ”normal” objects (not connected
to Jess facts). At the moment a rule is matched against the working memory, the
propagateAndCheckConsistency function in the LHS part of the rule propagates

4 Every shadow fact has a slot OBJECT which holds a reference to the Java object
itself.

102 W. Bohlken and B. Neumann

the time point values of the parts of the aggregate through a copy of the original
TCN (because the original TCN must not be changed). If the TCN becomes in-
consistent the function returns false, that means it cannot be satisfied with the
currently checked instances, thus the rule must not be activated. If the function
returns true (and all other constraints of the LHS are fulfilled), then the rule will
be activated. If the rule fires, the update function in the RHS part of the rule inte-
grates the time points into the original TCN (now these nodes are shadow facts)
and propagates the values. In this way the instantiation of aggregates is achieved,
while maintaining consistency of the temporal constraints.

Here it must be mentioned, that a pure Jess implementation of the tempo-
ral constraint net would be possible in principle with Jess functions. But the
realisation of the TCN introduced here is only a preliminary stage for a more
sophisticated component where probability distributions replace crisp time inter-
vals so that a context-dependent certainty value can be generated for activated
rules. This calls for more complex computations not easily realisable in Jess.

3 Interpretation Process

In this section, we describe the basic bottom-up interpretation process based on
the rules generated from the OWL ontology. In the first part, a system overview
of a general scene interpretation system is given and the interpretation process
is described. In the second part, it is demonstrated, how parallel processing of
interpretations can be realised.

3.1 Interpretation Process and System Overview

A basic framework for high-level scene interpretation can be subdivided into
three main layers:

– The segmentation and tracking unit (low-level processing layer).
– The metric-symbolic interface (middle layer).
– The high-level interpretation layer.

In the segmentation and tracking unit, static or moving objects are detected
by low-level image processing components. The objects are classified into view
types. A view is a representation of the visual evidence of a physical object.
Objects are tracked throughout image sequences, and object trajectories are
computed for moving objects. In the middle layer, primitive aggregates are com-
puted. In our domain of airport activities these are primitive states (which
describe properties of physical objects that are true for a given time inter-
val), like Vehicle-Stopped-In-Zone and primitive events (which describe one
or several change(s) of properties of physical objects in a time interval), like
Vehicle-Enters-Zone. These primitive aggregates serve as input for our rule-
based high-level interpretation layer. With several interpretation steps, men-
tioned in Section 2.1, and the usage of conceptual knowledge, the interpretation
layer performs the inference of high-level aggregates which represent assertions

Generation of Rules from Ontologies for High-Level Scene Interpretation 103

Fig. 4. Architecture of interpretation system

about complex activities in the scene. The usefulness of this architecture for
scene interpretation was already demonstrated by [6].

In the initialisation (or offline) phase of the system, the concepts of the con-
ceptual knowledge base are transformed to templates and aggregates are trans-
formed to rules, all written to data files. An initialisation file for the temporal
constraint net is generated out of the SWRL rules. These files together form the
Jess conceptual knowledge base. In the working (or online) phase of the system,
these data files are read by the Java application with the embedded Jess engine.
The templates and rules are added to the engine, a temporal constraint net is
initialised and also added to the Jess engine as a shadow fact. Now the system
is ready to process the primitive aggregates provided by the middle layer. In
the present stage of the project, the primitive aggregates are read from XML
files, in the future they will be provided by a CORBA interface. Corresponding
to the time marks given in the XML files, the primitive aggregates are added
successively as facts to the working memory of the Jess engine, simulating an
evolving scene. Then the agenda, i.e. the list of activations (rules that can fire
when the engine is started) of the Jess engine is analysed. If the agenda is not
empty, the command is given to run the engine. The rules fire and add new
facts, representing instances of higher level aggregates, to the working memory.
Continuing this in a loop, more and more aggregates - defined higher up in the
hierarchy and representing more complex activities - are instantiated, consistent
with the corresponding conceptual constraints (see Figure 4).

This way a framework for stepwise scene interpretation is realised. The consis-
tency of the rules is guaranteed as far as possible, as they are generated from an
OWL ontology which provides automatic consistency checks (except for SWRL
rules).

3.2 Parallelisation

In this section the necessity of parallel computing in the scene interpretation
process is motivated and the technical realisation is demonstrated.

104 W. Bohlken and B. Neumann

As mentioned before, constructing a scene interpretation is essentially a search
problem in the space of possible interpretations. In a real-time scene interpre-
tation system, e.g. for airport activity monitoring, it cannot be avoided that
evidence is processed incrementally. That means, early interpretation steps may
be ambiguous because of lack of supporting context. This problem can be solved
either by allowing backtracking to undo faulty decisions, or by parallel comput-
ing to follow several alternatives. We will show that parallel computing can be
implemented in a transparent and efficient way, using Jess.

In our domain of airport activities it is not unusual that an instance of an
aggregate, for example an instance of Vehicle-Enters-Zone, could be a part of
one of several different instantiations (see Figure 5).

Fig. 5. Possible alternatives in an interpretation step

Assuming that the conceptual constraints are only fulfilled in rule A and
rule B, both will be activated and put onto the agenda. Rule C will not be
activated. Because the fact is exclusively part of either instance A or instance
B, the order in which the rules fire is decisive for the result: if rule A fires,
then rule B will be deactivated and vice versa (this is controlled by the part-of
relation, mentioned above). To follow both alternative interpretation paths, the
actual Jess engine is cloned in this situation. By using the Jess mechanism of
serialisation and deserialisation, it is ensured that correct (deep) copies of Java
objects, implemented as shadow facts, are created. After cloning the Jess engine,
rule A and rule B are activated in both engines. Now, we want to fire rule A in
clone 1 and rule B in clone 2. This can be achieved by using a special conflict
strategy which can be easily set in the Jess engine to manipulate the execution
engine accordingly. Concretely, to explicitly fire a certain rule, a strategy is set,
which gives the priority to the activation with a certain activation name (this
name is unique). Then both engines are executed in different threads. Directly
after the first rule has fired in a clone, the strategy is reset to the original strategy
(this can be done by an event handler). When the setStrategy function of the
Jess engine returns, all remaining activations are re-ordered, according to the
new (original) strategy.

Generation of Rules from Ontologies for High-Level Scene Interpretation 105

In the next loop, new facts, provided by the middle layer, will be added to
the working memory of every clone. If the TCN is not satisfiable anymore, then
the thread dies. It can be assumed that in the beginning of the scene, the initial
thread branches into several parallel threads very quickly, as there is less context
information. But with preceding evolution of the scene the number of threads
will decrease. For example a primitive event like Person-Enters-Zone can be a
part of various events, whereas higher aggregates like Refueling are only part
of one or two higher events. Future experience will show which maximal number
of threads is useful.

4 Results

In this section a simple example of a scene interpretation process is demonstrated
in the domain of airport activities which is the application domain in in the EU
project Co-Friend.5

For our experiment we assume a simplified aggregate Refueling with the
parts Tanker-Enters-Zone, Do-Refuel and Tanker-Leaves-Zone. Another ag-
gregate Tanker-Enters-And-Leaves-Zone consists only of the parts Tanker-
Enters-Zone and Tanker-Leaves-Zone, both with their respective conceptual
constraints. The second aggregate is a model for the activity that a tanker en-
ters and leaves the specific zone without refueling the aircraft for any reason.
Normally an assured evidence for Do-Refuel should inhibit the activation of the
rule Tanker-Enters-And-Leaves-Zone-Rule, but in future work other interpre-
tation steps - beside bottom-up - will be realised which also include hypothesising
facts, for example, in cases where evidence is missing because of occlusion. Hence,
in general it could make sense to follow both alternatives.

An OWL-DL ontology, including the aggregates and physical objects de-
scribed above, has been created with Protégé 3.4. The global consistency of
the ontology has been checked with the OWL reasoner RacerPro 2.0. SWRL
rules have been defined to express the conceptual constraints of the aggregates
with the integrated SWRL functionality of Protégé 3.4.

The data files for the rules and the templates have been generated manually.
The instances of the three aggregates are read from an XML data file (for sim-
plification we assume Do-Refuel to be a primitive aggregate here) and added to
the Jess engine one after another.

In Figure 6, an extract of the output of the experiment is shown. It can be seen
that as soon as the instance of Tanker-Leaves-Zone is added to the working
memory, the Refueling-Rule and the Tanker-Enters-And-Leaves-Zone-Rule
are activated and put onto the agenda in engine 1. Then the engine is cloned,
thus, a new engine 2 is created with the same status. Then both engines
are executed. As desired, the Refueling-Rule fires in engine 1, and the
Tanker-EntersAnd-Leaves-Zone-Rule fires in engine 2. Furthermore, the in-
stantiation of Refueling results in adding a Refueling fact to the working

5 This work was partially supported by the EC, Grant 214975, Project Co-Friend.

106 W. Bohlken and B. Neumann

Fig. 6. Output for example of interpretation process

memory in engine 1, and a Tanker-Enters-And-Leaves-Zone fact is added in
engine 2.

5 Conclusion and Future Work

In this paper we have presented a novel architecture for high-level scene inter-
pretation, which is based on the generation of rules from an OWL-DL ontology.
It has been shown how aggregates can be transformed into a rule base of Jess in
a systematic way and how a global temporal constraint net can be integrated.
A general rule pattern has been given for the transformation of aggregates into
bottom-up interpretation rules which provide the backbone of scene interpreta-
tion. Furthermore, the usage of these rules in the scene interpretation process
was explained with examples of airport activities. The technical functionality of
parallel computing, with the intention to follow alternative interpretation steps,
has been shown and a first simple experiment was demonstrated.

In ongoing work, rule generations for the remaining interpretation steps, i.e.
aggregate expansion, instance specialisation and instance merging, are elabo-
rated. All transformations from the OWL ontology into rules, templates, and
the temporal constraint net will be fully automated.

As an advanced use of rule-based processing, the inclusion of common sense
inferences will be investigated. The goal here is to conclude missing facts not
provided by low-level image analysis by rules which reflect every-day human
experiences, for example about natural motion of physical objects.

The original conflict strategy of Jess will be replaced by a probabilistic strat-
egy to provide a preference measure for interpretations steps. In this way the
most promising alternatives of interpretations will be traced in parallel as a
beam search. Finally more complex experiments will be performed with real
input data obtained from aircraft activities captured at Toulouse Airport in
project Co-Friend.

Generation of Rules from Ontologies for High-Level Scene Interpretation 107

References

1. Arens, M., Nagel, H.-H.: Behavioral knowledge representation for the understand-
ing and creation of video sequences. In: Günter, A., Kruse, R., Neumann, B. (eds.)
KI 2003. LNCS (LNAI), vol. 2821, pp. 149–163. Springer, Heidelberg (2003)

2. Arens, M., Ottlik, A., Nagel, H.-H.: Using behavioral knowledge for situated pre-
diction of movements. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004.
LNCS (LNAI), vol. 3238, pp. 141–155. Springer, Heidelberg (2004)

3. Borg, M., Thirde, D., Ferryman, J., Fusier, F., Valentin, V., Brémond, F., Thonnat,
M.: A Real-Time Scene Understanding System for Airport Apron Monitoring. In:
Proc. of IEEE International Conference on Computer Vision Systems (ICVS-06)
(2006)

4. Bremond, F., Thonnat, M., Zuóniga, M.: Video Understanding Framework for Au-
tomatic Behavior Recognition. Behaviour Research Methods 3(38), 416–426 (2006)

5. Eriksson, H.: Using JessTab to Integrate Protégé and Jess. IEEE Intelligent Sys-
tems 18(2), 43–50 (2003)

6. Fusier, F., Valentin, V., Brémond, F., Thonnat, M., Borg, M., Thirde, D., Fer-
ryman, J.: Video understanding for complex activity recognition. Machine Vision
and Applications 18(3-4), 167–188 (2007)

7. Gerber, R., Nagel, H.-H.: Occurrence Extraction from Image Sequences of Road
Traffic Scenes. In: van Gool, L., Schiele, B. (eds.) Proc. Workshop on Cognitive
Vision, Switzerlan, pp. 1–8 (2002)

8. Georis, B., Maziére, M., Brémond, F., Thonnat, M.: Evaluation and Knowledge
Representation Formalisms to Improve Video Understanding. In: Proc. ICVS 2006
(2006)

9. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems, Manning, Greenwich
(2003)

10. Hotz, L., Neumann, B.: Scene Interpretation as a Configuration Task. In: Kuen-
stliche Intelligenz, vol. 3, pp. 59–65. BoettcherIT Verlag (2005)

11. Moeller, R., Neumann, B.: Ontology-based reasoning techniques for multimedia
interpretation and retrieval. In: Kompatsiaris, Y., Hobson, P. (eds.) Semantic Mul-
timedia and Ontologies: Theory and Applications, pp. 55–98. Springer, Heidelberg
(2008)

12. Neumann, B.: Description of Time-Varying Scenes. In: Waltz, D. (ed.) Semantic
Structures. Lawrence Erlbaum, Mahwah (1989)

13. Neumann, B., Möller, R.: On scene interpretation with description logics. In: Chris-
tensen, H.I., Nagel, H.-H. (eds.) Cognitive Vision Systems. LNCS, vol. 3948, pp.
247–275. Springer, Heidelberg (2006)

14. Neumann, B., Weiss, T.: Navigation through logic-based scene models for high-
level scene interpretations. In: Proc. 3rd Int. Conf. on Computer Vision Systems
(ICVS 2003), pp. 212–222 (2003)

15. Vila, L.: A survey on Temporal Reasoning in Artifical Intelligence. AI Communi-
cations 7(1), 4–28 (1994)

16. Van-Thinh, V., Brémond, F., Thonnat, M.: Automatic video interpretation: A
recognition algorithm for temporal scenarios based on pre-compiled scenario mod-
els. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS,
vol. 2626, pp. 523–533. Springer, Heidelberg (2003)

17. Zhu, S.-C., Mumford, D.: A Stochastic Grammar of Images. Now Publishers (2007)

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 108–121, 2009.
© Springer-Verlag Berlin Heidelberg 2009

RBDT-1: A New Rule-Based Decision Tree Generation
Technique

Amany Abdelhalim, Issa Traore, and Bassam Sayed

Department of Electrical and Computer Engineering
University of Victoria, P.O. Box 3055 STN CSC,

Victoria, B.C., V8W 3P6, Canada
Ph.: (250) 721-6036; Fax: (250) 721-6052

{amany,itraore,bassam}@ece.uvic.ca

Abstract. Most of the methods that generate decision trees use examples of
data instances in the decision tree generation process. This paper proposes a
method called “RBDT-1”- rule based decision tree -for learning a decision tree
from a set of decision rules that cover the data instances rather than from the
data instances themselves. The method’s goal is to create on-demand a short
and accurate decision tree from a stable or dynamically changing set of rules.
We conduct a comparative study of RBDT-1 with three existing decision tree
methods based on different problems. The outcome of the study shows that
RBDT-1 performs better than AQDT-1 and AQDT-2 which are rule-based deci-
sion tree methods in terms of tree complexity (number of nodes and leaves in
the decision tree). It is also shown that RBDT-1 performs equally well in terms
of tree complexity compared with C4.5, which generates a decision tree from
data examples.

Keywords: attribute selection criteria, decision rules, data-based decision tree,
rule-based decision tree, tree complexity.

1 Introduction

The most common methods for creating decision trees are those that create decision
trees from a set of examples (data records). We refer to these methods as data-based
decision tree methods. The attribute selection criteria are the essential characteristics
in all those methods [1]. These criteria are used to choose the best attributes to be
assigned to the nodes of the decision tree. Examples of such criteria include the en-
tropy reduction [2], the gini index of diversity [3], and others [4], [5].

On the other hand, to our knowledge there are only few approaches proposed in the
literature that create decision trees from rules which we refer to as rule-based decision
tree methods.

A Decision tree can be an effective tool for guiding a decision process as long as
no changes occur in the dataset used to create the decision tree. Thus, for the data-
based decision tree methods once there is a significant change in the data, restructur-
ing the decision tree becomes a desirable task. However, it is difficult to manipulate
or restructure decision trees once constructed. This is because a decision tree is a

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 109

procedural knowledge representation, which imposes an evaluation order on the at-
tributes in the tree. In contrast, rule-based decision tree methods handle manipulations
in the data through the rules induced from the data not the decision tree itself. A de-
clarative representation, such as a set of decision rules is much easier to modify and
adapt to different situations than a procedural one. This easiness is due to the absence
of constraints on the order of evaluating the rules [6].

On the other hand, in order to be able to make a decision for some situation using
the set of rules we need to decide the order in which tests should be evaluated. In that
case a decision structure (e.g. decision tree) will be created from the rules. So the
methods that create decision trees from rules combine the best of both worlds. On one
hand they easily allow changes to the data (when needed) by modifying the rules
rather than the decision tree itself. On the other hand they take advantage of the struc-
ture of the decision tree to organize the rules in a concise and efficient way required
to take the best decision. So knowledge can be stored in a declarative rule form and
then be transformed (on the fly) into a decision tree only when needed for a decision
making situation [6].

In addition to that, generating a decision structure from decision rules can potentially
be performed faster than generating it from training examples because the number of
decision rules per decision class is usually much smaller than the number of training
examples per class. Thus, this process could be done on demand without any noticeable
delay [2], [7]. Methods that create decision trees from examples or data require examin-
ing the complete tree to extract information about any single classification. Even con-
verting the tree into a set of individual rules could also result in a large amount of rules
if the tree is large, which could be the case when the tree is based on a large dataset.
Otherwise, with methods that create decision trees from rules, extracting information
about any single classification can be done directly from the declarative rules [8].

Although rule-based decision tree methods create decision trees from rules, they
could be used also to create decision trees from examples by considering each
example as a rule. Data-based decision tree methods create decision trees from data
only. Thus, when generating a decision tree for problems were rules are provided e.g.
by an expert and no data is available, rule-based decision tree methods are the only
applicable solution.

This paper presents a new rule-based decision tree method called RBDT-1. To derive
the tree, the RBDT-1 method uses in sequence three different criteria to determine the fit
(best) attribute for each node of the tree, which are referred to as the attribute effective-
ness (AE), the attribute autonomy (AA), and the minimum value distribution (MVD).

The rest of the paper is structured as follows. Section 2 summarizes the related
work. Section 3 discusses the rule generation approach and notations used in this
work. Section 4 describes the RBDT-1 method by illustrating, in particular, the prepa-
ration of the rules into a format that will be used by the method, the different criteria
used in the attribute selection process, the pruning technique adopted by the method
and also by providing an illustration of the method using a small dataset. Section 5
presents the results of an experiment in which, based on public datasets, the proposed
method is compared to two existing methods for creating decision trees from declara-
tive rules, namely the AQDT-1 [6] and AQDT-2 [8] methods, and to the C4.5 algo-
rithm [9] that creates decision trees from data examples. In Section 6, we make some
concluding remarks and outline our future work.

110 A. Abdelhalim, I. Traore, and B. Sayed

2 Related Work

There are few published works on creating decision structures from declarative rules.
The AQDT-1 method introduced in [6] is the first approach proposed in the litera-

ture to create a decision tree from decision rules. The AQDT-1 method uses four crite-
ria for selecting the fit attribute that will be placed at each node of the tree. Those
criteria are the cost1, the disjointness, the dominance, and the extent, which are ap-
plied in the same specified order in the method’s default settings.

The AQDT-2 method introduced in [8] is a variant of AQDT-1. AQDT-2 uses five
criteria in selecting the fit attribute for each node of the tree. Those criteria are the
cost, disjointness, information importance, value distribution, and dominance, which
are also applied in the same specified sequence in the method’s default settings. In
both the AQDT-1 & 2 methods, the order of each criterion expresses its level of im-
portance in deciding the attribute that will be selected for a node in the decision tree.
Although both AQDT-1 & 2 are capable of generating a decision tree from a set of
rules, experiments presented in this paper show that our proposed method RBDT-1
produces a less complex tree in most of the cases.

Another point is that the calculation of the second criterion - the information impor-
tance - in AQDT-2 method depends on the training examples, which contradicts the
method’s fundamental idea of being a rule-based decision tree method rather than a
data-based decision tree method. AQDT-2 requires both the examples and the rules to
calculate the information importance at certain nodes where the first criterion- Dis-
jointness - is not enough in choosing the fit attribute. AQDT-2 being both dependent on
the examples as well as the rules results in an increase of the running time of the
algorithm remarkably in large datasets especially those with large number of attributes.

In contrast the multi criteria calculations of the RBDT-1 method, proposed in this
work, for generating a decision tree require only the set of rules given to the method
as an input, and does not require the presence of the examples used to induce those
rules. The calculations of all the method’s criteria are based on certain characteristics
of the attributes intrinsic to the rules only.

Akiba et al. [10] proposed a rule-based decision tree method for learning a single
decision tree that approximates the classification decision of a majority voting classi-
fier. Their method was proposed as a possible solution to solve the issues of intelligi-
bility, classification speed, and required space in majority voting classifiers. In their
proposed method, if-then rules are extracted from each classifier which is a decision
tree generated using the data-based decision tree method C4.5. They use the extracted
rules used to learn a single decision tree. The goal of the method is to provide an
approximation of the majority voting classifier rather than an exact matching behav-
ior. The method that they propose depends both on the real examples used to create
the classifiers (decision trees) and on a set of training examples that they create using
the rules extracted from the classifiers. The procedure that they follow in selecting the
best attribute at each node of the tree is based on the C4.5 as well. The size of a deci-
sion tree learned by Akiba et al. method while using rules extracted from multiple
classifiers built by C4.5 is about 1.2 to 4.2 times the size of a decision tree learned by
C4.5 from the data [10]. As will be shown in the experiments, when using rules ex-
tracted from a C4.5 decision tree, the RBT-1 method generates a tree that is the same
size as the decision tree learned by C4.5 from data, even smaller in some of the cases
with an equal accuracy.

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 111

In [11], the authors proposed a method called Associative Classification Tree
(ACT) for building a decision tree from association rules rather than from data. They
proposed two splitting algorithms for choosing attributes in the ACT. The first algo-
rithm is based on the confidence gain criterion and the second is based on the entropy
gain criterion. In both splitting algorithms the attribute selection process at each node
relies on both the existence of rules and the data itself as well. Unlike our proposed
method RBDT-1, ACT is not capable of building a decision tree from the rules in the
absence of data, or from data (considering them as rules) in the absence of rules.

3 Rule Generation and Notations

In order for our proposed method to be capable of generating a decision tree for a
certain dataset, it has to be presented with a set of rules that cover the dataset. The
rules will be used as input to RBDT-1 which will produce a decision tree as an output.
The rules can either be provided up front, for instance, by an expert or can be gener-
ated algorithmically.

Let 1,..., na a denote the attributes characterizing the data under consideration, and

let 1,..., nD D denote the corresponding domains, respectively (i.e. iD represents the

set of values for attribute ia). Let 1,..., mc c represent the decision classes associated

with the dataset.
The datasets that we use in our experiments are based on classification problems

where each example in the dataset belongs to only one class. Thus, a desirable form of
a rule set would be a logically disjoint and complete family of rule sets. Thus, given a
collection of rule sets, one for each class decision, no two rule sets for two different
classes shall logically intersect and the union of all the rule sets shall cover the whole
dataset. In such a case, each possible example in the dataset will belong to one of the
predefined classes. So the decision classes induce a partition over the complete set of

rules. Let Ρ denote the complete set of rules and iR denote the set of rules associated

with decision class ic . Hence, we have the following: i ji j R R≠ ⇒ ∩ = ∅ , where

1 ,i j m≤ ≤ ;
1

i
i m

R
≤ ≤

Ρ = U .

In our main experiment, we are comparing the decision tree generated by our pro-
posed method to the AQDT-1, AQDT-2, and the C4.5 methods. Since all the methods
under comparison except the C4.5 method are rule-based decision tree methods, one of
the best ways to perform a fair comparison is to use the same rules extracted from C4.5
decision tree itself as input to the other three rule-based methods. The method used to
extract rules from the C4.5 decision tree consists of converting each branch – from the
root to a leaf – of the decision tree to an if-then rule whose condition part is a pure
conjunction. This approach ensures that we will have a collection of disjoint rules.

We used AQ19 [12] to generate the rule set used to illustrate RBDT-1 method.
AQ19 is a rule induction program that belongs to the famous AQ-type family for ma-
chine learning and pattern discovery techniques, which are capable of creating logi-
cally disjoint rules.

112 A. Abdelhalim, I. Traore, and B. Sayed

4 RBDT-1 Method

In this section, we outline the format of the rules required for RBDT-1 method, the
attribute selection criteria of the method, and then summarize the main steps of the
underlying decision tree building process. We also present the pruning technique
adopted by the method. Finally, we illustrate the steps for generating a decision tree
by the RBDT-1 method using a small rule set.

4.1 Preparing the Rules

The decision rules must be prepared into the proper format used by the RBDT-1
method. This is done by assigning a “don’t care” value to all the attributes that were
omitted in any of the rules. The “don’t care” value is equivalent to listing all the val-
ues for that attribute.

For example, suppose that we have three attributes 1 2 3, and a a a with the same

domain containing 1 2 3, and v v v as possible values.

Let us assume that the following rules correspond to class c1:

r1: c1 a1=v1 & a2=v2, r2: c1 a1=v3

The preparation of these two rules will result in the following formatted rules:

r1: c1 a1=v1 & a2=v2 & a3=”don’t care”, r2: c1 a1=v3 & a2=”don’t care” &
a3=”don’t care”

Each rule is submitted to RBDT-1 in the form of an attribute-value vector. This
vector will contain first the values of the attributes that appear in the rule followed by
the class decision representing the last element of the vector. Thus, accordingly the
previous two rules will be presented as follows:

r1: (v1, v2, don’t care, c1), r2: (v3, don’t care, don’t care, c1)

4.2 Attribute Selection Criteria

The RBDT-1 method applies three criteria on the attributes to select the fittest attrib-
ute that will be assigned to each node of the decision tree. These criteria are the
Attribute Effectiveness, the Attribute Autonomy, and the Minimum Value Distribution.

Attribute Effectiveness (AE). AE is the first criterion to be examined for the attrib-
utes. It prefers an attribute which has the most influence in determining the decision
classes. In other words, it prefers the attribute that has the least number of “don’t
care” values for the class decisions in the rules, as this indicates its high relevance for
discriminating among rule sets of given decision classes. On the other hand, an attrib-
ute which is omitted from all the rules (i.e. has a “don’t care” value) for a certain class
decision does not contribute in producing that corresponding decision. So it is consid-
ered less important than the other attributes which are mentioned in the rule for
producing a decision of that class. Choosing attributes based on this criterion maxi-
mizes the chances of reaching leaf nodes faster which on its turn minimizes the
branching process and leads to producing a smaller tree.

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 113

Using the notation provided above (see section 3), let ijV denote the set of values

for attribute ja involved in the rules in iR , which denote the set of rules associated

with decision class ic , 1 i m≤ ≤ . Let DC denote the ‘don’t care’ value, we calculate

()i jC DC as shown in (1):

1
()

0
ij

i j

if DC V
C DC

otherwise

∈⎧
= ⎨
⎩

 (1)

Given an attribute ja , where1 j n≤ ≤ , the corresponding attribute effectiveness is

given in (2).

1

()
()

m

i j
i

j

m C DC
AE a

m
=

−
=

∑

(2)

(Where m is the total number of different classes in the set of rules).
The attribute with the highest AE is selected as the fit attribute. If more than one at-

tribute achieve the highest AE score we will use the next criterion in our method,
which is the Attribute Autonomy to determine the best attribute among them.

Attribute Autonomy (AA). AA is the second criterion to be examined for the attrib-
utes. This criterion is examined when the highest AE score is obtained by more than
one attribute. This criterion prefers the attribute that will decrease the number of sub-
sequent nodes required ahead in the branch before reaching a leaf node. Thus, it
selects the attribute that is less dependent on the other attributes in deciding on the
decision classes. We calculate the attribute autonomy for each attribute and the one
with the highest score will be selected as the fit attribute. If more than one attribute
achieve the highest AA score, we will use the next criterion in our method which is the
Minimum Value Distribution to determine the best attribute among them.

For the sake of simplicity, let us assume that the set of attributes that achieved the

highest AE score are 1,..., , 2 nsa a s≤ ≤ . Let 1,..., jj jpv v denote the set of possible

values for attribute ja including the “don’t care”, and jiR denote the rule subset

consisting of the rules that have ja appearing with the value jiv , where 1 j s≤ ≤

and1 ji p≤ ≤ . Note that jiR will include the rules that have don’t care values for

ja as well.

The AA criterion is computed in terms of the Attribute Disjointness Score (ADS),

which was introduced by [8]. For each rule subset jiR , let MaxADSji denote the

maximum ADS value and let ADS_Listji denote a list that contains the ADS score for

each attribute ka , where1 ,k s k j≤ ≤ ≠ .

114 A. Abdelhalim, I. Traore, and B. Sayed

According to [8], given an attribute ja and two decision classes ic and kc

(where1 , ;1i k m j s≤ ≤ ≤ ≤), the degree of disjointness between the rule set for ic

and the rule set for jc with respect to attribute ja is defined as shown in (3):

0

1
(, ,)

2 ()

3

ij kj

ij kj

j i k
ij kj ij kj

ij kj

if V V

if V V
ADS a c c

if V V or V or V

if V V

⊆⎧
⎪ ⊇⎪= ⎨ ∩ ≠ ∅⎪
⎪ ∩ = ∅⎩

 (3)

The Attribute Disjointness of the attribute ja ; ()jADS a score is the summation of

the degrees of class disjointness (, ,)j i kADS a c c given in (4):

1 1

() (, ,) .
m

j j i k
i k s

i k

ADS a ADS a c c
= ≤ ≤

≠

=∑ ∑ (4)

Thus, the number of ADS_List that will be created for each attribute ja as well as the

number of MaxADS values that are calculated will be equal to jp . The MaxADSji

value as defined by [8] is 3 (1)m m× × − where m is the total number of classes

in jiR . We introduce the AA as a new criterion for attribute ja as given in (5):

1

1

(,)
jj p

j
i

AA (a)

AA a i
=

=

∑

(5)

Where (,)jAA a i is defined as shown in (6):

() () ()()()

1

0 0

1 0 2 : []

1 (1) []

ji

ji ji ji j

s

ji ji
l , l j

 if MaxADS

AA (a , i) if MaxADS s l MaxADS ADS_List l

 s MaxADS ADS_List l otherwise

=

= ≠

⎧
⎪ =⎪
⎪
⎪
⎪= ≠ ∧ = ∨ ∃⎨
⎪
⎪
⎪ ⎡ ⎤⎪ + − × −⎢ ⎥⎪ ⎣ ⎦⎩

∑

(6)

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 115

The AA for each of the attributes is calculated using the above formula and the at-
tribute with the highest AA score is selected as the fit attribute. According to the

above formula, jAA (a , i) equals zero when the class decisions for the rule subset

examined corresponds to one class, in that case MaxADS=0, which indicates that a

leaf node is reached (best case for a branch). jAA (a , i) equals 1 when s equals 2 or

when one of the attributes in the ADS_list has an ADS score equal to MaxADS value
(second best case). The second best case indicates that only one extra node will be

required to reach a leaf node. Otherwise jAA (a , i) will be equal to 1 + (the differ-

ence between the ADS scores of the attributes in the ADS_list and the MaxADS value)
which indicates that more than one node will be required until reaching a leaf node.

Minimum Value Distribution (MVD). The MVD criterion is concerned with the
number of values that an attribute has in the current rules. When the highest AA score
is obtained by more than one attribute, this criterion selects the attribute with the
minimum number of values in the current rules. MVD criterion minimizes the size of
the tree because the fewer the number of values of the attributes the fewer the number
of branches involved and consequently the smaller the tree will become [8]. For the
sake of simplicity, let us assume that the set of attributes that achieved the highest AA

score are 1,..., , 2 q sqa a ≤ ≤ . Given an attribute ja (where1 j q≤ ≤), we com-

pute corresponding MVD value as shown in (7).

1

() | | .j ij
i m

MVD a V
≤ ≤

= U (7)

(Where |X| denote the cardinality of set X).
When the lowest MVD score is obtained by more than one attribute, any of these

attributes can be selected randomly as the fit attribute.

4.3 Building the Decision Tree

We describe, in this section, the RBDT-1 approach for building a decision structure
from a set of decision rules. In our case the decision structure is a decision tree which
is a single-parent decision structure. In the decision tree building process, we select
the fit attribute that will be assigned to each node from the current set of rules CR
based on the attribute selection criteria outlined in the previous section. CR1 is a sub-
set of the decision rules that satisfy the combination of attribute values assigned to the
path from the root to the current node. From each node a number of branches are
pulled out according to the total number of values available for the corresponding
attribute in CR. Each branch is associated with a reduced set of rules RR which is a
subset of CR that satisfies the value of the corresponding attribute. If RR is empty,
then a single node will be returned with the value of the most frequent class found in
the whole set of rules. Otherwise, if all the rules in RR assigned to the branch belong
to the same decision class, a leaf node will be created and assigned a value of that

1 CR will correspond to the whole set of rules at the root node.

116 A. Abdelhalim, I. Traore, and B. Sayed

decision class. The process continues until each branch from the root node is termi-
nated with a leaf node and no more further branching is required.

4.4 Pruning Decision Rules

RBDT-1 is capable of handling the problem of generating a decision tree from noisy
training data. In RBDT-1, we handle noisy data by removing rules that cover only a
small portion of the data that could be considered noise [13]. The examples that were
covered by the truncated rules can often be covered by applying an analogical match-
ing procedure. The analogical matching procedure determines the degree of similarity
between the examples to be classified and the rules of a given decision class, and
selects the best matching decision class [14]. In [15] experiments show that such a
rule truncation method not only simplifies decision rules which could lead to a sim-
pler decision tree, but could also improve their prediction accuracy in some cases.

In RBDT-1, rules are pruned if their support level is less than or equal to a prede-
fined threshold. The support level of a rule is the percentage of the total number of
examples covered by the rule (called the t-weight) to the total number of examples in
the given decision class.

4.5 The Weekend Problem

In this section, the steps for generating a decision tree by the RBDT-1 method will be
explained in detail for a small dataset called the Weekend problem. The Weekend
problem is a dataset that consists of 10 data records obtained from [16]. We used the
AQ19 rule induction program to induce the rule set shown in Table 1 which will serve
as the input to our proposed method RBDT-1 in this example. AQ19 was used with the
mode of generating disjoint rules and with producing a complete set of rules without
truncating any of the rules.

Table 1. The weekend rule set induced by AQ19

Rule Description
r1 Cinema Parents-visiting=”yes” & weather =”don’t care” & Money =”rich”
r2 Tennis Parents-visiting=”no” & weather =”sunny” & Money =”don’t care”
r3 Shopping Parents-visiting=”no” & weather =”windy” & Money =”rich”
r4 Cinema Parents-visiting=”no” & weather =”windy” & Money =”poor”
r5 Stay-in Parents-visiting=”no” & weather =”rainy” & Money =”poor”

In order to choose the fit attribute for the root node of the tree, we first apply the

three criteria of the RBDT-1 method on the attributes in the rules presented in Table 1.
The criteria are applied in the same order explained in the previous section. The AE
calculations for Parents-Visiting, Money and Weather attributes are {1, 0.75, 0.75}
respectively. Thus, the candidate attribute with the highest AE is the parents-visiting
attribute. Two branches will be pulled out from the parents-visiting attribute corre-
sponding to its two values in the current rules, namely yes and no.

A subset of the weekend rule set will be assigned to the branch where
parents-visiting=”yes”. This subset of rules will consist of all the rules with

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 117

Fig. 1. The decision tree generated by RBDT-1 for the weekend problem before pruning

parents-visiting=”yes” or “don’t care”. The corresponding subset contains only one
rule corresponding to rule {r1} with “cinema” as a decision. Thus, a leaf node “cin-
ema” will be created and assigned to the branch where parents-visiting=”yes”.

Another subset of the weekend rule set will be assigned to the branch where par-
ents-visiting=”no” corresponding to rules {r2, r3, r4, r5}. This subset of rules will
consist of all the rules with parents-visiting=”no” or “don’t care”.

The AE calculations for Weather and Money attributes are {1, 0.75} respectively.
Thus, the attribute with the highest AE; the weather attribute will be selected as the fit
attribute for the branch parents-visiting=”no”. Three branches will be pulled out
from the weather attribute corresponding to its three values; sunny, windy, and rainy
found in the CR. For the branch where parents-visiting=”no” and weather=”sunny”,
there is only one rule that corresponds to that branch with a class decision tennis
which is rule {r2}. So a leaf node with tennis as a decision will be created and as-
signed to that branch.

Fig. 2. The pruned decision tree generated by RBDT-1, AQDT-1 and AQDT-2 for the weekend
problem

118 A. Abdelhalim, I. Traore, and B. Sayed

Table 2. Two sets of C4.5 Decision trees with prune option on and off along with the number
of extracted rules and accuracy from each

Prune option off Prune option on

Dataset Tree Size
(# nodes, #

leaves)

Extracted

Rules
Acc2

Tree Size
(# nodes, #

leaves)

Extracted

Rules
Acc

Weekend (2,4) 4 90 % (2,4) 4 90 %

Lenses (3,4) 4 91 % (3,4) 4 91 %

Chess (5, 10) 10 100 % (5, 10) 10 100 %

Car (52, 134) 134 96 % (51,131) 131 96 %

Tic-Tac-Toe (69, 139) 139 95 % (47, 95) 95 93 %

Connect-4 (5317, 10635) 10635 91 % (2142, 4285) 4285 87 %

Nursery (264, 680) 680 99 % (152, 359) 359 98 %

Balance (22, 89) 89 80 % (8,33) 33 75 %

MONK’s 1 (29, 56) 56 97 % (13,28) 28 100 %

MONK’s 2 (88, 166) 166 85 % (1,1) 1 67 %

MONK’s 3 (5, 14) 14 100 % (5,14) 14 100 %

Zoo (8, 13) 13 99 % (8, 13) 13 99 %

Breast-C (27, 113) 113 85 % (2,4) 4 74 %

Lung -C (7, 12) 12 90 % (6, 10) 10 87 %

Primary-T (56, 67) 67 57 % (41, 47) 47 58 %

Voting (18, 19) 19 92 % (5,6) 6 93 %

There are two rules corresponding to the branch where parents-visiting=”no” and
weather=”windy” which are rules {r3, r4}. One of the rules corresponds to the deci-
sion class shopping and the other rule corresponds to the decision class cinema. Both
rules depend on the value of the money attribute for producing the decision. The
money attribute will be chosen as the fit attribute since it is the only candidate attrib-
ute left. A node will be created and assigned the attribute money. Two branches will
be pulled out from the money node. A leaf node will be assigned the class decision
cinema for the branch where money= “poor”. Another leaf node will be assigned the
class decision shopping for the branch where money=”rich”.2

For the branch where Parents-Visiting=”no” and Weather=”rainy”, there is only one
rule that corresponds to that branch with a class decision stay-in, thus it will be assigned

2
 Acc refers to the accuracy of the rules extracted and is calculated as the percentage of the
number of examples correctly classified by the rules to the total number of examples.

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 119

to that branch. Overall, the corresponding decision tree created by the proposed RBDT-1
method for the weekend problem is shown in Fig 1. It consists of 3 nodes and 5 leaves
with 100% classification accuracy for the data. The decision tree created by AQDT-1 & 2
using the same set of rules results in a tree of 5 nodes and 7 leaves - which is a bigger tree
than that created by RBDT-1 - with 100% classification accuracy for the data.

As indicated above, in RBDT-1, rules are pruned if their support level is less than or
equal to a predefined threshold. Fig 2 shows a decision tree obtained after pruning the
decision rules for the weekend problem in Table 1. In this case, we removed rules with
the lowest support level. The produced decision tree by RBDT-1 misclassified one exam-
ple out of 10 giving a predictive accuracy of 90% and consists of 2 nodes and 4 leaves.

Fig 2 also shows the decision tree produced by AQDT-1 & 2 using the same pruned
rules; although the produced tree has the same accuracy as the tree produced with
RBDT-1, it is bigger in size since it has 4 nodes and 6 leaves. When applying C4.5 to
the dataset of the weekend problem it resulted in a tree of the same size and accuracy
as RBDT-1 in Fig 2.

5 Experiment and Results

In order to evaluate the RBDT-1 method, we conducted an experiment using 16 pub-
licly available datasets, including the weekend dataset used in the previous section.
Other than the weekend dataset, all the datasets appearing in Tables 2 and 3 were
obtained from the UCI machine learning repository [17].

The evaluation consisted mainly of comparing the RBDT-1 method with the
AQDT-1, AQDT-2, and C4.5 methods in terms of the complexity and accuracy of the
decision trees produced. Since we were comparing our proposed method to AQDT-1
& 2 methods which are all rule-based decision tree methods, it was a good idea to
compare their performance with multiple rule sets.

Table 3. Comparison of the tree complexity of RBDT-1, AQDT-1, AQDT-2 & C4.5

Dataset Experiment 1 Experiment 2 Dataset Experiment 1 Experiment 2

Weekend RBDT-1, C4.5 RBDT-1, C4.5 MONK’s 1 RBDT-1 =

Lenses RBDT-1, C4.5 RBDT-1, C4.5 MONK’s 2 = =

Chess = = MONK’s 3 AQDT-1 & 2 AQDT-1 & 2

Car RBDT-1, C4.5 RBDT-1, C4.5 Zoo RBDT-1, C4.5 RBDT-1, C4.5

Tic-Tac-Toe = = Breast-C = =

Connect-4 RBDT-1 RBDT-1, C4.5 Lung-C RBDT-1, C4.5 RBDT-1, C4.5

Nursery
RBDT-1,

AQDT-1 & 2
= Primary-T RBDT-1, C4.5 RBDT-1, C4.5

Balance = = Voting AQDT-1 &2 =

120 A. Abdelhalim, I. Traore, and B. Sayed

The rules used for comparing the decision trees of RBDT-1, AQDT-1, and AQDT-2
in the experiment are C4.5-based rules. Since C4.5 is capable of handling datasets
with missing values, we were capable of experimenting with both rules extracted from
complete and incomplete datasets.

In our experiment, we used the C4.5 method under its default settings to generate
two different decision trees for each dataset. One tree was generated with the pruning
option turned on and the other with the pruning option turned off. Since the compari-
son was based on 16 datasets, 32 decision trees were generated. From each decision
tree we extracted a rule set - as explained in section 3- which served as the input to
the other three rule-based methods under comparison. So accordingly 32 rule sets
were used in this experiment. The process is summarized in Table 2.

Results in Table 3 show that, in terms of tree size, RBDT-1 performs better than
AQDT-1 & 2 in most of the rule sets. Based on the results in the two experiments, In
Table 3, we illustrate the results of the comparison between RBDT-1, AQDT-1,
AQDT-2 and C4.5 in two experiments, labeled experiment1 and experiment2. In
each experiment the C4.5 decision tree was generated from the whole set of exam-
ples of each dataset and the rules extracted from that tree served as input to the other
three rule-based decision tree methods. In experiment1, the pruning option was
turned off, while in experiment2 the pruning option was turned on. The name(s)
appearing under each experiment correspond(s) to the method(s) that generated the
smallest tree, while “=” indicates that all four methods produced the same tree.

AQDT-1 & 2 produce a larger tree by an average of 146.33 nodes with the excep-
tion of 3 rule sets where RBDT-1’s tree is larger by an average of 3 nodes. In addition,
the results illustrate that RBDT-1 is as effective as C4.5 except in experiment1, where
our method produced a slightly smaller tree for the connect-4, MONK’s 1 and nursery
rule sets. In terms of accuracy, the four methods have equal performance.

6 Conclusion and Future Work

The RBDT-1 method proposed in this work allows generating a decision tree from a
set of rules rather than from the whole set of examples. Generating a decision struc-
ture from decision rules can potentially be performed much faster than by generating
it from training examples.

Modifications to the data are handled easier in rule-based methods than in data-
based methods. At the same time rule-based methods could transform the rules to a
decision tree once we need to decide the order in which tests should be evaluated in
those rules. Rule-based decision tree methods although designed to create decision
trees from rules, could also generate decision trees from data examples. Rule-based
decision tree methods are the only solution for generating a decision tree for applica-
tions where no data is available and only rules exist. The price of the RBDT-1 advan-
tages is the need to generate rules first before being capable of generating the tree.
However, there are efficient rule learning systems available.

Experiments conducted in this work illustrates that in terms of tree complexity our
proposed method RBDT-1 performs better than AQDT-1 & 2 in most of the rule sets,
with an equal accuracy classification, while it is as effective as C4.5 in terms of tree
complexity and accuracy.

 RBDT-1: A New Rule-Based Decision Tree Generation Technique 121

In our future work we will conduct more experiments using rule sets produced by dif-
ferent rule generation methods. We will also extend our method to address the problem
of learning from rules that do not logically intersect. We intend to apply our method in
application fraud detection where fraud data is not easily available and instead a rule-base
could be created based on heuristics and expert knowledge. RBDT-1 can summarize the
rule-base into a decision tree for more readability and for obtaining the fastest decision.

References

1. Imam, I.F.: An Empirical Comparison between Learning Decision Trees From Examples
and From Decision Rules. In: 9th International Symposium on Methodologies for Intelli-
gent Systems, Zakopane (1996)

2. Quinlan, J.R.: Discovering rules by induction from large collections of examples. In: Mi-
chie, D. (ed.) Expert Systems in the Microelectronic Age, pp. 168–201. Edinburgh Univer-
sity Press (1979)

3. Breiman, L., Friedman, J.H., Oishen, R.A., Stone, C.J.: Classification and Regression
Structures. Wadsworth Int. Group, Belmont (1984)

4. Cestnik, B., Karalie, A.: The Estimation of Probabilities in Attribute Selection Measures
for Decision Structure Induction. In: Proceeding of the European Summer School on Ma-
chine Learning, pp. 22–31. Priory Corsendonk, Belgium (1991)

5. Mingers, J.: An Empirical Comparison of Selection Measures for Decision-Structure In-
duction. Machine Learning 3(3), 319–342 (1989)

6. Imam, I.F., Michalski, R.S.: Learning Decision Trees from Decision Rules: A Method and
Initial Results from a Comparative Study. J. JIIS. 2(3), 279–304 (1993)

7. Witten, I.H., MacDonald, B.A.: Using Concept Learning for Knowledge Acquisition. J.
IJMMS., 349–370 (1988)

8. Michalski, R.S., Imam, I.F.: Learning Problem-Oriented Decision Structures From Deci-
sion Rules: the AQDT-2 System. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS
(LNAI), vol. 869, pp. 416–426. Springer, Heidelberg (1994)

9. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo
(1993)

10. Akiba, Y., Kaneda, S., Almuallim, H.: Turning Majority Voting Classifiers Into A Single
Decision Tree. In: 10th IEEE International Conference on Tools with Artificial Intelli-
gence, pp. 224–230 (1998)

11. Chen, Y., Hung, L.T.: Using Decision Trees to Summarize Associative Classification
Rules. Expert Syst. Appl. 36(2), 2338–2351 (2009)

12. Michalski, R.S., Kaufman, K.: The AQ19 System for Machine Learning And Pattern Dis-
covery: A General Description And User’s Guide. In: Reports of the Machine Learning
and Inference Laboratory, MLI 01-2. George Mason University, Fairfax (2001)

13. Michalski, R.S., Imam, I.F.: On Learning Decision Structures. Fundamenta Informati-
cae 31(1), 49–64 (1997)

14. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The Multi-Purpose Incremental Learn-
ing System AQ15 and its Testing Application to Three Medical Domains. In: Proceedings
of AAAI 1986, Philadelphia, PA, pp. 1041–1045 (1986)

15. Bergadano, F., Matwin, S., Michalski, R.S., Zhang, J.: Learning Two-tiered Descriptions
of Flexible Concepts: The POSEIDON System. Machine Learning 8(1), 5–43 (1992)

16. Colton, S.: Online Document (2004),
http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture11.html

17. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California,
School of Information and Computer Science, Irvine (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 122–136, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Process Materialization Using Templates and Rules to
Design Flexible Process Models

Akhil Kumar1 and Wen Yao2

1 Smeal College of Business, Penn State University, University Park, PA 16802, USA
2 College of Information Science and Technology, Penn State University, University Park,

PA 16802, USA
akhil@psu.edu, wxy119@psu.edu

Abstract. The main idea in this paper is to show how flexible processes can be
designed by combining generic process templates and business rules. We in-
stantiate a process by applying rules to specific case data, and running a materi-
alization algorithm. The customized process instance is then executed in an
existing workflow engine. We present an architecture and also give an algo-
rithm for process materialization. The rules are written in a logic-based lan-
guage like Prolog. Our focus is on capturing deeper process knowledge and
achieving a holistic approach to robust process design that encompasses control
flow, resources and data, as well as makes it easier to accommodate changes to
business policy.

Keywords: flexible processes, rules, templates, materialization, algorithms.

1 Introduction

There are many approaches and frameworks for designing business workflows. Most
of them are based on mapping a control flow that specifies the coordination of various
activities (see, for instance, [1,2,8,15,21]). The control flow description of a process is
also called a process schema. In general, there are a large number of process schemas
in an organization. This occurs partly because many schemas are variants of one an-
other with minor changes between them. Take for instance, an insurance company
that writes policies for automobile, home and other kinds of insurance. When claim
applications are made, then the company has to initiate a different process schema for
an automobile accident claim as compared to a home damage claim. Moreover, even
for a home damage claim, another different process must be enacted for a home
whose value is less than $100,000 versus a home whose value is more than $250,000
because in the former case only one adjuster might be required to visit the home and
appraise the damage, while in the second case two adjusters are required to submit
independent reports of damage assessment. In general, if there are thousands of proc-
ess variants it makes finding the correct process difficult and error prone.

Another complication may arise if the company changes its policy to require two
independent assessments only when the value of the home is more than $500,000.
Just this simple business policy change will necessitate a change in many process
schema variants. It is time and effort consuming if every variant of the process

 Process Materialization Using Templates and Rules 123

schema affected by this change has to be modified. Thus process schema description
gets tied into the business policy of the organization.

In this paper we propose a novel solution to process design based on the idea of
process materialization. Process materialization means to generate on the fly a process
schema (say, a BPMN [21] model in XML) that integrates the control flow, resource
needs and data from a generic process template, which describes a very basic and gen-
eral process schema, by applying business rules to the input data of a process. In gen-
eral, these rules correspond to the business policy of an organization. Thus, this is a
rule-based approach to process schema design so as to incorporate the business policy
in a dynamic way. If policy changes, only the rules have to be modified while the tem-
plate can remain unchanged. After the schema has been materialized, then the process
would be executed by a workflow engine. The main advantage of this approach is that
an end user does not have to create a large number of process schemas before hand and
manually determine which schema to execute when a case (such as for an insurance
claim) arrives. In addition, an end user does not need to modify a large number of
process schemas when policy changes occur since the policy can be captured by rules.

Another advantage of this approach is that it leads to holistic process design.
Workflow research has focused on the modeling of the control flow of a process,
while other key aspects like data flow and resource needs of various tasks are ne-
glected. In general, a holistic process model requires additional information like re-
source needs of each task, data values of parameters associated with a task, equipment
and facilities needed for the completion of the task, etc. One of the goals in the pro-
posed approach is to integrate the modeling of resource and data needs of various
tasks as well into the process description. Thus, in the insurance example above, it
should be possible to specify that: (1) if the damage exceeds $500,000 then the claim
must be approved by a vice-president (a resource related constraint); and (2) at least
one adjuster out of two should have more than 10 years of experience (a data related
constraint). Modeling approaches that capture such requirements are needed.

Thus, the essence of our approach is: process template + rules = materialized
process. Naturally, this leads to considerably more flexibility than conventional ap-
proaches and is suitable in scenarios involving variability and frequent changes in the
environment, as well as resource intensive or ad hoc workflows. The organization of
this paper is as follows. Section 2 provides an example to motivate our approach,
presents an architecture to formalize this approach and also gives a formal representa-
tion for processes, while Section 3 describes our representation approach for rules and
discusses rule processing. Then, Section 4 describes our materialization algorithm in
detail. Finally, Section 5 provides a detailed discussion and Section 6 concludes the
paper with directions for future work.

2 Preliminaries

2.1 Motivating Example

Figure 1 shows an example process template for an insurance process in BPMN nota-
tion [21]. In this template, after a claim is received by a customer representative, it is
validated by a clerk to ensure that the customer has a valid policy that relates to this
claim. The clerk also makes an assignment to two adjusters who will review and
appraise the damage to the auto or the house, and then submit a report. The two

124 A. Kumar and W. Yao

adjusters may perform their jobs in parallel. This is indicated by a parallel gateway
shown as a diamond with a cross. The first parallel gateway where multiple branches
split has a corresponding parallel gateway where multiple paths merge. After the
reports are received by the customer representative, they are checked for complete-
ness and sent to an officer who will determine the settlement amount based on the
reports. Subsequently, two approvals are required by a manager and a senior manager,
and then the accounts manager will issue the payment to the customer.

Fig. 1. Description of an insurance process in BPMN notation

Figure 1 shows the “normal” tasks, the roles that perform the tasks and the control
flow relationships between tasks. However, the realized process may vary depending
upon the actual data for a particular incident or case. Thus, the template can be cus-
tomized for a specific case by applying rules to it. An example rule set is shown in
Figure 2. The rules are written in plain English-like syntax. So, if the loss claimed is
less than $500K, then only one adjuster is required (R1); however, if the loss is, more
than $250K then the adjuster should have more than 10 years of experience (R7) and
must fill the “long” form (R9). Furthermore, if the loss is more than $500K, the sec-
ond adjuster should be classified as an expert (R8). After a settlement is assessed,
either one or two approvals are required before payment is made. The number of
approvals depends upon the amount of loss (R4, R5, R6). Finally, there are rules re-
lated to the urgency status of the case. If it is marked expedite then the approvals may
be performed in parallel to save time (R2). On the other hand, if it is marked urgent,
then the second approval may be deferred to after the payment is made (R3).

Fig. 2. Rules to be applied to the process template of Figure 1

R1: If loss < $500K, then skip review by adjuster 2
R2: If application = expedite then perform approvals in parallel
R3: If application = urgent and loss < $500K then

defer second approval until after payment
R4: If loss < $100K, then need manager approval
R5: If $100K < loss < $500K, then need manager & senior manager approval
R6: If loss > $500K, then need manager + VP approval
R7: If loss > $250K, then need adjuster with minimum 10 years experience
R8: If loss > $500K, then need detailed assessment from an expert
R9: If loss > $250K, then adjustor must fill the "long" form

 Process Materialization Using Templates and Rules 125

Clearly, by applying the rules to the template on different case data, we obtain
different processes. Two such materializations for two different cases are shown in
Figure 3. In (a), the loss is $200 K and it is marked expedite, while in (b) the loss is
$300K and it is marked urgent. We can see that different processes emerge.

(a) Materialization 1: (loss = $200K, status = expedite)

(b) Materialization 2: (loss = $300K, status = urgent)

Fig. 3. Two materializations from process template and rules

The purpose of this example was to motivate the need for materialization. Our mo-
tivation in a nutshell is to reduce the number of processes, especially those which are
minor variants of each other, and to make processes more adaptive and agile to busi-
ness policy changes. Thus, our approach uses process templates to abstract similar
processes and uses rules to separate business policy from process design to adjust to a
constantly evolving environment.

Next, we give an architecture to show how to formalize this approach.

2.2 Architecture

A high level architecture for our approach is shown in Figure 4. A process designer
can create, modify and delete process templates and rules using an editor. Each proc-
ess template is associated with a number of rules that have the same process id. The
editor checks the template for correctness and the rules for consistency. In the case
where two rules conflict, the system will give a warning and ask the designer either to
modify the rule or associate priorities with them. In addition, the editor checks the
executability of rules on their associated template. For example, the editor will give
an error warning to the process designer if delete(task t1) is contained in the rule while
t1 does not exist in the process template. Detailed definition of semantics for the rule
engine is discussed in the next section. As a result, valid process templates and rules

126 A. Kumar and W. Yao

are maintained respectively in the process template repository and shared rule reposi-
tory. As the business policy changes over time, the process designer can easily change
rules associated with a specific process while leaving the process template unchanged.
When input data for a particular case is entered into the rule engine by the customer,
the rule processing module determines the predicates that are true and passes them on
to process materialization algorithm. The materialization algorithm uses these true
predicates to modify the process template and create a materialized process instance
schema for execution within the process engine. The rule editor can also check for
data flow consistencies, i.e. make sure that a task will receive all its input data from
the output of previous tasks.

Fig. 4. An overall architecture of the materialization approach

2.3 Formal Representation of a Process

A business can be viewed as a collection of processes, and the robustness of these
processes to a large extent is a crucial determinant of the success of the business.
Business processes can be described using some simple constructs, and most work-
flow products provide support for these constructs. Four basic constructs that are used
in designing processes are sequence, parallel, decision structure (or choice) and loop,
as shown in BPMN notation in Figure 5.

In general, business processes can be composed by combining these four basic pat-
terns as building blocks. They can be applied to atomic tasks, e.g. seq(A,B,…) to indi-
cate that tasks A and B (and possibly other tasks) are combined in sequence, or to
subprocesses, e.g. seq(SP1, SP2) to indicate that subprocess SP1 and subprocess SP2
are combined in sequence (see Figure 5(a)). Parallelism is introduced by using a
parallel gateway to create two or more parallel branches which are synchronized by
another parallel gateway as shown in Figure 5(b). We use 'P' or 'Par' to denote the
parallel structure. Similarly, a choice structure, denoted as 'C' or Choice, is created
with a pair of exclusive OR (XOR) gateways and denoted by C or Choice as shown in
Figure 5(c). The first XOR node represents a choice or a decision point, where there is
one incoming branch and it can activate any one of the two or more outgoing

 Process Materialization Using Templates and Rules 127

branches. Finally, a loop (denoted by 'L') is also drawn using a pair of XOR gateways
but differently from a choice structure, as shown in Figure 5(d). The first XOR gate-
way takes only one out of all the incoming branches and the second XOR gateway
represents a decision point that can activate any one outgoing branch.

Fig. 5. Basic patterns to design processes in BPMN notation

The patterns are applied recursively to create complex processes. A process
schema can also be described by rules in any rule-based language. We have chosen
Prolog [6], but other languages can be used similarly. We first define base predicates
for four aspects of process design and then use them to create process schemas and
defining rules. The base predicates are shown in Table 1 along with a description.
Figure 6 gives a description of the insurance claim process using these predicates. In
general any structured process can be represented in this way. In the next section we
discuss representation of rules in a formal way.

Table 1. Base predicates for defining a process and describing rules

Perspective Base predicates Description
task (t, name) t is a task id and name is the task name General
status(proc_id, value) Specify the status of a process

[value=normal, expedite, urgent, OFF]
merge(t1, t2, blk1, S|P|C|L) Merge task t1 and t2 into block blk1 in

relationship X, where X=S, P, C, or L
delete(t) Delete task t from the process
insert(t, Sb|Sa|P|C|L,t1,[N]) Insert task t in sequence, parallel, choice

or loop with task t1 to create a node N.
[Sb = before; Sa= after]

replace(t1, t2) Replace task t1 with t2
move(t, Sb|Sa|P|C|L, t1) Move task t to a different place. The new

place is defined in relation to task t1.

Control
flow related

change(t1, t2, Sb|Sa|P|C|L) Change relationship between t1 and t2 to
new relationship X; X = Sb, Sa, P, C, or L

Resource
related

role(t, r) Task t is performed by role r

data(attribute, value) Assign a value to a data attribute
prop(role, property_name,
value)

Each role can have several properties and
corresponding values with them

data_in(t1, din) din is an input data parameter for task t1

Data related

data_out(t2, dout) dout is an output data parameter for task t2

(a) Sequence structure
 (Seq or S)

(b) Parallel structure
 (Par or P)

(c) Choice structure
 (Choice or C)

(d) Loop structure (Loop or L)

128 A. Kumar and W. Yao

3 Rule Representation and Processing

3.1 Rule Categories

In general, we are interested in rules related to four aspects of process design:

Control flow rules: These rules may be used to alter the control flow of a process
based on input data of a case. In addition to deleting or replacing a task, they can also
alter the control flow by moving a task to a different place or changing the relation-
ship of two tasks.

Resource related rules: These rules are concerned with resource assignment based on
case data.

Data related rules: These rules are associated with properties or attributes of a re-
source related to a case or to other case data.

Other rules: These rules may relate to general reasoning, say related to the policies of
the organization. An example of such a rule is: “if an insurance claim has not been
completed in 7 days, the status is changed to expedite.”

These categories can help to organize the rules and define them systematically.
However, we show next all these types of rules can be represented in a common way.

Fig. 6. Describing the insurance claim process using predicates

3.2 Rule Representation

In Figure 2 the rules were represented informally. They can be written formally in a
first order logic language like Prolog [6]. The rules are based on the predicates in
Table 1. To illustrate, Figure 7 shows how the rules of Figure 2 will be expressed
formally using the predicates from Table 1. The rules are based on case data. Case
data is also expressed using the data predicate as follows:

data(loss, 10000).
data(date, 1-Jun-2009).
data(policy_num, sp34-098-765).

Tasks
task(t1, receive_claim).
task(t2, validate_claim).
task(t3, review_damage1).
task(t4, review_damage2).
task(t5, receive_reports).
task(t6, det_settlement).
task(t7, approval1).
task(t8, approval2).
task(t9, payment).
Roles
role(t1,cust_rep)
role(t2,clerk)
…

Process structure
merge(t1,t2,blk1,seq).
merge(t3,t4,blk2,par).
merge(blk1,blk2,blk3,seq).
merge(blk3,t5,blk4,seq).
merge(blk4,t6,blk5,seq).
merge(blk5,t7,blk6,seq).
merge(blk6,t8,blk7,seq).
merge(blk7,t9,blk8,seq).

Data
data_in(t1,loss)
data_in(t1,policy_num)
…

 Process Materialization Using Templates and Rules 129

Rules R1, R2 and R3 are control flow related rules. R1 deletes task t4 from the proc-
ess instance if the amount of loss is less than $500K since the second adjuster review
is not required. R2 changes the relationship between tasks t7 and t8 from sequence to
parallel if it is marked expedite. Similarly, R3 moves the second approval task (t8) to
the end of the process if the process is marked urgent. Rules R4, R5 and R6 are re-
source related rules. They are all similar in that they make assignments of resources
to tasks based on case data. Thus, in our example, the amount of loss determines the
resource that is required to perform a task, such as an appraisal or an approval. R6
requires that if the loss amount is more than $500K, then a vice-president should
perform the second approval task (t8). Finally, Rules R7, R8 and R9 are related to
case data such as properties of the resources, or other data.

Fig. 7. Different types of rules related to the insurance workflow process template

3.3 Rule Processing and Semantics for Conflict Resolution

When the above rule set is executed on case data, it will apply the predicates that are
true to the process template. Assume the case data is as follows:

loss = $300k; status = expedite.

Now, on adding this data to the rule set we find that the rules that are applicable
are: R1, R2, R5, R7 and R9. The corresponding predicates that are true as a result
are:

control flow related

R1: delete(t4) :- data(loss, X), X < 500000.

R2: change(t7,t8,P) :- status(proc_id, expedite).

R3: move(t8, Sa, t9) :- status(proc_id, urgent),data(loss,X), X<500000.

Resource related

R4: role(t7, manager) :- data(loss, X), X > 0.

R4':delete(t8) :- data(loss, X), X < 100000.

R5: role(t8, senior_manager) :- data(loss, X),

X > 100000, X < 500000.

R6: role(t8, vice_president) :- data(loss, X), X > 500000.

Data related

R7: prop(adjuster, min_exp, 10) :-
 data (loss, X), X > 250000.

R8: prop(adjuster2, qualification, expert):-

data(loss, X), X > 500000.

R9: prop(form, type, long) :-

data (loss, X), X > 250000.

130 A. Kumar and W. Yao

Pred1: delete(t4)
Pred2: change(t7,t8,par)
Pred3: role(t8, senior_manager)
Pred4: prop(adjuster, min_exp, 10)
Pred5: prop(form,type,long).

These predicates can be applied to the process template in order to instantiate a

specific process for this case data. Although all rules for the template are valid and
compatible with each other, true predicates generated by them may have conflicting
results depending upon the order in which they are applied. For example, insert(t2,
Sa, t1) and insert(t3, Sa, t1) applied to a process consisting of a single task 't1' can
result in two processes S(t1, t2, t3) or S(t1, t3, t2) depending upon the order in which
these operations are applied. Moreover, sometimes rules may fail. For instance in-
sert(t1, Sa, t2) would fail if task 't2' has been deleted by a predicate in the previous
step. Therefore, it is very important to specify the following semantics for handling
such situations for process materialization. Some possible semantics are:

Arbitrary semantics: do not impose any order on the rules. Assume that all execution
orders of rules are satisfactory from the user's point of view and are acceptable. If so,
the execution priority of true predicates will follow the order of their corresponding
rules in the rule repository.

Priority semantics: assign a priority to rules if the execution order is important.
Higher priority rules will execute first, followed by lower priority rules in descending
order. The user can assign priority based on the importance of the rules, so the most
important predicates will be applied first. Besides, priorities may also be assigned
based on timestamps with the more recent rules receiving higher priority.

Fail semantics: return failure when a rule cannot be executed due to different reasons.
In this case a process cannot be materialized. Therefore, the user will have to inter-
vene to modify the rules or assign new priorities to them.

It is highly recommended that the user should specify the priority semantics before
applying the results of rule processing to materialize a new process. Otherwise, arbi-
trary semantics will be used automatically. If the materialization process fails, the
user will be notified about the predicates that cause the failure.

4 Materialization Algorithm

The rule processing stage generates a list of true predicates that apply to the case data.
These predicates relate to control flow, resources, and data of the case. The predi-
cates that relate to the resources (such as role and prop predicates) and also those that
relate to data (such as data predicate) are added to the case database directly. For
example, prop(form,type,long) assigns the value long to the type attribute of the form ob-
ject. Such data would be used as input data for task execution. However, the predi-
cates that relate to the control flow are used as input for a materialization algorithm in
order to generate a modified control flow schema for the process. The details of the
materialization algorithm are discussed next.

 Process Materialization Using Templates and Rules 131

4.1 Overview

Our materialization algorithm is based on creating a tree for the generic process tem-
plate and then applying change operations to it. Each change operation will produce a
corresponding operation on the tree. After all the changes are applied to the tree, the
resulting tree reflects the control flow of the new process. This can be converted into
Prolog rules or into any process description language to describe the process schema.
A tree for the process template of Figure 1 is shown in Figure 8. There are several
equivalent representations of such a tree. The tasks are at the leaf nodes, while inter-
nal nodes are control nodes that give relationships between tasks or blocks of tasks.
Accordingly, the internal node labels are prefixed with the node type (S, P, C, or L).
The child nodes of a sequence node are numbered in order from left to right. Thus, the
leftmost child appears first in the sequence and the rightmost one is the last. For paral-
lel and choice nodes, the order of appearance of the child nodes does not matter be-
cause of their execution semantics. A loop node has two child nodes, the first one for
the forward path, and the second for the reverse, hence the order does matter. This
tree can be stored in a tabular data structure as follows:

(node_id, type, child node, sequence#).

Determine
Settlement

S4

Receive.
claim

Validate
claim

S2

P1

Review
Damage 1

Review
Damage 2 Approval 2

S3

Make
Payment

S1

Receive
report Approval 1

Fig. 8. A process tree for the process template of Figure 1

4.2 Algorithmic Details

The control flow modification predicates (or operations) were given in Table 1. They
are summarized in Table 2 along with the pseudo-code for implementing them. We
discuss these operations next in the context of Figure 8 which is a tree-like representa-
tion of the process of Figure 1. Although, this tree only presents the control flow per-
spective of the process, the resource and data related information can also be included
in the nodes. This tree was drawn using the parent child relationships from the base
predicates of Figure 6 after applying the rewriting rule 3 (see below). A delete opera-
tion simply removes the node corresponding to a task in the tree and if the parent of
the deleted node has only one child left, then the child is moved up to take the place
of the parent. Each non-leaf node should have at least two child nodes and a task is
always a leaf node.

When a task is to be inserted, its position must be specified in the tree with respect
to an already existing task node. Moreover, the relationship between the existing
node and a new node should also be specified as sequence (S), parallel (P), choice (C)
or loop (L). If it is a sequence it is necessary to state whether the new task is inserted

132 A. Kumar and W. Yao

before (Sb) or after (Sa) the current node. The insert procedure is to create a parent
node P1 for the existing node (say, t1) and insert the new node t as a child of P1 in the
tree. The parent node can optionally be given a new label N. The replace operation
simply changes the label of a task node with its new name.

The move operation is like a delete followed by an insert. It removes a task from
its current location in the tree and inserts it into a new position. This new position is
defined with respect to an existing task node in the tree which serves as an anchor
node. The change operation may be used to modify the relationship between two
existing nodes t1 and t2 in the tree. However, this is possible only if a direct relation-
ship (i.e., with a common parent node and no other siblings) exists between the two
nodes. Otherwise, the operation would fail. In order to implement this operation, we
first check if a direct relationship either exists already or can be found by rewriting
the tree into an equivalent tree by means of rewriting rules. If it is possible to do so,
then the parent node of t1 and t2 is changed to the new relationship. Otherwise, a
failure message is given. The rewriting rules are as follows:

Rewriting rules (A, B, D are nodes of a tree)
1. P(…, A,…, B,…) = P(…, B,…, A,…)
2. C(…, A,…, B,…) = C(…, B,…, A,…)
3. S(A,B,D,…) = S(S(A,B),D,…) = S(A, S(B,D),…)
4. P(A,B,D,…) = P(P(A,B),D,…) = P(A, P(B,D),…) = P(B, P(A,D),…)
5. C(A,B,D,…) = C(C(A,B),D,…) = C(A, C(B,D),…) = C(B, C(A,D),…)

Nodes A, B, and D could represent either tasks if they are leaf nodes or root nodes
of subtrees if they are internal nodes. The first two rules capture commutativity of the
parallel and choice operations. The next three rules reflect associativity of sequence,
parallel and choice operations. Thus, by Rule #3, three tasks in a sequence (i.e. a
parent S with child nodes A, B and D) can be rewritten in a two level deep tree with a
parent (say, S1) having child nodes S2 and D. The child node S2 in turn has two child
nodes A and B. Clearly, both these structures are equivalent. The same argument
applies to parallel and choice nodes.

Continuing with the running example, the result of rule processing (section 3.3)
will send control flow predicates pred1 and pred2 to the process materialization algo-
rithm. In the tree of Figure 8, the task Review Damage 1 and Review Damage 2 are exe-
cuted in parallel. Applying Pred1 will remove Review Damage 2 so the parent node P1
only has one child node. Following the algorithm, we move task Review Damage 1 to
replace P1. To apply Pred2, we consider the tasks Approval 1 and Approval 2. They have
a sequence relationship between them; however, their parent node S3 has five child
nodes. In order to change this relationship between only these two tasks to P, we can
use rewriting rule #3 to rewrite the part of the tree under S3 as follows:

S3(rec., det., app1, app2, pay) = S3(S5(rec., det), S6(app1, app2), pay)

Now, since app1 and app2 have a common parent S3, we can rewrite as:

S3(S5(rec., det), S6(app1, app2), pay) S3(S5(rec., det), P2(app1, app2), pay)

On the other hand, note that it would not be possible to change the tree such that
tasks receive report and make payment are in parallel. On applying the true predicates
Pred1 and Pred2 to the process template tree of Figure 8 by using the materialization

 Process Materialization Using Templates and Rules 133

Table 2. Process Materialization algorithms

Operation Algorithm

Delete (Node t,
ProcessTree p_tree)

IF node t is NOT in p_tree
 Report materialization failure;
ELSE IF parent(t) has two child nodes
 Move t.sibling to replace parent(t);
ELSE
 Delete (t, p_tree);

Insert (Node t, Rel X,
Node t1, [N],
ProcessTree p_tree)

Note: X = S, P, C, or L

IF node t or t1 is NOT in p_tree
 Report materialization failure;
 ELSE
 {Create a new parent node N for t1 && N.node_type=X;
 Add t as a new child of N ;}

Replace (Node t1,
Node t2,
ProcessTree p_tree)

IF node t1 or t2 is NOT in p_tree
 Report materialization failure;
 ELSE
 Rename node t1 with t2;

Move (Node t, Rel X,
Node t1,
ProcessTree p_tree):

IF node t or t1 is NOT in p_tree
 Report materialization failure;

ELSE
 Delete (t, p_tree) && Insert (t, X, t1, p_tree);

Change (Node t1,
Node t2, Rel X,
ProcessTree p_tree)

 IF node t1 or t2 is NOT in p_tree
 Report materialization failure;

 ELSE
 {use rewriting rules to change p_tree to an equivalent tree
 p_tree’ such that t1 and t2 have a common parent;
 Change parent (t1, t2).node_type to new relationship X;}

Fig. 9. Revised process tree after applying the materialization algorithm

algorithm, we obtain the new process tree of Figure 9. This tree can be converted into
a process diagram or a description in, say, BPEL [7] or XPDL [27].

Although a formal proof is omitted for brevity, it is possible to show that one
can translate any given correct process model described by a template into any other
process model by applying the materialization operations.

134 A. Kumar and W. Yao

5 Discussion and Related Work

Most process design techniques lead to rigid processes where policy is "hard-coded"
into the process schema thus reducing flexibility. The motivation behind our approach
in this paper is to overcome this drawback by integrating rules with generic process
templates to materialize processes. The template captures the essence of the flow,
while the rules allow modification based on case data, policy changes, resource avail-
ability, etc. The new approach is also more holistic since it can go beyond control
flow and also capture case data and resource aspects of the workflow.

A preliminary proposal for process and rule integration is given in [18]. Other re-
lated work with similar objectives pertains to configurable models [25] and aggregate
models [23] although they are not based on rules directly. Direct integration of the
process and rule paradigms into a product is being made in the Drools Flow project
[13]. Their goals are similar to ours, but they do not create a materialized process.
Rather they provide a rule modeling construct or module as a way to include rules
into their process. The rules module can be evaluated and a decision can be made
accordingly. The advantage of our approach is that it can be integrated into existing
process modeling paradigms. On materialization our process models can be expressed
in any existing language (e.g., BPMN, BPEL and XPDL) and executed in an existing
workflow engine. The generic process templates can also be written in any standard
language.

There has been considerable amount of related work on execution of dynamic
processes in the context of exception handling. The focus there is on modifying a
running process when exceptions occur due to failed tasks, erroneous information,
etc. However, this body of work is complementary to our work since it focuses on
flexibility at run time. In contrast we are more interested in flexibility at design time.

The benefits from design time flexibility we foresee are:

(1) It leads to a cleaner process design. Thus, if the two materializations shown in
Figure 3 were combined into one process it would become very difficult to read.

(2) It allows separation of organization policy from process flow. The basic tem-
plate captures the essence of the main process flow by including the tasks and the
normal order in which they are performed. However, variations to the generic process
flow represent business policy, and these are captured more naturally through rules.
When changes in the policy occur, only the rules are modified without affecting the
generic process template.

Techniques for supporting dynamic change are discussed in [14,20,22,24] and
elsewhere. The focus of this work is to allow operations like task insertion, deletion,
etc. to be performed on running workflows in response to exceptions [5,7,12]. There
have also been other approaches on designing flexible workflow models: based on
deadline based escalation [3], satisfaction of constraints [19] or restrictions [11],
availability of resources [17] and on graphs [26]. Another approach for designing
workflows is centered on entities [4]. While all these methods try to reduce rigidity of
a strict control flow approach, they lack the flexibility of rules. In [20], a rule based
approach for dynamic modification in a medical domain is given with the focus on
handling of exceptions. Rules can also be used to ensure that business processes

 Process Materialization Using Templates and Rules 135

comply with internal and external regulations. These rules could be specified in a
first-order language [16] or in deontic logic [9].

Of course, on the downside additional cost is involved in managing the rules and
ensuring consistency. However, if rules are created through a user friendly interface,
then the burden on the user is minimized. Moreover, for the most part, we expect
rules to be simple and their interactions few, thus reducing complexity. Another
drawback with our approach is that it may give too much freedom to users to make ad
hoc changes in business processes. This can be restricted by adding controls in the
form of meta-rules that restrict use of modification operations only to certain users.

6 Conclusions

This paper described a novel proposal for designing flexible business processes based
on combining process templates with business rules. We showed how the process mate-
rialization approach allows separation of basic process flow from business policy ele-
ments in the design of a process and also integrates resource and data needs of a process
tightly. In future, we will incorporate “events”, which are also an important business
process design element, into our process template design approach. In Figure 1, we
showed start and end events. Events add expressive power to a process model. We plan
to add events of different types and provide formal definitions for them in future work.

We are building a prototype to test and evaluate this methodology following the
proposed architecture. A further challenge lies in making an interface that allows
users to describe the rules in an easy way and making the details of the language
completely transparent to them. We intend to explore various solutions for this includ-
ing the use of an English-like rule language such as SBVR [10] and providing a GUI
interface to increase ease of use and prevent typing errors. More effort will also be
devoted to the semantics for rule conflict resolution. Lastly, adding ontologies to the
architecture would increase the expressive power of the framework.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., et al.: Workflow Patterns. Distributed and Parallel Databases 14(3),
5–51 (2003)

3. van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-based escalation in process-
aware information systems. Decis. Support Syst. 43(2), 492–511 (2007)

4. Bhattacharya, K., et al.: Towards Formal Analysis of Artifact-Centric Business Process
Models. In: Business Process Management (BPM), Brisbane, Australia, pp. 288–304
(2007)

5. Chiu, D.K.W., Li, Q., Karlapalem, K.: Web interface-driven cooperative exception han-
dling in ADOME workflow management system. Web Information Systems Engineer-
ing 26(2), 93–120 (2001)

6. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer, New York (1987)
7. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S.: Exception Handling in the

BPEL4WS Language. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.)
BPM 2003. LNCS, vol. 2678, pp. 276–290. Springer, Heidelberg (2003)

136 A. Kumar and W. Yao

8. Dumas, M., van der Aalst, W.M.P., Hofstede, A.H.M.: Process Aware Information Sys-
tems. Wiley Interscience, Hoboken (2005)

9. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations
and Permission. In: Proceedings of Workshop on Business Process Design, pp. 5–14
(2006)

10. Goedertier, S., Mues, C., Vanthienen, J.: Specifying process-aware access control rules in
SBVR. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 39–52.
Springer, Heidelberg (2007)

11. Halliday, J.J., et al.: Flexible Workflow Management in the OPENflow System. In: Pro-
ceedings of the Fifth IEEE International Enterprise Distributed Object Computing Confer-
ence (EDOC 2001), pp. 82–92 (2001)

12. Hwang, S.-Y., Tang, J.: Consulting past exceptions to facilitate workflow exception han-
dling. Decision Support Systems 37(1), 49–69 (2004)

13. JBoss Community, Drools Flow,
http://www.jboss.org/drools/drools-flow.html

14. Joeris, G.: Defining Flexible Workflow Execution Behaviors. In: Enterprise-wide and
Cross-enterprise Workflow Management: Concepts, Systems, Applications, GI Workshop
Proceedings – Informatik, pp. 49–55 (1999)

15. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling.
In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445.
Springer, Heidelberg (2000)

16. Kumar, A., Liu, R.: A rule-based framework using role patterns for business process com-
pliance. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS,
vol. 5321, pp. 58–72. Springer, Heidelberg (2008)

17. Kumar, A., Wang, J.: A framework for designing resource driven workflow systems. In:
Rosemann, M., vom Brocke, J. (eds.) The International Handbook on Business Process
Management, Springer, Heidelberg (2009) (forthcoming)

18. Lienhard, H., Künzi, U.-M.: Workflow and business rules: a common approach.
BPTrends., http://www.bptrends.com/

19. Mangan, P., Sadiq, S.: On Building Workflow Models for Flexible Processes. In: Proceed-
ings of the 13th Australasian Conference on Database Technologies (ADC), Melbourne,
Victoria, Australia, vol. 5, pp. 103–109 (2002)

20. Müller, R., Rahm, E.: Rule-Based Dynamic Modification of Workflows in a Medical Do-
main. In: Buchmann, A.P. (ed.) BTW 1999, Freiburg im Breisgau, pp. 429–448. Springer,
Berlin (1999)

21. OMG, Business Process Modeling Notation (BPMN) Version 1.0. OMG Final Adopted
Specification, Object Management Group (2006)

22. Reichert, M., Dadam, P.: Adept_flex—Supporting Dynamic Changes of Workflows With-
out Losing Control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

23. Reijers, H., et al.: Improved Model Management with Aggregated Business Process Mod-
els. Data and Knowledge Engineering 68(2), 221–243 (2009)

24. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in work-
flow systems. Data and Knowledge Engineering 50(1), 9–34 (2004)

25. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language. In-
formation Systems 32(1), 1–23 (2007)

26. Weske, M.: Flexible Modeling and Execution of Workflow Activities. In: Proceedings of
the 31st Hawaii International Conference on System Sciences (HICSS), pp. 713–722 (1998)

27. XPDL. Workflow management coalition workflow standard,
http://www.wfmc.org/xpdl.html

Introduction to “Rule Transformation and
Extraction” Track

Mark H. Linehan1 and Eric Putrycz2

1 IBM T. J. Watson Research Center, 17 Skyline Drive, Hawthorne, NY 10532
mlinehan@us.ibm.com

2 Apption Software, 290 Picton Ave., Suite 104, Ottawa, ON, K1Z 8P8
erik@apption.com

Abstract. In this short paper, we summarize the “Rule Transformation
and Extraction” topic, defining the terms, describing some of the main
approaches to the topic, and reviewing the current challenges for both
rule transformation and extraction.

Keywords: rules, business rules, rule transformation, rule extraction.

1 Introduction

Rule transformation is the conversion of rules to other rule formats or other
languages. For example, [1] describes a system that converts constraints given in
the Object Constraint Language [2] to rules in the Object Management Group’s
(OMG) Semantics of Business Vocabulary and Business Rules [3] specification.
Rules extraction is about discovering or recovering rules from sources such as
natural language text or source code. The essential difference is that “transfor-
mation” involves conversions from rules, while “extraction” is about abstracting
rules from sources that are not in some formal rules format.

In this short paper, we introduce this topic in some more detail, describing
various kinds of rule transformation and extraction, some of the work that has
been done in this area, and the challenges that should be addressed to make
further progress on both forms of rule conversion.

2 Rule Transforamation

2.1 Rules and Model-Driven Architecture

Transformation of rules can be analyzed with respect to the OMG’s Model-
Driven Architecture (MDA) [4] stack, as shown in figure 1: MDA distinguishes
three general architectural layers. The bottom “Platform Specific Modeling”
(PSM) layer is about computing system models or implementations created to
execute upon a specific computing platform, such as J2EE or .NET. The middle
“Platform Independent Modeling” (PIM) layer considers implementation models
explicitly designed to avoid commitments to particular execution environments.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 137–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

138 M.H. Linehan and E. Putrycz

Fig. 1. Model-Driven Architecture (MDA) layers

The top “Computation Independent Modeling” (CIM) or business layer is about
modeling businesses independent of implementation. For example, the OMG’s
Business Motivation Model “. . . provides a scheme or structure for developing,
communicating, and managing business plans . . . ” [5, p. 1] at the CIM layer.

Most commonly, modeling practitioners apply the MDA model to categorize
various types of information or processing models such as UML class models,
entity-relation diagrams, Business Process Modeling Notation [6] process dia-
grams, or UML interaction diagrams. MDA can also classify rule languages, as
shown in figure 2:

Fig. 2. Example rule languages positioned against the MDA layers

Most rule languages are vendor-specific and thus belong in the bottom,
platform-specific (PSM) layer. Examples are the many commercial rule languages
such as ILOG JRules and Blaze Advisor, as well as the non-commercial rule sys-
tems that are built for a specific programming platform such as Java. From the
point-of-view of a rule system user, choosing any of these rule languages com-
mits one to a particular vendor or computing environment. There also exist a
number of PIM-layer rule languages, such as the World Wide Web Consortium’s
(W3C’s) Rule Interchange Format [7], Rule Markup Language [8], OCL, and
Common Logic [9]. These are PIM-level languages because they are vendor-and
platform-independent. At the business or CIM layer, the SBVR specification de-
fines a rule language intended to model business policies and rules in the way
that business people think about them.

Introduction to “Rule Transformation and Extraction” Track 139

Fig. 3. One business-layer rule may transform to multiple implementation-layer rules
or other artifacts

The MDA architecture promotes the idea of conversions among the three layers
as shown in figure 1. Linehan [10] describes a top-down modeling implementation,
that starts with business rules in SBVR, transforms them to the PIM layer using
OCL, then further converts them to Java code at the PSM layer. In bottom-up
modeling, one might start with rules in some vendor rule language, then convert
the rules to a PIM-layer rule language such as RIF, then perhaps further abstract
the key ideas into a business model. One reason for bottom-up modeling is to sup-
port the reimplementation of an older application in a more modern computing
technology. Another reason is to help answer a question which many real busi-
nesses need or want to ask:”what rules are we actually operating under?” The
OMG’s Knowledge Discovery Metamodel [11] defines an overall approach to this
type of bottom-up modeling for rules as well as other kinds of modeling artifacts.

Rule transformations are also possible within an MDA layer. For example, at
the PSM level, one might want to transform rules from one vendor rule language
to another.

Rule transformations within individual MDA layers, and between the PIM
and PSM layers, are typically 1 : 1. That is, each source rule converts to one
rule in the target language. Transformations from the business or CIM layer
to either the PIM or PSM layer often is 1 : n: one rule at the business layer
implies multiple rules in the implementation. Figure 3 shows an example of a
business-layer rule that is transformed to multiple implementation aspects. The
single business-layer rule affects the database design, the user interface, and the
business logic. This might be accomplished by a single implementation-layer rule
that is reused in multiple parts of the implementation, or more likely, by differ-
ent runtime artifacts such as Database Definition Language (DDL) statements
for the database design, Javascript code for the user interface, and perhaps a
commercial rule system for the business logic.

2.2 Transformation Languages

Special-purpose languages exist for transforming elements between source and
target languages. Examples include Extensible Schema Language Transforma-

140 M.H. Linehan and E. Putrycz

tions [12], OMG’s Query-View-Transformation [13], and the ATLAS Transfor-
mation Language [14]. These languages can be applied to transform many kinds
of artifacts, including rules. The advantage of transformation languages, com-
pared to typical procedural languages are: (a) transformation languages typically
rely more on declarative rather than procedural components, thus possibly re-
ducing implementation effort and improving understanding; (b) transformation
languages usually are customized to the needs of transformations in general, and
thus are more “fit for purpose” than other languages; (c) rigorous checking and
validation of transformations may be enabled by the domain-specific nature of
transformation languages.

Transformation languages may be used to transform rules both within and
across the MDA layers shown in figure 1.

2.3 Challenges

A number of interesting technical challenges exist in the area of rules
transformation:

– When transforming rules from the business layer to implementation layers,
integration with other aspects of business solutions, such as business process
models, is necessary but ad-hoc. Standards for rules, processes (e.g. BPMN,
BPEL), and information models (e.g. OWL, entity-relation diagrams) exist
in isolation from each other, yet complete solutions often require elements
of each of these.

– Coping with the different functional and descriptive power of different rule
languages. RuleML and RIF have made a start on this by defining different
families of rule languages, categorized by semantic model and functional
richness.

– Different rule languages have different objectives. Most rule languages are
intended to support implementations and thus define an execution model.
One language – SBVR – focusses on descriptive power and entirely ig-
nores execution concerns such as tractability. It seems likely that some
SBVR rules may not be efficiently executable in some implementation
languages.

– It is highly desirable to provide traceability by linking the sources and targets
of rule transformations. Such traceability documents where rules come from,
aids in implementing or auditing future changes, and helps in debugging. As
discussed above, there may be 1:n relationship between rules at the business
versus the implementation layers. In bottom-up transformations, recogniz-
ing that multiple implementation-layer rules represent a single business-layer
rule is difficult.

– Provably-correct transformations: providing proofs that transformations
from one language to another do not lose or add semantics.

Introduction to “Rule Transformation and Extraction” Track 141

3 Rule Extraction

3.1 From Artifacts to Rules

Rule extraction consists of extracting or discovering rules or ontology from exist-
ing sources that are not normally thought of as rules and that are not expressed
in any specific rule dialect.

The source artifacts can be various sources such as:

– source code [15, 16, 17] and the extraction process is based on reverse engi-
neering techniques to obtain a data and execution flow;

– plain English text documents [18] or maintenance manuals [19], which require
Natural Language Processing (NLP) tools such as tagging or morpho-lexical
analysis.

The first step in the extraction process consists of parsing the source artifacts
and locating the relevant information (step 1 in Figure 4). With source code,
this step requires using a parser that extracts an Abstract Syntax Tree (AST)
from the source code. Using this AST, it is possible to extract many knowledge
elements such as the data structures and the execution flow that are necessary to
build rules. Further analysis of the AST is also required to find all the operations
which are potential candidates for rules, and build their context.

Once the knowledge elements are extracted, an ontology can be built from all
the extracted knowledge elements (step 2 in Figure 4). For instance, with source
code, the data declarations have to be connected with the identifiers used in
calculation or other operations.

Because further transformations and other operations between all the ex-
tracted data are necessary, a repository is often created with all the knowledge
elements and the ontology (step 3 in Figure 4).

The last step consists of extracting the rules from the repository into a formal
or semi-formal dialect (step 4 in Figure 4), such as SBVR rules from all the
relevant operations in the source code.

Fig. 4. Common steps of rule extraction

142 M.H. Linehan and E. Putrycz

3.2 System Modernization

Rule extraction is often used in the context of system modernization. Legacy
systems still represent an important share of today’s IT. In 2008, 490 companies
of the Fortune 500 are still using legacy systems to process more than 30 billion
transactions or $1 trillion worth of business each and every day. In Canada, 10%
of the total ICT employment are working with legacy systems. These legacy
systems are often either replaced or integrated with a new system.

A common issue with legacy systems is that no documentation is available
and the key people might be retired or have left. As a consequence, it is critical
to extract rules from the legacy systems and simplify the modernization process.

Putrycz and Kark [15, 16] propose a business rule extraction technique which
combines reverse engineering to find rules within the legacy code and plain En-
glish analysis with NLP to connect documents to data sources, and subsequently
connect the business rules to the documents. This approach enables to extract
rules that are expressed without technical identifiers, and are easily understand-
able by business analysts.

3.3 Challenges

– Rule extraction from documents lacks generic tools and techniques, and cus-
tom analysis is commonly required for each document model;

– To build high level business rules, multiple sources (e.g. source code and
documentation) need to be combined. For example, the documentation on
the data sources needs to be analyzed to translate all data elements from
source code into business terms.

– In legacy systems, since the documentation can be partial or not existent,
heuristics or other techniques need to be used to build high level rules from
the basic rules extracted from source code operations.

– There is no generic benchmark for rule extraction, and thus, only manual val-
idation can distinguish valid business rules from technical rules. This makes
the detection of noise in the extracted rules a difficult problem.

– The same traceability challenge from rule transformation is valid, the ex-
tracted rules often need to be linked to the original artifacts. In addition,
this link can be complex to express because of the complex transformations
that can occur.

References

1. Cabot, J., Pau, R., Raventó, R.: From UML/OCL to SBVR Specifications: a Chal-
lenging Transformation. Information Systems (to appear)

2. Object Management Group (OMG): Object Constraint Language, Version 2.0.,
http://www.omg.org/spec/OCL/2.0/

3. Object Management Group (OMG): Semantics of Business Vocabulary and Busi-
ness Rules, Version 1.0., http://www.omg.org/spec/SBVR/1.0/

4. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1.,
http://www.omg.org/docs/omg/03-06-01.pdf

http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/SBVR/1.0/
http://www.omg.org/docs/omg/03-06-01.pdf

Introduction to “Rule Transformation and Extraction” Track 143

5. Object Management Group (OMG): Business Motivation Model, version 1.0.,
http://www.omg.org/spec/BMM/1.0/

6. Object Management Group (OMG): Business Process Modeling Notation, version
1.2., http://www.bpmn.org/

7. World Wide Web Consortium (W3C): Rule Interchange Format (RIF),
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

8. The Rule Markup Initiative, http://ruleml.org/
9. International Standards Organization (ISO): ISO/IEC 24707: 2007 - Information

technology — Common Logic (CL): a framework for a family of logic-based
languages,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

c039175 ISO IEC 24707 2007%28E%29.zip

10. Linehan, M.: SBVR Use Cases. In: Rule Representation, Interchange and Rea-
soning on the Web, Proceedings of the RuleML Interational Symposium, Orlando
(October 2008)

11. Object Management Group (OMG): Knowledge Discovery Metamodel,
http://www.omg.org/spec/KDM

12. World Wide Web Consortium (W3C): XSL Transformations, Version 1.0,
http://www.w3.org/TR/xslt

13. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/
Transform 1.0., http://www.omg.org/spec/QVT

14. Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and QVT. In: Pro-
ceedings of ACM Symposium on Applied Computing (SAC 2006) Model Transfor-
mation Track. Dijon, Bourgogne, FRA (April 2006)

15. Putrycz, E., Kark, A.W.: Recovering Business Rules from Legacy Source Code for
System Modernization. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS,
vol. 4824, pp. 107–118. Springer, Heidelberg (2007)

16. Putrycz, E., Kark, A.W.: Connecting Legacy Code, Business Rules and Docu-
mentation. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008.
LNCS, vol. 5321, pp. 17–30. Springer, Heidelberg (2008)

17. Wang, X., Sun, J., Yang, X., He, Z., Maddineni, S.: Business rules extraction from
large legacy systems. In: Proceedings Eighth European Conference on Software
Maintenance and Reengineering, CSMR 2004, pp. 249–258 (2004)

18. Ciravegna, F.: Adaptive Information Extraction from Text by Rule Induction and
Generalisation. In: Proceedings 17th International Joint Conference on Artificial
Intelligence, IJCAI 2001, Seattle (2001)

19. Yang, C., Orchard, R., Farley, B., Zaluski, M.: Authoring cases from Free-Text
Maintenance Data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS,
vol. 2734. Springer, Heidelberg (2003)

http://www.omg.org/spec/BMM/1.0/
http://www.bpmn.org/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://ruleml.org/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007%28E%29.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007%28E%29.zip
http://www.omg.org/spec/KDM
http://www.w3.org/TR/xslt
http://www.omg.org/spec/QVT

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 144–158, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An SBVR Framework for RESTful Web Applications

Alexandros Marinos and Paul Krause

Department of Computing, FEPS, University of Surrey,
GU2 7XH, Guildford, Surrey, United Kingdom
{a.marinos,p.krause}@surrey.ac.uk

Abstract. We propose a framework that can be used to produce functioning
web applications from SBVR models. To achieve this, we begin by discussing
the concept of declarative application generation and examining the commo-
nalities between SBVR and the RESTful architectural style of the web. We then
show how a relational database schema and RESTful interface can be generated
from an SBVR model. In this context, we discuss how SBVR can be used to
semantically describe hypermedia on the Web and enhance its evolvability and
loose coupling properties. Finally, we show that this system is capable of exhi-
biting process-like behaviour without requiring explicitly defined processes.

Keywords: SBVR, REST, SQL, Web-based Applications, Declarative Pro-
gramming, Business Rules.

1 Introduction

Building an information system with the current methodologies is an uncertain propo-
sition. Recent research indicates that only 35% of software development projects get
completed in time and on budget [1]. This is a marked increase from 16.2% in 1995
[2], but even this has come at the expense of a longer and more complex development
process. It is understandable then, that businesses tend to avoid modifying their pro-
duction information systems until absolutely necessary, as any attempt at modification
introduces further uncertainty.

An objective of modern digital ecosystems (DE) research is to help people, organi-
zations and small and medium enterprises (SMEs) better dynamically integrate their
activities, enabling them to utilize capabilities, access infrastructure, and compete in
markets currently available only to large enterprises [3]. A large obstacle on the path
towards realizing this vision is the inflexibility of information systems currently used
by SMEs and other potential DE participants, which constitutes an internal barrier.
Viewing the information system from the external perspective, the requirement to
explicitly annotate provided services with semantics for exposition in a DE effectively
limits the population of accurately described services available.

From a more general perspective, technologies can be seen as conforming to one of
two different modes of use [4]. Sterile systems are systems whose function is limited
by their design and will perform the same tasks for the duration of their lifespan. An
example of a sterile system is the typewriter, the television or the telephone network.
On the contrary, generative systems are built to enable novel and unplanned usage, far

 An SBVR Framework for RESTful Web Applications 145

beyond what their designers originally intended or could conceive. Typical examples
of generative technologies are personal computers and the internet.

Examining information systems from this perspective, most of them are sterile.
They have been built for specific tasks, contain a fixed set of processes, can handle
specific data models and this functionality cannot be changed without significant
reimplementation. Newer developments in the field offer some degree of flexibility
but their core is still procedural, ultimately dependent on costly intervention by
specialised intermediaries, and therefore resistant to rapid adaptation. This is
in contrast with the inherently dynamic nature of business and human society
within which these systems are applied and causes inefficiencies which hinder the
fulfilment of the digital revolution’s promise. We introduce the concept of the
generative information system, built on declarative technologies, as a possible solu-
tion to these issues. In this paper, we use SBVR as a modelling language for such
systems.

It is clear that SBVR was not intended [5] as a language from which to directly
produce applications, at least to begin with. SBVR, as a declarative language, focuses
on modelling the ‘what’ of a system, rather than defining the ‘how’ of its implementa-
tion. However, a given declarative model that is specified by its owner constrains the
set of potential solutions that can implement it. Each new element of information
added to the model reduces the number of compliant solutions. Within the set of com-
pliant solutions, if two elements have a difference observable by the owner, such that
one is acceptable and one is not, then the model is not completely expressing the
owner’s wishes. It must therefore be enriched with the additional information that
retains the acceptable solution while excluding the unacceptable one. By iteratively
repeating this process, we can arrive at a model that identifies only potential imple-
mentations that are acceptable to the owner. In practice however, the specification can
only identify acceptable solutions at a level of granularity afforded by the expressivity
of the language it is written in. With this caveat in mind, we use SBVR as the best
balance between expressivity and user-accessibility (through SBVR Structured Eng-
lish), and explore the extent to which solutions can be automatically produced. Possi-
ble limitations that are encountered in expressing the specifications of the owners can
act as feedback to the language design itself.

The subject of generating applications from business rules models has been first
covered in the book ‘What, not How: The Business Rules Approach to Application
Development’ by C.J. Date [6] which is also closely related to the Business Rules
Manifesto by Ron Ross [7]. These works set the foundations for this paper, and we
hope to extend the conceptual model they provide with discussions of business
processes, extensibility and composable applications, ultimately aiming to produce a
real-world production-capable framework based on SBVR, Relational Databases and
the Architecture of the Web as expressed by REST. Section 2 discusses conceptual
issues of producing applications from SBVR model and examines aspects of model
checking and relational database schema inference. Section 3 examines how this in-
formation system can be made available on the web in a RESTful manner while Sec-
tion 4 deals with issues of process-like behaviour. Section 5 gives some concluding
remarks and discusses future work.

146 A. Marinos and P. Krause

2 From SBVR Models to Applications

Current approaches to producing applications from SBVR models treat it as a code
generation problem. This inevitably results in facing the tension between the declara-
tive and imperative programming paradigms. When generating code, processes must
be defined and programmed, however such processes are not natively defined by
SBVR and this is so by design. Therefore attempts at code generation [8] must either
arbitrarily select the processes that must be implemented, supplement SBVR with a
workflow definition language such as XPDL and BPMN or extend SBVR itself to
make it capable of specifying processes. The latter results in models that use SBVR as
a verbose process language attempting to do what visual alternatives achieve far more
concisely. Even then, the code that they orchestrate is still missing, at which point
they revert to the need for a human programmer to fill in the gaps, a problem also
faced by model-driven approaches like Executable UML in the past.

The alternative is to treat the model itself as the code to be executed and interpret it
at run-time, possibly caching any decisions that can be reused. We view the static
constraints of an SBVR model as defining the possible worlds that the data of an
information system can describe. Additionally, dynamic constraints define the al-
lowed transitions between these states. From this starting point, we explore how in-
formation systems can be generated, following the path set out by C.J. Date [6].

2.1 Validating an SBVR Model

SBVR supports constraints of two different modalities, Alethic and Deontic. The
SBVR specification [5] describes their difference as follows:

“Alethic modal logic differs from deontic modal logic in that the former deals with
people’s estimate(s) of the possible truth of some proposition, whereas deontic modal
logic deals with people’s estimate(s) of the social desirability of some particular par-
ty’s making some proposition true.”

In this sense, it can be said that the alethic model defines the map of the territory
that the deontic model navigates within. In order to analyse an SBVR model, we sepa-
rate the rules into two models, alethic and deontic according to their modality. After
checking each model for internal consistency, we infer the relationship between the
sets of allowed states of the two models.

In business scenarios, constraints imposed from external sources (Nature, Govern-
ment, Partner organisations) and therefore outside the jurisdiction of the model own-
er(s), are always alethic from the perspective of the business, whereas internal
constraints can be either alethic or deontic. This difference also affects the enforce-
ment of each constraint type, where altering an internal constraint is an option but not
so for an external constraint.

The interaction between the alethic and deontic modalities is not discussed in the
SBVR specification, but in order to produce executable code, it is an area we must
examine. Following the notation in chapter 10 of [5], we want to ensure that situations
do not occur where OA & ~ A for any proposition A. A proposition cannot be made
true if it is not possible for it to be true, so the propositions deemed obligatory by the
deontic model must be possible in alethic model.

 An SBVR Framework for RESTful Web Applications 147

If some propositions obligatory in the deontic model are not possible in the alethic
model and all the propositions possible are obligatory, we consider the deontic model
to be superfluous as it adds no information about desirability beyond what is known
to be possible. If the states allowed by the two models are disjointed, we consider the
overall model to be invalid, since the deontic model only aims for states that are not
deemed possible by the alethic model. If the two models partially overlap, the model
can be executed, but the user should be warned that a subset of the states deemed
desirable by the deontic model are unreachable.

After inferring the relationship between the two sub-models, we take their intersec-
tion as the effective model which we attempt to execute. Differences in modalities
mean that there may or may not be recourse to the model owner in case a specific rule
is violated depending on whether it is deontic or alethic respectively.

2.2 Inferring a Database Schema

While an SBVR model is an abstract construct, it defines the space which instances of
terms and fact types are allowed to occupy when the model is itself materialized into
an information system. This structure can be made explicit by extracting it and im-
printing it onto a relational database. Relational databases, besides being the dominant
persistence technology for information systems, are also an excellent candidate for
persisting SBVR-based information systems because of their declarative nature. Rela-
tional databases are interfaced through SQL, a declarative language that defines the
data structure and queries for a relational database. When discussing data structure,
we focus on the SQL data definition language (SQL-DDL). While relational databas-
es do not exhibit the expressivity that an SBVR model can, it is feasible to generate an
SQL-DDL data model from an SBVR model. In this way, the maturity and perfor-
mance of the many SQL databases can be harnessed while simultaneously using the
integrity constraint checking as a basic model checker. The more advanced cases will
of course still need to be checked against the SBVR model directly. Generation of a
relational database schema has been referred to previously in [9].

To infer a database structure from an SBVR model, we begin by constructing a
graph where each term and fact type is represented as a node. The edges link fact
types with the terms they build on. Next, we need to define the relationship between
each of the nodes.

For Date [10], defining a relationship requires integrating two aspects, one for each
party in a relationship. The single-perspective relationships that Date considers are at
most one (0..1), exactly one (1), one or more (1..*), and zero or more(0..*). While
more detailed relations such as 0..5 etc. could be considered, there are diminishing
returns to increasing levels of granularity, but also such relationships are also beyond
the expressive capacity of the relational model.

In our graph, the edges initially connect fact types with terms. Since each fact type
instance refers to exactly one term instance for each link, the relations of interest are
those from the perspective of the terms. In the absence of constraints, a term instance
can be referred to by multiple fact type instances (facts). The default edge label is
therefore zero or more (0..*). So the fact type ‘student is enrolled for course’, in the
absence of relevant constraints, would be represented as a node with 0..* edges to the
student and course nodes. When rules exist that affect the cardinality of an edge,
such as ‘It is obligatory that each student is enrolled for exactly one course’, the

148 A. Marinos and P. Krause

relation between the term student and the fact type ‘student is enrolled for course’
gets more constrained, in this case to an exactly one relationship (1).

Once the relationships are identified, we can begin to differentiate what will even-
tually become tables and what will be attributes for these tables. To begin, unary fact
types, such as ‘student is under probation’ become Boolean attributes of the term
they are connected to, in this case student. This is because they unambiguously say
something about the term they are connected to, each term can only have one instance
of that value, and this value can only be true or false. Similarly, we instantiate
attributes from binary fact types which indicate that the one fact type role has a desig-
nation in an attributive namespace for the subject concept represented by the designa-
tion used for the other fact type role (e.g. student has name).

For other binary fact types, the simplest solution would be to represent them as
tables on their own and leave enforcement of the relations between the data items to
the SBVR model execution engine which will wrap the database. However, databases
are highly optimized and their integrity constraints checking could take a lot of the
burden off of our implementation, reusing the mature RDBMS software. So to
represent different relationships we have five patterns for generating the equivalent
SQL-DDL schema fragment for two nodes A and B. These generally include generat-
ing tables and using the Primary Key (PK) and Foreign Key (FK) as well as Nullable
and Unique to express the relations specified in the graph.

The patterns, for two tables/nodes A and B are:

• Pattern I: PK of B is a FK in A with Uniqueness Constraint and is Nullable.
If B has no other attributes, instead of an FK it becomes an attribute of A
directly.

• Pattern II: PK of B is a FK in A with Uniqueness Constraint. If B has no oth-
er attributes instead of an FK, it becomes an attribute of A directly.

• Pattern III: PK of B is a FK in A and is Nullable. If B has no other attributes,
instead of an FK it becomes an attribute of A directly.

• Pattern IV: PK of B is a FK in A. If B has no other attributes, instead of an
FK it becomes an attribute of A directly.

• Pattern V: Intermediate Table A_B with PK of A and B as FKs and joint PK.
If either A or B have no other attributes, instead of an FK they can become
attributes of A_B.

We then apply these patterns as specified by Table 1. The cells that simply specify a
pattern directly are those whose relationship semantics are exactly expressed by the
results. The cells that merely specify ‘Use’ of a pattern are those whose semantics are
not directly expressible in SQL, so a looser approximation needs to be used, with the
rest of the input validation needing to be done by applying the SBVR constraints direct-
ly. We can observe that these cells are the ones related with the 1..* type of relationship
which SQL cannot cover. Finally the cells that specify reverse use of a pattern are simp-
ly those where the appropriate pattern is the identified pattern with B and A substituted
for each other. Due to the approximate nature of the relational model, an enclosing
SBVR model execution engine must have sole write access to the database, in order to
maintain consistency of the data. Alternatively, triggers could be implemented within
the database itself for the more strict constraints, however their database-specific syntax
and the difficulty of identifying the violated rule advise against this approach.

 An SBVR Framework for RESTful Web Applications 149

Table 1. Appropriate database patterns to express fact types as relations

 Edge with A...
Edge with B...

0..1 1 1..* 0..*

0..1 I Reverse II Use Reverse III Reverse III

1 II
Same Table or Use

V/II/Reverse II
Use V Reverse IV

1..* Use III Use IV Use V Use V

0..* III IV Use V V

For n-ary fact types with n 2, such as Student is marked with grade for course,

the relational model does not provide any way to represent this relation between
terms, other than creating a new table. So for any combination of edge labels con-
nected to the fact type, we use a separate table having the primary keys of the relevant
terms as a foreign key. Another aspect of the data model that needs to be considered is
the data types for the stored attributes. The ‘SBVR Meaning and Representation Vo-
cabulary’ [5] gives us a number of data types such as (quantity, number, integer, text)
that can be mapped to SQL primitives. This however puts a strict requirement on the
terms that carry a value to belong to a concept type that specialises one of these data
types such that it can be inferred. Terms that do not define a data type can still be
represented as tables and defined in terms of their characteristics and connections.
Terms that are defined to range over a fixed set of values, such as the term grade
which could be defined as [A or B or C or D or F], can be translated as an SQL
ENUM data type to avoid creating a new table. Finally, the issue of primary keys
remains. While this could be inferred through attributes that have a uniqueness prop-
erty or SBVR reference schemes, performance of the database may suffer when using
textual keys. For this reason, each table gets an integer auto-incrementing id attribute
added, which becomes the primary key of that table. This can be omitted when the
table contains a unique integer, such as a code number.

With the steps discussed above, we can algorithmically infer a relational database
schema from an SBVR model that uses most of SQL’s expressivity to optimise access
to the data. However, the expressivity gap must always be considered, and each new
element of data that enters the database needs to be verified not only against the inte-
grity constraints of the database schema, but also against the SBVR rules that are
relevant to the terms related to the data item. For instance a rule that uses multiple fact
types such as ‘it is obligatory that each module that a student is registered for,
is available for a course that the student is enrolled in.’, cannot be expressed
within the database schema. The process described in this section could potentially be
implemented within a model transformation framework. QVT would be a candidate
due to SBVR’s serialisability in XMI, but the transformation would also require the
existence of a suitable XMI target for relational databases.

2.3 Converting an SBVR Rule to an SQL Query

To verify whether or not a given state of relational database conforms to the more
advanced constraints that SBVR imposes, we can convert the rules to SQL queries
designed to verify the state of the dataset by essentially asking the question: “Is
this rule constraint consistent with the state of the database?” Figure 1 shows the
conversion of one rule from our example into an SQL query.

≥

150 A. Marinos and P. Krause

Fig. 1. Conversion of SBVR-SE to SBVR-LF to SQL Query

It should be noted that the above query is written in the dialect of MySQL 5.0. The
result is a possibly empty set that contains a list of all the <Student_Name, Num-
ber_of_Courses, Course_Names> tuples that violate the rule. An empty set signifies
that the rule is not violated throughout the dataset. In our example, if the user attempts
to add a sixth course to the student ‘John’, the rule is violated and the query returns
the values in table 2.

Table 2. Results of rule evaluation

Student_Name Number_of_Courses Course_Names
John 6 PY101, MA101, EN121,

CS101, AF302, MG102

The logical formulation is transformed as follows: The FROM clause of the query

includes all the variables of the formulation. In our example 'student', 'course', as well
as the fact type table 'student_is-registered-for_course' are used. The WHERE clause
connects the tables according to the model semantics. From there we transform the
constructs of the logical formulation into SQL constructs. Specifically, the universal
quantification becomes the 'GROUP BY' clause over the variable it introduces, whe-
reas the at-most-n quantification combined with the maximum cardinality becomes
the HAVING clause. The SELECT clause is formulated by importing the variables
referenced according to their reference scheme. Since there exists a universal quan-
tifier that groups courses, the name of the courses becomes a GROUP_CONCAT
statement, and we also import the Number_of_Courses, which is needed in the

Necessity

Universal Quantification

1st Variable [at most n] quantification

student maximum
cardinality: 5 2nd Variable

course

atomic formulation

student is registered for
course

1st role binding 2nd role binding

of role student
of fact type

binds to
1st variable

of role course
of fact type

binds to
2nd variable

It is necessary that each student is registered for at most five courses
SELECT student.Name AS Student_Name,

Count (*) AS Number_of_Courses
GROUP_CONCAT (DISTINCT course.name SEPARATOR ', ')

 AS Course_Names
FROM student, course, student_is-registered-for_course
WHERE student.id = student_ is-registered-for_course.student_id

AND student_is-registered-for_course.course_id = course.id
GROUP BY student.id HAVING Number of Courses > 5

 An SBVR Framework for RESTful Web Applications 151

HAVING clause. Generalising this method is underway and its implementation is
pending the implementation of the SBVR parser.

3 SBVR and the Architecture of the Web

When considering how SBVR models can be made executable, there is the issue of
shifting between consistent states. The verbs that SBVR allows, in the form of fact
types, are declaratives that describe a state and as such cannot be used to actively
cause a shift from state to state. Even dynamic constraints which are not yet supported
by SBVR can constrain but not cause transitions. What is needed is an architecture
that allows users to express, in a standardized manner, the changes they want to affect
on the data of the information system. This search led to the protocol and the architec-
tural style that underpins the largest distributed system in the world, the Web. The
protocol is HTTP, and the architectural style it instantiates is Representational State
Transfer (REST). REST, was identified by fielding in 1999 [11], and has recently
been popularised by works such as [12], [13]. In contrast to the less disciplined Re-
mote Procedure Call (RPC) style used in most WS-* standards, REST is based on a
number of explicit architectural constraints that govern interactions. While the con-
straints are abstract, it is important to state that they govern most of the daily interac-
tions over the Web, both human-to-machine and machine-to-machine.

Fundamental constraints are that each significant entity should be named, uniquely
identifiable and linkable. While this is reminiscent of the foundation of the business
rules approach being on terms, it goes further to the level of instances, where each and
every one should be identifiable also. While SBVR does include individual concepts,
there is no explicit directive that each and every instantiation of a term should be
named. In the case of the web, every instance, named a resource, should have a
unique URI. The slight difference in approaches can be explained by the fact that
while SBVR is concerned with the model-level description of a domain, REST is
model-agnostic and only concerned with data. This distance can be covered by consi-
dering that each term identifies a collection of resources (individual concepts) and
that this collection can be a resource by itself.

While linking URIs and terms brings SBVR closer to the web, the user is still
without means to cause change in the state of the system. REST however indicates
that resources should be manipulated through a uniform interface. In the case of
HTTP this interface includes operations such as GET, PUT, POST and DELETE. The
uniform interface is in fact the only way in which a client can interact with the re-
sources that a service makes available. The rationale behind this constraint is that if
the operations are insufficient to accomplish some functionality, then there are more
resources that need to be identified, rather than overloading the interface with addi-
tional methods. By constraining the interface to a fixed set of methods, the interface
designer is forced to extend the vocabulary of the application. This is an insight that
can directly reflect on the modelling methodology and reveals the benefit of consider-
ing the run-time behaviour at design-time. By forcing the modeller to consider the
model as an executable artefact, accessible from a constrained interface, they may
discover entire new areas that need to be modelled that would have otherwise been
overlooked, leaving room for ambiguity.

152 A. Marinos and P. Krause

Fig. 2. Connections between REST, SBVR and Relational Databases

A number of other constraints are in effect when the REST architectural style is
considered, including statelessness and the ‘hypermedia as the engine of application
state’ (HEAS). Statelessness instructs that each request to the server contains all the
information needed for the server to understand the request without need for session
information on the server side. HEAS requires that resources use links to point to each
other such that the clients can incrementally discover the API and any change on a
resource URI will not trigger a catastrophic failure of the client but rather a recovery
procedure during which the client will rediscover the new identifier the same way as
the original identifier had been discovered. These constraints form an architectural
style that is state-oriented rather than process oriented. By focusing around ‘be’ and
not ‘do’ type interactions, REST can be considered a declarative architectural style,
very well aligned with the design principles behind SBVR.

3.1 Constructing a RESTful Interface from an SBVR Model

A basic design principle of REST is that ‘things’ should be named. This gels perfectly
with SBVR’s term-orientation. Since vocabularies have a namespace URI, and terms
are unique within a vocabulary namespace, it is trivial to assign a unique URI to each
term. The following URI template [14] would be sufficient to accomplish this:

http://domain.org/{vocabulary}/{term}

However the question arises of what these URIs will return when requested from
the application’s server. Since the term can be seen as a collection containing in-
stances, we can return this collection as a resource. The Atom Publishing Protocol
[13] is being increasingly used as a general-purpose format for representing collec-
tions and can be used to grant our interface with significant standardised functionality,
such as exposing collections as standard feeds and editing collections or instances. An

 An SBVR Framework for RESTful Web Applications 153

aesthetic issue may be the need for pluralisation of terms when used for representing
collections in URIs. This is one of the parts where the creation of SBVR for human-
to-human interactions becomes apparent. While SBVR rules can freely pluralise
terms, the exact plural of each term is not specified in the vocabulary. This issue also
arises in the design of an SBVR parser. For English this can be partially solved by
using an inflector library such as [15]. However this would leave terms with an incor-
rect pluralisation automatically inferred without a way of specifying the proper plura-
lisation. Ideally, an extension to the SBVR meta-model would allow for specification
of the exact plural form of a term.

While we have discussed the issues of representing collections of instances, the is-
sue of instances themselves remains. Following the unique identification patterns
discussed in the relational schema generation, we can use a URI template such as the
following to generate the URI for an instance of a term, like so:

http://domain.org/{vocabulary}/{term}/{identifier}

The serialisation of the content of a term can be subject to the content negotiation
processes that HTTP specifies, but as a baseline, an XML serialisation can be as-
sumed as a standard. Providing an XSLT stylesheet defining the transformation of
that XML to HTML can also aid towards readability by human readers.

Another fundamental constraint of REST is that of ‘Hypermedia as the Engine of
Application State’ (HEAS). This specifies that URI-named resources should link to
each other so that they can be discovered by a new client with minimal initial infor-
mation, or rediscovered in case of URI change. This also naturally overlaps with
SBVR’s assertion that fact types connect terms. In this sense we can use the fact types
as links to instances of the terms that the fact type builds on. So, the representation of
each term must also provide links to URIs that represent the set of instances of the
fact type that concern the term in question. This can be reflected in the URI-space by
a template such as:

http://domain.org/{vocabulary}/{terma}/{identifier}/{fact type designation}/{termb}

In the case of a binary fact type, presenting the subset of a term’s instances that are
connected by a fact type to the original term instance is acceptable. In the usual case
where two terms are connected by only one binary fact type, the fact type designation
can be optionally omitted. More complex queries including filters should also be
possible, and work along these lines is underway but not strictly necessary for the
operation of a system such as the one in this paper.

Table 3. Applying HTTP operations on Collections and Instances

 Student

 Collection Instance

GET + +

PUT +

POST +

DELETE +

154 A. Marinos and P. Krause

Having defined identification of collections, instances and basic queries with URIs,
we can now examine which HTTP operations apply on these URIs. Table 3 shows a
basic application of HTTP operations on the resources defined by the student term.

Thus, knowing the URI of the student collection, we can not only see a representa-
tion via GET, but also create a new student via POST, identify a specific student via
hyperlinks, and then modify the student instance through PUT or remove the student
via DELETE. Access to data and ability to modify it is of course subject to authorisa-
tion and authentication of the user making the data retrieval and modification. The
discussion up to this point has given enough information to present a unified view of
SBVR, RESTful HTTP and Relational Databases as a foundation for a model-driven
information system as seen in Figure 2, first published in [16] by the authors of this
paper.

3.2 Using SBVR to Describe Resources

Along the way of aligning SBVR, RESTful HTTP and Relational Databases, we have
also created a complementary way to use SBVR to describe resources, a use for SBVR
that can potentially have an impact beyond systems natively described with SBVR and
onto the mainstream web. For instance, having described the resource instance of stu-
dent and accompanying relational representation, we now have a structured representa-
tion of a student. However, by separating all the elements (vocabulary and rules) of the
model that mention ‘student’, and also adding all the terms and fact types necessary to
express them, we can construct a subset of the model that describes the resource re-
turned. This model can also give information about the data in the schema and the
reaction that the server will have on various operations being applied to the resource as
well as what can be expected by following specific links. So for instance, a request for
a student instance may return a representation as seen in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>
<student>

<id>3465</id>
<firstname>John</lastname>
<lastname>Smith</lastname>
<is-under-probation value=”false” />

<link rel=”is-enrolled-in_modules”

href=”http://domain.org/school/student/3465/is-enrolled-
in/modules” />

<link rel=”is-registered-for_course”

href=”http://domain.org/school/student/3465/is-
registered-for/courses” />

<link rel=”is_marked_with-grade-for-course”

href=”http://domain.org/school/student/3465/is-marked-
with/grade/for/courses” />

</student>

Fig. 3. Example XML Serialisation of model-derived resource

 An SBVR Framework for RESTful Web Applications 155

The server may internally have a model associated with it such as the one found in
table 4. By publishing this model, the aware client can now start building a model of
the application in general, and also specifically know what steps need to be taken for
creating a new student resource. Something that must be taken into account is that
since the new rules exposed by the system as a resource description are not changea-
ble by a client system that may be using the resource, the modality published should
become alethic as the rules now describe the environment that other systems operate
within. The mechanism for publishing this SBVR description information in a web-
friendly way has yet to be determined, although a direct link from the resource to an
xml-serialised form of the model may be sufficient.

Table 4. Instance of an SBVR model subset describing a single resource

Terms Fact Types Rules
Student

Module

Course

Grade
A or B or C or D or F

First name

Last name

Student is under probation

Student is registered for course

Student is enrolled in module

Student has first name

Student has last name

Student is marked with grade for course

Module is available for course

It is necessary that each student is
registered for at most five courses.

It is necessary that each module that a
student is registered for is available for a
course that the student is enrolled in.

It is necessary that each student that is
under probation is registered for at most
three courses.

4 Implicit Process Specification

The capabilities of the information system described so far are limited to satisfying
sequential operations that satisfy the SBVR model over a basic RESTful API. How-
ever, fundamental to information systems is the ability to perform processes that make
multiple state alterations as their result. In fact, for certain models, it may be impossi-
ble to move from one state to another without performing more than one operations,
for instance in the case where a student must be registered for exactly five courses, a
new course cannot be added if a course is not simultaneously removed. This calls for
the execution of multiple operations simultaneously over HTTP, something the au-
thors of this paper have already made progress in specifying RESTful Transactions
[17]. Even with this capability, there is a fundamental tension between processes and
declarative specifications, as processes focus on the ‘how’ rather than the ‘what’
which declarative models specify. To resolve this, we have been inspired by the motto
of the logic programming community [18] which states that Algorithm = Logic +
Control.

By approaching the process as a simplified algorithm and the SBVR model as the
logic, we can see that perhaps processes can be dynamically generated through appli-
cation of a control module to the SBVR model. Our solution is to introduce the meta-
process as seen in Figure 4, which at its core examines the state resulting by each
action of the (authenticated) user, and determines whether it will result in the system
being in a consistent state, one where no rules are violated. In case of violations, we
return the rule that has been violated as part of the response. This is an application of

156 A. Marinos and P. Krause

User:
POST <en101>
http://domain.org/students/John/courses/

System:
403 Forbidden

It is necessary that each student is registered for at most five courses

Student_Name Number_of_Courses Names_of_Courses
John 6 PY101, MA101, EN121,

CS101, AF302, MG102

User:
[Start Transaction]
DELETE
http://domain.org/students/John/courses/ma101

POST <en101>
http://domain.org/students/John/courses/
[End Transaction]

System:
200 OK

Fig. 4. The meta-process control structure

the business rules motto ‘The rule is the error message’ which seems to be quite effec-
tive in our case. Notice that this mechanism can also observe the violation of dynamic
constraints such as the progression of marital status from ‘married’ to ‘single’ instead
of ‘divorced’ or ‘widowed’. The user can then amend their request with additional
operations aimed at mitigating the violation. As the process iteratively continues, the
user will either realise that their request is untenable within the constraints of the
current model, or they will formulate a request that satisfied both their requirements
and the system’s.

This results in a declarative process-less system which can nevertheless exhibit
process-like behaviour. Its main run-time difference with process-driven systems that
is that it allows users to perform any allowable process instead of specifying at de-
sign-time the processes that the designers forecast will be useful to users. The design-
time implication is that such systems are capable of naturally adapting their behaviour
to changes in the model instead of requiring manual revision of their individual
processes, which also risks inconsistencies in case of error as a rule may affect mul-
tiple processes and the designers have to infer which these processes are.

Also, by returning the violated rule in machine-to-machine interactions, the partner
systems can update each other about changes in their models organically as violations
occur and such changes can propagate through the network in the case of services
composing other services.

As we have seen so far, SBVR can not only produce functional Web Applications,
but also have them be self-describing by publishing the sub-model relevant to each
resource. This, combined with transactional capabilities over HTTP opens the door
for service composition by importing the sub-model that is published for each re-
source and using it as part of a new model. So a system could represent a service
composition such as a travel arrangement and its model would be constructed by
importing the sub-models used by other providers to describe the elementary

 An SBVR Framework for RESTful Web Applications 157

resources the new system composes such as flights, car rentals, hotel bookings, etc.
The resulting new resource (travel arrangement) can be made available to the users of
the new service. Work has already been done in this area by the authors [19], however
it remains to be naturally integrated with the meta-process presented in this paper.

5 Concluding Remarks and Future Work

In this paper we have described a framework that bridges the worlds of SBVR, Rela-
tional Databases and RESTful APIs to produce a functioning web application with an
SBVR model as its starting point. Additionally, we have discussed the meta-process
as a rule-driven control mechanism that makes the web application capable of exhibit-
ing process-like behaviour without explicit processes defined. Finally, we discussed
the possibility of composing such systems in a RESTful environment. Earlier work
along these lines has been published in [16] however the present paper expands the
work both in depth and scope.

An element that has not been discussed yet is that of a user interface to this system.
The simplest approach to this would be to use templating systems to define custom
interfaces for each resource and collection. While this is a good starting point, its lack
of adaptability to model changes and imperative nature of templating languages make
it only suitable as an intermediate measure. In the medium to long term a more flexi-
ble approach would be to add interface generation capabilities to the system with an
accompanying rule-driven customisation mechanism such that the aesthetics of the
system and the built in assumptions of the generator can be fully customised by the
modeller. This would in effect turn SBVR to a declarative user interface modelling
language. Additionally, the system as it stands is limited to information-driven tasks
and cannot interface with complex algorithmic systems. This problem can partially be
addressed through work in service composition where a system can be SBVR-
described while not being generated from an SBVR model.

This description can act as a wrapper for the system to be included in other sys-
tems, giving them additional capabilities. Alternatively, a fact type can be introduced
that instead of representing a class of facts given in a database, can instead represent
facts that are only instantiated when requested, with the process of instantiation in-
volving the execution of a processor-intensive algorithm. Finally, in implementing
this system, an SBVR parser needs to be implemented that can convert SBVR-SE to
SBVR logical formulation. While such parsers exist, none of them is open-source and
freely available for use by the community. With this step completed, implementation
of the system as described in this paper can commence in earnest.

References

1. Johnson, J.: CHAOS: the dollar drain of IT project failures. Application Development
Trends, pp. 41–47 (January 1995)

2. Johnson, J.: CHAOS 2006 Research Project. CHAOS Activity News 2 (2007)
3. Nachira, F., et al.: Digital Business Ecosystems. Office for Official Publications of the Eu-

ropean Communities (2007)
4. Zittrain, J.: The Future of the Internet–And How to Stop It. Yale University Press (2008)

158 A. Marinos and P. Krause

5. Object Management Group, Semantics of Business Vocabulary and Rules Interim Specifi-
cation (2006), http://www.omg.org/cgi-bin/doc?dtc/06-03-02 (accessed:
25/10/2007)

6. Date, C.J.: What Not How: The Business Rules Approach to Application Development.
Addison-Wesley Professional, Reading (2000)

7. Ross, R.G.: The Business Rules Manifesto. Business Rules Group. Version 2 (2003)
8. Open Philosophies for Associative Autopoietic Digital Ecosystems (2008), Automatic

code structure and workflow generation from natural language models,
http://files.opaals.org/OPAALS/Year_2_Deliverables/WP02/
D2.2.pdf

9. Linehan, M.H.: SBVR Use Cases. In: Proceedings of the International Symposium on
Rule Representation, Interchange and Reasoning on the Web, pp. 182–196. Springer,
Heidelberg (2008)

10. Date, C.J.: All for One, One for All, Part 2: How Many Cases Are There? Business Rules
Journal 7(12) (December 2006),
http://www.BRCommunity.com/a2006/b324.html

11. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. University of California, Irvine (2000)

12. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol (2007)
13. Gregorio, J., De Hora, B.: The Atom Publishing Protocol. Internet RFC 5023 (October 2007),

http://www.ietf.org/rfc/rfc5023.txt
14. Gregorio, J.: URI Template. Internet Draft draft-gregorio-uritemplate-03 (September 2008)
15. Inflector, http://inflector.dev.java.net (accessed on June 28, 2009)
16. Marinos, A., Krause, P.: Using SBVR, REST and Relational Databases to develop Informa-

tion Systems native to the Digital Ecosystem. In: IEEE Conference on Digital Ecosystems
Technologies, DEST 2009 (to appear, 2009)

17. Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.: RETRO: A (hopefully) RESTful
Transaction Model. Technical Report CS-09-01, University of Surrey, Guildford, Surrey
(August 2009)

18. Kowalski, R.: Algorithm= logic+ control. Communications of the ACM 22, 424–436 (1979)
19. Marinos, P.K.: What, not How: A generative approach to service composition. In: IEEE

Conference on Digital Ecosystems Technologies (DEST 2009) (to appear, 20090020039

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 159–166, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards an Improvement of Software Development
Processes through Standard Business Rules∗

José L. Martínez-Fernández1,2, Paloma Martínez2, and José C. González-Cristóbal1,3

1 DAEDALUS – Data, Decisions and Language S.A.
Avda. de la Albufera, 321

28031 Madrid, Spain
{jmartinez,jgonzalez}@daedalus.es

2 Advanced Databases Group, Universidad Carlos III de Madrid
Avda. de la Universidad, 30

28911 Leganés, Spain
{joseluis.martinez,paloma.martinez}@uc3m.es

3 DIT, Universidad Politécnica de Madrid
Avda. Complutense, 30
28040 Madrid, Spain

josecarlos.gonzalez@upm.es

Abstract. The automation of software development processes is a desirable
goal of current software companies which would lead to a cost reduction in
software production. This automation is the backbone of approaches such as
Model Driven Architecture (MDA) or Software Factories. This paper proposes
the use of standard Business Rules (using Rules Interchange Format, RIF) to
specify application functionality along with a platform to produce automatic
implementations for them. The novelty of this proposal is to introduce Business
Rules at all levels of MDA architecture in a software development process, pro-
viding a supporting tool where production Business Rules are considered at
every abstraction level. Production Business Rules are represented through
standard languages, rule engine vendor independence is assured via automatic
transformation between rule languages, and Business Rules reuse is made pos-
sible. The objective is to get the development of production Business Rules
closer to non-technical people involved in the software development process
through the use of natural language processing approaches, automatic transfor-
mations among models and semantic web languages such as Ontology Web
Language (OWL).

Keywords: Business Rules, production rules, rule engines, Rules Interchange
Format, RIF, Model Driven Architecture, MDA, OWL, Ontology Web Language.

∗ This paper has been partially supported by the Spanish Center for the Development of Indus-

trial Technology (CDTI, Ministry of Industry, Tourism and Trade), through the project
ITECBAN (Architecture for Core Banking Information Systems), INGENIO 2010 Pro-
gramme. Other partners in ITECBAN are INDRA Sistemas, CajaMadrid, Sun Microsystems
and Grid Systems. Special mention to our colleagues at INDRA must be done for their in-
volvement in the specification of K-Site Rules: Fernando Alcántara, Pablo Leal, Juan Carlos
Macho and Gonzalo Pando (in alphabetical order).

160 J.L. Martínez-Fernández, P. Martínez, and J.C. González-Cristóbal

1 Introduction

In many software-based industries, the speed with which new products and services
are efficiently developed and deployed is a definitive success factor [5][4]. This is the
case, for example, in the insurance market, where the rules and conditions for estab-
lishing the scoring used to decide client fees are continuously changing. Suppose that
an insurance company has to react to a new product from its competitor and decides
to modify the conditions of one of its own products. An expert at the company de-
cides the new conditions, which have to be notified to the Information Technology
(IT) department. Then the corresponding software component is identified, re-coded,
compiled, tested against errors and, if everything is all right, deployed. As can be
seen, this process is usually hard, tedious and, most importantly, time-consuming. The
business rules approach pursues the reduction of development time by putting govern-
ing business rules together and allowing their modification, without recoding or com-
piling them. Besides, the knowledge of the business resides in one place, in the form
of business rules. At present, there are several Business Rules Management Systems
(BRMSs) vendors such as ILOG JRules1, Fair Isaac’s Blaze Advisor2 or open source
alternatives like JBoss Rules3, but companies integrating these products have to select
one of them and this decision cannot be easily changed. So when a company decides
to introduce a BRMS product as part of its IT systems, it becomes dependent on the
provider of that product. Besides, phasing in a new BRMS product is, usually, an
expensive and difficult process. On the other hand, it continues being difficult for
non-technical business experts to define business rules without the intervention of
technical people because there is no clear relation between business concepts and
their implementation. This paper proposes a technical framework to address three
basic features that current BRMS systems do not consider:

• To reduce the semantic gap between business concepts and business objects
in rule-based environments by exploiting Semantic Web technologies.

• To provide independence from the BRMS implementing business rules.
• To allow easy integration of Business Rules into the software development

process used in the target organization.

This approach has been put in practice in a tool called K-Site Rules. K-Site Rules
is based on initiatives promoted by standardization organizations like W3C and
OMG, who have defined different rule languages pursuing independence between rule
definitions and implementations. Obviously, K-Site Rules focus on production rules
[8] which are related with expressions having an if-then structure that can be sup-
ported by forward-chaining rule engines. In fact, any rule type which can be written
using RIF language could be considered but, as an initial step, only production rules
are taken into account.

The remainder of this paper is structured as follows: the next section describes the
proposed framework, K-Site Rules, and the relation with MDA, which gives support
to the automatic business rules development process. How K-Site Rules is integrated
into the software development process is also explained in this section. The third

1 http://www.ilog.com/products/jrules/
2 http://www.fico.com/en/Products/DMTools/Pages/Fair-Isaac-Blaze-Advisor-System.aspx
3 http://www.jboss.com/products/platforms/brms/

 Towards an Improvement of Software Development Processes 161

section provides an application example of the framework defined on the insurance
industry domain. The final section includes some words on evaluation and presents
preliminary conclusions.

2 K-Site Rules Framework Description

K-Site Rules framework pays special attention to capabilities facilitating business rule
definition and management by non-technical users. Currently, most of rule develop-
ment environments available allow business rules definition starting from a Unified
Modeling Language (UML) model. This kind of model is not easily understandable
by non-technical users because, usually, a business concept does not correspond to a
unique UML class. For this reason, the use of ontologies to represent the business
knowledge is proposed. Ontology, according to the meaning taken in computer sci-
ence, is a knowledge representation paradigm containing entities and relations among
them [3] People working on other knowledge disciplines are used to exploit ontology
concepts or other related instruments so non-technical users can be closer to them
than they are with respect to UML. Of course, these users are not intended to go
through XML based ontology representations, a graphical view is provided instead.
The idea is to define business rules over concepts represented in an ontology that can
be matched against business objects, represented by UML classes. In this way, non-
technical users can be provided with tools which help them to write business rules
involving those business concepts. Following an MDA approach, automatic ways to
transform these ontology concepts and rules definitions in the corresponding coded
implementations must also be produced.

According to software engineering [11], four basic stages can be distinguished in a
standard development process, these are: analysis, design, construction and test. K-
Site Rules has been designed to allow automatic transformation (through MDA) from
the design to the final implementation. K-Site Rules includes two different editors for
the design stage, one for technical people, developed on a widely used IDE like
Eclipse, and another one, for non-technical people, that is integrated with common
web browsers. Taking into account the test stage, K-Site Rules provides tools for unit
testing, allowing business rules builders to assure a correct logical behavior of their
rules. With these unit testing tools, the non-technical user can provide some input
values to check the behavior of the rule. If there is some undesired result, the user can
go back, change the content of the rule and test again. For the business rules unit
testing K-Site Rules generates default implementations for involved objects (if previ-
ous implementations are not available). Of course, only functional testing is possible,
but nothing more is needed for non-technical users. Integration tests are not consid-
ered in K-Site Rules because they are part of the development of the system where
rules are going to be used and no interference with processes already defined in the
target organization is wanted. For the same reason K-Site Rules does not deal with the
deployment of business rules once they have been built. Each target organization
would have its own deployment policy and no interference in this process is desired,
so K-Site Rules impose no restrictions on it.

An informal definition of the development process could be as follows: a user de-
fines a business rule using an editor tool that guides rule writing; this editor restricts
valid vocabulary to the concepts present in a given enterprise ontology about business

162 J.L. Martínez-Fernández, P. Martínez, and J.C. González-Cristóbal

data. The guiding editor produces an RIF compliant business rule definition, linked to
ontology concepts (the RIF draft standard defines how to interact with ontology lan-
guages [10]). These expressions are automatically transformed into UML/OMG-PRR
representations, which are independent from the rule engine that will be used to im-
plement business rules. In fact, the last step is to obtain a specific model, once an
available rule engine has been selected for implementation purposes; UML/OMG-
PRR expressions are then automatically transformed to the rule engine language.

The work introduced in this paper defines and implements the three transformation
steps that must be taken to complete the described business rule definition process:

• UML to OWL transformation. The OMG Group determined the necessity to es-
tablish ways to relate different knowledge representations using some kind of
semantic model or ontology. This is the main goal of the Ontology Definition
Metamodel, ODM, which is devoted to the definition of metamodels for ontology
representations. Up to now there is a submitted specification under balloting [7].
It gives some guidance for mapping UML metamodels with OWL metamodels;
so, ontology models could be obtained from UML models. The reverse step, from
OWL to UML, is not covered; an UML element needs specific information that
should not be expected in an ontology, so only some advice for matching ontol-
ogy concepts with UML classes could be given.

The transformation included in K-Site Rules considers conversions shown in
Table 1, adapted from the ODM guidelines. Of course, other conversion alterna-
tives are possible.

Completeness of the transformation method included in K-Site Rules is not as-
sured. For this reason, other approaches, like the one followed in [1] where a spe-
cific language, the ATLAS Transformation Language (ATL), is used to define
the way transformations between models must be carried out in a Model-Driven
Engineering (MDE) environment. One of the use cases defined in ATL provides
an implementation for ODM specification. Some other examples on transforma-
tions among models applied to business rules scenarios can be found in [2].

In a first approach, the authors have preferred to have complete control in
UML/OWL transformation process, building a custom transformation.

The final objective of this transformation is to build a simple graphic represen-
tation of the domain where business rules will be defined. This graphical repre-
sentation will make it easier for non-technical users to know which concepts they
can use to build business rules.

• RIF to OMG-PRR transformation. Another step to be given in this transformation
is the translation between business rules in RIF and Production Rules Representa-
tions. The RIF format includes ways to represent business rules, the RIF Produc-
tion Rules Dialect, (RIF-PRD) [12] that are easily mapped to OMG-PRR [8].
Several OMG members are working in both standardization groups. The work in
[8] also points out that, although there is some overlap between these standards,
the focus is different, OMG-PRR is oriented towards UML based tools and meth-
ods, while RIF is focused on web technologies and users. K-Site Rules
includes a component in charge of this transformation. It is worth mentioning
that, up to this point, standard expressions of business rules are provided so they
are valid for any rule engine available. Taking a look at the MDA approach, this
automatic transformation is needed.

 Towards an Improvement of Software Development Processes 163

Table 1. UML/OWL Conversion convention

UML
component

OWL component

Package Ontology
Class Class

Attribute DatatypeProperty or ObjectProperty

Method DatatypeProperty or ObjectProperty
Association ObjectProperty

Aggregation ObjectProperty

Generalization SubClass

• OMG-PRR to specific platform transformation. The proposed framework must

also include a transformation module between Production Rules Representations
and specific rules languages included in rule engine products. The standard, of
course, does not include any guide for transforming PRR expressions to any rule
engine. A shallow study of the standard has been made and a possible way to rep-
resent main PRR standard elements in JBoss Rules and ILOG JRules has been
envisaged and implemented, although a deeper analysis is yet required. It is
worth mentioning that, although the PRR standard is very recent, there are people
from rule engine vendors involved in the definition of the standard, so mapping
between PRR and the most relevant rule engine vendor languages should always
be possible. This is the final automatic transformation needed according to the
MDA approach.

3 Example in the Insurance Domain

To illustrate the business rules development process described a simple example is
provided. Suppose a financial company where a domain expert has defined the fol-
lowing business rule to decide how much money a policy holder has to pay for his car
insurance. The business rule will be called insuranceFee.

In this example there are really two business rules that, in case of necessity, could
be stored in different groups of rules or rulesets. In the rest of this paper we are going
to focus on the first business rule, defined in the first sentence of Fig. 1. It is a produc-
tion rule as some action is taken when the conditions are fulfilled. In fact, there are
two Business Rules that will be treated separately.

If the rated power of the target car of the insurance policy is less than 100

horsepower and its price is under 15000 euros then the annual base fee for this car
must be decreased by 10%. On the other hand, if the policy holder is under 55 and
over 30 the annual base fee must be increased by 2%, in any other case the annual
base fee must be increased in 20%

Fig. 1. InsuranceFee rule, an example of business rule in the insurance domain

164 J.L. Martínez-Fernández, P. Martínez, and J.C. González-Cristóbal

In this context a very simple business model is considered that could be repre-
sented by the OWL ontology. The ontology can be viewed through the ontology visu-
alization tool included in K-Site Rules. The main goal of the supplied visualization
tool is to allow non-technical users to have an idea of which concepts are available in
the definition of business rules and which relationships between them are considered.

Using the OWL model obtained, the example business rule can be defined through
K-Site Rules using the provided natural language editor, as shown in Fig. 2.

The RIF expression built will be the standard representation of the business rule,
which must be transformed into the corresponding OMG-PRR expression. The final
step in the rule generation process would be to obtain a representation of the business
rules in a rule engine proprietary system.

Fig. 2. The insuranceFee rule edited using K-Site Rules

In an ideal situation, if transformations have been correctly performed, there would
be no need to modify the expression of business rules in rule engine proprietary lan-
guages, i.e. if a change must be made in the definition of the rule, it should be made at
the natural language level through the corresponding editor, which will then automati-
cally perform corresponding transformations. Of course, this editor is not only natural
language based; it is also possible to define rules using decision tables or decision trees.

The example described is very simple in order to provide a clearer exposition of the
business rule definition process. RIF includes the possibility of creating collections of
business rules using <Group> and <sentence> statements which allows building
business rules for more complex situations. Of course, K-Site Rules also includes this
possibility, the user can define one or more rulesets when creating the flow diagram for
a decision service and, into each ruleset, one or more elementary business rules can
be added. K-Site Rules gives the name 'decision service' to the set of rulesets and
conditions that are needed to provide some decision related functionality.

4 Conclusions and Future Work

Currently, there is a need in companies to define business domain knowledge in a
declarative way to share a common understanding of subjects.

 Towards an Improvement of Software Development Processes 165

There are many user roles involved in the daily work in an enterprise information
system, and the objective is to save costs as well as to improve business processes.
The solutions have to be framed within a management initiative trying to align the
technology existing in a company closely with its business strategy.

This paper has defined ongoing applied research on a new framework for business
rules development with two main objectives in mind: to allow non-technical users to
develop business rules with no or low intervention of developers and to reduce the
development time needed to maintain or to produce new rule-based applications. The
RIF and OMG PRR standard languages for representing business rules have been
selected to conform a framework going through different abstraction levels from a
business model to an application implementation, following an MDA approach in
order to automate as much as possible the whole development process. The higher
abstraction level uses ontology languages, such as OWL, and natural language to
represent business models and business rules. These representations are transformed
in a system description based on OWL, for business concepts, and RIF, for business
rules. The following levels formed by a platform independent model described using
UML and OMG-PRR languages and, finally, an implementation of the application
over an available rule engine is obtained, constituting the last layer. It is important to
notice that reusability has been taken into account when defining the framework,
allowing an easy reuse of defined business rules.

The evaluation plan for the proposed business rule development framework fol-
lows now with a formal survey [5] for a set of developers and business analysts who
will be confronted with the task of developing a rule-based application using K-Site
Rules. The hypothesis to be tested at this stage of the work is: can developers and
business analysts implement rule-based applications faster by using the proposed
framework than by using traditional software development tools?

On the other hand, the business rule suffers two transformations in the develop-
ment process with the possibility of obtaining more than one business rule in a level
for a unique business rule in the upper level. Although the K-Site Rules platform
gathers information about how different business rules are related at different abstrac-
tion levels, business rule transformations are unidirectional, from upper levels to
lower levels, but it is not possible to make, in an automatic way, the inverse process.
So, if a business rule must be modified, it would be more appropriate to change the
standard definition, but not pieces of generated code. More effort has to be put in to
allow complete correspondence among business rules at all levels.

References

[1] Cabot, J., et al.: From UML/OCL to SBVR specifications: A challenging transformation.
Information Systems (2009), doi:10.1016/j.is.2008.12.002

[2] del Didonet Fabro, M., Albert, P., Bézivin, J., Jouault, F.: Achieving Rule Interoperabil-
ity Using Chains of Model Transformations. In: Paige, R. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 249–259. Springer, Heidelburg (2009)

[3] Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. 1st edn.,
Springer, Heidelburg (2004); 2nd printing, vol. XII, p. 403 illus.159

[4] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories, Assembling Applications
with Patterns, Models, Frameworks and Tools, Editorial Wiley (2004)

166 J.L. Martínez-Fernández, P. Martínez, and J.C. González-Cristóbal

[5] Lawrence Pfleeger, S.: Software Engineering: Theory and Practice. Prentice Hall PTR,
Upper Saddle River (2001)

[6] Miller, J., Mukerji, J.: MDA Guide Version 1.0.1, OMG (2003),
http://www.omg.org/docs/omg/03-06-01.pdf (last visit: 17/02/2009)

[7] OMG, Ontology Definition Metamodel (ODM). Available as ptc/2008-09-07 (2005),
http://www.omg.org/docs/ptc/08-09-07.pdf (last visit: 17/02/2009)

[8] OMG, Production Rules Representation (PRR), Beta 1. Available as ptc/2008-09-07
(2006), http://www.omg.org/spec/PRR/1.0 (last visit: 17/02/2009)

[9] OMG, Semantics of Business Vocabulary and Business Rules (SBVR), First Interim
Specification, Available as dtc/06-03-02 (March 2006), http://www.omg.org (2006)

[10] Paschke, A., Hirtle, D., Ginsberg, A., Patranjan, P., McCabe, F.: RIF Use Cases and
Requirements, Working Draft. (2008), http://www.w3.org/TR/2008/
WD-rif-ucr-20080730/ (last visit: 10/06/2009)

[11] Pressman, R.: Software Engineering: a practitioner’s approach, 3rd edn. McGraw-Hill,
Singapore (1992)

[12] Marie, S., de Christian: RIF Production Rules Dialect (RIF-PRD) (2008),
http://www.w3.org/TR/2008/WD-rif-prd-20080730/
(last visit: 10/06/2009)

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 167–181, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Rule-Based System Implementing a Method for
Translating FOL Formulas into NL Sentences

Aikaterini Mpagouli and Ioannis Hatzilygeroudis

University of Patras, School of Engineering
Department of Computer Engineering & Informatics, 26500 Patras, Hellas

{mpagouli,ihatz}@ceid.upatras.gr

Abstract. In this paper, we mainly present the implementation of a system that
translates first order logic (FOL) formulas into natural language (NL) sentences.
The motivation comes from an intelligent tutoring system teaching logic as a
knowledge representation language, where it is used as a means for feedback to
the students-users. FOL to NL conversion is achieved by using a rule-based
approach, where we exploit the pattern matching capabilities of rules. So, the
system consists of rule-based modules corresponding to the phases of our trans-
lation methodology. Facts are used in a lexicon providing lexical and gram-
matical information that helps in producing the NL sentences. The whole
system is implemented in Jess, a java-implemented rule-based programming
tool. Experimental results confirm the success of our choices.

Keywords: Rule-Based System, Natural Language Generation, First Order
Logic.

1 Introduction

To help teaching the course of “Artificial Intelligence”, in our Department a web-
based intelligent tutoring system has been created. One of the topics that it deals with
is first-order logic (FOL) as a knowledge representation language. One of the issues
in the topic is the translation of natural language (NL) sentences into FOL formulas.
Given that this is a non-automated process [1, 2], it is difficult to give some hints to
the students-users during their effort to translate an “unknown” (to the system) NL
sentence into a FOL formula. However, some kind of help would be provided, if the
system could translate (after checking its syntax) the proposed by the student FOL
formula into a NL sentence.

The solution to the above problem requires some kind of natural language genera-
tion (NLG). While NLG is a very active research domain [3], it seems that there is not
any systematic effort for solving the above problem. There are however some efforts
in the area of paraphrasing [4, 5], which translate rule-based software specification
expressions into NL. Also, there are some efforts for the reverse problem: translating
NL sentences into FOL formulas [6, 7, 8]. On the other hand, although there are ef-
forts in the NLG domain related to other problems that exploit the advantages of the
rule-based approach [9, 10, 11], there is no such approach used in the efforts related
to paraphrasing and the inverse problem.

168 A. Mpagouli and I. Hatzilygeroudis

In this paper, we mainly present a rule-based system that implements a method for
translating FOL formulas into NL sentences. The translation process is an extension
of a previous one [13] and is informally presented here. The structure of the paper is
as follows. Section 2 deals with related work. Section 3 presents the FOLtoNL con-
version process. Section 4 deals with the use of rules for the implementation of the
conversion method. Section 5 presents some examples of the system’s application and
finally, Section 6 concludes the paper.

2 Related Work

In the existing literature, we have traced only one work [12], which has the same ob-
jective as ours. However, it uses the object-oriented features of Java for implementing
the corresponding method and lacks the generality of our system. For example, it does
not allow for formulas with more than two variables and more than one implication.

On the other hand, works in paraphrasing could be considered as closely related.
Paraphrasing is the process of describing the elements of a Conceptual Schema (CS)
by means of NL expressions. Object Constraint Language (OCL) is the standard lan-
guage to specify business rules on UML-based conceptual schemas. In [4] a system
for automatically translating formal software specifications in OCL to NL is de-
scribed. It is implemented using the Grammatical Framework (GF), a grammar for-
malism that is written from the perspective of linearization rather than parsing. In [5]
a method that generates NL explanations for business rules expressed in OCL is pre-
sented. This method has as an intermediate step the translation of the OCL expression
into a SBVR (Semantics of Business Vocabulary and Business Rules) representation.

Also, there are a number of efforts for translating NL sentences into FOL formulas,
which can be considered as related to our work. In [6] an application of Natural Lan-
guage Processing (NLP) is presented. It is an educational tool for translating Spanish
text of certain types of sentences into FOL implemented in Prolog. In [7], ACE (At-
tempto Controlled English), a structured subset of the English language, is presented.
ACE has been designed to substitute for formal symbolisms, like FOL, in the input of
some systems in order to make the input easier to understand and to be written by the
users. ACE expressions are automatically and unambiguously translated in the formal
symbolism used as input language for such systems. Finally, in [8], a Controlled Eng-
lish to Logic Translation system, called CELT, allows users to give sentences of a
restricted English grammar as input. The system analyses those sentences and turns
them into FOL.

None of the above efforts uses a rule-based approach in implementing the corre-
sponding method. However, there are efforts in the NLG domain that do that and
benefit from the use of rules. For example, in [9] Jess, a rule-based expert system
shell [14], is used to implement the representation and reasoning mechanism of an
agent for storytelling. In [10] a rule-based approach is followed for overgenerating
referring expressions. Finally, in [11], Jess capability of using modules of rules is
exploited in implementing a framework, called ERIC, for real time commentary suit-
able for many domains. All of them stress the benefits of using rules to implement the
corresponding systems/methods.

 A Rule-Based System Implementing a Method for Translating FOL Formulas 169

3 FOLtoNL Conversion Process

Our FOLtoNL conversion method takes as input FOL formulas [1] of the following
syntax:

Expression Atom | Expression Connective Expression | (Quantifier Variable) Ex-
pression | ~Expression | (Expression)
Atom Predicate(Term[,Term])
Term Function(Term) | Constant | Variable
Connective & | V | =>
Quantifier forall | exists

We distinguish FOL expressions in two different categories: Sentences and Impli-
cations. A Sentence can be either a single Atom or a set of FOL formulas connected
by the connectives ‘&’ and/or ‘V’. An Implication consists of two FOL formulas that
are connected by the connective ‘=>’. The first of the two formulas of an implication,
which is before the connective ‘=>’, is called the antecedent, whereas the second,
which follows the symbol ‘=>’, is called the consequent of the implication.

We also distinguish different cases of Sentences and Implications. One Sentence
can be characterized as simple or complex. A simple Sentence does not contain any
implications in it, whereas in a complex Sentence, one or more of the formulas con-
nected by ‘&’ or ’V’ are implications. For example, the formula “(exists x) cat(x) &
likes(Kate,x)” is a simple Sentence, whereas the formula “human(Helen) & ((forall
x) human(x)=>mortal(x))” is a complex one.

Likewise, we divide Implications in three categories: simple, complex and special
ones. A simple Implication consists of two simple Sentences connected by ‘=>’. In a
complex Implication, the antecedent or the consequent is a complex Sentence (or both
sides are complex Sentences). Finally, a special Implication has another Implication
as antecedent, or as a consequent (or has Implications in both sides). A consequent-
special Implication consists of an antecedent simple Sentence and a consequent Im-
plication. In an antecedent-special Implication the antecedent is an Implication and
the consequent can be either a Sentence or an Implication.

3.1 Basic Approach

The entire method of converting FOL formulas into NL is based on the translation of
an Implication. Sentences are considered as Implications that consist of only a conse-
quent (their antecedent is always True). As known, the Universe of Discourse (UoD),
for a FOL formula that contains variable symbols, is the set of all the possible values
of those variable symbols. In other words, the UoD represents the set of all the entities
that participate in the FOL formula, i.e. the entities for which the formula counts. The
antecedent of a FOL Implication defines the UoD of that Implication’s consequent
formula. Based on the latter fact, we start from the consequent of an Implication and
get a Primary Translation that may contain variable symbols. Then, we specify NL
phrases to substitute for the variable symbols of the Implication based on its antece-
dent and the quantifiers. These NL phrases are called NL substitutes. The last step is
to use the appropriate NL substitutes in the place of variable symbols in the Primary
Translation and get the Final Translation. In the absence of variable symbols, we get

170 A. Mpagouli and I. Hatzilygeroudis

the translations of the two sides of the Implication and combine them into an if-then
sentence.

In order to clarify the above, we present an example. Let us consider the three FOL
formulas: “(forall x) lives(x, Patras)”, “(forall x) human(x)=>lives(x,Patras)” and
“(forall x) (human(x) & young(x) & loves(x,sea)) => lives(x,Patras)”. The Primary
Translation is “x lives in Patras” and is the same for all the three formulas, given that
they have the same consequent. The next step is to find appropriate NL substitutes for
x in each case. The first formula is a Sentence. Since there is no antecedent, x is de-
termined by the quantifier and its NL substitute is “everything”. In the second case,
the antecedent restricts the UoD to the set of humans. The antecedent, along with the
quantifier, result in the NL substitute “every human” for x. The more informative the
antecedent, the more restricted becomes the UoD. Thus, in the third case, the NL sub-
stitute for x becomes “every young human that loves the sea”. By substituting the
appropriate NL substitutes for x, we get the final translations of the above formulas,
which are: “Everything lives in Patras”, “Every human lives in Patras” and “Every
young human that loves the sea lives in Patras”, respectively.

As already mentioned, a Sentence is translated as if it were an Implication without
an antecedent. All variable symbols are translated based on their quantifiers. We dis-
tinguish four different cases of quantifiers: universal, existential, negated universal
and negated existential. For example, let us consider the Sentence “(exists x) cat(x)”.
The NL substitute for x is “something” and the final translation of the Sentence is
“Something is a cat”. In case of a different quantifier, x could have been translated as
“everything”, “not everything” or “nothing”. It is obvious that in the absence of vari-
able symbols, the final translation is identical to the primary one.

So far, we have presented the translation of simple Implications and simple Sen-
tences. When translating a complex Sentence, we first translate the Sentence ignoring
all the Implications contained in it. Then we get the translations of the Implications
that were ignored in the first step. Finally, we add the translations of the Implications
to the end of the initial translation of the Sentence, using the words “and” or “or”,
according to the connectives. Thus, the complex Sentence “(human(Helen) & ((forall
x) human(x)=>mortal(x)))” is translated as “Helen is a human and every human is a
mortal”.

In case of a complex Implication, we get the initial translation ignoring all the Im-
plications contained in the antecedent. Those Implications are translated separately.
The translations of the ignored Implications are added to the end of the initial transla-
tion, after the phrases “provided that” and connected with “and”. As an example we
present the formula “(human(Helen) & ((forall x) human(x)=>mortal(x))) => mor-
tal(Helen)”, which is translated as “if Helen is a human, then Helen is a mortal, pro-
vided that every human is a mortal”. The phrase “provided that” declares that what
follows is part of the antecedent of the Implication. The translation in the above ex-
ample may seem somewhat awkward, but this is due to the fact that this particular
example leads to an if-then sentence as a basic translation. In cases like this, the part
after “provided that” can be appropriately embedded in the if-part of the if-then sen-
tence: “if Helen is a human and every human is mortal, then Helen is mortal”. How-
ever, in the presence of variable symbols in the basic Implication, things are different.
As an example, consider the last formula in Table 5 of Section 5. The part “provided
that” is necessary to provide a general way for translating such complex Implications.

 A Rule-Based System Implementing a Method for Translating FOL Formulas 171

What remains is the translation of Special Implications. A consequent-special Im-
plication can easily be transformed into an equivalent simple Implication and be
translated as such. For example, the expression “(forall x) (human(x) => (little(x) =>
(~dwarf(x) => child(x))))” is equivalent to “(forall x) (human(x) & little(x) &
~dwarf(x)) => child(x)” and is translated as “Every little human that is not a dwarf is
a child”. An antecedent-special Implication of the form (((a=>b)=>c)=>d) would be
translated as “if (if (if a then b) then c) then d”, which is rather odd and confusing. In
order to avoid the previous translation we use the combinations “if-then” and “the fact
that-means that” interchangeably. Thus, we get translations of the form “if the fact
that if a then b means that c then d”.

3.2 Conversion Process

The conversion of an input FOL formula into NL comprises a number of stages. The
first stage is the Input Analysis. The FOL formula is analyzed to a tree structure,
called FOLtoNL tree. A FOLtoNL tree has all the Atoms of the input formula as leaf
nodes and all the connectives of the input formula as intermediate nodes. It does not
contain quantifier information. The latter information concerns the order of the quan-
tifiers in the FOL formula, their types and the variables they bind and it is kept in ap-
propriate lists.

The next stage is the Transformation Stage. The tree structure produced by the
previous stage undergoes a number of transformations in order to reach a much sim-
pler but equivalent form. Such transformations may be the elimination of successive
negations, transformations of AND nodes, elimination of tautologies etc. The tree is
further processed in order to eliminate negation nodes with AND or OR nodes as
children, changing the labels of the connective nodes (and the polarity of their chil-
dren) according to DeMorgan rules.

After the Transformation Stage the Translation Stage comes. First of all, translate
all the Atoms of the formula. After that we translate special Implications. When this is
done, we proceed with the translation of the rest of the Implications that have not
been translated yet and finally, we check the root of the FOLtoNL tree. In case it is a
‘=>’, the input formula is an Implication and its translation is ready. Otherwise, the
input formula is a Sentence and a further translation is done at this point, using the
available translations of Implications appropriately.

The Translation Stage uses a Lexicon especially built for the system. It consists of
a large number of facts concerning words, called word-facts. Each word-fact is an
instance of the following template: (word ?type ?gen ?form ?past ?exp ?stem ?lem),
where ‘word’ declares that we have a fact describing a word ?lem and it is followed
by the fields that describe that word. Each time some information for a particular
word is needed, the Lexicon provides this information to the system. ?type refers to
the word’s part of speech. ?gen refers to the gender of the word if it is a noun. ?form
has a different role for each different type: for verbs it declares the person, for nouns
the number and for adjectives the grade. ?past is the past participle form if the word is
a verb. ?stem is not exactly the stem of the word but something common for all dif-
ferent words of the same stem. For example, the words “love”, “loves” and “loved”

172 A. Mpagouli and I. Hatzilygeroudis

will have the word “love” as ?stem. The rule is this: the stem for a verb is the verb in
first person, for a noun is the noun in singular form and for an adjective is its base
form.

Finally, ?exp is a field pointing to another fact, in case there is a special syntax for
the word ?lem. For example, usually the word “married” must be followed by the
preposition “to”. Thus, the word-fact for the word “married” will be: (word d 0 1 0 a1
marry married), where ?exp has the value a1. This means that the Lexicon also con-
tains an expression-fact: (expression a1 ". to"). When the system asks for information
about “married”, the Lexicon, apart from other characteristics, will also provide the
expression “married to” in order to substitute for the predicate “married”.

3.3 Translation of Atoms

The translation of an Atom is based on its predicate and the translations of its terms.
A constant term is translated as the constant itself. A variable term is translated as
the variable symbol at this stage, and a function term f(x) is translated as “the f of x”.
In Table 1 we present the translation of single-term Atoms according to the type of
their predicates and their polarity. Polarity is determined by the existence or non-
existence of the negation symbol before the predicate of an Atom. In Table 2, we
present the translation of two-term Atoms. P denotes the predicate and t, t1 and t2
are terms. We use <t-nl> to denote the translation of the term t, and P to denote that
the predicate is changed in order to be in the correct form (number for nouns, person
for verbs etc).

Table 1. Translation of single-term Atoms

P Translation P(t) Translation ~P(t)
Noun <t-nl> is a/an P <t-nl> is not a/an P
Adjective <t-nl> is [the] P <t-nl> is not [the] P
Verb <t-nl> does P <t-nl> does not P

Table 2. Translation of two-term Atoms

P Translation P(t1,t2) Translation ~P(t1,t2)
Noun <t1-nl> is the P of <t2-nl> <t1-nl> is not the P of <t2-nl>
Adjective <t1-nl> is [more] P than <t2-nl> <t1-nl> is not [more] P than <t2-nl>
Verb <t1-nl> P <t2-nl> <t1-nl> does not P <t2-nl>

One important general fact about FOL formulas is that the order of quantifiers de-

termines the subject and objects of the NL sentence that is the translation of a FOL
formula. The first quantifier introduces the subject and the rest introduce the objects.
So far, the translation of an Atom uses its first term as a subject and the second as an
object. In case of variable terms, this is correct as long as the first term is a variable
bound by the first quantifier of the formula. Otherwise, the first term must be used as
an object in the translation.

 A Rule-Based System Implementing a Method for Translating FOL Formulas 173

In case a predicate has a special syntax, with a particular preposition for example,
the translation of Atoms is simplified as shown in Table 3. We use exp to denote the
special syntax of the predicate. In this way, instead of translating the Atom married(x,
y) as “x is the married of y” or “x is more married than y”, we translate it correctly as
“x is married to y”. Likewise, the Atom lives(x, Patras) is not translated as “x lives
Patras” but as “x lives in Patras”.

Table 3. Translation of Atoms with P special syntax exp

P Translation P(t1,t2) Translation ~P(t1,t2)

Noun <t1-nl> is exp <t2-nl> <t1-nl> is not exp <t2-nl>

Verb <t1-nl> exp <t2-nl> <t1-nl> does not exp <t2-nl>

3.4 Translation of Implications

After all the Atoms have been translated, we translate the Implications as follows. First,
antecedent-special Implications are translated in the way presented in subsection 3.1.
Then we translate consequent-special Implications. These Implications include other
Implications. Thus, the contained Implications are translated and then their translations
are appropriately combined. After the translation of special Implications, translation of
the Implications that has not been translated so far comes. If the initial FOL formula is a
Sentence, it is translated as described in subsection 3.1, after translation of all existing
Implications. In the sequel, we present more analytically the Implications translation
process.

Implication translation is realized in two phases. In the first phase, we get the Pri-
mary Translation, based on the elements of the Implication’s consequent. In this
phase, we have two steps. In the first step, if there are Implications or constant-term
Atoms contained in the consequent, then they are translated independently and ig-
nored until the end of the second step. What remains in the consequent is a set of At-
oms connected by specific connectives. In the second step, we make the Aggregation.
We have three possible ways of aggregation. The translations of Atoms having the
same predicate (verb) and first term (subject) are aggregated to a sentence that has as
subject their common subject and as a verb their common verb and that has as object
their different objects connected by the words “and” or “or”. Likewise, we aggregate
Atoms with a common subject and Atoms with a common verb (predicate) and object
(second term). Atoms that can not be aggregated result in sentences that are identical
in their translations. When aggregation is done, all produced sentences are connected
via appropriate connective words and are combined with the translations of Implica-
tions and constant-term Atoms, ignored so far. The result is a NL sentence that con-
tains variable symbols.

The second phase is the specification of NL substitutes, based on the antecedent
and the quantifiers. The Atoms of the antecedent are divided in different categories
according to the place of a variable symbol in them. Thus, we have Atoms that have
the variable as a single term, Atoms that have the variable as a first term etc. Based on
this categorization, each variable symbol can be translated into its NL substitute. We

174 A. Mpagouli and I. Hatzilygeroudis

first use single-term Atoms that describe entities represented by the variables, in order
to create primary substitutes for those entities-variables. Two-term Atoms express
relations between entities and are used to enrich primary substitutes and give the
complete NL substitutes. Note that we use appropriate referring expressions whenever
we encounter a variable symbol that has already been translated and its translation has
already been used previously.

To clarify the above, we give an example. The Primary Translation of the formula
“~(forall x) (human(x) & clever(x) & lives(x,Patras) & loves(father(x),x)) =>
happy(x)” is “x is happy”. The primary substitute for x is “not every clever human”
and the referring expression is “that human”. In order to include the information of
the two-term Atoms of the antecedent in the final translation, we enrich the primary
substitute that becomes “not every clever human that lives in Patras and whose father
loves them”. Since the basic noun for x is “human” that is in singular number and is
of unknown gender we change the word “them” to “him/her” and we get the final NL
substitute “not every clever human that lives in Patras and whose father loves
him/her”. By substituting x in the Primary Translation we get the final translation of
the Implication, which is: “Not every clever human that lives in Patras and whose
father loves him/her is happy”.

What is left is to use the NL substitutes in the place of the variable symbols in the
Primary Translation and change appropriately the words “their”, “them” and “them-
selves” to the correct form. We also change the verbs, when needed, in order to be in
the correct form.

4 Using Rules for Implementing FOLtoNL Conversion

The FOLtoNL process has been implemented in Jess [14]. Jess is a rule-based expert
system shell written in Java, which however offers adequate general programming
capabilities, such as definition and use of functions. We have combined the pattern
matching capabilities of rules with the general programming capabilities of Jess in
order to achieve pure NL in a simple (as much as possible) way.

In [3], the basic stages of all applied NLG systems are presented. Most of such sys-
tems comprise a Linguistic Realisation stage, where NL is produced from semantic
representations via a specific grammar and a parser-realiser for it. Our system is a
different case. Realization is not useful when the output NL of a system is rather sim-
ple, using only Present Perfect tense for example. Moreover, in our case there is a
correspondence between the input and the output of the system: most of the words
that appear in the output exist in the input formula and the Atoms provide information
as to the syntax of the NL sentence they represent. Thus, rules are more appropriate to
implement this kind of conversion in a simpler way.

Jess rule engine uses an improved form of a well-known algorithm called Rete [15]
(Latin for “net”) to match rules against the working memory. Jess is actually faster
than some popular rule engines written in C, especially on large problems, where per-
formance is dominated by algorithm quality. Rete is an algorithm that explicitly trades
space for speed, so Jess memory usage is not inconsiderable. Jess does contain some
commands which allow us to sacrifice some performance to decrease memory usage.
Nevertheless, moderate-sized programs fit easily into Java’s default 16M heap. By

 A Rule-Based System Implementing a Method for Translating FOL Formulas 175

putting most specific patterns near the top of each rule’s LHS, patterns that will match
the fewest facts near the top and the most transient patterns near the bottom, we can
achieve better performance.

The Implication and Sentence translation methods, as well as the creation of FOL-
toNL tree from the input formula, are implemented with functions. We use functions
in the parts of the process, where the pattern matching capabilities of rules can not
help and would make the implementation less effective. Rules make it much easier to
implement the transformations on the tree structure in order to simplify it, since they
provide the ability to detect much faster all the parts of the tree that need transforma-
tion and perform it independently from the rest of the tree. Moreover, in case a new
form appears after a transformation, a form that did not exist before but can be further
transformed, then the appropriate rule fires immediately.

Fig. 1. FOLtoNL Inference Flow

Rules also help a lot during the translation of Atoms. All non-translated Atoms can
be detected immediately due to pattern matching and be translated independently
from all the rest. Rules also group the translation functions and impose a specific or-
der on their execution. They ensure that all special Implications are translated after
the translation of Atoms has finished and before the simple Implications are trans-
lated. They also ensure that a Sentence will be translated after all existing Implica-
tions have been translated. In a few words, rules and functions provide simplicity and
effectiveness to our system.

In Fig. 1, the Inference Flow of our system is presented. Rules are divided into 3
groups: Input Analysis Rules (IA Rules), Translation Rules (TRAN Rules) and Lexi-
con Rules (LEX Rules). After all activated IA Rules have fired, TRAN Rules can be
activated. TRAN rules pass the control to LEX rules when the characteristics of a
specific word are needed in order to proceed with their translation. LEX rules update
some global variables with appropriate values (the values of the characteristics of a
word requested) and return the control to TRAN rules. When there are no more acti-
vated TRAN rules to be executed, the translation process has been completed and the
NL sentence is returned as output.

The system’s architecture is shown in Fig. 2. It includes three Jess modules: IA,
TRAN and LEX, one module for each group of rules. Each Jess module has its own
rule base and its own facts and can work independently from the rest of Jess modules.
Focus is passed from one module to the other to execute its rules. IA and TRAN are
the basic modules of the system, whereas LEX is the system’s lexicon.

176 A. Mpagouli and I. Hatzilygeroudis

Fig. 2. FOLtoNL Architecture

Fig. 3. Rule ‘unify-and-nodes’

IA’s most important function is ‘readinput’, which takes as an argument the user’s
input and processes it as a string. The result is to update the global lists with quantifier
information and to build the FOLtoNL tree for the input FOL formula. This tree struc-
ture is the base of FOLtoNL conversion process. IA also contains rules that apply
various transformations to the FOLtoNL tree, in order to simplify it. Such rules are
‘unify-and-nodes’, ‘negated-sentence’, ‘negated-implication’, ‘negated-connective’,
‘remove-tautologies’, “not-not” etc. After the execution of these rules, the produced
FOLtoNL tree has been stored in the form of Node facts in TRAN module. We
present a rule of this module in Fig. 3.

Fig. 4. Rule ‘atom-interpret’

(defrule atom-interpretation
 (declare (salience 90))
 (main mod)
 ?atom-id <- (Atom (term1 ?term1) (term2 ?term2) (terms nil) (interpretation ""))
=>

 (atom-interpret ?atom-id))

(defrule unify-and-nodes
 (declare (salience 170))
 (ia mod)
 ?parent-node <- (Node (label and) (children $?children1) (level ?level1))
 ?node <- (Node (label and) (children $?children2) (level ?level2))
 (test (member$?node ?children1))
 =>
 (foreach ?child ?children2
 (modify ?child (level ?level2)))
 (bind ?new-children (replace$?children1 (member$?node ?children1)
 (member$?node ?children1) ?children2))
 (modify ?parent-node (children ?new-children))
 (retract ?node))

 A Rule-Based System Implementing a Method for Translating FOL Formulas 177

TRAN module contains all the rules and functions that implement the
translation process. Some indicative rules of this module are: “atom-interpretation”,
‘ant-special-translation’, ‘cons-special-translation’, ‘implication-translation’ and ‘ex-
pression-translation’. The rules of this module call corresponding functions like:
‘atom-interpret’, ‘implication-to-nl’, ‘sentence-to-nl’ etc. We present the rule ‘atom-
interpretation’ in Fig. 4.

Fig. 5. Rule ‘part-of-speech’

LEX consists of a large number of facts concerning words, called word-facts. Cur-
rently, the lexicon contains around 700 word facts. Apart from information about
English words, LEX module also includes two basic rules for their treatment. The
rule ‘part-of-speech’ is activated when a fact of the form (lemma ?lem) is inserted
into LEX. This kind of fact declares that another module needs information for the
English word ‘?lem’ from the lexicon. When, subsequently, the focus is given to
LEX the rule fires, looking for the specified word. Provided that the word is found,
the rule updates the global variable ‘?*part*’ with the word’s type, i.e. part of
speech. The rule ‘expression’ is used for words with a special syntax. This rule re-
turns the syntax of such words to other modules and makes it possible for the word
to appear in the correct from when being translated. There are also some rules
that serve to provide other modules with information about the gender, the tense
and/or the number of a specific word. In Fig. 5 we show the basic rule of
LEX. Concerning issues of extendibility, the Lexicon could be extended to
new application domains by mapping the word-facts to appropriate database
records.

(defrule part-of-speech
 ?w <- (stem ?lem)
 (word ?type ?gen ?form ?past ?exp ?stem ?lem)
=>
 (bind ?*type* ?type)
 (if (or (eq ?type N) (eq ?type n) (eq ?type d)) then
 (assert (nplural ?stem)))
 (if (eq ?type V) then
 (assert (vpast ?lem)))
 (if (or (eq ?type J) (eq ?type j)) then
 (bind ?*plural* ?lem)
 (bind ?*comparative-superlative* ?form)
 (assert (find-opposite ?lem)))
 (bind ?*stem* ?stem)
 (if (neq ?exp 0) then
 (assert (express ?past ?exp ?lem ?stem)))
 (retract ?w))

178 A. Mpagouli and I. Hatzilygeroudis

Jess uses the notion of templates, which are structured descriptors, consisted of
slot-value pairs, for describing complex facts. We have defined six templates: Atom,
Term, Function, Implication, Node, Variable, AtomSentence and SubSentence. Tem-
plates help in organizing the information of a complex fact in specific named slots
and make very easy the access and modification of this information. In Fig. 6 we pre-
sent some of these templates.

Fig. 6. Fact Templates

5 System Application

The system has been evaluated using a set of 100 formulas. The formulas were found
in textbooks and exercises about converting NL to FOL. The 97% of the formulas
were converted correctly (both syntactically and semantically) in NL. In Table 5, we
present some examples of the system’s application.

(deftemplate Atom
 (slot predicate)
 (slot term1)
 (slot term2)
 (slot positive (default 1))
 (slot constant-terms)
 (slot sentence)
 (slot passive)
 (slot passive-counts (default 0))
 (slot predicate-type)
 (slot interpretation (type STRING) (default "")))

(deftemplate Variable
 (slot id)
 (slot quantifier)
 (slot primary-substitute (type STRING) (default ""))
 (slot nl-substitute (type STRING) (default ""))
 (slot refer)
 (slot plural (default 0)))

 (deftemplate Implication
 (slot level)
 (slot antecedent)
 (slot consequent)
 (slot simple-ant)
 (slot simple-con)
 (slot special)
 (slot negated (default 0))
 (slot nl (default "")))

 A Rule-Based System Implementing a Method for Translating FOL Formulas 179

Table 5. Examples of FOLtoNL Application

Input (FOL Formula) Output (NL Sentence)
(forall x) (bird(x)&~flies(x)&swims(x))=>penguin(x) Every bird that swims and that does

not fly is a penguin.
(forall x) bat(x) =>~feathered(x) Every bat is not feathered.
~(forall x)(exists y) cares(x,y)

Not everything cares about
something.

(forall x) (exists y) (exists z) (exists w) (human(x) &
name(y) & age(z) & birthday(w)) => (has(x,y) &
has(x,z) & has(x,w))

Every human has some name, some
age and some birthday.

(forall x) human(x) => (loves(father_of(x),x) &
loves(mother_of(x),x))

Every human is loved by his/her
father and his/her father.

~((forall x) human(x)) It is not true that everything is a
human.

(forall x) ~(exists y) (forall z) (person(x) & person(y)
& person(z) & ~respects(x,y)) => ~hires(z,x)

Every person that does not respect
no person is not hired by any
person.

(forall x) (human(x) & lives(father_of(x)) &
lives(mother_of(x))) => ~orphan(x)

Every human whose father and
mother do live is not an orphan.

(exists y) (forall x) (student(x) & tutor(y) &
smarter(x,y))

All are students and are smarter than
some tutor.
(There is some tutor such that all are
students and are smarter than that
tutor.)

(forall x1) (forall x2) (exists y) (boy(x1) & girl(x2) &
human(y) & son(x1,y) & daughter(x2,y)) =>
(brother(x1,x2) & sister(x2,x1))

Every boy that is the son of some
human is the brother of every girl
that is the daughter of that human
and has that girl as a sister.

(forall x) ~((human(x)=>mortal(x)) => (mortal(x) =>
human(x)))

It is not true that if every human is a
mortal then every mortal is a human.

(forall x) (forall y) (student(x) & course(y) &
(studies(x,y) V lucky(x))) => passes(x,y)

Every student that studies every
course or is lucky passes every
course.

(forall x) (forall y) ((human(x) & place(y)) =>
((warm(y) & old(x) & (warm(y) =>
protects(y,health)) &loves(x,life)) => prefers(x,y)))

Every old human that loves life
prefers every warm place, provided
that every warm thing protects
health.

6 Discussion and Conclusions

In this paper, we mainly present the implementation of an approach for translating
FOL formulas into NL sentences, called the FOLtoNL method. The whole system is
implemented in Jess and combines the pattern matching and the general programming
capabilities of this language. We are not aware of other similar efforts, except one,
although there are efforts to deal with related problems. Neither of them, however,
uses a rule-based approach.

The system was evaluated using 100 FOL formulas. Those formulas emerged from
exercises about converting NL sentences into FOL. Each exercise consists of a NL

180 A. Mpagouli and I. Hatzilygeroudis

sentence that must be converted to FOL. The correct answer for each such exercise is
a FOL formula that is known. Some of the exercises were selected from the intelligent
tutoring system exercises database and others were found in textbooks that teach
Logic as a knowledge representation language. The selected subset of formulas covers
all the possible cases that can appear in the tutoring system for which the FOLtoNL
method has been implemented, and generally almost all possible cases of exercises
faced by someone who learns Logic. FOLtoNL was used to translate each one of the
test formulas (with known answers) and the results were compared with the appropri-
ate NL sentences.

97 formulas were translated in a quite natural and satisfactory way. The formulas
not satisfactory translated included or were of the form “((exists x) apple(x)) & ((ex-
ists x) orange(x))” which was translated as “Something is an apple and an orange”,
instead of “Something is an apple and something is an orange” which is the correct
translation. This is due to the fact that the system identifies entities by their variable
symbols uniquely. It does not realize that the same variable symbol in different scopes
refers to different entities. This is a problem easily solved by renaming a variable
symbol that is the same with another one which belongs to a different scope. The
other solution is to write it as two separate formulas, since it is a compound one.

Apart from the above problem, the general attitude of the system was satisfactory.
There is no constraint in the number of variables and quantifiers of the input FOL
formula, implications are handled in more than one levels and the order of quantifiers
is taken into consideration. Choosing rules to implement our approach has been
proven absolutely successful.

Adapting the system for human languages other than English requires much addi-
tional work, since in that case the problem of conversion becomes more complex.
English has a much simpler syntax and grammar than most of other human languages.
In order to translate FOL formulas of a different language in that language the Lexi-
con and the Translation Stage of the system should be designed again taking into con-
sideration the characteristics of the particular language. However, we believe that our
system could be more easily extended (or used as a basis) for translating software
specifications written in Z language [16], which is based on FOL to a large degree.

A restriction of our system is that it cannot handle formulas containing predicates
of arity greater than 2, i.e. having more than two terms. This is one of the concerns of
our feature work.

Regarding the usefulness of our system, the first reactions of the students were en-
couraging. We need, however, a more systematic user study confirming our intuition
about the system’s usefulness and this is one of our future goals.

References

1. Genesereth, M.R., Nilsson, N.J.: Logical foundations of AI. Morgan Kaufmann, San Fran-
cisco (1988)

2. Brachman, R.J., Levesque, H.J.: Knowledge representation and reasoning. Morgan Kauf-
mann, San Francisco (2004)

3. Reiter, E., Dale, R.: Building natural language generation systems. Cambridge University
Press, Cambridge (2006)

 A Rule-Based System Implementing a Method for Translating FOL Formulas 181

4. Burke, D.A., Johannisson, K.: Translating Formal Software Specifications to Natural Lan-
guage. In: Blache, P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS
(LNAI), vol. 3492, pp. 51–66. Springer, Heidelberg (2005)

5. Pau, R., Cabot, J.: Paraphrasing OCL expressions with SBVR. In: Kapetanios, E., Sugu-
maran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 311–316. Springer,
Heidelberg (2008)

6. de Aldana, E.R.V. An application for translation of Spanish sentences into first order logic
implemented in prolog (1999), http://aracne.usal.es/congress/PDF/

7. Fuchs, N.E., Schwertel, U., Torge, S.: Controlled natural language can replace first order
logic. In: Proceedings of the 14th IEEE International Conference on Automated Software
Engineering (ASE 1999), pp. 295–298 (1999),
http://www.ifi.unizh.ch/groups/req/ftp/papers/ASE99.pdf

8. Pease, A., Fellbaum, C.: Language to logic translation with PhraseBank. In: Proceedings of
the Second Global Conference (GWC 2004), pp. 187–192 (2004)

9. Theune, M., Faas, S., Nijholt, A., Heylen, D.: The Virtual Storyteller: Story Creation by
Intelligent Agents. In: Gobel, S., Braum, N., Spierling, U., Dechau, J., Diener, H. (eds.)
Proceedings of TIDSE 2003: Technologies for Interactive Digital Storytelling and Enter-
tainment, pp. 204–215. Fraunhofer IRB Verlag (2003)

10. Varges, S.: Overgenerating Referring Expressions Involving Relations and Booleans. In:
Belz, A., Evans, R., Piwek, P. (eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 171–181.
Springer, Heidelberg (2004)

11. Strauss, M., Kipp, M.: ERIC: A Generic Rule-based Framework for an Affective Embod-
ied Commentary Agent. In: Proceedings of the 7th International Conference on Autono-
mous Agents and Multiagent Systems (AA-MAS 2008), pp. 97–104 (2008)

12. Zhu, J.: An NLG System Generates English From First-order Predicate Logic, MSc Pro-
ject, Computer Science Department Old Dominion University Norfolk, VA (2006),
http://www.cs.odu.edu/~gpd/msprojects/jzhu.1/
ms_project_report.doc

13. Mpagouli, A., Hatzilygeroudis, I.: A Knowledge-based System for Translating FOL
Formulas into NL Sentences. In: Iliadis, L., Vlahavas, I., Bramer, M. (eds.) Artificial Intel-
ligence Applications and Innovations III, Proceedings of the 5th IFIP Conference on
Artificial Intelligence Applications and Innovations (AIAI 2009), pp. 157–163. Springer,
Heidelberg (2009)

14. Friedman Hill, E.: Jess in action: rule-based systems in Java. Manning Publishing (2003)
15. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match

Problem. Artificial Intelligence 19, 17–37 (1982)
16. Spivey, J.M.: Understanding Z: A Specification Language and its Formal Semantics.

Cambridge University Press, Cambridge (2008)

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 182–192, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Empirical Study of Unsupervised Rule Set
Extraction of Clustered Categorical Data Using a

Simulated Bee Colony Algorithm

James D. McCaffrey and Howard Dierking

Volt VTE / Microsoft MSDN
One Microsoft Way

Redmond, WA 98052 USA
v-jammc@microsoft.com, howard@microsoft.com

Abstract. This study investigates the use of a biologically inspired meta-
heuristic algorithm to extract rule sets from clustered categorical data. A com-
puter program which implemented the algorithm was executed against six
benchmark data sets and successfully discovered the underlying generation
rules in all cases. Compared to existing approaches, the simulated bee colony
(SBC) algorithm used in this study has the advantage of allowing full customi-
zation of the characteristics of the extracted rule set, and allowing arbitrarily
large data sets to be analyzed. The primary disadvantages of the SBC algorithm
for rule set extraction are that the approach requires a relatively large number of
input parameters, and that the approach does not guarantee convergence to an
optimal solution. The results demonstrate that an SBC algorithm for rule set ex-
traction of clustered categorical data is feasible, and suggest that the approach
may have the ability to outperform existing algorithms in certain scenarios.

Keywords: Association rules, data mining, pattern mining, rule set extraction,
simulated bee colony algorithm.

1 Introduction

This study investigates the use of a biologically inspired simulated bee colony meta-
heuristic algorithm to extract rules from clustered categorical data. Consider the gen-
eral problem of analyzing a large set of clustered categorical data in order to extract a
set of rules which efficiently describe the cluster membership of the existing data and
which can be used to predict cluster membership of new data. Such problems have
great practical importance. Examples include analyzing sales data to forecast consum-
er purchasing behavior, analyzing telecommunications data for possible terror-related
activity, and analyzing genetic DNA sequences to discover biological system regula-
tory information. For the sake of concreteness, imagine a set of clustered categorical
data which has three attributes: color, size, and temperature. Further, suppose that the
color attribute can take on one of four categorical values: red, blue, green
or yellow. The size attribute can be small, medium, or large. The temperature attribute
value can be hot, cold, or warm. Each 3-tuple of color, size, and temperature is

 An Empirical Study of Unsupervised Rule Set Extraction 183

assigned to one of three clusters with cluster ID values of c0, c1, and c2 via some
unspecified mechanism yielding the following artificially small data set:

Color Size Temp ClusterID
================================
Red Small Hot c0
Red Small Cold c0
Blue Medium Hot c1
Green Large Cold c1
Yellow Large Warm c2
Blue Small Hot c2

A human observer might conclude that one of the many possible rule sets which de-
scribe the data set is:

(Red, Small) => c0
(Blue, Medium) => c1
(Green) => c1
(Yellow) => c2
(Blue, Small) => c2

The rule set correctly categorizes all six tuples in the data set but requires nearly as

many (five) rules as data tuples. A second human observer might be willing to sacri-
fice a certain amount of categorization coverage or rule set accuracy for a decrease in
rule set size and conclude that a good rule set is:

(Red) => c0
(Green) => c1
(Yellow) => c2

This second, smaller, rule set correctly categorizes four of the six tuples in the data

set. These examples point out one of the two main issues with rule set extraction,
namely, there is no inherent definition of what an optimal rule set is and therefore any
rule set extraction algorithm must a priori specify characteristics of the target rule set
which define a goodness metric, such as tuple coverage, rule set size, and rule set
accuracy. The second main issue with rule set extraction is the combinatorial explo-
sion problem. Exhaustively analyzing all possible rule sets for a given data set of
clustered data is not feasible in general. If the data set under analysis has n tuples,
then rule set size can vary from 1 (in the degenerate case where one rule captures all
tuples) to n (in the worst case where each tuple requires a distinct rule). If a data set
contains c cluster ID values, and k attributes where each attribute Ai can take on one
of Aij distinct values (possibly including a don't-care value), and if the rule set is
structured in disjunctive normal form, then the total number of possible rule sets is
given by:

 Aij 1

184 J.D. McCaffrey and H. Dierking

For example, for a data set consisting of n = 10,000 tuples, with k = 10 attributes,
where all attributes can take on one of Aij = 20 distinct values, and c = 30 cluster ID
values, the total number of disjunctive-form rule sets is 2.79 * 1015 sets. Even if rule
sets could be evaluated at the rate of 1,000 sets per second, a complete examination of
all possible rule sets would require roughly 88,000 years.

Rule set extraction of clustered categorical data can be considered a variation of a
class of problems normally called association rule learning. The introduction of the
term association rule learning is often attributed to a 1993 paper by Agrawal, Imie-
linski, and Swami [1]. That paper examined the problem of finding association rules
based on frequency regularities between products in large scale transaction data rec-
orded by point-of-sale systems in supermarkets. For example, one rule might indicate
that customers who buy milk and eggs are also likely to buy cheese. Because the root
study investigated this particular supermarket problem, this general class of problems
is sometimes called market basket analysis. Association rules were defined by
Agrawal et al. along the lines of the following. Let I = I1, I2, . . . , In be a set of n
attribute values called items. Let P be a set of physical transactions where each physi-
cal transaction is a subset of the items in I consisting of those items purchased by a
shopper. Let T be a database of transactions where each transaction t is represented by
a binary vector where t[i] = 1 if the item Ii is in P and t[i] = 0 otherwise. There is one
tuple in T which corresponds to each physical transaction. Let X be a set of some or
all of the items in I. A transaction t satisfies X if t[i] = 1 for all items Ii in X. An asso-
ciation rule is an implication in the form X => Ij where X is a set of items in I and Ij is
a single item in I that is not in X.

Central concepts of standard association rule learning include the notions of sup-
port and confidence. The support, s(r), of a rule r is defined as the fraction of transac-
tions in T that satisfy the union of items in the consequent and antecedent of the rule
[2]. The confidence, c(r), of a rule r is a value between 0 and 1 inclusive such that X
=> Ij is satisfied in the set of transactions T iff at least a fraction c of the transactions
in T that satisfy X also satisfy I [2]. Support can be thought of as a measure of a rule's
statistical significance, or importance. Association rule support metrics are used to
deal with the combinatorial explosion problem by reducing the search space of all
possible rule sets. Confidence can be thought of as a measure of a rule's strength or
accuracy.

Association rules have been the subject of a large amount of research and many al-
gorithms for association rule learning have been proposed and studied [3]. These
algorithms differ from one another primarily in how they deal with searching the
domain space of all possible rule sets and in how they define interesting/optimal rules.
Example association rule learning algorithms include the Apriori algorithm, the Eclat
algorithm, the FP-Growth algorithm, and the OneR algorithm [4]. One of the primary
differences between the standard association rule learning problem and the rule set
extraction problem addressed by this study is that in this study there is a clear distinc-
tion between attribute values, which can only be part of a rule antecedent, and cluster
ID values, which can only be in the consequent part of a rule. Additionally, the as-
sumption that the data set to be analyzed is a result of a clustering algorithm means
each unique tuple in the data set is unambiguously associated with a single cluster ID
value. Another significant difference between standard association rule learning and
the rule set extraction problem of this study is that this study does not require the use

 An Empirical Study of Unsupervised Rule Set Extraction 185

of an a priori support metric to deterministically reduce the rule set search space.
Instead the simulated bee colony algorithm used in this study explicitly does not con-
strain the search space of all possible rule sets for a given data set. Finally, association
rule learning is designed to discover separate, possibly unrelated rules which may
describe only part of a data set while the problem addressed by this study is to find a
set of related rules which describe a data set as a whole.

2 Algorithms Inspired by Bee Behavior

Algorithms inspired by the behavior of natural systems have been studied for decades.
Examples include algorithms inspired by ants, biological immune systems, metallur-
gic annealing, and genetic recombination. These algorithms are sometimes called
meta-heuristic algorithms because they provide a high-level framework which can be
adapted to solve optimization, search, and similar problems, as opposed to providing a
stringent set of guidelines for solving a particular problem. A review of the literature
on algorithms inspired by bee behavior suggests that the topic is evolving and that
there is no consensus on a single descriptive title for meta-heuristics based on bee
behavior. Algorithm names in the literature include Bee System, BeeHive, Virtual
Bee Algorithm, Bee Swarm Optimization, Bee Colony Optimization, Artificial Bee
Colony, Bees Algorithm, and Simulated Bee Colony.

Common honey bees such as Apis mellifera take on different roles within their co-
lony over time [5]. A typical hive may have 5,000 to 20,000 individuals. Young bees
(2 to 20 days old) nurse larvae, construct and repair the hive, guard the entrance to the
hive, and so on. Mature bees (20 to 40 days old) typically become foragers. Foraging
bees typically occupy one of three roles: active forgers, scout foragers, and inactive
foragers. Active foraging bees travel to a food source, gather food, and return to the
hive. Roughly 10% of foraging bees in a hive are employed as scouts. These scout
bees investigate the area surrounding the hive, often a region of up to 50 square miles,
looking for attractive new food sources. At any given time some foraging bees are
inactive. These inactive foraging bees wait near the hive entrance. When active forag-
ers and scouts return to the hive, depending on the quality of the food source they are
returning from, they may perform a waggle dance to an audience of inactive foraging
bees. This waggle dance is believed to convey information to the inactive foragers
about the location and quality of the associated food source. Inactive foragers receive
this food source information from the waggle dance and may become active foragers.
In general, an active foraging bee continues gathering food from a particular food
source until that food source is exhausted, at which time the bee becomes an inactive
forager.

A 1997 study by Sato and Hagiwara used a model of honey bee behavior named
Bee System to create a variation of the genetic algorithm meta-heuristic [6]. The algo-
rithm essentially added a model of the behavior of scout bees to introduce new poten-
tial solutions and avoid premature convergence to local minima solutions. A 2002
study by Lucic and Teodorvic used a variation of the Bee System model to investigate
solving complex traffic and transportation problems [7]. The study successfully used
Bee System to solve eight benchmark versions of the traveling salesman problem. A

186 J.D. McCaffrey and H. Dierking

2004 paper by Nakrani and Tovey presented a honey bee inspired algorithm for dy-
namic allocation of Internet services [8]. The study concluded that bee inspired algo-
rithms outperformed deterministic greedy algorithms in some situations. A 2004 study
by Wedde et al. used a bee-inspired algorithm named BeeHive to solve classic routing
problems [9]. The paper concluded that BeeHive achieved similar or better perfor-
mance compared to other common algorithms. In 2005 Yang presented an algorithm
named Virtual Bee Algorithm to solve general optimization problems [10]. The study
concluded the bee-inspired algorithm was significantly more efficient than a genetic
algorithm approach. A 2005 study by Drias et al. used a meta-heuristic named Bee
Swarm Optimization to study instances of the Maximum Satisfiability problem [11].
The study concluded that Bee Swarm Optimization outperformed other evolutionary
algorithms, in particular an ant colony algorithm. In 2005 Teodorovic and Dell'Orco
presented an algorithm named Bee Colony Optimization [12]. The study examined
different versions of the traveling salesman problem including those with fuzzy in-
formation. A 2006 paper by Basturk and Karaboga investigated a bee-inspired
algorithm named Artificial Bee Colony to solve five multi-dimensional numerical
problems [13]. The paper concluded that the performance of the bee algorithm was
roughly comparable to solutions by differential evolution, particle swarm optimiza-
tion, and evolutionary algorithms. A 2006 paper by Pham et al. used a meta-heuristic
named Bees Algorithm to investigate a collection of ten benchmark optimization
problems [14]. The paper concluded that the Bees Algorithm was comparable or supe-
rior to approaches including deterministic simplex method, stochastic simulated an-
nealing optimization procedure, genetic algorithm, and ant colony system. A 2009
study by McCaffrey demonstrated that an algorithm named Simulated Bee Colony
outperformed existing deterministic algorithms for generating pairwise test sets, for
six out of seven benchmark problems [15].

3 Simulated Bee Colony Algorithm Implementation

There are many ways to map honey bee foraging behavior to a specific algorithm
which extracts a descriptive rule set from a set of clustered categorical data. The three
primary design features which must be addressed are 1.) configuration of a problem-
specific data structure that simulates a foraging bee's memory and which represents a
the location of a food source, which in turn represents a rule set, 2.) creation of a
problem-specific function which measures the goodness, or quality, of a candidate
rule set, and 3.) specification of generic algorithm parameters such as the numbers of
foraging, scout, and inactive bees in the colony, and the maximum number of times a
bee will visit a particular food source. The simulated bee colony (SBC) algorithm
used in this study is perhaps best explained by example. Suppose the data set to be
analyzed contains the data described in the Introduction section of this paper, with
attributes of color (red, blue, green, yellow), size (small, medium, large), and tem-
perature (hot, warm, cold), and where each tuple has been clustered into one of three
categories (c0, c1, c2). The screenshot shown in Figure 1 shows the result of a sample
program run and illustrates many of the implementation details.

 An Empirical Study of Unsupervised Rule Set Extraction 187

Fig. 1. Screenshot of an example test run of the SBC implementation

C:\RuleExtraction\Run\bin\Debug> Run.exe

The input clustered tuples are:

Red Small Hot c0
Red Small Cold c0
Blue Medium Hot c1
Green Large Cold c1
Yellow Large Warm c2
Blue Small Hot c2

Initializing Hive

Number Active bees = 60
Number Inactive bees = 20
Number Scout bees = 20
Maximum number of cycles = 10,000
Maximum cycles without improvement = 10,000
Maximum visits to a food source = 100
Probability waggle dance will convince inactive bee = 0.9000
Probability a bee accepts a worse food source = 0.0100

Tuple coverage weight = 1.00
Rule accuracy weight = 5.00
Rule set size weight = 1.00
Attribute efficiency weight = 0.00
Cluster coverage weight = 1.00

Entering simulated bee colony algorithm main processing loop

Progress: |==|
 ..

All cycles completed
Best rule set / memory matrix found is:

Red Small x c0
Blue Medium x c1
x Large Cold c1
x x x c2

Corresponding rule set quality = 0.9688

The memory matrix in if..then form is:

IF Color = Red AND Size = Small THEN
 ClusterID = c0
ELSE IF Color = Blue AND Size = Medium THEN
 ClusterID = c1
ELSE IF Size = Large AND Temp = Cold THEN
 ClusterID = c1
ELSE
 ClusterID = c2

End run

188 J.D. McCaffrey and H. Dierking

The SBC algorithm implementation used in this study models a bee as an object
with four data members as illustrated in Figure 2. The primary data member is a two-
dimensional string array named MemoryMatrix which corresponds to a bee's memory
of the location of a food source, which in turn represents a rule set. The first row of
the memory matrix in Figure 1 is equivalent to the implication (Red, Cold) => c0. The
Status field identifies the bee's role (1 = an active forager). The RuleSetQuality field
is a value in the range [0.00, 1.00] which is a measure of the goodness of the memory
matrix. The NumberVisits field is a counter that tracks the number of times the bee
object has visited a particular food. The honey bee colony as a whole is modeled as an
array of bee objects. The SBC algorithm iterates through each bee in the colony and
examines the current bee's Status field. If the current bee is an active forager, the
algorithm simulates the action of the bee leaving the hive to go to the current food
source in memory. Once there, the bee examines a single neighbor food source. A
neighbor food source is one which, relative to the current food source, a.) has a single
attribute value (including a don't-care value) in one rule randomly changed, or b.) has
a different cluster ID value in one rule randomly changed, or c.) has a new random
rule added, or d.) has a randomly selected existing rule removed. If the quality of the
neighbor food source is superior to the current food source, the foraging bee's memo-
ry is updated with the neighbor location and the NumberVisits counter is reset to 0.
The SBC algorithm also contains a condition where a foraging bee may accept a
neighbor food source with a lower measure of goodness, with probability = 0.01.
Otherwise the bee's memory does not change and the NumberVisits counter is incre-
mented.

Fig. 2. Implementation representation of an SBC bee object

After examining a neighbor food source, an active bee returns to the hive. If the re-

turning bee has reached a threshold for the maximum number of visits to its food
source in memory, that bee becomes inactive and a randomly selected inactive bee is
converted to an active forager. Otherwise the returning bee performs a simulated
waggle dance to all inactive bees in the hive. This dance conveys the goodness of the
current food source / rule set in the dancing bee's memory. Inactive bees with food
sources in memory which have lower quality than the returning bee's food source, will
update their memories to the returning bee's memory with probability = 0.90. Scout
bees are not affected by the waggle dances of returning foragers. Instead, scouts leave

 An Empirical Study of Unsupervised Rule Set Extraction 189

the hive, examine a randomly selected food source, return to the hive, and perform a
waggle dance to the audience of currently inactive bees.

The function which measures the quality of a particular rule set is composed of five
components, and five associated weights. The first component measures the percen-
tage of tuples in the data set which are touched by the rule set. This factor corresponds
to the support metric of standard association rule learning. The second component
measures the percentage of tuples which are correctly categorized by the rule set. This
factor corresponds to the confidence metric of standard association rule learning. The
third component measures rule set size efficiency and is the ratio of the number of
rules in the rule set to the number of tuples in the data set. The premise is that, other
factors being equal, a rule set with fewer rules is superior to a rule set with more rules.
The fourth component of the goodness function measures attribute efficiency and is
the ratio of the number of attributes in the rule set which have don't-care values to the
total number of attribute values in the rule set. The premise here is that, other factors
being equal, more don't-care values in a rule set is better than fewer don't care values.
For example, a rule r1: (Red, Small) => c0 is better than a rule r2: (Red, Small, Hot)
because fewer Boolean comparisons are needed to resolve r1 than r2. The fifth com-
ponent of the goodness function measures the percentage of all possible cluster ID
values which are contained in at least one rule in the rule set. The premise is that in
most situations, it is extremely important that all cluster ID values be considered by a
rule set. Each of the five components of the goodness function can take on values in
the range [0.00, 1.00]. The goodness function assigns to each component value a
weight in the range [0, 10], and returns the simple weighted average. These compo-
nent weights must be specified as input parameters to the SBC algorithm.

4 Results

In order to evaluate the effectiveness of using a simulated bee colony algorithm to
extract rule sets from clustered categorical data, the algorithm was implemented with
a programming language and then executed against six benchmark data sets. The six
test data sets were generated from hidden rule sets and varied across five dimensions:
the number of attributes, the number of attribute values for each attribute, the number
of cluster ID values, the number of rules in the hidden generator rule set, and the
number of tuples in the data set. For each test data set, the algorithm was allowed to
run until the hidden generating rule (or an isomorphic form of the generating rule)
was found, or 108 iterations of the main processing loop had been performed. The
characteristics of the six data sets, and the results are summarized in Table 1.

The number of attribute values in the third column in Table 1 include the possibili-
ty of a don’t-care value for all six data sets. The hidden generating rules for each data
set did not contain any don’t-care values. The number of possible rule sets in column
seven of Table 1 was computed based on the maximum number of possible tuples for
a particular data set, which is the product of the number of attribute values less 1 (to
account for the don’t-care values) and the number of cluster ID values, rather than the
actual number of tuples in the test data sets given in column six because the actual
numbers of tuples selected for each data set were arbitrarily selected.

190 J.D. McCaffrey and H. Dierking

The SBC algorithm successfully discovered the underlying, hidden rule set genera-
tor for all six test data sets. In order to partially validate the test results, a program
which generated purely pseudo-random rule sets (within the constraints of the data set
parameters) was implemented and executed against each of the data sets. The random
rule set generation program uncovered the underlying rule set generator for data set
D0 but did not uncover the generators for data sets D1, D2, D3, D4, or D5. This result
is not surprising given that the total number of possible rule sets for the small data set
D0 is less than the maximum number of iterations allowed for the random rule set
generator. The fact that the SBC algorithm successfully discovered the underlying
rule generator for data set D5 is particularly noteworthy given the huge number of
possible rule sets for that data set.

Table 1. Characteristics of benchmark data sets and empirical results

Data
Set

Number
Attributes

Attribute
 Values

Cluster ID
 Values

Generating
Rules

Number
Tuples

Possible
Rule Sets

Generator
Found?

DS0 3 (5,4,4) 3 4 6 6.9 * 105 yes

DS1 4 (4,4,4,4) 4 10 20 5.4 * 108 yes

DS2 4 (3,6,3,6) 5 162 300 2.1 * 109 yes

DS3 6 (3,4,5,5,4,3) 8 200 600 1.1 * 1013 yes

DS4 10 (3, . . . , 3) 10 300 1000 1.0 * 1017 yes

DS5 10 (5, . . . , 5) 10 400 2000 4.7 * 1023 yes

The rule sets which are programmatically extracted from clustered data by the SBC

algorithm can easily be expressed in multiple formats. For example, the program which
produced the output shown in Figure 1, was easily reconfigured to emit a rule set using
the RuleML language, as shown in Figure 3. RuleML is a markup language designed
to provide a rich framework for expressing rules using XML. RuleML is a product of
the Rule Markup Initiative, a collection of groups and individuals from industry and
academia. Note that the rule shown in Figure 3 expressed in RuleML format is more
structured than the same rule expressed in if. then format, and therefore RuleML rule
format lends itself to efficient parsing and is particularly appropriate in situations
where the SBC rule set output is intended to serve as input to another software system.

Because this study is primarily empirical, it is not possible to draw definitive con-
clusions from the results. However, the results do demonstrate that rule set extraction
of clustered categorical data is feasible. A review of the literature did not reveal any
studies which address the identical problem scenario as the one investigated here.
However the association rule learning algorithms mentioned in the Introduction sec-
tion of this paper could be adapted to produce a rule set which describes an entire data
set. Compared to those approaches, the simulated bee colony (SBC) algorithm used in
this study has the advantage of allowing full customizationof the characteristics of the
rule set extracted from a particular data set. Additionally the SBC algorithm can be
applied to arbitrarily large data set as opposed to some association rule learning

 An Empirical Study of Unsupervised Rule Set Extraction 191

Fig. 3. Rule from rule set expressed in RuleML format

algorithms which require exponentially increasing processing time as the size of the
data set increases. One disadvantage of using the SBC algorithm for rule set extrac-
tion is that the approach requires a relatively large number of input parameters, in-
cluding both problem-specific parameters such as the definition of a function which
computes the goodness of a rule set, as well as generic algorithm parameters such as
the number of bee objects and the probability that an inactive forager bee will be
convinced to alter memory based on a waggle dance of an active foraging bee with a
better rule set solution. Because algorithms based on bee behavior are relatively un-
explored, there are few if any guidelines for selecting input parameters and trial and
error must be used to tune these parameter values. Another disadvantage of using an
SBC algorithm is that because the technique is probabilistic, there is no guarantee that
the approach will produce an optimal solution for a given set of inputs. However,
when taken as a whole, the results of this study suggest that the use of a simulated bee
colony algorithm for unsupervised rule set extraction of clustered categorical data is a
promising new approach which merits further investigation, and that the use of an
SBC algorithm may have the potential to outperform existing deterministic algorithms
in certain problem scenarios.

Best rule set / memory matrix found is:

Red Small x c0
Blue Medium x c1
x Large Cold c1
x x x c2

Corresponding rule set quality = 0.9688

The first rule in RuleML form is:

<Implies>
 <head>
 <Atom>
 <Rel>Membership</Rel>
 <Var>ClusterID</Var>
 <Ind>c0</Ind>
 </Atom>
 </head>
 <body>
 <And>
 <Atom>
 <Var>Color</Var>
 <Ind>Red</Ind>
 </Atom>
 <Atom>
 <Var>Size</Var>
 <Ind>Small</Ind>
 </Atom>
 </And>
 </body>
</Implies>

End of run

192 J.D. McCaffrey and H. Dierking

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items
in Large Databases. In: Proceedings of the International Conference on Management of
Data, pp. 207–216 (1993)

2. Jochen, H., Ulrich, G., Nakhaeizadeh, G.: Algorithms for Association Rule Mining - A
General Survey and Comparison. SIGKDD Explorations 2(2), 1–58 (2000)

3. Furnkranz, J., Flach, P.: An Analysis of Rule Evaluation Metrics. In: Proceedings of the
20th International Conference on Machine Learning, pp. 202–209 (2003)

4. Song, M., Rajasekaran, S.: A Transaction Mapping Algorithm for Frequent Itemsets Min-
ing. IEEE Transactions on Knowledge and Data Engineering 18(4), 472–481 (2006)

5. Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies.
Harvard University Press, Boston (1995)

6. Sato, T., Hagiwara, M.: Bee System: Finding Solution by a Concentrated Search. In: Pro-
ceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 4,
pp. 3954–3959 (1997)

7. Lucic, P., Teodorovic, D.: Transportation Modeling: An Artificial Life Approach. In: Pro-
ceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence,
pp. 216–223 (2002)

8. Nakrani, S., Tovey, C.: On Honey Bees and Dynamic Server Allocation in Internet Host-
ing Centers. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive
Systems 12(3-4), 223–240 (2004)

9. Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: An efficient fault-tolerant routing algorithm
inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M.,
Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg
(2004)

10. Yang, X.S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In:
Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer,
Heidelberg (2005)

11. Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum
Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

12. Teodorovic, D., Dell’Orco, M.: Bee Colony Optimization - A Cooperative Learning
Approach to Complex Transportation Problems. In: Advanced OR and AI Methods in
Transportation, pp. 51–60 (2005)

13. Basturk, B., Karaboga, D.: An Artificial Bee Colony (ABC) Algorithm for Numeric Func-
tion Optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 687–
697 (2006)

14. Pham, D., Kog, E., Ghanbarzadeh, A., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm
– A Novel Tool for Complex Optimisation Problems. In: Proceedings of the 2nd Interna-
tional Virtual Conference on Production Machines and Systems, pp. 454–461 (2006)

15. McCaffrey, J.D.: Generation of Pairwise Test Sets using a Simulated Bee Colony Algo-
rithm. In: Proceedings of the 10th IEEE International Conference on Information Reuse
and Integration (2009)

Transformation of Graphical ECA Policies
into Executable PonderTalk Code

Raphael Romeikat, Markus Sinsel, and Bernhard Bauer

Programming Distributed Systems, University of Augsburg, Germany
{romeikat,sinsel,bauer}@ds-lab.org

Abstract. Rules are becoming more and more important in business
modeling and systems engineering and are recognized as a high-level
programming paradigma. For the effective development of rules it is de-
sired to start at a high level, e.g. with graphical rules, and to refine them
into code of a particular rule language for implementation purposes later.
An model-driven approach is presented in this paper to transform graph-
ical rules into executable code in a fully automated way. The focus is on
event-condition-action policies as a special rule type. These are modeled
graphically and translated into the PonderTalk language. The approach
may be extended to integrate other rule types and languages as well.

1 Introduction

Increasing complexity of information systems complicates their development,
maintenance, and usage. Due to this evolution, the Autonomic Computing Ini-
tiative by IBM [1] proposes self-manageable systems that reduce human inter-
vention necessary for performing administrative tasks. For realizing autonomic
capabilities within managed objects, policies are a promising technique. The
idea behind policy-based management is allowing administrators to control and
manage a system on a high level of automation and abstraction. According to
[2], policies are an appropriate means for modifying the behavior of a complex
system according to externally imposed constraints.

The focus of this paper is on a certain type of policy called Event-Condition-
Action (ECA) policies. ECA policies are considered as reaction rules that allow
for specifying which actions must be performed in a certain situation. They
specify the reactive behavior of a system in response to events and consist of a
triggering event, an optional condition, and an action term.

Policy-based management is also a layered approach where policies exist on
different levels of abstraction. Wagner et al. consider three different abstrac-
tion levels [3]. The business domain level typically uses a natural or a visual
language to define terms and constrain operations. The platform-independent
level defines formal statements expressed in some formalism or computational
paradigm, which can be directly mapped to executable statements of a software
platform. The platform-specific level expresses statements in a specific executable
language. Strassner defines a flexible number of abstraction layers as the Pol-
icy Continuum [4]. The idea is to define and manage policies on each level in a

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 193–207, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

194 R. Romeikat, M. Sinsel, and B. Bauer

domain-specific terminology, and to refine them e.g. from a business level down
to a technical level.

An approach is presented that allows to graphically model ECA policies and
transform those policy models into executable code. It uses techniques from
model-driven engineering (MDE) to model policies in a language-independent
way and to automatically generate code. Models are used to represent ECA
policies based on common policy concepts that are represented in a generic
metamodel. The policy language PonderTalk is also represented by a respective
metamodel. Model transformations allow for generating executable PonderTalk
code from an initial policy model. A full implementation of the approach exists
as plugin for the software development platform Eclipse.

There have been other approaches for modeling information about policies
and policy-based systems. The authors of [5] present a General Policy Modeling
Language (GPML) as a means to design policies and map them to existing policy
languages. This approach is also based on MDE concepts, but uses an UML
profile for visualization and is based on the rule interchange language R2ML with
a focus on logical concepts to map GPML policies onto existing policy languages.
The Common Information Model (CIM) [6] by the Distributed Management
Task Force (DMTF) represents a conceptual framework for describing a system
architecture and the system entities to be managed. An extension to CIM to
describe policies and to define policy control is provided by the CIM Policy Model
[7]. Another type of information model is the Directory Enabled Networks next
generation standard (DEN-ng) [8] by the TeleManagement Forum (TMF). DEN-
ng is based on the Policy Continuum and considers different levels of abstraction.
Policies are directly integrated into the models. Similar to the approach presented
here, the CIM Policy Model and DEN-ng are independent of any policy language.
They are as metamodels that enable the developer to describe a system and the
enclosed policies in an implementation-independent way. Policies are specified in
a declarative way while omitting technical details. However, only specification
of policies is regarded in both approaches. They do not offer a possibility to
transform a policy model to a particular language that can be executed by some
engine. It remains an open issue to what extent PonderTalk and other policy
languages are compatible with those policy models.

This paper is structured as follows. Section 2 gives an introduction to Model-
driven Engineering and to the policy language PonderTalk. Section 3 describes
the model-driven approach to transform graphical ECA policies into executable
code. Section 4 describes the implementation of the approach. The paper con-
cludes with related work and a summary in section 5.

2 Basics

This section presents a short introduction into model-driven engineering, which
represents the foundation of the approach, and into the policy language Pon-
derTalk, which is the target of the transformation.

Transformation of Graphical ECA Policies into Executable PonderTalk Code 195

2.1 Model-Driven Engineering

In software engineering one can observe a paradigm shift from object-orientation
as a specific type of model towards generic model-driven approaches, which has
important consequences on the way information systems are built and main-
tained. The model-driven engineering approach follows multiple objectives: ap-
ply models and model-based technologies to raise the level of abstraction, reduce
complexity by separating concerns and aspects of a system under development,
use models as primary artifacts from which implementations are generated, and
use transformations to generate code with input from modelling and domain ex-
perts [9,10]. Model-driven solutions consist of an arbitrary number of automated
transformations that refine abstract models to more concrete models (vertical
model transformations) or simply describe mappings between models of the same
level of abstraction (horizontal model transformations). Finally, code is gener-
ated from lower-level models. Models are more than abstract descriptions of
systems as they are used for model and code generation. They are the key part
of the definition of a system.

2.2 PonderTalk

Ponder2 [11] is a policy framework developed at Imperial College over a number
of years. A set of tools and services were developed for the specification and
enforcement of policies. Ponder2 offers a general-purpose object management
system and includes components that are specific to policies.

Everything in Ponder2 is a managed object. Managed objects generate events
and policies are triggered by those events to perform management actions on
a subset of managed objects. This is also called local closed-loop adaptation of
the system. There are managed objects that are available by default to interact
with the basic Ponder2 system, i.e. factory objects to create events and policies.
Besides that, user-defined managed objects are implemented as Java classes and
used within Ponder2. Managed objects can send messages to other managed
objects and new instances of managed objects can be created at runtime.

ECA policies are called obligation policies in Ponder2 and are specified with
the language PonderTalk. PonderTalk has a high-level syntax that is based on
the syntax of Smalltalk and is used to configure and control the Ponder2 system.
Basically, everything in Ponder2 can be realized with PonderTalk, i.e. define and
load managed objects, specify policies, or throw events that trigger policies. In
order to realize a policy system in Ponder2, the respective PonderTalk code has
to be implemented.

Example Scenario. Now, an example scenario is presented where ECA policies
are used to manage the behavior of a communication system. Further sections
will refer to this scenario when presenting examples.

The signal quality of wireless connections is subject to frequent fluctuations
due to position changes of sender and receiver or to changing weather conditions.
A possibility to react to those fluctuations is adjusting transmission power. A

196 R. Romeikat, M. Sinsel, and B. Bauer

good tradeoff between transmission power and signal quality is desired. Too high
transmission power causes additional expenditures whereas signal quality suffers
from too less transmission power.

In that scenario signal strength is managed autonomously by a policy system
using ECA policies. A Transmitter adjusts transmission power with the actions
increase power and decrease power, both of them expecting a value by which
power should be increased and decreased. Whenever a change in signal quality
is noticed, an intensityChange event is thrown that contains the id of the affected
receiver and the signal quality’s oldValue and newValue.

Two ECA policies lowQuality and highQuality are responsible for adjusting
transmission power. They are triggered whenever an intensityChange events oc-
curs and in their condition check the old and new signal quality enclosed in the
event. If the transmission power falls below a value of 50, the lowQuality policy
executes a call of increase power(10) to increase transmission power by 10 at
the Transmitter. The other way round, the highQuality policy executes a call of
decrease power(10) at the Transmitter if transmission power goes beyond a
value of 80.

The behavior of the transmission system can new be adjusted at runtime via
the policies. The accepted signal quality is specified in the conditions of the two
determining policies by means of the two boundaries 50 and 80. Changing those
boundaries has immediate effect on the transmission power and signal quality.

3 Modeling and Transforming ECA Policies

In this section the overall approach to graphically model ECA policies and trans-
form those policy models into executable code is presented. Various aspects have
to be considered for the approach to be effective. Figure 1 illustrates how the
various aspects of the approach are related to each other.

Model2Model
Transformation

Generic

Policy

Metamodel

PonderTalk

Metamodel

PonderTalk

Model

Graphical

Editor

PonderTalk

Code

Model2Text
Transformation

Model2Model
Transformation

Generic

Policy Model

Creation and
Modification

Visualization

Fig. 1. From Graphical Policies to PonderTalk Code

First, a generic policy metamodel contains common concepts of ECA policies.
It abstracts from special features and technical details that are specific to a
certain policy language and thus allows to specify ECA policies independently of
a particular language. Any ECA policy is initially represented as instance of that

Transformation of Graphical ECA Policies into Executable PonderTalk Code 197

metamodel to offer an abstract view onto the policy from a functional point-of-
view. As only common concepts are contained in the generic policy metamodel,
such a generic policy model can be transformed into executable code of a concrete
policy language later. Next, the concepts of the generic policy metamodel have a
graphical representation so the generic policy model is visualized as a diagram. A
graphical editor offers functionality to create and modify models in a comfortable
way.

Once an ECA policy has been modeled as a diagram, transformation into
the target language can start. The starting point for defining that transforma-
tion is the generic policy metamodel, and a metamodel for the target language,
namely the PonderTalk metamodel. As no formal metamodel was available for
the PonderTalk, a metamodel was created from the language documentation
[12]. A model-to-model transformation is defined on the metamodels and exe-
cuted on the model. It takes the generic policy model as input and generates the
respective PonderTalk model as output, which is an instance of the PonderTalk
metamodel. Finally, a model-to-text transformation takes the PonderTalk model
as input and generates a textual representation of that policy containing the re-
spective PonderTalk code.

The following subsections present further details about the metamodels, the
graphical visualization, and the model transformations. Various aspects will be
illustrated by means of the example scenario presented in section 2.2.

3.1 Generic Policy Metamodel

The generic policy metamodel comprises common concepts of well-known policy
languages such as PonderTalk [11], KAoS [?], and Rei [?]. It covers the essential
aspects of those languages and contains classes that are needed to define the
basic functionality of an ECA policy, i.e. events, conditions, and actions, amongst
others as described in the following. The generic policy metamodel is specified as
Essential MOF (EMOF) model. EMOF is a subset of the Meta Object Facility
(MOF) [?] that allows simple metamodels to be defined using simple concepts.
EMOF provides the minimal set of elements that are required to model object-
oriented systems. Figure 2 shows the generic policy metamodel as UML class
diagram.

The class Entity represents the components of the policy system. Each Entity
has a name attribute and three more technical attributes. Those attributes may
contain code fragments that are specific to the target language and that need to
be included into the generated code so it is executable. In case of PonderTalk,
accordingClass e.g. specifies the name of the respective Java class implementing
that Entity as managed object in Ponder2. This is somehow contrary to the
aspect of language independency, but on the other side it is a simple possibility
to to generate code that is executable without further modification.

Entities can be organized in a Domain hierarchy, similar to the folders of a file
system. A Domain is a collection of Entities that belong together with regards
to content. Events, conditions, and actions can also be contained in a Domain.
A Domain is an Entity itself as it can also be controlled by Policies.

198 R. Romeikat, M. Sinsel, and B. Bauer

-name[1] : String
-accordingClass[0..1] : String
-cassInitCode[0..1] : String
-createArg[0..1] : String

Entity

#active : boolean = true

Policy Domain

-name : String
-active : Boolean = null

PolicyGroup

*

Obligation

Condition

AndExpression OrExpression NegationExpression

-first : String
-second : String
-type : BinaryExpressionType

BinaryExpression

-action : String
-executionNr : int

Action

-name : String

Event

-name : String

EventParameter

*

2..*
2..*

1

*

1..*
0..1

0..1 0..1

* *

*

*

*

+LOWER = 0
+LOWER_OR_EQUAL = 1
+EQUAL = 2
+UNEQUAL = 3
+GREATER_OR_EQUAL = 4
+GREATER = 5

«enumeration»
BinaryExpressionType

*

*

Fig. 2. Generic Policy Metamodel

The class Policy is the abstract superclass of all types of policy, whereas only
one concrete type Obligation is included so far, representing ECA policies. The
active attribute of a Policy describes its status and may be set to true or false.
Only active Policies are triggered at runtime in a policy system.

Policies can be grouped in PolicyGroups. Groups are named and can contain
other groups. In contrast to a Domain, a PolicyGroup has an administrative
purpose and is used for activating and deactivating a set of Policies all at once
using the active attribute of the group, which may be set to true, false, or
undefined. The active status of a Policy is determined by the closest Policy-
Group in the group hierarchy with active set to true or false and where that
Policy is contained. If at the respective level of the hierarchy some active and
inactive PolicyGroups contain that Policy, the policy is regarded as being ac-
tive. The active attribute of a Policy is only deciding if all PolicyGroups which
contain this Policy have active set to undefined.

Transformation of Graphical ECA Policies into Executable PonderTalk Code 199

The classes Event, Condition, and Action represent the actual content of an
Obligation. Each Obligation requires at least one Event, optionally has a Con-
dition, and has an arbitrary number of Actions associated. An Obligation is
triggered by at least one Event whereas at runtime the occurrence of one re-
spective Event suffices to trigger that Obligation. An Event can be thrown by
any Entity, has a name, and can contain a set of parameters represented by the
class EventParameter. EventParameters are named and can be referred within
the Condition that is associated with the respective Obligation.

A Condition is a boolean expression. A BinaryExpression is the simplest form
of a Condition and compares two strings with each other. These strings represent
the left land side (LHS) and right hand side (RHS) of the Condition, denoted
by the attributes first and second. Those strings can contain the name of an
EventParameter, which allows to analyze the Event that triggered the Obligation.
Or, they can directly contain a simple value in the form of an enclosed string
or numeric value. The comparison operator is defined by the attribute type and
may be one of <, ≤, =, �=, ≥, and >. An expression can additionally be negated
using the class NegationExpression, or combined as conjunction or disjunction
using the classes AndExpression and OrExpression respectively.

If the Condition of an obligation evaluates to true, the associated Actions are
executed. Executing an Action means calling an Operation. The attribute action
within the class Action specifies which Operation is called. The attribute execu-
tionNr must be used to denote the sequence of execution if two or more Actions
are associated with an Obligation. Arbitrary numbers may be used as long as
they are different from each other. They need not be consecutive, which provides
some flexibility when associating multiple Actions to multiple Obligations.

3.2 PonderTalk Metamodel

As a next step, the PonderTalk metamodel is defined as the target of the model-
to-model transformation. That metamodel is again specified as EMOF model;
figure 3 shows it as UML class diagramm. It refers to the current version 2.840 of
Ponder2 and contains only those concepts that are needed to represent an ECA
policy in PonderTalk. Other functionalities of PonderTalk such as authorization
policies are not adressed as they go beyond the expressiveness of the ECA pol-
icy metamodel. In the following, the PonderTalk metamodel is described with
respect to its differences to the generic policy metamodel.

In PonderTalk an Entity is called ManagedObject. Apart from naming there
is no difference between those two classes. The same applies to an Obligation,
which is now called ObligationPolicy. The classes Domain, Policy, Condition,
BinaryExpression, NegationExpression, AndExpression, OrExpression, and Bi-
naryExpressionType do not differ from the generic policy metamodel.

PonderTalk does not know the concept of groups. Thus, a way has to be
found to represent PolicyGroups when transforming into PonderTalk. This has
an effect on the active attribute of a Policy and is described later.

200 R. Romeikat, M. Sinsel, and B. Bauer

-name[1] : String
-accordingJavaClass[0..1] : String
-classInitCode[0..1] : String
-createArg[0..1] : String

ManagedObject

#active : boolean = true

Policy DomainTemplate

*

ObligationPolicy

ConditionEventTemplate

AndExpression OrExpression NegationExpression

-first : String
-second : String
-type : BinaryExpressionType

BinaryExpression

Action

-name : String

Argument

-operation : String
-executionNr : int

Operation

1..*1

2..*
2..* 1

*

1

0..1

0..1

0..1 0..1

*

+LOWER = 0
+LOWER_OR_EQUAL = 1
+EQUAL = 2
+UNEQUAL = 3
+GREATER_OR_EQUAL = 4
+GREATER = 5

«enumeration»
BinaryExpressionType

**

Fig. 3. PonderTalk Metamodel

On the other hand, PonderTalk introduces a new class Template. Templates
are used to create new instances of ManagedObjects, Policies, or Domains. A
Template itself is also a ManagedObject.

An Event in the generic policy metamodel is called EventTemplate in Pon-
derTalk. An EventTemplate can contain an arbitrary number of named Argu-
ments, which represent the respective EventParameters. A noticeable difference
is that an ObligationPolicy in PonderTalk cannot be triggered by an arbitrary
number of EventTemplates, but is triggered by at most one. This is taken into
consideration by the transformation later. Additionally, an EventTemplate is an
instance of ManagedObject in PonderTalk.

The condition part of an ObligationPolicy exactly corresponds to the generic
policy metamodel, but there are important differences in the action part. An
ObligationPolicy in PonderTalk does not execute an arbitrary number of Ac-
tions, but executes exactly one Action. An Action uses at least one Operation

Transformation of Graphical ECA Policies into Executable PonderTalk Code 201

to execute commands on a ManagedObject. The attribute operation is used to
specify a particular PonderTalk command.

3.3 Graphical Visualization

Now, a graphical representation of a policy is created as a diagram. For this
purpose, the classes of the generic policy metamodel that were instantiated
when modeling the policy are visualized with all necessary information. Abstract
classes in the metamodel do not have a graphical representation as no instances
of them can be created. A visualization of the classes in the PonderTalk meta-
model is not required either as that metamodel is only used as intermediate step
in the transformation later and needs not be available as a diagram.

Figure 4 shows the graphical representation of the example scenario presented
in section 2.2. Additionally to the scenario description, the two policies lowQual-
ity and highQuality are put into a policy group named quality.

Fig. 4. Visualization of a Generic Policy Model

For visualizing the instantiated classes simple rectangular shapes were chosen
that ressemble the way classes are visualized in UML. As header of each shape,
a symbol and an identifying text are displayed to characterize it. That text
contains the name attribute if existant in the respective class. For an action, the
action attribute is used instead. For a binary expression, a textual representation
of its attributes is used to visualize the LHS, RHS, and the operator, and for
the other expression classes, the name of the class itself is used.

Further details of the classes are displayed in the shape body, which usually
contains the attributes with their value. Event parameters are not visualized
as rectangular shape, but they are visualized within the body of the enclosing

202 R. Romeikat, M. Sinsel, and B. Bauer

event, which can be seen with the event intensityChange and the contained event
parameters id, oldValue, and newVaule. Conditions that are used within another
condition are directly visualized within the body of the parent condition as
shown with the two AndConditions, which both contain two binary conditions.
This way of integrating event parameters and nested conditions reduces the
overall number of shapes in the policy diagram.

Finally, associations between classes are displayed as directed lines as known
from UML class diagrams. The direction represents the visibility of the classes
as defined by the respective associations in the metamodel.

The chosen way of visualizing classes and associations omits complex shapes
and technical details, so it focuses on the essential information and developers
should easily get familiar with it. In section 4 a graphical editor is presented
that allows to create ECA policies based on the generic policy metamodel and
the graphical visualization.

3.4 Model Transformations

An ECA policy is now specified as generic policy model using the generic policy
metamodel and the graphical visualization. The next step is generating a repre-
sentation of that policy as PonderTalk code as an implementation for Ponder2.
For this purpose, model transformations take the generic policy model as input
and generate the respective PonderTalk code. The overall transformation pro-
cess is divided in two steps. First, the generic policy model is transformed into a
PonderTalk model. That model is in a second step transformed into PonderTalk
code. The necessary transformations are summarized in figure 5 and described
in the following.

Generic Policy

Model

Modified

Generic Policy

Model

PonderTalk

Model

Modified

PonderTalk

Model

PonderTalk

Code

Fig. 5. Model Transformations

From a Generic Policy Model to a PonderTalk Policy Model. When
transforming a generic policy model, a check is performed first whether the model
fulfills the structural requirements of the metamodel with respect to the cardi-
nalities of the associations. Furthermore, domains must not contain themselves
nor contain two domains that are named equally. The same applies to policy
groups. All entities of the model must have a name and names must be unique
amongst obligation policies and amongst direct entities (without subtypes). Fi-
nally, any action must specify its action attribute. If all checks are passed, the
model is well-formed and ready to be transformed.

Now, a model modification is executed to modify the source model. A modifi-
cation does not create a new model as target, but the result of the modification
is the modified source model itself. Model modifications are used in order to

Transformation of Graphical ECA Policies into Executable PonderTalk Code 203

enrich a model with additional information that was not modeled explicitly, or
to modify details of a model to simplify further transformations. In the generic
policy model, an Obligation can be triggered by various Events whereas in the
PonderTalk model only one EventTemplate is allowed per ObligationPolicy. For
this purpose, a model modification duplicates Obligations with two or more as-
sociated Events into several Obligations of with each one is associated with one
of the original Events. The rest of the Obligation is duplicated without changes.
This structural change allows the straightforward generation of the PonderTalk
model from the modified generic policy model.

Then, a model-to-model transformation takes the modified generic policy
model as input and generates the respective PonderTalk model as output. For
this purpose, the transformation translates the concepts of the generic policy
metamodel in a way so they are expressed by the concepts of the PonderTalk
metamodel. The transformation is defined on the classes of the metamodel and
is executed on the instances of those classes in the model. As a result, the Pon-
derTalk model is generated as follows.

First, all instances of Entity are transformed into ManagedObjects one after
another. The attribute values of an entity are copied to the respective managed
object. Transforming the Entities includes transforming Domains and Obliga-
tions as they are Entities as well. When transforming an Entity, any associated
Entity (i.e. the domain of an entity) is transformed immediately, and this is a
recursive process.

It is important to notice that an Entity can be referenced multiple times by
other Entities and whenever one reference is processed, the transformation of
that Entity is called straightforward. However, a caching mechanism ensures that
an Entity is actually transformed only once and with any further transformation
call to the same Entity, the cached result is used instead. This ensures that any
model element is created only once in the target model and the model elements
need not be processed in a special sequence during the transformation.

Events are transformed into EventTemplates and EventParameters into Argu-
ments. In contrast to the generic policymetamodel,EventTemplates are subclasses
of ManagedObject in PonderTalk, so the generated EventTemplates are internally
marked to be ManagedObjects as well. Transforming the Conditions is performed
by simply copying them as no differences exist between the two metamodels with
respect to the condition part.Actions are transformed into Operations. The Action
objects in the PonderTalk model are created newly. For each ObligationPolicy, one
Action object is created and associated with that ObligationPolicy.

When transforming Obligations, the associated PolicyGroups are processed
along the group hierarchy to determine the active status of the Obligation as
described in section 3.1. PolicyGroups do not have a representation in Pon-
derTalk and thus no more appear in the PonderTalk model. Their only purpose
for the transformation was to determine the active status of policies whose active
attribute was undefined.

From a PonderTalk Policy Model to PonderTalk Code. Executable Pon-
derTalk code requires the standard Domains root, policy, and event to be

204 R. Romeikat, M. Sinsel, and B. Bauer

// Create Domains

2 root at: "transmitters " put: root/factory/domain create.

4 // Create event intensityChange

event := root/factory/event create: #("id" "oldValue" "newValue").

6 root/event at: "intensityChange " put: event.

8 // Load the Transmitter class file

root/ factory at: " transmitter " put: (root load: " Transmitter ").

10
// Create an instance named transmitter6 and put it in each associated domain

12 instance := root/factory/transmitter create.

instance intensityChangeEvent : root/event/intensityChange .

14 root/ transmitters at: "transmitter6 " put: instance.

16 // Create policy lowQuality

policy := root/factory/ecapolicy create.

18 policy event: root/event/intensityChange ;

condition: [:id :oldValue : newValue | ((oldValue >= 50) & (newValue < 50))];

20 action: [:id :oldValue :newValue | root/ transmitters / transmitter6 increase_power : 10].

root/policy at: "lowQuality " put: policy.

22 policy active: true.

24 // Create policy highQuality

policy := root/factory/ecapolicy create.

26 policy event: root/event/intensityChange ;

condition: [:id :oldValue : newValue | ((newValue > 80) & (oldValue <= 80))];

28 action: [:id :oldValue :newValue | root/ transmitters / transmitter6 decrease_power : 10].

root/policy at: "highQuality " put: policy.

30 policy active: true.

Listing 1.1. Generated PonderTalk Code

specified. A PonderTalk model might not explicitly contain those Domains. For
this purpose, a model modification checks whether they are modeled and if not,
inserts them into the model. Furthermore, that modification adds any Obligation-
Policy that is not contained in the policy Domain to that Domain and it also en-
sures that any EventTemplate is contained in the event domain. Finally, it adds
any Domain that is not contained in another Domain to the root Domain.

Now, a model-to-text transformation takes the modified PonderTalk model
as input and generates the respective PonderTalk code as output. That trans-
formation is also called code generation as it generates code for a programming
language. The transformation defines for each class of the PonderTalk metamodel
a respective textual representation as PonderTalk code. When the transforma-
tion is executed on the PonderTalk model, the respective code for the enclosed
classes is generated step by step. Listing 1.1 shows the resulting PonderTalk code
that corresponds to the policy diagram shown in figure 4.

In PonderTalk it is important to specify the statements in the correct se-
quence. Domains must first be declared before they can be referenced by other
ManagedObjects. For this purpose, a sorting algorithm initially creates an or-
dering of the Domains along the hierarchy and ensures that code for the root
Domains is generated before proceeding with the next level in the hierarchy, etc.
Now, code for all domain declarations is generated with respect to that order-
ing. It is also worth to be mentioned that the transformation does not generate
any code for the top-level Domains root, policy, and event as Ponder2 internally
creates those Domains at startup before any PonderTalk code is executed at all.

Now, code for EventTemplates is generated. In PonderTalk a factory object is
used to create an EventTemplate together with the enclosed Arguments. In the
PonderTalk model, any EventTemplate is associated with the event Domain,
which also results in a respective PonderTalk statement.

Transformation of Graphical ECA Policies into Executable PonderTalk Code 205

As next step, ManagedObjects (without subtypes) are transformed into code.
For any ManagedObject, the respective Java class specified in the accordingClass
attribute is loaded as factory object and put into the respective factory domain.
For ManagedObjects that are associated with a Domain in the PonderTalk model,
an instance is created additionally and added to that Domain. Arguments required
for instantiation are specified in the createArg attribute of the ManagedObject and
are added to the statement that creates the instance. ManagedObjects that are
not associated with any Domain are only loaded as factory. This is be useful if
instances of ManagedObjects should only be created at runtime.

Finally, code for ObligationPolicies is generated including the referenced
EventTemplate, Condition, and Action. First, an ObligationPolicy is created with
the policy factory. Next, the triggering EventTemplate is associated with that
ObligationPolicy. If the ObligationPolicy contains a Condition, a textual rep-
resentation of that Condition is generated for PonderTalk. Next, the Action is
transformed into appropriate code including the referenced Operations in the
sequence as defined by their attribute executionNr. Finally, the ObligationPolicy
is put into all associated Domains and the status of the ObligationPolicy is set
according to its active attribute.

4 Implementation

In order to demonstrate the approach, an implementation was developed as a
set of plugins for the software development platform Eclipse. The implementa-
tion is called PolicyModeler and can be integrated into any Eclipse 3.5 (Galileo)
installation via the update site http://policymodeler.sf.net/updates. Alter-
natively, a complete Eclipse installation including the PolicyModeler is available
for instant usage at http://policymodeler.sf.net/eclipse.zip. This section
presents important aspects about the implementation.

For specifying the metamodels, the Eclipse Modeling Framework (EMF) [16]
is used in the PolicyModeler. EMF stores the specified metamodels in the Ecore
format, which is an implementation of EMOF. With EMF a tree-like editor is
generated to create and modify a metamodel as well as instances of that meta-
model. However, that editor was not used for the creation of the generic policy
metamodel and the PonderTalk metamodel; instead, annotated Java interfaces
were used as they are a more effective way to specify metamodels in EMF.

For the graphical representation of the policies the Eclipse Graphical Mod-
eling Framework (GMF) [17] is used. GMF offers the generation of a graphical
editor that allows to create and modify a generic policy model as a diagram.
For the generation of that graphical editor some input is required. First, the
generic policy metamodel is referenced as instances of that metamodel are to be
visualized. Second, a graphical representation is created for each model element
to define its visualization in the diagram. Third, a toolbar is defined that offers
means to create model elements and associations between them. Finally, all in-
put is combined to define which element of the toolbar is used to create which
model element and how that model element is visualized in the diagram.

http://policymodeler.sf.net/updates
http://policymodeler.sf.net/eclipse.zip

206 R. Romeikat, M. Sinsel, and B. Bauer

The model transformations are developed with the Eclipse Modeling Frame-
work Technology (EMFT) [18] and Model To Text (M2T) [19] projects, which
support the implementation of various kinds of model transformations. They offer
all functionality required for the transformations used in the approach, i.e. spe-
cial languages to realize checks, model modifications, model-to-model transfor-
mations, and model-to-text transformations. The projects are available as Eclipse
plugins themselves and thus offer good integration with the PolicyModeler.

An ECA policy is created in the PolicyModeler by composing the desired
model elements into a diagram using the toolbar. If a generic policy model
already exists as Ecore file without a graphical representation, that graphical
representation can be generated automatically by the PolicyModeler. The trans-
formation into corresponding PonderTalk code can be started directly from the
diagram. The resulting code can then be executed within a Ponder2 installation.

5 Conclusion

In this paper an approach to graphically model ECA policies and generate exe-
cutable code for the language PonderTalk from such models was presented. It is
the first the approach innovative and transfers benefits ofMDE to the development
of policies such as reduction of development time. The generic policy metamodel
allows to model ECA policies independently from a particular language and allows
to generate code in an automated way. PonderTalk is used as target language, but
the approach may be extended to target other policy languages by integrating the
metamodel of the respective language and setting up the necessarymodel transfor-
mations. The metamodel covers important features of ECA policies. A developer
might require expressiveness for his policies that is not covered by the metamodel.
Further policy types and concepts may be integrated by extending the generic pol-
icy metamodel so it can express more than only ECA policies. However, a tradeoff
must be made here. Full code generation is only possible if the target language can
represent all concepts of the generic policy metamodel in an appropriate way. This
is why the metamodel is basically limited to the important concepts of ECA poli-
cies. Adressing more policy languages and types are subject to future work. The
same applies to reverse engineering of PonderTalk code into a graphical model,
which is currently not possible. The approach is fully implemented as Eclipse plu-
gin [20]. A small example was shown, but the approach was also applied to a larger
case study that realizes the hospital scenario from the Ponder2 tutorial [21]. That
case study regards all structural details of the two metamodels and is included in
the Eclipse download mentioned in section 4.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

2. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

Transformation of Graphical ECA Policies into Executable PonderTalk Code 207

3. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The Abstract Syntax of RuleML
- Towards a General Web Rule Language Framework. In: IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, pp. 628–631. IEEE Computer Society
Press, Los Alamitos (2004)

4. Strassner, J.C.: Policy-Based Network Management: Solutions for the Next Gen-
eration. Morgan Kaufmann Publishers, San Francisco (2003)

5. Kaviani, N., Gasevic, D., Milanovic, M., Hatala, M., Mohabbati, B.: Model-Driven
Engineering of a General Policy Modeling Language. In: IEEE Workshop on Poli-
cies for Distributed Systems and Networks, pp. 101–104. IEEE Computer Society,
Los Alamitos (2008)

6. Distributed Management Task Force: Common Information Model (CIM) Specifi-
cation. DSP0004 (June 1999)

7. Distributed Management Task Force: CIM Policy Model White Paper. DSP0108
(June 2003)

8. Strassner, J.C.: DEN-ng: Achieving Business-Driven Network Management. In:
IEEE/IFIP Network Operations and Management Symposium, pp. 753–766. IEEE
Computer Society, Los Alamitos (2002)

9. Bézivin, J.: On the Unification Power of Models. Software and Systems Model-
ing 4(2), 171–188 (2005)

10. Flater, D.W.: Impact of Model-Driven Standards. In: Annual Hawaii International
Conference on System Sciences, vol. 9, pp. 3706–3714. IEEE Computer Society,
Los Alamitos (2002)

11. Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 - A Policy Environment for
Autonomous Pervasive Systems. In: IEEE Workshop on Policies for Distributed
Systems and Networks, pp. 245–246. IEEE Computer Society, Los Alamitos (2008)

12. Imperial College London: Ponder2. (June 2009), http://ponder2.net
13. Uszok, A., Bradshaw, J.M., Jeffers, R.: KAoS: A policy and domain services frame-

work for grid computing and semantic web services. In: Jensen, C., Poslad, S., Dimi-
trakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 16–26. Springer,Heidelberg (2004)

14. Kagal, L., Finin, T., Joshi, A.: A Policy Language for a Pervasive Computing
Environment. In: IEEE International Workshop on Policies for Distributed Systems
and Networks, June 2003, pp. 63–74 (2003)

15. Object Management Group: Meta Object Facility (MOF) Core Specification (Jan-
uary 2006), http://www.omg.org/spec/MOF/2.0/PDF

16. The Eclipse Foundation: Eclipse Modeling Framework (EMF). (June 2009),
http://www.eclipse.org/modeling/emf

17. The Eclipse Foundation: Graphical Modeling Framework (GMF) (June 2009),
http://www.eclipse.org/modeling/gmf

18. The Eclipse Foundation: Eclipse Modeling Framework Technology (EMFT) (June
2009), http://www.eclipse.org/modeling/emft

19. The Eclipse Foundation: Model To Text (M2T) (June 2009),
http://www.eclipse.org/modeling/m2t

20. University of Augsburg: PolicyModeler (August 2009),
http://policymodeler.sf.net

21. Imperial College London: Ponder2 Tutorial (May 2009),
http://www.ponder2.net/cgi-bin/moin.cgi/Ponder2Tutorial

http://ponder2.net
http://www.omg.org/spec/MOF/2.0/PDF
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/gmf
http://www.eclipse.org/modeling/emft
http://www.eclipse.org/modeling/m2t
http://policymodeler.sf.net
http://www.ponder2.net/cgi-bin/moin.cgi/Ponder2Tutorial

A Rule-Based Approach to Match Structural
Patterns with Business Process Models

Jens Müller

SAP Research CEC Karlsruhe
Vincenz-Prießnitz-Str. 1, 76131 Karlsruhe, Germany

jens.mueller@sap.com

Abstract. Business process models may contain certain sets of related
elements of interest to modellers. External constraints on business pro-
cess models may, for example, require or prohibit the presence of a spe-
cific set of related model elements or a temporal relationship between
different sets. To automatically evaluate such constraints, the existence
of these sets must be verified beforehand. In this paper, we present a
modelling language for structural patterns using a graphical notation.
These patterns are used to describe related model elements of interest.
Furthermore, we introduce a technique to match pattern models with
business process models using a rule-based system.

1 Introduction

The current industry standard for modelling business processes is the Business
Process Modeling Notation (BPMN) [1]. When modelling business processes with
BPMN, business users have to adhere to certain domain-specific constraints,
which refer to the structure and semantics of business process models. For in-
stance, a constraint could state that a sequence of model elements that have a
certain meaning (e.g., tasks with certain labels or links to web service opera-
tions) must not exist within business process models. Another constraint could
state that all sequences of model elements with certain labels must be followed
by a specific model element (e.g., an event). According to these examples, con-
straints can be seen as conditions on sets of model elements that have a certain
meaning. In case constraints are violated in business process models, their exe-
cution (by humans or machines) may lead to undesired results or, in the worst
case, critical situations. Problems arise if constraints are not explicitly known
to the modelling tool. The more constraints a business process model has to
comply with, the harder it gets for modellers to adhere to them and the more
difficult it becomes to judge whether they are violated. In addition, constraints
might change over time, which means that existing process models have to be
re-examined every time constraints are altered.

In [2], we outlined that such problems can be solved by explicitly modelling
and automatically evaluating constraints. During the modelling phase, it is nec-
essary to (1) specify structural patterns, which describe related model elements
of interest, as well as (2) conditions on these patterns, whereas the evaluation

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 208–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Matching Structural Patterns with Business Process Models 209

phase requires (3) matching structural patterns with business process models
and (4) evaluating the corresponding conditions. This work focuses on provid-
ing solutions for the first and the third aspect of this approach. The remainder
of this paper is structured as follows. Chapter 2 introduces basic concepts and
presents a modelling language for structural patterns. A method for matching
pattern models with business process models using a rule-based system and im-
plementation details are presented in chapter 3. Chapter 4 summarises related
work. Finally, chapter 5 concludes the paper.

2 Modelling and Transforming Structural Patterns

BPMN diagrams are based on an internal model, which is typically based on a
meta-model that defines modelling constructs and rules to create valid models.
Thus, business process models can be considered as a set of BPMN model ele-
ments. To specify conditions on certain sets of related model elements that may
be subsets of business process models, a corresponding pattern is needed to de-
scribe these sets. In [2], we presented a scenario from the aviation industry that
motivates our work. In this scenario, a modeller is, for example, interested in a
certain pattern of model elements that describes a sequence of two tasks, which
may be contained within aircraft maintenance process models. This pattern con-
sists of two tasks. The first task represents the removal of an aircraft part from
storage, whereas the second one represents an inspection of the accompanying
documents. Furthermore, the pattern describes that these two tasks match corre-
sponding tasks within business process models that are either directly connected
or separated by at most one intermediate task and an arbitrary number of in-
termediate events. This pattern is depicted in Fig. 1. In this case, two business
process models contain a set of tasks that the structural pattern matches, al-
though slightly different labels are used. These sets of model elements are called
instances of the pattern. In order to explicitly model such patterns, we developed
a modelling language that addresses the type of generality and flexibility of the
example, which is called Process Pattern Modeling Language (PPML).

Update warehouse
management system

Inspect
documents

Remove
AP from storage

Remove aircraft
part from storage

Check
documents

Maximum number of intermediate...

1

∞

0

Business Process Model (Excerpt)

Business Process Model (Excerpt)

Instance 1

Instance 2

Structural Pattern

(tasks)

(events)

(gateways)

Matches tasks that

represent the removal

of an aircraft part from storage

Matches tasks that

represent the inspection

of accompanying documents

Fig. 1. Example of a structural pattern

210 J. Müller

PPML is a modelling language for explicitly specifying structural patterns.
Since we assume that constraints on business process models, i.e. structural pat-
terns and corresponding conditions, are modelled by the same users that model
business processes, we developed a graphical notation that is similar to what
modellers already know, which in our case is BPMN. Another reason for choosing
a graphical notation similar to BPMN is that structural patterns closely relate to
business process models, since they correspond to subsets of these models. The
main focus of PPML is to provide generic and flexible modelling constructs that
allow combining similar patterns within a single pattern model. Furthermore,
PPML provides modelling constructs that allow connecting different pattern
models and thus ensure modularity.

As already indicated, we use a rule-based system to check if a pattern model
matches one or more subset(s) of elements within a business process model.
The advantage of using a rule-based system for this purpose is that it helps to
solve the combinatorial problem, since rules just describe when a match occurs
instead of specifying how the matching process is performed. The main idea
of our approach is to transform pattern models into single rules by translating
model elements into a set of conditions. A match occurs when a rule fires dur-
ing the evaluation phase, i.e. all conditions evaluate to true. To check certain
dependencies between model elements within a condition, we developed specific
algorithms that are not part of the rule language used. Another advantage of
using rules is that they typically allow accessing such user-defined functions. In
the following, we describe the most important PPML modelling constructs as
well as the corresponding transformations.

Generic Flow Objects. PPML contains generic versions of the BPMN mod-
elling constructs for modelling tasks, events, and gateways (cf. Fig. 2). These
modelling constructs have several attributes that can be set in our modelling
tool and are used to refine matching criteria. The modelling construct Gener-
icIntermediateEvent, for example, has an attribute to store a list of triggers.
These triggers define which types of intermediate events within BPMN models
a generic intermediate event matches.

Generic Events Generic GatewaysGeneric Task

Fig. 2. PPML modelling constructs for matching BPMN flow objects

The modelling construct GenericTask shares the same graphical notation as
BPMN tasks and is a versatile tool to express a modeller’s interest in specific
tasks that have a certain meaning. In BPMN, the meaning of tasks is expressed
by labelling them using natural language. Within executable process models,

Matching Structural Patterns with Business Process Models 211

service tasks are linked to web service operations. A more powerful way to ex-
press the meaning of tasks is to assign them to non-ambiguous domain concepts,
which can be described using ontology classes. Although this method, which we
call semantic tagging, poses additional overhead for modellers, business process
analysis benefits from machine-readable semantics in the long term. Modellers
can use generic tasks to describe their interest in tasks that are assigned to
certain ontology classes.

The GenericTask meta-model class has three optional attributes: a list of
web service operations, a regular expression, and a semantic expression (cf.
Fig. 3). A semantic expression represents a boolean term that consists of refer-
ences to ontology classes and the ∧, ∨, and ¬ operators. The semantic expression
DomainConceptA∨DomainConceptB, for example, matches tasks within a busi-
ness process model that are assigned to the ontology class DomainConceptA,
DomainConceptB, or one of their subclasses.

GenericTask
operations : Operation[]

regularExpression : String

semanticExpression : SemanticExpression

when

task1 : Task()

eval(.getName().matches("A|B)) // Match regular expression

eval(Verifier.matchSemanticExpression(refToSemanticExpression,))

then

Set<RefBaseObject> instance = new HashSet<RefBaseObject>();

.add();

task1 "

task1

instance task1

Modelling Construct Attributes Graphical Notation

A | B

regular
expression

Fig. 3. PPML modelling construct GenericTask

During the transformation of a pattern model into a single rule, any generic
task within the model is translated into one or more condition(s), which are
added to the when section of the rule. The generic task depicted in Fig. 3, for
example, is translated into three conditions. In this example we assume that
a modeller specified a regular expression as well as a semantic expression. The
first of the three conditions matches any task. In case this condition matches
a task, the task is bound to the variable task1. The second condition is sat-
isfied if the regular expression of the generic task matches the name of task1.
Finally, the third condition is satisfied if the semantic expression of the generic
task evaluates to true, based on the ontology classes that task1 is assigned to.
This condition relies on a helper function (matchSemanticExpression), since
its evaluation is more complex and cannot be performed using the built-in func-
tionality of the rule language. The first parameter of the helper function is a
reference (refToSemanticExpression) to the semantic expression within the
pattern model. In case all conditions are satisfied, the model elements that con-
stitute an instance of the structural pattern being searched for are then further
processed within the then section of the rule. Like generic tasks, generic events
and generic gateways are translated into rules in a similar way.

212 J. Müller

Flexible Sequence Flow. To provide flexibility when modelling sequences
of flow objects, we introduced the modelling construct FlexibleSequenceFlow
(cf. Fig. 4). Flexible sequence flows connect generic tasks, events, and gate-
ways within pattern models and are used to match corresponding sequences
of elements within business process models. However, these elements do not
necessarily have to be directly connected. Instead, a modeller can specify the
minimum and maximum amount of intermediate tasks, events, and gateways. In
the generated rule, the helper function matchFlexibleSequenceFlow calculates
the number of model elements between two flow objects of a process model.

Modelling Construct Attributes Graphical Notation

Flexible
SequenceFlow

source: FlowObject /

maxNumberOfIntermediateTasks : int

target: FlowObject

minNumberOfIntermediateTasks : int

when

fo1 : ()FlowObject fo2 : FlowObject()

eval(Verifier.matchFlexibleSequenceFlow(refToFlexibleSequenceFlow, fo1, fo2))

then

instance.addAll(Arrays.asList(new RefBaseObject[] {fo1, fo2}));

...

A A AD D DB B C

Sequence S :1 � Sequence S :2 � Sequence S :3 �

A D
minNumberOfIntermediateTasks = 0

maxNumberOfIntermediateTasks = 1
Example:

Fig. 4. PPML modelling construct FlexibleSequenceFlow

Figure 4 shows an example of a flexible sequence flow. The modeller of this
structural pattern is interested in a sequence of tasks labelled A and D. More-
over, corresponding tasks within business process models with at most one in-
termediate task, should match the pattern as well. As depicted, sequences S1
and S2 within a business process model match the pattern, whereas sequence S3
does not. PPML also provides the modelling construct SequenceFlow, which is
syntactic sugar for a flexible sequence flow with no intermediate flow objects.

Pattern Connectors and Pattern References. The modelling constructs
IncomingPatternConnector and OutgoingPatternConnector are used to mark
the boundaries of a structural pattern, i.e. its inputs and outputs. In contrast
to business process models, structural patterns may have several inputs and
outputs, since they correspond to fragments of business process models. Pat-
tern connectors are a prerequisite for the modelling construct PatternReference.
Pattern references are used to combine pattern models and support modularity.
Figure 5 depicts two pattern models, P1 and P2. P2 contains a pattern reference
that refers to P1 as well as one of the incoming and one of the outgoing pattern
connectors of P1. Pattern references are not translated during rule transforma-
tion. Instead, the pattern reference within P2 is resolved before transformation.
The resulting pattern model is shown on the right side of Fig. 5.

Matching Structural Patterns with Business Process Models 213

+ =
A

B

C

DA Reference: P1

Reference

to IPC of P
2 1

Reference

to OPC of P
1 1

B

Structural Pattern P2

C

D

IPC
1

IPC
2

OPC
1

Structural Pattern P1
Structural Pattern P2 (resolved)

IPC = Incoming Pattern Connector / OPC = Outgoing Pattern Connector

Fig. 5. Pattern connectors and pattern references

3 Rule-Based Search for Structural Patterns

Figure 6 depicts the various steps involved in searching for instances of a struc-
tural pattern that is expressed by a pattern model. Step 1 is triggered once a
modeller saves a pattern model. In this step, an algorithm we developed recur-
sively traverses the pattern model and transforms it into a corresponding rule.
For each model element that the algorithm encounters, parts of this rule are
generated according to the type of model element and its attributes. In step
2, the rule is inserted into the rule set of the inference engine, after the rule is
generated. In step 3, the elements of the business process model that needs to be
searched are inserted into the working memory of the inference engine (i.e., all
flow and connecting objects). These elements thus constitute the search space.
In step 4, the inference engine starts the matching process. Finally, matched
rules are fired in step 5, which means that an instance of a structural pattern
is found. Further checks based on the search result may be performed, after all
instances of a structural pattern within a business process model are found.

Pattern Model
Busines Process

Model
Drools Rule Working MemoryRules

1 2 3

4
5

Inference Engine

Fig. 6. Rule-based search for structural patterns

We implemented the presented concepts on top of an existing BPMN mod-
elling tool that is based on Eclipse. Therefore, our implementation consists of a
set of Eclipse plug-ins. The modelling tool uses an infrastructure that adheres to
the Meta Object Facility (MOF) specification [3], which defines a standardised
language for specifying technology neutral meta-models. Both BPMN models
and structural patterns are internally represented as MOF models. Furthermore,
we defined ontologies as MOF models using the Ontology Definition Metamodel
(ODM) [4]. In order to assign tasks to domain concepts, we added a suitable
MOF association between the BPMN meta-model and the ODM meta-model.

214 J. Müller

Structural patterns can be modelled with a graphical editor. To match structural
patterns with business process models, the responsible plug-in uses the business
logic integration platform Drools [5].

4 Related Work

Several authors proposed visual languages to query BPEL processes [6] and
BPMN diagrams [7,8]. Although some PPML modelling constructs share the
same semantics as the modelling constructs of these languages, PPML intro-
duces novel modelling constructs that focus on generality (generic tasks, events,
and gateways), flexibility (flexible sequence flow), and modularity (pattern con-
nectors, pattern reference). Furthermore, the goals of these query languages are
partially different. In [7], for example, the query language contains a modelling
construct that returns the model elements between two specific flow objects
within a business process model. In contrast, the PPML modelling construct
FlexibleSequenceFlow checks if two flow objects within process models are con-
nected in a certain way, but does not return potential intermediate model el-
ements. Moreover, PPML is not just a graphical notation but a modelling
language based on a standard-compliant modelling infrastructure, which offers
many advantages, such as metadata management and serialisation [3].

In [9], a declarative service flow language is discussed. This language allows
the visual specification of constraints to check the conformance of service flows. A
comparable language for specifying quality constraints on process models is pre-
sented in [10]. Both languages focus on run-time aspects and allow, for example,
to specify that the execution of a single task A must be eventually followed by
the execution of a single task B. Although we will incorporate related concepts
in the future, our approach focuses on identifying whole sets of model elements
within the structure of process models.

There are several approaches to enrich business process models with additional
semantics. In [11,8], business process diagrams are represented as ontologies. In
addition, techniques to link business process ontologies with domain ontologies
using an auxiliary layer are proposed. In contrast, our approach is entirely based
on meta-models and links business process models with domain ontology models
without an additional layer.

To the best of our knowledge, no existing approach uses a rule-based system
for searching instances of structural patterns within business process models. In
graph theory, there is a plethora of algorithms for solving the subgraph isomor-
phism problem [12]. Given two graphs G and H, these algorithms detect one
or more occurrence(s) of H as a subgraph of G. However, instances of struc-
tural patterns are not necessarily graphs (cf. S2 in Fig. 4). In [8], a method is
discussed to transform visual queries into SPARQL [13] queries. However, this
method requires that business processes are represented as ontologies. In con-
trast, our rule-based approach directly operates on process models and does not
involve additional transformation steps. Moreover, SPARQL does not offer the
possibility to call user-defined functions within queries, which is essential for the
translation of some of our modelling constructs.

Matching Structural Patterns with Business Process Models 215

5 Conclusions

In this paper, we argued that explicitly modelling structural patterns and search-
ing for instances of these patterns within business process models is a prerequisite
for evaluating conditions on structural patterns. The purpose of this research is
to provide corresponding standard-compliant solutions for BPMN models. We
presented a modelling language that goes beyond related approaches in terms
of generality, flexibility, and modularity. Although the language is tailored to
BPMN, it could be adapted to other process modelling languages. Furthermore,
we showed that rule-based systems are powerful tools to search for instances of
structural patterns within process models. The key concept of our approach is
to transform pattern models into rules. In addition, we introduced a method to
enrich tasks with machine-readable semantics using ontology models.

In the future, we will explore ways to specify and evaluate conditions on
structural patterns using model checking techniques. Such conditions could, for
example, require the presence of certain temporal relationships between instances
of different patterns.

References

1. OMG: Business Process Modeling Notation: Version 1.2 (2009)
2. Müller, J.: Supporting Change in Business Process Models Using Pattern-Based

Constraints. In: Halpin, T., et al. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP,
vol. 29, pp. 27–32. Springer, Heidelberg (2009)

3. OMG: Meta Object Facility (MOF) Core Specification: Version 2.0 (2006)
4. OMG: Ontology Definition Metamodel: Version 1.0 (2009)
5. JBoss Community: Drools, http://www.jboss.org/drools/
6. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes with

BP-QL. Information Systems 33(6), 477–507 (2008)
7. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: Enterprise Mod-

elling and Information Systems Architectures: Concepts and Applications. LNI,
vol. P-119. Gesellschaft für Informatik, Bonn (2007)

8. di Francescomarino, C., Tonella, P.: Crosscutting Concern Documentation by Vi-
sual Query of Business Processes. In: Ardagna, D., et al. (eds.) RGU 1974. LNBIP,
vol. 17, pp. 18–31. Springer, Heidelberg (2009)

9. van der Aalst, W.M.P., Pešić, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

10. Förster, A., Engels, G., Schattkowsky, T., van der Straeten, R.: Verification of
Business Process Quality Constraints Based on Visual Process Patterns. In: TASE
2007: First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software En-
gineering, pp. 197–208. IEEE Computer Society Press, Los Alamitos (2007)

11. Thomas, O., Fellmann, M.: Semantic EPC: Enhancing Process Modeling Using On-
tology Languages. In: Proceedings of the Workshop on Semantic Business Process
and Product Lifecycle Management (SBPM 2007), pp. 64–75 (2007)

12. Read, R.C., Corneil, D.G.: The Graph Isomorphism Disease. Journal of Graph
Theory 1(4), 339–363 (1977)

13. World Wide Web Consortium: SPARQL Query Language for RDF (2008)

http://www.jboss.org/drools/

Usage of the Jess Engine, Rules and Ontology to
Query a Relational Database

Jaroslaw Bak, Czeslaw Jedrzejek, and Maciej Falkowski

Institute of Control and Information Engineering, Poznan University of Technology,
M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland

{Jaroslaw.Bak,Czeslaw.Jedrzejek,Maciej.Falkowski}@put.poznan.pl

Abstract. We present a prototypical implementation of a library tool,
the Semantic Data Library (SDL), which integrates the Jess (Java Expert
System Shell) engine, rules and ontology to query a relational database.
The tool extends functionalities of previous OWL2Jess with SWRL im-
plementations and takes full advantage of the Jess engine, by separating
forward and backward reasoning. The optimization of integration of all
these technologies is an advancement over previous tools. We discuss the
complexity of the query algorithm. As a demonstration of capability of
the SDL library, we execute queries using crime ontology which is being
developed in the Polish PPBW project.

Keywords: Jess engine, rules, reasoning, ontology, relational database.

1 Introduction

Knowledge representation and processing methodologies require efficient and
complete tool environments. Many toolkits exist [1] that contain reasoning en-
gines of varying functionalities that provide a solution to knowledge manage-
ment. Recently, effective rule processing and relational database support has
increased in importance, because most of the data processed by modern appli-
cations is stored in relational databases. Today, however, there is need for not
only data management, but also for scaleable knowledge management, as well
as for processing gathered data with richer means than is offered by RDBMS
(Relational Database Management System) and SQL (Structured Query Lan-
guage) language. Ontologies describe and extend data, and allow for queries to
gain additional knowledge. The most common query language associated with
ontologies and semantic data representation is the SPARQL [2] language.

The most formal approaches consider very expressive languages, i.e., impor-
tant fragments of OWL-DL in order to determine the decidability of query an-
swering and establish its computational complexity [3].

To enable semantic access to relational data, it is necessary to express rela-
tional concepts in terms of ontology concepts, that is to define mapping between
the relational schema and ontology classes and relations. Given such a mapping,
one can transform relational data to RDF triples and process that copy in se-
mantic applications. This method has obvious drawbacks, such as maintaining

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 216–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Usage of the Jess Engine, Rules and Ontology 217

synchronization, and others. Another method is to create a data adapter based
on query rewriting. Such adapters can rewrite SPARQL query to SQL [4] query
and execute it in RDBMS. This method could be fast in data retrieval, but
without a reasoner, the full potential of ontology cannot be exploited. The third
method is to generate semantic data from the relational data ’on-the-fly’, on de-
mand for the requesting application, and then process that data with a reasoner.
We use this method to fill a gap between the relational data representation and
the semantically described data.

The main goal of this work is to facilitate development of ontology-driven
applications by construction of a tool named Semantic Data Library (SDL). Its
prototypical implementation enables integration to the relational database (MS
SQL) [5], OWL (Web Ontology Language) [6] ontology with SWRL (Semantic
Web Rule Language) [7], which extends the expressivity of OWL, and the Jess
(Java Expert System Shell) [8] reasoning engine. This paper is a continuation
of work presented in [9]. In comparison to the previous work this article con-
tains query algorithm optimizations (concerns grouping SQL queries presented in
Section 3.4) and adaptations to OWL2Jess [10,11] implementation. These adap-
tations concern triple representation of Jess facts and extension, which enables
querying relational database ’on-the-fly’.

This paper is organized as follows. Section 2 presents preliminaries, related
work and background of our motivation. Section 3 describes the SDL library, its
architecture and the integration process which integrates relational databases,
OWL ontology and SWRL rules with Jess language. Section 4 presents the query
algorithm, its computational complexity and shows the hybrid reasoning process.
Section 5 presents an example of SDL library use. Section 6 contains concluding
remarks and presents our future work.

2 Preliminaries

In this work we present an approach that integrates relational databases, OWL
ontology and SWRL rules with Jess language. Extended support of the OWL
semantics and SWRL rules is provided by the OWL2Jess [12] and SWRL2Jess
[13] tools. The triple representation of the OWL Meta-model is employed. Unfor-
tunately, the transformation of OWL ontology with SWRL rules must be done in
two steps. In the first step we need to transform OWL ontology to Jess language
script; in the second step SWRL rules to another Jess script are transformed.
Then we have to merge these files. To the best of our knowledge, the OWL2Jess
tool is the most powerful of the tools mentioned above. We use the OWL Meta-
model [14] in the forward chaining mode to exploit the full potential of the OWL
ontology.

There are a number of tools that enable a query relational data, and results are
added in terms of ontology concepts/relations. One of the tools is DataMaster
[15,16], a Protégé-OWL [17] plug-in that allows importing relational database
structure or content into an OWL ontology. At present it only populates the
ontology with data from the relational database and save this ontology to file.

218 J. Bak, C. Jedrzejek, and M. Falkowski

Another tool is D2RQ [18], an RDF adapter to relational data. The KAON2
[19] reasoning engine is a tool that allows reasoning with OWL ontology and
SWRL rules; it enables connection to the relational database ’on-the-fly’ through
relational database ontology (it has to be included into OWL ontology as an
import). It also supports the SPARQL query language.

None of the tools that concern OWL and SWRL transformation to Jess en-
ables backward reasoning (only forward) or database access. Our tool enables
both forward and backward reasoning, ontology and rules transformation to Jess,
and relational database access, which is a significant advantage in real-life appli-
cations. The SDL library allows querying a relational database ’on-the-fly’, ac-
cording to the semantics specified in ontology with rules. The query mechanism
currently exploits the ’is-a’ relation and SWRL rules, but more sophisticated
reasoning is available using OWL Meta-model from OWL2Jess.

The next Section presents an SDL overview, architecture and integration pro-
cess of the Jess, OWL+SWRL ontology and relational database schema.

3 SDL Architecture and Integration Process

The SDL library is a prototypical implementation of a tool which enables to
query relational databases in terms of ontology concepts and reasoning with
rules. It was implemented in Java language. An answer for a query is obtained
during the reasoning process in Jess engines (forward and backward chaining).
The Jess facts gathered in this way can be easily processed with an OWL2Jess
reasoning engine because facts are represented as triples (the same approach as
described in [10]). The queries are in the form of directed graphs (for example
see Section 5).

Jess is a rule-based environment for building expert systems. This engine,
written in Java by Ernest Friedman-Hill at Sandia National Laboratories, has
its own scripting language called Jess language which allows direct access to all
Java classes and libraries (due to the call function). Jess language script can
contain templates (data structures in Jess), rules, functions, queries and facts
(data). Such script can be loaded into Jess engine by batch function. Due to all
the Jess functionalities, an embedding of it in Java applications could be done
in a simple way. Jess as a rule engine enables backward and forward reasoning,
with Jess language used to query engine working memory. We use both methods
of chaining: the backward method is responsible for gathering data from the
relational database and the forward chaining is used to answer a given query.

In the Jess engine the forward chaining is executed using a very efficient algo-
rithm called Rete [20]. In this mode Jess does not require any special declarations
in contrast to the backward one.

The backward chaining method in Jess requires a special declaration for tem-
plates (do-backward-chaining). The do-backward-chaining definitions are added
to all deftemplates declarations which are used in backward chaining (for ex-
ample: (do-backward-chaining triple)). One can define rules to match backward
reactive templates. The rule compiler rewrites such rules and adds the need- pre-
fix to inform the Jess engine when this rule has to be fired (when we need some

Usage of the Jess Engine, Rules and Ontology 219

fact). The need- prefix can be added manually during the rules creation. To fire a
rule Jess needs a fact with a need- prefix in its working memory. Such fact can be
added automatically (during reasoning) or manually (by the user), for example
(need-triple (predicate ”hasSeller”) (subject 3) (object ?y)). If the rule fires and
there is a way to obtain needed facts, they appear in the Jess working memory.
The need- facts are the so called triggers (in Jess language terminology). These
facts correspond to the goals in the backward reasoning method.

3.1 SDL Architecture and Functionalities

The architecture of the SDL library is shown in Figure 1. The tool consists of
two main modules:

– SDL-API (Application Programming Interface) which provides all SDL func-
tions, mainly: reasoning processes management (in backward and forward
chaining), executing queries, and scripts generation in Jess language,

– SDL-GUI (Graphical User Interface) which exploits SDL-API functions for
defining the mapping between relational database schema and ontology con-
cepts/relations or between relational schema and Jess templates (data struc-
tures in Jess).

Fig. 1. The architecture of the Semantic Data Library

The SDL library utilizes some well accepted tools: Jena Ontology API to handle
OWL files; Jess; SQL JDBC (Java Database Connectivity) library which enables
access to a relational database; and MS SQL Server 2005 - relational database
server.

The SDL-API module provides the following functionalities (they do not occur
in SDL-GUI):

– executing SQL query or procedure (results are in the form of Jess facts),
– executing a Jess query, which consists of the concepts from ontology or tem-

plates defined in Jess language,
– Jess engine and hybrid reasoning management.

Due to the SDL-GUI module the library enables execution of the following
functions:

– a reading ontology and a view of concepts/relations hierarchies; the view
contains classes hierarchy, object an datatypes properties hierarchies,

220 J. Bak, C. Jedrzejek, and M. Falkowski

– generating OWL ontology from relational database schema (tables as classes,
columns as properties),

– a relational database schema view which contains tables, views, columns and
data types,

– mapping between a relational database schema and ontology concepts/Jess
templates,

– populating ontology with data from a relational database according to the
specified mapping,

– transformation of OWL+SWRL ontology to Jess script in both forward and
backward chaining mode (two different Jess scripts are the result).

The SDL library provides some other useful functions, but for clarity they are
omitted in this paper.

3.2 Integration Process of Relational Database, OWL+SWRL
Ontology and Jess Engine

The main goal of the integration process is to have one common format for
data, rules and ontology to enable query relational database according to de-
fined semantics. We have chosen the Jess language as a common format. Such
integration requires mapping between relational database schema and ontology
concepts/relations. Next, we need to transform the mapping and ontology with
rules to the Jess language format. The result of the integration process is a
Jess script; in the forward or the backward chaining mode. Generated scripts in
backward mode consist of the described mapping, SWRL rules (included in the
OWL ontology) and taxonomy rules. Such script is generated from a Jess script
in forward mode, and after that, the mapping rules are created and added. In
forward mode, the mapping does not occur. The idea of the integration process
is presented in Figure 2. Previous tools including OWL2Jess are not capable of
full integration (to map a relational database, a use backward chaining). Our
tool for integration and transformation does not have these restrictions. How-
ever, SDL library can not exploit the full potential of the ontology, so we need
to use one of the tools mentioned above (see Section 3.4).

Fig. 2. The integration process executed within the SDL

In the script resulting from integration all data and metadata are in one
language; enabling full advantage of the Jess engine (all functionalities available
in a forward and backward chaining mode).

Usage of the Jess Engine, Rules and Ontology 221

3.3 Mapping between Relational Database Schema and Ontology
Concepts

This section presents a method for mapping between a relational database schema
and ontology concepts. The SDL library also enables mapping between a re-
lational schema and Jess templates defined in a Jess engine. The idea of the
mapping is the same in both methods, so we present the first one. The mapping
process is supported by SDL-GUI. We describe the main idea of this process and
present some examples.

We assume that every ”essential” concept or relation has its appropriate SQL
query. ”Essential” means that the instance of the concept/relation can not be
obtained from the concepts/relations taxonomy or rules. It can be obtained only
in the direct way (as the result of the SQL query or written). For example,
for the hierarchy of classes Institution→Company→Buyer, the Buyer class is an
”essential” concept. The mapping process requires defining SQL queries for all
”essential” ontology classes and properties. We assume also that the ontology
which is used is properly constructed (the taxonomy is computed and classified;
without inconsistencies).

We assume that every SQL query has the following form:

SELECT [R] FROM [T] <WHERE> <C, AND, OR>

where:

– R are the result columns (one or two according to class or property),
– T are the tables which are queried,
– WHERE is an optional clause to specify the constraints,
– C are the constraints in the following form: <column, comparator, value>,

for example: Age>21,
– AND, OR - are the optional SQL commands.

For the example, assume that we have a table persons with the following columns:
id, name, age and gender. The example SQL query for the concept AdultPerson
can be defined as follows: SELECT id FROM persons WHERE age>21. When
we want to use more constraints, we need to use an OR or AND clause. For query
which obtains all adult women, we would define the following query: SELECT
id FROM persons WHERE age>21 AND gender=’Female’.

3.4 Transformation to Jess Language

This section presents the transformation method of the ontology with rules and
mapping to scripts in Jess language. The transformation process is done au-
tomatically. The SDL library generates Jess scripts in forward and backward
modes. Their transformation method differs in the technical details. We de-
scribe only the backward mode processing, because it is more complicated. For
clarity in this article, we do not present full URI addresses (only short names)
and we use the following shortcuts: p - predicate, s - subject, o - object, and for
http://www.w3.org/1999/02/22-rdf-syntax-ns#type - rdf:type.

222 J. Bak, C. Jedrzejek, and M. Falkowski

Currently implementation has some restrictions and limitations of the trans-
formation of ontology, rules and mapping to Jess language script:

– the taxonomy of classes and properties are transformed as rules; subsump-
tion is the only ontology relation that we use in backward chaining mode (in
forward chaining mode we use OWL Meta-model and SWRL rules); exten-
sions are planned,

– rules can only add new facts to the working memory (in future implementa-
tion, they will be able to retract and modify the information in a relational
database and Jess working memory),

– the SWRL rule can be extended by SWRL built-ins [21] only with the fol-
lowing built-ins: swrlb:equal (’=’), swrlb:notEqual (’�=’), swrlb:greaterThan
(’>’), swrlb:greatherThanOrEqual (’≥’), swrlb:lessThan (’<’) and
swrlb:lessThanOrEqual (’≤’).

The generation of the Jess script in backward mode is done in the following way:

– the template triple is created: (deftemplate triple (slot p)(slot s)(slot o)) and
information that triple is backward-reactive is added: (do-backward-chaining
triple),

– SWRL rules are directly transformed to Jess; for example the rule (?x and
?y are the companies names and ?InV is a number of issued invoice): issued-
VATIn(?x, ?InV), receivedVATIn(?y, ?InV) → TransactionBetween(?x, ?y)
is transformed into the following rule:

(defrule Def-TransactionBetween

(need-triple (p "TransactionBetween")(s ?x)(o ?y))

(triple (p "issuedVATIn") (s ?x) (o ?InV))

(triple (p "receivedVATIn") (s ?y) (o ?InV))

=> (assert (triple (p "TransactionBetween")(s ?x)(o ?y))))

– for the taxonomy of concepts/relations the appropriate rules are created;
for example, for the hierarchy Document→VATInvoice the following rule is
created:

(defrule HierarchyDocument

(need-triple (p "rdf:type")(s ?x)(o "Document"))

(triple (p "rdf:type")(s ?x)(o "VATInvoice"))

=> (assert (triple (p "rdf:type")(s ?x)(o "Document"))))

– defined mappings are transformed as rules with SQL queries in their heads.

In our approach every mapping is transformed into one Jess rule. It means
that we need exactly as many rules as defined mappings. The transformation is
done according to the specified template:

Rule name: ”Def-” + name of the mapping concept/relation
Body: ?r←(need-triple (p ”name of concept”) (s ?x) (o ?y)
Head: (call of the runQueriesFromJess function with its parameters)

(retract ?r)

The need- facts which are triggers to fire rule are deleted from Jess working
memory (retract ?r). For this reason duplicates of firing the same rule do not

Usage of the Jess Engine, Rules and Ontology 223

occur. The example rule for property MoneyTransferTo between ID of the money
transfer and the receiver’s company name is shown below:

(defrule Def-MoneyTransferTo

?r<-(need-Triple (p "MoneyTransferTo")(s ?x)(o ?y))

=>

(bind ?query (str-cat "SELECT id, receiver FROM transfers;"))

(?*access* runQueriesFromJess

"Def-MoneyTransferTo"

?query

"s;id;o;receiver;p;MoneyTransferTo;"

(str-cat ?x ";" ?y ";")

"triple" ?*conn* (engine))

(retract ?r))

Function runQueriesFromJess comes from the JessDBAccess class, which al-
lows accessing a relational database. It has the following parameters:

– name of the rule,
– SQL query defined for mapping,
– names of columns used to obtain results,
– variables values (if determined),
– name of the template used to add Jess fact (e.g. triple),
– connection to the relational database (?*conn*),
– instance of Jess engine where facts should be added.

During the execution of the rules, the SQL queries responsible for gathering
instances of the same concept/relation are grouped. If a new concept/relation
occurs, one aggregate SQL query is executed and results are added to the Jess
engine as triples (or other templates, because SDL supports more mapping pos-
sibilities - see Section 3.1). We also developed the data types mapping method,
which enables transformation of relational data types to the Jess data types.
Figure 3 shows a grouping algorithm of SQL queries. The grouping algorithm

Fig. 3. The grouping algorithm

224 J. Bak, C. Jedrzejek, and M. Falkowski

is enabled due to the very simple form of the SQL queries presented in Section
3.3. The algorithm goes beyond the scope of this article, so details are omitted.

The transformation to forward chaining script can be done in two ways: with
our method, or with the OWL2Jess [10]. In the first case, only the SWRL and
taxonomy rules are transformed; in the second case the rules, classes and proper-
ties are transformed. Both transformations can be done automatically by SDL-
GUI. In forward mode we do not transform the mappings. The result is the Jess
script which contains template triple, rules and facts (if individuals occurred in
ontology). When we use OWL2Jess transformation, the more sophisticated rea-
soning is supported after data from the relational database as triples is gathered
(during the execution of the Jess query).

4 Query Algorithm and Hybrid Reasoning Process

This querying method uses a hybrid reasoning process to answer a given query.
This means that we use two Jess engines: one for the forward chaining and
for the backward one. The queries are constructed in Jess language in terms
of ontology concepts. A mapping between the relational database schema and
ontology classes and properties is used to achieve the semantics of the data. Data
itself is stored in a relational database. The ontology and the mapping rules
transformed into Jess language format provide the additional semantic layer
to the relational database. Such an approach allows for querying a relational
database and reasoning using Jess, rules and ontology.

The reasoning process is fully executed by the Jess engine and managed by
the SDL library. We need to use two Jess engines, because backward chaining
mode is very inefficient during queries execution. The reason for this inefficiency
is that the Jess engine creates trigger facts (with need- prefix) during execution
of a query and then calculates rules activations (but it does not fire any of
the rules). This procedure does not occur in the forward chaining mode, so the
answering process is much faster.

The backward chaining engine is responsible only for gathering data from the
relational database. Data is added (asserted in Jess terminology) as triples into the
engine working memory. The forward chaining engine can answer a query with all
constraints put on variables in a given query (=, !=, <, > etc.). During the exe-
cution of a query the forward chaining engine does not reason (none of the rules is
fired). The forward chaining engine is run only when the OWL2Jess transforma-
tion script (or other) is loaded. Every Jess engine has its own working memory.

The beginning of the querying process involves loading a backward script gen-
erated (or written) in the Jess language into the backward engine. In the forward
engine the template triple is created. Then the user can query about the prop-
erties and classes defined in the transformed ontology. A query is constructed in
the Jess language and can be represented as a directed graph.

The query algorithm is defined as follows:
1. Create a rule from a given query and name it QUERYRULE. The query

is the body of the rule, and the head is empty. Add QUERYRULE to the
forward chaining engine.

Usage of the Jess Engine, Rules and Ontology 225

2. In backward chaining engine, for all concepts/relations occurring in the
query, do:
a) Add need-X fact/facts to the engine (where X is the current concept/

relation) with bounded variables (if it exists).
b) Run the engine - the reasoning process begins and during it the instances

of the X concept/relation are obtained from a relational database.
c) If the group of queries in JessDBAccess class is not empty, force the

aggregation and execution of the SQL query. Results are added as triples
to Jess working memory.

d) Copy results to the forward chaining engine, remembering variables bind-
ings. If there is no result, the engine stops.

e) Clean the working memory of the backward chaining engine.
3. In the forward chaining engine, get activations of the QUERYRULE. These

activations contain facts that are results for a given query.
4. If there is a need for more sophisticated reasoning, load the OWL2Jess trans-

formation script into the forward chaining engine and run it. The results are
presented to the user as new triples.

Steps 1, 3 and 4 are executed in the forward reasoning engine, and step 2
in the backward reasoning engine. The Jess engine allows querying its working
memory using a special function called runQueryStar. We decided to get facts
from rule activation because it is the most efficient way to obtain Jess query
results (according to the Jess implementation [22]).

For better understanding of the presented method, in Figure 4 we illustrate an
example with the following query: ’Find companies that received invoices issued
by company Comp1 on product ID=10’.

Fig. 4. An example of a query involving three triples

The query is written in Jess language:

(defquery ExampleQuery

(triple (p "issuedVATIn") (s "Comp1") (o ?VIn))

(triple (p "receivedVATIn") (s ?Comp2) (o ?VIn))

(triple (p "refersToGood") (s ?VIn) (o 10)))

Our method is used to execute the query. In the first step, the QUERYRULE
is created and added to the forward engine, so the querying process goes to
the second step. The second step is executed three times because three rela-
tions in the query occurred. In this step the (need-triple (p ”issuedVATIn”) (s
”Comp1”) (o ?VIn)) is asserted, and then the backward chaining engine is run.
All results are copied to the forward chaining engine and bindings of the ?VIn

226 J. Bak, C. Jedrzejek, and M. Falkowski

variable are remembered. Then the working memory of the backward chaining
engine is cleared. The second step is executed again, but now the (need-triple
(p ”receivedVATIn”) (p ?Comp2) (o ?VIn)) facts are asserted with bindings of
the ?VIn variable (for example (need-triple (p ”receivedVATIn”) (p ?Comp2) (o
”8/2008”))). When results are copied to the forward chaining engine the second
step is executed again and the (need-triple(p ”refersToGood”) (s ?VIn) (o 10))
are asserted with bindings of the ?VIn variable.

After reasoning in the backward engine, the querying process goes to the
third step. The example query is executed in the forward chaining engine and
the query results are obtained. In the fourth step (if required) the OWL2Jess
transformation script (or forward chaining script with SWRL and taxonomy
rules) is loaded and additional information about gathered data is produced.

It is hard to define the computational complexity of our method, because
the Rete algorithm which is used to reason is too complex to be described in
general. That is because performance depends on declared rules and the data that
is processed by them. However, the computational complexity of the querying
method is between O(RFP) and O(RFP), where R is the number of rules, F is
the number of facts in the working memory, and P is the number of patterns
per rule body. One can see that this complexity is the same as in the Jess
reasoning engine. The computational complexity of the executed SQL queries
should be added. Due to the simple form of queries and the Rete algorithm, the
computational complexity of SQL queries can be skipped.

5 Example Use of the SDL Library

This section presents an example use of the SDL library. This demonstration
is done using the crime ontology, the so-called minimal model [23,24], which
has been developed in the PPBW [25] project. The ontology contains classes,
object properties, datatype properties and SWRL rules. The ontology describes
invoices, money transfers and tax information, and relations of decisive people
to companies. We use data related to a real case of a criminal investigation of a
fuel crime. Only some fragments of ontology and related queries are shown here.
The case database contains information about 6500 money transfers which were
done between 400 companies. The database schema contains one table named
moneyTransfers with the following columns:

– ID - identifier of the money transfer in the table,
– senderAccount - number of sender account,
– sender - name of the sender,
– date - date of the money transfer,
– amount - amount of the money transfer,
– receiver - name of the receiver of the money,
– title - title of the money transfer,
– bank - bank from which the sender transferred money.

Usage of the Jess Engine, Rules and Ontology 227

The processing procedure is as follows. First, we load the crime ontology into
SDL-GUI. Next, we connect it to the relational database, and define a map-
ping between ontology concepts/relations and relational database schema. The
following step in SDL-GUI is a generation of a Jess script in the backward
chaining mode. The script is loaded into Jess engines using SDL-API. Finally,
the analytical queries are executed with our query algorithm and hybrid reason-
ing process. These queries are shown as directed graphs in Figures 5, 6 and 7.
The first query searches for a chain of different companies which transfer money.
The chain’s length is arbitrarily set at 6. The name of the first company in
the chain is TRAWLOLLEX. Dates of transactions and the amounts of money
transfers must occur in an increasing order. Existence of such a chain is a red
flag for money laundering. The second query asks about a money transfer chain
between companies, where TRAWLOLLEX is the first and the last company.
Dates must occur in increasing order. Amounts must occur in decreasing order
(due to provisions). Such a chain suggests that we probably found a VAT carousel
fraud. The third query asks about money interchange between two such compa-
nies, where transferred amounts are exactly the same. Transaction dates must
occur in an increasing order. Results for such a query suggest that a fictional
flow of goods was found. We created and executed appropriate SQL queries. The
performance results are shown in Table 1. The results show that our method is
less efficient than SQL queries, but delivers an easier way for query creation.
The most significant difference between SDL and SQL performance appears in
the third query, because then the query contains only variables. In such a case,
data concerning all concepts/relations occurring in the query need to be loaded
as triples from a relational database. The efficiency of our method is satisfactory,
and we are convinced it can be improved.

Fig. 5. The first query

228 J. Bak, C. Jedrzejek, and M. Falkowski

Fig. 6. The second query

Fig. 7. The third query

Table 1. Performance comparison between SDL and SQL

Query / Tool SDL [ms] SQL [ms] Number of results

1 33 359 3 075 15 464
2 14 156 473 711
3 49 257 295 230

6 Conclusions and Future Work

In summary, we presented an approach that extends functionality of the Jess
reasoning engine and OWL2Jess transformational tool. The SDL library enables

Usage of the Jess Engine, Rules and Ontology 229

to query a relational database in terms of ontology concepts/relations and al-
lows the integration of ontology, rules and database expressed in one format
acceptable by the Jess engine. We believe that our query method, which en-
ables complex queries to be created in a simple way, has advantages over SQL
querying (creation of appropriate queries in SQL is more difficult). The SDL can
also be used in expert systems, which require many rules and lots of data from
relational databases. In this approach an answer is always up-to-date, because a
query is executed on the current state of the relational database. This is a very
useful feature, because we do not have to prepare data to begin an execution of
the query (in contrast to the forward chaining method).

We are going to make SDL available online, under an Open Source license [26].
The presented approach has some significant limitations. Currently, the head

of every rule contains only the assert command (it adds facts). We would like
to be able to handle the modify and retract commands in the heads of the rules.
We have to read data from a database and then we can test it (in the Jess
terminology this means comparing values of variables). So we have to load some
excess information. It would be better if we could test data during the load
process and exclude data not fulfilling constraints.

We are working on extending our approach to use an OWL2Jess transforma-
tion in the backward chaining mode. In this case the transformation from OWL
to Jess requires modifications which are needed to generate the Jess backward
script (i.e. do-backward-chaining declaration etc.). It is possible that such an
approach will reduce the efficiency of our method, but would enable more so-
phisticated reasoning about semantics (more than ’is-a’ relation) in the backward
chaining mode.

The SDL-GUI extensions are planned to support a query relational database
using graphical interface to create a query in terms of ontology concepts/relations
as a directed graph (as presented in Section 5).

A more formal approach than in our system, the ontology-based data access
(OBDA), for forward reasoning, has been presented [26]. In this approach the
DL-LiteA ontology is used to access a relational database and answer queries.
The mapping between ontology concepts and relational database schema is done
with the use of SQL queries (similar to our approach).

This work has been supported by the Polish Ministry of Science and Higher
Education, Polish Technological Security grant 0014/R/2/T00/06/02 and by 45-
083/08/DS grant.

References

1. Papataxiarhis, V., Tsetsos, V., Karali, I., Stamatopoulos, P., Hadjiefthymiades,
S.: Developing Rule-Based Applications for the Web: Methodologies and Tools.
In: Handbook of Research on Emerging Rule-Based Languages and Technologies:
Open Solutions and Approaches, May 2009, ch. XVI. Information Science Reference
(2009)

2. SPARQL Query Language for RDF. In: Seaborne, A., Prud’hommeaux, E. (eds.)
W3C Recommendation, January 15 (2008)

230 J. Bak, C. Jedrzejek, and M. Falkowski

3. Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive query containment
and answering under description logics constraints. ACM Transactions on Compu-
tational Logic 9(3) (2008)

4. Falkowski, M., Jedrzejek, C.: An efficient SQL-based querying method to RDF
schemata. In: KKNTPD Conference, Poznan, pp. 162–173 (2007)

5. Microsoft SQL Server, http://www.microsoft.com/sql/default.mspx
6. OWL Web Ontology Language Reference. In: Dean, M., Schreiber, G. (eds.) W3C

Recommendation, February 10 (2004),
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

7. SWRL - Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/
8. Jess (Java Expert System Shell), http://jessrules.com/
9. Bak, J., Jedrzejek, C.: Querying relational databases using ontology, rules and Jess

reasoning engine. Studies in Automation and Inf. Technology, vol. 33, pp. 25–44
(2008)

10. Mei, J., Paslaru Bontas, E., Lin, Z.: OWL2Jess: A Transformational Implementa-
tion of the OWL Semantics. In: Chen, G., Pan, Y., Guo, M., Lu, J. (eds.) ISPA-WS
2005. LNCS, vol. 3759, pp. 599–608. Springer, Heidelberg (2005)

11. OWL2Jess, http://www.ag-nbi.de/research/owltrans/
12. Mei, J., Paslaru Bontas, E.: Reasoning Paradigms for OWL Ontologies, FU Berlin,

Fachbereich Informatik, Technical Reports B 04-12 (2004)
13. Mei, J., Paslaru Bontas, E.: Reasoning Paradigms for SWRL-enabled Ontologies,

Protégé With Rules, Workshop, Madrid (2005)
14. OWL Meta-model, http://www.ag-nbi.de/research/owltrans/owlmt.clp
15. O’Connor, M.J., Shankar, R.D., Tu, S., Nyulas, C.I., Das, A.K.: Developing a

Web-Based Application using OWL and SWRL. In: Conference Proceedings, AAAI
Spring Symposium, Stanford, CA, USA (2008)

16. O’Connor, M.J., Tu, S.W., Das, A.K., Musen, M.A.: Querying the Semantic Web
with SWRL. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824,
pp. 155–159. Springer, Heidelberg (2007)

17. Protégé (ed.): http://protege.stanford.edu/
18. D2RQ, http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/
19. KAON2, http://kaon2.semanticweb.org/
20. Charles, F.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem. Artificial Intelligence 19, 17–37 (1982)
21. SWRL Built-ins, http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
22. Friedman-Hill, E.: Jess in Action. Manning Publications Co., (2003)
23. Jedrzejek, C., Bak, J., Falkowski, M.: Graph Mining for Detection of a Large Class

of Financial Crimes. In: 17th International Conference on Conceptual Structures,
Moscow, Russia, July 26-31 (2009)

24. Jedrzejek, C., Cybulka, J., Bak, J.: Application Ontology-based Crime Model for
a Selected Economy Crime. In: CMS 2009, Cracow (2009) (to be published)

25. PPBW, the Polish Platform for Homeland Security,
http://www.ppbw.pl/en/index.html

26. Open Source, http://www.opensource.org/licenses
27. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:

Linking Data to Ontologies. J. on Data Semantics 10, 133–173 (2008)

http://www.microsoft.com/sql/default.mspx
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/Submission/SWRL/
http://jessrules.com/
http://www.ag-nbi.de/research/owltrans/
http://www.ag-nbi.de/research/owltrans/owlmt.clp
http://protege.stanford.edu/
http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/
http://kaon2.semanticweb.org/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.ppbw.pl/en/index.html
http://www.opensource.org/licenses

An XML-Based Manipulation and Query Language for
Rule-Based Information

Essam Mansour and Hagen Höpfner

International University in Germany
Campus 3, D-76646 Bruchsal, Germany

essam.mansour@ieee.org, hoepfner@acm.org

Abstract. Rules are utilized to assist in the monitoring process that is required in
activities, such as disease management and customer relationship management.
These rules are specified according to the application best practices. Most of re-
search efforts emphasize on the specification and execution of these rules. Few
research efforts focus on managing these rules as one object that has a manage-
ment life-cycle. This paper presents our manipulation and query language that
is developed to facilitate the maintenance of this object during its life-cycle and
to query the information contained in this object. This language is based on an
XML-based model. Furthermore, we evaluate the model and language using a
prototype system applied to a clinical case study.

1 Introduction

Several applications of information systems utilize monitoring processes to support
their activities. Examples include health care applications (i.e., disease and medical-
record management) and financial applications (i.e., customer relationship and portfolio
management). These information systems are “standardized” by best practices, which
refer to the best way to perform specified activities [13]. Information extracted from the
best practices is specified in form of rules as a pre-step for monitoring the changes of
interest in these applications.

We developed a framework [6,9] for managing best practices. In our framework,
the best practices are modeled as a skeletal plan, which contains sets of rules defined
using the user terminologies. As object-oriented model, the skeletal plan is similar to
a class, from which several objects could be instantiated. The instance of the skeletal
plan is called an entity-specific (ES) plan, in which the rules of the skeletal plan are
mapped into low-level rules such as SQL triggers. For short, we refer to the skeletal
and entity-specific plans as rule-based information. The entity-specific plan go through
a life-cycle, in which the plan is created from a particular skeletal plan, activated, de-
activated, terminated or completed. The skeletal and entity-specific plans are modeled
using AIMSL (Advanced Information Management Specification Language) [7,11] and
DRDoc (Dynamic Rule-Based Document) [10], respectively.

The execution history of the rule-based information represents several information
scenes. The ability of manipulating and querying these scenes enhances the reporting
and decision-support capabilities in organizations. This ability facilitates the informa-
tion analysis and mining to discover and understand information trends.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 231–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

232 E. Mansour and H. Höpfner

There is a need to move the complexity of manipulating and querying the rule-
based information and its execution history from user/application code to a high level
declarative language. We developed a language called AIMQL (Advanced Information
Management Query Language) to facilitate the management of the rule-based informa-
tion as a first-class object. The main functional requirements of AIMQL are to assist
in: 1) Manipulating the skeletal plan and ES plan. The changes are made to AIMSL
specification might be required to be propagated to the corresponding ES plan; and 2)
Retrieving this information. This includes the ability to replay the ES plan or a specific
part of it within a specific time period.

This paper presents the manipulation support of the AIMQL language and discusses
the evaluation of a proof-of-concept system, which implements AIMQL using XML
technologies and database utilities. A clinical case study is used in our experiments.

The reminder of this paper is organized as follows: Section 2 discusses the related
work. Section 3 presents the management life-cycle of and examples for the rule-based
information. Section 4 outlines the manipulation and query requirements. Section 5
presents our manipulation support for the rule-based information. Section 6 highlights
our proof-of-concept system and discusses experimental results. Section 7 concludes
the paper and gives an outlook on future research.

2 Related Work

In the area of active XML, an event-driven mechanism based on the Event-Condition-
Action (ECA) rule paradigm [14] is incorporated into XML to provide an advanced
active behavior. We have classified the languages, which have been produced in this
area, into three categories: The languages in the first category play the same role as the
high level SQL trigger standard, such as Active XQuery [4], or an Event-Condition-
Action language for XML [3]. These languages support the reactive applications at
the level of rules and triggers. The languages in the second category, such as AXML
[1], Active XML Schemas [16], and XChange [2], utilize the event-driven mechanism
to support a specific reactive application, such as the Web content management. The
languages of the third category use XML only to standardize the rule-based information
as individual rules, such as ARML [5].

The RuleML languages aim at providing a standard rule language that is interoper-
ability platform [17,18]. The RuleML language has been utilized to support semantic
Web and business applications, such as in [12,15]. However, the RuleML languages
formalize the rule-based information as individual rules, not as a unified distinct entity
that could be instantiated. Languages proposed in both areas, active XML and RuleML,
overlook the need to manipulate the rule-based information and keep its evolution his-
tory as a pre-step to analyze and mine the execution history of such information.

The maintenance support management presented in this paper is part of the AIM
language, which has been developed by Mansour [6,7] for specifying, instantiating and
maintaining rule-based information. The AIM language is based on XML and ECA rule
paradigm, and has been implemented using DBS utilities to support the advanced man-
agement required for the rule-based information. Our maintenance support provides a
high-level method for manipulating the rule-based information.

An XML-Based Manipulation and Query Language for Rule-Based Information 233

3 Modeling the Rule-Based Information

In our framework, the rule-based information is either a skeletal plan or an entity-
specific (ES) plan. A skeletal plan is static in the sense that it does not have a state
transition. An ES plan is dynamic in the sense that it has state transitions. An example
is the generic specification of the test ordering protocol developed for diabetic patients,
from which several patient plans are generated to suit particular patients. Patient plans
change over the time. This section focuses on modeling the maintenance of the ES plan.

3.1 The Management Life-Cycle

The state transitions of the ES plan, as shown in Figure 1, are predefined and context-
sensitive. The context-sensitive means that the ES plan’s state is affected by changes in
the application information, such as increasing the patient temperature. These state tran-
sitions are applied to the ES plan and its knowledge action component, which represents
sets of modularized ECA rules.

executed

generated

registered

disabled

terminated

completed

re-registered

enabled

[n t imes]

A B

Fig. 1. The life-cycle of A) an entity-specific (ES) plan and b) an ES plan rule

When the ES plan is generated from the skeletal plan, the ES plan and its sets of
rules go from the initial state into generated state (see Figure 1.A). In generated state,
the ES plan is not yet a subject to execution, it should be firstly authorized to be then
registered. The ES plan is authorized by an domain expert, who is in charge of the ES
plan. Once it is authorized, the ES plan and its sets of rules go into the registered state.
In the registered state, all rules of the ES plan are installed in the system. In this state,
no rule has fired yet.

On the first occurrence of an event of interest to one or more of the ES plan’s rules,
the ES plan goes into the active state, and one or more rules are fired and go into the
executed state. As shown in Figure 1.A the active state includes two sub-states: waiting
and executing. In the waiting state, all ES plan’s rules are waiting for events that are
of interest to them. In the executing state, at least one rule is being executed. Once the
rule execution completes, the ES plan returns to the waiting state. Between the waiting

234 E. Mansour and H. Höpfner

and executing states of the ES plan, the rules are considered to be executed, as shown
in Figure 1.B . The executed state is a state for the rules. On this state, a rule is being
executed and after the execution the rule is waiting until the next event occurrence of
interest. The ES plan might be transited from active state to inactive, terminated, or
completed states, as shown in Figure 1.A.

The inactive state means that all the ES plan rules become disabled. The ES plan
might be transited from inactive state to active state. That means enabling the rules of
the ES plan. The terminated state means that all the ES plan rules were removed from
the system, but are not removed from the ES plan itself. The completed state of a rule
means that the execution of the rule was successful and the rule will not be subject to
any further execution. After all the enabled rules in the ES plan were completed the
ES plan goes into the completed state. The completed state of the ES plan could be
determined by a domain user, who is in charge of the ES plan. After the ES plan went
to the completed state, all the ES plan rules are removed from the system. An ES plan
could be re-registered, after it had been terminated or completed.

3.2 Instantiation and Execution History

-<protocol id=”PRO124”>
<name>microalbuminuria protocol (MAP) </name>
<categoryID>CID124</categoryID>
+<header>
-<Schedules>

-<schedule id=”SIDMAP”>
<name>Basic MAS</name>
+<header>
-<scheduleRules>

+<rule id=”MAP1”>
+<rule id=”MAP2”>

</scheduleRules>
</schedule>

</Schedules>
</protocol>

Fig. 2. AIMSL specification

This sub-section discusses the ES plan
instantiation and execution history us-
ing an example. We assume that there
is a skeletal plan for diabetic patients,
which consists of two rules MAP1 and
MAP2 grouped at the same schedule.
The rule MAP1 is to be fired two hours
after patient admission to order an Albu-
min/Creatinine Ratio (ACR) test for the
patient. The rule MAP2 is to be fired
once the result of the ACR test is re-
ceived. If the result is greater than 25 then
the ACR test is repeated every two days
after patient admission, as an action. This
action is formalized as a new rule (MAP3). Figure 2 illustrates the AIMSL specifica-
tion of the skeletal plan, which has the ID PRO124, and belongs to the category, whose
ID is CID124.

For each diabetic patient, a patient plan is generated from the generic plan shown in
Figure 2 by customizing the rules to a particular patient, i.e. using the admission time
of the patient. It is assumed that the patient plans were registered at time point 1, and
the result of the ACR test is received three hours after patient admission. The result was
33 and is greater than 25.

According to this scenario, the patient plan was maintained as shown in Figure 3 that
illustrates part of the patient plan four hours after the patient admission. This patient
plan is modeled using DRDoc [10]. The rule MAP1 and MAP2 were generated at
time point zero and registered at time point 1. The generated status is a system-defined
status that happens at the generation time of an entity-specific plan. The rule MAP1 was
fired two hours after patient admission. Therefore, the status registered of rule MAP1

An XML-Based Manipulation and Query Language for Rule-Based Information 235

Fig. 3. A part of a patient plan modeled using DRDoc

was valid from 1 to 2. The status executed was added with validity period 2 to 2. The
actual evaluation of the event and action of MAP1 were recorded. The rule MAP2 was
fired three hours after patient admission. Therefore, the status registered of rule MAP2
was valid from 1 to 3. The status executed was added with validity period 3 to 3. The
evaluation of the event, condition, and action of MAP2 were recorded. The rule MAP3
was added at time point 3 and it is recorded that MAP2 caused such modification, as
represented by the actor element shown in Figure 3.

4 The Manipulation and Query Requirements

This section presents main requirements and functionalities of the Advanced Information
Management Query Language (AIMQL). The rule-based information and the execution
history are represented and stored as XML-based document, such as the AIMSL spec-
ification or DRDOC documents that are presented in Section 3. AIMSL and DRDOC

are compatible with the XML model and could be queried using XQuery. However,
maintaining these documents demands special manipulation and query operators.

The general functional requirements, which should be provided, are: 1) Declarativ-
ity, the AIMQL language should be independent of any particular platform or query
evaluation strategy; 2) Temporal Support, the AIMQL language should be able to
record the history of executing the ES plan and to query it; and 3) XQuery-based,
the AIMSL specification and DRDoc are represented as XML document. Therefore,
AIMQL should be based on XQuery. Several extensions to XQuery are required in
order to achieve the AIMQL requirements as the following:

– Manipulation Operations: AIMQL introduces seven manipulation operations (ex-
pressions). These expressions include add, remove, modify, activate, deactivate, ter-
minate and fire. The AIMQL manipulation operations are distinguished in the sense
that they do not only potentially modify the AIMSL specification or ES plan, but
also propagate the modification to the corresponding ES plan documents and mod-
ify the corresponding triggers created in the system. Furthermore, the manipulation
expressions log the changes occurring to ES plan documents; and

– Query Support: AIMQL provides support to query AIMSL specification and ES
plan document, as the domain information, plus special query capabilities, replay

236 E. Mansour and H. Höpfner

function and temporal query support for ES plan document. AIMQL introduces a
new functionality called replay. AIMQL replay query is a query that plays over
again the history of the rule-based information to show in details the actions that
cause changes on the rule-based information and how it evolved over time.

Tables 1 and 2 show the AIM manipulation and query support provided to the skeletal
plan and entity-specific plan, respectively. The �value denotes that a feature is applied,
and the × value denotes that a feature is not applied. The columns (Cat, Pro, Sch,
Rule, Trm, Eve, Con, Act, and Ent) shown in Tables 1 and 2 refer to category, protocol,
schedule, rule, terms, event, condition, action, and domain entity. These are the main
components of the rule-based information [6]. Each column represents a component of
either the skeletal or entity-specific plan.

Table 1. AIMQL function applicability for the skeletal plan

Skeletal Plan
Category Function Cat Pro Sch Rule Trm Eve Con Act

Manipulation

Add � � � � � � � �
Remove � � � � � � � �
Modify � � � � � � � �
Activate × × × × × × × ×
Deactivate × × × × × × × ×
Terminate × × × × × × × ×
Fire × × × × × × × ×

Query
Normal � � � � � � � �
Replay × × × × × × × ×

Table 2. AIMQL functions applicability for the entity-specific plan

Entity-Specific Plan
Category Function Ent Pro Plan Sch Rule Trm Eve Con Act

Manipulation

Add × × × � � � � � �
Remove × × � � � � � � �
Modify × × × � � � � � �
Activate × × � � � × × × ×
Deactivate × × � � � × × × ×
Terminate × × � � � × × × ×
Fire × × × × � × × × ×

Query
Normal � � � � � � � � �
Replay × × � � � × × × ×

For the skeletal plan, the add, remove and modify operations are applied to all
skeletal plan components. However, the activate, deactivate, terminate and fire oper-
ations are used to facilitate the execution of the entity-specific plan. Therefore, these
operations are not used with the skeletal plan components, but used with the plan,
schedule and rule components of the entity-specific plan. The fire operation is used

An XML-Based Manipulation and Query Language for Rule-Based Information 237

only with the rule component. The entity-specific plan is generated for a specific do-
main entity from a specific protocol (skeletal plan). The domain entity and protocol of
the entity-specific plan are not changeable. Therefore, the add, remove and modify op-
erations are not applied to the domain entity nor the protocol components. Moreover,
the add and modify operations are not applied to the plan component.

This research work focuses on the execution history of the entity-specific plan. Con-
sequentially, the AIMQL replay query is provided to the entity-specific plan, specially
the components (plan, schedule and rule) that are called re-playable components. The
other components of the entity-specific plan could be replayed as a part of the re-
playable components. The reader is refered to [10] for more details concerning our
replay support.

5 The High-Level Manipulation Operations

The manipulation operations are applied to the skeletal plan, entity-specific plan and
its corresponding triggers created as an implementation for the execution process of
this plan. The changes made to the skeletal plan or the entity-specific plan might need
to be propagated to the corresponding plan or triggers, respectively. The manipulation
operations could be issued in the action component associated with the AIMSL rule
element. The supported manipulation operations are:

– Add a skeletal plan (protocol), entity-specific plan, or one of their components.
– Remove a protocol, entity-specific plan, or one of their components.
– Modify a protocol, entity-specific plan, or one of their components.
– Activate an entity-specific plan, schedule, or rule components.
– Deactivate an entity-specific plan, schedule, or rule components.
– Terminate an entity-specific plan, schedule, or rule components.
– Fire a rule component.

5.1 Add

The add operation is an manipulation operation that add copies of one or more protocol
specification or ES plan components into a designated position with respect to a target
component. Figure 4.A shows the XML schema of the add operation as follows:

– The AddedExpr represents one of the protocol (skeletal plan) or ES plan compo-
nents.

– The as value could be one of this values (Category, Protocol, Schedule, Terms,
Event, Condition, Action, or domain entity), or the values (schedule rule, protocol
rule or global rule).

– the AddedTargetExpr represents a targeted component in a specific protocol or
ES plan.

– If into is specified without Before or After, AddedExpr becomes a child of
the AddedTargetExpr. Else, AddedExpr becomes a child of the parent of
AddedTargetExpr.

238 E. Mansour and H. Höpfner

<xsd:complexType name=”addDT”>
<xsd:sequence>

<xsd:element name=”addedExpr” />
<xsd:element name=”as” />
<xsd:element name=”into”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”posBA”/>
<xsd:element name=”AddedTargetExpr”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”propagation” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<add”>
<addedExpr>

+<rule id=”rul123”>
</addedExpr>
<as>scheduleRule</as>
<into>

<AddedTargetExpr>
protocol[id=”pro123”]//schedule[id=”sch123”]
</AddedTargetExpr>

</into>
</add”>

A B

Fig. 4. A: the structure of the add operation. B: an example for add operation.

– the propagation values are (Yes or No), and the default value is No. The Added
Expr will not be propagated to the corresponding ES plans, if the value is No. If
the value is Yes, the AddedExprwill be propagated to all the corresponding plans.

The semantics of an add expression are as follows:

– AddedExpr must be a valid AIMSL component for the protocol or ES plan; oth-
erwise a static error is raised. The result of this step is either an error or a sequence
of components to be added.

– AddedTargetExpr must refer to a valid AIMSL component; otherwise a static
error is raised.

– The result of the add expression must be a valid AIMSL component for a protocol
or ES plan; otherwise a dynamic error is raised.

– If the add expression is applied for a plan, the validity period associated with
the AddedTargetExpr and its children should be changed to reflect the new
changes that have been made by the add expression.

Figure 4.B shows an example for an add operation that adds a rule as a schedule rule
under the schedule, whose id is sch123 and its parent is a protocol, whose id is pro123.
This rule will not be propagated as the default value of the propagation is No.

5.2 Remove

A remove expression removes at least one of AIMSL components from a protocol or
ES plan. Figure 5.A shows the syntax of a remove expression as follows:

– The RemovedTargetExpr refers to one of the protocol or ES plan components.
– the propagation values are (Yes or No), and the default value is No.

The RemovedTargetExprwill not be propagated to the corresponding ES plans,
if the value is No. Otherwise, it will be propagated to all corresponding plans.

An XML-Based Manipulation and Query Language for Rule-Based Information 239

<xsd:complexType name=”removeDT”>
<xsd:sequence>

<xsd:element name=”RemoveedTargetExpr”/>
<xsd:element name=”propagation” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<remove”>
<RemoveedTargetExpr>
protocol[id=”pro123”]//schedule[id=”sch123”]//rule[id=”rul123”]
</RemoveedTargetExpr>
<propagation>Yes</propagation>

</remove”>
A B

Fig. 5. A: the structure of the remove operation. B: an example for a remove operation.

The semantics of a remove expression are as follows:

– The RemovedTargetExpr must refer to a valid AIMSL component; otherwise
a static error is raised.

– After removing the RemovedTargetExpr, the parent of the removed component
must be a valid AIMSL component or null, otherwise a dynamic error is raised.

– If the remove expression is applied for an ES plan component, the RemovedTarget
Expr is logically removed. That means the component is not deleted, but it is
marked as a deleted component. Also, the validity period associated with the par-
ent of RemovedTargetExpr should be changed to reflect the new changes that
have been made by the remove expression.

Figure 5.B shows an example for a remove operation that removes a rule, whose id
is rul123 and its schedule id is sch123. This schedule is under a protocol, whose id is
pro123. This remove operation will be propagated as the propagation value is Yes.

5.3 Modify

A modify operation might modify a component as a whole or only the values. Figure
6.A shows the syntax of the modify operation as follows:

<xsd:complexType name=”modifyDT”>
<xsd:sequence>

<xsd:element name=”value-of” minOccurs=”0”/>
<xsd:element name=”ModifyTargetExpr”/>
<xsd:element name=”with”/>
<xsd:element name=”propagation” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<modify>
<ModifyTargetExpr>
protocol[id=”pro123”]//rule[id=”rul123”]//event[id=”EID123”]
</ModifyTargetExpr>
<with>

+¡event id=”EID127”¿
</with>

</modify>

A B

Fig. 6. A: the structure of the modify operation. B: an example for a modify operation.

– The value-of element determines whether the modify operation updates a value
or a component.

– The ModifyTargetExpr element represents a targeted component in a specific
protocol or ES plan.

– The with element represents a protocol or ES plan components or a valid value
for a protocol or ES plan components.

– the propagation values are (Yes or No), and the default value is No. The modify
operation will not be propagated to the corresponding ES plans, if the value is No.
If the value is Yes, it will be propagated to all corresponding plans, if applicable.

240 E. Mansour and H. Höpfner

Modify Component. If the value-of element is not specified, the modify operation
modifies one valid AIMSL component with a new valid AIMSL component. The se-
mantics of this form of the modify operation are as follows:

– The ModifyTarggetExpr must refer to a valid AIMSL component; otherwise
a static error is raised. The ModifyTarggetExpr is evaluated. The result of this
step is either an error or a sequence of component to be modified.

– The with element must be a valid AIMSL component; otherwise a static error is
raised.

– The result of the modify expression must be a valid AIMSL component.
– If the modify operation is applied for a plan, instead of modifying the component

targeted by ModifyTarggetExpr, a copy of this component will be modified
by the with element and added as a sibling to the ModifyTarggetExpr. Also,
the validity period associated with the ModifyTarggetExpr should be changed
to reflect the new changes that have been made by the modify operation.

Modify the Value of a Component. If the value-of is specified, the modify operation
modifies only the value of a valid AIMSL component. The semantics of this form of
the modify operation are as follows:

– The ModifyTarggetExpr must refer to a valid AIMSL component that does
not contain another component; otherwise a static error is raised.

– The ModifyTarggetExpr is evaluated. The result of this step is either an error
or a sequence of components to be modified.

– The with element must be a valid value for the ModifyTarggetExpr according to
AIMSL Schema; otherwise a static error is raised.

– The result of the modify expression must be a valid AIMSL component.

Figure 6.B shows a modify operation that replaces the event, whose id is EID123.
This event is under a rule, whose id is rul123, and the rule’s parent is the protocol,
whose id is pro123.

5.4 Activate

The activate operation activates a plan, schedule or rule component in a specific ES
plan. This means these components will be ready for the execution process. Figure 7.A
shows the syntax of the activate operation. Figure 7.B shows an example for activating
a rule, whose id is rul123, in an ES plan, whose proid is pro123. The semantics of
activate are :

– The ActTargetExpr element must refer to a valid re-playable component (plan,
schedule or rule), or to a component containing at least one of these components,
such as the scheduleRules component.

– As a result to the activate operation, the state of the activated component will be
transited to the active state, and the corresponding triggers will be activated.

An XML-Based Manipulation and Query Language for Rule-Based Information 241

<xsd:complexType name=”activateDT”>
<xsd:sequence>

<xsd:element name=”ActTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<activate>
<ActTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</ActTargetExpr>

</activate”>
A B

Fig. 7. A: the structure of the activate operation. B: an example for an activiate operation

5.5 Deactivate

The deactivate operation deactivates a plan, schedule or rule component in a specific
ES plan. This means these components will be off. Figure 8.A shows the syntax of the
deactivate operation. Figure 8.B shows an example for deactivating a rule, whose id is
rul123, in a plan, whose proid is pro123. The semantics of Deactivate are :

– The DeactTargetExpr element must refer to a valid re-playable component
(plan, schedule or rule), or to a component containing at least one of these compo-
nents, such as the scheduleRules component.

– As a result to the deactivate operation, the state of the deactivated component will
be transited to the inactive state, and the corresponding triggers will be deactivated
in the system.

<xsd:complexType name=”deactivateDT”>
<xsd:sequence>

<xsd:element name=”DeacTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<deactivate>
<DeacTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</DeacTargetExpr>

</deactivate>
A B

Fig. 8. A: the structure of the deactivate operation. B: an example for a dectiviate operation

5.6 Terminate

The terminate operation halts a plan, schedule or rule component in a specific ES plan.
This means these components will be not in use anymore. Figure 9.A shows the syntax
of the terminate operation. Figure 9.B shows an example for terminating a rule, whose
id is rul123, in a plan, whose proid is pro123. The termination semantics are:

– The TermTargetExpr element must refer to a valid re-playable component
(plan, schedule or rule), or to a component containing at least one of these compo-
nents, such as the scheduleRules component.

– As a result to the terminate operation, the state of the terminated component will
be transited to the terminated state, and the corresponding triggers will be deleted
from the system.

242 E. Mansour and H. Höpfner

<xsd:complexType name=”terminateDT”>
<xsd:sequence>

<xsd:element name=”TermTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<terminate>
<TermTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</TermTargetExpr>

</terminate>
A B

Fig. 9. A: the structure of the terminate operation. B: an example for a terminate operation

5.7 Fire

The fire operation is applying only to the rule component in a specific plan. This means
the rule’s action will be carried out if the rule condition is evaluated to true. Figure 10.A
shows the syntax of the fire operation. Figure 10.B shows an example for firing a rule,
whose id is rul123, in a plan, whose proid is pro123. The semantics of fire are:

– The FireTargetExpr element must refer to a valid rule component in an ES
plan.

– As a result to the fire operation, the corresponding triggers will be activated regard-
less their event.

<xsd:complexType name=”fireDT”>
<xsd:sequence>

<xsd:element name=”FireTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<fire>
<FireTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</FireTargetExpr>

</fire>
A B

Fig. 10. A: the structure of the fire operation. B: an example for a fire operation.

6 Evaluation

This section highlights the proof-of-concept system, which implements our mainte-
nance support, and the evaluation of the maintenance efficiency.

6.1 A Prototype System

We have utilized DB2 express-C 9.5 and Sun Java 1.6, to develop a proof-of-concept
system, called AIMS [8], for managing the rule-based information. AIMS maps the
AIMQL queries and operations into XQuery scripts that are to be executed by DB2.

The conceptual architecture of AIMS is illustrated in Figure 11. The main compo-
nents of AIMS are the Complex Information Manager, Rule Manager, Information Man-
ager, and Communication Manager. The Complex Information Manager supports the
management of the rule-based information at a high level. The domain users and infor-
mation providers, such as patient information systems, deal with Complex Information
Manager through the Communication Manager. The Information Manager extends the
XML support provided by DBSs to provide temporal support and utilizes the DBS to
validate and store the DRDOC document.

An XML-Based Manipulation and Query Language for Rule-Based Information 243

XML
Schemas

XML Repository
- Domain Information
- AIMSL Specification
- DRDoc

Complex In format ion
 M a n a g e r

- Specification
- Instantiation
- Execution

Rule Manager

- Temporal Execution
- Rule Manipulation

Communicat ion Manager

- Dissemination method
- Distr ibut ion method

DBMS Trigger
Mechanism

Registration and
Manipulation

Modifications

I n fo rmat ion Manager
- Validation method
- Temporal storage method
- Temporal query method

- Queries and Manipulations
- Skeletal Plan Doc
- Entity-Specific Plan Doc

AIM Language Statement

Result and Acknowledgement

In format ion
 ProviderUser/Cl ient

Messages

AIMS: A Complex In format ion Management System

External Ent i t iesModern DBMS

- Manipulation
- Query and Replay

Fig. 11. The AIMS conceptual architecture

The Rule Manager extends
the triggering mechanism of
the DBS to support the
advanced features of the rule-
based information, and record-
ing the execution history. One
of the main roles of Rule Man-
ager is to map the AIMQL op-
erations into XQuery scripts.
The translator knows the struc-
ture (elements and attributes) of
the AIMSL and DRDOC docu-
ments. The translator generates
the equivalent XQuery script,
which is to be executed using
the XQuery engine provided
within DB2.

6.2 Experimental Results

Our evaluation to the maintenance efficiency has been tested on Debian 4, a Linux sys-
tem, and an Intel Pentium III processor machine, whose configuration is one Gigabyte
RAM and 40 Gigabyte hard disk. The DRDOC document is a temporal XML docu-
ment that records all the changes produced by updating the DRDOC document. Most
of these changes add a new state to an element of the DRDOC document. For example,
executing the rule MAP3 every two days adds a new executed state under the rule ele-
ment. These changes might be also adding a new rule, such as MAP2 that adds a new
rule, MAP3. Consequentially, the storage management of the DRDOC document is of
critical importance and the main factor of the AIMS storage management performance.

 102

 104

 106

 108

 110

 112

 114

 116

 118

522 532 544 550 555 559 565

th
e

D
R

D
oc

 d
oc

um
en

t s
iz

e
(K

B
)

number of updates

The DRDoc document size

Fig. 12. The maintenance efficiency

This experiment compares the
size of the DRDOC document
with the number of updates that
take place in them. The grow-
ing in the plan size is almost lin-
ear to the number of updates, as
shown in Figure 12. This linear-
ity assists in estimating the DR-
DOC document size after N num-
ber of updates, such that most of
the updates are changes on the
rule state. This change is repre-
sented using a value element of
almost fixed size, see Figure 3.
In conclusion, the AIMS storage
management is stable to the num-
ber of updates.

244 E. Mansour and H. Höpfner

7 Conclusion and Outlook

This paper has presented a maintenance support management for information formal-
ized as rules to assist in monitoring processes that are required in activities, such as
disease management, and customer relationship management. We have developed a
framework for managing the rules of monitoring processes as one object (plan) that has
a management life-cycle. This paper focussed on the modeling mechanism for these
rules. In our framework, these rules are modeled similary to the class-object concept in
the object-oriented programming. The rules are to be specified at a generic level based
on the domain terminologies using our AIMSL model. From the AIMSL specification,
several entity-specific plans could be generated. Our DRDOC model maps the generic
rules defined in the AIMSL specification into SQL triggers, and keeps the history of
executing these rules.

The paper also has presented the manipulation support of AIMQL language. AIMQL
provides manipulation operations, such as activate, deactivate, terminate and fir, to sup-
port the management life-cycle of rules modeled using our framework. The AIMQL
is distinguished by the ability to specifying declaratively the manipulated information.
Furthermore, the AIMQL is able to manage the rule-based information as first class
object. Moreover, the paper highlighted our proof-of-concept system (AIMS) that im-
plements our maintenance support by mapping the AIMQL operations into XQuery
update scripts that are to be executed by the DBS. Our evaluation of the maintenance
efficiency shows positive results.

Currently we are doing additional experiments with different workloads and query
sets. There is a need to develop a method that provides automatic discovery of infor-
mation from the execution history of the rule-based information. This discovered in-
formation can assist in auditing, analyzing and improving already enacted rule-based
information.

References

1. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active XML: A Data-
Centric Perspective on Web Services. In: Levene, M., Poulovassilis, A. (eds.) Web Dynamics
- Adapting to Change in Content, Size, Topology and Use, pp. 275–300. Springer, Heidelberg
(2004)

2. Bailey, J., Bry, F., Eckert, M., Pătrânjan, P.-L.: Flavours of XChange, a Rule-Based Reactive
Language for the (Semantic) Web. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005.
LNCS, vol. 3791, pp. 187–192. Springer, Heidelberg (2005)

3. Bailey, J., Poulovassilis, A., Wood, P.T.: An Event-Condition-Action Language for XML. In:
Proceedings of the 11th international conference on World Wide Web, pp. 486–495. ACM,
New York (2002)

4. Bonifati, A., Braga, D., Campi, A., Ceri, S.: Active XQuery. In: Proceedings of the 18th
International Conference on Data Engineering, p. 403. IEEE Computer Society, Washington
(2002)

5. Cho, E., Park, I., Hyun, S.J., Kim, M.: ARML: an active rule mark-up language for hetero-
geneous active information systems. In: Schroeder, M., Wagner, G. (eds.) Proceedings of
the International Workshop on Rule Markup Languages for Business Rules on the Semantic
Web, CEUR Workshop Proceedings, vol. 60. CEUR-WS.org. (2002)

An XML-Based Manipulation and Query Language for Rule-Based Information 245

6. Mansour, E.: A Generic Approach and Framework for Managing Complex Information. PhD
thesis, Dublin Institute of Technology, DIT (2008),
http://arrow.dit.ie/sciendoc/51/

7. Mansour, E., Dube, K., Wu, B.: AIM: An XML-Based ECA Rule Language for Supporting a
Framework for Managing Complex Information. In: Paschke, A., Biletskiy, Y. (eds.) RuleML
2007. LNCS, vol. 4824, pp. 232–241. Springer, Heidelberg (2007)

8. Mansour, E., Dube, K., Wu, B.: Managing complex information in reactive applications using
an active temporal XML database approach. In: Cardoso, J., Cordeiro, J., Filipe, J. (eds.)
ICEIS 2007 - Proceedings of the Ninth International Conference on Enterprise Information
Systems, pp. 520–523 (2007)

9. Mansour, E., Höpfner, H.: A rule-based approach and framework for managing best prac-
tices – An XML-Based Management Using Puer Database System Utilities. In: Filipe, J.,
Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24. Springer, Heidelberg (2009)

10. Mansour, E., Höpfner, H.: Replay the Execution History of Rule-Based Information.
In: DBKDA 2009: Proceedings of the 2009 First International Conference on Advances
in Databases, Knowledge, and Data Applications, pp. 28–35. IEEE Computer Society,
Washington (2009)

11. Mansour, E., Wu, B., Dube, K., Li, J.X.: An Event-Driven Approach to Computerizing Clin-
ical Guidelines Using XML. In: Proceedings of the IEEE Services Computing Workshops,
pp. 13–20. IEEE Computer Society, Washington (2006)

12. Nagl, C., Rosenberg, F., Dustdar, S.: VIDRE–A Distributed Service-Oriented Business Rule
Engine based on RuleML. In: Proceedings of the 10th IEEE International Enterprise Dis-
tributed Object Computing Conference, pp. 35–44. IEEE Computer Society, Washington
(2006)

13. O’Leary, D.E.: Empirical analysis of the evolution of a taxonomy for best practices. Decision
Support Systems 43(4), 1650–1663 (2007)

14. Paton, N.W. (ed.): Active Rules in Database Systems. Springer, New York (1999)
15. Pontelli, E., Son, T.C., Baral, C.: A Framework for Composition and Inter-operation of Rules

in the Semantic Web. In: Proceedings of the Second International Conference on Rules and
Rule Markup Languages for the Semantic Web, pp. 39–50. IEEE Computer Society Press,
Los Alamitos (2006)

16. Schrefl, M., Bernauer, M.: Active XML Schemas. In: Arisawa, H., Kambayashi, Y., Kumar,
V., Mayr, H.C., Hunt, I. (eds.) ER Workshops 2001. LNCS, vol. 2465, pp. 363–376. Springer,
Heidelberg (2002)

17. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The Abstract Syntax of RuleML – Towards
a General Web Rule Language Framework. In: Proceedings of the 2004 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2004), pp. 628–631. IEEE Computer So-
ciety, Washington (2004)

18. Wagner, G., Giurca, A., Lukichev, S.: A General Markup Framework for Integrity and
Derivation Rules. In: Bry, F., Fages, F., Marchiori, M., Ohlbach, H.-J. (eds.) Principles and
Practices of Semantic Web Reasoning, number 05371 in Dagstuhl Seminar Proceedings,
Schloss Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum für Infor-
matik, IBFI (2005)

http://arrow.dit.ie/sciendoc/51/

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 246–261, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Exploration of SWRL Rule Bases through Visualization,
Paraphrasing, and Categorization of Rules

Saeed Hassanpour, Martin J. O’Connor, and Amar K. Das

Stanford Center for Biomedical Informatics Research,
MSOB X215, 251 Campus Drive, Stanford, California, USA 94305
{saeedhp,martin.oconnor,amar.das}@stanford.edu

Abstract. Rule bases are increasingly being used as repositories of knowledge
content on the Semantic Web. As the size and complexity of these rule bases
increases, developers and end users need methods of rule abstraction to facili-
tate rule management. In this paper, we describe a rule abstraction method for
Semantic Web Rule Language (SWRL) rules that is based on lexical analysis
and a set of heuristics. Our method results in a tree data structure that we ex-
ploit in creating techniques to visualize, paraphrase, and categorize SWRL
rules. We evaluate our approach by applying it to several biomedical ontologies
that contain SWRL rules, and show how the results reveal rule patterns within
the rule base. We have implemented our method as a plug-in tool for Protégé-
OWL, the most widely used ontology modeling software for the Semantic Web.
Our tool can allow users to rapidly explore content and patterns in SWRL rule
bases, enabling their acquisition and management.

Keywords: Rule Management, Rule Abstraction, Rule Patterns, Rule Visuali-
zation, Rule Paraphrasing, Rule Categorization, Knowledge Representation,
OWL, SWRL.

1 Introduction

Rules are increasingly being used to represent knowledge in ontology-based systems
on the Semantic Web. As the size of such rule bases increases, users face a perennial
problem in understanding and managing the scope and complexity of the specified
knowledge. To support rapid exploration of rule bases and meet the scalability goals
of the Semantic Web, automated techniques are needed to provide simplified
interpretations of rules as well as high-level abstractions of their computational
structures. In particular, rule paraphrasing and rule visualization can help non-
specialists understand the meaning of logically complex rules. Abstraction of
common patterns in rule bases can also enable automatic or semi-automatic
categorization of rules into related groups for knowledge management. Such
categorized patterns could ultimately form the basis of rule elicitation tools that guide
non-specialists entering new rules.

We are addressing the need for such rule management solutions in our development
of tools for the Semantic Web Rule Language (SWRL) [35]. In prior work, we devel-
oped SWRLTab [37], a plug-in for editing SWRL rule bases within Protégé-OWL [38].

 Exploration of SWRL Rule Bases 247

Protégé-OWL is freely available, open-source knowledge management software that is
widely used to specify OWL ontologies for Semantic Web applications. In this paper,
we describe a novel approach for exploration of SWRL rule bases through three related
techniques: (1) rule visualization, (2) rule paraphrasing, and (3) rule categorization.
These three techniques are based on a method of syntactic analysis of SWRL rules. We
use the data structure output of this analysis to graphically present the structure of a rule
for rule visualization. We use the structural information, along with general heuristics,
to paraphrase SWRL rules into simplified, readable English statements. We also apply a
pattern recognition algorithm to the structural information to automatically categorize
rules into groups that share a common syntactic representation. We show how these
techniques can be used to support exploration and analysis of SWRL rule bases, allow-
ing users to more easily comprehend the knowledge they contain. We evaluate the use
of our approach by applying these techniques to several biomedical ontologies that con-
tain SWRL rule bases. Finally, we discuss the development of a Protégé-OWL plug-in,
called Axiomé that provides these three management techniques for users and develop-
ers of SWRL rule bases.

2 Background

OWL [34] is the standard ontology language of the Semantic Web and is rapidly be-
coming one of the dominant ontology languages in the development of knowledge
bases. OWL provides a powerful language for building ontologies that specify high-
level descriptions of Web content. These ontologies are created by constructing hierar-
chies of classes describing concepts in a domain and relating the classes to each other
using properties. OWL also provides a powerful set of axioms for precisely defining
how to interpret concepts in an ontology and to infer information from these concepts.

The Semantic Web Rule Language (SWRL) [35] is an extension to the OWL lan-
guage to provide even more expressivity. The SWRL language allows users to write
Horn-like rules that can be expressed in terms of OWL concepts and that can reason
about OWL individuals. SWRL thus provides deductive reasoning capabilities that
can infer new knowledge from an existing OWL ontology. For example, a SWRL rule
expressing that a person with a male sibling has a brother can be defined using the
concepts of ‘person’, ‘male’, ‘sibling’ and ‘brother’ in OWL. Intuitively, the concept
of person and male can be captured using an OWL class called Person with a sub-
class Male; the sibling and brother relationships can be expressed using OWL proper-
ties hasSibling and hasBrother, which are attached to Person. The rule in
SWRL would be1:

Person(?x) ^ hasSibling(?x,?y) ^ Male(?y) → hasBrother(?x,?y)

Eecuting this rule would have the effect of setting the hasBrother property of x to
y. Similarly, a rule that asserts that all persons who own a car should be classified as
drivers can be written as follows:

Person(?p) ^ hasCar(?p, true) → Driver(?p)

1
 The SWRL Submission [35] does not detail a standard syntax for language presentation; the
examples shown in this paper reflect the presentation syntax adopted by the Protégé-OWL
SWRL Editor.

248 S. Hassanpour, M.J. O’Connor, and A.K. Das

This rule would be based on an OWL ontology that has the property hasCar and the
class Driver. Executing this rule would have the effect of classifying all car-owner
individuals of type Person to also be members of the class Driver.

One of SWRL’s most powerful features is its ability to support user-defined meth-
ods or built-ins [37]. A number of core built-ins for common mathematical and string
operations are defined in the SWRL W3C Submission. For example, the built-in
greaterThan can be used to determine if one number is greater than another. A
sample SWRL rule using this built-in to help classify as adults any person who has an
age greater than 17 can then be written as:

Person(?p)^ hasAge(?p,?age) ^ swrlb:greaterThan(?age,17) → Adult(?p)

When executed, this rule would classify individuals of class Person with a hasAge
property value greater than 17 as members of the class Adult.

SWRL rules can also establish relationships between entities in an ontology. For
example, the following rule from the California Driver Handbook [36] provides Cali-
fornia’s driving regulations about minor visitors:

An individual under the age of 18 as a potential driver of a vehicle with a weight of
less than 26,000 lbs if they possess an out-of-state driver’s license and are visiting the
state for less than 10 days.

can be written in SWRL as:

Person(?p) ^ has_Driver_License(?p,?d) ^ issued_in_State_of(?d,?s) ^
swrlb:notEqual(?s,"CA") ^ has_Age(?p,?g) ^ swrlb:lessThan(?g,18) ^
number_of_Visiting_Days_in_CA(?p,?x) ^ swrlb:lessThan(?x,10) ^ Car(?c)
^ has_Weight_in_lbs(?c,?w) ^ swrlb:lessThan(?w,26000) →
can_Drive(?p,?c)

As mentioned, all classes and properties referred to in this rule must preexist in an
OWL ontology.

Table 1. SWRL atom types and example atoms from the Californian Driver Handbook rule

SWRL Atom Type Example Atom

Class atom Person(?p), Car(?c)

Individual property atom

has_Driver_License(?p,?d)

issued_in_State_of(?d,?s)

can_Drive(?p,?c)

Same/Different atom
sameAs(?x, ?y)

differentFrom(?x, ?y)

Datavalued property atom

has_Age(?p,?g)

number_of_Visiting_Days_in_CA(?p,?x)

has_Weight_in_lbs(?c,?w)

Built-in atom
swrlb:notEqual(?s,"CA")

swrlb:lessThan(?g,18)

Data range atom xsd:double(?x)

 Exploration of SWRL Rule Bases 249

As can be seen from these examples, SWRL rules have a simple Horn-like rule
structure. A rule is composed of a body and a head, each of which contain conjunc-
tions of atoms. SWRL does not support disjunction. There are six main types of
SWRL atoms defined in the W3C Submission for SWRL. Table 1 lists these atom
types and provides example atoms based on the previous rule from the California
Driver Handbook.

3 Related Work

Rule management is a very active application area in the business rules domain. These
systems are used to define, execute, monitor and maintain the rules used by opera-
tional systems [30]. There are a wide variety of commercial rule management
tools, which are used to help business organizations standardize and enhance the visi-
bility and consistency of their rule bases. These tools typically provide business
user-friendly rule formats, multiple data models for rules implementation, rule testing
and refinement, high level rules management interfaces and editors, in addition
to other capabilities such as rules versioning, access control, and justification
capabilities [31, 32].

Rules are increasingly being used for knowledge management in combination with
ontologies [1-3]. As these rule bases grow larger, standard business rule management
solutions are being investigated to deal with the resulting complexity. The intimate
interactions between rules and the underlying ontology formalisms often require
novel solutions [4, 5], however. In particular, the formal underpinnings of the tech-
nologies can sometimes be exploited to automatically infer information that may not
be possible with the more loosely coupled interactions that are typical between busi-
ness rules and underlying data.

Some of the traditional approaches used with expert systems can be utilized for
certain management tasks. For example, a substantial amount of work has been done
in automatic extraction of rules from data [6-11, 33]. Comparatively little work has
been done in mining rule bases themselves to assist user comprehension. Rule argu-
mentation techniques [12-15] do typically examine the relationships between rules in
a rule base. However, these techniques do not focus on making the rule bases them-
selves easier to understand. Instead, the goal is to explain the reasoning steps that
have been operationalized by the rules. Similarly, descriptive user-friendly text has
been used in expert systems to explain the behavior of systems [16, 18], but, again,
these textual descriptions have not primarily aimed to explain rule bases and their
structure. Other work on rule visualization has mostly focused on showing the con-
nections between rules themselves or and ontology entities or connections between
rules and their supporting data, not the structure of the rules bases [19, 20]. UML-
based visualization techniques have been used in the business rules domain [43, 44]
but these methods are typically designed to provide very detailed views of rule inter-
actions and are not designed for high level rule base exploration.

Principled methods to examine structural patterns in rule bases may significantly
aid user comprehension. These approaches can help users to rapidly explore and un-
derstand large unfamiliar rule bases. They can also be used to help users understand
their own rule bases and spot non-obvious knowledge patterns, which can ultimately
help them better structure both the rule bases and the associated ontologies.

250 S. Hassanpour, M.J. O’Connor, and A.K. Das

4 Methods

In Section 4.1, we discuss a rule abstraction method that parses a SWRL rule and
provides as output a tree data structure to represent the rule. We then describe how
we use this data structure to visualize, paraphrase and categorize SWRL rules,
respectively, in Sections 4.2, 4.3 and 4.4. In Section 4.5, we present a plug-in for
Protégé-OWL that supports these three techniques.

4.1 Rule Abstraction

As a first step in our rule management approach, we apply a rule abstraction method
to analyze the syntactic structure of a SWRL rule. This method scans the atoms in the
body and head of each rule using lexical analysis, reorders the atoms using a set of
heuristics, and maintains them in a tree data structure.

Table 2. SWRL atom types and their corresponding rule abstraction priority

SWRL Atom Type Priority

Class atom 1

Individual property atom 2

Same/Different atom 3

Data-valued property atom 4

Built-in atom 5

Data range atom 6

We give each of the six main types of SWRL atom (shown in Table 2) an ordinal

ranking from 1 to 6 that indicates an intuitive sense of the semantic importance of
each atom type. Class atoms (e.g., Person(?p)) are given the highest priority since
they typically refer to the entities of primary interest in a rule. This ranking is fol-
lowed by object property atoms (e.g., Can_Drive(?x,?y)), which capture relation-
ships between these entities. Same as and different from atoms indicate relationships
of similarity or difference between entities and are given a lower priority because
their use is typically complementary to the use of object property atoms. Data valued
atoms (e.g., has_Age(?x,?y)) specify the values of properties of particular entities,
so are given less priority than inter-entity relationships. Built-in and data range prop-
erties operate on these data values so are hence given a lower ordering.

We then reorder the atoms in the head and body of each rule using these priorities.
Figure 1 shows the resulting representation for the body of our sample California
Driver Handbook rule.

After performing this atom reordering, we build a tree data structure that reflects
the information captured by the variable chains in the rule together with the priority
information associated with each atom. These trees are generated by a depth-first

 Exploration of SWRL Rule Bases 251

Fig. 1. Example tree data structure that uses a set of priority heuristics to reorder atoms for the
sample rule from the California Driver Handbook. The left-hand column (orange boxes) con-
tains variables used in the first position of a SWRL predicate. The atom number (blue boxes)
represents the original ordering provided in the SWRL rule.

search of each variable chain in a rule. Once a variable is chosen as a root of a par-
ticular tree, atoms that contain that variable as their first argument are created as
nodes of the tree at the same level. Any variables that appear as the second arguments
of atoms are used to recursively expand the tree to the next level. Loops are avoided
by keeping track of atom use.

If several variables share atoms with the same priority we break the tie by giving a
higher priority to the variable with a longer list of atoms that start with that variable.
If there still is a tie, we use the original ordering of atoms that the rule writer used in
creating the rule to determine the first variable to expand. For trees with multiple dis-
connected roots we chose a new root from atoms not contained in earlier trees and
begin the process again. We continue this process until we have scanned all the atoms
in the atom list.

4.2 Rule Visualization

Our canonical representation of a SWRL rule can be used to provide a visual repre-
sentation of the rule. Figure 2 show the visual representation of this data structure for
the California Driver Handbook sample rule. This representation allows complex
rules that have many classes and properties to be shown as an easily understood
nested diagram. In Section 4.5, we show how this graphical representation is used to
visualize and browse individual rules in the Axiomé rule management Protégé-OWL
plug-in.

252 S. Hassanpour, M.J. O’Connor, and A.K. Das

Fig. 2. Data structure showing a reorganization of atoms for the California Driver Handbook
sample rule based on the described priority heuristics and variable chains

4.3 Rule Paraphrasing

We also use the tree data structure created by the rule abstraction method to generate
paraphrases of SWRL rules, which are more understandable than the syntactic form.
We have developed a textual template for each type of atom to generate these para-
phrases. The templates use the first atom argument as the subject and the second
argument (if any) as the object of sub phrases. An atom’s predicate is used in an ap-
propriate form in the template to convey the semantics. In general, we use the name of
the underlying OWL classes and properties when generating paraphrases, but we can
also support the use of OWL annotations to provide these names. We use heuristics
for special cases such as property predicate names or annotation text starting with
“has”, articles before letters, and predicates beginning with silent ‘h’. The ordering of
paraphrased atoms is based according to their position in the rule abstraction tree and
the paraphrased atoms are connected with appropriate conjunctions. Indentation is
used to indicate atom depth. The same margins are used for phrases that are in the
same tree level. Each successively deeper level has a larger margin.

Built-in atoms require more elaborate processing because SWRL built-ins can have
a variable number of arguments and it is generally not possible to automatically para-
phrase the built-in operation by simply using its name. So in the case of built-ins we
have defined an annotation ontology that can be used to associated text with a built-in
that can be used directly in paraphrases. We have defined annotations for a set of the

 Exploration of SWRL Rule Bases 253

standard built-ins defined in the core SWRL built-in ontology [37]. We specially
process some standard mathematical operators such as less than and equal and gener-
ate condensed paraphrases that omit the mention of some variables to produce more
concise text.

For sameAs atoms we make the equality between the variables in the rule explicit
when paraphrasing. While we are scanning the atom list to build the tree data struc-
ture we note variable pairs that are described to be the same as each other with the
sameAs atom. After building the tree we then merge the entries that have been noted
to be the same. We also scan the pair list to discover the pairs that are not mentioned
explicitly to be the same in the rule but can be inferred to be the same based on the
transitivity of the sameAs property. These new discovered pairs are also added to
the sameAs pairs list. In paraphrasing the rule we then use only one variable name for
the equivalent variables.

Our paraphrasing approach can produce concise and easy-to-read English forms of
SWRL rules. The following, for example, is the text that is generated for our sample
rule earlier California Driver Handbook (see Section 2):

IF
 "p" IS A Person
 AND "p" HAS Driver License "d"

WHERE "d" Issued in State of "s" WHERE "s" IS NOT EQUAL-
TO "CA"

 AND "p" HAS Age LESS THAN 18
 AND "p" HAS VALUE "x" FOR Number of Visiting Days in CA WHERE-

"x" IS LESS THAN 10

AND IF
 "c" IS A Car
 AND "c" HAS Weight in lbs "w" WHERE "w" IS LESS THAN 26000

THEN

 "p" Can Drive "c"

Our rule management tool, Axiomé, can generate English paraphrases of rules as a
part of the Protégé-OWL plug-in.

4.4 Rule Categorization

We can use the tree data structure to categorize SWRL rules based on the patterns of
atoms used. To undertake this rule management technique, we first establish a rule
signature for each SWRL rule to capture the structure of the atoms in our abstracted
representation. The rule signature is based on a regular expressions language that is
composed of an alphabet Σ, and a set of quantifiers Q, such that:

Σ = {1, 2, 3, 4, 5, 6}
Q = {-, ^, (), #, +}

Literals in the alphabet Σ represent each of the six main atom types in Table 1. The

quantifiers Q are used in the following ways: (1) ‘-‘ separates the atoms in the body
from the atoms in the head; (2) ‘^’ separates different trees; (3) parenthesis pairs are
placed around direct descendants of a node; (4) a ‘#’ is used to expansion of an atom in
the data structure and is placed before the next level’s atoms; and (5) A ‘+’ is used to
show repeated use of the same atoms. Table 3 summarizes the role of each quantifier.

254 S. Hassanpour, M.J. O’Connor, and A.K. Das

Table 3. Signature quantifiers in rule signature regular expression language

Rule Quantifier Role

- Body-Head separator

^ Tree separator

() Direct descendents of a node

Node expansion

+ Repetition

Consider, for example, rule from family history ontology, which defines a paternal

aunt relationship:

has_natural_father(?a,?b) ^ has_natural_sister(?b,?c) →
has_paternal_aunt(?a,?c)

Each atom in this rule is an individual property atom. Using the rule abstraction
method from section 4.1 we can generate a tree structure for the rule, which can be
paraphrased as:

IF
 "a" HAS Natural Father "b"
 WHERE "b" HAS Natural Sister "c"

THEN
 "a" HAS Paternal Aunt "c"

The rule signature is represented:

(2#(2))-(2)

Using the notations of our regular expressions language, we can define the signature
of the example rule California Driver Handbook as:

(12#(2#(5))4+#(5)#(5))^(14#(5))-(2)

We then use these signatures to group rules into categories. In the Axiomé rule man-
agement tool, we support invocation of this categorization technique and graphically
show the resulting categories in a tree table.

4.5 Rule Management Tool

We have implemented the three rule-management techniques in a tool called Axiomé,
Axiomé is developed as a Protégé-OWL plug-in with functional areas for each of
these techniques. These are available as sub-tabs within the plug-in: (1) a Rule Visu-
alization tab to visualize individual rules; (2) a Rule Paraphrasing tab that displays an
English-like text explanation for each rule; and (3) a Rule Categorization tab to auto-
matically categorize rules in a rule base. A Rule Browser component is permanently
displayed to show a tree-table representation of the SWRL rules in an ontology. This
tree-table enables users to explore the rule base and lunch any of three sub-tabs for the
rule being explored.

 Exploration of SWRL Rule Bases 255

Fig. 3. An screenshot from Axiomé plug-in with three tabs and the SWRL rule browser. Figure
shows the paraphrasing tab for one of the rules in the family history ontology.

5 Results

To evaluate the usefulness and efficacy of our visualization, paraphrasing and catego-
rization techniques, we applied our method to four OWL ontologies containing
SWRL rules bases. Each of these ontologies was developed as part of a biomedical
application and designed by a knowledge engineer or domain expert who was not one
of the authors.

The first set of rules that we analyzed is part of an ontology for family medical his-
tory [39]. This rule base is composed of 146 rules, which define possible relations
between people in a family. We applied our method on the rule base to generate and
visualize the data structures and paraphrase them. Our categorization method found
four types of rule signatures and thus divides the rule base into four groups. The num-
ber of members in each group and their signatures are shown in Table 4. Because the
rule base contains general knowledge about family relatedness, we were able to verify
the integrity and clarity of these results directly.

Table 4. Rule categorization for family history ontology

Rule signature
Number of instances in the rule

base
Examples

(2#(2))-(2) 110 Two link relations, e.g., Uncle and Aunt

(12)-(2) 22 One link relations, e.g., Son and Daughter

(2#(2#(2)))-(2) 8
Three link relations, e.g., Great Grandfa-

ther/Grandmother

(12+)^(2+)-(2) 6
Natural/half relations, e.g., Half

Brother/Sister

Total Number of rules in the rule base: 146 -

256 S. Hassanpour, M.J. O’Connor, and A.K. Das

Given space limitations, we provide one example in this paper for paraphrasing and
signature generation using a representative rule from the family history ontology. Our
sample rule defines a ‘paternal maternal’ great grandfather through the following ancestry:

has_natural_father(?a,?b) ^ has_natural_mother(?b,?c) ^
has_natural_father(?c,?d) →
has_paternal_maternal_great_grandfather(?a,?d)

The rule is graphically structured by the Axiomé tool as shown in Figure 3.

Fig. 4. Axiomé tool as a Protege-OWL plug-in tab, showing a visualization of a simple rule
from the family history ontology

The text generated by our paraphrasing method for this rule is:

IF
 "a" HAS natural father "b"
 WHERE "b" HAS natural mother "c"
 WHERE "c" HAS natural father "d"

THEN
 "a" HAS paternal maternal great grandfather "d"

And the rule signature is:

(2#(2#(2)))-(2)

The second rule base we evaluated was developed as part of an ontology of disease
phenotypes, or genetically relevant clinical characteristics, for the neurodevelopmental
disorder of autism. The ontology and rules will support concept-based querying of the
National Database of Autism Research (NDAR), a public resource funded by the Na-
tional Institutes of Health for archiving, sharing, and analyzing data collected in autism
research [40]. NDAR uses the ontology as an information model representing research
and clinical data about study subjects and as a domain ontology that defines terms and
relationships in autism. The SWRL rules define how each phenotype is to be derived

 Exploration of SWRL Rule Bases 257

from a set of clinical findings. The terms, relationships, and abstractions for building
the autism ontology are gathered by a literature search of the PubMed database [41].

We applied our categorization technique to the SWRL rules in the autism ontol-
ogy to find rule signatures. The 14 rules in the current rule base are divided into
five groups; one of the groups contains 6 rules with a common structure. The
signature and the numbers in each group are shown in Table 5. To check the valid-
ity of our results, we asked the developer of the autism ontology to review
them. The developer confirmed that our graphical representation and English
paraphrases of the rules are semantically equivalent to those in the rule base, and
that our categories include the two major types of patterns he used to develop the
rule base.

Table 5. Rule categorization for autism ontology

Rule Signature Number of instances in the rule base

(14+)^(5+)-(12+4+) 6

(14#(5))^(4+)-(12+4+) 3

(14+#(5))^(4)-(12+4+) 2

(14+)^(5)^(5+)-(12+4+) 2

(14+#(5))-(12+4+) 1

Total Number of rules in the rule base: 14

The third rule base to which we applied our method was part of a heart disease

ontology developed at Stanford Medical School in collaboration with the European
Union HEARTFAID project. The resulting THINHeart ontology contains 70
SWRLrules, each of which classifies heart conditions based on presumed cause. A
domain expert encoded each of these 70 definitions using a single template. When we
applied our categorization technique to the rule base, we found that all 70 rules
matched a single rule signature, shown in Table 6.

Table 6. Rule categorization for THINHeart ontology

Rule Signature Number of instances in the rule base

(14)-(2) 70

Total Number of rules in the rule base: 70

We applied our method to a fourth biomedical ontology that contained 63 rules to

assess a patient’s response to cancer treatment over time [42]. Our categorization
method divided the rules into 41 groups; 37 of these groups contain less that 3 rules.
Table 7 shows the rule signatures for the groups that had 3 rules or more. We con-
firmed with the ontology developers that the SWRL rules were intentionally written
to fit into a set of distinct rule templates by analyzing and merging rules with the
same structures during the authoring process.

258 S. Hassanpour, M.J. O’Connor, and A.K. Das

Table 7. Rule categorization for cancer response assessment ontology

Rule Signature Number of instances in the rule base

(12#(2#(5))4#(5))^(12)^(12#(2+4))-(12) 7

(1+2#(2#(5)))^(12)^(12#(2+))^(5)^(5+)-
(12+)^(2) 4

(1+2#(2#(5)))^(12)^(12#(2))-(12) 4

(12#(12#(2#(5))))^(12#(2))-(12) 3

8 categories with 2 members 2

29 categories with 1 member 1

Total Number of rules in the rule base: 63

6 Discussion

Research on rule representation and rule management has been an active area of work
in expert systems, active database systems, association rule mining, and business sys-
tems. Rule bases also play an increasingly important role in encoding declarative
knowledge within ontology-based systems on the Semantic Web. In this paper, we
present work we are undertaking to enable analysis and management of rule bases as
part of providing SWRL tool support. We propose a rule abstraction approach that
uses a tree data structure to represent a SWRL rule. We have shown that this simple
data structure can enable three techniques for visualization, paraphrasing, and catego-
rization of rules. This analytic approach is similar to prior work on static code analy-
sis and formal methods verification [21-25]. Related methods from this field, such as
model checking, data-flow analysis and abstract interpretation, could also be applied
to perform rule base analysis and integrity checking of the rule base and ontology.

In addition to creating a plug-in tool within Protégé-OWL to make our method
available to developers of SWRL rule bases, we applied the method to four existing
biomedical ontologies with SWRL rule bases. We have checked the visualization and
paraphrasing output of our method for each ontology, and ensured that the outputs
accurately represent the rules and have face validity. We are planning a more exten-
sive user evaluation of the Axiomé tool. Our initial application of the method to the
four available ontologies was revealing about the nature of the categorizations that
were created. In the family history and autism ontologies, the method revealed multi-
ple patterns of rule signatures that we could verify as being valid ourselves or with the
developers of the ontology.

The discovery of such ‘hidden’ rule signatures may enable rule elicitation. The
most common rule elicitation methods are performed by knowledge engineers [26,
27]. Another common approach is using domain experts to provide predefined tem-
plates and categories for rules or to ask fixed questions to make the rule elicitation
easier and semi-automated [28, 29]. This approach may be limited by the skill of the
domain expert who provides the templates and the questions. Our rule categorization
approach can be used during ontology and rule base development as an alternative
method to create the design of templates. As the development of a rule base occurs,
common groups of rules may be found based on their signature. The signature can

 Exploration of SWRL Rule Bases 259

then be used to create a template, which domain experts can employ to specify new
rules. A rule elicitation interface using the rule signatures could also interactively
suggest to users how many and what types of atoms a rule might have based on what
the user has partially specified for the rule. Such suggestions may speed rule base
development and increase the quality of the content.

The other two ontologies that we analyzed in this paper contained rule bases for
which the developers had used one or more rule templates, although they were not
explicitly represented or constrained by a user interface. We observed that our cate-
gorization method accurately identified rule templates. As a result, our categorization
method could be used for post hoc analysis of a rule base to ensure that the rules do
match known templates. Our rule management approach could be extended to support
the design of templates that are based on ontology class restrictions rather than syn-
tactic structure alone. For example, in the case of the cancer response assessment
ontology, we can divide the classes and properties of the ontology into several inde-
pendent sub-ontologies, and categorize the rules based on the sub-ontologies that they
cover. Such an approach was of particular interest to the developers of the cancer
response assessment ontology who are seeking further approaches to reducing the
number of templates needed for rule elicitation by domain experts.

Finally, we believe that creating a simple data structure to represent rules provides
an opportunity to perform machine learning on rule bases and to discover frequently
occurring or higher level patterns among the rule signatures. We are thus planning to
use powerful and sophisticated classifiers such as support vector machines, genetic
algorithms and artificial neural networks in our future work.

Acknowledgments. The authors would like to thank Richard Waldinger for his com-
ments on this work and manuscript, and Jane Peace, David Kao, and Mia Levy for
sharing their ontologies for our analysis. This research was supported in part by NIH
grant 1R01LM009607.

References

1. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Ontologies for Enterprise
Knowledge Management. IEEE Intelligent Systems 18(2), 26–33 (2003)

2. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent sys-
tems 16(2) (2001)

3. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology Based Context Modeling and
Reasoning using OWL. In: Proceedings of the Second IEEE Annual Conference on Perva-
sive Computing and Communications Workshops, PERCOMW, vol. 18. IEEE Computer
Society, Washington (2004)

4. Ostrowski, D.A.: Rule Definition for Managing Ontology Development. Advances in Rule
Interchange and Applications, 174–181 (2007)

5. Dou, D., McDermott, D., Qi, P.: Ontology translation on the Semantic Web. Journal on
Data Semantics (JoDS) II, 35–57 (2005)

6. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: ECAI 2000,
Proceedings of the 14th European Conference on Artificial Intelligence. IOS Press,
Amsterdam (2000)

260 S. Hassanpour, M.J. O’Connor, and A.K. Das

7. Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: Horrocks, I.,
Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 264–278. Springer, Heidelberg (2002)

8. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
Appeared in KDD 1998, New York (1998)

9. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned
data. In: Proceedings of the Eighth ACM SIGKDD international Conference on Knowl-
edge Discovery and Data Mining, Edmonton, Alberta, Canada (2002)

10. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining — a
general survey and comparison. SIGKDD Explor. Newsl. 2, 1 (2000)

11. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-Based Rule Mining in Large,
Dense Databases. Data Min. Knowl. Discov. 4, 2–3 (2000)

12. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In:
Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multi-
agent Systems, Hakodate, Japan (2006)

13. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach.
Theory Pract. Log. Program. 4(2), 95–138 (2004)

14. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial
Intelligence 171(10-15), 619 (2007)

15. Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,
Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowl. Eng. Rev.
21(4), 293–316 (2006)

16. Core, M.G., Lane, H.C., van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building
explainable artificial intelligence systems. In: Proceedings of the 18th Conference on
Innovative Applications of Artificial Intelligence (IAAI 2006), Boston, MA (2006)

17. Johnson, W.L.: Agents that explain their own actions. In: Proc. of the Fourth Conference
on Computer Generated Forces and Behavioral Representation, Orlando, FL (1994)

18. Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for
small-unit tactical behavior. In: Proceedings of the 16th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI 2004), San Jose, CA, pp. 900–907 (2004)

19. Wong, P.C., Whitney, P., Thomas, J.: Visualizing Association Rules for Text Mining. In:
Proceedings of the 1999 IEEE Symposium on information Visualization. INFOVIS,
p. 120. IEEE Computer Society, Washington (1999)

20. Blanchard, J., Guillet, F., Briand, H.: Exploratory Visualization for Association Rule
Rummaging. In: KDD 2003 Workshop on Multimedia Data Mining (MDM 2003) (2003)

21. Pfleeger, S.L., Hatton, L.: Investigating the Influence of Formal Methods. Computer 30(2),
33–43 (1997)

22. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis support for
software engineering activities. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Con-
cept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer, Heidelberg (2005)

23. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation.
PLDI 2003, San Diego, California, USA, pp. 196–207. ACM, New York (2003)

24. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic programming
errors. Softw. Pract. Exper. 30(7), 775–802 (2000)

25. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs Using
Static Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp.
77–101. Springer, Heidelberg (1995)

 Exploration of SWRL Rule Bases 261

26. Leite, J.C., Leonardi, M.C.: Business Rules as Organizational Policies. In: Proceedings of
the 9th international Workshop on Software Specification and Design. International Work-
shop on Software Specifications & Design, p. 68. IEEE Computer Society, Washington
(1998)

27. Wright, G., Ayton, P.: Eliciting and modelling expert knowledge. Decis. Support
Syst. 3(1), 13–26 (1987)

28. Mechitov, A.I., Moshkovich, H.M., Olson, D.L.: Problems of decision rule elicitation in a
classification task. Decis. Support Syst. 12(2), 115–126 (1994)

29. Larichev, A.I., Moshkovich, H.M.: Decision support system “CLASS” for R&D planning.
In: Proceedings of the First International Conference on Expert Planning Systems, Brigh-
ton, England, pp. 227–232 (1990)

30. Business Rule Management Systems, http://en.wikipedia.org/wiki/BRMS
31. SAP NetWeaver,

https://www.sdn.sap.com/irj/sdn/nw-rules-management
32. ILOG, http://www.ilog.com/products/businessrules/
33. Park, S., Lee, J.K.: Rule identification using ontology while acquiring rules from Web

pages. Int. J. Hum. Comput. Stud. 65(7), 659–673 (2007)
34. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview.

W3C Recommendation (February 10, 2004), http://www.w3.org/TR/2004/
REC-owl-features-20040210/

35. SWRL Submission, http://www.w3.org/Submission/SWRL/
36. California Driver Handbook, http://www.dmv.ca.gov/pubs/dl600.pdf
37. O’Connor, M.J., Musen, M.A., Das, A.: Using the Semantic Web Rule Language in the

Development of Ontology-Driven Applications. In: Handbook of Research on Emerging
Rule-Based Languages and Technologies: Open Solutions and Approaches, ch. XXII. IGI
Publishing (2009)

38. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An
open development environment for semantic web applications. In: Proceedings of the
Third International Semantic Web Conference, Hiroshima, Japan, pp. 229–243 (2004)

39. Peace, J., Brennan, P.F.: Instance testing of the family history ontology. In: Proceedings of
the American Medical Informatics Association (AMIA) Annual Symposium, Washington,
DC, p. 1088 (2008)

40. Young, L., Tu, S.W., Tennakoon, L., Vismer, D., Astakhov, V., Gupta, A., Grethe, J.S.,
Martone, M.E., Das, A.K., McAuliffe, M.J.: Ontology-Driven Data Integration for Autism
Research. In: Proceedings of the 22nd IEEE International Symposium on Computer-Based
Medical Systems, IEEE CBMS (2009)

41. Tu, S., Tennakoon, L., O’Connor, M., Shankar, R., Das, A.: Using an integrated ontology
and information model for querying and reasoning about phenotypes: the case of autism.
In: Proceedings of the American Medical Informatics Association (AMIA) Annual Sym-
posium, Washington, DC, pp. 727–731 (2008)

42. Levy, M.A., Rubin, D.L.: Tool support to enable evaluation of the clinical response to
treatment. In: Proceedings of the American Medical Informatics Association (AMIA) An-
nual Symposium, Washington, DC, pp. 399–403 (2008)

43. Kulakowski, K., Nalepa, G.J.: Using UML state diagrams for visual modeling of business
rules. In: International Multiconference on Computer Science and Information Technol-
ogy, 2008. MCSIT 2008, October 20–22, pp. 189–194 (2008)

44. Lukichev, S.: Visual Modeling and Verbalization of Rules, KnowledgeWeb PhD Sympo-
sium (2006)

TomML: A Rule Language for Structured Data

Horatiu Cirstea, Pierre-Etienne Moreau, and Antoine Reilles

Université Nancy 2 & INRIA & LORIA
BP 239, F-54506 Vandoeuvre-lès-Nancy, France

first.last@loria.fr

Abstract. We present the Tom language that extends Java with the
purpose of providing high level constructs inspired by the rewriting com-
munity. Tom bridges thus the gap between a general purpose language
and high level specifications based on rewriting. This approach was mo-
tivated by the promotion of rule based techniques and their integration
in large scale applications. Powerful matching capabilities along with a
rich strategy language are among Tom’s strong features that make it
easy to use and competitive with respect to other rule based languages.
Tom is thus a natural choice for querying and transforming structured
data and in particular XML documents [1]. We present here its main
XML oriented features and illustrate its use on several examples.

1 Introduction

Pattern matching is a widely spread concept both in the computer science com-
munity and in everyday life. Whenever we search for something, we build a
so-called pattern which is a structured object that specifies the features we are
interested in. Mathematics makes a full use of patterns, some quite elaborated,
and this is similar in logic and computer science.

The complexity of the matching process obviously depends on the complexity
of the objects it targets. Matching a shape in a picture is significantly more dif-
ficult than recognizing a word in a text. There is also a compromise between the
complexity of the data and the facility to manipulate it. The eXtensible Markup
Language (XML) is a specification language that proved to be an excellent op-
tion for describing data since it allows the description of complex structures in
a computer friendly format well suited for matching and transformation. In par-
ticular, XML data is organized in a tree structure having a single root element
at the top and this is exactly the kind of objects manipulated in classical pattern
matching algorithms and corresponding tools.

Of course, matching is generally not a goal by itself: if matching is done, this
is because we want to perform an action. Typically, if we have detected that zero
is added to some number, we would like to simplify the expression, for example
by replacing 7 + 0 by 7. Similarly, XML documents are often transformed into
HTML documents for a better presentation in web pages. This transformation
can be naturally described using rewriting that consists intuitively in matching
an object and (partially) replacing it by another one.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 262–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TomML: A Rule Language for Structured Data 263

The rewriting concept appears from the very theoretical settings to the very
practical implementations. Several rewriting languages, like ASF+SDF [2],
Elan [3] and Maude [4], have been developed on top of efficient pattern-
matching algorithms and use sophisticated techniques for optimizing the (strate-
gic) rewriting computations. Nevertheless, the libraries and facilities (e.g. input/
output, threads, interfaces, etc.) are relatively limited compared to largely used
languages like Java, for example. The language Tom (tom.loria.fr) imple-
ments the concept of Formal Island [6] that consists in making a specific tech-
nology available on top of an existing language. In the case of Tom [5] this
technology is the strategic term rewriting and the existing language is Java
(although the connection is also possible with potentially any other language).

The Tom programs have a clear semantics based on term rewriting and thus
can be subject to formal analysis using the tools available in the domain and,
on the other hand, a great potential for cross-platform integration and usability.
We recover the portability and re-usability features of XML and Tom looks thus
a natural choice when one wants to query and transform XML documents.

We present here an extension of Tom, called TomML, that makes available
all the Tom features into a syntax adapted to XML document manipulation. In
fact, this extension can be easily adapted to accommodate any other structured
data provided that a tree representation can be obtained out of it.

We briefly introduce Tom in the next section. In Section 3 we illustrate
via several examples the main pattern-matching features of TomML and in
Section 4 we show how strategies can be used to give more expressive power to
the formalism. We finish with a brief comparison with similar tools and some
concluding remarks.

2 Tom in a Nutshell

As we have already said, Tom is an extension of Java which adds support for al-
gebraic data-types and pattern matching. One of the most important constructs
of the language is %match, a pattern matching construct which is parametrized
by a list of objects, and contains a list of rules. The left-hand sides of the rules are
pattern matching conditions (built upon Java class names and variables), and
the right-hand sides are Java statements. Like standard switch/case construct,
patterns are evaluated from top to bottom, firing each action (i.e. right-hand
side) whose corresponding left-hand side matches the objects given as arguments.

For instance, assume that we have a hierarchy of classes composed of Account
from which inherit CCAccount (credit card account) and SAccount (savings ac-
count), each with a field owner of type Owner. Given two objects s1 and s2, the
following code prints the owner’s name if it is the same for the two accounts and
if these accounts are of type CCAccount, respectively SAccount, and just prints
the text "CCAccount" if both accounts are of type CCAccount:
%match(s1,s2) {

CCAccount(Owner(name)),SAccount(Owner(name)) -> { print(name); }

CCAccount(_),CCAccount(_) -> { print("CCAccount"); }

}

264 H. Cirstea, P.-E. Moreau, and A. Reilles

In the above example, name is a variable. Notice the use of the non-linearity
(i.e. the presence of the same variable at least twice in the pattern) to denote
concisely that the same value is expected. The “_” is an anonymous variable
that stands for anything. The equivalent Java code would be:
if (s1 instanceof CCAccount) {

if (s2 instanceof SAccount) {

Owner o1=((CCAccount)s1).getOwner();

Owner o2=((SAccount)s2).getOwner();

if (o1 != null && o2 != null) {

if ((o1.getName()).equals(o2.getName())) {

print(o1.getName());

}

}

} else { if (s2 instanceof CCAccount) { print("CCAccount"); } }

}

Besides matching simple objects, Tom can also match lists of objects. For in-
stance, given a list of accounts (List<Account> list), the following code prints
all the names of the credit card accounts’ owners:
%match(list) {

AccountList(X*,CCAccount(Owner(name)),Y*) -> { print(name); }

}

AccountList is a variadic list operator, the variables suffixed by * are in-
stantiated with lists (possibly empty), and can be used in the action part:
here X* is instantiated with the beginning of the list up to the matched ob-
ject, whereas Y* contains the tail. The action is executed for each pattern
that matches the subject (assigning different values to variables). Patterns can
be non-linear: AccountList(X*,X*) denotes a list composed of two identical
sublists, whereas AccountList(X*,x,Y*,x,Z*) denotes a list containing two
occurrences of one of its elements. Another feature of Tom patterns that is
worth mentioning is the possibility to embed negative conditions using the
complement symbol “!” [7]. For instance, a so-called anti-pattern of the form
!AccountList(X*,CCAccount(_),Y*) denotes a list of accounts that does not
contain a credit card account. Similarly, !AccountList(X*,x,Y*,x,Z*) stands
for a list containing only distinct elements, and AccountList(X*,x,Y*,!x,Z*)
for one that has at least two distinct elements. There is no restriction on pat-
terns, including complex nested list operators combined with negations. This
allows the expression of different algorithms in a very concise and safe manner.

Since its first version in 2001, Tom itself has been written using Tom. The
system is composed of a compiler and a library which offers support for prede-
fined data-types such as integers, strings, collections, and many other Java data-
structures. The compiler is organized, in a pure functional style, as a pipeline of
program transformations (type inference, simplification, compilation, optimiza-
tion, generation). Each phase transforms a Java+Tom abstract syntax tree
using rewrite rules and strategies. At the end a pure Java program is obtained.

The complete environment is integrated into Eclipse (www.eclipse.org) pro-
viding a simple and efficient user interface to develop, compile, and debug rule
based applications. It has been used in an industrial context to implement

TomML: A Rule Language for Structured Data 265

several large and complex applications, among them a query optimizer for
Xquery and a platform for transforming and analysing timed automata using
XML manipulation. On several classical benchmarks Tom is competitive with
state of the art rule-based implementations and functional languages.

3 TomML, an Extension for XML Manipulation

One of the main objectives of Tom is to be as generic as possible. The im-
plementation of the handled data-structures is not hard-wired in the system
but becomes a parameter of the compiler. For that, we have introduced the
notion of formal anchor, also called mapping, which describes how a concrete
data-structure (i.e. the trees which are transformed) can be seen as an algebraic
term. This idea, related to P. Wadler’s views, allows Tom to rewrite any kind
of data structure, and in particular XML trees, as long as a formal anchor is
provided.

There are two possible approaches for using Tom. Either we start from an
existing application that is improved with new functionalities implemented using
the rewriting features of Tom, and in this case the data-structure used by the
application is already defined: we just have to define a mapping from this data-
structure to Tom.

Alternatively, we can abstract on the data-structure by using the data-structure
generator integrated in Tom. Given a signature, Tom generates a set of Java
classes that provide static typing. A subtle hash-consing technique is used to offer
maximal sharing [8]: there cannot be two identical terms in memory. Therefore, the
equality tests are performed in constant time, which is very efficient in particular
when non-linear rewrite rules are considered.

In this section, we show how this general approach can be tailored to trans-
form XML documents in both an expressive and a theoretically grounded way.
Although the extension we present here is completely integrated in Tom we use
the name TomML to refer to the syntax features and standard libraries specific
to XML document manipulations.

For the rest of the paper we consider the following XML document:
<Bank name="BNP">

<Branch name="Etoile">

<CCAccount id="12">

<Owner gender="M">Bob</Owner>

<Balance>10000</Balance>

</CCAccount>

<SAccount rate="4">

<Owner gender="M">Bob</Owner>

<Owner gender="F">Alice</Owner>

<Balance>100000</Balance>

</SAccount>

</Branch>

<Branch name="Lafayette">

<CCAccount id="23">

<Owner gender="M">John</Owner>

<Balance>10000</Balance>

</CCAccount>

<CCAccount id="6">

<Owner gender="M">Bob</Owner>

<Balance>6000</Balance>

</CCAccount>

</Branch>

</Bank>

A bank consists of several branches, each of them containing different types
of accounts. Whatever the representation the XML document is (DOM for

266 H. Cirstea, P.-E. Moreau, and A. Reilles

instance), it can be seen as a tree built out of (XML) nodes. For the scope
of this paper we consider the following meta-model:
TNode = ElementNode(Name:String, AttrList:TNodeList, ChildList:TNodeList)

| AttributeNode(Name:String, Specified:String, Value:String)

| TextNode(Data:String)

| CommentNode(Data:String)

| CDATASectionNode(Data:String)

| ...

TNodeList = concTNode(TNode*) // denotes a list of TNode

An ElementNode has a name and two children: a list of attributes, and a list
of nodes. A formal anchor is materialized by a file which describes the Tom
view of the corresponding XML document implementation1 and, for the pur-
pose of this paper, we have considered a correspondence between the algebraic
sort TNode and the Node class from the w3c.dom package. This mapping is
available in the standard TomML libraries and specifies, for example, how the
name of an ElementNode of the Tom model can be retrieved (using the method
getNodeName of the DOM class for instance). Once we have defined this map-
ping, the abstract notation can be used to match an XML document and print
the name of all the branches of a bank:
%match(xmlDocument) {

ElementNode("Bank",_, //_ means that any list of attributes is accepted

concTNode(_*,

ElementNode("Branch",concTNode(_*,AttributeNode("name",_,bname),_*),_),

_*)) -> { System.out.println("branch name: " + bname); }

}

We consider in this section that xmlDocument corresponds to the Tom encoding
of the XML document given above and, in this case, the application of this
code prints the strings “branch name: Etoile” and “branch name: Lafayette”
and corresponds intuitively to the following XSLT template:
<xsl:template match="Bank/Branch">

branch name: <xsl:value-of select="@name"/>

</xsl:template>

The interest of this approach is that the semantics of the match construct
is theoretically well grounded and based on associative-matching with neutral
element. The above pattern is rather complex partly because of the highly dec-
orated XML syntax but Tom provides an alternative and much simpler XML
tailored syntax. For example, the above match construct can be written:
%match(xmlDocument) {

<Bank><Branch name=bname></Branch></Bank> -> {

System.out.println("branch name: " + bname);

}

}

Note that XML nodes can be directly used and that the extension variables
(identified by “ *” previously) not used in the right-hand side are left implicit
in the left-hand side. The semantics of these match constructs is exactly the one
provided by Tom, and thus can deal with nested patterns, non-linear variables,

1 See http://tom.loria.fr for more details.

http://tom.loria.fr

TomML: A Rule Language for Structured Data 267

anti-patterns, etc.. For example, in order to print the name of all clients who
own two credit-card accounts in two different branches of the bank, i.e. to match
a template of the form:

Bank

���������������������������

� �����������

�� ������������

���������������������������

. . . Branch

��

. . . Branch

��

. . .

CCAccount

��

CCAccount

��
Owner

��

Owner

��
name name

a simple non-linear pattern can be used in TomML:
void ownerInTwoBranches(TNode xmlDocument) {

%match(xmlDocument) {

<Bank>

<Branch name=bname1><CCAccount><Owner>name</Owner></CCAccount></Branch>

<Branch name=bname2><CCAccount><Owner>name</Owner></CCAccount></Branch>

</Bank> -> {

System.out.println(name + " in " + bname1 + " and " + bname2);

}

}

}

As expected, this method prints the string “John in Etoile and Lafayette”. A
similar behavior is obtained for the following XSLT code
<xsl:template match="Bank/Branch/CCAccount">

<xsl:for-each select="preceding::CCAccount[Owner=current()/Owner]">

<xsl:value-of select="Owner" /> in

<xsl:value-of select="../@name" /> and

<xsl:value-of

select="following::CCAccount[Owner=current()/Owner]/../@name"/>

</xsl:for-each >

</xsl:template>

which is clearly less intuitive than the corresponding Tom code and becomes
even more elaborated when negative conditions like the ones below are needed.

The anti-patterns are convenient if we want to specify concisely definitions of
relatively complex patterns implying negative conditions. The branches whose
clients are all mutually different can be printed using the following method:
void branchWithNoMultipleOwner(TNode xmlDocument) {

%match(xmlDocument) {

<Bank>

branch@!<Branch> <_><Owner>o</Owner></_>

<_><Owner>o</Owner></_> </Branch>

</Bank> -> { printXMLFromTNode(branch); }

}

}

268 H. Cirstea, P.-E. Moreau, and A. Reilles

The variable branch can be seen as alias for the whole term matched by the pat-
tern following the “@” operator; this is of course just syntactic sugar allowing for
concise definitions of the consequent actions. The function printXMLFromTNode
available in the standard TomML libraries prints a TNode using an XML syntax.

The above pattern corresponds to an “all-different” constraint but other con-
straints like “all-equal” can be easily expressed.

4 Strategies

When programming using functions, pattern matching constructs, and more
generally the notion of transformation rule, it is common to introduce extra
functions that control their application. In the case of rewriting, this control
describes how and when the rules should be applied. This control can be defined
in the right-hand side of the rules but this is usually a bad practice since it makes
the rules more complex, specific to a given application, and thus not reusable.

Rewriting based languages provide more abstract ways to express the control
of rule applications, either by using reflexivity as in Maude, or the notion of
strategy for Elan, Stratego [9], or ASF+SDF. Strategies such as bottom-up, top-
down or leftmost-innermost are higher-order features that describe how rewrite
rules should be applied. This compares to some extent to the “//” operator of
XPath which corresponds to a depth-search. Tom offers a flexible and expressive
strategy language where high-level strategies are defined by combining low-level
primitives. Among these latter primitives, we consider the sequence (denoted ;),
the choice (denoted <+), and two generic congruence operators called All and
One. A rewrite rule is also an elementary strategy that can be applied on a term
(i.e. a tree).

As for the %match construct, a user defined strategy is defined by a pattern and
an action but, additionally, it also specifies a default behaviour for the case when
the pattern does not match. This default behaviour can be either the Identity
meaning that no action is performed or Fail in which case an exception is raised
when the pattern does not match. For example, when applying the strategy
%strategy printOwner() extends Identity() {

visit TNode {

<Owner gender="M">#TEXT(name)</Owner> -> {

System.out.println(name);

}

}

}

to the term <Owner gender="M">Bob</Owner> the string “Bob” is printed, while
applying it to <CCAcount><Owner gender="M"> Bob </Owner></CCAccount>
leads to no action since the pattern does not match at the root position and
the default behavior is the Identity.

The strategy can be fired on the variable xmlDocument by the Java state-
ment printOwner().visit(xmlDocument). It is important to understand that
with such a statement the strategy is only applied on the root node of the
corresponding document and that there is no automatic recursive application

TomML: A Rule Language for Structured Data 269

that would search for a convenient sub-tree. In Tom, the control is explicit
and should be specified by an appropriate strategy built using the available
strategy primitives. Nevertheless, such higher-level strategies can be easily de-
fined and all the classical strategies are already available in the Tom stan-
dard library. For instance, the top-down strategy can be recursively defined by
TopDown(s)

�= s;All(TopDown(s))where s1;s2 means that, first, s1 is applied,
and then s2 is applied on the result of s1. It fails if s1 or s2 fails. The All(s)
combinator applies s to all the immediate children of a given node. TopDown(s)
corresponds thus to the application of s followed by a recursive application of
TopDown(s) to all the immediate children. This strategy fails if the application
of s fails. Note that the application of All(s) to a constant (i.e. a leaf of the
tree) does not fail but it simply does nothing.

The execution of TopDown(printOwner()).visit(xmlDocument) prints the
names of all the account owners in a bank (independently of the branch). Using
other combinators such as <+2 and One3, it is easy to define other general pur-
pose strategies such as BottomUp, Innermost, etc. More complex tasks can be
accomplished by strategies using elaborated non-linear patterns involving (ex-
plicit) list matching. For example, if we want to update the initial document and
give a 15% bonus to all account owners that have opened a savings account in
the same branch then, the following strategy can be used:
%strategy bonus() extends Identity() {

visit TNode {

<Branch> (A1*,

<CCAccount>

(X1*,owner,X2*,<Balance>#TEXT(bal)</Balance>,X3*)

</CCAccount>,

A2*,

sa@<SAccount>owner</SAccount>,

A3*)

</Branch> -> {

TNode newbal =

xml(<Balance>#TEXT(Double.parseDouble(bal)*1.15)</Balance>;

return xml(<Branch> A1*

<CCAccount>X1* owner X2* newbal X3*</CCAccount>

A2* sa A3* </Branch>);

} } }

In this example we have used explicit lists of the form (X1*,...,X2*,...,X3*)
to retrieve the context information (i.e. the other XML nodes) needed in order
to build the XML tree in the right-hand side of the rule. The Tom construct
xml(...) can be used to build a tree (a DOM object in our case) using an XML
notation. Once again, the notation sa@... indicates that the matched node is
stored in the variable sa and thus, this variable can be used in the right-hand
side of the strategy. Due to lack of space, this has not be exemplified, but note
that the right-hand side of a rule is an arbitrary list of Java and Tom statements

2 s1<+s2 tries to apply s1; if it succeeds, the result is returned, otherwise s2 is applied.
3 One(s) searches for an immediate children where s can be applied.

270 H. Cirstea, P.-E. Moreau, and A. Reilles

and therefore, recursive function calls as well as nested calls to strategies can be
freely used.

5 Comparison with Similar Tools

There exist numerous languages aiming at manipulating XML documents. We
briefly present some of them and emphasize the main differences with respect to
the Tom approach.

XPath is a language providing a concise and efficient syntax for selecting parts
of an XML document and querying XML documents. It can be used to describe
the search of a particular node in the document in breadth and arbitrary depth.
All XPath queries can be encoded within a Tom strategy. However, it is not
possible with XPath to have full control over the way the document is explored,
as it is with Tom strategies.

XSLT [10,11] is a transformation language for XML, aiming at describing
transformations from one XML dialect to another. It uses XPath to select part
of the original document and query it, and offers only functional features, thus
one can only loop over the results of an XPath query. The result of the application
of an XSLT template on a document may only be another document. Contrary
to Tom, it is not possible to execute arbitrary actions when examining the initial
documents.

The OCamlDuce system [12] is a modified version of the OCaml functional
language which integrates XDuce features, such as XML expressions, regular
expression types and patterns, iterators. OCamlDuce fully integrates XML ma-
nipulations in the OCaml language, providing static type inference for XML
expressions, by the mean of regular expression types. This provides a static in-
surance that a program will produce values of a given XML type. The integration
of XML manipulation in Tom cannot provide such guarantee. On the other side,
a main advantage of Tom is to be fully integrated in a Java environment.

The Java standard library provides a DOM implementation, that enables ma-
nipulation of XML documents through the DOM API. Additionally, the pack-
age javax.xml.xpath does provide an XPath implementation, that enables the
Java programmer to evaluate XPath expressions over DOM documents. How-
ever, this approach is purely interpreted, and does not provide any guarantee on
the transformation.

6 Conclusion

We have presented Tom, an extension of Java which adds support for alge-
braic data-types, pattern matching and strategic rewriting, focusing essentially
on the XML related features of the language. The powerful pattern-matching
construct of Tom allows one to express relatively complex matching conditions
using concise and natural patterns. The strategies add more expressive power by
providing a simple method for the traversing structured data. We should point

TomML: A Rule Language for Structured Data 271

out that all the rules as well as the corresponding guiding strategies should be
explicitly given and thus no ambiguity concerning their application is possible.

Besides its strong expressive power and its solid semantics, the approach guar-
antees the portability of the applications that can be executed on top of any Java
environment. We have mainly shown examples for querying XML documents but,
as we have seen in the last example of Section 4, the xml(...) construct can be
used to modify and build XML documents.

The applications developed in Tom are independent of the data structure
implementation given that a mapping between the respective internal imple-
mentation and the Tom representation is given. The TomML standard libraries
already provide this kind of mapping for DOM classes but new mappings can
be easily integrated.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Eve Maler, F.Y., Cowan, J.: Exten-
sible markup language (XML) 1.1. Technical report, W3C, 2nd edn. (2006),
http://www.w3.org/TR/2006/REC-xml11-20060816/

2. Brand, M., Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers, T., Klint,
P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: a Component-Based Language Development Envi-
ronment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 365–370. Springer,
Heidelberg (2001)

3. Kirchner, H., Moreau, P.E.: Promoting rewriting to a programming language: A
compiler for non-deterministic rewrite programs in associative-commutative theo-
ries. Journal of Functional Programming 11(2), 207–251 (2001)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

5. Moreau, P.E., Ringeissen, C., Vittek, M.: A Pattern Matching Compiler for Mul-
tiple Target Languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 61–76.
Springer, Heidelberg (2003)

6. Balland, E., Kirchner, C., Moreau, P.E.: Formal islands. In: Johnson, M., Vene, V.
(eds.) AMAST 2006. LNCS, vol. 4019, pp. 51–65. Springer, Heidelberg (2006)

7. Kirchner, C., Kopetz, R., Moreau, P.E.: Anti-pattern matching. In: De Nicola, R.
(ed.) ESOP 2007. LNCS, vol. 4421, pp. 110–124. Springer, Heidelberg (2007)

8. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.: Efficient annotated
terms. Software-Practice and Experience 30, 259–291 (2000)

9. Visser, E., Benaissa, Z.e.A., Tolmach, A.: Building program optimizers with rewrit-
ing strategies. In: Proceedings of the 3rd ACM SIGPLAN International Conference
on Functional Programming, pp. 13–26. ACM Press, New York (1998)

10. Kay, M.: XSL transformations (XSLT) version 2.0. Technical report, W3C (2007),
http://www.w3.org/TR/2006/REC-xml11-20060816/

11. Kay, M.: XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Pro-
grammer). Wrox Press Ltd., Birmingham (2008)

12. Frisch, A.: Ocaml + xduce. In: Castagna, G., Raghavachari, M. (eds.) PLAN-X,
BRICS, Department of Computer Science, pp. 36–48. University of Aarhus (2006)

http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 272–281, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Geospatial-Enabled RuleML in a Study
on Querying Respiratory Disease Information

Sheng Gao1, Harold Boley2, Darka Mioc1,3, Francois Anton4, and Xiaolun Yi5

1 GGE, University of New Brunswick, Fredericton, NB, Canada
2 Institute for Information Technology, NRC, Fredericton, NB, Canada
3 National Space Institute, Technical University of Denmark, Denmark

4 Department of Informatics and Mathematical Modelling, Technical University of Denmark
5 Service New Brunswick, Fredericton, NB, Canada

Abstract. A spatial component for health data can support spatial analysis and
visualization in the investigation of health phenomena. Therefore, the utilization
of spatial information in a Semantic Web environment will enhance the ability
to query and to represent health data. In this paper, a semantic health data query
and representation framework is proposed through the formalization of spatial
information. We include the geometric representation in RuleML deduction,
and apply ontologies and rules for querying and representing health informa-
tion. Corresponding geospatial built-ins were implemented as an extension to
OO jDREW. Case studies were carried out using geospatial-enabled RuleML
queries for respiratory disease information. The paper thus demonstrates the
use of RuleML for geospatial-semantic querying and representing of health
information.

1 Introduction

Geospatial location provides a solution to link multiple sources in the same area. The
spatial component of health data can show the geographical distribution of disease
outbreaks, hospitals, air quality, and census. Basic geometric information of location
is recorded in spatial data collections, using spatial reference and coordinate arrays.
Utilizing spatial information allows the spatial analysis and visualization of health
data. For example, with the geometric information of the Georges L. Dumont Hospital
in Moncton and the New Brunswick Route 15, the neighboring spatial relationship
between them can be deduced. The Semantic Web aims to improve machine under-
standing of Web-based information and its effective management. By employing
Semantic Web (e.g., Web rule) techniques, part of the meaning of the information can
be captured by machines, thus enabling more precise information queries and interop-
eration. To enhance the ability to query health information, its spatial component can
also be represented and deduced by rules.

The Semantic Web environment, in which data are given well-defined meaning,
can facilitate health data query and knowledge discovery. Similar to the non-spatial
attributes of data, the spatial attributes can also be represented in the Semantic Web.
The use of spatial information in Semantic Web can support dynamic spatial relation-
ship discovery for health data, and furthermore, new concepts and new instances can

 Geospatial-Enabled RuleML in a Study on Querying Respiratory Disease Information 273

be generated. For example, from the locations of infectious disease outbreaks, we can
determine the sensitive areas that are within a certain distance from the disease
outbreak locations. Because of the advantages in supporting the representation of a
spatial component, we endeavor to include spatial information in the Semantic Web
environment to enhance the ability to query and to represent health data. This paper
builds on and extends the eHealthGeo results in Gao et al., [1], and includes the geo-
metric representation in RuleML to enhance information reasoning and inference.

2 Semantic Web and Geospatial Semantics

Semantics-level interoperability among heterogeneous information sources and sys-
tems can be achieved by the Semantic Web. According to Sheth and Ramakrishnan
[2], three kinds of important applications of the Semantic Web are (1) semantic inte-
gration, (2) semantic search and contextual browsing, and (3) semantic analytics and
knowledge discovery. Ontologies, as shared specifications of conceptualizations [3],
constitute an important notion in the Semantic Web. Many XML-based languages,
such as RDF(S) and OWL, have been developed for the representation of ontologies.
Description Logic (DL) is usually used to represent ontologies. When concepts are
defined using ontologies, three types of relation can be distinguished: taxonomic,
functional, and partonomic [4]. With the meaning and relations of concepts defined
by ontologies, semantic data classification, integration, and deduction can be imple-
mented. One limitation of DL is that it is impossible to represent relationships be-
tween a composite property and another (possibly composite) property in the ontology
representation; however, the use of rules can establish more complex relationships
between properties [5]. Rules encode machine-interpretable conditional knowledge
(“if … then …”) for automatic reasoning [6]. Rules can describe concepts by using
the relation of instances through different property paths. Many different kinds of
approaches in combining ontologies and rules have been surveyed (see [7]). RuleML
[8] is the de facto open-language standard for Web rules.

Spatial relations can exist between two spatial objects (concepts or instances), and
exploring them can advance information query and discovery. Three types of major
spatial relations between spatial objects are topological, direction, and metrical rela-
tions [9]. Topological relations formalize the notion of neighborhood; directional
relations require the existence of a vector space; and metric relations are measuring
distances. Topological relations are invariant under continuous translations while
directional and metric relations may change during these translations. A well-known
method by which to formalize topological relationship between spatial objects in two-
dimensional space is the Nine Intersection Model (9IM), developed by Egenhofer,
that considers boundaries, interiors, and complements intersection of two spatial ob-
jects [10]. The further improved model, the Dimensionally Extended Nine Intersec-
tion Model (DE-9IM), considers the 9IM of two spatial objects with the dimensions
of -1 (no intersection), 0, 1, or 2 [11, 12]. The commonly known topological predi-
cates described by the DE-9IM include overlaps, touches, within, contains, crosses,
intersects, equals, and disjoint.

With possible spatial relations existing in the data, several studies have been done on
the capture of geospatial semantics for facilitating data integration, query, and discov-
ery. Kieler [13] discussed the feasibility of identifying semantic relations between

274 S. Gao et al.

different ontologies by exploring the geometric characteristics of the instances. To rep-
resent spatial relations, the explicit storage or dynamic computation of spatial relations
is possible. Explicating all the possible spatial relations between every two spatial ob-
jects is usually not necessary. While the weakness of dynamic computation is that it is
time-consuming, the weakness of explicit storage requires significant storage space and
involves reliability issues because of the imprecise nature of relations [14]. Klien and
Lutz [15] illustrated the definition of geospatial concepts based on spatial relations and
automatic annotation of geospatial data using a reference dataset. The annotation
process uses DL in reasoning and focuses on the concept level. Smart et al. [16] distin-
guished multi-representations, implicit spatial relations, and spatial integrity of geospa-
tial data, claiming that rule expression for geo-ontologies needs to consider spatial
reasoning rules and spatial integrity rules. Kammersell and Dean [17] proposed
GeoSWRL, which is a set of geospatial SWRL built-ins. GeoSWRL allows users to
include spatial relation operators in queries; however, spatial data representation and
processing abilities are not fully integrated in the GeoSWRL system.

In addition, spatial operations can generate new spatial objects from existing spa-
tial objects, such as spatial intersection and spatial union. Because rules are able to
describe relations through complex property paths, it would be feasible to represent
spatial operations and spatial relations of geospatial objects as rules in knowledge
deduction. Cartographic principles can also be applied as rules in the deduction. In
this paper, we not only enable geometric representation support for RuleML reason-
ing, but also apply ontologies and rules in health information reasoning, query, and
representation. The respiratory disease information queries are used as examples.

Fig. 1. Metamodel of health concepts Fig. 2. Health data query and representation framework

3 Framework for Health Information Query and Representation

Health concepts can be described with semantic, geometric, and (carto)graphic com-
ponents, as shown in Figure 1. The semantic component deals with the definition of
the concepts. The geometric component provides shapes to locate the concepts. The
graphic component solves the issues of how to represent these concepts through maps.
For example, in the case of a hospital, the semantic component can describe its
name and attributes, the geometric component can describe its polygon shape, and
the graphic component can describe its map style. Moreover, relations, including
non-spatial and spatial relations, exist between health concepts.

 Geospatial-Enabled RuleML in a Study on Querying Respiratory Disease Information 275

3.1 Framework

Semantic health data queries need to find data with corresponding semantic and geo-
metric attributes. Cartographic representation of the query results allows users to
visualize health information. Figure 2 describes the framework for the semantic health
information query and representation, including a data tier, a fusion tier, and a presen-
tation tier. (1) Data tier. The health data are obtained from various organizations
through files, databases, or (Geospatial) Web Services. Following the ontology im-
plementation, data are extracted to the knowledge base as facts. (2) Fusion tier. The
fusion tier contains ontologies, facts, and rules. It queries and fuses semantic, spatial,
and cartographic information for representing health data homogeneously. The on-
tologies are the representation of health concepts and their relationships in the seman-
tic, geometric, and graphic dimensions. Facts are generated from various health data
and existing knowledge about health. Rules, supported by ontologies and facts, de-
duce health information and present the information to users. Two types of rules are
considered: reasoning rules and cartographic representation rules. (3) Presentation
tier. The user interface allows the input of semantic, geometric, and graphic criteria to
find health information.

3.2 Ontologies and Rules in Health Data Fusion

A. Ontologies
Ontologies can be utilized to connect various concepts (e.g., subconcepts and super-
concepts). Depending on the requirements, different application ontologies exist in
health applications. To facilitate health data exchange and query, a global ontology
can improve interoperability. Three types of ontologies are important in querying and
representing health data: health domain ontologies, geometric ontologies, and carto-
graphic ontologies.

Health domain ontologies are used for the definition of health information models,
concepts, and terminologies. Many standards exist in this field, such as Health Level
7 (HL7), SNOMED-CT, and International Classification of Diseases (ICD-9). Geo-
metric ontologies should be able to describe basic geometry types, such as point and
polygon. The European Petroleum Survey Group (EPSG, http://www.epsg.org/) coor-
dinate system codes are widely used in the exchange of geospatial data over the Inter-
net. Cartographic ontologies deal with the styles in representing information. For
instance, the symbol of hospitals can be represented as point graphics to show the
location of hospitals. With the existence of health domain ontologies, geometric on-
tologies, and cartographic ontologies, the application ontology definition can easily
link to these semantic, geometric, and cartographic elements.

B. Rules
Based on the ontologies and facts, rules can define and deduce new information. Be-
sides non-spatial attribute rules, spatial rules can also be applied in this framework.
Although the definition of geometric ontologies follows the same methodology for
non-spatial ontologies, the inference of geometric relations is different. The utilization
of geometries can incorporate the spatial analysis and cartographic representation
abilities in rules. Two types of rules are distinguished: reasoning rules and carto-
graphic representation rules.

276 S. Gao et al.

Reasoning rules cover semantic matching, spatial relation operators, spatial opera-
tions, and cartographic comparison of data. (1) Semantic matching rules deal with the
domain knowledge for understanding health data. For instance, the manifestation of
several symptoms could determine that a patient may have caught a disease. (2) Spa-
tial relation rules are used to determine the topological, directional, and metric rela-
tions between geospatial components. For instance, rules can be used to evaluate the
direction and distance from the location of an emergency to hospitals. (3) Spatial
operation rules can generate new concepts and instances from existing health data.
For example, spatial union can combine data from neighboring regions to assist in the
comparison of disease outbreaks. (4) Cartographic comparison rules are able to fuse
different cartographic representations into a homogeneous form.

Cartographic representation rules focus on the distribution of information to users
more efficiently and effectively. Map scale is of great significance in the geometric
representation of a concept. For example, a hospital will be shown as a polygon in
large scale representation and as a point in small scale representation. Cartographic
rules include concept-based rules, attribute-based rules, scale-based rules, priority-
based rules, and cartographic generalization rules. (1) Concept-based rules determine
graphic styles based on the health concept semantics. For example, standard symbols
exist in representing the concepts in national or provincial cartographic design. (2)
Attribute-based rules classify health concepts based on their attributes. For example,
pie charts can show the age distribution of people in each health region. (3) Scale-
based rules are essential in determining what information is represented based on
scales. A concept can be stored with multi-representation in the data, and scale can be
used to select the optimal representation. (4) Priority-based rules emphasize high
priority information. (5) Cartographic generalization (simplification, exaggeration,
and displacement) rules allow the dynamic generalization of spatial information.

4 Design and Implementation

4.1 Geospatial Support for RuleML Deduction

OO jDREW is an open source RuleML engine which is used in this study because it
supports RuleML’s Naf Hornlog sublanguage and backward/forward reasoning [18].
RuleML’s POSL presentation syntax is employed in the following. To use spatial
information in the reasoning process, the representation of spatial information in the
RuleML engine is needed. Therefore, a geometric ontology is designed to support
basic geometry types: point, linestring, polygon, multipoint, multilinestring, multi-
polygon, and multimix, as shown in Figure 3. A polygon can have an out boundary
and many inner holes (inner boundaries). Multipoint, multilinestring, and mulitpoly-
gon can have one or more points, linestrings, and polygons respectively. Multimix
contains collections of points, linestrings, and polygons. Figure 4 lists examples of
how to represent each geometry type. Coordinate reference systems are specified with
EPSG codes, and coordinates are recorded in the order of (x1,y1,x2,y2,…). With the
specification of geometries, the spatial operation (union, buffer, convexhull, differ-
ence, distance, intersection) and spatial relation operators (touches, contains, within,
crosses, equals, overlaps, intersects, covers, coveredby, disjoint, iswithindistance) can
be incorporated into rules.

 Geospatial-Enabled RuleML in a Study on Querying Respiratory Disease Information 277

Based on this design, a geometry type was added and a parser implemented for
parsing geometries in OO jDREW. For the geospatial operations and spatial relation
operations, the JTS Topology Suite is used in this study. The JTS is an open source
Java API for two-dimensional spatial predicates and functions, using the DE-9IM
model [19]. Several geospatial built-ins, such as the gpred_intersects, gpred_within
and gfunc_intersection built-ins, were created using the JTS library. The
gpred_intersects built-in checks whether two geometries intersect or not; the
gpred_within built-in checks whether a geometry is inside another geometry;
the gfunc_intersection built-in computes the intersection of two geometries.

Fig. 3. Geometry type designed
for RuleML

Fig. 4. Examples of geometry representation

4.2 Data Sources and Ontology Definition

The health data used in this study were collected from different organizations, such as
New Brunswick Lung Association, Service New Brunswick, Statistic Canada census,
and Statistic Canada community health survey. Respiratory disease data are used as
examples in this study. Following the disease taxonomy of respiratory diseases in the
International Classification of Diseases (ICD-9), we created an ontology for respira-
tory diseases. Respiratory disease data are from hospital patient incidents, which re-
cord the time, postcode, disease diagnosis category, age, and gender. Different data
could be collected in various spatial boundaries. Taking this study as an example, the
disease rate data from the Statistics Canada community health survey were collected
at Health region and the income data from Statistics Canada census were collected at
Census division. From these data, the application ontologies of our case study were
generated. We also created entities, such as Health event, Hospital, Health region,
Census division, Postcode, Disease rate, and Income.

Health event can describe a variety of cases, such as patient incidents, health train-
ing services, etc. The following properties (POSL: “->”) associated with health events
are shown here: the involved participants’ age and gender, the admit date, the disease
category diagnosis, and the postcode. Example with a variable (POSL: “?”):

health_event (disease->?:Influenza_with_pneumonia; age->88:Integer; gender->Female;
 postcode->E1C; admitdate->date[2000:Integer,1:Integer,1:Integer]).

Hospital introduces general information about hospitals, with attributes: name, ad-
dress, city, province, telephone, and geometry. Example:

hospital (name->Dr_Everett_Chalmers_Hospital; address->700_Priestman_St; province->NB;
city->Fredericton; telephone->5064525400; totalbeds->384:Integer; geometry->…).

278 S. Gao et al.

Health region and Census division are two kinds of administrative boundaries.
They have name, area, perimeter, and geometry attributes. Example:

health_region (name->Health_region_1; area->10455463176.5:Real;
perimeter-> 844278.079968:Real; geometry->geo[EPSG4326,

multipolygon[polygon[outboundary[…]],…]]:Geometry).

Postcode shows the central location of the three-digital postcodes. Example:

pcode3 (name->E1A;
geometry->geo[EPSG4326,point[-64.7078903603,46.0967513316]]:Geometry).

Disease rate and Income show the value associated with the geometry name, statis-
tic method, and year. Example:

disease_rate (disease->?:Asthma; geometryname->Health_region_1; statistics->average;
 year->2003:Integer; rate->0.104:Real).

income (geometryname->Saint_John_County; statistics->average; year->2003:Integer;
 incomevalue->32748.56028:Real).

4.3 Scenarios

Case 1. With the collected health events, it is possible to find disease cases fulfilling
semantic and geometric requirements. Since disease cases include outbreak locations
using postcodes, geospatial semantic query of diseases can discover whether the loca-
tion of a postcode is inside any spatial boundary. The following disease_locator rule
queries a patient’s age, gender, and postcode within a certain health region, disease
category, age type, and period:

disease_locator (healthregionname->?name; disease->?disease:Respiratory_diseases;
startdate->?startdate; enddate->?enddate; agetype->?agetype;
age->?age:Integer; gender->?gender; postcode->?postcode) :-

health_event (disease->?disease:Respiratory_diseases; age->?age:Integer;gender->?gender;
postcode->?postcode; admitdate->?date),

age (agetype->?agetype; age->?age:Integer),
earlier (?date, ?enddate), later (?date, ?startdate),
health_region (name->?name; geometry->?hrgeometry:Geometry!?),
pcode3 (name->?postcode; geometry->?pcgeometry:Geometry!?),
gpred_within (?pcgeometry:Geometry, ?hrgeometry:Geometry).

The disease_locator rule conjoins several subqueries for the semantic query of dis-
ease cases. The earlier and later queries search disease cases in which the admit date
is between the start date and end date. The age query is used to determine to which
age group a certain age belongs. The gpred_within built-in query is used to locate
postcodes in health regions.

Case 2. Since data collected from different organizations may use different kinds of
spatial boundaries, the ability to integrate those data is useful. New concepts and
instances will be generated in the integration process. The below dis-
ease_income_correlator rule figures out the intersection between disease rate and
income. For example, a user would like to know those spatial areas where the asthma
disease rate is higher than 0.1 and the average income is above $30,000 in 2008.

disease_income_correlator (disease->?disease:Respiratory_diseases; year->?year:Integer;
minincome->?minincome:Real;minrate->?minrate:Real; geometry->?geometry:Geometry):-

disease_rate(disease->?disease:Respiratory_diseases; year->?year:Integer;

 Geospatial-Enabled RuleML in a Study on Querying Respiratory Disease Information 279

 geometryname->?dgeometryname; rate->?rate:Real!?),
income (geometryname->?igeometryname;

 year->?year:Integer;incomevalue->?incomevalue:Real!?),
health_region (name->?dgeometryname;geometry->?hrgeometry:Geometry!?),
census_division (name->?igeometryname;geometry->?cdgeometry:Geometry!?),
greaterThan (?rate:Real,?minrate:Real), greaterThan (?incomevalue:Real,?minincome:Real),
gfunc_intersection (?geometry:Geometry,?hrgeometry:Geometry,?cdgeometry:Geometry).

Case 3. To provide better representation of the information to users in the query proc-
ess, it is beneficial to allow users to define queries with semantic, geometric, and
graphic requirements. For example, a user wants to get the asthma rate in 2008 (se-
mantic) in a spatial boundary geometry1 (geometric) with a graduated color ramp1
(graphic). Firstly, the user can define geometric and graphic requirements. The graph-
ics here use graduated color with two categories. One category ranges from 0.0 to 0.2
in green; the other category ranges from 0.2 to 1 in red:
geometries (geometryname->geometry1;

geometry->geo[EPSG4326, polygon[outboundary[…]]]:Geometry).
graduated_colors (name->ramp1; startvalue->0.0:Real; endvalue->0.2:Real; color->0x00FF00).
graduated_colors (name->ramp1; startvalue->0.2:Real; endvalue->1:Real; color->0xFF0000).

Then, the user can use the disease_rate_finder rule to query disease rates. This rule
deduces the graphics for disease rate instances within specified geospatial boundaries.

disease_rate_finder (disease->?disease:Respiratory_diseases; geometryname->?geometryname;
 rampname->?rampname; year->?year:Integer;
 geometryname->?healthregionname; color->?color):-

disease_rate (disease->?disease:Respiratory_diseases; geometryname->?healthregionname;
year->?year:Integer; rate->?rate:Real!?),

health_region (name->?healthregionname; geometry->?hrgeometry:Geometry!?),
geometries (geometryname->?geometryname; geometry->?geometry:Geometry),
graduated_colors (name->? rampname;startvalue->?startvalue:Real;

 endvalue->?endvalue:Real; color->?color),
greaterThanOrEqual (?rate:Real,?startvalue:Real), lessThan (?rate:Real,?endvalue:Real),
gpred_intersects (?geometry:Geometry,?hrgeometry:Geometry).

Case 4. Depending on the scale of representation, the cartographic information repre-
sented to users could be different. For example, between the scale of 1:1,000 to 1:1,
hospitals are shown as polygons. Between the scale of 1:1,000,000 and 1:1,000, hos-
pitals are shown as points. With the scale smaller than 1:1,000,000, hospitals disap-
pear. In this case, we can add a minimum scale and maximum scale in the hospital
entity for the cartographic representation purpose. The following sample fact shows
one geometric representation for the multi-representation of a hospital:
hospital (name->Dr_Everett_Chalmers_Hospital;address->700_Priestman_St;

 city->Fredericton;province->NB; telephone->5064525400; totalbeds->384:Integer;
minscale->0.001:Real; maxscale->1:Real; geometry->geo[EPSG4326,

polygon[outboundary[66.65654990041024, 45.93896756130009,…]]]:Geometry).

With a scale input by users, this rule finds the optimal representation of hospitals:
hospital_locator (name->?name; scale->?scale:Real; geometry->?geometry:Geometry;

 totalbeds->?totalbeds:Integer):-
hospital (name->?name; geometry->?geomery:Geometry; minscale->?minscale:Real;

 maxscale->?maxscale:Real; totalbeds->?totalbeds:Integer!?),
lessThan (?scale:Real,?maxscale:Real), greaterThanOrEqual (?scale:Real,?minscale:Real).

280 S. Gao et al.

Complex queries can then be supported by combining the available predicates ex-
emplified in the above cases. For example, users can define the spatial area of interest
(using customized geometries of Case 3). Then they may like to know where high
disease rate and low income values exist within the area of interest (using the dis-
ease_income_correlator of Case 2). After that, users can get the information about
hospitals within the previously determined high disease rate and low income areas in
a certain map scale (using the hospital_locator of Case 4 and gpred_within of Case 1).
All these steps can be chained into complex rules to formalize user queries.

5 Discussion and Conclusions

Our health data query and representation framework provides a solution for health
experts to express knowledge as ontologies and rules (regarding semantic, geometric,
and graphic dimensions) in health information integration and representation. The use
of rule techniques enables health experts to exchange reasoning and representation
rules on the Web. Much research has been done on semantic health information inte-
gration and query using non-geospatial information in the reasoning. However, fewer
investigations utilize geometric information for dynamic spatial reasoning in this
process. This research builds an integrated system that supports geospatial-enabled
semantic health information retrieval. A basic geometric ontology is designed for the
spatial component representation. Spatial operations and spatial relations are ex-
pressed in RuleML for knowledge representation and deduction. Basic geometries,
spatial operations, and spatial relation operators for RuleML are enabled through the
extension of the OO jDREW engine. This implementation thus facilitates semantic
health data integration and query with the use of both non-spatial and spatial opera-
tions and relations. Complex queries and reasoning processes can be implemented to
allow the use of semantic, geometric, and graphic dimensions.

The current system implementation uses the interface of OO jDREW in the query
process. More customized user interfaces in the presentation tier will be implemented
to facilitate health information query and representation. Moreover, as dynamic spa-
tial reasoning and computation has demanding time and memory requirements, the
balance between caching computed results and dynamic spatial computation need to
be optimized for efficient health information querying. In addition, the ontology de-
signed in this study is based on the data collected. Its implementation supports the
transformation of various health data to facts in the knowledge base. To further im-
prove data integration and query, upper-level or domain-level ontologies need to be
investigated. Various health and geospatial standards can be taken into consideration,
such as the HL7 ontology and Open Geospatial Consortium (OGC) standards.

With the rapid growth of health data, the semantic query of health information be-
comes increasingly important for health practitioners in understanding health
phenomena. The support of spatial operations and spatial relation operators by rule
systems is useful for health data integration, query, and representation. In this study,
an integrated semantic system has been built to support geospatial-enabled query and
reasoning of health information. With the use of RuleML, we have enabled geometry
types, spatial operation rules, and spatial relation rules for health information query.
The case scenarios in this study demonstrate the benefits of including a geospatial
component in semantic health data query, permitting the fusion of various kinds of

 Geospatial-Enabled RuleML in a Study on Querying Respiratory Disease Information 281

data in the semantic, geometric, and graphic dimensions. This research fosters the use
of ontologies and rules in representing these dimensions of public health information.
It facilitates the deduction of information collected by different health organizations.
Our future work will be devoted to the exploration of ontologies and rules for further
semantic integration, query, and representation of health information.

References

1. Gao, S., Mioc, D., Boley, H., Anton, F., Yi, X.: A RuleML Study on Integrating Geo-
graphical and Health Information. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2008. LNCS, vol. 5321, pp. 174–181. Springer, Heidelberg (2008)

2. Sheth, A.P., Ramakrishnan, C.: Semantic (Web) Technology In Action. IEEE Data Engi-
neering Bulletin. 26(4), 40–48 (2003)

3. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. International
Knowledge Acquisition 5(2), 199–220 (1993)

4. Luscher, P., Burghardt, D., Weibel, R.: Ontology-Driven Enrichment of Spatial Databases.
In: 10th ICA Workshop on Generalisation and Multiple Representation, Moscow (2007)

5. Antoniou, G., Damasio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Patel-
Schneider, P.F.: Combining Rules and Ontologies: A survey (2005)

6. Boley, H.: Are Your Rules Online? Four Web Rule Essentials. In: Paschke, A., Biletskiy,
Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 7–24. Springer, Heidelberg (2007)

7. Bruijn, J.D.: ONTORULE: ONTOlogies meet business RULEs, State-of-the-art survey of
issues, http://ontorule-project.eu/
deliverables-and-resources?func=fileinfo&id=1

8. The Rule Markup Initiative, http://www.ruleml.org/
9. Rashid, A., Shariff, B.M., Egenhofer, M.J., Mark, D.M.: Natural-Language Spatial Rela-

tions between Linear and Areal Objects. Int. J. Geogr. Inf. Sci. 12, 215–245 (1998)
10. Egenhofer, M.J.: Reasoning about Binary Topological Relations. In: Günther, O., Schek,

H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)
11. Clementini, E., Felice, P.: A Comparison of Methods for Representing Topological Rela-

tionships. Inf. Sci. 80, 1–34 (1994)
12. Clementini, E., Felice, P.: A Model for Representing Topological Relationships between

Complex Geometric Features in Spatial Databases. Inf. Sci. 90, 121–136 (1996)
13. Kieler, B.: Derivation of Semantic Relationships between Different Ontologies with the

Help of Geometry. In: Workshop at AGILE 2008, Girona, Spain (2008)
14. Jones, C.B., Abdelmoty, A.I., Fu, G.: Maintaining Ontologies for Geographical Informa-

tion Retrieval on the Web. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003,
DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 934–951. Springer, Heidelberg
(2003)

15. Klien, E., Lutz, M.: The Role of Spatial Relations in Automating the Semantic Annotation
of Geodata. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 133–
148. Springer, Heidelberg (2005)

16. Smart, P.D., Abdelmoty, A.I., El-Geresy, B.A., Jones, C.B.: A framework for combining
rules and geo-ontologies. In: First International Conference on Web RR Systems (2007)

17. Kammersell, W., Dean, M.: Conceptual Search: Incorporating Geospatial Data into Se-
mantic Queries. In: Terra Cognita - Directions to the Geospatial Semantic Web (2006)

18. OO jDREW, http://www.jdrew.org/oojdrew/
19. JTS Topology Suite, http://www.vividsolutions.com/jts/jtshome.htm

Rules and Norms:
Requirements for Rule Interchange Languages

in the Legal Domain

Thomas F. Gordon1, Guido Governatori2, and Antonino Rotolo3

1 Fraunhofer FOKUS, Berlin, Germany
thomas.gordon@fokus.fraunhofer.de

2 NICTA, Queensland Research Laboratory, Brisbane, Australia
guido.governatori@nicta.com.au

3 CIRSFID, University of Bologna, Bologna, Italy
antonino.rotolo@unibo.it

Abstract. In this survey paper we summarize the requirements for rule inter-
change languages for applications in the legal domain and use these require-
ments to evaluate RuleML, SBVR, SWRL and RIF. We also present the Legal
Knowledge Interchange Format (LKIF), a new rule interchange format developed
specifically for applications in the legal domain.

1 Introduction

An extensive research has been devoted in the last years for developing rule languages
in the legal domain. Interesting efforts has been carried out especially in the field of e-
contracting, business processes and automated negotiation systems. This led to devise
new languages, or adjust existing ones, specifically designed for documenting and mod-
eling the semantics of business vocabularies, facts, and rules. Significant examples are
SBVR [39], the case handling paradigm [43], OWL-S [29], ContractLog [30], Sadiq
et al.’s constraint specification framework [37], the Web Service Modeling Ontology
(WSMO) [33], the ConDec language [31], PENELOPE [14], and RuleML for business
rules [21,16].

But legal rules are not only pervasive in modeling e-transactions—where formal-
izing and handling legal rules and contract clauses is required for providing tools to
support legally valid interactions and/or to legally ground contractual transactions—but
their sound and faithful representation is obviously crucial for representing legislative
documents, regulations, and other sources of law (for instance, in the domains of e-
governance and e-government).

Since the seminal work of Sergot et al. [41], which formalized the British Nationality
Act in a logic programming setting, the AI & Law community has devoted an extensive
effort for modeling many aspects of legal rules and regulations1. However, there are
still a few works which address the problem of devising rule interchange languages,

1 The interested reader may consult a large number of relevant works published in the Artificial
Intelligence and Law journal and in the proceedings of conferences such as ICAIL and JURIX.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 282–296, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 283

properly speaking, for the legal domain. LKIF is probably the first systematic attempt
in this regard (LKIF will be discussed here in Section 3.5).

Significant experiences for representing legislative documents throughout XML lan-
guages, for instance, are CEN MetaLex [7], SDU BWB (see [27]), LexDania (see [27]),
NormeinRete [26], AKOMA NTOSO [2]. Other XML standards in legal domain are
CHLexML [10], EnAct [3], Legal RDF [28], eLaw (see [27]), Legal XML (see [27]),
LAMS [24], JSMS (see [27]), and UKMF (see [27]). Much of these XML-based at-
tempts are ambitious, valuable and effective. Yet, they mostly focused on representing
legal documents rather than modeling directly legal rules. In addition, some are focused
on specific application areas, others model a few aspects of the many concerns that exist
in reality, or, if developed in order to be sufficiently general, exhibit some limitations
since they are not based on robust or comprehensive conceptual models for representing
legal rules to be applied in the legal domain (for a detailed evaluation of modeling, e.g.,
legislation, see [27]).

In general, many of the drawbacks affecting many existing languages are perhaps
due to the fact that there has not yet been an overall and systematic effort to establish
a general list of requirements for rule interchange languages in the legal domain or
because there is not yet an agreement in particular among the practitioners working in
this field. This survey paper is meant to offer a list of minimal requirements to a large
audience of computer scientists, legal engineers and practitioners who are willing to
model legal rules. These requirements are then discussed with regard to some existing
rule interchange languages.

Note that a remarkable, and additional difficulty is that it is sometimes not immediate
to adjust and extend existing standards for rule interchange languages when we need to
use them in the legal domain. Indeed, although the legal domain has several features
which are shared by other domains, some aspects are very specific for the law. Consider
the notion of information retrieval. In the law, question-answering “seems more relevant
than information retrieval”, since “question requires some deduction or inference before
an appropriate answer can be given” and “regulations may contain many different ar-
ticles about the same topic and one can only assess whether something is permitted
or not by understanding the full documentation”. “A rather detailed understanding is
required, in particular, because regulations generally contain complex structures of ex-
ceptions” [6, p. 9]. The peculiarity of the legal domain thus poses specific problems for
developing suitable and faithful representation languages.

The layout of the paper is as follows. In Section 2 we provide a rather comprehensive
list of requirements for devising rule interchange languages. The subsequent sections
discuss these requirements to evaluate RuleML, SBVR, SWRL, RIF, and LKIF. Some
brief conclusions end the paper.

2 Requirements

The law is a complex phenomenon, which can be analyzed into different branches ac-
cording to the authority who produces legal norms and according to the circumstances
and procedures under which norms are created. But, independently of these aspects, it
is possible to identify some general features that norms should enjoy.

284 T.F. Gordon, G. Governatori, and A. Rotolo

First of all, it is widely acknowledged in legal theory and AI & Law that norms have
basically a conditional structure like [23,38]

if A1, . . . ,An then B (1)

where A1, . . . ,An are the applicability conditions of the norm and B denotes the legal
effect which ought to follow when those applicability conditions hold2.

This very general view highlights an immediate link between the concepts of norm
and rule. However, there are many types of rules. The common sense, dictionary mean-
ing of rule is “One of a set of explicit or understood regulations or principles governing
conduct within a particular sphere of activity.” [1]. In classical logic, rules can be infer-
ence rules or material implications. In computer science, rules can be production rules,
grammar rules, or rewrite rules.

When we use the term ‘rule’ in the legal field, we usually mean rule in the regulatory
sense. But rules express not only regulations about how to act. For example, von Wright
[45] classified norms into the following main types (among others):

1. determinative rules, which define concepts or constitute activities that cannot exist
without such rules. These rules are also called in the literature ‘constitutive rules’.

2. technical rules, which state that something has to be done in order for something
else to be attained;

3. prescriptions, which regulate actions by making them obligatory, permitted, or pro-
hibited. These norms, to be complete, should indicate

– who (the norm-subjects)
– does what (the action-theme)
– in what circumstances (the condition of application) and
– the nature of their guidance (the mode).

Notice that the notion of norm proposed by von Wright is very general and extends well
over the notion of norm in legal reasoning; but in some cases the component of a rule
have to modified. For example, legal systems can have provisions to handle changes in
the systems itself. Thus, it is possible to have norms about how to change other norms.
These rules have again a prescriptive character, but we have to adjust the element, in
particular these rules should specify, what (the content to be modified), how (the new
content), in what circumstances, and the nature of the modifications (e.g.,, substitution,
derogation, abrogation, annulment,)

Many of these aspects have been acknowledged in the field of artificial intelligence
and law, where there is now much agreement about the structure and properties of rules
[15,32,22,44,38]. Important requirements for legal rule languages from the field of AI
& Law include the following:

Isomorphism [5]. To ease validation and maintenance, there should be a one-to-one
correspondence between the rules in the formal model and the units of natural lan-
guage text which express the rules in the original legal sources, such as sections

2 Indeed, norms can be also unconditioned, that is their effects may not depend upon any an-
tecedent condition. Consider, for example, the norm “everyone has the right to express his or
her opinion”. Usually, however, norms are conditioned. In addition, unconditioned norms can
formally be reconstructed in terms of (1) with no antecedent conditions.

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 285

of legislation. This entails, for example, that a general rule and separately stated
exceptions, in different sections of a statute, should not be converged into a single
rule in the formal model.

Reification [15]. Rules are objects with properties, such as
Jurisdiction. The limits within which the rule is authoritative and its effects are

binding (of particular importance are spatial and geographical references to
model jurisdiction).

Authority [32]. Who produced the rule, a feature which indicates the ranking sta-
tus of the rule within the sources of law (whether the rule is a constitutional
provision, a statute, is part of a contract clause or is the ruling of a precedent,
and so on).

Temporal properties [19]. Rules usually are qualified by temporal properties,
such as:
1. the time when the norm is in force and/or has been enacted;
2. the time when the norm can produce legal effects;
3. the time when the normative effects hold.

Rule semantics. Any language for modeling legal rules should be based on a precise
and rigorous semantics, which allows for correctly computing the legal effects that
should follow from a set of legal rules.

Defeasibility [15,32,38]. When the antecedent of a rule is satisfied by the facts of a
case, the conclusion of the rule presumably holds, but is not necessarily true. The
defeasibility of legal rules breaks down into the following issues:
Conflicts [32]. Rules can conflict, namely, they may lead to incompatible legal

effects. Conceptually, conflicts can be of different types, according to whether
two conflicting rules

– are such that one is an exception of the other (i.e., one is more specific than
the other);

– have a different ranking status;
– have been enacted at different times;

Accordingly, rule conflicts can be resolved using principles about rule priori-
ties, such as:

– lex specialis, which gives priority to the more specific rules (the excep-
tions);

– lex superior, which gives priority to the rule from the higher authority (see
‘Authority’ above);

– lex posterior, which gives priority to the rule enacted later (see ‘Temporal
parameters’ above).

Exclusionary rules [32,38,15]. Some rules provide one way to explicitly undercut
other rules, namely, to make them inapplicable.

Contraposition [32]. Rules do not counterpose. If some conclusion of a rule is not
true, the rule does not sanction any inferences about the truth of its premises.

Contributory reasons or factors [38]. It is not always possible to formulate precise
rules, even defeasible ones, for aggregating the factors relevant for resolving a le-
gal issue. For example: “The educational value of a work needs to be taken into
consideration when evaluating whether the work is covered by the copyright doc-
trine of fair use.”

286 T.F. Gordon, G. Governatori, and A. Rotolo

Rule validity [19]. Rules can be invalid or become invalid. Deleting invalid rules is not
an option when it is necessary to reason retroactively with rules which were valid
at various times over a course of events. For instance:
1. The annulment of a norm is usually seen as a kind of repeal which invalidates

the norm and removes it from the legal system as if it had never been enacted.
The effect of an annulment applies ex tunc: annulreled norms are prevented
from producing any legal effects, also for past events.

2. An abrogation on the other hand operates ex nunc: The rule continues to apply
for events which occured before the rule was abrogated.

Legal procedures. Rules not only regulate the procedures for resolving legal conflicts
(see above), but also for arguing or reasoning about whether or not some action or
state complies with other, substantive rules [16]. In particular, rules are required for
procedures which
1. regulate methods for detecting violations of the law;
2. determine the normative effects triggered by norm violations, such as repara-

tive obligations, namely, which are meant to repair or compensate violations3.
Normative effects. There are many normative effects that follow from applying rules,

such as obligations, permissions, prohibitions and also more articulated effects such
as those introduced, e.g., by Hohfeld (see [38]). Below is a rather comprehensive
list of normative effects [35]:
Evaluative, which indicate that something is good or bad, is a value to be opti-

mised or an evil to be minimised. For example, “Human dignity is valuable”,
“Participation ought to be promoted”;

Qualificatory, which ascribe a legal quality to a person or an object. For example,
“x is a citizen”;

Definitional, which specify the meaning of a term. For example, “Tolling agree-
ment means any agreement to put a specified amount of raw material per period
through a particular processing facility”;

Deontic, which, typically, impose the obligation or confer the permission to do a
certain action. For example, “x has the obligation to do A”;

Potestative, which attribute powers. For example, “A worker has the power to ter-
minate his work contract”;

Evidentiary, which establish the conclusion to be drawn from certain evidence.
For example, “It is presumed that dismissal was discriminatory”;

Existential, which indicate the beginning or the termination of the existence of a
legal entity. For example, “The company ceases to exist”;

Norm-concerning effects, which state the modifications of norms such as abroga-
tion, repeal, substitution, and so on.

Persistence of normative effects [20]. Some normative effects persist over time un-
less some other and subsequent event terminate them. For example: “If one causes
damage, one has to provide compensation.”. Other effects hold on the condition and
only while the antecedent conditions of the rules hold. For example: “If one is in a
public office, one is forbidden to smoke”.

3 Note that these constructions can give rise to very complex rule dependencies, because we can
have that the violation of a single rule can activate other (reparative) rules, which in turn, in
case of their violation, refer to other rules, and so forth.

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 287

Values [4]. Usually, some values are promoted by the legal rules. Modelling rules
sometimes needs to support the representation of values and value preferences,
which can play also the role of meta-criteria for solving rule conflicts. (Given two
conflicting rules r1 and r2, value v1, promoted by r1, is preferred to value v2, pro-
moted by r2, and so r1 overrides r2.)

An interesting question is whether rule interchange languages for the legal domain
should be expressive enough to fully model all the features listed above, or whether
some of these requirements can be meet at the reasoning level, at the level responsible
for structuring, evaluating and comparing legal arguments constructed from rules and
other sources. The following sections will consider this issue when discussing these
requirements in the context of some existing rule interchange formats: RuleML, SBVR,
SWRL, RIF, and LKIF.

3 Overview of Some Rule Interchange Languages

3.1 The Rule Markup Language (RuleML)

RuleML4 is an XML based language for the representation of rules. It offers facilities to
specify different types of rules from derivation rules to transformation rules to reaction
rules. It is capable of specifying queries and inferences in Web ontologies, mappings
between Web ontologies, and dynamic Web behaviours of workflows, services, and
agents [8]. RuleML was intended as the canonical web language for rules, based on
XML markup, formal semantics and efficient implementations. Its purpose is to allow
exchange of rules between major commercial and non-commercial rules systems on
the Web and various client-server systems located within large corporations to facilitate
business-to-customer (B2C) and business-to-business (B2B) interactions over the Web.

RuleML provides a way of expressing business rules in modular stand-alone units. It
allows the deployment, execution, and exchange of rules between different systems and
tools. It is expected that RuleML will be the declarative method to describe rules on
the Web and distributed systems [47]. RuleML arranges rule types in an hierarchical
structure comprising reaction rules (event-condition-action-effect rules), transforma-
tion rules (functional-equational rules), derivation rules (implicational-inference rules),
facts (‘premiseless’ derivation rules, i.e., derivation rules with empty bodies), queries
(‘conclusionless’ derivation rules, i.e., derivation rules with empty heads) and integrity
constraints (consistency-maintenance rules). Each part of a rule is an expression that
has specific functions in the rule. The RuleML Hierarchy first directly branches out
into two categories: Reaction Rules and Transformation Rules. Transformation Rules
then break down into Derivation Rules, that, in turn, subdivide into Facts and Queries.
Finally, Queries break down into Integrity Constraints [36].

The way RuleML achieves flexibility and extensibility is based on the use and com-
position of modules. Each module is meant to implement a particular feature relevant
for a specific language or application (e.g., modules for various types of negation, for
example, classical negation, and negation as failures). Each module is intended to re-
fer to a semantic interpretation of the feature implemented in the module. However,

4 http://www.ruleml.org

http://www.ruleml.org

288 T.F. Gordon, G. Governatori, and A. Rotolo

RuleML does not have a mechanism to specify semantic structures on which to evalu-
ate elements of the language.

The key strength of Rules is its extensibility. Thus despite that currently there is no
dialect specifically intended for the representation of legal rules a few works proposed
extension and interpretation for this area, in particular for the representation of (busi-
ness) contracts [21,16,18].

The contribution of [21] by Grosof was the proposal of adopting courteous logic
programming (a variant of defeasible logic) as execution model for RuleML rule-base
corresponding to the clauses of a contract. Accordingly, Grosof’s proposal meets the
defeasiblity key requirement for modelling legal rules. Technically [21] uses derivation
rules, but then a courteous logic program implemented as Sweet Jess rules constitutes
executable specifications, where the conclusion of a rule can be executed by a computer
program producing effects. Thus the approach bridges the gap among the various types
of rules in the RuleML family.

The limitation of [21] is that it does not consider normative effects (i.e., it is not
possible to differentiate between obligations and permissions). This limitation has been
addresses by Governatori [16], where defeasible logic is extended with the standard de-
ontic operators for obligations, permissions and prohibitions as well as a new special
deontic operator to model violations and penalties for the violations. Furthermore [16]
distinguishes between constitutive and prescriptive rules. It provides a RuleML compli-
ant DTD for representing the various deontic elements, and discusses various options
for the modelling of such notions in defeasible logic. [18] implements [16], in a Se-
mantic Web framework with support for RDF databases, to provide an environment to
model, monitor and perform business contracts.

The modelling approach proposed in [16] has proven successful for various legal
concepts (for example the legal notion of trust [34]) and it has been extended to cover
temporal aspects [20] norm dynamics [19], and it has been applied to the study of
business process compliance [17].

3.2 Semantics of Business Vocabulary and Business Rules (SBVR)

SBVR [39] is a standard proposed by the Object Managament Group (OMG) for the
representation and formalisation of business ontologies, including business vocabularies,
business facts and business rules. The main purpose of SBVR is to give the basis for
formal and detailed natural language declarative specifications of business entities and
policies. It provides a way to represent statements in controlled natural language as logic
structures called semantic formulations. The formal representation is based on several
logics including first order logic, alethic modal logic and deontic logic, furthermore it
adopts model theoretic interpretations for semantic formulations. It is worth noticing that
the focus of SBVR is on modelling not providing a framework for executing the rules.

The two most relevant and salient features of SBVR for the modelling of norms are
the introduction of deontic operators to represent obligations and permissions and the
use of controlled natural languages for modelling norms. These two features, combined
with the underlying formalisation, make SBVR a conceptual language able to capture
some of the requirements discussed in Section 2. In particular the requirements about
the structural isomorphism and the ability to capture some normative effects.

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 289

Unfortunately, the semantics for the deontic modalities is left underspecified and the
proposed interpretation suffers from some drawbacks to model norms. First of all it as-
sumes formulas like Barcan formula and its converse that allow for the permutation of
universal quantifiers and alethic modalities (i.e., �∀xφ(x)≡∀x�φ(x)). The main conse-
quence for this is that it then forces the used of possible world models with constant do-
mains. While this assumption seems to be harmless, it has some important consequences
for the modelling of norms. Recent literature on deontic logic (see, among others, [40])
agrees that normal deontic logics –that is logics that admit necessitation (i.e., from � φ
derive � Oφ , where O is the deontic modality for obligation)– are not suitable to model
norms. However, any deontic logic based on possible world semantics with constant do-
mains, and having at least one genuine obligation is a normal deontic logic [46]. Thus an
adequate model theoretic semantics for the deontic modalities seems problematic. An-
other problem caused by standard deontic logic is that of contrary-to-duty obligations,
i.e., obligations arising from violations of other obligations. It is well known that these
cannot be handled properly by standard deontic logics [9]. However, as [16] points out
these are frequent in legal documents, and contracts in particular. [39] recognises this
limitation and the issue of handling this is left for future versions of the specifications.

SBVR suggests the equivalence (φ → Oψ) ≡ O(φ → ψ) to transform semantic ex-
pressions having the deontic operator not as main operator into an expression where the
deontic operator is the main operator. The proposed transformation imposes additional
non-standard constraints on possible world semantics; moreover the proposed transfor-
mation poses some concerns on its conceptual soundness since typically the deontic
modality applies just to the conclusion of the rule or to the conditional corresponding
to the rule (see the discussion about prescriptive rules in Section 2).

The final drawback of the proposed semantics for SBVR is that, being based on
classical first order logic it is not suitable to handle conflicts. But as we have highlighted
in the discussion of the requirements, handling conflicts is one of the key features if one
wants to use rule to reason with legal rules.

3.3 The Semantic Web Rule Language (SWRL)

The Semantics Web Rule Language (SWRL) is a W3C proposal for a rule interchange
format which combines ontologies represented in the Description Logic (DL) subset of
OWL with an XML format for rules in the Unary/Binary Datalog subset of the Rule
Markup Language (RuleML).5 While both OWL-DL and Datalog, separately, are de-
cidable subsets of first-order logic, the union OWL-DL and Datalog, as in SWRL, is
undecidable.

Three approaches to implementing inference engines for SWRL have been tried. In
Hoolet, SWRL files are translated into a language for full first-order logic and a general
purpose first-order theorem prover is used to derive inferences, with all the undesirable
computational properties this entails. In Bossam, SWRL files are translated into rules
for a forward-chaining production rule system6. This procedure translates OWL-DL
axioms into rules, but with a loss of information, since some information expressable in

5 http://www.w3.org/Submission/SWRL/
6 http://owl.man.ac.uk/hoolet/

http://www.w3.org/Submission/SWRL/
http://owl.man.ac.uk/hoolet/

290 T.F. Gordon, G. Governatori, and A. Rotolo

OWL-DL axioms cannot be represented in Bossam’s production rule language. Thus the
resulting inference engine with this approach is incomplete. Finally, a third approach,
taken by Pellet, is to start with tableaux theorem-prover for OWL-DL and extend this
to support the “DL-safe” subset of SWRL [42].

Let us now try to evaluate SWRL with respect to the requirements we have identified
for modeling and reasoning with legal rules. Since SWRL rules are Horn clauses, it is
not possible to model legal rules in an isomorphic way. Most legal rules would need
to be modeled using several SWRL rules. Morever, the lack of negation in Horn clause
logic is a problem, since both the condtions and conclusions of legal rules are often
negated. Perhaps this can be overcome in SWRL to some extent by defining comple-
mentary predicates using OWL classes. Since rules are represented in XML in SWRL,
they can be reified by giving them identifiers using XML attributes. Similarly, the vari-
ous properties of legal rules, such as their validity, could presumably also be represented
using XML attributes. But since these attributes would be at a meta-level, outside the
formal syntax and semantics of the SWRL logic, and since SWRL inherits the mono-
tonic semantics of classical first-order logic, it is not clear how these measures could
be used to resolve conflicts among legal rules, using principals like lex superior or to
reason with exclusionary rules. A further problem is that SWRL provides no standard
way to annotate the conditions of rules with information about the distribution of the
burden proof, but it should be possible to extend SWRL, again using XML attributes, to
provide this information. Semantically, unlike legal rules SWRL rules do contrapose,
since they are interpreted as material conditionals of classical logic, but in practice
SWRL reasoners are too weak to derive the undesired conclusions. Morever, even if the
reasoners were stronger, without some way to represent negative facts, modus tollens
would never be applicable. If we separate the syntax of SWRL from its semantics, it
might be possible to develop a nonmontonic logic which solves some of these problems,
while retaining SWRL’s syntax, but with some additional XML attributes for annotat-
ing rules. But it is difficult to imagine how this approach could satisfy the isomorphism
requirement.

3.4 The Rule Interchange Format (RIF)

The Rule Interchange Format (RIF) Working Group of the World-Wide-Web Consor-
tium was established in 2005, about a year afer the SWRL proposal was submitted, with
the goal of developing an extensible rule interchange format for the Web, building on
prior experience in related initiatives and W3C submissions, included RuleML, SWRL,
Common Logic and SBVR, among others.7

Like RuleML, RIF is intended to be an extensible framework for a whole family
of rule languages, possibly with different semantics. Currently, RIF consists of draft
reports for several components, including the following:

RIF Core. Defines an XML syntax for definite Horn rules without function symbols,
i.e Datalog, with a standard first-order semantics.

RIF Basic Logic Dialect (RIF-BLD). Defines a language, building on RIF Core, for
definite Horn rules with equality and a standard first-order semantics.

7 http://www.w3.org/2005/rules/wg/charter.html

http://www.w3.org/2005/rules/wg/charter.html

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 291

RIF Production Rule Dialect (RIF-PRD). Extends RIF Core to define a language for
production rules, i.e condition-action rules in which the actions supported are lim-
ited to modifications of the facts in working memory.

RIF RDF and OWL Compatibility. Defines semantics for the integrated use of RIF,
RDF and OWL in applications.

RIF Framework for Logic Dialects (RIF-FLD). Defines a framework which may be
used to configure RIF dialects. For example, one can choose whether negation is
interpreted classically or negation-as-failure, as in logic programming, or whether
rules are interpreted as material implications or inference rules.

For the purpose of representing legal rule, RIF Core and RIF-BLD both appear to
suffer from the same problems as SWRL, and for the same reasons. The production
rule dialect of RIF does not seem relevant, since production rules, with their ability
to delete information from working memory, are a procedural programming paradigm
which may or may not be useful for implementing a legal reasoning support system, but
which are not suitable as a language for modeling legal norms. An interesting question
is whether the RIF Framework for Logic Dialects (RIF-FLD) could be used to con-
figure a RIF dialect which is more suitable for modeling legal norms. Although this
question requires further research, our initial impression is that the space of configura-
tions possible is limited subsets of first-order logic and well-known logic programming
paradigms. Languages suitable for modeling legal norms presumably fall outside of this
space, since neither first-order logic nor common logic programming languages provide
sufficient support isomorphic modeling of legal, allocating the burden of proof among
the parties in a legal dispute, or modeling principals for resolving conflicts, such as lex
superior for resolving rule conflicts.

3.5 The Legal Knowledge Interchange Format (LKIF)

The Legal Knowledge Interchange Format (LKIF) was developed in a three-year Eu-
ropean research project, ESTRELLA8, which completed its work at the end of 2008
[12,11]. The goal of the ESTRELLA project, with respect to LKIF, was to develop an
interchange format for formal models of legal norms which is sufficient for modeling
legal knowledge in a broad range of application scenarios, builds on existing standards,
especially in the context of the Semantic Web, and informed by the state-of-the-art of
the field of Artificial Intelligence and Law.

LKIF is an XML Schema for representing theories and arguments constructed from
theories. A theory in LKIF consists of a set of axioms and defeasible inference rules.
The language of individuals, predicate and function symbols used by the theory can be
imported from an ontology represented in the Web Ontology Language (OWL). Import-
ing an ontology also imports the axioms of the ontology. All symbols are represented
using Universal Resource Identifiers (URIs). Other LKIF files may also be imported,
enabling complex theories to modularized.

Axioms are named formulas of full first-order logic. The heads and bodies of in-
ference rules are sequences of first-order formulas. All the usual logical operators are

8 IST-4-027655.

292 T.F. Gordon, G. Governatori, and A. Rotolo

supported and may be arbitrarily embedded: disjunction (∧), conjunction (∨), negation
(¬), material implication (→) and the biconditional (↔). Both existential (∃) and uni-
versal (∀) quantifiers are supported. Free variables in inference rules represent schema
variables.

Terms in formulas may be atomic values or compound expressions. Values are rep-
resented using XML Scheme Definition (XSD) datatypes. Atomic formulas are reified
and can be used as terms, allowing some meta-level propositions to be expressed.

The schema for atomic formulas has been designed to allow theories to be displayed
and printed in plain, natural language, using Cascaded Style Sheets (CSS). An atomic
proposition may first be represented in propositional logic, using natural language, and
later enriched to become a first-order model, by marking up the variables and constants
of the proposition and specifying its predicate using an XML attribute. This feature of
LKIF is essential for enabling domain experts, not just computer specialists, to write
and validate theories.

Support for allocating the burden of proof when constructing arguments from theo-
ries in dialogues is provided. An assumable attribute is provided for atomic formulas,
to indicate they may be assumed true until they have been challenged or questioned.
An exception attribute is provided for negated formulas, to indicate that P may be pre-
sumed not true unless P has been proven. This is similar to negation-as-failure in logic
programming, in that the failure to find a proof for P is sufficient to prove ¬P, if ¬P is
an exception.

Arguments in LKIF link a sequence of premises to a conclusion, where both the
premises and the conclusion are atomic formulas. Attributes are provided for stating
the direction of the argument (pro or con), the argumentation scheme applied and the
role of each premise in an argument. Arguments can be linked together to form argu-
ment graphs. The legal proof standard each proposition at issue must satisfy, such as
“preponderance of the evidence” or “beyond reasonable doubt” may be specified. At-
tributes are provided for recording the relative weight assigned to each argument by the
finder of fact, such as the jury, or some other audience, as well as the status of each
issue in the proceeding.

All of the main elements of an LKIF file may be assigned Universal Resource Identi-
fiers, allowing them to be referenced in other documents, anywhere on the World Wide
Web. Cross references between elements of legal source documents and the elements of
the LKIF document which model these sources may be included within the LKIF file,
using a sequence of source elements. The scheme allows m to n relationships between
legal sources and elements of the LKIF model to be represented.

LKIF builds on and uses many existing World Wide Web standards, including the
XML, Universal Resource Identifiers, XML Namespaces, the Resource Description
Framework (RDF) and the Web Ontology Language (OWL). However, for a variety of
reasons it does not use other XML schemas for modeling legal rules, such as Common
Logic, RuleML, the Semantic Web Rule Language (SWRL), or the Rule Interchange
Format (RIF). Common Logic is an ISO standard for representing formulas of first-
order classical logic. While LKIF includes a sublanguage for first-order logic, LKIF
has been designed to allow formulas of first-order logic to be represented in human
readable form in natural language, to ease development, maintenance and validation

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 293

by domain experts. Moreover, the ISO Common Logic standard does not look like it
will be widely adopted within the World Wide Web community, which has its own
standards body, the World Wide Web Consortium. RuleML, SWRL and RIF, among
other efforts, are competing to become the Web standard for rules. At the beginning
of the ESTRELLA project, SWRL was the leading candidate. In the meantime, during
the development of LKIF in Estrella, RIF has become the leading contender. But neither
SWRL nor RIF are currently expressive enough for the legal domain. Legal rules can be
understood as domain-dependent defeasible inference rules. They cannot be adequately
modeled as material implications in first-order logic. However, an LKIF theory can in
principal import a first-order theory represented in any XML format, to be used as part
of the axioms of the theory. This feature of LKIF enables a part of the legal theory to be
represented in first-order logic, using whatever format eventually becomes the World
Wide Web standard.

A reference inference engine for LKIF, called Carneades, was developed in ES-
TRELLA [13]. Carneades is written in a functional style, using the Scheme program-
ming language, and is available as Open Source software.9. Carneades places some
restrictions on LKIF rules: The heads of rules are limited to literals (postive or negated
atomic formulas) and the biconditional (↔) operator and first-order quantifiers are not
supported. (Free variables, represented schema variables, are supported.) Since LKIF
is a very expressive language, the computational complexity of various reasoning tasks
can be high, depending on which features of the language have been used in a model.
Carneades allows programmers to choose a search strategy (depth-first, breadth-first,
iterative deepening), and to develop and plug-in custom, heuristic search strategies.
Resource bounds can be set to assure that every search for arguments about an issue
terminates in a predictable period of time.

Because of the open-ended nature of legal reasoning, no formal model of a legal
domain, in any logic, can guarantee that inferences are legally correct in some abso-
lute sense. The formal model may be incorrect or incomplete. Or the search space may
be so large as to make the legal problem undecidable or intractable. Thus legal rea-
soning and argumentation necessarily has a procedural component. Legal procedures
are designed to assure that justifiable decisions can be made in finite time, expending
limited resources, as in Loui’s conception of resource-bounded, non-demonstrative rea-
soning [25]. LKIF and Carneades are designed for use in such procedures. The ability
of Carneades to generate arguments, making the reasoning of the system transparent
and auditable, are essential for documenting and justifying legal decisions.

4 Conclusions

In this paper we outlined a comprehensive list of requirements for rule interchange
languages for applications in the legal domain. We used these requirements to assess
the suitability of some rule interchange languages, such as RuleML, SBVR, SWRL
and RIF, for modeling legal rules. We finally presented the Legal Knowledge Inter-
change Format (LKIF), a new rule interchange format developed specifically for legal
applications.

9 http://carneades.berlios.de

http://carneades.berlios.de

294 T.F. Gordon, G. Governatori, and A. Rotolo

Currently, there is no language, among those that we have examined here, which
satisfy all the requirements we have listed in Section 2: all languages have thus their
pros and cons. It should be noted, however, that not all those requirements play the
same role in the legal domain. While the concept of defeasibility, for example, is almost
ubiquitous in the law, others, such as the representation of some temporal properties (in
particular, the time when a rule is in force) are definitely more important when we are
dealing, e.g., with legislation.

Accordingly, it seems to us that some languages are not currently expressive enough
for the legal domain. In particular, RIF and SWRL fail to meet the defeasibility require-
ment, which is quite fundamental: legal rules are often defeasible and cannot be cor-
rectly represented through material implications in first-order logic. Hence, LKIF and
RuleML look suitable and more flexible in this regard. Another requirement, among
others, which seems crucial for modeling legal rules is the correct representation of the
many different types of normative effects, and the need to capture, for example, the
deontic concepts. Here, SBVR and RuleML [16], though with some limitations, show
how to do that in a rather satisfactory way.

Finally, it should remarked that, for specific types of application, some (but not all)
of these requirements can be somehow relaxed. For example, strict isomorphism is not
always compulsory if we have to devise a system for monitoring norm compliance but
we do not develop additional in-house rules for normalising legal norm, namely, for
identifying formal loopholes, deadlocks and inconsistencies, and making hidden con-
ditions (such as chains of reparative obligations) explicit. Without such a mechanism,
it may hard to guarantee that a given process is compliant, because we do not know
if all relevant norms have been considered. Anyway, we do believe that most of the
requirements seem fundamental for representing legal rules.

Acknowledgements

We would like to thank Harold Boley and Monica Palmirani for their valuable com-
ments on earlier versions of this paper.

NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. Abate, F., Jewell, E.J. (eds.): New Oxford American Dictionary. Oxford University Press,
Oxford (2001)

2. Architecture for Knowledge-Oriented Management of African Normative Texts using Open
Standards and Ontologies (2009), http://www.akomantoso.org/

3. Arnold-Moore, T.: Automatic generation of amendment legislation. In: Proc. ICAIL 1997.
ACM, New York (1997)

4. Bench-Capon, T.: The missing link revisted: The role of teleology in representing legal argu-
ment. Artificial Intelligence and Law 10(1-3), 79–94 (2002)

5. Bench-Capon, T., Coenen, F.: Isomorphism and legal knowledge based systems. Artificial
Intelligence and Law 1(1), 65–86 (1992)

http://www.akomantoso.org/

Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain 295

6. Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.): Law and the Semantic Web:
Legal Ontologies, Methodologies, Legal Information Retrieval and Applications. Springer,
Heidelberg (2005)

7. Boer, A., Hoekstra, R., Winkels, R.: Metalex: Legislation in XML. In: Proc. JURIX 2002.
IOS Press, Amsterdam (2002)

8. Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: A markup language for
Semantic Web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proc.
SWWS 2001, The first Semantic Web Working Symposium, pp. 381–401 (2001)

9. Carmo, J., Jones, A.J.: Deontic logic and contrary to duties. In: Gabbay, D., Guenther, F.
(eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 265–343. Kluwer, Dordrecht
(2002)

10. ChLexML (2009), http://www.svri.ch/
11. ESTRELLA Project. Estrella user report. Deliverable 4.5, European Commission (2008)
12. ESTRELLA Project. The legal knowledge interchange format (LKIF). Deliverable 4.3, Eu-

ropean Commission (2008)
13. ESTRELLA Project. The reference LKIF inference engine. Deliverable 4.3, European Com-

mission (2008)
14. Goedertier, S., Vanthienen, J.: A declarative approach for flexible business. In: Eder, J., Dust-

dar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 5–14. Springer, Heidelberg (2006)
15. Gordon, T.F.: The Pleadings Game, An Artificial Intelligence Model of Procedural Justice.

Springer, New York (1995), Book version of 1993 Ph.D. Thesis; University of Darmstadt
(1995)

16. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

17. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: Proc. EDOC 2006, pp. 221–232. IEEE, Los Alamitos (2006)

18. Governatori, G., Pham, D.H.: Dr-contract: An architecture for e-contracts in defeasible logic.
International Journal of Business Process Integration and Management 5(4) (2009)

19. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL (forthcoming)

20. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: Proc. ICAIL 2005, pp. 25–34. ACM Press, New York (2005)

21. Grosof, B.: Representing e-commerce rules via situated courteous logic programs in
RuleML. Electronic Commerce Research and Applications 3(1), 2–20 (2004)

22. Hage, J.C.: Reasoning with Rules – An Essay on Legal Reasoning and its Underlying Logic.
Kluwer Academic Publishers, Dordrecht (1997)

23. Kelsen, H.: General theory of norms. Clarendon, Oxford (1991)
24. Legal and Advice Sectors Metadata Scheme (LAMS5),

http://www.lcd.gov.uk/consult/meta/metafr.htm

25. Loui, R.P.: Process and policy: resource-bounded non-demonstrative reasoning. Computa-
tional Intelligence 14, 1–38 (1998)

26. Lupo, C., Batini, C.: A federative approach to laws access by citizens: The Normeinrete
system. In: Traunmüller, R. (ed.) EGOV 2003. LNCS, vol. 2739, pp. 413–416. Springer,
Heidelberg (2003)

27. Lupo, C., Vitali, F., Francesconi, E., Palmirani, M., Winkels, R., de Maat, E., Boer, A., Ma-
scellani, P.: General XML format(s) for legal sources. Technical report, IST-2004-027655
ESTRELLA European project for Standardised Transparent Representations in order to Ex-
tend Legal Accessibility: Deliverable 3.1 (2007)

28. McClure, J.: Legal-rdf vocabularies, requirements and design rationale. In: Proc. V Legisla-
tive XML Workshop, Florence. European Press (2006)

http://www.svri.ch/
http://www.lcd.gov.uk/consult/meta/metafr.htm

296 T.F. Gordon, G. Governatori, and A. Rotolo

29. The OWL services coalition: OWL-S 1.2 pre-release (2006),
http://www.ai.sri.com/daml/services/owl-s/1.2/

30. Paschke, A., Bichler, M., Dietrich, J.: Contractlog: An approach to rule based monitoring and
execution of service level agreements. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML
2005. LNCS, vol. 3791, pp. 209–217. Springer, Heidelberg (2005)

31. Pesic, M., van der Aalst, W.: A declarative approach for flexible business. In: Eder, J., Dust-
dar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg
(2006)

32. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting argument in legal rea-
soning. Artificial Intelligence and Law 4(3-4), 331–368 (1996)

33. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,
C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied Ontology 1(1), 77–106
(2005)

34. Rotolo, A., Sartor, G., Smith, C.: Good faith in contract negotiation and performance. Inter-
national Journal of Business Process Integration and Management 5(4) (2009)

35. Rubino, R., Rotolo, A., Sartor, G.: An OWL ontology of fundamental legal concepts. In:
Proc. JURIX 2006, pp. 101–110 (2006)

36. RuleML. The Rule Markup Initiative August 20 (2009), http://www.ruleml.org
37. Sadiq, S., Orlowska, M., Sadiq, W.: Specification and validation of process constraints for

flexible workflows. Information Systems 30(5), 349–378 (2005)
38. Sartor, G.: Legal reasoning: A cognitive approach to the law. In: Pattaro, E., Rottleuthner,

H., Shiner, R., Peczenik, A., Sartor, G. (eds.) A Treatise of Legal Philosophy and General
Jurisprudence, vol. 5. Springer, Heidelberg (2005)

39. OMG: Semantics of business vocabulary and business rules (SBVR) (2008),
http://www.businessrulesgroup.org/sbvr.shtml

40. Sergot, M.: A computational theory of normative positions. ACM Transactions on Computa-
tional Logic 2(4), 581–622 (2001)

41. Sergot, M., Sadri, F., Kowalski, R., Kriwaczek, F., Hammond, P., Cory, H.: The British Na-
tionality Act as a logic program. Communications of the ACM 29(5), 370–386 (1986)

42. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner.
Web Semantics 5(2), 51–53 (2007)

43. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business
process support. Data Knowledge Engineering 53(2), 129–162 (2005)

44. Verheij, B.: Rules, Reasons, Arguments. Formal Studies of Argumentation and Defeat. Ph.d.,
Universiteit Maastricht (1996)

45. von Wright, G.H.: Norm and Action. Routledge, London (1963)
46. Waagbø, G.: Quantified modal logic with neighborhood semantics. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik 38, 491–499 (1992)
47. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The abstract syntax of RuleML – towards a

general web rule language framework. In: Proc. Web Intelligence 2004, pp. 628–631. IEEE,
Los Alamitos (2004)

http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.ruleml.org
http://www.businessrulesgroup.org/sbvr.shtml

A Java Implementation of Temporal Defeasible Logic

Rossella Rubino and Antonino Rotolo

CIRSFID/Law School, University of Bologna, Italy
{rossella.rubino,antonino.rotolo}@unibo.it

Abstract. In this paper we report on a Java implementation of a variant of Tem-
poral Defeasible Logic, an extension of Defeasible Logic developed to capture
the concept of temporal persistence. The system consists of three elements: a
graphical user interface for selecting defeasible theories, and for visualizing con-
clusions; a parser, which translates sets of rules in TXT or RuleML formats; and
the inference engine to compute conclusions.

1 Introduction

Defeasible Logic (DL) is based on a logic programming-like language and, over
the years, proved to be a flexible formalism able to capture different facets of non-
monotonic reasoning (see [2]). Standard DL has a linear complexity [15] and has also
several efficient implementations (e.g., [6]).

DL has been recently extended to capture the temporal aspects of several phenom-
ena, such as legal positions [12] and modifications (e.g., [11]), and deadlines [8]. The
resulting logic, called Temporal Defeasible logic (TDL), has been developed to model
the concept of temporal persistence within a non-monotonic setting and, remarkably, it
preserves the nice computational properties of standard DL [10]. In addition, this logic
distinguishes between permanent and transient (non-permanent) conclusions, which
makes the language suitable for applications, for example, in the legal domain, where
normative effects may persist over time unless some other and subsequent events termi-
nate them (example: “If one causes damage, one has to provide compensation”), while
other effects hold on the condition and only while the antecedent conditions of the rules
hold (example: “If one is in a public office, one is forbidden to smoke”).

We believe that TDL and the present implementation should be interesting for the
RuleML community, since Courteous Logic Programming, which is one of the many
variants of DL [4], has been advanced as the inferential engine, e.g., for business con-
tracts represented in RuleML (see, e.g., [14]). In short, when we need to deal with time
(especially in normative contexts), we think that TDL could be adopted as a model for
developing suitable inferential mechanisms for RuleML, whose syntax can be extended
to represent the TDL features related with the notion of temporal persistence [16].

So far, no implementation of TDL has been developed. To the best of our knowledge,
this work reports on the first attempt. The layout of the paper is as follows. In Section 2
we briefly outline a variant of TDL. In Section 3 we describe the system implementing
the logic, which consists of a graphical user interface, a parser for translating rules
expressed in TXT and RuleML formats, and the inference engine. For space reasons,
we will only provide some details on the third and last component (Section 3.1). Some
conclusions end the paper.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 297–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

298 R. Rubino and A. Rotolo

2 Temporal Defeasible Logic

The language of propositional TDL is based on the concept of temporal literal, which
is an expression such as lt (or its negation, ¬lt), where l is a literal and t is an element
of a discrete totally ordered set T of instants of time {t1,t2, . . .}: lt intuitively means
that l holds at time t. Given a temporal literal l the complement ∼l is ¬pt if l = pt , and
pt if l = ¬pt .

A rule is an expression lbl : A ↪→x m, where lbl is a unique label of the rule, A is
a (possibly empty) set of temporal literals, ↪→∈ {→,⇒,�}, m is a temporal literal
and x is either π or τ signaling whether we have a persistent or transient rule. Strict
rules, marked by the arrow →, support indisputable conclusions whenever their an-
tecedents, too, are indisputable. Defeasible rules, marked by ⇒, can be defeated by
contrary evidence. Defeaters, marked by �, cannot lead to any conclusion but are used
to defeat some defeasible rules by producing evidence to the contrary. A persistent rule
is a rule whose conclusion holds at all instants of time after the conclusion has been
derived, unless interrupting events occur; transient rules establish the conclusion only
for a specific instant of time. Thus ex1 : p5 ⇒π q6 means that if p holds at 5, then q
defeasibly holds at time 6 and continues to hold after 6 until some event overrides it.
The rule ex2 : p5 ⇒τ q6 means that, if p holds at 5, then q defeasibly holds at time 6
but we do not know whether it will persist after 6. Note that we assume that defeaters
are only transient: if a persistent defeasible conclusion is blocked at t by a transient de-
feater, such a conclusion no longer holds after t unless another applicable rule reinstates
it.

We use some abbreviations. Given a rule r and a set R of rules, A(r) denotes the
antecedent of r while C(r) denotes its consequent; Rπ denotes the set of persistent rules
in R, and R[ψ] the set of rules with consequent ψ . Rs, Rsd and Rdft are respectively the
sets of strict rules, defeasible rules, and defeaters in R.

There are in TDL three kinds of features: facts, rules, and a superiority relation
among rules. Facts are indisputable statements, represented by temporal literals. The
superiority relation describes the relative strength of rules, i.e., about which rules can
overrule which other rules. A TDL theory is a structure (F,R,≺), where F is a finite set
of facts, R is a finite set of rules and ≺ is an acyclic binary superiority relation over R.

TDL is based on a constructive inference mechanism based on tagged conclusions.
Proof tags indicate the strength and the type of conclusions. The strength depends on
whether conclusions are indisputable (the tag is ∆), namely obtained by using facts
and strict rules, or they are defeasible (the tag is ∂). The type depends on whether
conclusions are obtained by applying a persistent or a transient rule: hence, conclusions
are also tagged with π (persistent) or τ (transient).

Provability is based on the concept of a derivation (or proof) in a TDL theory D.
Given a TDL theory D, a proof P from D is a finite sequence of tagged temporal literals
such that: (1) each tag is either +∆ π , −∆ π , +∂ π , −∂ π , +∆ τ , −∆ τ , +∂ τ , or −∂ τ ; (2)
the proof conditions Definite Provability and Defeasible Provability given below are
satisfied by the sequence P1.

1 Given a proof P we use P(n) to denote the n-th element of the sequence, and P[1..n] denotes
the first n elements of P.

A Java Implementation of Temporal Defeasible Logic 299

The meaning of the proof tags is a follows:

– +∆ π ptp (resp. +∆ τ ptp): we have a definite derivation of p holding from time tp

onwards (resp. p holds at tp);
– −∆ π ptp (resp. −∆ τ ptp): we can show that it is not possible to have a definite deriva-

tion of p holding from time tp onwards (resp. p holds at tp);
– +∂ π ptp (resp. +∂ τ ptp): we have a defeasible derivation of p holding from time tp

onwards (resp. p holds at tp);
– −∂ π ptp (resp. −∂ τ ptp): we can show that it is not possible to have a defeasible

derivation of p holding from time tp onwards (resp. p holds at tp).

The inference conditions for −∆ and −∂ are derived from those for +∆ and +∂ by
applying the Principle of Strong Negation [3]. For space reasons, in what follows we
show only the conditions for +∆ and +∂ .

Definite Provability
If P(n+1) = +∆ x ptp , then
1) ptp ∈ F if x = τ; or
2) ∃r ∈ Rx

s [p
t ′p] such that

∀ata ∈ A(r) : +∆ yata ∈ P[1..n]
where:

(a) y ∈ {π,τ};
(b) if x = π , then t ′p ≤ tp;
(c) if x = τ , then t ′p = tp.

Defeasible Provability
If P(n+1) = +∂ x ptp , then
1) +∆ x ptp ∈ P[1..n] or
2) −∆ x∼ptp ∈ P[1..n] and
2.1) ∃r ∈ Rx

sd[pt ′p] such that
∀ata ∈ A(r) : +∂ yata ∈ P[1..n], and

2.2) ∀s ∈ Ry[∼pt∼p] either
2.2.1) ∃btb ∈ A(s),−∂ ybtb ∈ P[1..n] or
2.2.2) ∃w ∈ Ry[pt∼p] such that

∀ctc ∈ A(w) : +∂ yctc ∈ P[1..n] and
s ≺ w

where:

1. y ∈ {π,τ};
2. if x = π , then t ′p ≤ t∼p ≤ tp;
3. if x = τ , then t ′p = t∼p = tp.

Consider the conditions for definite provability. If the conclusion is transient (if x = τ),
the above conditions are the standard ones for definite proofs in DL, which are just
monotonic derivations using forward chaining. If the conclusion is persistent (x = π),
p can be obtained at tp or, by persistence, at any time t ′p before tp. Finally, notice that
facts lead to strict conclusions, but are taken not to be persistent.

Defeasible derivations run in three phases. In the first phase we put forward a sup-
ported reason (rule) for the conclusion we want to prove. Then in the second phase we
consider all (actual and potential) reasons against the desired conclusion. Finally in the
last phase, we have to rebut all the counterarguments. This can be done in two ways:
we can show that some of the premises of a counterargument do not obtain, or we can
show that the counterargument is weaker than an argument in favour of the conclusion.
If x = τ , the above conditions are essentially those for defeasible derivations in DL. If
x = π , a proof for p can be obtained by using a persistent rule which leads to p holding
at tp or at any time t ′p before tp. In addition, for every instant of time between the t ′p
and tp, p should not be terminated. This requires that all possible attacks were not trig-
gered (clause 2.2.1) or are weaker than some reasons in favour of the persistence of p
(clause 2.2.2).

300 R. Rubino and A. Rotolo

3 The Implementation

The system implementing TDL consists of three elements: (a) a parser, which translates
sets of rules in TXT or RuleML formats to generate a corresponding TDL theory; (b)
a Graphical User Interface for selecting defeasible theories, and for visualizing conclu-
sions and the execution time of the algorithm; (c) an inference engine which implements
the algorithm of [10] to compute conclusions of the generated TDL theory.

The parser translates sets of rules in TXT or RuleML formats to generate a corre-
sponding theory to be processed by the inference engine. Any of such theories consists
of a set of rules and a temporal interval within which to compute the theory conclusions.
(Facts and the superiority relation can be safely removed to obtain an equivalent TDL
theory [10].) In particular, TDL rules can be represented in RuleML as derivation rules
[7]. However, standard RuleML does not support temporal concepts in its syntax. So, in
addition to introducing some attributes for representing the rule strength (whether a rule
is strict, defeasible, or a defeater) and the rule labels [7], the syntax of the RuleML ele-
ments Atom and Imp is extended in order to express the time parametrizing the literals
and the duration (whether the rule is persistent or transient) [16].

The Graphical User Interface allows the user to select a set of rules in RuleML or
TXT format and to decide the time interval within which to compute their conclusions.
Rules are then elaborated by assigning a unique label to each rule and the signs +/− to
the literals according to whether they are positive or negative: the rules are visualized
accordingly. The data are then elaborated in such a way as to create and return the hash
tables on which is based the algorithm [10]:

– a hash table keeps track of the rules in which an atom occur; in particular, for each
atom α , the table will point to the rules where +α occurs in their heads and their
bodies, and where −α occurs in their heads and their bodies;

– a hash table keeps track of the times of the literals occurring in the head of the rules;
– a hash table keeps track of the times of the literals occurring in the heads of transient

rules;
– a hash table keeps track of the least times associated with the literals occurring in

the head of persistent rules2.

After the data are inputed into the system, it is possible to compute the definite
and defeasible conclusions, which are stored in a hash table containing pairs string-
ArrayList of integers. The strings represent the atoms of the theory while the integers
are the time instants when the atoms hold. For space reasons, in the remainder of this
paper we will only illustrate some details of the inference engine.

3.1 Inference Engine

The inference engine of the system implements in Java the algorithm for TDL developed
by Governatori and Rotolo in [10]3. The algorithm computes the extension of any TDL

2 These data are used, in particular, to remove the rules which have in their body literals
parametrized by times preceding those stored in this hash table. See Section 3.1 for more
details.

3 See http://www.defeasible.org/implementations/TDLJava/index.html for the full code and the
Javadoc documentation. See [16] for more details.

http://www.defeasible.org/implementations/TDLJava/index.html

A Java Implementation of Temporal Defeasible Logic 301

theory D, where the concept of extension is defined as follows: if HBD is the Herbrand
Base for D, the extension of D is the 4-tuple (∆+,∆−,∂+,∂−), where #± = {pt |p ∈
HBD,D � ±#xpt ,t ∈ T }, # ∈ {∆ ,∂}, and x ∈ {π ,τ}.

∆+ and ∆− are the positive and negative definite extensions of D, while ∂+ and ∂−
are the positive and negative defeasible extensions.

The computation of the extension of a TDL theory runs in three steps [10]4:

(i) in the first step the superiority relation is removed by creating an equivalent theory
where ≺= /0; any fact at , too, is removed by replacing it with a rule →τ at ;

(ii) in the second step the theory obtained from the first phase is used to compute the
definite extension;

(iii) in the third step the theory from the first step and the definite extension are used
to generate the theory to be used to compute the defeasible extension.

The Java class implementing the algorithm is TDLEngine. This has, as its main at-
tributes, the theory (a set of rules and atoms), the theory conclusions, the time interval
within which to compute these conclusions, the execution time of the algorithm, and a
log manager.

The methods of the class TDLEngine are of two types: (i) those that are proper of the
algorithm; (ii) those that are functional to the algorithm execution. Here, we will only
describe the former ones.

It is worth noting that the computation makes use of time intervals to give a compact
representation for sets of contiguous instants. The algorithm works both with proper
intervals such as [t, t ′], i.e., intervals with start time t and end time t ′, and punctual
intervals such as [t], i.e., intervals corresponding to singletons.

Following the idea of [15], the computation of the definite and defeasible extensions
is based on a series of (theory) transformations that allow us (1) to assert whether a
literal is provable or not (and the strength of its derivation) (2) to progressively reduce
and simplify a theory. The key ideas depend on a procedure according to which, once
we have established that a literal is positively provable we can remove it from the body
of rules where it occurs without affecting the set of conclusions we can derive from the
theory. Similarly, we can safely remove rules from a theory when one of the elements in
the body of the rules is negatively provable. The methods of TDLEngine for this purpose
are computeDefiniteConclusions and computeDefeasibleConclusions.

The method computeDefiniteConclusions works as follows. At each cycle, it
scans the set of literals of the theory in search of temporal literals for which there are no
rules supporting them (namely, supporting their derivation). This happens in two cases:
(i) there are no rules for a temporal literal lt or (ii) all the persistent rules having the
literal in their head are parametrized by a greater time than t. For each of such temporal
literals we add them to the negative definite extension of the theory, and remove all rules
where at least one of these literals occurs. Then, the set of rules is scanned in search of
rules with an empty body. In case of a positive match we add the conclusion of the rule
to the positive definite extension (with an open ended interval for a persistent rule and
with a punctual interval otherwise). Finally we remove such temporal literals matching

4 Governatori and Rotolo [10] proved that, given a TDL theory D, the extension of D can be
computed in linear time, i.e., O(|R| ∗ |HD| ∗ |TD|), where R are the rules of D and TD is the set
of distinct instants occurring in D. It is also shown that the proposed algorithm is correct.

302 R. Rubino and A. Rotolo

the newly added conclusions from the body of rules. The cycle is repeated until (1)
there are no more literals to be examined, or (2) the set of strict rules is empty, or (3) no
addition to the extension happened in the cycle.

The method computeDefeasibleConclusions is more complex. As regards the
scanning of the set of literals of the theory–in search of temporal literals for which there
are no rules supporting them–the procedure is basically the same of computeDefi-
niteConclusions (with the difference that when we eliminate a rule we update the
state of the extension instead of waiting to the end as in the case of the definite exten-
sions). Then we search for rules with empty body. Suppose we have one of such rules,
say a rule for lt , and we know that the complement of l, i.e., ∼l, cannot be proved at t.
So we add (∼l, [t]) to ∂−. At this stage we still have to determine whether we can insert
l in ∂+ and the instant/interval associated to it. We have a few cases. The rule for l is
a defeater: defeaters cannot be used to prove conclusions, so in this case, we are done.
If the rule is transient, then it can prove the conclusion only at t, and we have to see
if there are transient rules for ∼lt or persistent rules for ∼lt′ such that t ′ ≤ t. If there
are we have to wait to see if we can discard such rules. Otherwise, we can add (l, [t])
to ∂+. Finally, in the last case the rule is persistent. What we have to do in this case is
to search for the minimum time t ′ greater or equal to t in the rules for ∼l, and we can
include (l, [t, t ′]) in ∂+.

The method computeDefeasibleConclusions basically calls three subroutines:
proved, discard, and persistence.

The subroutine corresponding to persistence updates the state of literals in the
extension of a theory after we have removed the rules in which we know at least one
literal in the antecedent is provable with −∂ x. Consider, for example, a theory where
the rules for p and ¬p are: r : ⇒π p1, s : q5 ⇒τ ¬p10, v : ⇒π ¬p15. In this theory we
can prove +∂ π pt for 1 ≤ t < 10, no matter whether q is provable or not at 5. Suppose
that we discover that −∂ xq5. Then we have to remove rule s. In the resulting theory
from this transformation can prove +∂ π pt for 1 ≤ t < 15. Thus we can update the entry
for l from (l, [1,10]) to (l, [1,15]).

Secondly, discard adds a literal to the negative defeasible extension and then re-
moves the rules for which we have already proved that some literal in the antecedent
of these rules is not provable. The literal is parametrised by an interval. Then it further
calls persistence that updates the state of the extension of a theory.

Third, proved allows to establish if a literal is proved with respect to a given time
interval I. As a first step, it inserts a provable literal in the positive defeasible extension
of the theory. Then it calls discard with the complementary literal. The next step is to
remove all the instances of the literal temporalised with an instant in the interval I from
the body of any rule. Finally, the rule is removed from the set of rules.

4 Discussion and Conclusions

There are two mainstream approaches to reasoning with and about time: a point based
approach, as TDL, and an interval based approach [1]. Notice, however, that TDL is
able to deal with constituents holding in an interval of time: an expression ⇒ a[t1,t2],
meaning that a holds between t1 and t2, can just be seen as a shorthand of the pair of

A Java Implementation of Temporal Defeasible Logic 303

rules ⇒π at1 and �τ ¬at2 . Non-monotonicity and temporal persistence are covered by
a number of different formalisms, some of which are quite popular and mostly based on
variants of Event Calculus or Situation Calculus combined with non-monotonic logics
(see, e.g., [17,18]). TDL has some advantages over many of them. In particular, while
TDL is sufficiently expressive for many purposes, it is possible in TDL to compute
the set of consequences of any given theory in linear time to the size of the theory. To
the best of our knowledge, no logic with a comparable expressive power of TDL is so
efficient. Temporal and duration based defeasible reasoning has been also developed by
[5,13]. [13] focuses on duration and periodicity and relationships with various forms of
causality. In particular, [5] proposed a sophisticated interaction of defeasible reasoning
and standard temporal reasoning (i.e., mutual relationships of intervals and constraints
on the combination of intervals). In these cases no complexity results are available, but
these systems cannot enjoy the same nice computational properties of TDL, since both
are based on more complex temporal structures.

On account of the feasibility of TDL, in this paper we reported on the first imple-
mentation in the literature of this logic, which has been developed in Java because of
the good performance and flexibility results of another implementation proposed for a
modal (non-temporal) extension of DL [9]. We are still at a preliminary stage for test-
ing the system. In particular, we have not yet done a systematic performance evaluation
using tools generating scalable test defeasible logic theories: this study is a matter of
further research. We have evaluated only some theory types (exemplified below):

– Backward Persistence Transient
• Rules: ax ⇒τ ax−1, ⇒τ a100

• Output: (a, [0,100])
– Backward Persistence Persistence

• Rules: ax ⇒π ax−1, ⇒τ a100

• Output: (a, [0,100])
– Backward Opposite Persistence

• Rules: a100 ⇒π ¬a0, ⇒τ a100

• Output: (a, [100]), (¬a, [0,99])

– Backward Persistence Lazy
• Rules: a100 ⇒π a0, ⇒τ a100

• Output: (a, [0,100])
– Persistence via Transient

• Rules: ax ⇒τ ax+1, ⇒τ a0

• Output: (a, [0,100])
– Persistence

• Rules: ⇒π a0

• Output: (a, [0,100])

Our preliminary experiments, reported in Table 1,were performed on an Intel Core
Duo (1,80 GHz) with 3 GB main memory. We focused, among others, on some types
of backward persistence, where conclusions persist from times which precede the ones
when rules leading to such conclusions apply. These reasoning patterns occur, e.g., in
the legal domain, where the retroactivity of normative effects is a common phenomenon
[11]. As expected, all cases of backward persistence where conclusions are re-used to
derive persistent literals (“Backward Persistence Transient” and “Backward Persistence
Persistence”) are more computationally demanding, while the other cases, where literals
persist by default, are comparable to standard persistence (the last row in Table 1). We
also tested the system with some real-life scenarios, which cannot be described here
[16]5. Two of them are particularly significant, one formalizing the regulation on road
traffic restrictions of the Italian town of Piacenza, another corresponding to a real E-
commerce scenario. We verified that the system behaved correctly in all cases.

5 See also http://www.defeasible.org/implementations/TDLJava/index.html

http://www.defeasible.org/implementations/TDLJava/index.html

304 R. Rubino and A. Rotolo

Table 1. Performances on Persistence

Theory Rules Atoms Time Execution time
Backward Persistence Transient 11 1 [0,100] 1110 ms

Backward Persistence Persistence 11 1 [0,100] 984 ms
Backward Opposite Persistence 2 1 [0,100] 15 ms

Backward Persistence Lazy 2 1 [0,100] 32 ms
Persistence via Transient 11 1 [0,100] 1250 ms

Persistence 1 1 [0,100] 16 ms

References

1. Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23 (1984)
2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-

sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)
3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into

logic programming. Theory and Practice of Logic Programming 6, 703–735 (2006)
4. Antoniou, G., Maher, M.J., Billington, D.: Defeasible logic versus logic programming with-

out negation as failure. Journal of Logic Programming 42, 47–57 (2000)
5. Augusto, J., Simari, G.: Temporal defeasible reasoning. Knowledge and Information Sys-

tems 3, 287–318 (2001)
6. Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the Semantic

Web. International Journal on Semantic Web and Information Systems 2, 1–41 (2006)
7. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-

erative Information Systems 14(2-3), 181–216 (2005)
8. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in tempo-

ral modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

9. Governatori, G., Pham, H.D.: A semantic web based architecture for e-contracts in defeasible
logic. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 145–
159. Springer, Heidelberg (2005)

10. Governatori, G., Rotolo, A.: Temporal defeasible logic has linear complexity. Technical re-
port, NICTA, Queensland Research Laboratory, Australia (2009),
http://www.governatori.net/publications.html

11. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL (forthcoming)

12. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: ICAIL 2005, pp. 25–34. ACM Press, New York (2005)

13. Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Orgun, M.A.,
Thornton,J. (eds.)AI2007.LNCS(LNAI),vol.4830,pp.476–485.Springer,Heidelberg(2007)

14. Grosof, B.N.: Representing e-commerce rules via situated courteous logic programs in
RuleML. Electronic Commerce Research and Applications 3(1), 2–20 (2004)

15. Maher, M.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1, 691–711 (2001)

16. Rubino, R.: Una implementazione della logica defeasible temporale per il ragionamento
giuridico. PhD thesis, CIRSFID, University of Bologna (2009)

17. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press, Cambridge (1997)

18. Turner, H.: Representing actions in logic programs and default theories: A situation calculus
approach. Journal of Logic Programming 31(1-3), 245–298 (1997)

http://www.governatori.net/publications.html

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 305–314, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Fill the Gap in the Legal Knowledge Modelling

Monica Palmirani1, Giuseppe Contissa2, and Rossella Rubino1

1 CIRSFID - University of Bologna
{monica.palmirani,rossella.rubino}@unibo.it

2 CODEX - Stanford University
contissa@stanford.edu

Abstract. There is a gap between the legal text description in XML trends and
the legal knowledge representation of the norms that from the text starts. This
gap affects the effectiveness of the legal resources exploitation and the integrity
of the legal knowledge on the Web. This paper presents a legal document model
for managing the legal resources in integrated way and linking all the different
levels of representation1.

1 Introduction

The AI & Law community dedicated the last twenty years to model the legal norms
using different logics and formalisms [14]. The methodology used starts from a re-
interpretation of the legal text by a Legal Knowledge Engineer that extracts the
norms, applies models and theory using a logic and finally represents them with a
particularly formalism. In the last ten years several Legal XML standards were arisen
for describing the legal text [9] and rules (RuleML, RIF, SWRL, etc.). In the mean-
time the Semantic Web, in particularly the Legal Ontology research, combined with
the NLP extraction of the semantic [13], has borne a great impulse to the modelling of
the legal concepts [3]. In this scenario there is the urgent need to close the gap be-
tween the text description, definitely using XML techniques, and the norms modelling
in order to realise an integrated and self-contained representation of the legal re-
sources available on the Web.

The reasons of this urgent need are primarily four.

• the legal knowledge is now presented in a disjointed way by the original text that
inspired the logical modelling. This disconnection between legal document man-
agement and logic representation of the norms affects strongly the real usage of the
legal resources in many applications of the law in favour of the citizens, public
administrations, enterprises;

• the change management over the time of the legal document, especially the legisla-
tive one that for its nature is variable and subject to frequent modifications,
significantly affects the coordination between the text and the rules that should be
remodelled;

1

 This work was partially performed inside of the Estrella IST6-project n. 2004-027655. We
would like to thanks Thomas Gordon for encouraging us in this vision and also for providing
to the authors useful comments during several discussions on the LKIF.

306 M. Palmirani, G. Contissa, and R. Rubino

• the legal validity of the text as published by the official authority should be pre-
served by any manipulation. On the other hand it is important to connect legal
document resources, that includes itself many legality values, with the multiple in-
terpretations coming from the legal knowledge modelling;

• a theory of legal document modelling able to separate clearly the many layers of
representation of the resource: content (text), structure of the text, metadata on the
document, ontology on the legal concepts expressed in the text, legal content mod-
elling (normative part of the text) is fundamental for preserving over the time the
digital legal text enriched by many semantic annotations, including also logic rep-
resentation of the norms.

This paper aims to present a new approach for joining two fields of the legal re-
search, AI&Law and Legal Document Management, for realising the structure of the
Semantic Web in favour to a concrete application of the legal knowledge information
in the retrieval and in the legal reasoning field. A pilot case and the related methodol-
ogy is presented for better explaining the model presented. Finally the conclusions
comments the results and critical issues.

2 Layers of Legal Document Modelling

The state of the art of the last ten years produced plenty of Legal XML standards for
describing the document as legal resource. We can divide these standards in four
categories:

• the first generation of Legal document XML standard2, was oriented mostly to
describe the legal text and its structure with an approach near to the database enti-
ties or the typography-word processing paradigms;

• the second generation posed more attention to the document modelling and to the
description of text, structure and metadata3. Nevertheless the descriptiveness of the
elements was not preceded by an abstract analysis of the classes of data and the re-
sult is a very long list of tags, a complex inclusions of DTDs or XML-schema, with
a frequent overlapping between metadata and text definition and a weak instru-
ments for linking the text to any other layers;

• the third generation is based on pattern. The pattern defines the properties of the
class and its grammar, content model, behaviour and hierarchy respect the other
classes, so any additional tag belongs to an existing abstract class and in this way it
is preserved the consistency over the time. A strong attention to divide the text,
structure, metadata and ontology is a primary principle in order to track in robust
way any new layer put on the top of the pure text. Because the pattern defines gen-
eral rules that no longer impose real constraints in the mark-up action, so the clar-
ity of design scarifies the prescriptiveness 4;

• the four generation uses the pattern jointly with co-constraint grammar like, among
the others, RELEX NG [10], Schematron [6], DSD [8], etc. for resolving above
mentioned problem of lack of prescriptiveness.

2 Like EnAct or Formex.
3 As NiR or Lexdania.
4

 Akoma Ntoso [15] and CEN/Metalex are examples of this approach.

 Fill the Gap in the Legal Knowledge Modelling 307

1.Content -
Metalex/CEN

<block> text text
</block>

2.Structure of the Legal
Document

Metalex/CEN+Legal
document ontology

<article>
<block> text </block>
<block> text </block>

</article>

3.Legal Metadata -
RDFa

<rif>J vs. M</rif>

4.LegalOntology
LKIF-core and

RDFa

5.Modelling of the Legal
knowledge - LKIF

1.Content -
Metalex/CEN

<block> text text
</block>

2.Structure of the Legal
Document

Metalex/CEN+Legal
document ontology

<article>
<block> text </block>
<block> text </block>

</article>

3.Legal Metadata -
RDFa

<rif>J vs. M</rif>

4.LegalOntology
LKIF-core and

RDFa

5.Modelling of the Legal
knowledge - LKIF

ll

Fig. 1. Layers of representation in the Legal Document Modelling

For now we are using CEN/Metalex, as a transformation of NiR, jointly with LKIF
[5] that supports RELEX NG.

The aim is to define a general legal document architecture able to describe all the
following five layers (see Fig. 1) with a unique syntax or with reasonable hooks for
integrating, in a cleanest way, all the different layers without confusion:

• text: part of the document officially approved by the authority with the legal power;
• structure: of the text: part of the document that states an organisation of the text;
• metadata: any information that was not approved by the authority in the delibera-

tive act;
• ontology: any information about the reality in which the document act a role (e.g.

for a judgement the juridical system concepts) or any concept called from the text
that needs a modelling;

• legal knowledge representation: the part of the interpretation and modelling of
the meaning of the text under legal perspective. Several XML standards are present
in the state of the art for managing rules (RIF, RuleML, SWRL), nevertheless
LKIF seems to provide a flexible language able to describe different possible theo-
ries or logic models (propositional, predicative, argumentative, non-monotonic,
deontic, defeasible, etc.) more fitted for the legal domain.

3 Pilot Case Scenario

A pilot case scenario is used for explaining in concrete the Legal Document Model-
ling. It is based on the Italian Saving Tax Law (Legislative decree No 48 of 18 April
2005) that implements the EU Directive (Council Directive 2003/48/EC) in the same
domain. One of the most important problems in the national legislative system of the
EU member states is to implement, by transposition, the EU Directive taking in con-
sideration the mandatory norms of the supra-national regulation and in the same time
to be coherent with the national legislation.

308 M. Palmirani, G. Contissa, and R. Rubino

The Italian pilot case aims to model the EU Directive and the national legislation
concerning the Saving Tax Law with LKIF and to detect the inconsistencies between
the two legislative norms using LKIF standard. On the other hand this pilot case helps
the legal drafting activity and versioning over the time of the Italian corpus because
the EU Directive has been modified three times until now and the Italian Saving Tax
Law has consequently needed to be adapted.

For implementing the pilot case we adopted the following methodology in order to
model, describe and represent the different levels of the legal knowledge information:

• text, structure, metadata: the EU Directive and the Italian Law were marked-up
in NiR and CEN/Metalex XML standard using Norma-Editor5 during the mark-up
and validation actions;

• ontology: an ontology of the EU Directive and the Italian Law was made in order
to model and define the macro-concepts specific for the Tax domain;

• rules: the EU Directive and the Italian Law were modeled in LKIF-rule syntax
manually by a legal knowledge engineering. The LKIF-rule files were imported in-
side of an inference engine6 properly customized by CIRSFID with a specific
dialog interface for checking the consistency and for managing the comparison
between the EU directive and the Italian Law.

Finally all the legal resources and the results were stored and delivered on the Web
with a native XML database7. In this way all the legal resources (text, ontology, logic
representation) were interconnected and presented using Internet interface and API
for fostering the legal knowledge through information retrieval engine, reasoning
engine, application layer.

4 Legal Text Description and Representation

The document texts were marked up firstly with the national Italian standard Nor-
meinRete for grasping as much as possible the full descriptiveness of the legal docu-
ment using a specific national reached mark-up. After that we translated the NIR-
XML in CEN/Metalex using Norma-Editor [11] for working with a standard based on
pattern and more flexible to manage the other layers linking.

Two mechanisms are present in CEN/Metalex for realizing the connection between
multi-layers division above presented:

• RDFa assertions in the XML, for linking the structural part (second level) with the
full ontology of classes (fourth level), with clear distinction and no overlap of rela-
tions and literal values;

• URIs naming convention, based on FRBR [1], is defined to identify the legal re-
sources. This naming permits to link the LKIF-rules or arguments assertion directly to
the part of the text involved in (connection between second level with the fifth level).

5 Norma-Editor is a specialized legal drafting editor developed by CIRSFID and based on

Microsoft-Word. It is able to convert the final mark-up action in different XML formats.
6 RuleBurst engine by RuleBurst Europe Ltd., now a branch of Oracle Corporation UK Ltd.
7

 eXistrella native XML database presented in Jurix2008 LegalXML Workshop, Palmirani,
Cervone.

 Fill the Gap in the Legal Knowledge Modelling 309

A fragment of XML text in the Table 2 demonstrates the twofold mechanism: (i)
rdfa:property says that the current metadata is-a member of the lkif-
document:URI ontology class; (ii) the rdfa:content value specifies the URI of
the resources that will be used in the LKIF XML file.

Table 1. Fragment of CEN/Metalex Saving Tax Law: identification of the document

<meta xmlns:rdfa="http://www.w3.org/TR/xhtml-rdfa-primer" .
 name="manifestationURI"
 id="metalex_d1e5"
 value="it/act/2005-04-18/84/2005_04_18_dlgs_84.xml"
 rdfa:property="[lkif-document:URI]"
 rdfa:content="/it/act/2005-04-18/84/ita@/2005_04_18_dlgs_84.xml"/>

5 LKIF Ontology of the Italian Savings Tax Law

The aim of the ontological level is to model any concepts (definition and properties)
that is useful for completing the understanding of the rules or arguments represented
in LKIF. Secondary the OWL syntax permits to make some consistency check on
the concepts using some existing engine like Pellet. The rationale is to define
in the ontology any static concepts (T-Box) of the context useful for the understand-
ing of the rule and arguments. Some classes of this ontology8 are presented
hereinafter:

• income. According to the LKIF ontology the income can be classified as a
top:Mental_Concept. We consider, here, only the subcategory of savings
income in the form of interest payments. The form of an income has been
modelled as the property form of the class savings income.

Fig. 2. Savings_income class

• Every payment, which is an action:Action in the LKIF ontology, has a
subject, a payer, a beneficiary, the amount of the payment, the medium adopted
to make the payment and finally the date and the place where the payment
has been performed. An interest payment is a payment whose object is an
interest.

Fig. 3. Interest_payment class

8 They are an extension to the LKIF-core ontology [4].

310 M. Palmirani, G. Contissa, and R. Rubino

• The beneficial owner is the individual, that is a j.1:Natural_Person in the
LKIF ontology, who receives an interest payment or for whom an interest payment
is secured. We defined some properties which are useful: the tax identification
number, the place and the date of birth, the name of the beneficial owner, his ad-
dress and his country.

Fig. 4. Beneficiary_owner class

• The paying agent is any economic operator who makes an interest payment to the
beneficial owner or secures a savings income payment for the beneficial owner.
The economic operator is the individual or body which actively takes part - from
the side of demand and of offer - in a specific market.

Fig. 5. Paying_agent class

These OWL classes are linked both in the CEN/Metalex XML file and in the LKIF-
rules modelling using two different syntaxes base on the same principles in order to
maintain consistent and self-contained the legal document representation in the
Web:

• inside of the CEN/Metalex XML we focused our attention on linking the fragment
of the text with the ontology class using RDFa assertion by the rdfa:rel and
rdfa:href attributes.

Table 2. Fragment of CEN/Metalex Saving Tax Law: assertion in RDFa using the class
interest_payment

<htitle name="rubrica" id="metalex_title_art2 " rdfa:about="" rdfa:rel="rdf:type"
rdfa:href="[savings:interest_payment]">Interest payments.</htitle>

 Fill the Gap in the Legal Knowledge Modelling 311

• inside of the LKIF-rule we specify the pred attribute's value with the name of the
predicate that is defined inside of the ontology class saving:paying_agent.
This mechanism permits to use classes, properties and definitions uniquely
modelled inside of the ontology with a great benefit for the consistency and
interoperability.

Table 3. Fragment of LKIF Saving Tax Law modelling: paying_agent predicate

<s pred="savings:paying_agent"><v>X</v> shall communicate the information concerning the payment
to Revenue Agency under 1-1b</s>

6 LKIF Modelling

The main goal was to represent in LKIF the rules for fulfilling the requirements of
the Italian Pilot, which involves a comparison of EU and Italian norms in a legal
drafting perspective. A high degree of granularity was requested and the knowledge
representation should have been isomorphic to the maximum possible extent, as
described by Bench-Capon [2] and Karpf [7]. Each legal source is represented sepa-
rately, preserving its structure and the traditional mutual relations, references and
connections with other legal sources, thanks to the fact that structural elements in
the source texts correspond to specific elements in the representation. The represen-
tation of the legal sources and their mutual relations should also be separated from
all other parts of the model, in particular the representation of queries and facts
management.

Therefore, each norm from the legal source text was represented in a correspondent
rule (or set of rules). No deviations were made, as long it was possible, from the
original structure of the text, even when it was redundant or confusing.

The representation of the Italian Savings Tax Law was carried out as follows: the
law was analyzed to find the core part to be modelled, keeping a correspondence with
the modelled part of the Directive. The following excerpt is a fragment representation
of Art. 1 comma 1, first paragraph9.

The rules are represented with head and body, the body is a set of sentences
(<s>) concatenated with Boolean operators. In case of exception we should spec-
ify a new rule with pred value "execption": this produce a duplication of the rule and
a verbose representation and a not efficient method for expressing the exception of
exception.

The <sources> block specifies the URIs where to find the corresponding part of
the rule into the text with a granularity since the word.

9
 “Art. 1. Subjects held to the communication - 1. Banks, investment firms, Poste italiane S.p.a.,
security investment fund management companies, financial companies and trust companies,
resident in Italy, shall communicate to the Revenue Agency the information concerning the
paid interest or the interest for which the immediate payment is secured for the immediate
benefit of individuals, that are beneficial owners, resident in another Member State; for this
purpose the individuals shall be considered beneficial owners of interest if they received the
payment as final recipient.”

312 M. Palmirani, G. Contissa, and R. Rubino

Table 4. Fragment of LKIF-XML modelling rules in Italian Saving Tax Law

<?xml version="1.0" encoding="utf-8"?>
<?oxygen RNGSchema="LKIF2.rnc" type="compact"?>
<?xml-stylesheet type="text/css" href="LKIF2.css"?>
<lkif xmlns:savings="savingsTax_ita.owl">
 <sources>
 <source element="#ita_savings" uri="/it/act/2005-04-18/84/eng@/main.xml"/>
 <source element="#s1_ita" uri="/it/act/2005-04-18/84/eng@/main.xml#art1"/>
 <source element="#s1-1a-ita" uri="/it/act/2005-04-18/84/eng@/main.xml#art1-com1"/>
 <source element="#s1-1a_01-ita" uri="/it/act/2005-04-18/84/eng@/main.xml#art1-com1"/>
 <source element="#s1-1a_02-ita" uri="/it/act/2005-04-18/84/eng@/main.xml#art1-com1"/>
 <source element="#s1-1a_03-ita" uri="/it/act/2005-04-18/84/eng@/main.xml#art1-com1"/>
 </sources>
 <theory id="ita_savings">
 <rules>
 <rule id="s1-1a-ita">
 <head>
 <s pred="savings:paying_agent"><v>X</v> shall communicate the information concerning
the payment to Revenue Agency under 1-1a</s>
 </head>
 <body>
 <and>
 <s><v>X</v> is a subject listed in 1-1</s>
 <s><v>X</v> is resident in Italy</s>
 <s><v>X</v> pays or secures interest to <v>Y</v></s>
 <s><v>Y</v> is an individual</s>
 <s><v>Y</v> is a beneficial owner</s>
 <s><v>Y</v> is resident in another member state</s>
 <s><v>X</v> operates as debtor or charged to pay</s>
 </and>
 </body>
 </rule>
 <rule id="s1-1a_01-ita">
 <head>
 <s><v>X</v> is a subject listed in 1-1</s>
 </head>
 <body>
 <or>
 <s><v>X</v> is a bank</s>
 <s><v>X</v> is an investment firm</s>
 <s><v>X</v> is poste italiane spa</s>
 <s><v>X</v> is a security investment fund management company</s>
 <s><v>X</v> is a financial company</s>
 <s><v>X</v> is a trust company</s>
 </or>
 </body>
 </rule>
 <rule id="s1-1a_02-ita">
 <head>
 <s><v>X</v> pays or secures interest to <v>Y</v></s>
 </head>
 <body>
 <or>
 <s><v>X</v> pays interest to <v>Y</v></s>
 <s><v>X</v> secures interest payment for immediate benefit of<v>Y</v></s>
 </or>
 </body>
 </rule>

 Fill the Gap in the Legal Knowledge Modelling 313

Table 5. Fragment of LKIF-XML modelling rules in EU Saving Tax Directive

 <rule id="par-2-1-exception-b2-EUSD">
 <head>
 <s pred="rule:excluded"> <c>par-2-pa1-EUSD </c>excluded<s>beneficial-owner<v>x</v>
 </s></s>
 <s pred="rule:excluded"> <c>par-2-pa2-EUSD</c> excluded<s>beneficial-owner<v>x</v>
 </s></s>
 </head>
 <body>
 <and>
 <s>individual<v>x</v>
 </s>
 <s>provides-evidence<v>x</v>
 <s>entity-taxed-on-its-profits<v>y</v>
 </s></s>
 <s>provides-evidence<v>x</v>
 <s>acts-on-behalf-of<v>x</v><v>y</v>
 </s></s>
 </and>
 </body>
 </rule>

7 Conclusions

The pilot case underlines several considerations concerning the gap between the five
levels of information that we need to model for describing a legal document:

• the granularity of the XML document marked-up is not isomorphic to the rules and
statements modeling in term of part of text (word, paragraphs, etc.);

• the relationship between rules and text is a N:M cardinality, so both the LKIF-rules
and the CEN/Metalex need to improve their syntax for implementing a smart
mechanism able to capture, without duplication, the multiple referencing;

• the interaction between rules in LKIF and concepts expressed in the ontology,
since the definitions can be considered too complex to be inserted into the ontol-
ogy, also because some of them are rules by themselves;

• the relationship between the XML document and the ontology it is useful even if it
is not in contrast with the usage of the same classes in the LKIF-rules;

• the legal document change over the time as well as the ontology definition so in the
LKIF-rule it is necessary a mechanism for managing the dynamicity over the time
as well as into ontology;

• the non-monotonic dimension of the law, the exception of exception convinced us
to include some extension in LKIF for implementing the defeasible logic paradigm
strictly linked with the text.

From these conclusions we learnt the lesson that we need a strong architecture of
the legal document divided in five levels. For permitting a coordination between these
layers we need standards designed with mechanisms for interconnecting them in
asynchronous way. Our future work will go in the direction to fill the gap between the
different markup granularity and temporality among the different layers. Finally we
aim to implement the defeasible logic extending the LKIF schema.

314 M. Palmirani, G. Contissa, and R. Rubino

References

1. Bekiari, C., Doerr, M., Le Boeuf, P.: International Working Group on FRBR and CIDOC
CRM Harmonization. FRBR object-oriented definition and mapping to FRBRER (v. 0.9
draft) (2008), http://cidoc.ics.forth.gr/docs/frbr_oo/frbr_docs/

 FRBR_oo_V0.9.pdf (accessed August 20 2009)
2. Bench-Capon, T., Coenen, F.: Isomorphism and legal knowledge based systems. Artificial

Intelligence and Law 1(1), 65–86 (1992)
3. Boer, A., Radboud, W., Vitali, F.: MetaLex XML and the Legal Knowledge Interchange

Format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models
of the Law. LNCS (LNAI), vol. 4884, pp. 21–41. Springer, Heidelberg (2008)

4. Breuker, J., Boer, A., Hoekstra, R., Van Den Berg, C.: Developing Content for LKIF: On-
tologies and Framework for Legal Reasoning. In: Legal Knowledge and Information Sys-
tems, JURIX 2006, pp. 41–50. ISO Press, Amsterdam (2006)

5. Gordon Thomas, F.: Constructing Legal Arguments with Rules in the Legal Knowledge
Interchange Format (LKIF). In: Computable Models of the Law, Languages, Dialogues,
Games, Ontologies 2008, pp. 162–184 (2008)

6. Jelliffe, R.: The Schematron Assertion Language 1.5,
 http://www.ascc.net/xml/resource/schematron/Schematron2000

(accessed June 20, 2009)
7. Karpf, J.: Quality assurance of Legal Expert Systems, Jurimatics No 8, Copenhagen Busi-

ness School (1989)
8. Klarlund, N., Møller, A., Schwartzbach, M.I.: DSD: A Schema Language for XML. In:

Proceedings of the third workshop on Formal methods in software practice, Portland
(2000)

9. Lupo, C., Vitali, F., Francesconi, E., Palmirani, M., Winkels, R., de Maat, E., Boer, A.,
Mascellani, P.: General xml format(s) for legal sources - Estrella European Project IST-
2004-027655. Deliverable 3.1, Faculty of Law. University of Amsterdam, Amsterdam
(2007)

10. Murata, M.: RELAX (REgular LAnguage description for XML) (2000),
 http://www.xml.gr.jp/relax (accessed June 20, 2009)

11. Palmirani, M., Brighi, R.: An XML Editor for Legal Information Management. In: Pro-
ceeding of the DEXA 2003, Workshop su E-Government, Praga, September 1-5, pp. 421–
429. Springer, Heidelberg (2003)

12. Peruginelli, G., Ragona, M. (eds.): Law via the Internet Free Access, Quality of Informa-
tion, Effectiveness of Rights, EPAP, p. 494 (2009)

13. Proceeding of the 12th International Conference on Artificial Intelligence and Law, Barce-
lona, June 8-12, p. 243. ACM, New York (2009)

14. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. In: Treatise on Legal Phi-
losophy and General Jurisprudence, vol. 5. Springer, Berlin (2005)

15. Vitali, F.: Akoma Ntoso Release Notes, http://www.akomantoso.org (accessed
August 20, 2009)

The Making of SPINdle

Ho-Pun Lam1,2 and Guido Governatori2

1 School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia

2 NICTA�, Queensland Research Laboratory, Brisbane, Australia

Abstract. We present the design and implementation of SPINdle – an open
source Java based defeasible logic reasoner capable to perform efficient and scal-
able reasoning on defeasible logic theories (including theories with over 1 million
rules). The implementation covers both the standard and modal extensions to de-
feasible logics. It can be used as a standalone theory prover and can be embedded
into any applications as a defeasible logic rule engine. It allows users or agents
to issues queries, on a given knowledge base or a theory generated on the fly
by other applications, and automatically produces the conclusions of its conse-
quences. The theory can also be represented using XML.

Keywords: Defeasible Logic, Modal Defeasible Logic, Reasoning.

1 Introduction

Defeasible logic (DL) is a non-monotonic formalism originally proposed by Nute [1]. It
is a simple rule-based reasoning approach that can reason with incomplete and contra-
dictory information while preserving low computational complexity [2]. Over the years,
the logic has been developed notably by [3,4,5]. Its use has been advocated in various ap-
plication domains, such as business rules and regulations [6], agent modeling and agent
negotiations [7], applications to the Semantic Web [8] and business process compliance
[9]. It is suitable to model situations where conflicting rules may appear simultaneously.

In this paper we report on the implementation of SPINdle which implements reason-
ers to compute the consequences of theories in defeasible logic. The implementation
covers both standard defeasible logic and modal defeasible logic.

The most important features of SPINdle are the following:

– It supports all rule types of defeasible logic, such as fact, strict rules, defeasible
rules, defeaters and superiority.

– It supports Modal Defeasible Logics [10] with modal operator conversions.
– It supports negation and conflicting (mutually exclusive) literals.
– A theory can be represented using XML and plain text (with pre-defined syntax),

and a theory and its extension can also be exported using XML.
– A visual theory editor is developed for editing standard defeasible logic theory.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 315–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

316 H.-P. Lam and G. Governatori

As a result, SPINdle is a powerful tools supporting:

– rule, facts and ontologies;
– monotonic and nonmonotonic (modal) rules reasoning with inconsistencies and in-

complete information

In the rest of this paper, section 2 gives a brief introduction to the syntax and seman-
tics of both standard defeasible logic and modal defeasible logic. Section 3 describes
the implementation details of SPINdle, the algorithm that it used and the data struc-
ture that it proposed to enhance the performance of the inference process. Section 4
presents the performance statistics from a study undertaken using various types and
sizes of defeasible logic theories. Section 5 gives our conclusions and poses future re-
search/development work on SPINdle.

2 Defeasible Logic

2.1 Basics of Defeasible Logic

A defeasible theory D is a triple (F,R,>) where F and R are finite set of facts and rules
respectively, and > is a superiority relation on R. Here SPINdle only considers rules
that are essentially propositional. Rules containing free variables are interpreted as the
set of their ground instances.

Facts are indisputable statements, represented either in form of states of affairs (lit-
eral and modal literal) or actions that have been performed. Facts are represented by
predicates. For example, “John is a human” is represented by human(John).

A rule, on the other hand, describes the relations between a set of literals (premises)
and a literal (conclusion). We can specify the strength of the rule relation using the three
kinds of rules supported by DL, namely: strict rules, defeasible rules and defeaters;
and can specify the mode the rules used to connect the antecedent and the conclusion.
However, in such situations, the conclusions derived will be modal literals.

Strict rules are rules in the classical sense: whenever the premises are indisputable
(e.g. facts) then so is the conclusion. An example of a strict rule is: “human are mam-
mal”, written formally:

human(X)→ mammal(X)

Defeasible rules are rules that can be defeated by contrary evidence. An example of
such a rule is “mammal cannot flies”; written formally:

mammal(X) ⇒¬flies(X)

The idea is that if we know that X is a mammal then we may conclude that it cannot fly
unless there is other, not inferior, evidence suggesting that it may fly (for example that
mammal is a bat).

Defeaters are a special kind of rules that cannot be used to draw any conclusions.
Their only use is to prevent some conclusions. That is, they are used to defeat some
defeasible rules by producing evidence to the contrary. For example the rule

heavy(X) � ¬flies(X)

The Making of SPINdle 317

states that an animal is heavy is not sufficient enough to conclude that it does not fly.
It is only evidence against the conclusion that a heavy animal flies. In other words, we
don’t wish to conclude that ¬flies if heavy, we simply want to prevent a conclusion flies.

DL is a “skeptical” nonmonotonic logic, meaning that it does not support contradic-
tory conclusions. Instead DL seeks to resolve conflicts. In cases where there is some
support for concluding A but also support for concluding ¬A, DL does not conclude
neither of them. However, if the support for A has priority over the support for ¬A then
A is concluded.

As we have alluded to above, no conclusion can be drawn from conflicting rules in
DL unless these rules are prioritised. The superiority relation is used to define priorities
among rules, that is, where one rule may override the conclusion of another rule. For
example, given the following facts:

→ bird → brokenWing

and the defeasible rules:
r : bird ⇒ fly
r′: brokenWing ⇒ ¬fly

which contradict one another, no conclusion can be made about whether a bird with a
broken wing can fly. But if we introduce a superiority relation > with r′ > r, then we
can indeed conclude that the bird cannot fly.

We now give a short informal presentation of how conclusions are drawn in DL. Let
D be a theory in DL (as described above). A conclusion of D is a tagged literal and can
have one of the following four forms:

+∆q meaning that q is definitely provable in D (i.e. using only facts and strict rules).
−∆q meaning that we have proved that q is not definitely provable in D.
+∂q meaning that q is defeasible provable in D.
−∂q meaning that we have proved that q is not defeasible provable in D.

Strict derivations are obtained by forward chaining of strict rules while a defeasible
conclusion p can be derived if there is a rule whose conclusion is p, whose prerequisites
(antecedent) have either already been proved or given in the case at hand (i.e. facts),
and any stronger rule whose conclusion is ¬p has prerequisites that fail to be derived.
In other words, a conclusion p is (defeasibly) derivable when:

– p is a fact; or
– there is an applicable strict or defeasible rule for p, and either

• all the rules for ¬p are discarded (i.e. not applicable) or
• every rule for ¬p is weaker than an applicable rule for p.

A full definition of the proof theory can be found in [3]. Roughly, the rules with
conclusion p form a team that competes with the team consisting of the rules with con-
clusion ¬p. If the former team wins p is defeasibly provable, whereas if the opposing
team wins, p is non-provable.

2.2 Modal Defeasible Logic

Modal logics have been put forward to capture many different notions somehow related
to the intensional nature of agency as well as many other notions. Usually modal logics

318 H.-P. Lam and G. Governatori

are extensions of classical propositional logic with some intensional operators. Thus any
modal logic should account for two components: (1) the underlying logical structure
of the propositional base and (2) the logical behavior of the modal operators. Alas,
as is well-known, classical propositional logic is not well suited to deal with real life
scenarios. The main reason is that the descriptions of real-life cases are, very often,
partial and somewhat unreliable. In such circumstances, classical propositional logic is
doomed to suffer from the same problems.

On the other hand, the logic should specify how modalities can be introduced and
manipulated. Some common rules for modalities are, e.g., Necessitation (from� φ infer
��φ) and RM (from � φ →ψ infer ��φ →�ψ). Both dictate conditions to introduce
modalities purely based on the derivability and structure of the antecedent. These rules
are related to well-known problem of omniscience and put unrealistic assumptions on
the capability of an agent. However, if we take a constructive interpretation, we have
that if an agent can build a derivation of ψ then she can build a derivation of �ψ .

To this end, SPINdle follows the semantics proposed by [10] on reasoning with
modal defeasible logic. However, due to the limited space, readers interested in un-
derstand the semantics, modal operator conversions, conflict detections, conflict resolu-
tions, and algorithm implemented in SPINdle please refer to the paper for details.

3 Implementation

3.1 SPINdle System Architecture

SPINdle, written in Java, consists of three major components (Fig. 1): the Rule Parser,
the Theory Normalizer and the Inference Engine.

Fig. 1. Main components of the SPINdle reasoner

SPINdle accepts defeasible logic theories represented using XML or plain text (with
pre-defined syntax). The Rule Parser is used to transform the theory from a saved theory
document into a data structure that can be processed in the next module. The nature of
the rule parser is rather similar to the Logic Program Loader module of the DR-Device
family of applications developed by [8].

After loading a theory into SPINdle, users can then modify/manipulate the theory
according to their applications need. The I/O Interface module in Fig. 1 provides useful

The Making of SPINdle 319

methods for helping users to load and save (modified) theory (also the derived conclu-
sions) to and from the database. Theories can also be exported using XML for agent
communication, which is a common scenario in the Semantic Web.

3.2 The Inference Process

The whole inference process has two phases: A pre-processing phase where we trans-
form the theory using the techniques described in [3] into an equivalent theory without
superiority relation and defeaters, which later helps to simplify the reasoning process in
the reasoning engine. The Theory Normalizer module in Fig. 1 carry out this process by
further breaking it down into three linear transformations: one to transform the theory
to regular form, one to empty the superiority relation and one to empty the defeaters. In
addition to this, the theory normalizer also transform rules with multiple heads into an
equivalent sets of rules with single head. It is expected that the transformed theory will
produce the same sets of conclusions in the language of the theory they transform.

Following [2] (a.k.a. the Delores algorithm), the conclusions generation phase (the
Inference Engine module) is based on a series of (theory) transformations that allow us
(1) to assert whether a literal is provable or not (and the strength of its derivation); (2)
to progressively reduce and simplify a theory. The reasoner will, in turn:

– Assert each fact (as an atom) as a conclusion and remove the atom from the rules
where the atom occurs positively in the body, and “deactivates” (remove) the rule(s)
where the atom occurs negatively in the body. The atom is then removed from the
list of atoms.

– Scan the list of rules for rules with empty head. It takes the head element as an
atom and search for rule(s) with conflicting head. If there are no such rules then the
atom is appended to the list of facts and the rule will be removed from the theory.
Otherwise the atom will append to the pending conclusion list until all rule(s) with
conflicting head can be proved negatively.

– Repeats the first step.
– The algorithm terminates when one of the two steps fails or when the list of facts

is empty. On termination the reasoner output the set of conclusions.

Finally, the conclusions are either exported to the users, or saved in the theory
database for future use. Since each atom/literal in a theory is processed exactly once
and every time we have to scan the set of rules, the complexity of the above algorithm
is O(|L | ∗ |R|), where L is the size of the distinct modal literals and R is the number
of rules in the theory [10]. This complexity result can be improved through the use of
proper data structure (Fig. 2). For each literal p a linked-list (the dashed arrow) of the
occurrences of p in rule(s) can be created during the theory paring phase. Each literal
occurrence has a link to the record for the rule(s) it occurs in. Using this data structure,
whenever a literal update occurs, the list of rules relevant to that literal can be retrieved
easily. Thus instead of scanning through all the rules for empty head (step 2), only
rules relevant to that particular literal will be scanned. The complexity of the inference
process will therefore reduced to O(|L | ∗ |M |), where M is the maximum number of
rules a literal associated with in the theory,

320 H.-P. Lam and G. Governatori

Fig. 2. Data structure for literals-rules association

It is important to note that the aforementioned algorithm is a generalized version that
is common in inferencing both standard defeasible logic and modal defeasible logic. In
the case of modal defeasible logic, due to the modal operator conversions, an additional
process adding extra rules to the theory is needed. In addition, for a literal p with modal
operator �i, besides its complement (i.e., �i¬p), the same literal with modal operator(s)
in conflict with �i should also be included in the conflict literal list (step 2) and only
literal with strongest modality will be concluded.

4 Performance Evaluation

SPINdle has been extensively tested for correctness, scalability and performance using
different forms of theories generated by a tool that comes with Deimos [11]. In this
section we are going to describe the tests we have performed and the result we obtained.

In the test, SPINdle is compiled using the SUN Java SDK 1.6 without any opti-
mization flags. The test begins with a heap size of 512MB and gradually increased to
2GB according to the theory size. Performance has been measured on a Pentium 4 PC
(3GHz) with Linux (Ubuntu) and 2GB main memory. Figure 3 shows the performance
and memory usage of SPINdle in running theories of various types and sizes.

The various theory types were designed to explore various aspects of defeasible in-
ference. For example, in theory simple-chain of size n, a fact a0 is at the end of a chain
of n rules ai ⇒ ai+1. A defeasible proof of an will use all the rules and the fact. In
theory tree(n,k), a0 is the root of a k-branching tree of depth n, in which every literals
occur once. More details about the various theory types can be found in [11]. Notices
that in our performance evaluation the theory sizes refer to the number of rules (both
strict rules and defeasible rules) that were stored in the theory. The statistics show only
the time used for the inference process (excluding the time used for loading theories
into the reasoner) and the total memory used. Figure 3 (a,b) show the performance and
memory usage with large theory (10000 < n < 180000)1; while (c,d) show the same
information in theory tree with k = 3 and n={2188, 6562, 19684, 59050 and 177148}.

Results (Fig. 3) show that SPINdle can handle inferences with thousands of rules
in less than three seconds. The reasoning time growth (in most cases) almost linearly

1 SPINdle does not impose any limitation on the theory size. SPINdle can reason on any theory
as long as it can be put onto the memory. The largest theory size tested so far is with n =
1,000,000 (1 million).

The Making of SPINdle 321

(a) Performance with different theories (b) Memory usage with different theories

(c) Performance in theory Tree3 (d) Memory usage in theory Tree3

Fig. 3. Performance and Memory usage with different theories

proportional to the size of the theories tested, which is coherent with the complexity
described in section 3.2.

On the contrary, the memory usage fluctuates as the theories sizes increase, regard-
less the semantics of the input theories. This may be due to the dynamic nature of hash
table that we used in handling the literal and theory objects as well as the temporary
variables that we created during the inference process. Nevertheless, for the theories
tested, our results show that SPINdle can handle 10,000 rules with less than 50MB
memory and 180,000 rules with less than 400MB.

Last but not least, apart from the default configuration, we can also optimize the per-
formance (also the memory usage) of SPINdle through different setting. For example, a
defeasible rule only engine can be used (instead of the ordinary one) if the input theory
contains defeasible rules only. Our results (not shown here) show that the performance
can be improved by up to 3% and with about 20% drop in memory usage (on average)
if we configure SPINdle properly.

5 Conclusion

We have presented SPINdle, a reasoner that support reasoning on both the standard
defeasible logic and modal defeasible logic. It features include:

– Full implementation of defeasible logic, including fact, strict and defeasible rules,
defeaters, and superiority relation among rules.

– It supports reasoning with Modal Defeasible Logic theory.
– It can reason with incomplete and inconsistent theories.
– It is efficient (due to the low computational complexity), and with low memory

consumption.

322 H.-P. Lam and G. Governatori

– It supports theory represented in both XML and pre-defined plain text format. The-
ory can also be exported using XML for agent communication.

We have also showed that the complexity of the inference process can be reduced
through the use of proper data structure.

SPINdle is freely available for downloading and experimentation under the LGPL
license agreement, at the following address:

http://spin.nicta.org.au/spindleOnline

To further enhance the usability of SPINdle, a visual editor for writing rules and theory
in standard defeasible logic was developed and is also available for download.

Future directions for SPINdle include both algorithm and technological improve-
ment, which include interface to support direct import from the web and processing of
OWL/RDF data and RDF schema ontologies. Reasoning support for Temporal Defea-
sible Logic [12] will also be included in the future.

References

1. Nute, D.: Defeasible logic. In: Gabbay, D., Hogger, C. (eds.) Handbook of Logic for Artificial
Intelligence and Logic Programming, vol. III, pp. 353–395. Oxford University Press, Oxford
(1994)

2. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1(6), 691–711 (2001)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2(2), 255–286 (2001)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into
logic programming. Theory and Practice of Logic Programming 6(6), 703–735 (2006)

5. Billington, D.: Defeasible logic is stable. J. Logic Computation 3(4), 379–400 (1993)
6. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: On the modeling and analysis of

regulations. In: Proceedings of the Australian Conference Information Systems, pp. 20–29
(1999)

7. Governatori, G., Rotolo, A.: Defeasible logic: Agency, intention and obligation. In: Lomus-
cio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128. Springer, Hei-
delberg (2004)

8. Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the semantic web.
International Journal of Semantic Web and Information Systems 2(1), 1–41 (2006)

9. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: 10th International Enterprise Distributed Object Computing Con-
ference (EDOC 2006), pp. 221–232. IEEE Computing Society, Los Alamitos (2006)

10. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defeasible
logic. Journal of Autonomous Agents and Multi Agent Systems 17, 36–69 (2008)

11. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning
systems. International Journal of Artificial Intelligence Tools 10, 483–501 (2001)

12. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: 10th International Conference on Artificial Intelligence and Law (ICAIL 2005), pp. 25–
34. ACM Press, New York (2005)

http://spin.nicta.org.au/spindleOnline

Approaches to Uncertain or Imprecise Rules - A
Survey

Matthias Nickles and Davide Sottara

1 Department of Computer Science,
University of Bath

Bath, BA2 7AY, United Kingdom
nickles@gmx.net

2 DEIS, Facolta di Ingegneria,
Universita di Bologna, Bologna, Italy

dsotty@gmail.com

Abstract. With this paper we present a brief overview of selected
prominent approaches to rule frameworks and formal rule languages for
the representation of and reasoning with uncertain or imprecise knowl-
edge. This work covers selected probabilistic and possibilistic logics, as
well as implementations of uncertainty and possibilistic reasoning in rule
engine software.

Keywords: Rules, Uncertainty Reasoning, Imperfect Knowledge, Se-
mantic Web, Knowledge Engineering.

1 Introduction

This survey paper presents a short overview of selected more or less prominent
approaches to rule frameworks and formal rule languages for the representation
of and reasoning with various kinds of uncertain, imprecise or ambiguous infor-
mation. These properties of information are quite different and knowledge may
be affected by one or more of them at the same time. After Smets ([42]), the
term “imperfection”will be used as a general concept encompassing all kinds
of them, since “uncertainty”, which is also sometimes used in a general way, is
actually a specific type of imperfection.

The knowledge an agent has about the world can often be conveniently en-
coded using formulas expressed in some logic-based language. In classical logic,
a formula is either true or false. However, in many practical cases the truth of a
formula might be unknown, unclear or uncertain, in which case we cannot assign
it a definite truth value.

There are many possible reasons for such imperfect knowledge. Several at-
tempts to outline the differences and classify them in a standard framework
exist: among them, the already cited survey by Smets [42] but also, for example
[26,31,33]. More recently, the W3C Incubator Group on Uncertainty Reasoning
for the Web has defined an ontology (see [10]) for the representation of imper-
fection of information on the Web which is to some degree resembled in this

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 323–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

324 M. Nickles and D. Sottara

paper. Even if there is much philosophical debate, it is generally accepted that
such imperfection can take on the following major forms (among others):

Uncertainty derives from a lack of knowledge about a fact or an event, be it
past, present or future, even if the actual state of the world is known to belong
to some set of alternatives. Uncertainty may be aleatory, i.e. intrinsically
present in some random phenomenon so that the knowledge gap cannot be
filled, or epistemic, i.e. due to a partial ignorance of the agent, for example
because of missing, questionable or inconsistent data. Often, but not always,
the degree of uncertainty can be measured in some statistical, objective way.
In the epistemic case, or whenever a subjective judgement is adopted, the
degree of uncertainty is typically denoted as the degree of belief of some
agent in a statement. But the subjective belief of an agent can of course also
comprise statistical information.

Imprecision arises when knowledge is as complete as it can be, but the terms
used to denote it do not allow to identify the entity that are being referred
in a precise and univocal way. This imprecision may lead to ambiguity, when
there is more than one possible interpretation, approximation, when a class of
entities is collapsed into one representative, and vagueness, when the bound-
aries of the definition of a concept are relaxed - usually fuzzified - in some way.

Inconsistency is a property of a knowledge base with conflicting information,
such that there is no possible world it can describe. Conflicts have to be
resolved, usually removing, ignoring or modifying part or all the conflicting
information. Inconsistency may be a symptom of incorrect or noisy informa-
tion. But of course there is possibly also erroneous information which does
not lead to any (apparent) inconsistency. In this survey, we do not consider
formal frameworks for inconsistency handling.

Notice that an imperfect representation of knowledge may be more concise,
robust and less expensive to obtain than its perfect version. Consider for example
the age-related version of the Sorite Paradox : if a person is young on one day,
they will also be young the day after, until the day when they will be old. This
is a paradox in classical logic unless a different adjective is defined for every
day in the life of a person, but is perfectly acceptable in fuzzy logic, where one
single property, “young”, has a truth degree that varies continuously with age.
Given the variety of sources, most knowledge based systems are likely to have to
deal with some type of imperfection in the data they process: moreover, given
the robustness/conciseness trade-off, a system handling imperfection without
ignoring is more applicable and powerful than an idealized system which simply
prunes away uncertainty and imprecision. Of all the possible applications, we will
discuss an example class, chosen because it is usually a domain of traditional
(from a logical point of view), i.e., ”perfect” rule-based systems:

Complex Event Processing (CEP) is an emerging approach [36] based on the
concept of event, that is here, a message notifying that some state has changed

Approaches to Uncertain or Imprecise Rules - A Survey 325

in a system at a certain time. Many real-world systems (e.g. a stock markets in
finance, a plant in chemistry, a human body in medicine, . . .) generate dozens
of such events of different types at high frequencies, but only a few are usually
relevant at a given time. The challenge, then, is to filter, sort and analyze the
events, possibly aggregating them in higher order events at different abstrac-
tion levels, so to extract only the relevant information. Uncertain formal rules
can be used to reason about such events, and reaction rules are particularly
suitable in the context of CEP since they can be used to trigger actions (includ-
ing the generation of new events) when the current events match their precon-
ditions. Event processing, however, may be affected by imperfection in different
ways:

– If some events are partially unobservable, there may be uncertainty due to
the missing data. Moreover, the conditions used to detect a complex event
from simpler ones may not be certain (i.e. when detecting the insurgence
of a disease from its symptoms). Finally, all event-based predictions are
intrinsically uncertain.

– Events may be reported with imprecision, e.g. because the measurements
are unreliable. It may also be convenient, if not necessary, to express some
constraints - especially the temporal ones - with some degree of vagueness
(e.g., event A happens more or less contemporarily with event B).

– There may be unexpected, conflicting combinations of events, especially in
case of failures.

Being a relatively novel discipline, not many real-world applications of imperfect
CEP exist yet, possibly because commercial rule-based systems are efficient at
handling imprecision, especially in the fuzzy case, but still have serious limitation
when processing uncertainty.

A further set of examples and case studies related to uncertain and imprecise
information on the Web can be found in [10], along with a discussion on possible
solution approaches.

The remainder of this paper is structured as follows: Section 2 deals with dif-
ferent models of imperfection, such as fuzzy sets and probability theory, focusing
on how they have been applied to extend traditional logics in the formalization
of rules. Section 3 discusses whether and how mainstream rule-based systems,
both academic and commercial, support imperfect rules.

2 Probabilistic and Possibilistic Reasoning with Rules

The different types of imperfection are the domains of different theories: in par-
ticular, uncertainty is typically handled using probabilistic approaches, while
possibilistic ones are used for imprecision. The theoretical backgrounds are far
beyond the scope of this work, so the main techniques will just be recalled briefly,
to focus more properly on their application in logic.

326 M. Nickles and D. Sottara

2.1 Probabilistic Approaches

Probability Theory

Probability theory is the mathematical theory of random events. The probabil-
ity of an event A is represented by a real number ranging from 0 (impossible
event) to 1 (certain event), and is usually denoted as Pr(A). If uncertainty is
aleatory, this probability is normally estimated using a ”frequentist” approach,
by repeating observations of events in long-run experiments and choosing the
ratio of favorable outcomes over the total number of experiments as the proba-
bility. In contrast to this view, with the Bayesian or epistemic interpretation of
probability, which is the underlying theory for most approaches in Artificial In-
telligence (especially in Machine Learning), probability is a measure of the belief
in some hypothesis which is not necessarily grounded in any physical properties
or empirical observations (but could be). Under this view, for a rational agent,
probability is typically grounded in terms of betting behavior: Pr(A) is here
the amount of money that a rational agent would be indifferent to betting on
the occurrence of event A. In order to calculate probabilities, an agent typically
starts with some personal prior belief, which is then progressively updated using
the application of Bayes’ rule as new information is acquired.

Various logics with support for probabilistic reasoning (purely statistical ap-
proaches as well as Bayesian reasoning) have been developed. In the following, we
will present a subset of those first-order languages which are able to represent log-
ical rules in the sense of Horn clauses (see below). Our survey does not aim at a
complete or representative list of such formal frameworks,but just at a list of hope-
fully interesting example approaches and as a starting point for further reading.

One of the most simple languages for rules, and the core of RuleML [8], is Dat-
alog [22]. A Datalog program allows to contain rules, that is, clauses (disjunctions
of literals) with at most one positive literal (Horn clauses), with certain restric-
tions (see below). Rules can thus be written in the form H ←− B1 ∧ ... ∧ Bn,
where H and the Bi are atoms (the Datalog notation follows that of Prolog and
is thus slightly different).

So-called extensional predicates are fully defined in an extensional manner by
lists of facts (positive ground unit clauses). Intensional predicates are in con-
trast defined entirely by rules. Extensional predicates correspond to relations
(”tables”) in extensional databases, intensional predicates correspond to inten-
sional database relations. The difference between these two type of predicates
in Datalog becomes very important for probabilistic extensions of Datalog, as
explained further below.

Datalog can be seen both as a deductive database system (a database system
which can derive new data (facts) using logical inference) and as a Prolog-like
logic language. But in contrast to Prolog, functions within terms are not allowed,
and every variable in the head of a clause must also appear in the body of this
clause (so-called safe rules or range-restricted rules). Variants of Datalog such
as stratified Datalog imply further restrictions. Datalog allows for very effective
query evaluation, and queries are ensured to terminate. Its expressivity covers

Approaches to Uncertain or Imprecise Rules - A Survey 327

relational algebra (roughly: the core of SQL), but goes beyond it, by means of
so-called recursive queries.

Probabilistic Datalog (DatalogP) [28] is an extension of Datalog which addi-
tionally allows for the probabilistic weighting of facts (but not - extensionally -
of rules). Informally, the idea here is that each ground fact corresponds to an
event in the sense of probability theory, and rules allow for boolean combinations
of events and their probabilities. However, naively applied, this approach would
lead to inconsistencies and other problems, since probability theory is not truth-
functional, that is, values of complex expressions are not necessarily functions of
the values of the constituents of these expressions. This is a problem which all
formal approaches which aim for a combination of probability theory and logical
calculi need to be aware of.

The semantics of DatalogP programs is a probabilistic possible-world seman-
tics. ”Possible worlds” correspond to subsets of the least Herbrand model of the
respective Datalog program, and a probability structure provides a probability
distribution over all possible worlds. This uncertainty enabled possible-world
semantics is typically - but not always - used for probabilistic logics, and re-
flects the aforementioned view of probabilities as degrees of belief. Essentially, a
possible-world semantics assigns probabilities to propositions, and the probabil-
ity of a certain proposition is the probability of the set of possible worlds where
this particular proposition is true.

In order to deal with the absence of truth functionality, DatalogP follows
two alternative directions: basic DatalogP yields probability intervals instead of
”point” probabilities in case of derived event expressions (which are not given ex-
plicitly as probabilistically annotated ground facts) in order to reflect incomplete
knowledge about event independence, which is the actual cause of lack of truth-
functionality of probabilistic calculi. Alternatively, DatalogPID (”DatalogP with
independence assumptions”) makes the quite strong assumption of universal
event independence, that is Pr(e1 ∧ e2) = Pr(e1) · Pr(e2) for any events e1 and
e2. Under this assumption boolean combinations of the constituents of proba-
bilistic event expressions become possible. Please find technical details in [28].

Approaches which combine Description Logics for the Semantic Web with
Datalog/Prolog-like logic programming (and thus full rules as defined above)
are described in the next section.

Whereas the logics described so far are subsets of first-order logic, in [30],
Halpern presents three different probabilistic (full) first-order languages L1, L2,
and L3. Basic DatalogP is a subset of L2. All three languages have a very ex-
pressive syntax, allowing for, e.g., probabilistically-weighted arbitrary first-order
formulas (including rules in the sense of Horn clauses) and conditional probabili-
ties. However, they are undecidable and their relevance is largely theoretical and
important mainly because of their influence on historically newer and practically
more relevant languages.

Formulas of L1 take the basic form of wx(ϕ) ≥ pr, where ϕ is a first-order
formula and pr is a probability. This syntax is more or less identical to the syntax
of Bacchus’ logic Lp [20]. The semantics is quite similar, but not identical. The

328 M. Nickles and D. Sottara

informal meaning of the statement form above is ”The probability that a ran-
domly chosen object x in the domain satisfies ϕ is at least pr”. This means that
we do here (and also for Lp) not encounter a possible-world semantics here, but
instead a ”statistical semantics” (or more appropriate: domain-frequency seman-
tics) which puts a probability distribution over the domain of discourse. This
semantics is an implementation of the empirical interpretation of probabilities
mentioned at the beginning of this section. Probabilities reflect here ”objective”
statistical proportions or frequencies.

In contrast, L2 uses a possible-world semantics. The syntactical form of L2
formulas is lb ≤ ϕ ≤ up, where lp is the lower bound for the probability of ϕ
and up is the upper bound. The semantics works much like that of DatalogP ,
only that ϕ is not restricted to facts.

Both approaches can be converted into each other - however, to understand
better what the practical difference between these two languages respectively
their semantics is, and why a degree-of-belief semantics is not appropriate in
certain cases, and domain-frequency semantics is not adequate in other case, we
look at the following example (taken from [30]):

Suppose one would like to formalize the two statements ”The probability that
a randomly chosen bird is greater than 0.9” and ”The probability that Tweety
(which is a bird) can fly is greater than 0.9”, using some first-order probabilistic
languages. For the second statement, a possible-world semantics which assigns
a probability of 0.9 or higher to the set of those worlds in which Tweety can
fly seems appropriate. However, the first statement cannot simply be formalized
using a possible-world semantics, at least not in a straightforward way [30,20].
A seeming way (among others which do not work very well) would be to attach
probability 0.9 to the worlds in which ∀xBird(x) → Flies(x) holds. However,
if in all worlds there is at least a single bird which does not fly, and so the
probability of this statement is zero, it could still be the case that the probability
that a randomly chosen bird flies is greater than 0.9. In contrast to the possible-
world semantics, a domain-frequency semantics can represent the first statement
without problems, but would on the other hand have in certain contexts problems
with the representation of statements like the second statement above [30,20].

In order to allow for a simultaneous reasoning with both views of prob-
ability, Halpern introduces the language L3. It allows statements such as
w(wx(Flies(x)|Bird(x)) > .99) < 2 ∧ w(wx(Flies(x)|Bird(x)) > .9) > .95,
hence combining the syntactical features of L1 and L2. What essentially hap-
pens here is that agents can hold degrees of beliefs about statistically uncertain
statements.

While Bayesian networks (also called belief networks) are able to represent
a sort of event-conditional rules, and certain variations of Bayesian networks
encode causal rules, they work only on a propositional level, and thus do not fall
into our scope of interest. However, several formal approaches exist which ex-
tend Bayesian networks with first-order capabilities (relations). Bayesian logic
programs (BLP) [32] for example can be seen as a generalization of Bayesian
networks and logic programming, implementing a possible-world semantics. The

Approaches to Uncertain or Imprecise Rules - A Survey 329

logic component of BLP consists of so-called Bayesian clauses. A Bayesian clause
is a rule of the form A|A1, ..., An, where each Ai is a universally quantified
Bayesian atom. The main difference between Bayesian clauses and ordinary
clauses (apart from the use of | instead of : − as in Prolog or Datalog rules) is that
the Bayesian atoms have values from a finite domain instead of boolean values.
In addition to Bayesian clauses, a BLP consists of a set of conditional proba-
bility distributions over Bayesian clauses c (encoding Pr(head(c)|body(c))) and
so-called combining rules in order to retrieve a combined conditional probability
distribution from the combination of the multiple different conditional probabil-
ity distributions. From a BLP a Bayesian network can be easily computed and
then queried using standard Bayesian inference. Another prominent example for
relational extensions of Bayesian Networks are Probabilistic Relational Models
(PRMs). However, they cannot express arbitrary quantified first-order rules.

Multi-entity Bayesian networks (MEBNs) [34] are another example for a for-
mal framework which integrates first-order logic with Bayesian probability the-
ory. In contrast to most other ”relational Bayesian” approaches, they have full
first-order representation power.

Stochastic Logic Programs (SLPs) [38] are sets of rules in form of range-
restricted clauses labeled with probabilities. The resulting annotated rules are
called stochastic clauses. The semantics of SLPs assigns a probability distribu-
tion to the atoms of each predicate in the Herbrand base of a program. SLPs
are a generalization of Hidden Markov Models as well as stochastic grammars to
first-order logic programming, and are expressive enough to encode (undirected)
Bayesian networks. SLPs cannot only be manually constructed, but also learned
using a combination of Inductive Logic Programming (ILP) and stochastic pa-
rameter estimation [38].

Stochastic Logic Programs encode a sort of domain-frequency semantics. It
can be shown, however, that SLPs (respectively, BLPs) can be translated into
BLPs (respectively, extended SLPs) [40].

A quite recent approach to the combination of first-order logic and prob-
abilistic theory are Markov Logic Networks (MLNs) [41]. A MLN is a set of
(unrestricted) first-order formulas with a weight (not a probability) attached to
each formula. MLNs are used as ”templates” from which Markov networks are
constructed. Markov networks are graphical models for the joint distribution of
a set of random variables, allowing to express conditional dependencies Bayesian
networks cannot represent, and vice versa. The (ground) Markov network gen-
erated from the MLN then determines a probability distribution over possible
worlds, and is used to compute probabilities of restricted formulas using proba-
bilistic inference. Machine learning algorithms allow to learn the formula weights
in MLNs from relational databases.

2.2 Dealing with Imprecision: Possibilistic Theories

Fuzzy Sets

Fuzzy sets [44] are sets S whose elements x have gradual degrees of membership,
evaluated by a membership function µS : X
→ [0, 1]. Fuzzy sets can be used to

330 M. Nickles and D. Sottara

define vague concepts, such as “old”and “tall”, and reason with and over them.
The concept of fuzzification, i.e. extension with vagueness, has been applied to
many contexts: just to cite some, fuzzy mathematics, fuzzy system theory, fuzzy
classification and even meta-fuzzy systems (if a membership degree can’t be esti-
mated precisely, higher order fuzzy sets can be defined, which meta-membership
degrees are, in turn, fuzzy sets over the domain of membership degrees them-
selves, [0, 1]), even if we are obviously interested in fuzzy logic, first defined by
Zadeh himself in [45]. Even if a complete discussion of fuzzy sets goes beyond
the scope of this paper, an interesting property must be recalled (see also [25]
for a complete discussion). The membership of an object x in a fuzzy class S is
usually a qualitative, vague but certain feature - e.g. a man is tall: the quanti-
tative aspect of the matching is contained in the truth degree returned by the
membership function. This degree may be defined a priori, but more often it is
evaluated on one or more quantitative features of x. For example, the function
µTall is likely to rely on the height of the men it tests for membership, so it
should be more explicitly written µTall(x|h). In a different scenario, the only
available information is that x is a member of S, i.e. a man is tall, in a degree
greater or equal than some value α. Here, the x’s height is unknown: there is
uncertainty about its actual value, but S (or, more properly, its α-cut) defines
a possibility distribution stating, for each candidate value h∗, how coherent it
would be should it have to be used as the real value. In this case, one gets a dis-
tribution πTall(h|x): more generally, according to Zadeh’s coherence principle,
it has to be that µS(x|h) = πS(h|x). In a way, this duality is reflected by two
different approaches to fuzzy logic.

Fuzzy Logic in a Narrow Sense

The fuzzification of first-order logic can be obtained directly by extending the
underlying algebraic structure. In boolean FOL true and false are the only
allowed truth values for a formula: one can obtain a fuzzy version of this logic
assuming that the truth value is a member of a lattice (a partially ordered set in
which any two elements always have a unique supremum and infimum), which
in practice is usually the unit interval [0, 1]. Like in classical logic, the formulas
are still built from atoms using connectives and quantifiers, but their evalua-
tion is delegated to complex operators which generalize the boolean ones. To
preserve an axiomatic structure, only a minimal set of operators is defined prim-
itively (e.g. the implication → and the negation ¬), while the others are derived
according to the canonical definitions (e.g. ¬x ∨ y ⇔ x → y). The choice of
the implication operator is strictly connected to the choice of the conjunction
operator �, implemented using a triangular norm, a commutative, associative,
monotonic binary map on [0, 1] having 1 as neutral element: in fact, it holds that
x�z ≤ y ⇔ z ≤ (x → y). Interestingly, there is not a unique choice for �, so, given
the mutual dependencies, there exist families of operators and thus different log-
ics according to which operators and how they are defined. However, it has been
shown that all alternatives can be reduced to three basic t-norms, namely mini-
mum, product and Lukasiewicz. The operators, in any case, are truth functional,

Approaches to Uncertain or Imprecise Rules - A Survey 331

which makes evaluation computable efficiently. The truth value of the atoms may
be given as a fact, or evaluated using the equivalent of a membership function
operating on its arguments: afterwards, operators are applied to determine the
truth value of formulas. For these reasons, these “mathematical”fuzzy logics are
special instances of many-valued logic. A complete discussion can be found in
[29]. This kind of fuzzy logic is arguably the easiest to implement in a rule-based
system, since it is an immediate generalization of boolean logic. Moreover, fuzzy
rules are more robust than their crisp counterparts (e.g. all thresholds can be
substituted using gradual variations) and, in many cases, less rules are required
to express equivalent concepts. The drawback is that the rules become more
complex to write and manage, so few systems actually exist that exploit the full
expressiveness of this type of logic.

Fuzzy Logic in a Broader Sense

When Zadeh defined fuzzy logic ([45]), he was more interested in adopting a
formalism close to the way people think and express concepts than in defining
a formal extension of mathematical logic. This vision led to the definition of
linguistic variables, which values are fuzzy sets over a specific domain. For ex-
ample, the variable age may have young, mature and old as values, all fuzzy sets
over, say, the integer interval 0..100. This allows to write conjunctive, horn-like
rules having the form “if X1 is A1 and . . . and Xn is An then Y is B”. Tipi-
cally, several rules entailing information on Y are written and then combined
disjunctively. In order to apply the rules, the quantitative inputs x (e.g. the
age of a person) are fuzzified using, for example, a membership function. The
fuzzified variables are matched against the qualitative constraints in the rules to
entail the fuzzy conclusions Y , again fuzzy sets, which are defuzzified to obtain
a quantitative output value. A set of such fuzzy rules is equivalent to a local,
declarative approximation of a relation Πn

j=1Xj
→ Y . For example, stating that
if X1 is A and X2 is B then Y is C and providing a definition for A,B and
C which has full membership in x0

1, x
0
2 and y0 respectively is but a way to define

f(x0
1, x

0
2) = y0 with implicit continuity: an input similar to (x0

1, x
0
2) should be

mapped to a point close to y0 (even if domain and range may use different met-
rics, the distances should be correlated). A more complete discussion, including
the corresponding interpretation in narrow fuzzy logic, can be found in [29].

For this reason, this type of fuzzy logic has been widely used in many real-
world applications for the monitoring and control of dynamical systems, espe-
cially non linear.

Possibility theory and Possibilistic logic. In possibility theory [24], a pos-
sibility distribution associates a value π(x) ∈ [0, 1] to each element x in a set of
alternatives X . This value measures the compatibility of x with the actual state
of the world. Unlike probability theory, where relative odds are considered, in
possibility theory each individual is considered separately: in fact, the possibility
Π(A) associated to a set A is given by max(π(x)) : x ∈ A. The dual concept of
possibility is necessity, defined by negating the possibility of the complementary:

332 M. Nickles and D. Sottara

N(A) = 1 − Π(A). Possibility can be physical or epistemic, depending whether
objective or subjective factors are taken into account when defining π. As already
discussed, the membership function of a fuzzy set can be considered a possibility
distribution on its domain, given the only knowledge that the actual state of the
world belongs to the set. Possibility and/or Necessity degrees can be used in a
possibility-annotated logic (if they are restricted to 0, 1, the resulting logic is
actually a form of three-valued logic). The main drawback of this approach with
respect to mathematical fuzzy logic is that the operators, albeit simpler, are not
truth functional: in some cases, it is only possible to entail a bound, lower or
upper, for the actual degree of a formula instead of an exact value. The complete
theory can be found in [35].

3 Mainstream Software Tools and Standards

The (Semantic) Web is a heterogeneous software environment in which many
systems and frameworks coexist.

We have shown that there exist different families of logic, with different ex-
pressiveness, which can be used to define and reason with rules. On the other
hand, there exist many rule engines, with different characteristics, that a user
can adopt in their projects. In modern applications, such rule engines are cur-
rently mainly used for two following tasks:

Processing business rules and, as an emerging field, reasoning over Semantic
Web ontologies enhanced with rules [19,8].

The main goal of our survey is to see whether existing rule engines support
imperfect rules natively, i.e. if the rule engine handles all the inference procedures
typical of the respective logic.

Inevitably, however, other aspects have also to been taken into account:
whether a tool is commercial or freely available, whether it is for an academic or
industrial use, whether it is just a rule engine or a full fledged Business Rule Man-
agement System (BRMS), and its execution environment (e.g. Java vs. .NET).

Even limiting our research to mainstream projects1, i.e. general purpose tools
supported by a some community (to whatever extent), thus discarding several
student projects and many ad-hoc engines built for specific applications, we have
noticed that there are more than two dozens of different alternatives, but only
a few with support for imperfection, and most of these work with fuzzy logic.

Note that we disregard in this section logical reasoners and other implemen-
tations of probabilistic and possibilistic frameworks which are not rule engines
in the usual sense.

Imperfection in Rule-based Systems

Fuzzy logic is perhaps the easiest type of imperfect logic to implement in a rule-
based system. Inference in fuzzy logic is a generalization of the boolean case.
1 Inevitably, we can’t consider all existing tools, so we preventively apologize for not

citing or discussing some software.

Approaches to Uncertain or Imprecise Rules - A Survey 333

Most importantly, the operators are truth functional, i.e. they just aggregate
the degrees associated to their operands, so the complexity remains limited.
However, this still means that a standard rule engine can’t evaluate fuzzy rules
natively without an extension. Many mainstream BRMSs, both commercial and
free, include an engine, typically based on the RETE algorithm ([27]), and several
additional tools giving support for rule management (remote and local), event
handling, editing and reporting.

Among them, we can cite InRule [12], ObjectConnections Common Knowl-
edge [14], Microsoft BizTalk [5], Fair Isaac’s Blaze Advisor [4], ILOG JRules
[11], OpenRules [16], PegaSystems PegaRules [6], Open Lexicon [15], XpertRule
KnowledgeBuilder [18] and JBoss Drools [13].

Adding fuzzy logic (or any other type of logic) to any of these systems would
require a refactoring of the internal rule engine and, possibly, the rule language,
neither of which is a simple operation, although such a process is being attempted
in Drools.

The mainstream fuzzy-capable systems, instead, are open source rule shells,
typically originated in an academic context, without many of the additional
features of BRMSs. The most famous are possibly FuzzyShell [3], FuzzyClips
[1] and FuzzyJess [2]; we also know of a commercial data mining tool, Scientio
XMLMiner / MetaRule, which has fuzzy capabilities [17]. FuzzyJess is one of the
most used given its Java-oriented nature: it is actually a rewriting of FuzzyCLips,
itself an extension of the CLIPS engine. FuzzyClips, moreover, has the merit of
supporting two types of imperfection: fuzzy logic and confidence, in the form of
certainty factors.

The first rule-based system to introduce uncertainty in automatic reason-
ing, MYCIN ([21]), adopted imperfect rules annotated with certainty factors
to model a sort of quality score. The way of handling the factors was not the-
oretically very sound, so later systems used more structured approaches, even
if the idea of using confidence was further developed (see for example [43]). In
FuzzyClips, however, they have been introduced in a more coherent way, again
truth-functional, and their evaluation proceeds in parallel with the evaluation of
the fuzzy truth degrees of the formulas. Notice that all these fuzzy shells support
fuzzy logic in the broader sense of the term.

In contrast, no commercial mainstream rule engine that we are aware of sup-
ports probabilistic logic. Whereas Bayesian networks have become a very pop-
ular tool for handling uncertainty and many mature software packages exist
which implement Bayesian networks, hardly any product already supports any
of the various probabilistic logics, even if recently at least two projects have been
started, namely Balios and BLOG.

Interoperability

One of the limitations of the different engines is their using proprietary languages
to write logic formulas and rules in particular. However, current Web standards
for knowledge representation are not able to represent imperfect probabilistic or
possibilistic rules.

334 M. Nickles and D. Sottara

To achieve a good degree of interoperation, standards on rule representation
and interchange are being proposed in the last few years. The Rule Interchange
Format (RIF) [7] is a proposed W3C standard format for rule representation
and interchange, based on XML. RuleML [8] is an initiative which develops a
XML- and RDF- based markup language for rules, with Datalog-rules as the
core. RuleML uses a modular approach to support different rule-based logics
with different types of complexity and expressiveness, in order to promote rule
interoperability between industry standards. RuleML supports various kinds of
reasoning engines (e.g., forward vs backward chaining, RETE vs Prolog, . . .) and
leaves knowledge engineers the choice of implementation for entities and facts
(e.g., objects, plain symbols, XML trees, . . .). RuleML is supported by various
rules engines, such as jDREW and Mandarax. A combination of the current
standard ontology language OWL and RuleML is proposed to the W3C in form
of the Semantic Web Rule Language (SWRL) [9].

The issues related to the introduction of imperfection in rule languages have
recently been discussed in [23], where a module for uncertainty and fuzzy rea-
soning with rules is defined. This work is remarkable since it shows that most
types of imperfect logic can be encoded simply by allowing truth degrees and op-
erators to be customized using appropriate tags (degree) and attributes (kind).
Such knowledge, however, should be processed by an engine capable of chang-
ing its configuration at run-time, a task that requires more than the creation
of a language translator. The extensions proposed in [23] can be integrated into
RuleML, but also in a preliminary version of the W3C Rule Interchange For-
mat (RIF) [7]. Another approach to the integration of rules based on proposed
standards and fuzzy logic is f-SWRL [39].

As for probability theory, candidates for future standard languages will pos-
sible integrate a description logic with rules (in the sense of logic programming)
and uncertainty reasoning, such as the formal framework proposed in [37].

References

1. Fuzzy clips,
http://ai.iit.nrc.ca/irpublic/fuzzy/fuzzyclips/fuzzyclipsindex.html

2. Fuzzy jess, http://www.nrc-cnrc.gc.ca/eng/ibp/iit.html
3. Fuzzyshell, http://cobweb.ecn.purdue.edu/rvl/projects/fuzzy/
4. http://www.fico.com/en/products/dmtools/pages/

fico-blaze-advisor-system.aspx

5. http://www.microsoft.com/biztalk/en/us/default.aspx

6. http://www.pega.com/products/rulestechnology.asp

7. Rule interchange format (rif) working group,
http://www.w3.org/2005/rules/wiki/rif_working_group

8. Ruleml, http://www.ruleml.org
9. Swrl: A semantic web rule language combining owl and ruleml,

http://www.w3.org/submission/swrl/

10. W3c uncertainty reasoning for the web incubator group,
http://www.w3.org/2005/incubator/urw3/xgr-urw3

11. http://www.ilog.com/products/jrules

http://ai.iit.nrc.ca/irpublic/fuzzy/fuzzyclips/fuzzyclipsindex.html
http://www.nrc-cnrc.gc.ca/eng/ibp/iit.html
http://cobweb.ecn.purdue.edu/rvl/projects/fuzzy/
http://www.fico.com/en/products/dmtools/pages/
fico-blaze-advisor-system.aspx
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.pega.com/products/rulestechnology.asp
http://www.w3.org/2005/rules/wiki/rif_working_group
http://www.ruleml.org
http://www.w3.org/submission/swrl/
http://www.w3.org/2005/incubator/urw3/xgr-urw3
http://www.ilog.com/products/jrules

Approaches to Uncertain or Imprecise Rules - A Survey 335

12. http://www.inrule.com

13. http://www.jboss.org/drools

14. http://www.objectconnections.com

15. http://www.openlexicon.org

16. http://www.openrules.com

17. http://www.scientio.com

18. http://www.xpertrule.com

19. Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J.,
Patel-Schneider, P.F.: Combining Rules and Ontologies. A survey (2005)

20. Bacchus, F.: lp, a logic for representing and reasoning with statistical knowledge.
Computational Intelligence 6, 209–231 (1990)

21. Buchanan, B.G., Shortliffe, E.H.: Rule-based Expert Systems: the MYCIN exper-
iments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading
(1984)

22. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineer-
ing 1(1), 146–166 (1989)

23. Damsio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: Representing uncertainty in
RuleML. Fundam. Inf. 82(3), 265–288 (2008)

24. Dubois, D.: Possibility theory and statistical reasoning. Computational Statistics
& Data Analysis 51(1), 47–69 (2006)

25. Dubois, D., Esteva, F., Godo, L., Prade, H.: Fuzzy-set based logics an history-
oriented presentation of their main developments. In: Gabbay, D.M., Woods, J.
(eds.) Handbook of the History of Logic. The Many Valued and Non-monotonic
Turn in Logic, vol. 8, pp. 325–449. Elsevier, Amsterdam (2007)

26. Dubois, D., Prade, H.: Possibility theory, probability theory and Multiple-Valued
logics: A clarification. Annals of Mathematics and Artificial Intelligence 32(1-4),
35–66 (2001)

27. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-
lem. Artif. Intell. 19(1), 17–37 (1982)

28. Fuhr, N.: Probabilistic datalog - a logic for powerful retrieval methods. In: Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (1995)

29. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic: Studia Logica Li-
brary, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)

30. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelli-
gence 46, 311–350 (1990)

31. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
32. Kersting, K., Raedt, L.D.: Bayesian logic programs. In: Proceedings of the 10th

International Conference on Inductive Logic Programming (2000)
33. Klir, G.J.: Generalized information theory. Fuzzy Sets Syst. 40(1), 127–142 (1991)
34. Laskey, K.B., Costa, P.C.: Of klingons and starships: Bayesian logic for the 23rd

century. In: Proceedings of the Twenty-first Conference on Uncertainty in Artificial
Intelligence (2005)

35. Logic, P., Dubois, D., Prade, H.: Possibilistic logic
36. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-

ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2001)

37. Lukasiewicz, T.: Probabilistic description logic programs. International Journal of
Approximate Reasoning 45(2), 288–307 (2007)

http://www.inrule.com
http://www.jboss.org/drools
http://www.objectconnections.com
http://www.openlexicon.org
http://www.openrules.com
http://www.scientio.com
http://www.xpertrule.com

336 M. Nickles and D. Sottara

38. Muggleton, S.: Learning stochastic logic programs. Electronic Transactions in Ar-
tificial Intelligence (2000)

39. Pan, J.Z., Stamou, G.B., Tzouvaras, V., Horrocks, I.: f-swrl: A fuzzy extension of
swrl. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS,
vol. 3697, pp. 829–834. Springer, Heidelberg (2005)

40. Puech, A., Muggleton, S.: A comparison of stochastic logic programs and bayesian
logic programs. In: IJCAI 2003 workshop on learning statistical models from rela-
tional data, IJCAI (2003)

41. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

42. Smets, P.: Imperfect Information: Imprecision and Uncertainty, pp. 225–254 (1996)
43. Wang, P.: Confidence as higher order uncertainty. null (1994)
44. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
45. Zadeh, L.A.: Fuzzy logic and approximate reasoning, pp. 238–259 (1996)

Fuzzy Reasoning with a Rete-OO Rule Engine

Nikolaus Wulff1 and Davide Sottara2

1 University of Applied Sciences Münster, 48149 Münster, Germany
2 DEIS, Facolta di Ingegneria, Universita di Bologna, 40131 Bologna, Italy

Abstract. Rules and rule engines play an important role in automated
decision making processes like business workflows or system monitoring.
Classical inference machines evaluate rules until a final “yes” or “no”
decision: this crisp classification schema can turn into a deficiency when
they have to deal with uncertain or inprecise knowledge. To circumvent
some of these limitations we have built the “Java Expert Fuzzy Infer-
ence System” (Jefis) and implemented factory methods to deploy the
Jefis library as an extension for the classical rule engine JBoss Drools.
We outline the new features and give examples of uncertain formulated
rules executing within the Jefis Drools extender.

Keywords: inference engine, fuzzy logic, uncertain reasoning.

1 Introduction

Recently D. Sottara et al. proposed [1] to enrich the JBoss1 rule engine with
annotated logic, allowing different imperfect reasoning schemas, implemented as
the sub-module Drools:Chance. These novel enhancements offer new possibilities
and challenges for the application programmer developing expert systems and
indicate first steps towards convergence with the fuzzy RuleML inititative as
proposed in [2]. The modifications necessary within the Drools framework are
described elsewhere, whereas this paper concentrates on the steps to develop a
fuzzy based plugin architecture. The first part of the paper explains the basic
concepts of the “Java Expert Fuzzy Inference System” Jefis, whereas the second
part concentrates on the integration and usage within Drools.

There exist many rule engines supporting fuzzy logic, both commercial and
open source, such as FuzzyCLIPS [3] and FuzzyShell [4], not to mention the
countless ad-hoc solutions implemented in many projects, academic or not. Our
attention, turned on Drools, which we had already completed some successful
third-party projects with. Since the project has started only recently, the results
we have are preliminary, so this paper will be focused mainly on the creation and
customization of fuzzy rules, leaving the discussion on applications, performance
and optimization for future works. To begin with let us explain how we converted
from a classical rule engine user into a fuzzy one.

As an example take a rule based cooling control system using the fan current
as control variable. Classical rule based systems encode knowledge in the form
of statements like:
1 M. Proctor et al.: Drools “http://www.jboss.org/drools”

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 337–344, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

338 N. Wulff and D. Sottara

IF temperature == 60 degree THEN fan current = 6 mA

This is a rule easy to formulate within the language of any expert system. The
phrases ’IF’ and ’THEN’ are capitalized to indicate the semantic parts of a rule
separating premise and conclusion. One drawback of this approach is, that it
does not state what happens, if the temperature is 59◦ C or 61◦ C, since the
rule has been formulated for an exact temperatur value. Obviously specifying
many fine granular rules for every possible temperature – or temperature interval
– is not feasible. What helps is to formulate rules which express the original
intention of the initiator: if the temperature is hot cool more, if not cool less.
This type of rule is much closer to the way of human thinking and to our natural
language. Expressing logical assertions using human-like language is a concept
first introduced by Lotfi Zadeh [5] in the late sixties within the context of fuzzy
logic. Using this approach will result in a small number of rules such as:

R1: IF temperature IS cold THEN current IS low
R2: IF temperature IS normal THEN current IS medium
R3: IF temperature IS hot THEN current IS high

The possible temperature and current ranges have been partitioned using lin-
guistic variables, with the labels “cold”, “normal” and “hot” for temperature and
“low”, “medium” and “high” for current respectively. These linguistic variables
denote concepts which have to be modeled appropriately and will be represented
by fuzzy sets forming two fuzzy partitions as depicted in Fig. 1. A fuzzy set A
is defined as an ordered pair

A =
{(

x, µA(x)
) | x ∈ Ω with µA(x) : Ω → [0, 1]

}
(1)

over some set Ω called the universe of discourse, where µA(x) is the membership
function describing in how far the value x belongs to the set A.

The new keyword ’IS’ serves as indicator for the fuzzy nature of these rules.
The IS operator will activate every rule where the fuzzy membership of the left
hand site P is greater than zero and does not require an exact match. Depend-
ing on the degree of the match the conclusion C will partly be activated by

µ(T)
1

25 50 75 T/◦C

cold normal hot

�

�

60

0.6
0.4

a)

µ(I)
1

2.5 5 7.5 I/mA6

low med high

0.6
0.4

b)

Fig. 1. a) Fuzzification of the temperature 60◦ C and b) rule based activated fuzzy sets
of the output partition, defuzzified as 6 mA fan current

Fuzzy Reasoning with a Rete-OO Rule Engine 339

the implication operator. Figure 1 a) demonstrates the fuzzification of the crisp
temperature 60◦ C via the fuzzy sets of the input partition giving the member-
ship vector µ(60◦ C) = {0, 0.6, 0.4}T for the sets labeled “cold”, “normal” and
“hot”.

Using the above example the rules R2 and R3 will partly “fire”, activating
two conclusions for the current, which has to be “medium”/0.6 and “high”/0.4
at the same time, depicted as the shaded area of Fig. 1 b), i.e. there is no
clear decision for the “medium” or “high” set, as both are valid to a certain
degree.

From the activated output sets a crisp value can be calculated, for example
with the weighted mean I = 0.6 ·5 mA+0.4 ·7.5 mA = 6 mA for the fan current.
Note that the cases 59◦ C or 61◦ C will not require any additional rules, but
can be deduced using the same method, causing in the input partition slightly
modifed membership values and thus yielding a current in the vicinity of 6 mA,
marked by the range indicator.

2 Basic Jefis Fuzzy Set Operations

The building block of Jefis are fuzzy sets A as defined in formula 1. Instead
of the membership function µA(x) we will frequently write A(x) to shorten
formulae. It is important to notice, that even if theoretically the domain Ω
can be “anything”, for ease of computation within the Jefis framework it is
restricted to be a subset of the real line. The actual membership A(x) for some
value x is returned by the call set.containment(x) for any instantiated Jefis
fuzzy set, no matter if it is a “composite set” – resulting from some join or
union operations – or a “primitive leaf set”. The library makes extensive use of
mature design patterns – as described by E. Gamma et al. [6], which are partly
visualized in the UML diagram Fig. 2 showing some of the most important
static associations and relations. The Java interface FuzzySet offers the three

FuzzyImplication´interf ace»
FuzzySet

FuzzyOperation

FuzzyUnion

FuzzyIntersection

FuzzyNorm

FuzzyTriangle

1

2

2...*

*

FuzzyTrapez

FuzzyPolygonFuzzyDecorator

Gödel

FuzzyMinMax
FuzzyComplement

ZadehLuca

FuzzyDrastic

{incomplete}

{incomplete}

FuzzyPartition

{incomplete}

Fig. 2. Partial UML diagram of the basic Jefis fuzzy set abstractions and relations

340 N. Wulff and D. Sottara

Table 1. Short overview of some t- and s-norms implemented within Jefis

name t-norm (∩) s-norm (∪)
MinMax min(a,b) max(a,b)
Bounded max(0, a + b − 1) min(1, a + b)

Drastic
{

min(a, b) if max(a, b) = 1
0 otherwise

{
max(a, b) if min(a, b) = 0

1 otherwise
Algebraic ab a + b − ab

Hamacher
{

ab
a+b−ab

if a, b �= 0
0 otherwise

{
a+b−2ab

1−ab
if a, b �= 1

1 otherwise
Einstein ab

1+(1−a)(1−b)
a+b
1+ab

important classical set operations A ∪ B (s-norm), A ∩ B (t-norm) and ¬A (c-
operation) extended for fuzzy sets A and B, via the join, intersection and
complement methods, implemented with aid of the composite and decorator
pattern. The Jefis implementations for the ∪ and ∩ operations instantiate a
concrete subclass of the FuzzyNorm abstraction providing the t- and s-norm
implementations, like FuzzyMinMax or FuzzyProduct, by use of the strategy
pattern. This allows a user defined transparent exchange of the t- and s-norm
operators at application startup or during runtime. The implemented operators
are partially listed in table 1, together with their definitions.

Notice that, giving the pairing between a t-norm and its corresponding s-
norm, they are implemented together within the same strategy instance of a
concrete FuzzyNorm class, which also fixes within the Jefis library the comple-
ment operation to be c(A(x)) ≡ 1 − A(x), provided by the FuzzyComplement
decorator class, as out of the three operations only two are independent.

The ability to formulate rules in a human readable natural language is one
of the advantages of fuzzy logic. Consider the introductive example and Fig. 1
a). The temperature is a linguistic variable where the classifiers “cold”, “nor-
mal” and “hot” are linguistic terms. The former is modeled within Jefis as a
FuzzyPartition, where the later are modeled as named FuzzySets. Techni-
cal the sets are contained within a fuzzy partition which serves as a container.
FuzzyPartitions are mostly defined in terms of triangular membership functions,
which are easy to implement and calculate2, but Jefis offers also other parabola
shaped fuzzy sets like FuzzyS, FuzzyZ and FuzzyP. Linguistic variables are the
natural way in Jefis to build n-array relations R : Ω1 × Ω2 × · · · × Ωn → [0, 1]
over n universes Ωk of discourse.

To make things concrete consider the temperatur current example. To monitor
the cooling system there are nine possible rules in the temperature × current
space, which build a rule set Θ = (Tj × Ik, Sl) described by a relation matrix
R : T × I → S as in table 2.

2 For polygon shaped Fuzzy Sets like triangle and trapezoid Jefis provides direct join
and intersection operations and performs a closed analytical calculation of the center
of gravity without numerical integration for Mamdani or Larsen inference.

Fuzzy Reasoning with a Rete-OO Rule Engine 341

Table 2. Possible monitoring relation for the cooling system

low medium high
cold green yellow yellow

normal yellow green yellow
hot red yellow green

This mapping of temperatur and current for all (t, i)-tuples to the status
output can be formulated with corresponding rules as:

R11: IF temperature IS cold AND current IS low
THEN status IS green

R12: IF temperature IS cold AND current IS medium
THEN status IS yellow

...
R33: IF temperature IS hot AND current IS high

THEN status IS greend

The cooling status S is fuzzyfied as a traffic light with labels “green”, “yellow”
and “red” using a FuzzyPartition with three FuzzySets in a similar way as for
the temperatur and current.

Starting point of this paper was the rule of type “if P then C”: in order to
assert a fuzzy conclusion, an implication operator I(p → q) : [0, 1]× [0, 1] → [0, 1]
extended for fuzzy logic is requiered. A rule Rkj : Ak → Bj with some system
input Ã(x) ⊂ Ak will usally activate an variational output set

B̃j(y) = sup
x∈Ω

t
(
Ã(x) , I(Ak(x), Bj(y))

)
(2)

where the degree of variation between B̃j and Bj will depend on the implication
operator and the t-norm in use. The literature counts meanwhile over seventy
different implication operator definitions – for a nice overview see [7] and [8].
Therefore we allow to choose between different implementations via the strat-
egy pattern and offer a possibility to implement and inject custom ones via a
parametrizable factory. Table 3 lists some of the more wellknown implication
operators. In addition also the most common used engineering implications3 of
Mamdani [9] and Larsen [10] are included.

Or-ing the different activated output sets B̃j of the rules Rkj via an appro-
priate s-norm join operation –, the final output fuzzy set B̃(y) is obtained

B̃(y) =
n⋃

j=1

B̃j(y) (3)

which has to be converted into a crisp output if desired via the center of gravity
or weighted mean method during defuzzyfication.
3 Called approximations as the requirements I(0, 0) = 1 and I(0, 1) = 1 demanded for

an implication operator are not held.

342 N. Wulff and D. Sottara

Table 3. Short overview of some implication operators implemented within Jefis

name I(p, q)
Zadeh max(1 − p,min(p, q))

�Lucasiwiecz min(1, 1 − p + q)
Kleene-Dienes max(1 − p, q)

Yager qp

Gödel
{

1 if p ≤ q
q otherwise

Goguen
{

1 if p ≤ q
q/p otherwise

� min(1, q/p)

Mamdani min(p, q)
Larsen p ∗ q

3 The Jefis Interface to Drools

So far we have presented the plain Java implementation of Jefis without in-
terfacing the Drools rule engine. To do the later we exploit the novel Drools
enhancements capable to handle uncertain reasoning first announced in [1]. To
get the main idea we shortly summarize the rule execution. The “left hand side”
(LHS) of a rule, modelling a premise P is transformed by Drools implementa-
tion of the RETE algorithmn into a network which nodes evaluate the different
constraints present in P . Given one or more objects to be tested, the individ-
ual constraints are evaluated by modules implementing the Evaluator interface,
and return information on whether each object satisfies the constraints or not.
Usually the result of an Evaluator will be a boolean “true” or “false”, but with
Drools novel uncertainty mode turned on, the result of the evaluation can be
a simple fuzzy truth degree, modeled by a real value in [0,1]. Moreover, eval-
uators are pluggable and can be defined by the user in external libraries, thus
increasing significantly the flexibility of the system. Different constraints can
be used to build complex logic formulas using logic connectives, such as AND
(&&) and OR (‖), which encapsulate operators combining the degrees of their

« interface»
IDegree

AbstractJefisEvaluator

« interface»
IDegreeFactory

JefisDegreeFactoryJefisFuzzyOperato

FuzzyAnd FuzzyOr

« interface»
FuzzySet

creates

FuzzyNorm

BaseImperfectEvaluator

DroolsFuzzySet

« interface»
IDegreeCombiner

Fig. 3. Partial UML diagram of some Jefis to Drools adapter classes

Fuzzy Reasoning with a Rete-OO Rule Engine 343

operands. Finally, a generalized Modus Ponens operator allows to entail a degree
for the conclusion C. With help of a Factory fuzzy Drools evaluators decorate
Jefis fuzzy sets, see the UML diagram Fig. 3. Whenever a fuzzy constraint in the
LHS of a rule has to be evaluated the call will be forwarded to the corresponding
fuzzy set A and its contaiment degree µA will concur to define the global degree
of the premise P , activating the RHS THEN-part of the rule to a certain degree.

rule ”R11”
when $c: Cooler(temperature is ”cold” && fanCurrent is ”low”)
then $c.setStatus(”green”, drools .getConsequenceDegree());

Listing 1.1. A fuzzy rule base formulated within the Drools rule language

Listing 1.1 shows a short extract of a fuzzy rule base. The Cooler instance is a
simple Java bean, with getter methods for the temperature and the fan current.
’IS’ is a custom evaluator, which takes the Jefis fuzzy set evaluators identified by
the labels “cold” and “low”, which will in turn calculate the membership degrees
µcold(t), µlow(i) for the present temperature t and current i as returned by the
cooler instance. Moreover the ’&&’-operator and the implication are not longer
boolean but fuzzy. The degree at which a conclusion is entailed is accessible in a
rule’s RHS and can be used, for example, to express a fuzzy consequence such as
“status is green to some degree”. Unless configured differently during the session
setup, in the default case it will be implemented using the Jefis Min t-Norm. The
underlying implementation of each operation can further be exchanged within a
rule by annotating an ’&&’-operator like in the next example 1.2.

rule ”R31”
when $c: Cooler(temperature is ”hot” &&@(kind=”Drastic”) fanCurrent is ”low”)
then // do what ever is needed ...

Listing 1.2. An annotated fuzzy AND operator

The proposed syntax has been inspired by the fuzzy RuleML initiative [2] adopted
for the Drools DRL, although it is not formulated in XML. Just as well it is pos-
sible to annotate the ’‖’-operator using a different s-norm for the OR operation.
Likewise, the implication operator of formula (2), combining the premise’s and the
implication’s degree to yield the degree of the conclusion, can be selected on a rule
by rule base using the rule attribute “kind” as in the next example.

rule ”R31”
kind ”Goedel” // select the used implication operator
when $c: Cooler(temperature is ”hot” && fanCurrent is ”low”)
then // do what ever is needed ...

Listing 1.3. Explicit implication operator selection

Like with ’&&’- and ’‖’-operations, all annotated rules belonging to the same
relation should use the same implication operator in order to be coherent. The

344 N. Wulff and D. Sottara

norm and implication operators used to execute the rules are instantiated via the
centralized JefisDegreeFactory, which can easy be parametrized using a property
file, parsed at factory startup. Drools uses a proprietary language, which might be
mapped by a translator in the future. Recently, RuleML [11] has been proposed
as a standard for rule representation and exchange. To support fuzzy and more
general, imperfect extensions, the constructs introduced by the Fuzzy RuleML
[2] module should be included.

4 Conclusions

This study had been done to demonstrate the power and feasibility of the exten-
sions to the novel Drools:Chance development branch. The first tests are promis-
ing and show, that a fuzzy based reasoning within such an extendened classical
rule engine is possible. With help of the factory build into the Jefis extender it is
possible to define customizable fuzzy-logic based systems within the Drools Rule
Language (DRL). The Jefis to Drools bridge is at present an experimental draft
and some refactoring has to come, until a stable productive state is reached. It
is developed as open-source under the Apache licence version 2.0 and accessible
as a Maven2 project site at http://www.lab4inf.fh-muenster.de/Lab4Jefis.

References

1. Sottara, D., Mello, P., Proctor, M.: Adding uncertainty to a Rete-OO inference en-
gine. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS,
vol. 5321, pp. 104–118. Springer, Heidelberg (2008)

2. Damásio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: Representing Uncertainty in
RuleML. Fundamenta Informaticae 82, 1–24 (2008)

3. Orchard, R.A., et al.: Fuzzy Extension to the CLIPS Expert System Shell (Fuzzy-
CLIPS),
http://wwwreno.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html

4. Pan, J., DeSouza, G.N., Kak, A.C.: FuzzyShell: A Large-Scale Expert System Shell
using Fuzzy Logic for Uncertainty Reasoning. IEEE Trans. Fuzzy Syst. 6, 563–581
(1998)

5. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of

Resusable Object-Oriented Software. Addison-Wesley, Reading (1995)
7. Dubois, D., Prade, H.: Fuzzy Set and Systems: Theory and Applications. Academic

Press, London (1980)
8. Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, Part I: Inference with

possibility distributions. Fuzzy Sets and Systems 50, 143–202 (1991)
9. Mamdami, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy

Logic Controller. International Journal of Man-Machine Studies, 1–13 (1985)
10. Larsen, P.M.: Industrial Applications of Fuzzy Logic Control. International Journal

of Man-Machine Studies 12(1), 3–10 (1980)
11. Boley, H.: The rule-ml family of web rule languages. In: Alferes, J.J., Bailey, J.,

May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 1–17. Springer,
Heidelberg (2006)

http://wwwreno.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html

Towards Modelling Defeasible Reasoning with
Imperfection in Production Rule Systems

Davide Sottara1, Paola Mello1, and Mark Proctor2

1 DEIS, Facolta di Ingegneria, Universita di Bologna
Viale Risorgimento 2, 40100 Bologna (BO) Italy

2 JBoss, a division of Red Hat

Abstract. This paper introduces a novel extension to the object-oriented
RETE algorithm, designed to create networks whose behaviour can be
configured by plugging different modules in. The main feature is the pos-
sibility of asserting not just new objects as facts, but also information on
how the facts satisfy the different constraints in the network. The underly-
ing reasoning process has been created to process imperfect information,
for example fuzzy or probabilistic, but the same framework can easily be
adapted to reason with defeasible rules, both boolean and imperfect, by
choosing the configuration modules appropriately.

1 Introduction

Production Rule Systems are Knowledge-Based systems using Rules, formal con-
structs here denoted by “when P then C”or P ⇒ C, stating that whenever
some pre-conditions P are verified, then new information may be inferred and/or
certain actions should be performed as a consequence C. Rules exploit the logical
connection between the premise and the conclusion, denoted using the symbol
P → C. The core inferential engine of a Production Rule System is usually de-
signed using a high performance forward chaining algorithm such as RETE [6].
Unfortunately, information on the state of the world may change, so it is not
guaranteed that conclusions entailed at a certain time remain the same some
time later, hence the knowledge inferred using rules may be not monotonic, but
has to be revisioned and updated. The new information may refine the old, but
may also conflict with what is know, leading to possbile inconsistencies. In par-
ticular, C(t1), true at time t1, is updated if it is no longer guaranteed to hold at
time t2, when more information has been obtained; C(t) is instead revisioned by
¬C(t) if the acknowledgment of additional information changes the conclusion
entailed so far. The latter category includes the acknowledgement of unexpected
events, i.e. exceptions. Consider the classic example bird(X) ⇒ flies(X). Since
the rule is valid for most birds but not for all, there can be exceptions, from
entire subclasses of birds (e.g. penguins) to individuals (e.g. Tweety). Even if in-
correct, statements like this are simple and still cover the majority of cases, so it
is convenient to consider them correct and possibly revise one’s belief only when
needed. To avoid inconsistencies, a rule should include additional checks in its

G. Governatori, J. Hall, and A. Paschke (Eds.): RuleML 2009, LNCS 5858, pp. 345–352, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

346 D. Sottara, P. Mello, and M. Proctor

preconditions (e.g. (P ∧ ¬E) ⇒ C, where E denotes an exceptional condition),
but this is infeasible for several reasons, including the increased complexity and
the necessity to modify a rule every time a new condition is found. To allow the
revision of conclusions and the resolution of conflicts in logic reasoning, several
proposals exist in literature, such as default reasoning frameworks [11] and defea-
sible logic [8]. This paper, in particular, will focus mainly on the latter, since it’s
more rule-oriented. The underlying idea is that some rules may be overridden by
others under specific conditions. In particular, a rule P ⇒ C may be countered
either in its conclusion C, stating ¬C, or in its implication, stating ¬(P → C).
The attacks may even be combined since the conflict arising from stating ¬C
has to be resolved, either assuming that one conclusion between C and ¬C is
stronger than the other, or by preventing the conflicting C from being entailed
altogether. These principles are generally valid, but their applications depend
on the choice of rule model and engine. For example, Governatori et al. have
applied them to logic programming [1], where rules are Horn clauses and the
engine is Prolog-compliant (i.e. backward, SLDNF resolution); other systems
such as Dolores [7] use a forward chaining approach; this paper, instead, will
discuss a possible implementation of non-monotonic reasoning using a RETE
network. In particular, the architecture we are developing is a modification of
the RETE-OO algorithm which builds networks capable of supporting reasoning
when knowledge is stated with different degrees of imperfection (imperfection is
a general term used to encompass both probabilistic and gradual approaches
[12]), as described in [13]. This architecture is being developed in the DROOLS1

rule engine. Moreover, imperfection and defeasibility can be mixed within the
same rule: exceptions, for example, are possible but improbable, so they could be
set in a probabilistic framework. Fuzzy exceptions could be considered as well:
birds generally fly and penguins generally do not, but chickens, for example, do
fly even if only to some limited degree. The paper is thus divided in two parts.
First, the extended RETE architecture will be introduced; then it will be shown
how this network, unlike its standard version, can process defeasible and defeater
rules, both in the perfect and in the imperfect case.

2 Extended RETE Networks

The object-oriented version of the RETE algorithm matches objects stored in
a working memory against a set of constraints specified in the rules, either as
individual facts or as ordered tuples. The rules are compiled into a logic network
which uses a combination of information sharing and caching to perform the
required checks (for details see for example [6]).

Node types. The RETE algorithm compiles a rule base R = {rj |rj = Pj ⇒ Cj}
into a network which processes objects x or tuples x, evaluating constraints σ
on their fields.
1 http://www.jboss.org/drools/

Towards Modelling Defeasible Reasoning with Imperfection 347

More specifically, the network is derived from the premises Pj , which in turn
are logical formulas composed of patterns Pj,k. A pattern is a collection of con-
straints σi

j,k on a single object. Each constraint, then, can be identified by its
signature, also denoted by σ, and defined as: σ = Type.Field# Op# Args

Constraints are mapped to different nodes; in particular, two main types
of nodes exist : α-Nodes, evaluating constraints on individual objects and β-
Nodes, evaluating constraints between different objects joined in tuples.

Evaluations. When a generic tuple X passes through a constraint node, the local
property σ is checked. This is conceptually similar to defining and evaluating the
validity of a predicate π =< σ,X > stating that a generic tuple X satisfies σ.
This evaluation is stored in a structure called Evaluation and denoted by ε,
which records the degree at which a constraint is satisfied by a tuple, επ(x)2.
When dealing with imperfection, a constraint may be satisfied in a partial degree,
resulting from the combination of different sources:

– επ
0 : Prior information, provided as a fact.

– επ
σ : Direct evaluation, resulting from the evaluator embedded in the node.

– επ
i : As a consequence of one or more rules ri∈I

Given an initial, off-line, lexical analysis of the rule base, it is possible to know
the size of the potential index set |I|, i.e. how many pieces of information could
theoretically concur to define the aggregate degree of an evaluation. Since not
all contributions - especially logical consequences - could be available at runtime
for every tuple, an information rate indicator ρ is defined as the ratio of the
actual number of contributions and the number of possible contributions.

The overall behaviour is configurable with an appropriate set of strategies:

– The class L of degrees, generalizing the concepts of true (T), false (F) and
unknown (?) to be compatible with boolean and 3-valued logic (many logics
use a real value in [0, 1]). A degree can also have an associated confidence
value χ ∈ [0, 1], similarly to the ones used in FuzzyClips shell.

– A merge strategy ∩ : L2+|I|
→ L. Different degrees from different sources
are combined into a single degree, so that επ = ∩i∈{0,σ}∪Iε

π
i .

– A null-handling strategy S∅ : ∅
→ L. In case one of the sources is not
available, its contribution is set to ∅ (null), which can be treated as if it were
false (closed world assumption), or can be mapped to a degree representing
lack of knowledge, e.g. the neutral element ? of ∩ such that ∀d : d∩? = d.

Evaluations may be simple or composite: the latter model the logical operators
used to create complex formulas in the premise of a rule. A composite evaluation
is a tree node storing links to its operand evaluations, combined to compute its
επ

σ contribution. Like the truth degrees, operators are pluggable to use different
types of logic, as described (from a more theoretical point of view) in [4]. The
evaluation tree, built progressively ars the constraints are evaluated, mirrors the

2 When clear from the context, the arguments will be omitted.

348 D. Sottara, P. Mello, and M. Proctor

structure of the premise being checked. When a degree in a node changes, due
to the addition of a new contribution or to a change in rate ρ, the information
is propagated to the root, where the global degree is stored.

Modus Ponens. A tuple x matching the patterns in a premise activates a rule
in some degree (stored in a composite Evaluation) and the conclusions y are
computed as function of x; to obtain the conclusion degree, Modus Ponens ⇒
has to be applied. Given a rule written in the form P ⇒ C and its underlying
logical implication →, Modus Ponens has the generic form:

< P (x), ε(x) >, ∀X :< P (X) → C(Y(X)), ε(→) >

< C(y(x)),⇒ (x, ε(x), ε(→)) >
(1)

Usually rules are assumed true, and most definitions of ⇒ just return ε(x). In
the proposed framework, instead, the implication → (x) itself is evaluated in a
dedicated node before ⇒ is applied to yield the consequence degree.

Logical Consequences. The conclusions of a rule can be divided in logical en-
tailments and side effects. Ignoring the latter, in common OO production rule
systems entailments consists in the assertion (or retraction) of one or more new
objects in the WM. The proposed architecture, instead, also allows the entail-
ment of the truth degree of a predicate, using the instruction inject(y,σ).

An injection consequence of rule ri uses the degree computed from its premise
Pi and its implication →i by Modus Ponens: this value is used to set the con-
tribution επ

i in the Evaluation of constraint σ for some other tuple y, possibly
derived from the activating tuple x. Notably, evaluable constraints include im-
plications: the truth degree of an implication is usually provided de facto stating
ε→0 = true, but nothing prevents it from being evaluated by other sources. This
feature allows a rule to condition the relationship between premise and conclu-
sion of another rule.

Propagation. The injection of a degree poses a synchronization problem. If the
tuple y hasn’t been inserted in the working memory at the time of injection, the
contribution is stored in a message box at the node responsible for evaluating
σ, so that, should y be later evaluated at that node, the Evaluation will also
include that contribution. If, on the other hand, y exists in the working memory
and σ has already been evaluated on it, the relative Evaluation is retrieved and
the new partial degree is added, propagating the update of the aggregate degree
and the rate ρ. Moreover, the tuple propagation strategy has to be customized:
in RETE, all formulas are conjunctions, so nodes propagate (resp. discard) an
object or a tuple if it satisfies (resp. fails) the local constraint test. In presence
of injections, which are not guaranteed to take place, a third option is possible:
a tuple can be blocked while waiting for an injection. Nodes are customized with
a propagation strategy Sf , which analyzes the current Evaluation tree, typically
considering the aggregate values επ and ρ, and chooses between Pass, forwarding
the tuple to the following node, Hold, waiting for injected degrees, and Drop,
discarding the tuple. When Hold is chosen, the tuple is not propagated, but the

Towards Modelling Defeasible Reasoning with Imperfection 349

current node monitors its Evaluation to apply the propagation criteria again
should it change. A strategy requiring ρ = 1 to propagate a tuple can also be
used to synchronize rules, but may be prone to deadlocks, unless all injecting
rules are always guaranteed to fire.

3 Towards Defeasible Reasoning

The architecture of section 2 can support non-monotonic reasoning in a way that
is similar to the fundamentals of defeasible logic, given some additional concepts.

Conflict. Two truth degrees εk and εv conflict iff εk ∩ εv = ∅. Two values that
can’t be merged denote a logical inconsistency: this does not mean that the
overall degree is unknown, even if setting conflicting merges to unknown may be
a way to resolve them. Conflicts can be resolved using the confidence χ associated
to the degrees: a strong evaluation, in fact, should be taken in greater account
than an unreliable one. This approach has been widely used in literature, for
example by Pollock [10], who calls it “justification degree”, and by Bamber in
his “scaled assertions”[2]. The merge strategy ∩ relies on a pluggable discount
strategy, Sd, which applies a discount transformation δ : ε × χ
→ ε. A degree
with full confidence is never altered (δ(ε, 1) = ε), while a totally unreliable one
is transformed into the neutral element of ∩ : (δ(ε, 0) =?). Hence, S∅ and Sd

operate in pipeline, so that ∩ can always merge proper, discounted degrees,
possibly avoiding conflicts arising from missing data or unreliable sources. We
will denote by ∩δ the confidence-aware merge strategy.

In other cases, instead, the user may want to programmatically state that
some degrees should explicitly override any other, e.g. when writing an exception.
So, the extended rule language provides defeaters with an “attacking”injection
primitive, using the keyword reject(y,σ). A rejection works like an injection, but
it uses the negated consequence degree of the invoking rule and sets an attack
flag to true automatically. The attacking degrees are also handled by Sd: its
default implementation alters the confidence of the attacked degrees in presence
of attackers, before shaping the degrees for the merge according to its actual
value. Defined χk = maxj{χj : εj .isAttacker = true }, the confidence of all non-
attacking degrees in the same Evaluation is lowered to max{0, χ − χk} before
applying the discounting δ. This allows to take into account the confidence of
the attacker, in addition to that of the attacked degree, limiting the effect of
weak exceptions while preserving strong ones.

Rebutting defeat. A rule rk is a rebutting defeater for a conclusion C(y) of a
rule rv if both rules inject the same predicate π :< y, σ >, there would be a
conflict such that εk ∩ εv = ∅ : εk, but rk attacks rv with enough confidence, so
that επ = εk ∩δ εv = εk. Notice that introducing an attacking injection among
the actions of rk is equivalent to defining a partial order relation ! between rk

and any rule rv leading to the same conclusion.

350 D. Sottara, P. Mello, and M. Proctor

Undercutting defeat. A rule rk is an undercutting defeater for a conclusion
C(y(x)) of a rule rv if εk defeats ε(→)v, i.e. the implication constraint of rv

evaluated for x. Since implications have a truth degree, they can be attacked:
setting ε(→) to false will cause the Modus Ponens operator to return ?.

As a corollary, a rule rs is strict iff the evaluation of →rs has χ = 1 and its
confidence can’t be lowered. The conclusions of a strict rule can be refined, but
not argued against since the deduced truth value will not be discounted.

3.1 Case Study: Rule Base with Defeasible Rules

A non-monotonic rule base includes attacking injections in the rules’ conclusions.
We will examine the “flying bird”problem, written in DROOLS’ DRL language.
rule ”Bird (X) −> F l i e s (X)” // r1
when x : Bird ()
then i n j e c t (x , ” Bird . f l i e r ” ,”==”,” true ”) ;

rule ”Chicken(X) −> neg F l i e s (X) , neg (Bird (X) −> F l i e s (X))” // r2
when x : Chicken()
then r e j e c t (x , ” Bird (X) −> F l i e s (X) ”) ;

r e j e c t (x , ” Bird . f l i e r ” ,”==”,” true ”) ;

rule ” F l i e s (X) −> . . . ” // r3
when x : Bird (f l i e r == true)
then . . .

r3 is the rule reacting to x being capable to fly: when the field flier is set to
null, the constraint will have to be entailed logically. r1 is the default rule, while
r2 models an exception. It acts both as rebutting (injecting the constraint in r3)
and as undercutting attacker (injecting the implication) for r1, but, as will be
discussed, one attack would be sufficient.

Boolean configuration. The network uses 3-valued logic with T , F and ? used to
denote true, false and unknown respectively, while ∅ is used for conflict. Modus
Ponens ⇒ returns T when both premise and implication are true, ? otherwise;
merging using ∩ has ? as neutral element and only returns ∅ if T and F are
combined. Confidence can be either 0 or 1, so the discount δ returns ? or ε,
respectively. S∅ always returns unknown (?) and, finally, Sf always chooses the
Pass option. Initially, all implications are T ; then, a Chicken (subtype of Bird)
x is created and its field flier is set to null, so the direct evaluation of the
constraint σ� : Bird.flier == true returns ?. After its insertion, r1 and r2 are
T -activated, while r3 is ?-activated. The agenda is non-deterministic, so suppose
that the rules will activate in order r3, r1, r2, causing the greatest number of
revisions. The first activation of r3 returns that it is unknown whether x flies or
not. When r1 fires, the combined information for σ� evaluates to T , so r3 entails
that x flies. The eventual activation of r2 revisions the belief: the attacking F it
contributes discounts the existing evidence to ?, so the aggregate degree becomes
F . It also sets the implication Bird(x) → Flies(x) to F , in turn changing the
contribution of r1 to ?. In either case, the merge at the constraint node is no
longer conflictual. At the end, the consequence degree of r3 is F (x does not fly),
while the degree of r2 is T ; r1 has a true premise, but its implication is false for
x, as expected given the state of its conclusion, false, and its premise, true.

Towards Modelling Defeasible Reasoning with Imperfection 351

Imperfect configuration. The same network can be used with truth degrees other
than booleans. Consider, for example, possibilistic logic: a degree has the form
[N, Π]χ, where N and Π are respectively a lower bound of the necessity of a
constraint and an upper bound of its possibility ([5]) and χ is the confidence
degree. The filtering strategy remains the same (always Pass), but the other
modules have to be adapted accordingly. Modus Ponens (⇒) takes the min-
imum (∧) of the premise and the implication’s necessities, but then sets the
possibility to 1; Negation (¬) relies on the duality relation N(x) = 1 − Π(¬x);
the merge operator ∩ has the effect of intersecting the intervals [Ni, Πi]; null
contributions are mapped by S∅ into [0, 1]0; finally, the discount strategy uses
confidence χ to broaden an interval into [N · χ, 1 − χ · (1 − Π)]. A full descrip-
tion of the properties of operators in possibilistic logic can be found in [5]. The
same operators also combine the attached confidence degrees as in fuzzy CLIPS.

Fig. 1. RETE for rule base R

Suppose that the degree of →1 is
set to [.8, 1].5, possibly because it has
been learned by induction over a lim-
ited set of example birds (low con-
fidence), not all of which were fliers
(necessity < 1). Given a Bird x, rule
r1 returns [.8, 1].5. Since it does not
trigger the exception, this degree is
merged with the one resulting from
direct evaluation at r3. In particular,
if x were known to fly, the evaluator
would yield [1, 1]1 so the merge would
be true. If, instead, the field x.flies is
null, the overall result is [.4, 1].5 since,
due to the low confidence, N has been
discounted; evaluation at r3 returns
[0, 1]0, while the premise of r2 is false, so its activation degree is [0, 1]0, which
alters neither r3 conclusion nor r1 implication. When, instead, x is a Chicken,
the system behaves like in the boolean case, overriding the contributions of →1
and r3 to [0, 0]1.

3.2 RuleML Encoding

Drools DRL is a proprietary language, but it is feasible to translate the rules
into the standard, XML-based RuleML language. Given the object-oriented
nature of Drools and its being a production rule system, and the customiz-
able behaviour of operators and degrees, a translator would produce a com-
bination of object oriented (OO, [3]), fuzzy [4] and Production rule (PR, [9])
RuleML. Being new, however, the inject logical action is not supported in
any of the language modules, so a new Element should be introduced, with a
minimal content model. Constraints and tuples can be serialized using Atom el-
ements, while the attribute, false by default, distinguishes attacking from simple
injections.

352 D. Sottara, P. Mello, and M. Proctor

<!ELEMENT In j e c t Atom , (Args) >
<!ATTLIST I n j e c t attack \%boolean ; ’ f a l s e ’>
<!ELEMENT Args (Atom+) >

4 Conclusions and Future Developments

We have introduced a novel extension of the RETE networks, stressing how
its behaviour can be customized using a set of pluggable modules to affect the
semantics of the rules it models. The architecture, implemented extending the
DROOLS rule engine with imperfect reasoning as main goal, supports a primitive
form of defeasible reasoning exploiting the explicit notion of truth degree and the
evaluation of the implication part in the rules. Even if the engine is far from being
a full framework supporting argumentations in defeasible logic, it supports the
basic building blocks, allowing to write rules with exceptions, even in presence of
imperfection or uncertainty in the data. However, the engine is very experimental
and suffers some major drawbacks. No full scale tests have been carried out and
a few real applications are still being developed. Moreover, a complete truth
maintenance system has not been implemented for logical injections, so it is not
possible to track the dependencies explicitly.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible
logic into logic programming. TPLP 6(6), 703–735 (2006)

2. Bamber, D., Goodman, I.R., Nguyen, H.T.: Robust reasoning with rules that have
exceptions. Ann. Math. Artif. Intell. 45(1-2), 83–171 (2005)

3. Boley, H.: Object-oriented ruleml: User-level roles, uri-grounded clauses, and order-
sorted terms. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876,
pp. 1–16. Springer, Heidelberg (2003)

4. Damásio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: Representing uncertainty in
ruleml. Fundam. Inf. 82(3), 265–288 (2008)

5. Dubois, D., Prade, H.: Possibilistic logic
6. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-

lem. Artif. Intell. 19(1), 17–37 (1982)
7. Maher, M.J.: Propositional defeasible logic has linear complexity. In: Logic Pro-

gramming, pp. 691–711 (2001)
8. Nute, D.: Defeasible logic. In: INAP, pp. 87–114 (2001)
9. Paschke, A., Kozlenkov, A., Boley, H.: A homogenous reaction rules language for

complex event processing. In: International Workshop on Event Drive Architecture
for Complex Event Process (2007)

10. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial
Intelligence 133(1-2), 233–282 (2001)

11. Reiter, R.: A logic for default reasoning. AI 13 (April 1980)
12. Smets, P.: Imperfect Information: Imprecision and Uncertainty, vol. 225, p. 254

(1996)
13. Sottara, D., Mello, P., Proctor, M.: Adding uncertainty to a rete-OO inference en-

gine. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS,
vol. 5321, pp. 104–118. Springer, Heidelberg (2008)

Author Index

Abdelhalim, Amany 108
Anton, Francois 272

Bak, Jaroslaw 216
Bauer, Bernhard 193
Bohlken, Wilfried 93
Boley, Harold 29, 43, 272

Chapin, Donald 3
Cirstea, Horatiu 262
Contissa, Giuseppe 305
Craig, Benjamin Larry 43

Das, Amar K. 246
de Sainte Marie, Ch. 17
Dierking, Howard 182

Falkowski, Maciej 216

Gao, Sheng 272
González-Cristóbal, José C. 159
Gordon, Thomas F. 282
Governatori, Guido 282, 315

Hassanpour, Saeed 246
Hatzilygeroudis, Ioannis 167
Hawke, Sandro 1
Höpfner, Hagen 231
Hu, Yuh-Jong 4

Jedrzejek, Czeslaw 216

Kozlenkov, Alexander 53
Krause, Paul 144
Kumar, Akhil 122

Lam, Ho-Pun 315
Laun, Wolfgang 4
Linehan, Mark H. 137

Mansour, Essam 231
Marinos, Alexandros 144

Mart́ınez, Paloma 159
Mart́ınez-Fernández, José L. 159
McCaffrey, James D. 182
Mello, Paola 345
Mioc, Darka 272
Moreau, Pierre-Etienne 262
Mpagouli, Aikaterini 167
Müller, Jens 208

Neumann, Bernd 93
Nickles, Matthias 323

Obweger, Hannes 67
O’Connor, Martin J. 246
Osmun, Taylor Michael 43

Palmirani, Monica 305
Paschke, Adrian 53, 82
Proctor, Mark 345
Putrycz, Eric 137

Reilles, Antoine 262
Romeikat, Raphael 193
Rotolo, Antonino 282, 297
Rubino, Rossella 297, 305

Sayed, Bassam 108
Schiefer, Josef 67
Sinsel, Markus 193
Sottara, Davide 323, 337, 345
Suntinger, Martin 67

Teymourian, Kia 82
Traore, Issa 108

Vincent, Paul 2

Wulff, Nikolaus 337

Yao, Wen 122
Yeh, Ching-Long 4
Yi, Xiaolun 272

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Speakers (Abstracts)
	Bringing Order to Chaos: RIF as the New Standard for Rule Interchange
	Why Rules Matter in Complex Event Processing. . . and Vice Versa
	Terminology: The Semantic Foundation for an Organizations Executable Rules

	Rule Systems on the Web
	Challenges for Rule Systems on the Web
	Introduction
	Challenges for Rule Systems

	Rule and Data Model
	The Classification of Rules
	Rules and Databases
	Rules and Ontologies
	Combination of Rule and Ontology

	Policy as Ontology and/or Rule
	Policy for Semantic Web Services

	Rule Management Systems and Engines
	Rule Systems in the Semantic Web Framework
	Standalone Rule Systems
	Performance Benchmark for Rule Systems

	Rule Interchange Languages
	Use Cases with Rules
	Conclusion
	References

	A Modest Proposal to Enable RIF Dialects with Limited Forward Compatibility
	Introduction
	Motivating Example
	Limited Forward Compatibility
	Discussion
	Is Limited Forward Compatibility Useful?
	Consumer-Side Fallback vs. Producer-Side Fallbacks

	Implementation Issues
	Specification and Interchange of Fallback Transforms: RIF or XSLT?
	Conveying the Fallback Information from RIF Producers to RIF Consumers

	Conclusion
	References

	RIF RuleML Rosetta Ring: Round-Tripping the Dlex Subset of Datalog RuleML and RIF-Core
	Introduction
	Syntax of Dlex
	Alphabet of Dlex
	Terms
	Formulas

	Semantics of Dlex
	Semantic Structures
	Interpretation of Formulas
	Logical Entailment

	Mapping of the Dlex Condition Language
	Conditions from RIF Presentation Syntax to RIF/XML
	Conditions from RIF/XML to RuleML/XML
	Conditions from RuleML/XML to RuleML/POSL

	Mapping of the Dlex Rule Language
	Rules from RIF Presentation Syntax to RIF/XML
	Rules from RIF/XML to RuleML/XML
	Rules from RuleML/XML to RuleML/POSL

	Conclusion
	References

	WellnessRules: A Web 3.0 Case Study in RuleML-Based Prolog-N3 Profile Interoperation
	Introduction
	Hybrid Global Knowledge Bases in WellnessRules
	Locally Distributed Knowledge Bases in WellnessRules
	Cross-Paradigm Rulebase Alignment and Translation
	Distributed Rule Responder Querying of WellnessRules
	Conclusion
	References

	Rule-Based Event Processing and Reaction Rules
	Rule-Based Event Processing and Reaction Rules
	Introduction
	Production Rule Systems and Update Rule Programs
	Active Databases and ECA Rule Systems
	Temporal Knowledge Representation Event / Action / Transition Logic Systems
	Rule-Based Event Processing Languages and Event Notification Systems
	Reaction Rule Markup and Interchange Languages
	Conclusion
	References

	Correlating Business Events for Event-Triggered Rules
	Introduction
	Related Work and Contribution
	Event-Triggered Rules
	Correlation Sets
	Elementary Correlation Band
	Self-referencing Correlation Band
	Knowledge-Based Correlation Band
	Language-Specific Correlation Band
	Correlation Set Bridge

	Correlating Events with Correlation Sets
	SARI Application Scenario
	Visualization of Rule Processing Results

	Conclusion and Future Work
	References

	Semantic Rule-Based Complex Event Processing
	Introduction
	Semantic Events
	Semantic Event Detection
	CEP Semantics - Interval-Based Event Calculus Event / Action Algebra
	Rule-Based CEP Middleware
	Conclusion and Future Works
	References

	General Rule Topics
	Generation of Rules from Ontologies for High-Level Scene Interpretation
	Introduction
	Rule Generation from Ontology
	Object-Centered Definition of Aggregates
	Constraints

	Interpretation Process
	Interpretation Process and System Overview
	Parallelisation

	Results
	Conclusion and Future Work
	References

	RBDT-1: A New Rule-Based Decision Tree Generation Technique
	Introduction
	Related Work
	Rule Generation and Notations
	RBDT-1 Method
	Preparing the Rules
	Attribute Selection Criteria
	Building the Decision Tree
	Pruning Decision Rules
	The Weekend Problem

	Experiment and Results
	Conclusion and Future Work
	References

	Process Materialization Using Templates and Rules to Design Flexible Process Models
	Introduction
	Preliminaries
	Motivating Example
	Architecture
	Formal Representation of a Process

	Rule Representation and Processing
	Rule Categories
	Rule Representation
	Rule Processing and Semantics for Conflict Resolution

	Materialization Algorithm
	Overview
	Algorithmic Details

	Discussion and Related Work
	Conclusions
	References

	Rule Transformation and Extraction
	Introduction to “Rule Transformation and Extraction” Track
	Introduction
	Rule Transforamation
	Rules and Model-Driven Architecture
	Transformation Languages
	Challenges

	RuleExtraction
	From Artifacts to Rules
	System Modernization
	Challenges

	References

	An SBVR Framework for RESTful Web Applications
	Introduction
	From SBVR Models to Applications
	Validating an SBVR Model
	Inferring a Database Schema
	Converting an SBVR Rule to an SQL Query

	SBVR and the Architecture of the Web
	Constructing a RESTful Interface from an SBVR Model
	Using SBVR to Describe Resources

	Implicit Process Specification
	Concluding Remarks and Future Work
	References

	Towards an Improvement of Software Development Processes through Standard Business Rules
	Introduction
	K-Site Rules Framework Description
	Example in the Insurance Domain
	Conclusions and Future Work
	References

	A Rule-Based System Implementing a Method for Translating FOL Formulas into NL Sentences
	Introduction
	Related Work
	FOLtoNL Conversion Process
	Basic Approach
	Conversion Process
	Translation of Atoms
	Translation of Implications

	Using Rules for Implementing FOLtoNL Conversion
	System Application
	Discussion and Conclusions
	References

	An Empirical Study of Unsupervised Rule SetExtraction of Clustered Categorical Data Using a Simulated Bee Colony Algorithm
	Introduction
	Algorithms Inspired by Bee Behavior
	Simulated Bee Colony Algorithm Implementation
	Results
	References

	Transformation of Graphical ECA Policiesinto Executable Ponder Talk Code
	Introduction
	Basics
	Model-Driven Engineering
	PonderTalk

	Modeling and Transforming ECA Policies
	Generic Policy Metamodel
	PonderTalk Metamodel
	Graphical Visualization
	Model Transformations

	Implementation
	Conclusion
	References

	Session 6
	A Rule-Based Approach to Match Structural Patterns with Business Process Models
	Introduction
	Modelling and Transforming Structural Patterns
	Rule-Based Search for Structural Patterns
	Related Work
	Conclusions
	References

	Usage of the Jess Engine, Rules and Ontology to Query a Relational Database
	Introduction
	Preliminaries
	SDL Architecture and Integration Process
	SDL Architecture and Functionalities
	Integration Process of Relational Database, OWL+SWRL Ontology and Jess Engine
	Mapping between Relational Database Schema and Ontology Concepts
	Transformation to Jess Language

	Query Algorithm and Hybrid Reasoning Process
	Example Use of the SDL Library
	Conclusions and Future Work
	References

	An XML-Based Manipulation and Query Language for Rule-Based Information
	Introduction
	Related Work
	Modeling the Rule-Based Information
	The Management Life-Cycle
	Instantiation and Execution History

	The Manipulation and Query Requirements
	The High-Level Manipulation Operations
	Add
	Remove
	Modify
	Activate
	Deactivate
	Terminate
	Fire

	Evaluation
	A Prototype System
	Experimental Results

	Conclusion and Outlook
	References

	Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules
	Introduction
	Background
	Related Work
	Methods
	Rule Abstraction
	Rule Visualization
	Rule Paraphrasing
	Rule Categorization
	Rule Management Tool

	Results
	Discussion
	References

	TomML: A Rule Language for Structured Data
	Introduction
	Tom in a Nutshell
	TomML, an Extension for XML Manipulation
	Strategies
	Comparison with Similar Tools
	Conclusion
	References

	Geospatial-Enabled RuleML in a Studyon Querying Respiratory Disease Information
	Introduction
	Semantic Web and Geospatial Semantics
	Framework for Health Information Query and Representation
	Framework
	Ontologies and Rules in Health Data Fusion

	Design and Implementation
	Geospatial Support for RuleML Deduction
	Data Sources and Ontology Definition
	Scenarios

	Discussion and Conclusions
	References

	Session 7
	Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain
	Introduction
	Requirements
	Overview of Some Rule Interchange Languages
	The Rule Markup Language (RuleML)
	Semantics of Business Vocabulary and Business Rules (SBVR)
	The Semantic Web Rule Language (SWRL)
	The Rule Interchange Format (RIF)
	The Legal Knowledge Interchange Format (LKIF)

	Conclusions
	References

	A Java Implementation of Temporal Defeasible Logic
	Introduction
	Temporal Defeasible Logic
	The Implementation
	Inference Engine

	Discussion and Conclusions
	References

	Fill the Gap in the Legal Knowledge Modelling
	Introduction
	Layers of Legal Document Modelling
	Pilot Case Scenario
	Legal Text Description and Representation
	LKIF Ontology of the Italian Savings Tax Law
	LKIF Modelling
	Conclusions
	References

	The Making of SPINdle
	Introduction
	Defeasible Logic
	Basics of Defeasible Logic
	Modal Defeasible Logic

	Implementation
	SPINdle System Architecture
	The Inference Process

	Performance Evaluation
	Conclusion
	References

	Session 8
	Approaches to Uncertain or Imprecise Rules - A Survey
	Introduction
	Probabilistic and Possibilistic Reasoning with Rules
	Probabilistic Approaches
	Dealing with Imprecision: Possibilistic Theories

	Mainstream Software Tools and Standards
	References

	Fuzzy Reasoning with a Rete-OO Rule Engine
	Introduction
	Basic Jefis Fuzzy Set Operations
	The Jefis Interface to Drools
	Conclusions
	References

	Towards Modelling Defeasible Reasoning with Imperfection in Production Rule Systems
	Introduction
	Extended RETE Networks
	Towards Defeasible Reasoning
	Case Study: Rule Base with Defeasible Rules
	RuleML Encoding

	Conclusions and Future Developments
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

