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The semiconductor-electrolyte interface

11.1 Electrochemistry at semiconductors

Many naturally occurring substances, in particular the oxide films that form
spontaneously on some metals, are semiconductors. Also, electrochemical re-
actions are used in the production of semiconductor chips, and recently semi-
conductors have been used in the construction of electrochemical photocells.
So there are good technological reasons to study the interface between a semi-
conductor and an electrolyte. Our main interest, however, lies in more funda-
mental questions: How does the electronic structure of the electrode influence
the properties of the electrochemical interface, and how does it affect electro-
chemical reactions? What new processes can occur at semiconductors that are
not known from metals?

11.2 Potential profile and band bending

When a semiconducting electrode is brought into contact with an electrolyte
solution, a potential difference is established at the interface. The conductivity
even of doped semiconductors is usually well below that of an electrolyte
solution; so practically all of the potential drop occurs in the boundary layer
of the electrode, and very little on the solution side of the interface (see Fig.
11.1). The situation is opposite to that on metal electrodes, but very similar
to that at the interface between a semiconductor and a metal.

The variation of the electrostatic potential φ(x) in the surface region en-
tails a bending of the bands, since the potential contributes a term −e0φ(x)
to the electronic energy. Consider the case of an n-type semiconductor. We
set φ = 0 in the bulk of the semiconductor. If the value φs of the potential at
the surface is positive, the bands band downwards, and the concentration of
electrons in the conduction band is enhanced (see Fig. 11.2). This is called an
enrichment layer. If φs < 0, the bands bend upward, and the concentration of
electrons at the surface is reduced; we speak of a depletion layer. On the other
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Fig. 11.1. Variation of the potential at the semiconductor-solution interface
(schematic).

hand, the concentration of the holes, the minority carriers, is enhanced at the
surface; if it exceeds that of the electrons, one speaks of an inversion layer. The
special potential at which the electrostatic potential is constant (i.e., φ(x) = 0
throughout the semiconductor), is the flat-band potential, which is equivalent
to the potential of zero charge. In Chap. 4 we noted that, because of the oc-
currence of dipole potentials, the difference in outer potential does not vanish
at the pzc; the same is true for the flat-band potential of a semiconductor in
contact with an electrolyte solution.

Mutatis mutandis the same terminology is applied to the surface of p-type
semiconductors. So if the bands bend upward, we speak of an enrichment
layer; if they bend downward, of a depletion layer.

Just as in Gouy–Chapman theory, the variation of the potential can be
calculated from Poisson’s equation and Boltzmann statistics (in the nonde-
generate case). As an example we consider an n-type semiconductor, and limit
ourselves to the case where the donors are completely ionized, and the con-
centration of holes is negligible throughout – a full treatment of all possible
cases is given in [1, 2]. The charge density in the space-charge region is the
sum of the static positive charge on the ionized donors, and the mobile nega-
tive charge of the conduction electrons. Let nb be the density of electrons in
the bulk, which equals the density of donors since the bulk is electroneutral.
Poisson’s equation gives:

d2φ

dx2
= − nb

εε0

(
1− exp

e0φ

kT

)
(11.1)

which is reminiscent of the Poisson–Boltzmann equation. An approximate
analytic solution can be derived for a depletion layer; the band has a parabolic
shape, and the corresponding interfacial capacitance Csc is given by the Mott–
Schottky equation (see Appendix), which is usually written in the form:
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Fig. 11.2. Band bending at the interface between a semiconductor and an elec-
trolyte solution; (a)–(c) n-type semiconductor: (a) enrichment layer, (b) depletion
layer, (c) inversion layer; (d)–(f) p-type semiconductor: (d) enrichment layer, (e)
depletion layer, (f) inversion layer.
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Csc

)2

=
2

εε0e0nb

(
|φs| −

kT

e0

)
(11.2)

Often, the small term kT/e0 is neglected. The total interfacial capacity C is
a series combination of the space-charge capacities Csc of the semiconductor
and Csol of the solution side of the interface. However, generally Csol � Csc,
and the contribution of the solution can be neglected. Then a plot of 1/C2

versus the electrode potential φ (which differs from φs by a constant) gives a
straight line (see Fig. 11.3). From the intercept with the φ axis the flat-band
potential is determined; if the dielectric constant ε is known, the donor density
can be calculated from the slope. The same relation holds for the depletion
layer of a p-type semiconductor.

Semiconductors that are used in electrochemical systems often do not meet
the ideal conditions on which the Mott–Schottky equation is based. This is
particularly true if the semiconductor is an oxide film formed in situ by oxidiz-
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Fig. 11.3. Mott–Schottky plot for the depletion layer of an n-type semiconductor;
the flat-band potential Efb is at 0.2 V. The data extrapolate to Efb + kT/e0.

ing a metal such as Fe or Ti. Such semiconducting films are often amorphous,
and contain localized states in the band gap that are spread over a whole range
of energies. This may give rise to a frequency dependence of the space-charge
capacity, because localized states with low energies have longer time constants
for charging and discharging. It is therefore important to check that the in-
terfacial capacity is independent of the frequency if one wants to determine
donor densities from Eq. (11.2).

11.3 Electron-transfer reactions

There is a fundamental difference between electron-transfer reactions on met-
als and on semiconductors. On metals the variation of the electrode potential
causes a corresponding change in the molar Gibbs energy of the reaction. Due
to the comparatively low conductivity of semiconductors, the positions of the
band edges at the semiconductor surface do not change with respect to the
solution as the potential is varied. However, the relative position of the Fermi
level in the semiconductor is changed, and so are the densities of electrons
and holes on the semiconductor surface.

The general shape of the current-potential curves for a perfect, non-
degenerate semiconductor, for which the Fermi level lies well within the band
gap, is easily derived. We first consider electron exchange with the conduction
band. Since concentration of electrons in this band is very low, electron trans-
fer from a redox couple in the solution to this band is not impeded by them.
Further, since the relative position of the electronic levels in the solution and
the semiconductor surface do not change with potential, the anodic current
is constant, and we call its density jc

0, the superscript indicating the conduc-
tion band. On the other, application of a negative overpotential η brings the
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band edge at the surface by an amount e0η closer to the Fermi level, and the
concentration of electrons increases exponentially. Noting that for η = 0 the
total current must vanish, we can write the current density passing through
the conduction band as:

jc = jc
0

[
1− exp

(
−e0η
kT

)]
(11.3)

Obviously, this current-potential characteristics has rectifying properties (see
Fig. 11.5).

Conversely, the valence band is practically full, and electron transfer from
this band to the solution is constant; the corresponding current density we call
−jv

0 . Electron transfer from the solution to the valence band is proportional
to the density of holes in this band, which increases exponentially with e0η.
Therefore we obtain for the current through the valence band:

jv = jv
0

[
exp

e0η

kT
− 1
]

(11.4)

Gerischer’s terminology is popular in semiconductor electrochemistry, and
it is instructive to calculate the currents in this model. This implies that the
transfer is non-adiabatic, which seems plausible in view of the fact that the
surface orbitals of semiconductors are less extended than those of metals.

We start from Eq. (10.14) for the rate of electron transfer from a reduced
state in the solution to a state of energy ε on the electrode, and rewrite it in
the form:

kox(ε) = A′
∫

[1− f(ε)]Wred(ε, η)dε (11.5)

using Gerischer’s terminology; Fig. 11.4 shows a corresponding plot. We have
introduced A′ = A∆/~ for brevity. We still have to specify the integration
limits. There are two contributions to the anodic current density, jv

a from the
valence and jc

a from the conduction band. Denoting by Ev, Ec the band edges
at the surface, we write for the current density:

jv
a = FA′c

∫ Ev−EF

−∞
dε [1− f(ε)]Wred(ε, η) (11.6)

jc
a = FAc

∫ ∞

Ec−EF

dε [1− f(ε)]Wred(ε, η) (11.7)

Strictly speaking, the integrals should extend over the two bands only;
however, far from the band edges the integrands are small; so the integration
regions may safely be extended to infinity. The band edges Ev and Ec are
measured with respect to the Fermi level of the electrode, and move with the
overpotential; they are fixed with respect to the Fermi level of the redox couple
in the solution. Writing ∆Ev = EF −Ev(η = 0) and ∆Ec = Ec(η = 0)−EF ,
we have: Ev − EF = −∆Ev + e0η, Ec − EF = ∆Ec + e0η. In the valence
band [1 − f(ε)] ≈ exp[ε/kT ], in the conduction band [1 − f(ε)] ≈ 1, both
approximations hold for nondegenerate semiconductors only. This gives:
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Fig. 11.4. Gerischer diagram for a redox reaction at an n-type semiconductor: (a)
at equilibrium the Fermi levels of the semiconductor and of the redox couple are
equal; (b) after application of an anodic overpotential.

jv
a = FA′c

∫ −∆Ev+e0η

−∞
dε exp

ε

kT
Wred(ε, η) (11.8)

jc
a = FA′c

∫ ∞

∆Ec+e0η

dε Wred(ε, η) (11.9)

We substitute ξ = ε− e0η, and note that Wred(ε, η) = Wred(ε− e0η, 0):

jv
a(η) = FA′c

∫ −∆Ev

−∞
dξ exp

ξ + e0η

kT
Wred(ξ, 0)

= jv
a(η = 0) exp

e0η

kT
(11.10)

jc
a(η) = FA′c

∫ ∞

∆Ec

dξ Wred(ξ, 0) = jc
a(η = 0) (11.11)

So, as already discussed above, the contribution of the valence band to the
anodic current increases exponentially with the applied potential, because the
number of holes that can accept electrons increases. In contrast, the anodic
current via the conduction band is unchanged, since it remains practically
empty. These equations hold independent of the particular form of the function
Wred. Similarly the contributions of the valence and conduction bands to the
cathodic current densities are:

jv
c (η) = FA′c

∫ −∆Ev

−∞
dξ Wox(ξ, 0)

= jv
c (η = 0) (11.12)

jc
c(η) = FA′c

∫ ∞

∆Ec

dξ exp
(
−ξ + e0η

kT

)
Wox(ξ, 0)

= jc
c(η = 0) exp

(
−e0η
kT

)
(11.13)
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The contribution of the valence band does not change when the overpotential
is varied, since it remains practically completely filled. In contrast, the con-
tribution of the conduction band decreases exponentially with η (or increases
exponentially with −η) because of the corresponding change of the density of
electrons (Fig. 11.5). All equations derived in this section hold only as long
as the surface is nondegenerate; that is, the Fermi level does not come close
to one of the bands.
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Fig. 11.5. Current-potential characteristics for a redox reaction via the conduction
band or via the valence band. The current was normalized by setting jv

0 = 1. In this
example the redox system overlaps more strongly with the conduction than with the
valence band.

Typically the contributions of the two bands to the current are of rather
unequal magnitude, and one of them dominates the current. Unless the elec-
tronic densities of states of the two bands differ greatly, the major part of
the current will come from the band that is closer to the Fermi level of the
redox system (see Fig. 11.4). The relative magnitudes of the current densities
at vanishing overpotential can be estimated from the explicit expressions for
the distribution functions Wred and Wox:

jv
0 = FA′c

∫ −∆Ev

−∞
dξ Wox(ξ, 0)

= 2FA′c erfc
λ+ ∆Ev

(4λkT)1/2
(11.14)

jc
0 = FA′c

∫ ∞

∆Ec

dξ Wred(ξ, 0)

= 2FAρc erfc
λ+ ∆Ec

(4λkT)1/2
(11.15)
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If the electronic properties of the semiconductor – the Fermi level, the posi-
tions of the valence and the conduction band, and the flat-band potential –
and those of the redox couple – Fermi level and energy of reorganization – are
known, the Gerischer [3] diagram can be constructed, and the overlap of the
two distribution functions Wox and Wred with the bands can be calculated.

Both contributions to the current obey the Butler–Volmer law. The cur-
rent flowing through the conduction band has a vanishing anodic transfer
coefficient, αc = 0, and a cathodic coefficient of unity, βc = 1. Conversely, the
current through the valence band has αv = 1 and βv = 0. Real systems do
not always show this perfect behavior. There can be various reasons for this;
we list a few of the more common ones:

1. Electronic surface states may exist at the interface; they give rise to an
additional capacity, so that the band edges at the surface change their
energies with respect to the solution.

2. When the semiconductor is highly doped, the space-charge region is thin,
and electrons can tunnel through the barrier formed at a depletion layer.

3. At high current densities the transport of electrons and holes may be too
slow to establish electronic equilibrium at the semiconductor surface.

4. The semiconductor may be amorphous, in which case there are no sharp
band edges.

An example of an electron-transfer reaction on a semiconductor electrode will
be given in the next chapter.

11.4 Photoinduced electron transfer

Semiconducting electrodes offer the intriguing possibility to enhance the rate
of an electron-transfer reaction by photoexcitation. There are actually two
different effects: Either charge carriers in the electrode or the redox couple
can be excited. We give examples for both mechanisms.

11.4.1 Photoexcitation of the electrode

If light of a frequency ν, with hν ≥ Eg, is incident on a semiconducting
electrode, it can excite an electron from the valence into the conduction band,
so that an electron-hole pair is created. In the space-charge region the pair can
be separated by the electric field, which prevents recombination. The electrical
field produces a force F in the x direction perpendicular to the surface, and
the equation of motion for an electron is given by:

F = −e0Ex = ~
dk

dt
(11.16)

where k is the wavevector of the electron, and ~k its momentum. For a hole,
the force is in the opposite direction.
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Fig. 11.6. Photogeneration of holes at the depletion layer of an n-type semiconduc-
tor.

Depending on the direction of the field, one of the carriers will migrate
toward the bulk of the semiconductor, and the other will drift to the surface,
where it can react with a suitable redox partner. These concepts are illustrated
in Fig. 11.6 for a depletion layer of a n-type semiconductor. Holes generated
in the space-charge region drift towards the surface, where they can accept
electrons from a reduced species with suitable energy. According to the mo-
mentum balance for the system consisting of the electron–hole pair and the
absorbed photon, we have:

ke + kh = kph ≈ 0 (11.17)

since the wavevector for a phonon with an energy of the order of a few electron
volt is negligible. Thus kh = −ke, and in a band-structure plot E(k) the
transition is vertical. This is the typical case when the maximum of the valence
band and the minimum of the conduction band coincide, and one speaks of a
direct transition – see Fig. 11.7. The threshold for direct transitions is given
by ~ν = Eg.

When the maximum of the valence band and the minimum of the conduc-
tion band do not lie at the same wavevector k, indirect transitions involving
a phonon may occur. The principle is depicted on the right hand side of Fig.
11.7. A phonon is needed to conserve the total momentum. The adsorption
threshold for indirect transitions between the band edges is:

hν = Eg + ~Ω (11.18)

where the last term accounts for the energy of the participating phonon.
The absorption coefficient α near the band edge depends on the photon

energy according to:
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Fig. 11.7. Direct and indirect transitions

η / V

j

flat-band
potential

illuminated

dark

Fig. 11.8. Current-potential characteristics for an n-type semiconductor in the dark
and under illumination. The difference between the two curves is the photocurrent.

α = A
(hν − Eg)n/2

hν
(11.19)

We will not give the details of the derivation of this equation, which is compli-
cated and depends on selection rules and the band structure. A is a constant
and n depends on whether the transition is direct (n = 1) or indirect (n = 4).

The potential dependence of this photocurrent is shown in Fig. 11.8. It sets
in at the flat-band potential and continues to rise until the band bending is
so large that all the holes generated by the incident light reach the electrode
surface, where they react with a suitable partner. If the reaction with the
redox system is sufficiently fast, the generation of charge carriers is the rate-
determining step, and the current is constant in this region.

In a real system the photocurrent can depend on a number of effects:

1. The generation of the carriers in the semiconductor.
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2. The migration of the carriers in the space-charge region.
3. Diffusion of carriers that are generated outside the space-charge region.
4. Loss of carriers either by electron-hole recombination or by trapping at

localized states in the band gap or at the surface.
5. The rate of the electrochemical reaction that consumes the carriers.

When all these factors contribute, the situation becomes almost hopelessly
complicated. The simplest realistic case is that in which the photocarriers are
generated in the space-charge region and migrate to the surface, where they
are immediately consumed by an electrochemical reaction. We consider this
case in greater detail. Suppose that light of frequency ν, with hν > Eg, is
incident on a semiconducting electrode with unit surface area under depletion
conditions (see Fig. 11.6). Let I0 be the incident photon flux, and α the
absorption coefficient of the semiconductor at frequency ν. At a distance x
from the surface, the photon flux has decreased to I0 exp(−αx), of which a
fraction α is absorbed. So the rate of carrier generation is:

g(x) = I0α exp(−αx) (11.20)

This equation presumes that each photon absorbed creates an electron-hole
pair; if there are other absorption mechanisms, the right-hand side must be
multiplied by a quantum efficiency. The total rate of minority carrier genera-
tion is obtained by integrating over the space-charge region:∫ Lsc

0

I0α exp (−αx) dx = I0 [1− exp (−αLsc)] (11.21)

where the width Lsc of the space charge region is (see appendix):

Lsc = L0(φ− φfb)1/2, with L0 =
(
εε0
e0nb

)1/2

(11.22)

so that the the photocurrent generated in the space-charge layer is:

jp = e0I0

(
1− exp

[
−αL0(φ− φfb)1/2

])
(11.23)

In the general case there may also be a contribution due to the diffusion of
carriers from the bulk. This is treated in Problem 12.3, where the concept of
a diffusion length Ld of the minority carriers is introduced. The sum of both
contribution results in:

jt = e0I0

(
1−

exp
[
−αL0(φ− φfb)1/2

]
1 + αLd

)
(11.24)

For αLd � 1 the contribution from the bulk can be neglected. If in addition
αLsc � 1 the exponential can be expanded, and the flat-band potential can
be determined by plotting the square of the photocurrent versus the potential:
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j2p = (e0I0αL0)
2 (φ− φfb) (11.25)

A plot of j2p versus potential should result in a straight line, whose slope
depends on the photon energy. The flat-band potential can be obtained from
the intercept. We shall consider an example in Chap. 12.

11.4.2 Photoexcitation of a redox species

Another kind of photoeffect occurs if a redox system in its ground state over-
laps weakly with the bands of the electrode but has an excited state which
overlaps well. As an example, we consider an n-type semiconducting electrode
with a depletion layer at the surface, and a reduced species red whose distri-
bution function Wred(ε, η) lies well below the conduction band (see Fig. 11.9),
so that the rate of electron transfer to the conduction band is low. On pho-
toexcitation the excited state red∗ is produced, whose distribution function
W ∗

red(ε, η) overlaps well with the conduction band, so that it can inject elec-
trons into this band. The electric field in the space-charge region pulls the
electron into the bulk of the electrode, thus preventing recombination with
the oxidized species, and a photocurrent is observed.

11.5 Dissolution of semiconductors

From a chemical point of view a hole at the surface of a semiconductor entails
a missing electron and hence a partially broken bond. Consequently semicon-
ductors tend to dissolve when holes accumulate at the surface. In particular
this is true for enrichment layers of p-type material. At the depletion layers of
n-type materials the holes required for the dissolution can also be produced
by photoexcitation.
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Such dissolution reactions usually contain several steps and are compli-
cated. An important example is silicon. In aqueous solutions this is generally
covered by an oxide film that inhibits currents and hence corrosion. However,
in HF solutions it remains oxide free, and p-type silicon dissolves readily under
accumulation conditions. This reaction involves two holes and two protons, the
final product is Si(IV), but the details are not understood. A simpler example
is the photodissolution of n-type CdS, which follows the overall reaction:

CdS + 2h+ → Cd2+ + S (11.26)

under depletion conditions.
On polar semiconductors the dissolution may also involve electrons from

the conduction band, leading to the production of soluble anions. For exam-
ple, under accumulation conditions the dissolution of n-type CdS takes place
according to the reaction scheme:

CdS + 2e− → Cd + S2− (11.27)

The dissolution of semiconductors is usually an undesirable process since it
diminishes the stability of the electrode and limits their use in devices such
as electrochemical photocells. On the other hand, the etching of silicon in HF
solutions is a technologically important process.

Appendix: the Mott–Schottky capacity

We consider the depletion layer of an n-type semiconductor, assuming that
the concentration of holes is negligible throughout. The situation is depicted
in Fig. 11.10, which also defines the coordinate system employed. Starting
from Eq. (11.1):

d2φ

dx2
= −e0nb

εε0

(
1− exp

e0φ

kT

)
(11.28)

we again multiply both sides by 2dφ/dx, and integrate from zero to infinity,
and obtain:

− E(0)2 =
2e0nb

εε0

(
φs +

kT

e0

)
(11.29)

where φs = φs, and a term of the order exp[e0φs/kT ] has been neglected.
Noting that the potential φ(x) is negative throughout the space-charge region,
we obtain:

σ

εε0
=
√

2e0nb

εε0

√
|φs| −

kT

e0
(11.30)

Differentiation gives:

C =
dq

dφs
=
(

e0nbεε0
2[|φs| − kT/e0]

)1/2

(11.31)
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Fig. 11.10. Depletion layer at the surface of an n-type semiconductor; the surface
is at x = 0.

which on rearranging gives Eq. (11.2).
The total width of the space-charge region can be estimated from the

following consideration. Throughout the major part of the depletion region
we have: −e0φ � kT , and the concentration of the electrons is negligible. In
this region the exponential term on the right-hand side of Eq. (11.28) can
be neglected, and the space charge is determined by the concentration of the
donors – each donor carries a positive charge since it has given one electron
to the conduction band. The band has a parabolic shape, but only the left
half of the parabola has a physical meaning. The potential can be written in
the form:

φ(x) = −e0nb

2εε0
x2 + ax+ φs (11.32)

where:

a =
∂φ

∂x

∣∣∣∣
x=0

= −E(0) (11.33)

The width Lsc of the space charge region is given by the position where the
potential is minimal. Differentiation gives:

Lsc = − εε0
e0nb

E(0) =
√

2εε0
e0nb

|φs| (11.34)

where terms of the order of kT/e0 have been neglected. For practical purposes
it is convenient to express φs through the flat-band potential:

Lsc =
√

2εε0
e0nb

|(φ− φfb)| (11.35)
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Problems

1. Consider the case of small band bending, in which |e0φ(x)| � kT everywhere.
Expand the exponential in Eq. (11.1), keeping terms up to first order, and
calculate the distribution of the potential.

2. (a) Prove that ncpv = NcNv exp(−Eg/kT ). (b) The effective densities of
states Nc and Nv are typically of the order of 1019 cm−3. Estimate the carrier
concentrations in an intrinsic semiconductor with a band gap of Eg = 1 eV,
assuming that the Fermi level lies at midgap.

3. Consider the interface between a semiconductor and an aqueous electrolyte
containing a redox system. Let the flat-band potential of the electrode be
Efb = 0.2 V and the equilibrium potential of the redox system φ0 = 0.5 V,
both versus SHE. Sketch the band bending when the interface is at equilib-
rium. Estimate the Fermi level of the semiconductor on the vacuum scale,
ignoring the effect of dipole potentials at the interface.
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