
A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 876–892, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Semantic Enhancement for Enterprise Data Management 

Li Ma1, Xingzhi Sun1, Feng Cao1, Chen Wang1,  
Xiaoyuan Wang1, Nick Kanellos2, Dan Wolfson2, and Yue Pan1 

1 IBM China Research Laboratory  
ZhongGuanCun Software Park #19, Beijing 100094, China 

{malli,sunxingz,caofeng,chwang,wangxyxy,panyue}@cn.ibm.com  
2 IBM Software Group, 11400 Burnet Rd. Austin, TX 78758-3415, USA 

kanellos@ca.ibm.com, dwolfson@us.ibm.com 

Abstract. Taking customer data as an example, the paper presents an approach 
to enhance the management of enterprise data by using Semantic Web  
technologies. Customer data is the most important kind of core business entity a 
company uses repeatedly across many business processes and systems, and  
customer data management (CDM) is becoming critical for enterprises because 
it keeps a single, complete and accurate record of customers across the  
enterprise. Existing CDM systems focus on integrating customer data from all 
customer-facing channels and front and back office systems through multiple 
interfaces, as well as publishing customer data to different applications. To 
make the effective use of the CDM system, this paper investigates semantic 
query and analysis over the integrated and centralized customer data, enabling 
automatic classification and relationship discovery. We have implemented these 
features over IBM Websphere Customer Center, and shown the prototype to our 
clients. We believe that our study and experiences are valuable for both Seman-
tic Web community and data management community. 

Keywords: Master Data Management, Semantic Query, Mapping, Reasoning. 

1   Introduction 

With the increase of market competition, modern companies become more and more 
seriously dependent on their information, such as customer and product data. A typi-
cal situation that companies are facing is information incomplete and inconsistent 
across many systems, such as one product having different codes and descriptions in 
various markets, and one customer having different IDs in various systems. This 
situation mainly results from the lack of global standards (or insufficient application 
of standards), and the fact that data is captured many times, in many different sys-
tems. Therefore, it is critically important to keep a single truth of core entities across 
various systems within an enterprise to improve business efficiency. 

Core business entities that a company uses repeatedly across many business proc-
esses and systems are called master data [7], such as lists or hierarchies of customers, 
accounts, products. Customer data is the most important kind of master data, and 
customer data management is becoming critical for modern enterprises because it 
maintains a single, complete and accurate record of customers across the enterprise 



 Semantic Enhancement for Enterprise Data Management 877 

[6]. Recently, major data management solution providers, such as IBM, Oracle and 
SAP, have released their master data management (MDM) solutions [2][3][4], espe-
cially on customer data management (CDM, also called customer data integration, 
CDI) and product information management (PIM). But it does not mean that all prob-
lems in MDM have been well solved and these commercial systems meet all custom-
ers’ requirements. In fact, it is reported in [6][7] that there are still some technical 
challenges in MDM, for instance, enterprise-wide master data models, federation and 
identity management. In our previous work on PIM [14], we proposed to build an 
expressive and flexible ontology to represent the semantics of product information, 
which dynamically varies with business changes. The proposed approach enables 
automatic categorization and relationship discovery for product data.  

Different from PIM, mature industry models for customer data have been devel-
oped [8], such as the customer model for insurance and the patient model for health-
care. The CDM system can directly make use of these industry models without 
changes or with few changes. Also, there are no strong business needs to change the 
customer data model after it is deployed. So, based on the industry models, the CDM 
system can develop well-optimized database schema and thus run in an operational 
way. IBM Websphere Customer Center (WCC) V6.5 [4] is such an example. It adopts 
different data models for different industries, uses an object-oriented schema for  
storage and provides more than 500 business services to manage customer data. Inte-
grating customer data from heterogeneous data sources for a single, complete and 
accurate record of customers has been widely studied for decades, such as the ETL 
approach supported by commercial MDM solutions. In this paper, we investigate how 
to search and analyze the integrated customer data stored in an operational store by 
semantic Web technologies, instead of discussing data cleansing and integration is-
sues. Besides customer data, the proposed method could be easily adapted to various 
enterprise data management solutions. 

The rest of this paper is organized as follows. Section 2 introduces ontology en-
abled classification and relationship query. Our prototype over IBM WCC [31] is 
presented in Section 3, including ontology representation, mapping, SPARQL query 
evaluation, and reasoning. Section 4 presents experiment results and Section 5 con-
cludes this paper. 

2   Semantic Query and Analysis for Customer Data Management 

Based on W3C’s specifications on semantic Web (such as RDFS[1], OWL[10]), we 
develop semantic technologies for consumption by CDM, which enables: 

 Exposing customer data as RDF views and linking them with the open ontol-
ogy/data for effective collaboration. 

 Declarative definition of customer entities and relationships using logic lan-
guages supported by Semantic Web. 

 Analytics to discover valuable but implicit knowledge hidden in the rich rela-
tionships among customer data. 

Domain Ontology Based Classification. In reality, lots of shallow ontologies [19] 
(like taxonomy) for classification purpose are developed, such as profession ontology 
in Figure 1(a). These ontologies encoding common knowledge can be leveraged by 



878 L. Ma et al. 

existing CDM systems to categorize customer data. By simply associating customer 
data with such domain ontologies, users can classify and retrieve their customers by 
profession, sector etc.. For instance, we can say "Customer A is a Cosmologist". 
Then, when querying all "Scientist", we will obtain Customer A. This sort of concept 
query is based on class inheritance in RDFS/OWL. 

 

a) Domain ontology based classification 

 
 

b) Classification based on Formal Vocabularies 

Fig. 1. Semantic Query and Analysis for CDM 

Classification based on Formal Vocabularies. The expressivity of OWL allows the 
definition of logical classes (using intersection, union and complement operators). 
This enables automatic classification for customer data. Also, OWL restrictions sup-
port the creation of new category of customer data. As the example in Figure 1(b) 
shows, we can use OWL intersection and hasValue restrictions to define a new cate-
gory “US Citizen” which is a subclass of the pre-built category “Person”. Using OWL 
reasoning, instances of this newly-defined category can be automatically retrieved. 
Besides OWL restrictions, we can also apply rules to formally describe new catego-
ries. An example is to define VIP customers as those whose minimum payment is 
larger than $10K. That is, users can extend the core CDM vocabulary using OWL 
expressions or business rules, and freely define new categories at query time and 
classify customers using reasoning, rather than changing the deployed CDM data 



 Semantic Enhancement for Enterprise Data Management 879 

model and storage model to represent new categories. This definitely helps to improve 
the flexibility of CDM systems. Domain ontology based classification allows users to 
leverage open ontologies to classify and query customers using relatively simple rea-
soning, whereas OWL restrictions or rules allow users to define new categories based 
on existing classes and properties of the core CDM ontology and use expressive on-
tology reasoning or rule reasoning for classification. 

Relationship Discovery and Query. OWL allows the definition of richer relation-
ships. In OWL, it is possible to define an Object Property as symmetric, functional, or 
transitive. OWL Object Properties are suitable to describe the complex relationships 
among customers, as well as those between customers and other entities like con-
tracts. Followings are some examples of relationships in CDM: Partner, Sibling, 
Trustee-Trustee, Owner between party and contract, Part-of among contracts. Be-
sides using OWL to define the type of relationships, we can use rules to define more 
general relationships in CDM. Using OWL and Datalog rule inference, we can effec-
tively discover implicit relationships from explicit assertions. For instance, the query 
“Find all Insurance Contracts held by Persons having the same address as an insured 
property” needs to compute two implicit rule paths: Contract->Holding->Property-
>Address->Person and Contract->Person->Address. 

Building an ontology representation for customer data (named core WCC ontol-
ogy in Figure 1) will facilitate us to implement the above attractive features over 
existing CDM systems. Moreover, end users can query customer data via classes and 
relationships defined in ontologies and rules, for example “Find all Scientists living 
in UK” to send mailing regarding sale of lab coats. In this paper, we refer to the 
above features as semantic query and analysis over CDM systems, which can be 
realized by SPARQL queries [12]. In addition, an advantage provided by ontology 
and RDF is to give each CDM entity a Universal Resources Identifier (URI). That is, 
we can expose customer data as linked RDF data and allow effective synchronization 
of CDM utilities to other core business entities, such as those in PIM, or to open data 
like DBpedia [30]. 

3   System Implementation 

In this section, we take IBM WCC [4] as an example to detail our implementation of 
semantic query and analysis for CDM [31]. But technologies developed here can  
be used in other CDM systems, and easily adapted to various data management  
solutions. 

3.1   Architecture 

A CDM system provides a unified customer view and an update environment to mul-
tiple channels. So, it is impractical to export all customer data into an RDF store for 
semantic query and analysis. Figure 2 shows an overview of the proposed system, 
which adds a semantic data access engine over a CDM system through a RDB-to-
ontology mapping. The engine exposes a virtual RDF view for customer data. 

Firstly, we create a mapping to link customer data with the OWL ontology gener-
ated and enriched from the CDM logical data model. That is, we construct a formal 



880 L. Ma et al. 

ontology representation for customer data stored in the CDM system. Then, users can 
define business rules for knowledge discovery, and can introduce domain ontologies 
or OWL restrictions for classification. At query time, users can issue SPARQL que-
ries to the semantic data access engine for data retrieval. The query can include 
classes and properties defined in both core and user-extended ontologies, and those in 
domain ontologies. A query will be parsed into a SPARQL query pattern tree. Each 
node in the tree will be analyzed and checked whether it implies ontology reasoning 
or rule reasoning. When the rule reasoning is needed, the Datalog rule evaluation will 
be conducted. If ontology reasoning for instance classification is required, the ontol-
ogy reasoner will be called. During the reasoning process, the SPARQL query pattern 
tree will be modified according to the reasoning result. Finally, a SQL generator will 
generate a single SQL statement, which is evaluated by the database engine where the 
CDM store is built. In our current implementation, SOR ontology repository [17] is 
used to store ontologies and rules, and SHER engine [15] for ontology classification 
reasoning. 

 

Fig. 2. The overview of Semantic CDM 

Business users are able to directly use semantic query to retrieve customer data and 
analyze the relationships among entities involved in CDM. Another valuable use 
scenario of semantic query is to enable application developers to develop general 
analytic services over CDM systems. Now, most existing CDM systems provide only 
built-in services and do not allow direct SQL queries. For example, WCC provides 
more than 500 services for various operations and may use different optimization 
techniques for different services, such as materialized views. When users want addi-
tional analytic services that can be realized by the semantic queries, developers just 
need to write SPARQL to implement them and do not have to consider complex SQL 
statements and reasoning. That is, we provide a general way to develop new analytic 
services by SPARQL queries. 

3.2   Ontology and Mapping Building 

The physical storage model of CDM is similar to its logical data model pre-built for a 
particular industry. As introduced in the Section 1, the data model of CDM is rela-
tively stable. The CDM’s object-oriented storage model makes it possible to take full 
advantage of mature relational database technologies. The stable data model sacrifices 



 Semantic Enhancement for Enterprise Data Management 881 

flexibility but contributes to the performance. Therefore, we should construct a rela-
tively stable, lightweight, and coarse-grained ontology model for CDM, over which 
the business rules and class expressions still can be defined for expressivity. Mean-
while, we need a RDB-to-ontology mapping between the CDM storage model and the 
constructed ontology model so that an ontology query can be executed smoothly over 
the CDM system. Note that there are two types of ontologies in our system. The first 
type of ontology is a semantic representation of underlying customer data and derived 
from the logical model of the CDM system. The second type of ontology is the im-
ported domain ontology, which captures the domain knowledge and enables users to 
view customer data based on the domain vocabulary. 

 

Fig. 3. Part of High Level Industry Model for CDM 

CDM Data and Storage Model. Figure 3 shows part of the WCC’s data model, in 
which the attributes of entities are omitted. Within the model, Party is the most im-
portant concept, with Person and Organization as its two subconcepts. Other entities 
are associated with Party via various types of relationships. Contract is another im-
portant concept in CDM, which represents the purchasing agreements of customers. 
In this model, most relationships are represented as entities, e.g., Party_Relationship, 
Contract_Relationship, Party_Contract_Role (linking Party with Contract). Besides 
the entities and relationships, there are some simple hierarchies among them. For 
example, Bank_Account_Record, Charge_Card_Record, and Payroll_Deduction are 
disjoint sub-classes of Payment_Source. The WCC’s storage model is very close to 
this logical data model, by considering entities as the tables, their attributes as the 
columns in the corresponding tables, and their relations between entities as foreign 
keys or tables. 

Ontology Representation of CDM. In our study, we found that RDFS can capture 
the semantics of the CDM data model. We construct the ontology representation of 
the CDM model in a relatively straightforward way. For example, Party, Person, and 
Organization are defined as classes, and their hierarchy is modeled by subclassOf 
semantics. All objects stored in Party, Person and Organization tables are their in-
stances. Although the CDM ontology’s expressivity is RDFS, users can define very 
expressive OWL classes over it.  



882 L. Ma et al. 

In CDM, many N-Ary relationships are used to describe the variability of customer 
data. For instance, relationships can be time-dependant, such as Party_Relationship 
having attributes Start_Datetime and End_Datetime. Moreover, CDM has a set of pre-
defined types for Party_Relationship, such as AncestorOf. OWL only allows the defi-
nition of binary relationships, but we need to represent N-Ary relationships in CDM. 
The best practices documented at [23] for N-Ary relationship representation in OWL 
provide some choices as a starting point. In our case, we model N-Ary relationships 
as classes. For example, Party_Relationship is an OWL class, and the specific rela-
tionship between two parties is an OWL individual and has Start_Datetime and 
End_Datetime as properties. The characteristics of relationships (such as symmetric, 
transitive) can be enforced by rules. We can use a rule engine for relationships infer-
ence, which is discussed in more detail in next sub-sections.  

RDB-to-Ontology Mapping. Given the designed CDM ontology, we have to map 
customer data to it for semantic queries. The mapping is critical to translate a SPARQL 
query on ontologies into an executable SQL on customer data. In 2008, W3C has 
formed an incubator group to investigate the standardization of a mapping language 
between ontology and relational database. Here, we use D2RQ mapping language [9], 
which is a declarative language for defining the mapping between an ontology and a 
relational data model. To generate a complete mapping file, we adopt a semi-automatic 
method. We firstly generate an initial D2RQ mapping based on WCC’s physical 
schema using the D2RQ mapping tool, and then revise it manually according to our 
ontology. 

3.3   SPARQL Query Evaluation 

SPARQL queries allow to access customer data, user-defined categories and imported 
domain ontologies. Figure 4 shows the high level workflow of our query processing. 
A SPARQL query is firstly parsed into a query pattern tree (shown in Figure 5), and 
then the Datalog rule engine checks if there are rule heads in query nodes and expands 
rule heads accordingly. If there is a recursive loop in expanding the rule heads, the 
Datalog engine will evaluate the corresponding query nodes directly and generate a 
temporary table as evaluation results. In this process, the Datalog engine will call the 
SQL generator, which is responsible to generate optimized SQL queries, to get SQL 
statements for rule reasoning. Accordingly, the Datalog engine updates the SPARQL 
pattern tree by modifying the query nodes that need reasoning. At last, the SQL gen-
erator translates the updated SPARQL pattern tree into a single SQL statement. As 
mentioned in Section 2, we use an ontology reasoner for instance classification. If a 
SPARQL query needs classification reasoning (i.e. the triple pattern using rdf:type as 
predicate), the ontology reasoner will be invoked and the results are temporarily 
stored in a TypeOf table, which contains user-defined classification information as 
well (namely user-specified TypeOf information through domain ontologies). That is, 
the query nodes with rdf:type as predicate are translated into a sub-query over a 
TypeOf table.  
 



 Semantic Enhancement for Enterprise Data Management 883 

 

Fig. 4. The Workflow of Query Processing 

Some translation methods have been proposed to translate a SPARQL query into 
SQL queries for evaluation based on the RDB-to-ontology mapping, such as D2R 
[20], Virtuoso’s SPARQL to SQL translation [28], etc.. But these approaches may 
generate inefficient SQL queries in some cases. Our method makes use of mapping 
and all other relevant information (such as database catalog) to optimize query gen-
eration. To fully utilize the well-developed SQL optimization engine, our method 
translates a SPARQL query into a single SQL statement. The generated SQL query 
can be directly embedded into other CDM SQL queries as a sub-query, which pro-
vides a way to integrate normal CDM queries with semantic queries. 

As introduced earlier, there are some N-Ary relationships in CDM. Unfortunately, 
the current SPARQL specification does not directly support N-Ary relationships. 
Although SPARQL may express N-Ary relationships by combining many triple pat-
terns, it is very inconvenient. Therefore, we extend the SPARQL query with a new 
pattern, called N-ARY pattern, denoting N-Ary relationships and the head predicates 
in the user-defined rules. The following example shows a SPARQL query with two 
N-ARY patterns VIP_Organization and Legal_Relationship, which finds all persons 
with their addresses (if available) who became the legal persons of VIP organizations 
that have Party relationship with IBM or HP after year 2000. Also, we show rules 
used to answer this query. 

SELECT ?person ?address  
WHERE  {   

?org1 wcc:PartyRelationship ?org2 . 
?org2 rdf:type wcc:Organization . 
VIP_Organization(?org1).     
Legal_Relationship (?person, ?org1, ?year). 
OPTIONAL {?person wcc:address ?address} .
{ 
  {?org2 wcc:Org_Name "IBM"} UNION 
  {?org2 wcc:Org_Name "Hp"} 
} . 
FILTER (?year > "2000-1-1") }  

r1. Subs_Org_Relationship(x, y) :-  
wcc:Organization(x), wcc:Organization(y), wcc:PartyRelationship(z), 
wcc:Related_From(z, x), wcc: Related_To(z, y), 
wcc:PartyRelationshipType(z, "Subsidiary") ;;. 
 

r2. Sub_Org_Relationship(x, y) :-  
Subs_Org_Relationship(x, z), Subs_Org_Relationship(z, y);;. 
 

r3. Legal_Relationship(x, y, z) :-  
wcc:Person(x), wcc:Organization(y), wcc:PartyRelationship(u), 
wcc:Related_From(u, x), wcc:Related_To(u, y),  
wcc:Start_Time(u, z), PartyRelationshipType(u, "Legal Person");;.  
 

r4. Legal_Relationship(x, y, z) :- 
Legal_Relationship(x, u, z), Sub_Org_Relationship(u, y);;. 
 

r5.VIP_Organization(x):- 
wcc:Organization(x), wcc:Client_Importance(x, "High");;. 

 

Mapping 

 

Extended SPARQL Query

DataLog 
Engine

SQL Statement

Parser&Lexer

SPARQL Pattern Tree

Expanded SPARQL 
Pattern Tree 

DB  
Metadata  

SPARQL Pattern Tree 
with Rule Head

IBM WCC OntologyTable TempTables

SQL Generator & 
Executor 



884 L. Ma et al. 

AND 

TRIPLE 

TRIPLE TRIPLE 

N-ARY OR TRIPLE FILTER

non-op op non-op 

SPARQL Pattern Tree 

non-op: Non-optional Pattern

op: Optional Pattern 

N-ARY 

non-op 

TRIPLE 

AND

TRIPLE

TRIPLE TRIPLE

TEMP FILTER …… 

SPARQL Pattern Tree

AND …… 

(Organization) (Client_Importance)

TEMP PATTERN (Legal_Relationship) 

 

Fig. 5. A SPARQL Pattern Tree                      Fig. 6. Rule Expansion on A Pattern Tree 

Generally, the graph pattern of a SPARQL query can be expressed as a SPARQL 
pattern tree, which is introduced in our previous work [16]. The pattern tree shows the 
backbone of the SPARQL query and is very useful for the SPARQL-to-SQL transla-
tion. Figure 5 shows the SPARQL pattern tree of the above example query. There are 
five types of nodes in the pattern tree: 

AND node: It corresponds to the conjunction of graph patterns in a SPARQL query. 
Each child node has a flag to indicate whether the node is optional or not. By this 
way, optional patterns in SPARQL are also covered by AND nodes. 
OR node: It corresponds to a UNION pattern in a SPARQL query.  
TRIPLE node: It represents a graph pattern with a single triple. The subject, predi-
cate and object in the triple could be constants or variables.  
FILTER node: It represents a filter expression in a SPARQL query. 
N-ARY node: It represents an N-ARY pattern and often directly corresponds to a rule 
head. Each element in the N-ARY node could be a constant or a variable. 

Due to space limitations, we highlight new structures and optimization schemes used 
in our mapping based translation method. 

(1) Facet of IRI/Literal pattern to translate filter expressions. Extended from the  
facet of literal defined in [16], a facet of an IRI/Literal pattern is a complex SQL  
expression. 
(2) Semi-SQL structure to bridge the columns in SQL and the variables in SPARQL. 
Semi-SQL structure consists of several sections. These sections are connected by 
UNION in semantics. Each section includes two fields: a) SQL field, to keep a SQL 
statement as the intermediate translation result. b) Mapping field, to record the map-
ping between each variable and IRI/Literal pattern binding. 
(3) Integrity constraint based simplification for IRI/Literal comparison. The basic 
ideas are: a) to compare the IRI/Literal pattern on the raw columns instead of the 
generated IRIs or literals; b) to compare the constants in IRI/Literal pattern level in-
stead of instance level. TRIPLE nodes often include some constants. Taking the con-
stants as a special IRI/Literal pattern, the prefixes and the data types of the constants 
are adopted to filter out unmatched property bridges and class maps, which can effec-
tively reduce the number of sub-queries. 
(4) Flattened SQL to detect unnecessary JOINs. When an AND-pattern contains more 
than one sub-pattern, the SQL statements of the sub-patterns should be merged for 
one SQL. An alternative way of merging sub-SQL statements is to take one sub-SQL 
as a table and embed the table in the FROM clause of the other sub-SQL. However, 



 Semantic Enhancement for Enterprise Data Management 885 

the unnecessary JOINs in embedded IRI/Literal patterns may lose the opportunity of 
being detected and removed. Therefore, we adopt a flattened SQL strategy to merge 
the SELECT, FROM and WHERE clauses of the sub-SQL statements, respectively. 
By this way, the IRI/Literal patterns can be directly generated using the columns in 
the new SELECT clause. Once the sub-queries from child pattern nodes are flattened, 
it is easy to find the unnecessary self-joins on primary key. In that case, two tables in 
the FROM clause can be reduced into one, and the costly join operation is avoided. 

3.4   Reasoning in CDM 

In this section, we first define the semantics of the reasoning system and then intro-
duce the reasoning approach. 

3.4.1   Semantics of CDM reasoning  
For the better understanding of reasoning semantics, we first categorize the reasoning 
in CDM according to the reasoning scope as follows. 

1) Reasoning for ontology: The reasoning introduced in this category is performed 
based on the CDM ontology. Specifically, it is either to classify data into newly-
defined classes or to find implicit assertions from the CDM ontology. Under this 
category, we further classify the reasoning as the following two types: 
Reasoning based on Description Logic (DL): We apply IBM SHER engine [15] to 
support all concept assertions. SHER reasoner uses a novel method that allows for 
efficient querying of SHIN ontologies with large ABoxes in databases. Currently, this 
method focuses on instance retrieval that queries all individuals of a given class in the 
ABox. It is well known that all queries over DL ontologies can be reduced to consis-
tency check, which is usually checked by a tableau algorithm. Motivated by the fact 
that in most real ontologies: 1) individuals of the same class tend to have the same 
assertions with other individuals; 2) most assertions are in fact irrelevant for purposes 
of consistency check, we proposed to group individuals which are instances of the 
same class into a single individual to generate a summary ABox of a small size. Then, 
consistency check can be done on the dramatically simplified summary ABox, instead 
of the original ABox. The SHER reasoner implements this reasoning approach on top 
of SOR’s storage component. It is reported in [15] that SHER can process ABox que-
ries with up to 7.4 million assertions efficiently. 

Reasoning based on Description Logic Programs (DLP): DLP reasoning is applied to 
discover the implicit role assertions (relationships) in the CDM ontology. Description 
logic programs (DLP) is an intersection of description logic (DL) and logic programs 
(LP). As a subset of LP, DLP can be fulfilled by horn rule reasoning. An example rule 
in DLP could be wcc:p(x,z):-wcc:p(x,y) . wcc:p(y,z), where p is a transitive property 
in the CDM ontology. Compared with DL reasoning, the complexity of which is 
NEXPTIME-complete, the LP can be computed in P-time. It has been proved that 
DLP reasoning is sufficient for RDFS ontology. For the ontology with more expres-
sivity, such as OWL-DL, DLP reasoning is sound but incomplete. In our application, 
DLP is applied in the part of ontology reasoning. The program, which consists of a 
fixed set of horn rules for DLP reasoning, is denoted as PDLP. 



886 L. Ma et al. 

2) Reasoning for user-defined rules: In our application, users can define a set of 
business rules (denoted as program Puser) on top of ontology to enrich the semantics. 
The rules are in the form of Datalog-safe rules [27], with the extension of aggregation 
functions. For example, the rules r1 to r5 in Section 3.3 are user-defined rules. Spe-
cifically, r1 and r2 define the sub-organization relationship. R3 and r4 define the le-
gal-reprehensive relationship between a person and an origination. Also, the rule r5 
defines the concept of VIP organization. An important constraint for user-defined rule 
is that the rule head could not be the DL predicate.  

For clarity, we refer to DL reasoning as ontological reasoning and logic programs 
as rule reasoning. In general, the combination of ontological reasoning and rule rea-
soning causes the undecidability problem. In [24], Motik et al. proposed a decidable 
combination of OWL-DL with rules by restricting the rules to so-called DL-safe ones. 
In our work, we separated these two types of reasoning to gain the decidability. The 
semantics of our knowledge base system is as follows. First, let KB be the knowledge 
base corresponding to the CDM ontology. In addition, let KB’ denote the extension of 
KB by importing domain ontology and/or defining new OWL restrictions. We apply 
the ontological reasoning ∏ on KB’ to find all concept assertions, and the result 

model is represented as ∏(KB’). Given the program P= PDLP∪Puser (where PDLP and 
Puser are the program for DLP rules and user-defined rules respectively), the fixpoint 
[27] of ∏(KB’) can be computed as P(∏(KB’)). Any assertion α is called entailed by 
our reasoning system iff it is contained in P(∏(KB’)). 

Note that the example in [25] shows that separating ontological reasoning and rule 
reasoning may cause incompleteness problem. However, due to the simplicity of the 
CDM ontology (RDFS), our reasoning scheme is practical for customer data man-
agement in terms of decidability and soundness, with the minor drawback on com-
pleteness. 

3.4.2   Proposed solution 
After defining the semantics, we introduce the high-level design of our reasoning 
system. In terms of the reasoning scheme, we apply a runtime-based reasoning, i.e., 
the reasoning is performed at query time. Compared with materialize-based reason-
ing, in which all the inference results are pre-computed and stored in database, despite 
having longer response time, the runtime reasoning occupies much less disk space and 
does not have the update problem. Given the large size customer data, it is obviously 
not practical to materialize all inference results. We have two reasoning components. 
For ontological reasoning, SHER engine is deployed to do domain ontology based 
classification and classification based on formal vocabularies and to discover all con-
cept assertions for the CDM ontology. As another key component, a Datalog engine is 
designed and implemented for supporting the reasoning for all the rules. 

Tree expansion approach. Recall that the functionality of the CDM reasoning sys-
tem is to rewrite original SPARQL query tree, such that every node on the tree can be 
directly interpreted and processed by the SPARQL query engine. In other words, after 
processed by the reasoning system, the tree becomes ready to be translated into one 
SQL statement by the SQL generator component. 

Technically, SHER engine will be invoked for every node corresponding concept 
assertion in the SPARQL query tree. For each node related to the rule head, the rule 
 



 Semantic Enhancement for Enterprise Data Management 887 

Algorithm: TreeExpansion 
Input:  
node: the root of the SPARQL query tree 
P: the program for rule reasoning (the set of rules) 
dGraph: dependency graph of program P 
hashMap: the mapping between rule-head predicate and temporary table 
Output: 
The root of the expanded SPARQL query tree 
Method: 
if (node is not a leaf) 
 for each child node chNode 
  chNode = TreeExpansion(chNode, hashMap, dGraph); 
 return node; 
/* cases for leaf node */ 
if (node does not requires reasoning) return node; 
if (node corresponds to a type-of assertion) /* require ontological reasoning */ 
 Set node based on SHER reasoning result; 
 return node; 
/* node is related to rule head */ 
if (node can be found in hashMap) /* i.e., has been evaluated before */ 
 node = corresponding temporary pattern in hashMap; 
 return node; 
else /* rule reasoning */ 
 if (node is not in a strong connected subgraph of dGraph) /* not recursive */ 
  Build sub-tree sRoot by expanding node based on related rules; 
  return TreeExpansion(sRoot, hashMap, dGraph); 
 else /* recursive rule evaluation */ 
  Find the strong connected sub-graph scGraph that contains node; 
  for each node dNode that is depended by a node in scGraph 
   and dNode  scGraph 
   dNode = TreeExpansion(dNode, hashMap, dGraph); 
   Call SQLGenerator(dNode) to get SQL statement; 
   Create temporary table for dNode based the SQL; 
   Update hashMap; 
  /* call datalog evaluation for a set of rules */ 
  Find the set of rules ruleSet that corresponds to all nodes in scGraph; 
  DatalogEvaluatior(ruleSet, hashMap);// hashMap is updated 
  node = corresponding temporary pattern in hashMap; 
  return node;   

Fig. 7. TreeExpansion Algorithm 

reasoning component will process it based on the program P (i.e., the set of all rules). 
According to the characteristics of related rule(s), each rule-head node will either be 
expanded into a sub pattern tree or be replaced by a temporary pattern (corresponding 
to a temporary table). Specifically, if the node corresponds to one or multiple non-
recursive rules1, it can be expanded as a sub pattern tree. For example, suppose that in 
Figure 5, the N-Ary pattern on the left relates to a non-recursive rule r5. Then, we can 
replace the N-Ary pattern by a sub pattern tree that is built based on r5, as shown in 
Figure 6. For the node corresponding to recursive rules, we have to trigger the Data-
log engine to compute the fixpoint for all related rules and append a temporary pattern 
to replace the node. Suppose in Figure 5 the N-Ary pattern on the right corresponds to 
the rule head of r4. Because r4 is a self-recursive rule, the N-Ary pattern can not be 

                                                           
1  A rule r is called recursive if it depends on itself or mutually depends on other rules. Other-

wise, r is non-recursive rule. 



888 L. Ma et al. 

expanded as a sub pattern tree. Instead, we do Datalog evaluation and create the tem-
porary pattern for it, as can be seen in Figure 6. 

Importantly, the principle of SPARQL tree rewriting is to maintain the tree struc-
ture (i.e., expand the node) as much as possible and generate the temporary pattern 
(i.e., trigger the Datalog evaluation) only when necessary. The aim is to give the 
SQL generator more information for optimization. Intuitively, the more information 
the SQL generator can have, the better chance exists to get the final generated SQL 
optimized.  

TreeExpansion algorithm. To follow the above principle, we propose a key algo-
rithm to rewrite the SPARQL query tree. Figure 7 shows the pseudo code of the algo-
rithm. The algorithm recursively expand the query tree based on the ontological  
reasoning and rule reasoning. Since the SHER engine has been introduced in [27], for 
simplicity, in this section, we focus on the rule reasoning part. If a node in the 
SPARQL query corresponds to a rule-head predicate, the rule reasoning engine is 
triggered. First, as in traditional Datalog approach, by checking dependency graph2  
of program P, we can determine if the related rule(s) is recursive or not. For  
non-recursive rule (i.e., the rule head is not in a strong connected sub-graph3 of the 
dependency graph), we expand the node as a sub-tree and then recursively call Tree-
Expansion method on the sub-tree. If the rule is recursive, we compute the strong 
connected sub-graph scGraph it belongs to. Then, we search on the dependency graph 
to find any dNode such that 1) dNode is not contained in scGraph and 2) at least one 
node in scGraph depends on dNode. If there does not exist such dNode, it means that 
the all recursive rules corresponding to the nodes in scGraph do not depends on other 
rules. In this case, we can call Datalog evaluation for computing the fixpoint for these 
recursive rules. Otherwise (dNode exists), before the Datalog evaluation for recursive 
rules related to scGraph, we have to get the temporary table for each dNode. So, we 
treat each dNode as an N-Ary pattern. After recursively call TreeExpansion to expand 
dNode, the SQL generator is called to get the SQL statement, and the data for dNode 
is retrieved and stored in a temporary table. From the algorithm, we can see that our 
Datalog evaluation will call DatalogEvaluatior only when we need to compute the 
fixpoint for a set of recursive rules. DatalogEvaluatior is implemented based on the 
semi-naïve evaluation approach with Magic Sets optimization [27]. After the evalua-
tion, DatalogEvaluatior will update the temporary table hashMap, which is designed 
to avoid evaluating the same set of rules multiple times. 

4   Experimental Results 

We implemented our approach to semantic query and analysis over IBM Websphere 
Customer Center [31]. In this section, we report the experiment results to show the 

                                                           
2
  A dependency graph of a program P is defined as a pair <V, E>, where V is the set of the 

rule-head predicates in P, and E is the set of direct edges that shows the dependent relation-
ship among elements in V.  

3
  A graph G is called a strong connected graph if for every node pair (n1, n2) in G, there exist a 

path from n1 to n2. Given a program P, a rule in P is recursive if its head predicate is in a 
strong connected sub-graph of DG, where DG is the dependency graph of P. 



 Semantic Enhancement for Enterprise Data Management 889 

effectiveness and efficiency of the proposed approach. All experiments are conducted 
on a 2.8GHz Intel Pentium-D PC with 2GB RAM, running Windows XP Professional. 
Through a 1.0 Gbps intranet, a 2.66GHz Intel Core2 PC with 2GB RAM serves as the 
backend WCC server, with IBM DB2 9.1 Enterprise edition as the database. 

In the experiments, we used a data set from a real WCC customer. The main enti-
ties in the data set include 1.9M contracts, 1.0M claims, 2.0M contacts (parties) and 
3.2M location groups. The data set contains 1.9M records for contact-contract rela-
tionship. To estimate the performance of semantic queries that are of interest to WCC 
customers, additional synthetic data is generated to enrich the data set. We generate 
1.0M records for contact-contact relationship, contract-contract relationship, contact-
claim relationship and contract-claim relationship, respectively. 

Since our approach translates a SPARQL query into a single SQL statement, its ef-
fectiveness can be evaluated by the correctness of the resulting SQL statements. The 
system performance is demonstrated in terms of query translation time, response time, 
and retrieval time, i.e., the duration from the time that a query is issued to the time 
that a SQL statement is generated, to the time that first answer is retrieved, and to the 
time that the last record in the result is retrieved, respectively.  

Table 1 gives the sample rules used in the experiments. Note that in our test cases, 
all reasoning tasks are covered by the rule inference. R1 and R2 define the relation-
ships that will be frequently used. R3 to R7 are designed for the scenario below: an 
insurance company wants to analyze each contract to see how many large claims 
(claims with amount greater than $5000) are made from it. Table 2 gives the seman-
tics of queries used in the experiments. Indeed, these types of queries are interested 
and suggested by customers. Not all sample queries are shown in Table 3 due to space 
limitations. Except for MQ4, all queries can be translated into a SQL statement with-
out any inference result materialized in temporary tables. MQ2-1 and MQ2-2 have the 
same query semantics but MQ2-2 utilizes rule predicate (N-Ary pattern) to specify 
partner-trustee relationships. The same situation happens for MQ3-1 and MQ3-2. 

Figure 8 shows the translation time, response time and retrieval time for queries 
MQ0, MQ1, MQ2 and MQ3. We can see that the translation time is relatively little 
compared with retrieval time. Comparing MQ2-1 and MQ2-2, the expansion of the 
rule predicate in the SPARQL introduces a marginal additional cost. However, rules 
can be re-used and can make SPARQL queries concise. Note that the retrieval time is 
less than 3 seconds for these quite complex semantic queries. This is mainly because 
that our query translation approach outputs near optimal SQL statements. 

To answer MQ4, rules from R3 to R7 will be triggered. Note that R4 and R6 are 
recursive rules. So, we have to call the Datalog engine to do evaluation twice 
 

0

0. 5

1

1. 5

2

2. 5

3

3. 5

MQ0 MQ1 MQ2- 1 MQ2- 2 MQ3- 1 MQ3- 2

T
i
m
e
 
(
S
e
c
o
n
d
)

Tr ansl at i on Ti me

Response Ti me

Ret r i eval Ti me

 
Fig. 8. Query Performance 



890 L. Ma et al. 

Table 1. Sample Rules 

ID Rule 
R1 Partner_Relationship(?x, ?y) :- wcc:CONTACT_Relationship_FROM(?r, ?x),  

wcc:CONTACT_Relationship_TO(?r, ?y), wcc:hasCONTACT_Relationship_Type(?r, ?v), 
wcc:Contact_Relationship_FROM_TO_NAME(?v, 'Partner');;. 

Explanation：Define the partner relationship between two parties.  

R2 Trustee_Relationship(?x, ?y) :- wcc:CONTACT_Relationship_FROM(?w, ?x),  
wcc:CONTACT_Relationship_TO(?w, ?y), wcc:hasCONTACT_Relationship_Type(?w, ?z1), 
wcc:Contact_Relationship_FROM_TO_NAME(?z1, 'Trustee');;. 

Explanation：Define the trustee relationship between two parties. 

R3 Sub_Contract(?x,?y):- wcc:CONTRACT_Relationship_FROM(?u, ?x), 
wcc:CONTRACT_Relationship_TO(?u, ?y), wcc:hasContract_Relationship_Type(?u, ?z), 
wcc:Contract_Relationship_FROM_TO_NAME(?z, 'Sub Agreement');;. 

Explanation：Define the sub-contract relationship between two contracts 

R4 Sub_Contract(?x,?y):-Sub_Contract(?x,?z),Sub_Contract(?z,?y);;. 

Explanation：Define the sub-contract relationship is transitive 

R5 Large_Claim_Agreement(?clm, ?contract, ?amount):- wcc:CLAIM_PAID_Amount(?clm,?amount), 
wcc:CLAIM_CONTRACT_Relationship_To(?u, ?clm), 
wcc:CLAIM_CONTRACT_Relationship_From(?u, ?contract); 
?amount > "5000"^^xsd:double;. 

Explanation：Define the relationship Large_Claim_Agreement, indicating that a contract has a claim 

with the amount more than $5000 
R6 Large_Claim_Agreement(?clm, ?contract, ?amount):- 

Large_Claim_Agreement(?clm, ?subcontract, ?amount), Sub_Contract(?subcontract,?contract);;. 

Explanation：Define that a contract is involved in the large_claim_Agreement relationship if its sub-

contract has large claims 
R7 Contract_NumOfLClms(?contract, ?Agg_numclm):-Large_Claim_Agreement(?clm, ?contract, ?amount);;  

Group by <?contract> Count(?clm) as ?Agg_numclm. 

Explanation：Compute the contract and the total number of large claims of the contract 

Table 2. Meaning of Queries 

ID  Query Explanation 
MQ0    Find the claims that are associated to a given contract (1162960045467) and have the amount greater 

than $5000 
MQ1    Find the claimants of the claims that are associated to the contract 1162960045467 and have the 

amount greater than $5500 
MQ2 Find the person who has the partner 1000020 and is the trustee of the contact 1000045. 
MQ3 Find the claimant (with their guardians) who are related to the replacement of contract with id 1000 
MQ4 Find the number of large claims (amount greater than 5000) made on contract 1162960045467 

 
(for R4 and R6 respectively) and store the inference results in temporary tables. A 
naïve way to answer MQ4 is to firstly to compute the number of large claims for all 
contracts, and then to select the record for the given contract 1162960045467. In the 
experiment, this naïve approach takes 40.109 seconds as the retrieval time. A smarter 
approach is to apply the filter condition at early stage of the query so that the infer-
ence is performed only for the relevant data. The classical Magic Sets algorithm [29] 
helps to realize the later approach by rewriting the rules based on the filter condition. 
To improve the query performance, we implemented the Magic Sets algorithm in our 
system. As a result, the retrieval time for MQ4 is improved to 6.453 seconds. 

We also tried to run MQ0, MQ1, MQ2-1 and MQ3-1 on D2R sever [9] (V0.3.2 in 
our tests), an open source engine for RDF access to relational databases. However, 
 



 Semantic Enhancement for Enterprise Data Management 891 

Table 3. Sample Queries 

ID SPARQL query 
MQ0 Select ?clm ?amount where { ?u wcc:CLAIM_CONTRACT_Relationship_To ?clm.  

?u wcc:CLAIM_CONTRACT_Relationship_From <WCC65DB.CONTRACT/1162960045467>. 
?clm wcc:CLAIM_PAID_Amount ?amount. Filter(?amount>5000)} 

MQ1 Select ?contact ?clm ?amount where {?u wcc:CLAIM_CONTRACT_Relationship_To ?clm.  
?u wcc:CLAIM_CONTRACT_Relationship_From <wcc65db.contract/3000>. 
?clm wcc:CLAIM_PAID_Amount ?amount. ?v wcc:CLAIM_ROLE_Relationship_From ?clm. 
?v wcc:CLAIM_ROLE_Relationship_To ?contact. ?v wcc:hasCLAIM_ROLE_Relationship_Type ?type. 
?type wcc:CLAIM_ROLE_NAME ‘Claimant‘. Filter (?amount >5500)} 

MQ2-1 Select ?y where { ?r wcc:CONTACT_Relationship_FROM <WCC65DB.CONTACT/1000020>.  
?r wcc:CONTACT_Relationship_TO ?y. ?r wcc:hasCONTACT_Relationship_Type ?v. 
?v wcc:Contact_Relationship_FROM_TO_NAME 'Partner'.  
?r1 wcc:CONTACT_Relationship_FROM ?y.  ?r1 wcc:hasCONTACT_Relationship_Type ?v1.   
?r1 wcc:CONTACT_Relationship_TO <WCC65DB.CONTACT/1000045>.   
?v1 wcc:Contact_Relationship_FROM_TO_NAME 'Trustee'}; 

MQ2-2 Select ?y where {Partner_Relationship(<WCC65DB.CONTACT/1000020> ?y).  
Trustee_Relationship(?y <WCC65DB.CONTACT/1000045>)}; 

MQ4 Select ?contract ?numofClaims where { Contract_NumOfLClms (?contract ?numofClaims). 
FILTER (?contract = < WCC65DB.CONTRACT/1162960045467>)} 

 
D2R cannot well support these queries especially when the queries may introduce a 
number of JOINs. This is because that D2R server provides a memory based solution 
and does not use enough optimizations (not optimized for graph traversals). As D2R 
does not support N-Ary patterns and reasoning, it cannot execute MQ2-2, MQ3-2 
and MQ4. 

5   Conclusions 

In this paper, we presented the use of semantic Web technologies for enterprise cus-
tomer data management. Taking WCC as an example, we introduced an ontology 
representation for industry customer data model. An effective and practical approach 
to SPARQL query processing was proposed, with the ontology and rule reasoning 
incorporated. We believe that the presented approach could be easily adapted to vari-
ous enterprise data management solutions for semantic query and analysis. 

References 

[1] Customer Data Integration: Market Review & Forecast for 2005-2006, A CDI Institute 
MarketPulseTM In-Depth Report 

[2] Oracle Data Hub (2005), http://www.oracle.com/data_hub/index.html 
[3] SAP Master Data Management (2005), 

https://www.sdn.sap.com/irj/sdn/developerareas/mdm 
[4] IBM Websphere Customer Center, 

http://www-306.ibm.com/software/data/masterdata/customer/ 
[5] IBM Websphere Product Center, 

http://www-306.ibm.com/software/data/ 
masterdata/product-info/ 

[6] Gartner Reports, Magic Quadrant for Product Information Management (2006) 
[7] Morris Henry, D., Dan, V.: Managing Master Data for Business Performance Manage-

ment: The Issues and Hyperion’ s Solution. IDC white paper (2005) 



892 L. Ma et al. 

[8] IBM Industry Models, 
http://www-306.ibm.com/software/ 
data/ips/products/industrymodels/ 

[9] The D2RQ Platform v0.5.1 - Treating Non-RDF Relational Databases as Virtual RDF 
Graphs, http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/spec/ 

[10] Smith, M.K., Welty, C., McGuinness, D.: OWL web ontology language guide. W3C rec-
ommendation (Febuary 2004) 

[11] Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema. W3C 
recommendation (February 2004) 

[12] Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF W3C recommen-
dation (January 2008), http://www.w3.org/TR/rdf-sparql-query/ 

[13] Hayes, P., Welty, C.: Defining N-ary Relations on the Semantic Web, W3C Working 
Group Note (April 12, 2006) 

[14] Brunner, J., Ma, L., Wang, C., Zhang, L.: Explorations in the Use of Semantic Web 
Technologies for Product Information Management. In: WWW 2007, pp. 747–756 (2007) 

[15] Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, 
K.: Scalable Semantic Retrieval Through Summarization and Refinement. In: Proc. of 
AAAI 2007, pp. 299–304 (2007) 

[16] Lu, R., Cao, F., Ma, L., Yu, Y.: An Effective SPARQL Support over Relational Data-
bases. In: Joint ODBIS & SWDB workshop on Semantic Web, Ontologies, Databases, 
VLDB 2007 (2007) 

[17] Ma, L., Wang, C., Lu, J., Cao, F., Pan, Y., Yu, Y.: Effective and Efficient Semantic Web 
Data Management over DB2. SIGMOD, 1183–1194 (2008) 

[18] Motik, B.: On the properties of meta-modeling in OWL. In: Gil, Y., Motta, E.,  
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 548–562. 
Springer, Heidelberg (2005) 

[19] Shadbolt, N., Berners-Lee, T., Hall, W.: Nigel Shadbolt, Tim Berners-Lee and Wendy 
Hall, The Semantic Web Revisited. IEEE Intelligent Systems 21(3), 96–101 (2006) 

[20] Bizer, C., Cyganiak, R.: D2R Server – Publishing Relational Databases on the Semantic 
Web. In: Proc. of ISWC (2006) 

[21] Chen, H., Wu, Z., Wang, H., Mao, Y.: RDF/RDFS-based Relational Database Integration. 
In: Proc. of ICDE (2006) 

[22] Cyganiak, R.: A relational algebra for SPARQL. HP-Labs Technical Report (September 2005) 
[23] The best practices of N-Ary relationships representation in Semantic web, 

http://www.w3.org/TR/swbp-n-aryRelations/ 
[24] Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. In: Interna-

tional Semantic Web Conference (2004) 
[25] Levy, A.Y., Rousset, M.-C.: Combining Horn Rules and Description Logics in CARIN. 

Artifical Intelligence 104(1-2) (1998) 
[26] Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and De-

scription Logics. J. Intell. Inf. Syst. 10(3) (1998) 
[27] Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg 

(1990) 
[28] Mapping relational data to rdf in virtuoso, 

http://virtuoso.openlinksw.com/wiki/main/Main/VOSSQLRDF 
[29] Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.: Magic sets and other strange ways to im-

plement logic programs. In: Proc. of the Fifth ACM Symposium on Principles of Data-
base Systems (1986) 

[30] DBpedia (2009), http://dppedia.org/About 
[31] Wang, X., Sun, X., Cao, F., Ma, L., et al.: SMDM: Enhancing Enterprise-Wide Master 

Data Management Using Semantic Web Technologies. In: VLDB, pp. 1594–1597 (2009) 


	Semantic Enhancement for Enterprise Data Management
	Introduction
	Semantic Query and Analysis for Customer Data Management
	System Implementation
	Architecture
	Ontology and Mapping Building
	SPARQL Query Evaluation
	Reasoning in CDM

	Experimental Results
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




