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Abstract. OntoCase is a framework for semi-automatic pattern-based
ontology construction. In this paper we focus on the retain and reuse
phases, where an initial ontology is enriched based on content ontol-
ogy design patterns (Content ODPs), and especially the implementation
and evaluation of these phases. Applying Content ODPs within semi-
automatic ontology construction, i.e. ontology learning (OL), is a novel
approach. The main contributions of this paper are the methods for pat-
tern ranking, selection, and integration, and the subsequent evaluation
showing the characteristics of ontologies constructed automatically based
on ODPs. We show that it is possible to improve the results of existing
OL methods by selecting and reusing Content ODPs. OntoCase is able to
introduce a general top structure into the ontologies, and by exploiting
background knowledge the ontology is given a richer overall structure.

1 Introduction

Ontology engineering, for the Semantic Web and other application fields, is a
tedious and error-prone process requiring expertise in knowledge modelling and
logical languages. With the emergence of the Semantic Web we have seen an
increase in popularity of light-weight ontologies that provide just a bit of formal
semantics to a data set. Additionally, general web developers have become more
and more interested in ontology engineering. To exploit the full benefits of the
Semantic Web, ontologies need to be easy to construct, perhaps automatically.
In line with this, we have focused on automatic methods (so called ontology
learning - OL) for light-weight ontology construction, and especially how the
ontology quality can be improved by applying ontology design patterns (ODPs).

Typically, learnt ontologies are quite shallow (in a taxonomical sense), sparse
(with respect to the number of relations) and contain a large set of uncon-
nected concepts. An inherent problem when OL is attempted based on text
corpora is the fact that most information is actually implicit in the text
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(e.g. as observed in [I]). The consequence is that learnt ontologies lack an
overall general structure representing this background knowledge. We believe
that some of this knowledge can be added by means of ODPs, in particular
Content ODPs. Such patterns can also assist in structuring the existing learnt
knowledge.

In this paper we show a particular method for enriching learnt ontologies,
by means of Content ODPs. The method is not language dependent as such,
but is implemented based on current de facto standards, e.g. OWL. Evaluations
attempt to show the two main features of this method: 1) The ability to add a
(taxonomical) top structure to the ontology, representing background knowledge
implicit in the texts that were the basis of the input ontology. 2) The ability
to add more structure to the learnt ontology, i.e. to increase the taxonomical
depth and the relation-to-concept ratio. In the following sections we present
some background and related work with respect to OL and ODPs. In section [3]
we discuss the OntoCase methods, and section ] presents experiments validating
the OntoCase approach. We conclude and discuss future work in section

1.1 Ontology Learning

So far OL approaches have largely dealt with element extraction (see
overviews [23]), i.e. extraction of single concepts or relations from text cor-
pora, such as in [4]. Approaches have mostly focused on adapting techniques
from NLP, computational linguistics, machine learning, and text mining. An ex-
ample of a state-of-the-art OL tool is Text20ntd] [5]. A few recent approaches,
e.g. [6l7], have attempted to extract complex axioms, but primarily based on
structured input, such as dictionary entries. An approach sharing our goal of
providing a more structured output is [§]. The approach uses semantic frames,
from linguistics, to extract knowledge from text and transform the frames into
small ontologies.

Even though many of the techniques used in OL have been around for many
years, they remain subjects of research. The quality of the ontologies is far
from perfect; without manual revision the ontologies are not directly usable. An
important issue is improving the output ontology quality of OL systems, i.e. the
main focus of OntoCase, but still we are not attempting to replace the ontology
engineers, merely provide a better starting point for further development.

1.2 Content Ontology Design Patterns

There exist different types of ODPs having different characteristics, for details on
ODP types see [9], but in this paper we focus on Content ODPs. Content ODPs
are small ontologies with explicit documentation of design rationales, which can
be used as building blocks in ontology design, as shown in [TO/TT].

As an example we describe a Content ODP that is called Action. It represents
the relations between different types of actions, the state of the actions, and

! http://ontoware.org/projects/text2onto/
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defines the relation between a plan and a set of proposed actions, see Fig. [Il
Content ODPs are collected and presented in different catalogues, such as the
ODP porta. In addition to their diagrammatic representation Content ODPs
are described using a number of catalogue entry fields (c.f. software pattern
templates), such as name, intent, consequences, and building block (linking to
an OWL realization of the pattern). Reusing Content ODPs is a special case of
ontology reuse, when the elements of the Content ODP are specilized.
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Fig. 1. The Action Content ODP’s graphical representation in UML

2 Related Work

Our research is inspired by early Al approaches in analogical reasoning, e.g.
scripts and frames, and case-based reasoning (CBR), see [12] for a discussion re-
lated to CBR, as well as earlier work in knowledge engineering (KE) and reuse of
problem-solving methods. However, recent developments in the KE and Seman-
tic Web fields have led to a situation where a lot of general background knowl-
edge and other knowledge resources, such as ODPs, are now readily available.
Consequently we are now able to realize the true potential of such techniques.
Within the ontology engineering field, this research is strongly related to on-
tology reuse, since Content ODPs are in essence small ontologies. However, no
previous approaches specifically target the automatic selection and integration of
Content ODPs. Related work exists in ontology search and ranking, e.g. search
engines such as Watsorﬂ SVVOOGLEE7 and Sindicdd. Tools such as the NeOn
toolkit in combination with the Watson plug-in let a developer integrate parts
of the retrieved ontologies into the one being built, but the matching is simple
keyword matching. The problems of selecting the right ontology, e.g. Content
ODP, specializing it, and composing several ontologies are largely unaddressed.
An elaborate ranking approach that has inspired our research is AktiveRank
[13]. However, this approach incorporates measures such as the centrality of the
keywords in the ontology, which are not suitable for small patterns where the
notion of centrality is not applicable. The methods in this paper are similar

2 http://www.ontologydesignpatterns.org
3 http://watson.kmi.open.ac.uk

* http://swoogle.umbc.edu/
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to ontology matching, see [14], and methods for analyzing names in ontologies
[15]. However, they have been tailored to the specific case of matching a large
diverse input ontology on one hand to a small Content ODP on the other hand.
To the best of our knowledge no such specific methods have been proposed
previously.

3 OntoCase - Retrieve and Reuse

OntoCase is a general framework for pattern-based semi-automatic ontology
construction, but in this paper we focus on the retrieve and reuse phases that
have been implemented for OWL ontologies. The overall framework can be seen
in Fig. 2l The third and fourth phases, revise and retain, are still future work.

3.1 Assumptions and Input

The process is initiated by the input of a data set from which to bootstrap the
ontology; “Input” in Fig. 2l The “Element extraction” step uses state-of-the-
art OL, i.e. deriving ontology elements from some non-ontological input, such
as a text corpus. Since such extraction has been treated in previous research,
we simply assume that a preliminary OWL ontology is present. Many OL tools
provide a notion of extraction confidence; if present, such values can be used by
OntoCase. The methods in this paper cover the “Pattern matching”, “Pattern
selection”, “Pattern adaptation”, and “Pattern composition” steps in Fig. 2

A catalogue of Content ODPs is assumed to be available, “Pattern base” in
Fig. 2 Currently the OWL building block itself is used for retrieval and reuse.
The current implementation of OntoCase does not treat the pattern construc-
tion problem, although the problem is recognized as future work, i.e. the fourth
phase (retain). This is not an unreasonable assumption, since recently cata-
logues of Content ODPs have emerged, such as the ODP portaﬁ and catalogues
re-engineered from other sources (such as data model patterns [16]), as in [12].

For the matching procedure terms representing both concepts and properties
are used, i.e. names or labels (the best match is chosen disregarding if it is
a label or a local name). We are assuming that both Content ODPs and the
input ontology have human-readable local names (the local part of the resource
URI), and/or labels (defined through rdfs:label), defined for all classes and
properties. Content ODPs represent best practices, hence it should hold for all
patterns since this is in itself a good practice, and additionally most OL methods
apply some form of term extraction when forming concepts. When matching
properties, in the current implementation only the domains and ranges of the
properties are used. To explicitly define domain and range is also a best practice,
hence most pattern properties have explicit domain and range definitions. For
learnt ontologies this may not hold, but again due to the methods commonly
applied in OL, such as relation extraction through term co-occurrence, it is very
common that domains and ranges are actually present for most properties.

5 http://ontologydesignpatterns.org
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3.2 Example Scenario

As an example, assume that we are constructing a software engineering ontology,
and we have extracted the concepts (with local names as follows) “project plan”
(with a confidence of 0.5), “schedule” (with a confidence of 0.5), “execution”
(with confidence 1.0), and “software engineering task” (with confidence 0.5) from
a text corpus. Additionally there is one extracted property named “compose”,
with domain “software engineering task” and range “project plan”. Let us also
assume that we have the pattern called Action in our pattern catalogue, see
section [[.2] This example will be used throughout the description of the method.

3.3 Pattern Ranking

Our pattern ranking and selection method (realizing the “Pattern matching”
and “Pattern selection” steps in Fig. 2]) takes as input a catalogue of Content
ODPs and a preliminary OWL ontology, possibly extracted using some OL tool.
The ranking is based on matching between the patterns and the input ontology.
Content ODPs are inherently small ontologies, hence computationally expensive
graph operations can be applied without risking the performance. Content ODP
reuse is done through specialization, hence generalizations of pattern concepts
are disregarded. The ranking scheme contains three main parts; concept cov-
erage, relation coverage, and utility measures, which are applied as in Fig.
Current formulas (details in [I2]) are based on related work in ontology ranking,
and on analyzing what features intuitively impact pattern suitability.
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Fig. 3. Parts of the ranking scheme and their dependencies

Concept Coverage. Concept coverage is computed based on direct and in-
direct term matching. To determine the direct coverage, i.e. discover possible
candidates for equivalent concepts, string matching of concept names and labels
is used. In order to find only possible equivalences, the matching threshold has
to be set quite high. A future extension of this method would be to also study
partial inclusion of strings, which would indicate different kinds of relationships
between the concepts, or to use “naming patterns” as proposed by [15]. The
direct coverage is computed based on the fraction of the pattern concepts that
match terms representing a concept in the input ontology Oj;ppu:. The string
matching between terms produces a similarity value representing the degree of
similarity between two strings; any common normalised string matching mea-
sure could be used. These values are then composed into a weighted matching
value for each discovered match, using the string matching score and the confi-
dence (if present). For each concept the direct coverage score is computed as the
maximum weighted matching value, i.e. the matching score of the best match.

For our example (see section B.2) we assume the string matching metric is
simple string inclusion. Only one term, i.e. “project plan”, will match any term,
i.e. “Plan”, in the Action pattern. The term “Plan” constitutes one third of the
character string “project plan”, hence the resulting score is 0.33. To arrive at
the weighted matching score we multiply this with the confidence value, i.e. 0.5,
and arrive at a final direct coverage of the “plan”-concept of 0.17.

For the indirect matching, i.e. hints of subclass relations, clues can be found
among hypernym relations between terms. Hyponymy/hypernymy denotes a hi-
erarchical relation between terms indicating the specificity of the terms; such a
hierarchy is for instance present in the WordNet dictionary. Two approaches are
used; hypernym chains in WordNet and the “head heuristic”. The “head heuris-
tic” states that a compound term is more specific than the head of the term, i.e.
“oraduate student” is a specialization of “student”.

The dictionary approach starts with a concept in Ojppye. The terms repre-
senting this concept are matched against the WordNet dictionary, through exact
string matching, and corresponding WordNet terms ¢;, if any, are retrieved. The
same is done for all pattern concepts. The hypernyms of each ¢; are searched
for pattern terms. Since t; can have several senses, there can be several paths,
not all leading to a pattern term. The dictionary coverage of a pattern concept
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is computed as the sum of the contributions by each Ojypy: concept, which in
turn depend on the number of paths, the length of the shortest path, and the
number of senses. The intuition is that the score increases if several paths are
found, while it decreases with an increased length of the shortest path, and with
an increased number of senses (i.e. an increased uncertainty).

In our example the terms “schedule” and “execution” can be found in Word-
Net. The noun “execution” has 7 senses, and for two of the senses we can find
a path of hypernym relations connecting them to the term “Action”. One path
is of length one and the other of length 6. When computing the dictionary
coverage of the “Action” concept the number of paths (i.e. two) is divided by
the length of the shortest path (i.e. one) and the number of senses (i.e. 7),
and weighted with the confidence, arriving at the value 0.29. “Schedule” has two
senses in WordNet, and one path of length one leads to the pattern term “Plan”.
The dictionary coverage of “Plan” is thereby 0.25.

For a concept in Ojppys represented by a multi-word term also the “head
heuristic” is applied. The number of modifiers, in our case defined as the num-
ber of additional words (disregarding the possibility of multi-word terms being
individual modifiers) preceding the head word, are treated analogously to a step
in the hypernym chains above. Since we have no information about senses, this
is disregarded. In our example the only multi-word term matching a pattern
term is “project plan”, which matches “Plan” with one modifier (i.e. the word
“project”). The head coverage (weighted by the confidence) of “Plan” is 0.5 .

Although more elaborate weighting mechanisms could be applied, currently
the total concept coverage of each pattern concept is computed as the sum
of the three scores, with a maximum score set to 1. In our example this means
that the direct coverage, the dictionary coverage and the head coverage of “Plan”
are added, resulting in 0.92. The total concept coverage score of a pattern is the
average over all concepts. In the example we have 8 concepts in the pattern,
where two of them had matches, resulting in a total concept coverage of 0.15.

Relation Coverage. Matching of properties can be done both based on prop-
erty names and labels, and on the direct concept matches. The intuition behind
this is that neither the property name nor the domain and range is sufficient to
determine equivalence (or similarity) of the property, but in combination they
give a strong indication. For each pattern property from concept cgq to concept
¢r, the best match (if any) is selected from the extracted properties. The score is
calculated based on the individual matching scores of the direct concept matches
(see above). When matching property names and labels a string similarity mea-
sure is used. The score of one pattern property with respect to all properties
in Oipput, is the maximum matching value for any property, which in turn is
computed as the average of the string matching score and the combined direct
concept coverages (multiplied and weighted by the property confidence).

In our example there is only one direct concept match, hence no pair of such
matches connected by a property can be found. The name of the extracted
property “compose” can be found similar to the pattern property “composed of”
(with the score 0.64, based on string inclusion). The total relation coverage of the
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“composed of” property is then 0.32. The total relation coverage is the average
of the individual matching scores. In our example there are three properties,
hence the total coverage is 0.11. A more elaborate strategy for matching relation
names could include also common “naming patterns” to identify the possibility
of “composed of” being the inverse of “compose”, rather than the same relation.

Utility Measures. The intuition is to assess the “utility” of enriching the input
ontology with particular pattern, based on the concept and relation matches. We
remind the reader of the aim to give the input ontology a richer structure, thereby
utility is interpreted as the ability to add structure. Two utility measures are
used; density and proximity, which are inspired by [13].

Density refers to the amount of “structure” that surrounds a certain concept.
OntoCase currently considers the number of sub- and superclasses, taxonomi-
cal siblings, and concepts directly related through object properties (explicitly
defined domains and ranges). In our example, the “Action” concept has three
direct subclasses and is related to two other concepts, resulting in the density
5 divided by 8 (the total number of concepts), i.e. 0.63. The density of “Plan”
is 0.13. The density values are then weighted using the concept coverage; the
weighted density of “Plan” is 0.12 (0.92%0.13). The complete density of a pat-
tern is the normalized sum of the densities of matched concepts.

The proximity measure considers the distance dist(c;,c;) between two
matched concepts ¢; and ¢; in a pattern, which is computed as the length of
the shortest path between the concepts, taking into account all relations (sub-
class and properties explicitly defined with domain and range, disregarding the
direction), except paths passing owl:Thing. The maximum distance between any
two concepts in a pattern is denoted the pattern diameter, which is used for nor-
malization together with the fraction of matched concepts. The total proximity
value of a pattern is the normalized sum of all the individual proximities.

Ranking and Selection. The three parts are then aggregated into one ranking
value. Although more advanced combinations could be imaginable, for simplicity
reasons a linear combination is used, currently with equal weights on all mea-
sures. The simplest approach for selection is to let the user set a threshold on the
ranking value. A more elaborate approach would be to study the total coverage
of the patterns over the input.

3.4 Pattern-Based Enrichment

The reuse phase is concerned with adapting, i.e. specializing, and composing
the selected Content ODPs, and integrating them into an enriched version of
the input ontology (steps “Pattern adaptation” and “Pattern composition” in
Fig. ). More specifically, pattern specialization means adding all the matching
results (or those with a score above a certain threshold) as equivalence axioms
and subclass relations respectively. In our previous example this means that
“execution” would be added as a subclass of “Action” with a confidence of 0.29
(see above), “schedule” added as a subclass of “Plan”, and so on. “Project plan”
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is ambiguous, i.e. we have evidence of a subclass relation to “Plan” and also an
equivalence, hence both relations with their associated confidences are added.

We would additionally like to add the “composed of”’-property, however the
“Proposed action” concept was not matched, only its superconcept “Action”.
The default heuristic is to only include those parts of a pattern that had some
match, not to introduce any unnecessary concepts, but the enrichment can be
enhanced by a set of additional heuristics, to create a more well-structured on-
tology. Firstly, the composition process can be performed in two different modes,
pruning or pure enrichment. The pruning mode implies that the input ontology
is pruned and only those parts that can be connected to any selected pattern
will be included. The pure enrichment leaves the input ontology as it is and only
adds the parts of the selected patterns that were matched. Secondly, the (slightly
overlapping) heuristics currently available include (some being applicable in only
one of the two modes; pruning or pure enrichment):

1. Add all properties (even if not matched) between included concepts.

2. Use the transitive property of subclass relations; if an intermediate concept
is missing then add the child directly at the level of the missing concept.

3. Add all extracted subconcepts of concepts in the input ontology, where the
parent-concept matched a pattern concept.

4. An object property that originally relates two concepts is added even if one
of the concepts is missing if there is a subconcept of the missing concept,
which can replace the missing one, present in the ontology.

5. Add all superclasses of matched pattern concepts.

The first heuristic is proposed since relations are harder to extract than terms,
hence it is very likely that there will be a number of properties missing in the
input ontology. Additionally, we are reluctant to decrease the structural density
of the pattern concepts. The second and fourth heuristics are intended to preserve
the structure even if there are “gaps” in the matched taxonomy. An alternative
strategy would be to include the complete taxonomy, even if only some parts
were matched, as suggested in heuristic three and five. Heuristic three is based
on the intuition that if a structure exists in the input ontology, this is based
on “real-world” evidence (e.g. texts), hence we do not attempt to change this.
The intuition for heuristic five, is that we want to use the patterns to add the
abstract knowledge that is often missing, even though it might be hard to match
it to the input ontology. Adding relations based on the first heuristic even if a
concept in the taxonomy is missing, is the focus of the fourth heuristic.
Pattern composition is another task. In the current implementation only sim-
ple composition is performed, i.e. relations are not explicitly discovered between
patterns. During pattern composition the focus is instead on overlaps between
patterns, which are handled using heuristics, for example assuming that two
concepts are equivalent if they have the same name and no conflicting axioms.
The confidence values resulting from the matching are stored with the ontology.
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3.5 Implementation

A first version of the OntoCase method, including the two first phases, has been
implemented as a command-line research prototype. The Jena AP was used
for handling ontologies. Additional external software is the WordNet lexical
database. The pattern base is currently deployed as a simple database. The
actual pattern ontologies are locally stored as OWL-files, or directly linked to
online ontologies on the web. The initial text processing can be done through
the Text20ntd] tool (an interface to an older version of the tool is provided).
The alternative is to provide an input ontology represented as an OWL-file. At
the moment a graphical user interface is not provided; plug-in implementations
for both Protégéﬂj and the NeOn toolkif] will be considered in the future.

4 Evaluation

The OntoCase retrieval and reuse phases have been evaluated in three inde-
pendent settings; the SEMCO project’s requirements engineering ontology, the
JIBSNet university intranet ontology, and an agricultural ontology of the FAO.
All ontologies were constructed using the current OntoCase implementation, set
in its pruning mode (described in section [3.4)).

4.1 Evaluation Setup

Ontology evaluation methods were used for studying the quality and charac-
teristics of the output of OntoCase. In [I7] an overall framework for ontology
evaluation is described, consisting of three levels; structural, functional, and us-
ability evaluations. Structural evaluations analyze the quality of the syntax and
semantics of the ontology as it is represented. Functional evaluations analyze
how well the ontology conforms to the intended conceptualization, i.e. the re-
quirements. Usability evaluations concern the understandability and reusability
of the ontology, as well as user satisfaction. We have aimed to cover all levels,
although due to practical reasons it has not been feasible for all experiments.
The structural level was analyzed within all experiments, based on measures
such as number of concepts, number of concepts at the top level (i.e. root con-
cepts, with no other superclass but owl:Thing), number of subclass relations
and properties, and average depth of the taxonomy, as suggested in [I7JI8]. We
chose not to apply any formal measure of tangledness, but to evaluate this by
inspecting the ontology graphically. The two most well-known approaches for
taxonomic evaluation, presented in [I9] and OntoClean in [20], were used when
feasible (these evaluations were conducted manually by two ontology engineers).

" http://jena.sourceforge.net /

8 http://wordnet.princeton.edu/

9 http://ontoware.org/projects/text2onto/
19 http://protege.stanford.edu/
" http://www.neon-toolkit.org/
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A weakness is that, for two of experiments, only a sample of the elements were
evaluated, resulting in the unfeasibility to evaluate, for example, improper se-
mantic leveling, level of detail, and other issues concerning the overall structure.

To evaluate functional characteristics, i.e. the content of the ontologies, a
subset of the OntoMetric framework suggested in [2I] was used in the SEMCO
experiments. Only the dimension Content was deemed interesting. This evalua-
tion was performed by two domain experts at the enterprise in question. In the
JIBSNet and FAO cases the evaluation was performed using a random sampl
of classes and properties, whereby the same factors were not applicable. Instead
we applied individual assessment of the concepts and properties by domain ex-
perts (or ontology engineers in the FAO case). Through a graphical illustration of
the concepts, their placement in the taxonomy, and their properties, the experts
were asked to classify them into one of five categories; “essential” (i.e. highly
relevant for inclusion in the ontology), “accept” (i.e. correct but not essential),
“not sure” (i.e. confusing or hard to assess), “not correctly modeled” (i.e. ele-
ments that should be included but not in their current form, e.g. too general
concepts, or elements wrongly placed in the ontology structure), and “incorrect”
(i-e. not to be included). Six domain experts from JIBS participated, representing
different roles in the organization and different educational backgrounds. The in-
dividual opinions were weighted together, categorizing the elements as “correct”
(representing the essential and accept judgements), “uncertain”, and “incorrect”
(representing the not correctly modeled and incorrect judgements). For JIBSNet
this can be seen as a usability evaluation, since it was performed by end-users
of the application. While, for the FAO case the evaluation was performed by
two ontology engineers, using FAO knowledge sources for the evaluation, hence
it was a functional evaluation.

4.2 The SEMCO Requirements Engineering Ontology

Within the research project SEMCO an ontology was constructed with the aim
to support structuring and retrieval of information and artefacts during the
software development process of an enterprise, focussing on the requirements
engineering phase. Initially the ontology was aimed at structuring of artefacts
within a tool, i.e. ArtifactManager [22]. The aims of this set of experiments were
to compare the implementation of OntoCase to both manual ontology engineer-
ing, and to an alternative implementation using naive methods.

The naive implementation applies only existing tools, such as string matching
and basic heuristics for the enrichment, and resulted in the ontology OA,qive
as seen in Table [Il (all numbers represent absolute counts). Additionally the
resulting ontologies were compared to two versions of a manually constructed
ontology, an initial version, OM;,;tiai, constructed manually based on the same
sources used by OntoCase, i.e. a set of documents, and an enriched version also

12 The sample sizes were between 3 and 72% of the total number of elements (the aim
was to stay above 10% but due to practical limitations on subject availability this
had to be reduced for the largest ontologies, hence reducing reliability).



76 E. Blomqgvist

refined based on interviews with domain experts, OM tinar. OAimproved is an
ontology constructed using the same pattern catalogue but using the current
OntoCase implementation, and OA f;q is the final version of the automatically
constructed ontology, constructed using an extended pattern catalogue (includ-
ing both a domain specific catalogue and the complete set of patterns at that
time available from ontologydesignpatterns.org).

Table 1. General characteristics of the SEMCO ontologies

Characteristic OMinitiat OAnaive OMfinat OAimproved OAfinal
Number of concepts 224 85 379 90 150
Number of root concepts 8 35 5 21 13
Number of properties 15 34 246 37 48
Number of subclass relations 224 48 380 95 243
Average depth 2,52 1,95 3,5 2,10 1,62

4.3 The JIBSNet Information Structure Ontology

The second set of experiments were performed in the university domain. JIBSNet
is an intranet present at Jonkoping International Business School (JIBS). The
intranet contains internal documents of all kinds, from personnel instructions
to meeting minutes and information for students. An ontology could help to
improve classification, presentation and retrieval of information from JIBSNet.
The aim of this experiment was to thoroughly evaluate an ontology constructed
by means of OntoCase with actual domain experts, i.e. end-users of a tentative
application, but also to compare the resulting ontology to the input ontology.
The ontologies were first evaluated using structural measures, see Table
(all numbers are absolute counts within each ontology), and then the usability
evaluation was performed together with domain experts at JIBS. In Table 2 O,
denotes the input ontology, constructed with the OL tool Text20nto, and O,
denotes the output from OntoCase when applying patterns on top of Oy,.

4.4 The FAO Agricultural Ontology

The third evaluation was set in the agriculture domain, with focus on concepts
related to growing rice. The intention of this experiment was mainly to further
establish the previous results showing that OntoCase is in fact able to improve
the results of existing OL methods. The setting was the Food and Agriculture

Table 2. General characteristics of the JIBSNet ontology

Characteristic Oin Oout
Number of concepts 6535 2576
Number of root concepts 6368 15

Number of properties 218 147

Number of subclass relations 189 4714
Average depth 1.03 2.72
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Organization (FAO) of the United Nations and their work on improving the
use of agricultural resources around the globe. The organization is trying to
improve their processes by moving from simple structures, such as thesauri, to
more complex definitions of concepts, such as ontologies.

An existing manually engineered light-weight ontology was used as a starting
point, denoted O; in Table [] (all values represent absolute counts within each
ontology). Ontologies were also constructed directly from text corpora, using the
OL tool Text20nto; Oz, O3, and O4. Two of the text corpora were generated by
extracting DBPedidd abstracts and comments respectively, collected by using
the concepts in O; as search terms. A third text corpus was produced by FAO
based on article abstracts connected to the AGROVOC thesauru, related
to the term “rice”. The two final ontologies, Os and Og, were constructed as
combinations of O; and Oz, and Oy and Ojs, respectively. “+OC” in the table
denotes the output ontologies, after applying OntoCase.

Table 3. General characteristics of the agricultural ontologies

Characteristic Oq 01+oc Oo Oz+oc O3 O3+oc Oy O4+oc Os 05+oc Og OG+OC

No of concepts 266 280 1086 812 365 321 3575 2823 1256 1293 536 570
No of root conc. 155 112 1018 22 290 22 1822 27 1080 758 352 248
No of properties 37 46 17 28 3 16 49 63 53 73 39 62
No of subclass rel. 110 245 89 1471 189 628 1954 4162 199 1679 299 921
Avg depth 1.68 2.19 1.06 237 134 239 168 284 1.20 3.36 1.57 3.06

4.5 Result Summary

From the SEMCO experiment we see a clear difference between OntoCase and
naive methods. Primarily related to the ability to include abstract knowledge,
due to the more elaborate matching methods used, hence the ontology is given
a more abstract top structure. Although it is not inherently a positive feature
to include more abstract concepts, in the specific case of enriching very shallow
ontologies, such as the ones learnt by OL tools (even containing unconnected
concepts), this is actually an improvement. When compared to manual methods
the automatic approach of course does not perform as well, but it has some
merits, especially compared to manually constructing an ontology only based
on similar (textual) sources. For example, more properties were included in the
ontologies constructed by OntoCase. The manually constructed ontologies had
even fewer root concepts, i.e. an even more abstract top structure, but it remains
to be determined if they are in fact too abstract. Evaluation of the taxonomy
(see [19120]) showed a comparable level of correctness between all ontologies.
The results of the functional and usability evaluations in the JIBSNet and
FAO experiments show that with respect to concepts OntoCase performs on
the same level of accuracy as Text20nto, a state-of-the-art OL method. While,
with respect to the structure OntoCase considerably improves on the results

'3 http://dbpedia.org/
' http://www.fao.org/agrovoc/
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of Text20nto. The top concepts added give a more intuitive structure to the
ontology and the relations are deemed correct to a larger extent than the relations
of the input ontologies. Table [ presents the results for the JIBSNet ontology
(Oin being the input ontology and O, the output of OntoCase). Randomly
selected sets were used in the evaluation, for concepts and taxonomic relations
one set representing a selection from the top level of the taxonomy and one
representing the overall ontology. The reason for this distinction was to show
that even the top structure, where most of the pattern concepts and relations
were added, is reasonable. The results of the correctness assessment of the FAO
agricultural ontologies can be seen in Table Bl The most significant increase in
correctness can be seen in the relation assessment (here subclass relations and
properties were assessed together).

An increased tangledness of the taxonomy, together with increased redun-
dancy, e.g. a direct subclass relation being present while simultaneously being
derivable from a chain of other subclass relations, could be noted in all of the
cases. It is important to point out that this might actually be an advantage,
if exploited in the right way. As we saw in the example previously, this is due
to the ambiguity of the matching results, but it also provides options for an
ontology engineer when continuing to refine the ontology, and guidance is given
in the form of confidence values. Intuitively the reader may agree that providing
some guidance and choices to the user is most likely better than to select one
alternative automatically, whereas wrong choices would sometimes be made.

Table 4. Results for JIBSNet concepts and relations

Evaluation set Assessment % of concepts % of subclass relations % of properties
Ojn (top structure) Correct 85.1% 33.4% N/A
Uncertain 11.7% 17.5% N/A
Incorrect 3.2% 49.2% N/A
O;n (total) Correct 75.3% 26.8% 50.7%
Uncertain 15.9% 15.8% 16.2%
Incorrect 9.2% 57.4% 33.1%
Oout (top structure) Correct 80.6% 58.1% N/A
Uncertain 16.1% 38.7% N/A
Incorrect 3.2% 3.2% N/A
Oout (total) Correct 73.7% 53.4% 65.0%
Uncertain 16.1% 24.9% 11.9 %
Incorrect 10.2% 21.7% 23.1%

Table 5. Correctness of the agricultural ontologies

Measure O1 Oi1roc O2 Oz210c O3 Ozroc Os Osroc Os Osroc Os Ostoc

Concepts

Correct 92.8 97.8 855 87.9 94.2 93.0 84.9 885 87.8 881 92.0 936
Unsure 5.4 2.2 3.4 4.6 29 44 57 58 5.6 5.6 4.3 3.6
Incorrect 1.8 0.0 11.1 7.6 29 26 94 58 6.7 6.4 3.7 27
Relations

Correct 90.0 92.8 61.6 77.5 64.1 86.1 659 793 76.2 79.1 784 83.2
Unsure 57 29 128 25 11.5 6.3 13.2 69 107 8.1 4.9 5.9
Incorrect 4.3 4.4 25.6 20.0 244 7.6 209 13.8 13.1 128 16.7 5.9
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To summarize these results we can conclude that OntoCase in fact provides
an added structure to the ontologies, and does connect unconnected parts of the
ontologies produced by other OL methods. A general top structure is introduced,
adding some of the missing general background knowledge not found explicitly
in a text corpus. These improvements, conforming to our hypotheses presented
in section [Il are achieved without increasing the error-rate of the ontologies.

5 Conclusions and Future Work

Open issues within the OntoCase framework include to cover the complete cy-
cle, i.e. also address the revision and pattern construction problems. A graphical
user interface for the revision of OntoCase ontologies would be a great benefit
to the user, in order to study the alternative modelling choices present, and to
exploit the confidence values as decision support. This would also give the oppor-
tunity to experimentally study the amount of manual work required by ontology
engineers in different settings. More specific improvements can be found in the
use of background knowledge, where WordNet could for example be replaced by
domain specific knowledge or knowledge sources available on the Semantic Web,
e.g. online ontologies. Some of the rank calculations currently apply quite naive
numerical combinations of values, whereas a certain tuning most likely would
be beneficial. Also the composition step can benefit from future refinement, for
example by explicitly finding relations between patterns, and testing consistency
of hypotheses before adding them to the ontology. We do no envision that On-
toCase will replace manual editing of the ontologies, aiming for total correctness
would require reasoning mechanisms that will most likely not scale. However,
as an aid for providing assistance to the user when selecting and integrating
Content ODPs we find OntoCase quite useful, despite the simplicity of some of
the methods and heuristics currently implemented.

There are many challenges when semi-automatically constructing ontologies
from sources such as text corpora. A prime challenge is how to incorporate the
“missing information” that is not explicitly stated in domain specific texts. This
is both common-sense knowledge and domain knowledge that is assumed and
not stated explicitly. We have addressed this challenge by introducing Content
ODPs into semi-automatic ontology construction, and we have proposed a gen-
eral framework for pattern-based semi-automatic ontology construction called
OntoCase. Experiments have shown that the ontologies produced are reasonable
with respect to their intended domain, and improve the quality of output com-
pared to typical OL methods, primarily with respect to the ontology structure.
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