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Abstract. The framework developed in this paper can deal with sce-
narios where selected sub-ontologies of a large ontology are offered as
views to users, based on criteria like the user’s access right, the trust
level required by the application, or the level of detail requested by the
user. Instead of materializing a large number of different sub-ontologies,
we propose to keep just one ontology, but equip each axiom with a la-
bel from an appropriate labeling lattice. The access right, required trust
level, etc. is then also represented by a label (called user label) from this
lattice, and the corresponding sub-ontology is determined by compar-
ing this label with the axiom labels. For large-scale ontologies, certain
consequence (like the concept hierarchy) are often precomputed. Instead
of precomputing these consequences for every possible sub-ontology, our
approach computes just one label for each consequence such that a com-
parison of the user label with the consequence label determines whether
the consequence follows from the corresponding sub-ontology or not.

In this paper we determine under which restrictions on the user and
axiom labels such consequence labels (called boundaries) always exist,
describe different black-box approaches for computing boundaries, and
present first experimental results that compare the efficiency of these
approaches on large real-world ontologies. Black-box means that, rather
than requiring modifications of existing reasoning procedures, these ap-
proaches can use such procedures directly as sub-procedures, which al-
lows us to employ existing highly-optimized reasoners.

1 Introduction

Assume that you have a large ontology 7, but you want to offer different users
different views on this ontology, i.e., each user can see only a subset of the actual
ontology, which is selected by an appropriate criterion. This criterion could be the
access right that this user has, the level of trust (in the axioms of the ontology)
that the user requires, the level of details that is deemed to be appropriate for
this user, etc. In principle, you could explicitly create a sub-ontology for each
(type of) user, but then you might end up with exponentially many different
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ontologies, where each is a subset of 7. Instead, we propose to keep just the
big ontology 7, but label the axioms in 7 such that a comparison of the axiom
label with the user criterion determines whether the axiom belongs to the sub-
ontology for this user or not. To be more precise, we use a labeling lattice (L, <),
i.e., a set of labels L together with a partial order < on these labels such that a
finite set of labels always has a join (supremum, least upper bound) and a meet
(infimum, greatest lower bound) w.r.t. < []. All axioms ¢ € T are now assumed
to have a label lab(t) € L, and the user also receives a label ¢ € L (which can be
read as access right, required level of trust, etc.). The sub-ontology that a user
with label ¢ can see is then defined to be2

Tp = {t € T | lab(t) > ¢}.

Of course, the user of an ontology should not only be able to see its axioms, but
also the consequences of these axioms. Thus, a user with label £ should be able
to see all the consequences of 7;. For large ontologies, certain relevant conse-
quences are often pre-computed. The goal of the pre-computation is that certain
user queries can be answered by a simple look-up in the pre-computed conse-
quences, and thus do not require expensive reasoning during the deployment
phase of the ontology. For example, in the version of the large medical ontology
SNOMED CTH that is distributed to hospitals, all the subsumption relationships
between the concept names occurring in the ontology are pre-computed. For a la-
beled ontology as introduced above, it is not enough to pre-compute the relevant
consequences of 7. In fact, if the relevant consequence « follows from 7, then
we also need to know for which user labels £ it still follows from 7;. Otherwise, if
a user with label ¢ asks whether « holds, the system could not simply look this
up in the pre-computed consequences, but would need to compute the answer
on-the-fly by reasoning over the sub-ontology 7;. Our solution to this problem
is to compute a so-called boundary for the consequence «, i.e., an element p,, of
L such that « follows from Ty iff £ < pg,.

There are basically two approaches for computing a boundary. The glass-
box approach takes a specific reasoner (or reasoning technique) for an ontology
language (e.g., a tableau-based reasoner for OWL DL [20]) and modifies it such
that it can compute a boundary. Examples for the application of the glass-
box approach to specific instances of the problem of computing a boundary
are tableau-based approaches for reasoning in possibilistic Description Logics
[I5/13] (where the lattice is the interval [0,1] with the usual order) and glass-
box approaches to axiom pinpointing in Description Logics [T9T4J12/3/4] (where
the lattice consists of (equivalence classes of) monotone Boolean formulae with
implication as order [4]). The problem with glass-box approaches is that they

! Figure [ in Section [F shows a small lattice. A detailed introduction to lattices and
orders can, e.g., be found in [9].

2 To define this sub-ontology, an arbitrary partial order would be sufficient. However,
the existence of suprema and infima will be important for the computation of a
boundary of a consequence (see below).

3 http://www.ihtsdo.org/snomed-ct/
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have to be developed for every ontology language and reasoning technique anew
and that optimizations of the original reasoning technique do not always apply
to the modified reasoners. In contrast, the black-box approach can re-use existing
optimized reasoners without modifications, and it can be applied to arbitrary
ontology languages: one just needs to plug in a reasoner for this language.

In this paper, we introduce three different black-box approaches for computing
a boundary, and compare their performance on real-world ontologies. The first
approach uses an axiom pinpointing algorithm as black-box reasoner, whereas
the second one modifies the Hitting-Set-Tree-based black-box approach to axiom
pinpointing [I1J2T]. The third uses binary search and can only be applied if the
labeling lattice is a linear order. It can be seen as a generalization of the black-
box approach to reasoning in possibilistic Description Logics described in [16].
All the proofs omitted in this paper can be found in [2].

2 Basic Definitions and Results

To stay as general as possible, we do not fix a specific ontology language. We
just assume that ontologies are finite sets of azioms such that every subset of
an ontology is again an ontology. If 7’ is a subset of the ontology 7, then 7"
is called a sub-ontology of 7. The ontology language determines which sets of
axioms are admissible as ontologies. For a fixed ontology language, a monotone
consequence relation = is a binary relation between ontologies 7 of this language
and consequences a such that, for every ontology 7, we have that 7/ C 7 and
7' E aimply 7 | a. If T E «, then we say that « follows from 7 and that
T entails «. For instance, given a Description Logic £ (e.g., the DL SHZN (D)
underlying OWL DL), an ontology is an £-TBox, i.e., a finite set of general
concept inclusion axioms (GCIs) of the form C' C D for L-concept descriptions
C, D. As consequences we can, e.g., consider subsumption relationships A C B
for concept names A, B.

We consider a lattice (L, <) and respectively denote by @, ¢ and Q¢ ¥
the join (least upper bound) and meet (greatest lower bound) of the finite set
S C L. A labeled ontology with labeling lattice (L, <) is an ontology 7 together
with a labeling function lab that assigns a label lab(t) € L to every element ¢ of
TH We denote with Ljap the set of all labels occurring in the labeled ontology 7,
i.e., Liap := {lab(t) | t € T}. Every element of the labeling lattice ¢ € L defines
a sub-ontology 7, that contains the axioms of 7 that are labeled with elements
greater than or equal to £:

Ty = {t € T | lab(t) > £}.

Conversely, every sub-ontology & C 7 defines an element As € L, called the label
of §: A\s := @5 lab(t). The following lemma states some simple relationships
between these two notions.

Lemma 1. Forall{ € L, S C T, it holds that £ < \7,, S C Tyg and Ty = /]3\7‘['

4 An example of a labeled ontology is given in Example [ in Section
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Notice that, if a consequence « follows from 7, for some ¢ € L, it must also
follow from 7y for every ¢’ < ¢, since then 7, C 7. A maximal element of L
that still entails the consequence will be called a margin for this consequence.

Definition 1 (Margin). Let « be a consequence that follows from the ontology
T. The label p € L is called a (T,c)-margin if 7, = «, and for every ¢ with
p < € we have Tp = o

If 7 and « are clear from the context, we usually ignore the prefix (7, «) and
call p simply a margin. The following lemma shows three basic properties of the
set of margins that will be useful throughout this paper.

Lemma 2. Let a be a consequence that follows from the ontology T. We have:

1. If p is a margin, then = Az, ;
2. if Ty E «, then there is a margin p such that € < u;
3. there are at most 27! margins for a.

If we know that p is a margin for the consequence «, then we know whether «
follows from 7, for all £ € L that are comparable with pu: if £ < p, then o follows
from 7y, and if £ > p, then « does not follow from 7,. However, the fact that p is
a margin gives us no information regarding elements that are incomparable with
. In order to obtain a full picture of when the consequence « follows from 7, for
an arbitrary element of [, we can try to strengthen the notion of margin to that
of an element v of L that accurately divides the lattice into those elements whose
associated sub-ontology entails o and those for which this is not the case, i.e., v
should satisfy the following: for every ¢ € L, 7, |= «viff £ < v. Unfortunately, such
an element need not always exist, as demonstrated by the following example.

Ezample 1. Consider the distributive lattice (S, <4) having the four elements
S4 =10, a1, az,1}, where 0 and 1 are the least and greatest elements, respectively,
and a1, as are incomparable w.r.t. <4. Let 7 be the set formed by the axioms ax;
and axs, which are labeled by a; and as, respectively, and let « be a consequence
such that, for every S C 7, we have § = o iff |S| > 1. It is easy to see
that there is no element v € S; that satisfies the condition described above.
Indeed, if we choose v = 0 or v = a1, then as violates the condition, as as £ v,
but 7,, = {axe} | a. Accordingly, if we choose v = ag, then a; violates the
condition. Finally, if v = 1 is chosen, then 1 itself violates the condition: 1 < v,
but 73 = 0 }~ a.

It is nonetheless possible to find an element that satisfies a restricted version of
the condition, where we do not impose that the property must hold for every
element of the labeling lattice, but only for those elements that are join prime
relative to the labels of the axioms in the ontology.

Definition 2 (Join prime). Let (L, <) be a lattice. Given a finite set K C L,
let K == {@er L | M C K} denote the closure of K under the meet operator.
An element £ € L is called join prime relative to K if, for every K' C Kg,
< @Pycx k implies that there is an ko € K' such that £ < k.
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In Example [II all lattice elements with the exception of 1 are join prime
relative to {a1,az}.

Definition 3 (Boundary). Let T be an ontology and o a consequence. An
element v € L is called a (T, «)-boundary if for every element £ € L that is join
prime relative to Ly it holds that ¢ < v iff T, E a.

As with margins, if 7 and « are clear from the context, we will simply call such
a v a boundary. In Example [I] the element 1 is a boundary. Indeed, every join
prime element ¢ relative to {a1, a2} (i.e., every element of L except for 1) is
such that £ < 1 and 7y = «. From a practical point of view, our definition of
a boundary has the following implication: we must enforce that user labels are
always join prime relative to the set L, of all labels occurring in the ontology.

3 Computing a Boundary

In this section, we describe three black-box approaches for computing a bound-
ary. The first two approaches are based on Lemma [3 below, and the third one, a
modification of binary search, can be used if the labeling lattice is a linear order.

Lemma 3. Let p1, ...,y be all (T,a)-margins. Then @, p; is a boundary.

By Lemmal[2] a consequence always has finitely many margins, and thus Lemma[3]
shows that a boundary always exists. Note, however, that a consequence may
have boundaries different from the one of Lemma Bl To identify the particular
boundary of Lemma [Bl we will call it the margin-based boundary.

3.1 Using Full Axiom Pinpointing

From Lemma [3] we know that the set of all margins yields sufficient information
for computing a boundary. The question is now how to compute this set. In this
subsection, we show that all margins (and thus the margin-based boundary) can
be computed through aziom pinpointing. Axiom-pinpointing refers to the task of
computing MinAs [6]: minimal (w.r.t. set inclusion) sub-ontologies from which
a consequence « still follows. More formally, S C 7 is called a MinA for 7 and
aif S E a,and 8’ £ a for every 8’ C S. The following lemma shows that every
margin can be obtained from some MinA.

Lemma 4. For every margin u for a there is a MinA S such that p = As.

Notice that this lemma does not imply that the label of any MinA S corresponds
to a margin. However, as the consequence follows from every MinA, point [2] of
Lemma 2] shows that As < u for some margin p. The following theorem is an
immediate consequence of this fact together with Lemma [3] and Lemma [

Theorem 1. If Si,...,S, are all MinAs for T and «, then @,_, As, is the
margin-based boundary for «.
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Thus, to compute a boundary, it is sufficient to compute all MinAs. Several
methods exist for computing the set of all MinAs, either directly [T9TII7] or
through a so-called pinpointing formula [6/45], which is a monotone Boolean
formula encoding all the MinAs. The main advantage of using the pinpointing-
based approach for computing a boundary is that one can simply use existing
implementations for computing all MinAs, such as the ones offered by the on-
tology editor Protégé 4 and the CEL systemﬁ

3.2 Label-Optimized Axiom Pinpointing

From Lemma [ we know that every margin is of the form As for some MinA
S. In the previous subsection we have used this fact to compute a boundary by
first obtaining the MinAs and then computing their labels. This process can be
optimized if we directly compute the labels of the MinAs, without necessarily
computing the actual MinAs. Additionally, not all the labels of MinAs are neces-
sary, but only the maximal ones. We present here a black-box algorithm that uses
the labels of the axioms to find the boundary in an optimized way. Our algorithm
is a variant of the Hitting-Set-Tree-based [I7] method (HST approach) for axiom
pinpointing [IT21]. First, we briefly describe the HST approach for computing
all MinAs, which will serve as a starting point for our modified version.

The HST algorithm computes one MinA at a time while building a tree that
expresses the distinct possibilities to be explored in the search of further MinAs.
It first computes an arbitrary MinA Sy for 7', which is used to label the root of
the tree. Then, for every axiom ¢ in Sp, a successor node is created. If T \ {t}
does not entail the consequence, then this node is a dead end. Otherwise, 7\ {t}
still entails the consequence. In this case, a MinA &; for T \ {¢t} is computed
and used to label the node. The MinA S; for T \ {¢} obtained this way is also
a MinA of 7, and it is guaranteed to be distinct from Sy since ¢ ¢ S;. Then,
for each axiom s in &7, a new successor is created, and treated in the same way
as the successors of the root node, i.e., it is checked whether 7 \ {¢, s} still has
the consequence, etc. This process obviously terminates, and the end result is a
tree, where each node that is not a dead end is labeled with a MinA, and every
MinA appears as the label of at least one node of the tree (see [I1I21]).

An important ingredient of the HST algorithm is a procedure that computes
a single MinA from an ontology. Such a procedure can, for example, be obtained
by going through the axioms of the ontology in an arbitrary order, and removing
redundant axioms, i.e., ones such that the ontology obtained by removing this
axiom from the current sub-ontology still entails the consequence (see [6] for a
description of this and of a more sophisticated logarithmic procedure). As said
before, in our modified HST algorithm, we are now not interested in actually
computing a MinA, but only its label. This allows us to remove all axioms having
a “redundant” label rather than a single axiom. Algorithm [ describes a black-
box method for computing As for some MinA S that is based on this idea. In

® http://protege.stanford.edu/
5 http://code.google.com/p/cel/
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Algorithm 1. Compute a minimal label set of one MinA.

Procedure min-lab(7, &)
Input: 7: ontology; a: consequence
Output: M C L: minimal label set for a MinA
1: if 7 |~ a then
2 return no MinA
3:8:=T
4: ML = @
5: for every k € Li,», do
6: if ®l€MLl £ k then
7 if S— k= a then
8 S=8—-k
9 else
0 My = (M \{l| k<l})U{k}
1: return My,

fact, the algorithm computes a minimal label set of a MinA S, a notion that will
also be useful when describing our variant of the HST algorithm.

Definition 4 (Minimal label set). Let S be a MinA for a.. A set K C {lab(t) |
t € S} is called a minimal label set of S if distinct elements of K are incompa-
rable and A\s = @ ycyc -

Algorithm [[lremoves all the labels that do not contribute to a minimal label set.
If 7 is an ontology and ¢ € L, then the expression 7 — ¢ appearing at Line [
denotes the sub-ontology 7 — ¢ := {t € T | lab(¢) # ¢}. If, after removing all the
axioms labeled with k, the consequence still follows, then there is a MinA none
of whose axioms is labeled with k. In particular, this MinA has a minimal label
set not containing k; thus all the axioms labeled with k can be removed in our
search for a minimal label set. If the axioms labeled with k cannot be removed,
then all MinAs of the current sub-ontology need an axiom labeled with k, and
hence k is stored in the set Mj,. This set is used to avoid useless consequence
tests: if a label is greater than or equal to (X),. a1, Us then the presence or absence
of axioms with this label will not influence the final result, which will be given
by the infimum of M,; hence, there is no need to apply the (possibly complex)
decision procedure for the consequence relation.

Theorem 2. Let T and « be such that T |= a. There is a MinA Sy for a such
that Algorithm [ outputs a minimal label set of Sp.

Once the label of a MinA has been found, we can compute new MinA labels
by a successive deletion of axioms from the ontology using the HST approach.
Suppose that we have computed a minimal label set Mg, and that £ € M. If we
remove all the axioms in the ontology labeled with ¢, and compute a new minimal
label set M7 of a MinA of this sub-ontology, then M; does not contain ¢, and
thus My # M. By iterating this procedure, we could compute all minimal label
sets, and hence the labels of all MinAs. However, since our goal is to compute
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Algorithm 2. Hitting set tree (HST) algorithm for computing the boundary

Procedure hst-boundary(7, «)
Input: 7: ontology; a: consequence
Output: boundary v for «

: Global : C,H := 0; v
M := min-lab(7T, «)

: C:={M}
V= Qe b

: for each label £ € M do
expand-hst(T¢¢, o, {£})
return v

Procedure expand-hst(7, «, H)
Input: 7: ontology; «: consequence; H: list of lattice elements
Side effects: modifications to C, H and v

1: if there exists some H' € H such that {h € H' | h £ v} C H or

H’ contains a prefix-path P with {h € P | h £ v} = H then

2:  return (early path termination <)
3: if there exists some M € C such that for all { € M, h € H, £ £ h and { £ v then
4@ M =M (MinLab reuse)
5: else
6.

7

8

I S ol e

;M = min-lab(7%,, a)
. if T4, = a then
: C:=Cu{M’}
9 vi=O{, Qper £}
10:  for each label £ € M’ do

11: expand-hst(T¢¢, o, H U {{})
12: else
13: H:=HU{H} (normal termination ©®)

the supremum of these labels, the algorithm can be optimized by avoiding the
computation of MinAs whose labels will have no impact on the final result. Based
on this we can actually do better than just removing the axioms with label /:
instead, all axioms with labels < ¢ can be removed. For an element ¢ € L and
an ontology 7', 74, denotes the sub-ontology obtained from 7 by removing all
axioms whose labels are < £. Now, assume that we have computed the minimal
label set Mg, and that M; # Mg is the minimal label set of the MinA S;. For
all £ € My, if §; is not contained in T¢y, then S; contains an axiom with label
< £. Consequently, &), v, ™ = As; < &, M and thus M; need not be
computed. Algorithm [2] describes our method for computing the boundary using
a variant of the HST algorithm that is based on this idea.

In the procedure hst-boundary, three global variables are declared: C and
H, initialized with (), and v. The variable C stores all the minimal label sets
computed so far, while each element of H is a set of labels such that, when all
the axioms with a label less than or equal to any label from the set are removed
from the ontology, the consequence does not follow anymore; the variable v stores
the supremum of the labels of all the elements in C and ultimately corresponds
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to the boundary that the method computes. The algorithm starts by computing
a first minimal label set M, which is used to label the root of a tree. For each
element of M, a branch is created by calling the procedure expand-hst.

The procedure expand-hst implements the ideas of HST construction for pin-
pointing [ITU21] with additional optimizations that help reduce the search space
as well as the number of calls to min-lab. First notice that each M € C is a min-
imal label set, and hence the infimum of its elements corresponds to the label of
some MinA for a. Thus, v is the supremum of the labels of a set of MinAs for
«. If this is not yet the boundary, then there must exist another MinA S whose
label is not less than or equal to v. This in particular means that no element of
S may have a label less than or equal to v, as the label of § is the infimum of
the labels of the axioms in it. When searching for this new MinA we can then
exclude all axioms having a label < v, as done in Line [(] of expand-hst. Every
time we expand a node, we extend the set H, which stores the labels that have
been removed on the path in the tree to reach the current node. If we reach nor-
mal termination, it means that the consequence does not follow anymore from
the reduced ontology. Thus, any H stored in H is such that, if all the axioms
having a label less than or equal to an element in H are removed from 7, then
a does not follow anymore. Lines [I] to ] of expand-hst are used to reduce the
number of calls to the subroutine min-lab and the total search space. We describe
them now in more detail. The first optimization, early path termination, prunes
the tree once we know that no new information can be obtained from further
expansion. There are two conditions that trigger this optimization. The first one
tries to decide whether Ty, = o without executing the decision procedure. As
said before, we know that for each H' € H, if all labels less than or equal to any
in H' are removed, then the consequence does not follow. Hence, if the current
list of removal labels H contains a set H' € H we know that enough labels have
been removed to make sure that the consequence does not follow. It is actually
enough to test whether {h € H' | h € v} C H since the consequence test we
need to perform is whether 7y, = «. The second condition for early path ter-
mination asks for a prefix-path P of H' such that P = H. If we consider H’
as a list of elements, then a prefix-path is obtained by removing a final portion
of this list. The idea is that, if at some point we have noticed that we have
removed the same axioms as in a previous portion of the search, we know that
all possibilities that arise from that search have already been tested before, and
hence it is unnecessary to repeat the work. Hence we can prune the tree here.

The second optimization avoids a call to min-lab by reusing a previously com-
puted minimal label set. Notice that our only requirement on min-lab that it
produces a minimal label set. Hence, any minimal label set for the ontology ob-
tained after removing all labels less than or equal to any h € H or to v would
work. The MinLab reuse optimization checks whether there is such a previously
computed minimal label set. If this is the case, it uses this set instead of com-
puting a new one by calling min-lab.

Theorem 3. Let 7 and « be such that T = «. Then Algorithm[d computes the
margin-based boundary of a.
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Fig. 1. A lattice Fig. 2. An expansion of the HST method

A proof of this theorem can be found in [2]. Here, we just illustrate how it works
by a small example.

Ezample 2. Consider the lattice in Figure[ll, and let 7 be the (Description Logic)
ontology consisting of the following five axioms:

t1: AC P NQy, ty: P C PNQe, t3: P> C B,
ts: Q1 E PMNQo, ts: Q2 C B,

where each axiom ¢; is labeled with lab(¢;) = ¢;. There are four MinAs for the
subsumption relation A C B w.r.t. 7, namely {¢,ta,t3}, {t1,t2, 5}, {t1, t3,t4},
and {t1,t4,t5}. All the elements of the labeling lattice except ¢; and ¢35 are
join prime relative to Lj,,. Figure [2] shows a possible run of the hst-boundary
algorithm. The algorithm first calls the routine min-lab(7, A C B). Consider
that the for loop of min-lab is executed using the labels ¢4, ..., ¢5 in that order.
Thus, we try first to remove t; labeled with ¢;. We see that 7 — ¢; £ A C B;
hence t; is not removed from 7, and M, is updated to My = {¢1}. We then see
that 7 — {3 = A C B, and thus s is removed from 7. Again, 7 — {3 = AC B,
so t3 is removed from 7. At this point, 7 = {t1,t4,t5}. We test then whether
T — /4y = A C B and receive a negative answer; thus, ¢4 is added to Mp;
additionally, since ¢4 < ¢7, the latter is removed from Mj,. Finally, T — 5 [~
A C B, and so we obtain My, = {4, 05} as an output of min-lab.

The minimal label set {4, ¢5}, is used as the root node ng, setting the value
of v =44 ® 5 = £y. We then create the first branch on the left by removing all
the axioms with a label < ¢4, which is only ¢4, and computing a new minimal
label set. Assume, for the sake of the example, that min-lab returns the minimal
label set {¢2,¢3}, and v is accordingly changed to £4. When we expand the tree
from this node, by removing all the axioms below ¢y (left branch) or ¢35 (right
branch), the subsumption relation A C B does not follow any more, and hence
we have a normal termination, adding the sets {4, 2} and {l4,¢3} to H. We
then create the second branch from the root, by removing the elements below /5.
We see that the previously computed minimal axiom set of node n; works also
as a minimal axiom set in this case, and hence it can be reused (MinLab reuse),
represented as an underlined set. The algorithm continues now by calling expand-
hst(Z7gs,, A T B,{ls5,{2}). At this point, we detect that there is H' = {{4, (5}
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Algorithm 3. Compute a boundary by binary search.
Input: 7: ontology; a: consequence
Output: v: (7, «a)-boundary

1: if 7 |~ a then

2:  return no boundary

3: 4= Olab; h:= 1Iab
4: while l < h do
5:  set m,£ < m < h such that §(¢,m) — d(m,h) < 1.
6: if 7, = « then
7 l:=m
8 else
9 h := pred(m)

0: return v:=/

satisfying the first condition of early path termination (recall that v = ¢), and
hence the expansion of that branch at that point. Analogously, we obtain an
early path termination on the second expansion branch of the node n4. The
algorithm then outputs v = ¢4, which can be easily verified to be a boundary.

3.3 Binary Search for Linear Ordering

In this subsection, we assume that the labeling lattice (L, <) is a linear order,
i.e., for any two elements ¢1, ¢ of L we have {1 < {5 or {5 < /5.

Lemma 5. Let 7 and « be such that T |= «. Then the unique boundary of « is
the mazimal element (v of Liap with 7, = «.

A direct way for computing the boundary in this restricted setting thus consists
of testing, for every element in £ € Ly,p, in order (either increasing or decreasing)
whether 7y = « until the desired maximal element is found. This process requires
in the worst case n := |Ljp| iterations. This can be improved using binary
search, which requires a logarithmic number of steps measured in n. Algorithm [3]
describes the binary search algorithm. In the description of the algorithm, the
following abbreviations have been used: 0, and 1,p represent the minimal and
the maximal elements of Liap, respectively; for €1 < fo € Lyap, 6(¢1,42) := |{¢' €
Liap | 61 < ¢/ < ly}| is the distance function in Ljp and for a given £ € Ly,
pred(¢) is the maximal element ¢’ € Ly, such that ¢/ < £.

The variables £ and h are used to keep track of the relevant search space.
At every iteration of the while loop, the boundary is between £ and h. At the
beginning these values are set to the minimum and maximum of L, and are
later modified as follows: we first find the middle element m of the search space;
i.e., an element whose distance to ¢ differs by at most one from the distance to
h. We then test whether 7,,, | a. If that is the case, we know that the boundary
must be larger or equal to m, and hence the lower bound ¢ is updated to the
value of m. Otherwise, we know that the boundary is strictly smaller than m as
m itself cannot be one; hence, the higher bound h is updated to the maximal
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element of Ly, that is smaller than m : pred(m). This process terminates when
the search space has been reduced to a single point, which must be the boundary.

4 Empirical Evaluation

4.1 Test Data and Test Environment

We test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We im-
plemented all approaches in Java and used Java 1.6, CEL 1.0, Pellet 2.0.0-rc5
and OWL API trunk revision 1150. The boundary computation with full ax-
iom pinpointing (FP in the following) uses log-extract-mina() (Alg. 2 from [7],
which is identical to Alg. 8 from [21]) and the HST based hst-extract-all-minas()
(Alg. 9 from [21I]). The set of extracted MinAs is then used to calculate the
label of the consequence. We break after 10 found MinAs in order to limit the
runtime, so there might be non-final label results. The boundary computation
with label-optimized axiom pinpointing (LP in the following) with min-lab() and
hst-boundary() are implementations of Alg. 1 and Alg. 2 of the present paper.
The boundary computation with binary search for linear ordering (BS in the
following) implements Alg. 3 of the present paper.

Although we focus on comparing the efficiency of the presented algorithms,
and not on practical applications of these algorithms, we have tried to use inputs
that are closely related to ones encountered in applications. The two labeling
lattices (Lq4, <4) and (L;, <;) are similar to ones encountered in real-world appli-
cations. The labeling lattice (L4, <4) was already introduced in Fig. [[l Lattices
of this structure (where the elements correspond to hierarchically organized user
roles) can be obtained from a real-world access matrix with the methodology
presented in [§]. The set of elements of L, that are allowed to represent user
roles if all elements of the lattice can be used as axiom labels are the elements
that are join prime relative to the whole lattice, i.e., £y, {2, {4, {5. The labeling
lattice (L;, <;) is a linear order with 6 elements L; = Lq = {lo,...,{5} with
< ={ln,ln+1) | ln,lnt1 € Ly A0 < n <5}, which could represent an order of
trust values as in [I8] or dates from a revision history.

We used the two ontologies OSNMEP and OFUNCT with different expressivity
and types of consequences for our experiments. The Systematized Nomenclature
of Medicine, Clinical Terms (SNOMED CT) is a comprehensive medical and clin-
ical ontology which is built using the Description Logic (DL) ££+. Our version
OSNOMED s the January /2005 release of the DL version, which contains 379,691
concept names, 62 object property names, and 379,704 axioms. Since more than
five million subsumptions are consequences of OSNMEP | testing all of them was
not feasible and we used the same sample subset as described in [7], i.e., we
sampled 0.5% of all concepts in each top-level category of OSNM®P_ For each
sampled concept A, all positive subsumptions A Cpswouss B with A as subsumee
were considered. Overall, this yielded 27,477 positive subsumptions. Following
the ideas of [7], we precomputed the reachability-based module for each sampled
concept A with CEL and stored these modules. This module for A was then used
as the start ontology when considering subsumptions with subsumee A.
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Table 1. Emprical results of FP and LP with lattice (Lq,<q) on a sampled set of
21,001 subsumptions from OSY°M*® and on a set of 307 consequences from OF Y °T with
less than 10 MinAs (time in ms)

fearly freuse #calls to #MinA faxioms lattice total
termination extract  (§MinLab) (flabels) per  operations labeling
MinA MinA time time

(MinLab) (MinLab)
an avg 81.05 9.06 26.43 2.07 5.40 0.25 143.55
a @ max 57,188.00 4,850.00 4,567.00 9.00 28.67 45.00 101,616.00
g stddev 874.34 82.00 90.48 1.86 3.80 0.86 1,754.03
(z a avg 0.01 0.00 2.76 1.03 1.73 0.35 4.29
O] max 2.00 1.00 6.00 3.00 3.00 57.00 70.00
stddev 0.13 0.02 0.59 0.16 0.56 0.98 3.62
avg 43.59 29.52 26.56 4.26 3.05 0.49 3,403.56
S & max 567.00 433.00 126.00 9.00 6.50 41.00 13,431.00
E stddev 92.16 64.04 30.90 2.84 1.01 2.38 3,254.25
[ avg 0.09 0.02 2.80 1.33 1.40 0.76 207.32
Q S max 2.00 1.00 7.00 4.00 3.00 22.00 1,295.00
stddev 0.34 0.13 0.90 0.54 0.48 1.56 87.29
OFvNeT is an OWL ontology for functional description of mechanical engi-

neering solutions presented in [I0]. It has 115 concept names, 47 object property
names, 16 data property names, 545 individual names, 3,176 axioms, and the
DL expressivity used in the ontology is SHOZN (D). Its 716 consequences are
12 subsumption and 704 instance relationships (class assertions).

To obtain labeled ontologies, axioms in both labeled ontologies received a ran-
dom label assignment of elements from L; = L4. As black-box subsumption and
instance reasoner we used the reasoner Pellet since it can deal with the expressiv-
ity of both ontologies. For the expressive DL, SHOZN (D) it uses a tableau-based
algorithm and for ££+ it uses an optimized classifier for the OWL 2 EL profile,
which is based on the algorithm described in [IJ.

4.2 Results

The results for OSYOM¥P and (L4, <4) are given in the upper part of Table [
LP computed all labels, but since we limit FP to <10 MinAs, only 21,001 sub-
sumptions have a final label, which is guaranteed to be equal to the boundary.
The 6,476 remaining subsumptions (31%) have a non-final label which might
be too low in the lattice since there might be further MinAs providing a higher
label. The overall labeling time for all 21,001 subsumptions with FP was 50.25
minutes, for LP 1.50 minutes which means that LP is about 34 times faster than
FP, but again this is only for the subset of subsumptions which were finished by
FP. An estimation for the time needed to label all of the more than 5 million
subsumptions in OSN°M*® with LP would be approximately 6 hours.

The final labels of FP and LP (i.e., the computed boundaries) were identical,
the non-final labels of FP were identical to the final labels of LP (i.e., the bound-
aries) in 6,376 of the 6,476 cases (98%), i.e., in most cases the missing MinAs
would not have changed the already computed label. Table 2] provides results
for the subsumptions with more than 10 MinAs: FP took 2.5 hours on this set
without final results (since it stopped after 10 MinAs), whereas LP took 0.6%
of that time and returned final results after 58 seconds. We started a test series
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Table 2. Emprical results of FP and LP with lattice (Lq4, <4) on a sampled set of 6,476
subsumptions from O%¥°™®® and on a set of 409 class assertions from OF"T with at
least 10 MinAs (time in ms)

fearly freuse fcalls to #MinA faxioms lattice total

termination extract  (fMinLab) (flabels) per  operations (non-final)

MinA MinA time labeling

(MinLab) (MinLab) time

. avg 432.11 42.25 126.54 10.20 16.38 0.30 1,378.66
El max 42,963.00 5,003.00 4,623.00 16.00 37.80 14.00  148,119.00
H stddev 1,125.06 121.15 186.33 0.49 5.00 0.54 3,493.02
. avg 0.04 0.00 3.12 1.06 2.05 0.32 8.88
o4 max 3.00 2.00 6.00 3.00 3.00 46.00 86.00
stddev 0.21 0.04 0.50 0.25 0.44 1.04 4.26

o avg 30.01 16.00 26.44 10.04 4.41 0.56 8,214.91
5 o max 760.00 511.00 411.00 11.00 6.50 3.00 25,148.00
z stddev 85.33 47.79 40.61 0.20 1.08 0.55 3,428.97
f avg 0.09 0.01 2.76 1.38 1.32 0.77 200.55
oY max 3.00 2.00 7.00 4.00 2.00 16.00 596.00
stddev 0.33 0.12 0.91 0.64 0.43 1.40 61.11

Table 3. Emprical results of LP and BS on a sampled set of 27,477 subsumptions in
OSYOMEP / a]] 716 consequences of OFVN°T with lattice (L;, <;) (time in ms)

LP BS
fearly fireuse fcalls to #MinLab #labels lattice total iterations total
termina- extract per opera- labeling labeling
tion MinLab MinLab tions time time

time

avg 0.03 0.00 2.24 1.03 1.23 0.37 4.75 2.41 2.81
()SNOMED max 1.00 0.00 5.00 3.00 2.00 329.00 330.00 3.00 75.00
stddev 0.18 0.00 0.45 0.19 0.42 4.85 6.37 0.49 2.94
avg 0.09 0.00 2.50 1.27 1.24 0.82 186.98 2.55 95.80
oFuner max 1.00 0.00 5.00 3.00 2.00 62.00 1147.00 3.00 877.00
stddev 0.28 0.00 0.72 0.49 0.40 2.74 69.55 0.50 45.44

limiting runs of FP to <30MinAs, which did not terminate after 90 hours, with
1,572 labels successfully computed and 30 subsumptions skipped since they had
>30MinAs. Interestingly, in both consequence sets, LP can rarely take advantage
of the optimizations early termination and MinA reuse, which might be due to
the simple structure of the lattice.

For OFUN°T the comparison between FP and LP is given in the lower part
of Tables[Il and 2l Again, the computation of FP was restricted to <10 MinAs.
This time, only 363 out of 409 (88%) non-final labels of FP were equal to the
final labels of LP (i.e., the boundary). Although the ontology is quite small, LP
again behaves much better than FP. The reason could be that in this ontology
consequences frequently have a large set of MinAs. From Tables [Il and B one
can see that LP requires at most three MinLabs for OSN°M®P at most four for
OFvNeT and usually just one MinLab whereas FP usually requires more MinAs.

Table Bl provides results for LP vs. BS with the total order (L;, <;) as labeling
lattice. For OSNoMEP TP takes 130.4 and BS takes 77.1 seconds to label all 27,477
subsumptions. For OFUN°T | LP takes 133.9 and BS takes 68.6 seconds to label
all 716 consequences. So BS is about twice as fast as LP. Interestingly, labeling
all consequences of OFVN°T and OSYOMEP takes roughly the same time, perhaps
due to a tradeoff between ontology size and expressivity.
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5 Conclusion

We have considered a scenario where ontology axioms are labeled and user la-
bels determine views on the ontology, i.e., sub-ontologies that are obtained by
comparing the user label with the axiom labels. Our approach can be used for
large-scale ontologies since, on the one hand, it allows to precompute conse-
quences without having to do do this separately for all possible views: once we
have computed a boundary for the consequence, checking whether this conse-
quence entailed by a sub-ontology is reduced to a simple label comparison. On
the other hand, the fact that we employ a black-box approach for computing
the boundary allows us to use existing highly-optimzed reasoners, rather than
having to implement a new reasoner from scratch.

Our general framework allows to use any restriction criterion that can be
represented using a lattice, such as user roles, levels of trust, granularity, or
degrees of uncertainty. In the presence of access restrictions, each user label de-
fines a sub-ontology containing the axioms visible to this user. In the presence
of trust restrictions, the user label specifies the trust level required for the on-
tology axiom. This supports scenarios with axioms from different sources, like
company-internal with high trust level and public Web with low trust level. In
the presence of uncertainty, e.g. in possibilistic reasoning, each axiom has an
associated certainty degree in the interval [0,1]. The user label then specifies
the certainty degree required for the axioms and the consequences. Similarly,
granularity restrictions (i.e., on how much details the ontology should provide
for the user) can be expressed by a total order.

Our experiments have shown that this framework can be applied to large
ontologies. From the two black-box algorithms that can deal with arbitrary lat-
tices, the Full Axiom Pinpointing approach is clearly outperformed by the Label-
Optimized Axiom Pinpointing approach. For the special case where the labeling
lattice is a total order, the latter is again outperformed by the Binary Search
approach.
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