

Lecture Notes in Computer Science 5823
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Abraham Bernstein David R. Karger
Tom Heath Lee Feigenbaum Diana Maynard
Enrico Motta Krishnaprasad Thirunarayan (Eds.)

The Semantic Web -
ISWC 2009
8th International Semantic Web Conference, ISWC 2009
Chantilly, VA, USA, October 25-29, 2009
Proceedings

13

Volume Editors

Abraham Bernstein
Universität Zürich, 8050 Zurich, Switzerland
E-mail: bernstein@ifi.uzh.ch

David R. Karger
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail: karger@mit.edu

Tom Heath
Talis Information Ltd., Birmingham Business Park, B37 7YB, UK
E-mail: Tom.Heath@talis.com

Lee Feigenbaum
Cambridge Semantics Inc., Cambridge, MA 02142, USA
E-mail: lee@cambridgesemantics.com

Diana Maynard
University of Sheffield, Sheffield, S1 4DP, UK
E-mail: diana@dcs.shef.ac.uk

Enrico Motta
The Open University, Milton Keynes, MK7 6AA, UK
E-mail: e.motta@open.ac.uk

Krishnaprasad Thirunarayan
Wright State University, Dayton, OH 45435, USA
E-mail: t.k.prasad@wright.edu

Library of Congress Control Number: 2009935764

CR Subject Classification (1998): H.3.5, I.2.4, H.2.4, H.5.1, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-04929-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04929-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12774173 06/3180 5 4 3 2 1 0

Preface

As the Web continues to grow, increasing amounts of data are being made
available for human and machine consumption. This emerging Semantic Web
is rapidly entering the mainstream and, as a result, a variety of new solutions
for searching, aggregating and the intelligent delivery of information are being
produced, both in research and commercial settings. Several new challenges arise
from this context, both from a technical and human–computer interaction per-
spective – e.g., as issues to do with the scalability and usability of Semantic Web
solutions become particularly important.

The International Semantic Web Conference (ISWC) is the major interna-
tional forum where the latest research results and technical innovations on all
aspects of the Semantic Web are presented. ISWC brings together researchers,
practitioners, and users from the areas of artificial intelligence, databases, social
networks, distributed computing, Web engineering, information systems, natural
language processing, soft computing, and human–computer interaction to dis-
cuss the major challenges and proposed solutions, success stories and failures,
as well the visions that can advance the field.

This volume contains the main proceedings of ISWC 2009, which we are ex-
cited to offer to the growing community of researchers and practitioners of the
Semantic Web. We received a tremendous response to our call for research pa-
pers from a truly international community of researchers and practitioners from
all over the world, who submitted 360 abstracts and 250 research papers. Each
paper received more than 3 (some up to 5) reviews as well as a recommendation
by one of the Vice Chairs, who read the papers under investigation as well as
the comments made by Program Committee members. After the first round of
reviews, authors had the opportunity to submit a rebuttal, leading to further
discussions among the reviewers and — where needed — to additional reviews.
All papers, where at least one of the reviewers or Vice Chairs argued for accep-
tance, were discussed in a Program Committee meeting held simultaneously in
Zurich, Switzerland and Palo Alto, USA, which could be also attended through
video conferencing.

As the Semantic Web develops, we found that a variety of subjects of interest
have emerged. This year the keywords of the accepted papers were distributed
as follows (frequency in parentheses): Interacting with Semantic Web data (3);
Semantic Web content creation and annotation (2); mashing up Semantic Web
data and processes (2); Semantic Web applications to Web-2.0 sites (1); In-
formation visualization (1); beyond description logic (3); lightweight semantics
(4); ontology modeling, reuse, extraction, and evolution (9); ontology mapping,
merging, and alignment (3); searching and ranking ontologies (4); ontology eval-
uation (2); applications with clear lessons learned or evaluations (1); Semantic
Web for large-scale applications (4); Semantic Web for multimedia, sensors, and

VI Preface

situational awareness (1); Semantic Web technologies for P2P, services, agents,
grids and middleware (4); Semantic Web technologies for software and systems
engineering (3); mobile Semantic Web (1); Semantic Web technologies for life
sciences and healthcare (3); languages, tools and methodologies for representing
and managing Semantic Web data (6); database, IR and AI technologies for the
Semantic Web (7); search, query, integration, and analysis on the Semantic Web
(13); robust and scalable knowledge management and reasoning on the Web (8);
machine learning and information extraction for the Semantic Web (3); cleaning,
assurance, trust, and provenance of Semantic Web data, services and processes
(3); principles & applications of very large semantic databases (4); social net-
works and processes on the Semantic Web (2); Semantic Web technologies for
collaboration and cooperation (2); representing and reasoning about trust, pri-
vacy, and security (2); reasoning (10); Semantic Web for desktops or personal
information management (1); and Semantic Web technology applications in other
areas (1).

Overall, as the field continues to mature, the ISWC Program Committee
members have adopted high expectations as to what constitutes high-quality Se-
mantic Web research and what a paper must deliver in terms of theory, practice,
and evaluation in order to be accepted in the research track. Correspondingly,
the Program Committee accepted only 43 papers, 17.2% of the submissions. Four
submissions were accepted for the in-use track after further discussion with its
track chairs.

The Semantic Web In-Use Track received 59 submissions, more than double
the submissions in previous years. Each paper was reviewed by three members
of the In-Use Track Program Committee. We accepted 12 papers, along with 4
papers referred from the Research Track. The large number of submissions this
year demonstrated the increasingly diverse breadth of applications which take
advantage of Semantic Web technologies. In particular, many papers highlighted
the increasing importance of Linked Data, while others focused on ontology
engineering, vocabulary mapping, logic and rules, semantic search, and semantic
query. The disciplines in which Semantic Web technologies are used are wide-
ranging as well, covering education, social networking, supply chains, customer
data management, e-discovery, clinical systems integration, geospatial features,
and much more.

For the fifth consecutive year, ISWC also contained a Doctoral Consortium
track for PhD students within the Semantic Web community, giving them the
opportunity not only to present their work but also to discuss in detail their re-
search topics and plans, and to receive extensive feedback from leading scientists
in the field, from both academia and industry. Out of 19 submissions, 7 were
accepted as full papers, and a further 6 were accepted for the poster session.
The standard of submissions this year was particularly high, and covered a wide
range of topics. Each student was assigned a mentor who led the discussions
following the presentation of the work, and provided detailed feedback and com-
ments, focusing on the PhD proposal itself and presentation style, as well as on
the actual work presented.

Preface VII

Another unique aspect of the International Semantic Web Conferences is the
Semantic Web Challenge. In this competition practitioners and scientists are
encouraged to showcase useful and leading-edge applications of Semantic Web
technology. This year the Semantic Web Challenge was organized by Chris Bizer
and Peter Mika. For the second time it was extended to include the Billion Triple
Challenge. Here the focus was not so much on having a sleek and handsome ap-
plication, but rather on managing a large heterogeneous data set made available
by the challenge organizers.

The ISWC program was further enriched by Keynote Talks given by leading
figures from both the academic and business world. Specifically, Pat Hayes, a
Senior Research Scientist at the Institute for Human and Machine Cognition dis-
cussed the fundamental implications for logical reasoning, which derive from the
emergence of the linked data cloud; Nova Spivack, CEO and Founder of Radar
Networks, talked about the paradigm shift caused by the emergence of semantic
approaches to search; and finally Tom Mitchell, Fredkin Professor of Artificial
Intelligence and Machine Learning at Carnegie Mellon University, addressed the
issue of large-scale data generation from unstructured sources.

As in previous ISWC editions, the conference program also included an ex-
tensive Tutorial Program, which was co-ordinated by Marta Sabou and Jennifer
Golbeck and comprised 11 tutorials, and a Workshop Program, which was orga-
nized by Jeff Heflin and Philippe Cudré-Mauroux and consisted of 19 workshops.

We would also like to thank Harith Alani, Tania Tudorache and Oscar Cor-
cho for chairing an excellent Poster and Demo Session, and Matt Fisher and
John Callahan for co-ordinating the Industry Track, a forum for latest discus-
sions and demonstrations of semantic applications in the commercial world. The
Industry Track serves as a complement to the In Use Track and shows just how
far semantics are expanding through the enterprise field.

The conference also included a Lightning Talk session, where ISWC attendees
could at very short notice get five minutes of attention from the audience, to
report on anything they have done, plan to do, like or dislike about the Semantic
Web.

We are also much indebted to Krishnaprasad Thirunarayan, our Proceedings
Chair, who provided invaluable support in compiling the printed proceedings
and exhibited super-human patience in allowing the other Chairs to stretch
deadlines to the absolute limit. Many thanks also to Joel Sachs, our Fellowships
Chair and to Todd Schneider, Publicity Chair, both for their excellent handling
of their portfolios, as well as for their wider contribution to the collaborative
decision-making process within the Organizing Committee.

As has been the case for the past few years, ISWC 2009 also contributed
to the linked data cloud, by providing semantically characterized data about
aspects of the conference. This would not have been possible without the efforts
of our Metadata Chairs, Knud Möller and Richard Cyganiak.

We would like to give a special thank you to the Local Organization Chairs,
Mike Dean and Leo Obrst and their team from Washington DC, who did a
brilliant job in taking care of the local arrangements and ensuring that anything

VIII Preface

the Organizing Committee needed was promptly made available. In this context
we would also like to acknowledge the excellent contributions of Valerie Sumner
and Jimmy Ervin. We would also like to thank the generous contribution from
our sponsors and the fine work of the Sponsorship Chairs, Pete Pflugrath and
Fabio Ciravegna. Finally, we are also indebted to James Stewart from Precision
Conference Solutions for his prompt support with the conference system.

October 2009 Abraham Bernstein and David R. Karger
Program Committee Co-chairs, Research Track

Diana Maynard
Doctoral Consortium Chair

Lee Feigenbaum and Tom Heath
Program Committee Co-chairs, Semantic Web In Use Track

Enrico Motta
Conference Chair

Conference Organization

General Chair

Enrico Motta Open University

Program Chairs

Abraham Bernstein Universität Zürich
David R. Karger M.I.T.

Semantic Web In Use Chairs

Tom Heath Talis
Lee Feigenbaum Cambridge Semantics Inc.

Semantic Web Challenge Chairs

Peter Mika Yahoo! Research
Chris Bizer Free University of Berlin

Doctoral Consortium Chair

Diana Maynard University of Sheffield

Proceedings Chair

Krishnaprasad
Thirunarayan Wright State University

Local Chairs

Mike Dean BBN Technologies
Leo Obrst MITRE

Workshop Chairs

Jeff Heflin Lehigh University
Philippe Cudré-Mauroux M.I.T.

X Organization

Tutorial Chairs

Marta Sabou Open University
Jennifer Golbeck University of Maryland

Industry Track Chairs

Matt Fisher Progeny Systems
John Callahan Johns Hopkins University

Poster and Demos Chairs

Harith Alani Open University
Tania Tudorache Stanford University
Oscar Corcho Universidade Politecnica de Madrid

Sponsor Chairs

Pete Pflugrath BBN Technologies
Fabio Ciravegna University of Sheffield

Metadata Chairs

Knud Möller DERI, National University of Ireland, Galway
Richard Cyganiak DERI, National University of Ireland, Galway

Publicity Chair

Todd Schneider Raytheon

Fellowship Chair

Joel Sachs University of Maryland Baltimore County

Vice Chairs - Research Track

Ed Chi
Philipp Cimiano
Claudia d’Amato
Stefan Decker
Steven Drucker
Jérôme Euzenat
Jennifer Golbeck
Claudio Gutierrez

Siegfried Handschuh
David Huynh
Georg Lausen
Thomas Lukasiewicz
David Martin
Sheila McIlraith
Peter Mika
Natasha Noy

Organization XI

Bijan Parsia
M. C. Schraefel
Umberto Straccia

Heiner Stuckenschmidt
Valentina Tamma

Program Committee – Research Track

Mark Ackerman
Harith Alani
Paul André
Anupriya Ankolekar
Chutiporn Anutariya
Kemafor Anyanwu
Hassan Aı̈t-Kaci
Lora Aroyo
Medha Atre
Sören Auer
Jie Bao
Steve Battle
Michael Benedikt
Michael Bernstein
Eric Bier
Chris Bizer
Sebastian Blohm
Fernando Bobillo
Olivier Bodenreider
Kalina Bontcheva
Amancio Bouza
John Breslin
Christopher Brewster
Dan Brickley
Tom Briggs
Adriana Budura
Paul Buitelaar
Mark Burstein
Michael Cafarella
Andrea Cal
Diego Calvanese
Vinay Chaudhri
Mariano Consens
Olivier Corby
Oscar Corcho
Paulo Costa
Melanie Courtot
Isabel Cruz
Philippe Cudré-Mauroux

Bernardo Cuenca Grau
Richard Cyganiak
Mathieu d’Aquin
Carlos Damasio
Jérôme David
Brian Davis
David De Roure
Mike Dean
Thierry Declerck
Duane Degler
Klaas Dellschaft
Tommaso Di Noia
Li Ding
John Domingue
Mira Dontcheva
Michel Dumontier
Martin Dzbor
Thomas Eiter
Daniel Elenius
Robert H.P. Engels
Nicola Fanizzi
Cristina Feier
Pablo Fillottrani
Tim Finin
Sergio Flesca
Tim Furche
Fabien Gandon
Aldo Gangemi
Lise Getoor
Chiara Ghidini
Yolanda Gil
Birte Glimm
Carole Goble
Asunción Gómez-Pérez
Mark Greaves
Marko Grobelnik
Volker Haarslev
Peter Haase
Harry Halpin

XII Organization

Andreas Harth
Michael Hausenblas
Pat Hayes
Tom Heath
Jeff Heflin
Nathalie Henry Riche
Martin Hepp
Kaoru Hiramatsu
Pascal Hitzler
Matthew Horridge
Andreas Hotho
Jane Hunter
Carlos Hurtado
Eero Hyvönen
Giovambattista Ianni
Antoine Isaac
Leif Isaksen
Manfred Jaeger
Anthony Jameson
Vana Kalogeraki
Aditya Kalyanpur
Marcel Karnstedt
Jörg-Uwe Kietz
Sheila Kinsella
Matthias Klusch
Mitch Kokar
Yiannis Kompatsiaris
Jacek Kopecky
Spyros Kotoulas
Manolis Koubarakis
Sebastian Kruk
Markus Krötzsch
Mounia Lalmas
Patrick Lambrix
Kathryn Laskey
Ken Laskey
Ora Lassila
Faith Lawrence
Domenico Lembo
Nicola Leone
Holger Lewen
Jiwen Li
Francesca Alessandra Lisi
Gergely Lukacsy
Tiziana Margaria

Paolo Massa
Tara Matthews
Wolfgang May
Diana Maynard
Francis McCabe
Pankaj Mehra
Christian Meilicke
Eduardo Mena
Thomas Meyer
Sebastian Michel
Matthew Michelson
Maja Milicic
Malgorzata Mochol
Ralf Moeller
Leora Morgenstern
Boris Motik
Mark Musen
Knud Möller
Wolfgang Nejdl
Matthias Nickles
Mathias Niepert
John O’Donovan
Daniel Oberle
Georgios Paliouras
Jeff Pan
Alexandre Passant
Terry Payne
Adam Perer
Maria S. Perez
Charles Petrie
Antonio Picariello
Axel Polleres
Alun Preece
Wolfgang Prinz
Andrea Pugliese
Jorge Pérez
Guilin Qi
Azzurra Ragone
Gerald Reif
Vinny Reynolds
Andrea Rodriguez
Riccardo Rosati
Sebastian Rudolph
Lloyd Rutledge
Marta Sabou

Organization XIII

Matthias Samwald
Kai-Uwe Sattler
Simon Scerri
Sebastian Schaffert
Thomas Scharrenbach
Anne Schlicht
Stefan Schlobach
Michael Schmidt
Lars Schmidt-Thieme
Thomas Schneider
Guus Schreiber
Daniel Schwabe
Luciano Serafini
Amit Sheth
Pavel Shvaiko
Wolf Siberski
Elena Simperl
Michael Sintek
Evren Sirin
Sergej Sizov
Michael Smith
Daniel Alexander Smith
Shirin Sohrabi
Steffen Staab
Robert Stevens
V.S. Subrahmanian
Bongwon Suh
York Sure
Vojtech Svatek
Kerry Taylor
Herman ter Horst
VinhTuan Thai

Yannis Theoharis
Thanh Tran
Volker Tresp
Cassia Trojahn
Raphael Troncy
Tania Tudorache
Giovanni Tummarello
Anni-Yasmin Turhan
Victoria Uren
Alejandro Vaisman
Petko Valtchev
Ludger van Elst
Willem Robert van Hage
Frank van Harmelen
Jacco van Ossenbruggen
Kunal Verma
Tomas Vitvar
Denny Vrandecic
Johanna Völker
Holger Wache
Haofen Wang
Rob Warren
Fang Wei
Cathrin Weiss
Max L. Wilson
Katy Wolstencroft
Andreas Wombacher
Peter Wood
Yeliz Yesilada
Filip Zelezny
Cai-Nicolas Ziegler
Antoine Zimmermann

Program Committee – Semantic Web In Use

Harith Alani
Dean Allemang
Melli Annamalai
Phil Archer
Sören Auer
Michael Bergman
Mike Bevil
Chris Bizer
David Booth
Christopher Brewster

Sam Chapman
Huajun Chen
Kendall Clark
Chris Clarke
Christine Connors
Mathieu d’Aquin
John Davies
Leigh Dodds
Catherine Dolbear
Bob DuCharme

XIV Organization

Robert H.P. Engels
Mark Feblowitz
Paul Gearon
Hugh Glaser
John Goodwin
Mark Greaves
Siegfried Handschuh
Michael Hausenblas
William Hayes
Ivan Herman
David Huynh
Eero Hyvönen
Renato Iannella
Simon Johnston
Mitch Kokar
Mike Lang
Ora Lassila
Joanne Luciano
Dickson Lukose
Christopher Matheus
Brian McBride
Peter Mika

Knud Möller
Marco Neumann
Eric Neumann
Lyndon Nixon
Chimezie Ogbuji
Daniel Olmedilla
Jeff Pan
Valentina Presutti
Eric Prud’hommeaux
Yves Raimond
Gerald Reif
Dave Reynolds
Yuzhong Qu
Marta Sabou
Andy Seaborne
Kavitha Srinivas
Susie Stephens
Sam Tunnicliffe
Jan Wielemaker
Gregory Todd Williams
David Wood

Program Committee – Doctoral Consortium

Saartje Brockmans
Paul Buitelaar
Irene Celino
Philipp Cimiano
Emanuele Della Valle
Martin Dzbor
Adam Funk
Marko Grobelnik
Peter Haase
Siegfried Handschuh

Andreas Harth
Natasha Noy
Lyndon Nixon
Joel Sachs
Vojtech Svatech
Pavel Shvaiko
Elena Simperl
Holger Wache
Willem Robert van Hage

External Reviewers

Liaquat Ali
Carlo Allocca
Renzo Angles
Christian Becker
Ravish Bhagdev
Carlos Bobed
Amancio Bouza

Arina Britz
Markus Bundschus
Krisztian Buza
Gianluca Correndo
Minh Dao-Tran
Frithjof Dau
Tommaso di Noia

Organization XV

Laura Dragan
Renaud Delbru
Cristina Feier
Pablo Fillottrani
Haizhou Fu
Sidan Gao
Raul Garcia Castro
Zeno Gantner
Aurona Gerber
Jose Manuel Gomez-Pérez
Giovanni Grasso
Brynjar Gretarsson
Stephan Grimm
Gunnar Grimnes
Tudor Groza
Parisa Haghani
Benjamin Heitmann
Matthias Hert
Aidan Hogan
Yi Huang
Sergio Ilarri
Patrick Kapahnke
Szymon Klarman
Georgi Kobilarov
Stasinos Konstantopoulos
Thomas Krennwallner
Anastasia Krithara
Artus Krohn-Grimberghe
Vita Lanfranchi
Jens Lehmann
Gergely Lukacsy

Marco Manna
Giuseppe M. Mazzeo
Michael Martin
Michael Meier
Manuel Möller
Jakub Moskal
Stefan Nesbigall
Barry Norton
Kow Weng Onn
Rafael Peñaloza
Giuseppe Pirrò
Antonella Poggi
Jeff Pound
Jörg Pührer
Achim Rettinger
Francesco Ricca
Marco Ruzzi
Ratnesh Sahay
Manuel Salvadores
Florian Schmedding
Tan Yew Seng
Rob Shearer
Anastasios Skarlatidis
Giorgos Stoilos
Carmen Suarez de Figueroa Baonza
Christopher Tuot
Juergen Umbrich
Shenghui Wang
Gang Wu
Fouad Zablith
Mohammad Reza Beik Zadeh

XVI Organization

Sponsors

Platinum Sponsors Gold Sponsors Silver Sponsors

– BBN Technologies
– Lockheed Martin
– Raytheon

– Clark & Parsia
– LarKC
– ManTech Intl. Corp.
– NeOn
– Orbis Technologies

Inc.
– Progeny Systems
– SRI International
– X-Media

– Franz Inc.
– Talis
– Vistology
– Yahoo Labs

Table of Contents

Research Track

Queries to Hybrid MKNF Knowledge Bases through Oracular
Tabling . 1

José Júlio Alferes, Matthias Knorr, and Terrance Swift

Automatically Constructing Semantic Web Services from Online
Sources . 17

José Luis Ambite, Sirish Darbha, Aman Goel, Craig A. Knoblock,
Kristina Lerman, Rahul Parundekar, and Thomas Russ

Exploiting User Feedback to Improve Semantic Web Service
Discovery . 33

Anna Averbakh, Daniel Krause, and Dimitrios Skoutas

A Generic Approach for Large-Scale Ontological Reasoning in the
Presence of Access Restrictions to the Ontology’s Axioms 49

Franz Baader, Martin Knechtel, and Rafael Peñaloza

OntoCase-Automatic Ontology Enrichment Based on Ontology Design
Patterns . 65

Eva Blomqvist

Graph-Based Ontology Construction from Heterogenous Evidences 81
Christoph Böhm, Philip Groth, and Ulf Leser

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF
Databases . 97

Matthias Bröcheler, Andrea Pugliese, and V.S. Subrahmanian

Semantically-Aided Business Process Modeling . 114
Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher,
Luciano Serafini, and Paolo Tonella

Task Oriented Evaluation of Module Extraction Techniques 130
Ignazio Palmisano, Valentina Tamma, Terry Payne, and Paul Doran

A Decomposition-Based Approach to Optimizing Conjunctive Query
Answering in OWL DL . 146

Jianfeng Du, Guilin Qi, Jeff Z. Pan, and Yi-Dong Shen

Goal-Directed Module Extraction for Explaining OWL DL
Entailments . 163

Jianfeng Du, Guilin Qi, and Qiu Ji

XVIII Table of Contents

Analysis of a Real Online Social Network Using Semantic Web
Frameworks . 180

Guillaume Erétéo, Michel Buffa, Fabien Gandon, and Olivier Corby

Coloring RDF Triples to Capture Provenance . 196
Giorgos Flouris, Irini Fundulaki, Panagiotis Pediaditis,
Yannis Theoharis, and Vassilis Christophides

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 213
Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab

What Four Million Mappings Can Tell You About Two Hundred
Ontologies . 229

Amir Ghazvinian, Natalya F. Noy, Clement Jonquet,
Nigam Shah, and Mark A. Musen

Modeling and Query Patterns for Process Retrieval in OWL 243
Gerd Groener and Steffen Staab

Context and Domain Knowledge Enhanced Entity Spotting in Informal
Text . 260

Daniel Gruhl, Meena Nagarajan, Jan Pieper, Christine Robson, and
Amit Sheth

Using Naming Authority to Rank Data and Ontologies for Web
Search . 277

Andreas Harth, Sheila Kinsella, and Stefan Decker

Executing SPARQL Queries over the Web of Linked Data 293
Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag

Dynamic Querying of Mass-Storage RDF Data with Rule-Based
Entailment Regimes . 310

Giovambattista Ianni, Thomas Krennwallner,
Alessandra Martello, and Axel Polleres

Decidable Order-Sorted Logic Programming for Ontologies and Rules
with Argument Restructuring . 328

Ken Kaneiwa and Philip H.P. Nguyen

Semantic Web Service Composition in Social Environments 344
Ugur Kuter and Jennifer Golbeck

XLWrap – Querying and Integrating Arbitrary Spreadsheets with
SPARQL . 359

Andreas Langegger and Wolfram Wöß

Optimizing QoS-Aware Semantic Web Service Composition 375
Freddy Lécué

Table of Contents XIX

Synthesizing Semantic Web Service Compositions with jMosel and
Golog . 392

Tiziana Margaria, Daniel Meyer, Christian Kubczak,
Malte Isberner, and Bernhard Steffen

A Practical Approach for Scalable Conjunctive Query Answering on
Acyclic EL+ Knowledge Base . 408

Jing Mei, Shengping Liu, Guotong Xie, Aditya Kalyanpur,
Achille Fokoue, Yuan Ni, Hanyu Li, and Yue Pan

Learning Semantic Query Suggestions . 424
Edgar Meij, Marc Bron, Laura Hollink, Bouke Huurnink, and
Maarten de Rijke

Investigating the Semantic Gap through Query Log Analysis 441
Peter Mika, Edgar Meij, and Hugo Zaragoza

Towards Lightweight and Robust Large Scale Emergent Knowledge
Processing . 456

Vı́t Nováček and Stefan Decker

On Detecting High-Level Changes in RDF/S KBs . 473
Vicky Papavassiliou, Giorgos Flouris, Irini Fundulaki,
Dimitris Kotzinos, and Vassilis Christophides

Efficient Query Answering for OWL 2 . 489
Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Multi Visualization and Dynamic Query for Effective Exploration of
Semantic Data . 505

Daniela Petrelli, Suvodeep Mazumdar, Aba-Sah Dadzie, and
Fabio Ciravegna

A Conflict-Based Operator for Mapping Revision: Theory and
Implementation . 521

Guilin Qi, Qiu Ji, and Peter Haase

Functions over RDF Language Elements . 537
Bernhard Schandl

Policy-Aware Content Reuse on the Web . 553
Oshani Seneviratne, Lalana Kagal, and Tim Berners-Lee

Exploiting Partial Information in Taxonomy Construction 569
Rob Shearer and Ian Horrocks

Actively Learning Ontology Matching via User Interaction 585
Feng Shi, Juanzi Li, Jie Tang, Guotong Xie, and Hanyu Li

XX Table of Contents

Optimizing Web Service Composition While Enforcing Regulations 601
Shirin Sohrabi and Sheila A. McIlraith

A Weighted Approach to Partial Matching for Mobile Reasoning 618
Luke Albert Steller, Shonali Krishnaswamy, and
Mohamed Methat Gaber

Scalable Distributed Reasoning Using MapReduce . 634
Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen

Discovering and Maintaining Links on the Web of Data 650
Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov

Concept and Role Forgetting in ALC Ontologies . 666
Kewen Wang, Zhe Wang, Rodney Topor, Jeff Z. Pan, and
Grigoris Antoniou

Parallel Materialization of the Finite RDFS Closure for Hundreds of
Millions of Triples . 682

Jesse Weaver and James A. Hendler

Semantic Web In Use

Live Social Semantics . 698
Harith Alani, Martin Szomszor, Ciro Cattuto,
Wouter Van den Broeck, Gianluca Correndo, and Alain Barrat

RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 715
Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 731
Sören Auer, Jens Lehmann, and Sebastian Hellmann

Enrichment and Ranking of the YouTube Tag Space and Integration
with the Linked Data Cloud . 747

Smitashree Choudhury, John G. Breslin, and Alexandre Passant

Produce and Consume Linked Data with Drupal! . 763
Stéphane Corlosquet, Renaud Delbru, Tim Clark, Axel Polleres, and
Stefan Decker

Extracting Enterprise Vocabularies Using Linked Open Data 779
Julian Dolby, Achille Fokoue, Aditya Kalyanpur,
Edith Schonberg, and Kavitha Srinivas

Reasoning about Resources and Hierarchical Tasks Using OWL and
SWRL . 795

Daniel Elenius, David Martin, Reginald Ford, and Grit Denker

Table of Contents XXI

Using Hybrid Search and Query for E-discovery Identification 811
Dave Grosvenor and Andy Seaborne

Bridging the Gap between Linked Data and the Semantic Desktop 827
Tudor Groza, Laura Drăgan, Siegfried Handschuh, and Stefan Decker

Vocabulary Matching for Book Indexing Suggestion in Linked
Libraries – A Prototype Implementation and Evaluation 843

Antoine Isaac, Dirk Kramer, Lourens van der Meij, Shenghui Wang,
Stefan Schlobach, and Johan Stapel

Semantic Web Technologies for the Integration of Learning Tools and
Context-Aware Educational Services . 860

Zoran Jeremić, Jelena Jovanović, and Dragan Gašević

Semantic Enhancement for Enterprise Data Management 876
Li Ma, Xingzhi Sun, Feng Cao, Chen Wang, Xiaoyuan Wang,
Nick Kanellos, Dan Wolfson, and Yue Pan

Lifting Events in RDF from Interactions with Annotated Web Pages . . . 893
Roland Stühmer, Darko Anicic, Sinan Sen, Jun Ma,
Kay-Uwe Schmidt, and Nenad Stojanovic

A Case Study in Integrating Multiple E-Commerce Standards via
Semantic Web Technology . 909

Yang Yu, Donald Hillman, Basuki Setio, and Jeff Heflin

Supporting Multi-view User Ontology to Understand Company Value
Chains . 925

Landong Zuo, Manuel Salvadores, SM Hazzaz Imtiaz,
John Darlington, Nicholas Gibbins, Nigel R. Shadbolt, and
James Dobree

Doctoral Consortium

EXPRESS: EXPressing REstful Semantic Services Using Domain
Ontologies . 941

Areeb Alowisheq, David E. Millard, and Thanassis Tiropanis

A Lexical-Ontological Resource for Consumer Heathcare 949
Elena Cardillo

Semantic Web for Search . 957
Jessica Gronski

Towards Agile Ontology Maintenance . 965
Markus Luczak-Rösch

XXII Table of Contents

Ontologies for User Interface Integration . 973
Heiko Paulheim

Semantic Usage Policies for Web Services . 982
Sebastian Speiser

Ontology-Driven Generalization of Cartographic Representations by
Aggregation and Dimensional Collapse . 990

Eric B. Wolf

Invited Talks

Populating the Semantic Web by Macro-reading Internet Text 998
Tom M. Mitchell, Justin Betteridge, Andrew Carlson,
Estevam Hruschka, and Richard Wang

Search 3.0: Present, Personal, Precise . 1003
Nova Spivack

Author Index . 1005

Queries to Hybrid MKNF Knowledge Bases
through Oracular Tabling

José Júlio Alferes, Matthias Knorr, and Terrance Swift

CENTRIA, Dep. Informática, Faculdade de Ciências e Tecnologia
Univ. Nova de Lisboa, 2825-516 Caparica, Portugal

Abstract. An important issue for the Semantic Web is how to combine
open-world ontology languages with closed-world (non-monotonic) rule
paradigms. Several proposals for hybrid languages allow concepts to be
simultaneously defined by an ontology and rules, where rules may refer to
concepts in the ontology and the ontology may also refer to predicates de-
fined by the rules. Hybrid MKNF knowledge bases are one such proposal,
for which both a stable and a well-founded semantics have been defined.
The definition of Hybrid MKNF knowledge bases is parametric on the
ontology language, in the sense that non-monotonic rules can extend any
decidable ontology language. In this paper we define a query-driven pro-
cedure for Hybrid MKNF knowledge bases that is sound with respect to
the original stable model-based semantics, and is correct with respect to
the well-founded semantics. This procedure is able to answer conjunctive
queries, and is parametric on an inference engine for reasoning in the on-
tology language. Our procedure is based on an extension of a tabled rule
evaluation to capture reasoning within an ontology by modeling it as
an interaction with an external oracle and, with some assumptions on
the complexity of the oracle compared to the complexity of the ontology
language, maintains the data complexity of the well-founded semantics
for hybrid MKNF knowledge bases.

1 Introduction

Ontologies and Rules offer distinctive strengths for the representation and trans-
mission of knowledge in the Semantic Web. Ontologies offer the deductive advan-
tages of first-order logics with an open domain while guaranteeing decidability.
Rules offer non-monotonic (closed-world) reasoning that can be useful for for-
malizing scenarios under (local) incomplete knowledge; they also offer the ability
to reason about fixed points (e.g. reachability) which cannot be expressed within
first-order logic. Interest in both and their combination is demonstrated by the
pervasive interest in Ontology languages for the Semantic Web and the growing
interest on Rule languages for the Semantic Web, cf. the RIF and the RuleML
initiatives.

The two most common semantics for rules are the well-founded semantics
(WFS) [19] and the answer-sets semantics [6]. Both semantics are widely used;
both offer closed-world reasoning and allow the representation of fixed points;

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 J.J. Alferes, M. Knorr, and T. Swift

furthermore the relationship between the two semantics has been fully explored.
Of the two, the well-founded semantics is weaker (in the sense that it is more
skeptical), but has the advantage that its lower complexity allows it to be inte-
grated into the general-purpose programming language Prolog. Thus in addition
to its features for knowledge representation, WFS rules can provide a reactive
or procedural component missing from ontologies. Several formalisms have con-
cerned themselves with combining decidable ontologies with WFS rules [3,5,9].
Among these, the Well-Founded Semantics for Hybrid MKNF knowledge bases
(MKNFWFS), introduced in [9] and overviewed in Section 2 below, is the only one
which allows knowledge about instances to be fully inter-definable between rules
and an ontology that is taken as a parameter of the formalism. Using this pa-
rameterized ontology, MKNFWFS is defined using a monotonic fixpoint operator
that computes in each iteration step, besides the usual immediate consequences
from rules, the set of all atoms derivable from the ontology whose ABox is aug-
mented with the already proven atomic knowledge. The least fixpoint of the
MKNFWFS operator coincides with the original WFS [19] if the DL-component
is empty, and when dealing with tractable description logics MKNFWFS retains
a tractable data complexity. Furthermore, MKNFWFS is sound wrt. to that of
[12] for MKNF knowledge bases, which is based on answer-set semantics and
coincides with the answer-sets semantics if the DL-part is empty.

In one sense, the fixpoint operator of MKNFWFS provides a way to compute,
in a naive bottom-up fashion, all consequences of a knowledge base. However,
such an approach is far from practical for large knowledge bases, as in the Se-
mantic Web context. As a concrete example, consider a medical knowledge base
about patients in a large research study. Such a knowledge base might use a
standard OWL-ontology representing pathologies, treatment procedures, phar-
maceuticals, and so on (e.g. http://www.mindswap.org/2003/CancerOntology).
At the same time rules may be used to represent complex temporal constraints
that a research study imposes on a given patient, to interface with a patient’s
electronic health record, and even to extend the ontology with local procedures
or policies. To be practical this requires efficient techniques to answer queries
about patients, health-care workers, and other objects of interest.

This paper presents a querying mechanism, called SLG(O), that is sound
and complete for MKNFWFS , and sound for MKNF knowledge bases of [12].
SLG(O) accepts DL-safe conjunctive queries, (i.e. conjunctions of predicates
with variables where queries have to be ground when processed in the ontology),
returning all correct answer substitutions for variables in the query. To the best
of our knowledge, this is the first query-driven, top-down like, procedure for
knowledge bases that tightly combine an ontology with non-monotonic rules.

The Gist of the Approach

The main element of our approach addresses the interdependency of the ontology
and rules. In particular, our program evaluation method SLG(O), presented in
Section 4, extends SLG resolution [2], which evaluates queries to normal logic
programs (i.e. sets of non-disjunctive non-monotonic rules) under WFS. SLG

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 3

is a form of tabled resolution that handles loops within the program, and does
not change the data complexity of WFS. It does that by resorting to already
computed results, in a forest of derivation trees, a technique also known as
tabling. To adjoin an ontology to rules, the first thing that needs to be done is to
allow an SLG evaluation to make calls to an inference engine for the ontology.
Since MKNF is parametric on any given decidable ontology formalism1, the
inference engine is viewed in SLG as an oracle. In fact, every time SLG selects
an atom that is (perhaps jointly) defined in the ontology, the oracle’s inference
engine must be called, in case the atom is not provable by the rules alone. Such a
queried atom, say P (a), might thus be provable but only if a certain set of atoms
in turn is provable via rules. Our approach captures this by allowing the oracle
to return a new program clause, say P (a) :- Goals, which has the property that
(possibly empty) Goals, in addition to the axioms in the ontology and the atoms
already proven by the program would be sufficient to prove P (a). SLG(O) then
treats these new clauses just as if they were program clauses. Note that, getting
these conditional answers does not endanger decidability (or tractability, if it
is the case) of reasoning in the ontology alone. In fact, it is easy to conceive
a modification of a tableaux based inference engine for an ontology, that is
capable of returning these conditional answers and is decidable if the tableaux
algorithm is: add all those atoms that are defined in the program to the ABox;
then proceed with the tableaux as usual, but collect all those added facts that
have been used in the proof. Under some assumptions on the complexity of the
oracle, it is shown (in Section 5 along with some other properties) that SLG(O)
also retains tractability.

The other element of our approach arises from the need to combine the clas-
sical negation of an ontology with the non-monotonic negation of rules. This
problem is similar to the issue of coherence that arises when adding strong nega-
tion to logic programs [6,13,14]: the strong (or classical) negation must imply
negation by default. In our case, if the ontology entails that some atom A is
false, then perforce the default negation not A must hold in the program. The
derivation must accordingly be modified since the proof of not A cannot simply
rely on the failure of the proof of A as it is usual in logic programming. For sim-
plicity, instead of modifying SLG(O), our proposal (in Section 3) transforms the
original knowledge base K to ensure coherence. SLG(O) is then applied to the
transformed K. This transformation itself provides an alternative formulation of
MKNFWFS and is another original result of the paper.

2 Preliminaries

2.1 Syntax of Hybrid MKNF Knowledge Bases

We presume a basic understanding of the well-founded semantics [19] and first-
order logics, in particular notions related to logic programming and resolution
1 The limitation to decidability is theoretically not strictly necessary but a choice to

achieve termination and complexity results in accordance with the decidable ontology
languages like OWL (http://www.w3.org/2004/OWL/).

http://www.w3.org/2004/OWL/).

4 J.J. Alferes, M. Knorr, and T. Swift

(see e.g. [11]). Hybrid MKNF knowledge bases as introduced in [12] are es-
sentially formulas in the logics of minimal knowledge and negation as failure
(MKNF) [10], i.e. first-order logics with equality and two modal operators K
and not allowing inspection of the knowledge base: intuitively, given a first-order
formula ϕ, Kϕ asks whether ϕ is known while notϕ is used to check whether
ϕ is not known. Hybrid MKNF knowledge bases consist of two components, a
decidable description logics (DL) knowledge base2, translatable into first-order
logics, and a finite set of rules.

Definition 1. Let O be a DL knowledge base built over a language L with dis-
tinguished sets of countably infinitely many variables NV , and finitely many in-
dividuals NI , and predicates NC. An atom P (t1, . . . , tn) where P ∈ NC and
ti ∈ NV ∪NI is called a DL-atom if P occurs in O, otherwise it is called non-
DL-atom. An MKNF rule r has the following form where Hi, Ai, and Bi are
atoms: KH ← KA1, . . . ,KAn,notB1, . . . ,notBm. H is called the (rule) head
and the sets {KAi}, and {notBj} form the (rule) body. Literals3 are positive
literals KA or negative literals notA. A rule r is positive if m = 0 and a fact
if n = m = 0. A program P is a finite set of MKNF rules and a hybrid MKNF
knowledge base K is a pair (O,P).

We will usually omit the modal operators K in the rule head and the positive
body, though they remain implicit however. Furthermore, we sometimes also
omit the terms ti of an atom as well (in the context of description logics).

For decidability DL-safety is applied which basically constrains the use of rules
to individuals actually appearing in the knowledge base under consideration.
Formally, an MKNF rule r is DL-safe if every variable in r occurs in at least
one non-DL-atom KB occurring in the body of r. A hybrid MKNF knowledge
base K is DL-safe if all its rules are DL-safe4. Likewise, to ensure decidability,
grounding the knowledge base, i.e. its rules, is restricted to individuals appearing
in the knowledge base and not to the whole infinite domain5. Therefore, given
a hybrid MKNF knowledge base K = (O,P), the ground instantiation of K is
the KB KG = (O,PG) where PG is obtained from P by replacing each rule r
of P with a set of rules substituting each variable in r with constants from K
in all possible ways (for more details we refer to [12] and [9]). DL-safety is also
imposed on (conjunctive) queries:

Definition 2. A conjunctive query q is a non-empty set, i.e. conjunction, of
literals where each variable in q occurs in at least one non-DL atom in q. We
also write q as a rule q(Xi) ← A1, . . . , An,notB1, . . . ,notBm where Xi is the
(possibly empty) set of variables, appearing in the body, which are requested.

2 For a thorough introduction on description logics we refer to [1].
3 In [9], the term modal atom is used and modal atoms in MKNF are in general not

restricted to first-order atoms but in this paper it is essentially their only appearance.
4 In the following all hybrid MKNF knowledge bases are assumed to be DL-safe.
5 As well-known, description logics semantics usually require an infinite domain to

admit the intended semantics for statements involving unknown individuals.

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 5

The restriction of conjunctive queries to DL-safety is not always necessary: for
DLs like SHIQ conjunctive query answering is possible ([7]) and we may also
make use of such existing algorithms, however, when there is no algorithm for
conjunctive query answering yet or it is even not decidable (like for EL++ [15])
then the limitation is required to achieve decidability in the combined approach.

2.2 Well-Founded Semantics of Hybrid MKNF Knowledge Bases

The well-founded MKNF semantics as presented in [9] is based on a complete
three-valued extension of the original MKNF semantics. However, here we are
not interested in obtaining the entire semantics where a model consists of two
sets of sets of first-order interpretations. Instead we limit ourselves here to the
computation of what is called the well-founded partition in [9]: basically the
literals which are true and false. For that reason, and in correspondence to logic
programming, we will name this partition the well-founded model. At first, we
recall some notions from [9] which will be useful in the definition of the operators
for obtaining that well-founded model.

Definition 3. Consider a hybrid MKNF knowledge base K = (O,P). The set
of K-atoms of K, written KA(K), is the smallest set that contains (i) all positive
literals occurring in P, and (ii) a literal Kξ for each literal notξ occurring in
K. Furthermore, for a set of literals S, SDL is the subset of DL-atoms of S, and
Ŝ = {ξ | Kξ ∈ S}.

Basically all literals appearing in the rules are collected in KA(K) as a set of
positive literals and the other two notions provide restrictions on such a set.

To guarantee that all atoms that are false in the ontology are also false by
default in the rules, we introduce new positive DL atoms which represent first-
order false DL atoms, and another program transformation making these new
literals available for reasoning in the respective rules.

Definition 4. Let K be a hybrid MKNF knowledge base. We obtain K+ =
(O+, P) from K by adding an axiom ¬P � NP for every DL atom P which
occurs as head in at least one rule in K where NP is a new predicate not already
occurring in K. Moreover, we obtain K∗ from K+ by adding notNP (t1, . . . , tn)
to the body of each rule with a DL atom P (t1, . . . , tn) in the head.

By K+, NP represents ¬P (with its corresponding arguments) and K∗ introduces
a restriction on each rule with such a DL atom in the head saying intuitively
that the rule can only be used to conclude the head if the negation of its head
does not hold already6.

We continue now by defining an operator TK which allows to draw conclusions
from positive hybrid MKNF knowledge bases.

6 Note that K+ and K∗ are still hybrid MKNF knowledge bases, so we only refer to
K+ and K∗ explicitly when it is necessary.

6 J.J. Alferes, M. Knorr, and T. Swift

Definition 5. For K a positive hybrid MKNF knowledge base, RK, DK, and TK
are defined on the subsets of KA(K∗) as follows:

RK(S) = S ∪ {KH | K contains a rule of the form (1) such that KAi ∈ S
for each 1 ≤ i ≤ n}

DK(S) = {Kξ | Kξ ∈ KA(K∗) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, . . . , bn) |
KQ(a1, . . . , an) ∈ S \ SDL, KQ(b1, . . . , bn) ∈ KA(K∗), and
O ∪ ŜDL |= ai ≈ bi for 1 ≤ i ≤ n}

TK(S) = RK(S) ∪DK(S)

RK derives consequences from the rules while DK obtains knowledge from the
ontology O, respectively from non-DL-atoms and the equalities occuring in O.

The operator TK is shown to be monotonic in [9] so, by the Knaster-Tarski
theorem, it has a unique least fixpoint, denoted lfp(TK), which is reached after
a finite number of iteration steps.

The computation follows the alternating fixpoint construction [18] of the well-
founded semantics for logic programs which neccesitates turning a hybrid MKNF
knowledge base into a positive one to make TK applicable.

Definition 6. Let KG = (O,PG) be a ground hybrid MKNF knowledge base
and let S ⊆ KA(KG). The MKNF transform KG/S = (O,PG/S) is obtained by
PG/S containing all rules H ← A1, . . . , An for which there exists a rule KH ←
KA1, . . . ,KAn,notB1, . . . ,notBm in PG with KBj 	∈ S for all 1 ≤ j ≤ m.

This resembles the transformation known from answer-sets [6] of logic programs
and the following two operators are defined.

Definition 7. Let K be a hybrid MKNF knowledge base and S ⊆ KA(K∗).

ΓK(S) = lfp(TK+
G/S) Γ ′

K(S) = lfp(TK∗
G/S)

Both operators are shown to be antitonic [9] and form the basis for defining the
well-founded MKNF model. Here we present its alternating computation.

P0 = ∅ N0 = KA(K∗)
Pn+1 = ΓK(Nn) Nn+1 = Γ ′

K(Pn)
Pω =

⋃
Pn Nω =

⋂
Nn

Note that by finiteness of the ground knowledge base the iteration stops before
reaching ω. It was shown in [9] that the sequences are monotonically increasing,
decreasing respectively, and thatPω and Nω form the well-founded MKNF model.

Definition 8. Let K = (O,P) be a hybrid MKNF knowledge base and let
PK,NK ⊆ KA(K) with PK being Pω and NK being Nω, both restricted to the
literals only occurring in KA(K). Then MWF = {KA | A ∈ PK} ∪ {Kπ(O)} ∪
{notA | A ∈ KA(K) \NK} is the well-founded MKNF model of K.

All literals in MWF are true, its counterparts are false (e.g. if KH is true then
notH is false) and all other literals from KA(K) are undefined. Note that Kπ(O)
appears in the model for conciseness with [9].

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 7

3 Alternative Computation of MKNFWFS

As we have seen, the bottom-up computation of the well-founded MKNF model
requires essentially two operators each with its own transformation of the knowl-
edge base. Using directly this as a basis for the top-down procedure, would com-
plicate it, in that we would have to consider two different copies of the program,
and use them alternately in different parts of the procedure. This is why, in this
section, we define that computation in a different way. Namely, we double the
rules in K using new predicates, transform them appropriately, and double the
ontology, so that we can apply just one operator and still obtain the well-founded
MKNF model.

Definition 9. Let K = (O,P) be a hybrid MKNF knowledge base. We in-
troduce new predicates, i.e. a predicate Ad for each predicate A appearing in
K, and define Kd as the knowledge base obtained by adding O+ to O where
each predicate A in O is substituted by Ad, and transforming each H(ti) ←
A1, . . . , An,notB1, . . . ,notBm occuring in P, ti representing the arguments of
H, into the following two rules:

(1) H(ti)← A1, . . . , An,notBd
1 , . . . ,notBd

m and either
(2a) Hd(ti) ← Ad

1, . . . , A
d
n,notB1, . . . ,notBm,notNH(ti) if H is a DL-atom;

or
(2b) Hd(ti)← Ad

1, . . . , A
d
n,notB1, . . . ,notBm otherwise

Note that the predicate notNH is in fact the one introduced by K+.
We can now define a new operator Γ d on Kd only7.

Definition 10. Let K = (O,P) be a hybrid MKNF knowledge base and S ⊆
KA(Kd). We define Γ d

K(S) = lfp(TKd
G/S) and ΥK(S) = Γ d

K(Γ d
K(S)).

The operator Γ d
K is antitonic just like ΓK, and so ΥK is a monotonic operator.

Therefore ΥK also has a least and a greatest fixpoint and we can formulate their
iteration in the same manner as for Pω and Nω.

Pd
0 = ∅ Nd

0 = KA(Kd)
Pd

n+1 = Γ d
K(Nd

n) Nd
n+1 = Γ d

K(Pd
n)

Pd
ω =

⋃
Pd

n Nd
ω =

⋂
Nd

n

We can now state the relation of the least and the greatest fixpoint of ΥK to Pω

and Nω, from which the well-founded MKNF model is obtained.

Theorem 1. Let K = (O,P) be a hybrid MKNF knowledge base and let Pd
ω be

the least fixpoint of ΥK and Nd
ω be the greatest fixpoint of ΥK. We have:

– A ∈ Pω if and only if A ∈ Pd
ω

– B 	∈ Nω if and only if Bd 	∈ Nd
ω

It follows immediately from this theorem that we can use ΥK to compute the
well-founded MKNF model. We also derive from the theorem that we have to
use the new predicates Ad if we query for negative literals.
7 Note that the operators in Definition 5 are now defined for subsets of KA(Kd).

8 J.J. Alferes, M. Knorr, and T. Swift

4 Tabled SLG(O)-Resolution for Hybrid MKNF

Now we present the new SLG-resolution, SLG(O), for Hybrid MKNF Bases
which extends [2]. We should mention that the definition of SLG(O) is quite in-
volved and requires that certain definitions are interlinked with each other (links
are provided in each of these cases). It is based on sets of trees of derivations
(forests). Tree nodes contain sets of literals which we also call goals (cf. Def.12).
To deal with termination, some literals must be delayed during the tabled res-
olution, and so we have to define delay literals (cf. Def.11). Also, a notion of
completely evaluated goals in a forest is needed for termination (cf. Def.14). The
trees, and the delaying of literals, are constructed according to the set of oper-
ations in Def.18. Some of these operations require resolution of selected literals
with program rules and, since delayed literals may exist, a slightly changed res-
olution is required (cf. Def.13). For dealing with the ontology, derivation steps
must also take into account an oracle; thus, a suitable definition of what is ex-
pected from the oracle is required (cf. Def.17). We begin the presentation of
SLG(O) by defining the delay literals, and then forests:

Definition 11. A negative delay literal has the form not A, where A is a ground
atom. Positive delay literals have the form ACall

Answer, where A is an atom whose
truth value depends on the truth value of some literal Answer for the literal Call.
If θ is a substitution, then (ACall

Answer)θ = (Aθ)Call
Answer.

Positive delay literals can only appear as a result of resolution. Its special form
as indicated by the names is meant to keep track of the answer and call used for
that resolution and possible substitutions are thus only applied to A itself.

Definition 12. A node has the form

Answer Template :- Delays|Goals or fail.

In the first form, Answer Template is an atom, Delays is a sequence of (positive
and negative) delay literals and Goals is a sequence of literals. The second form
is called a failure node. A program tree T is a tree of nodes whose root is of the
form S :- |S for some atom S: S is the root node for T and T is the tree for
S. An SLG forest F is a set of program trees. A node N is an answer when it
is a leaf node for which Goals is empty. If Delays of an answer is empty it is
termed an unconditional answer, otherwise, it is a conditional answer. Program
trees T may be marked as complete.

Whenever Goals contains various elements we effectively have to select one of
them, by using a selection function. The only requirement for such a selection
function, is that DL-atoms are not selected until they are ground (which is always
possible given DL-safety).

The definition of answer resolution is slightly different from the usual one to
take delay literals in conditional answers into account.

Definition 13. Let N be a node A :- D|L1, ..., Ln, where n > 0. Let Ans =
A′ :- D′| be an answer whose variables have been standardized apart from N .

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 9

N is SLG resolvable with Ans if ∃i, 1 ≤ i ≤ n, such that Li and A′ are unifiable
with an mgu θ. The SLG resolvent of N and Ans on Li has the form:

(A :- D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A :- D,Li
Li

A′ |L1, ..., Li−1, Li+1, ..., Ln)θ

We delay Li rather than propagating the answer’s delay list. This is necessary,
as shown in [2], to ensure polynomial data complexity8.

At a certain point in SLG(O) resolution, a set of goals may be completely
evaluated, i.e. it can produce no more answers.

Definition 14. A set S of literals is completely evaluated if at least one of the
conditions holds for each S ∈ S

1. The tree for S contains an answer S :- |; or
2. For each node N in the tree for S:

(a) The underlying subgoal9 of the selected literal of N is completed; or
(b) The underlying subgoal of the selected literal of N is in S and there are no

applicable New Subgoal, Program Clause Resolution, Oracle
Resolution, Equality Resolution, Positive Return, Negative
Return or Delaying operations (Definition 18) for N .

Once a set of literals is determined to be completely evaluated, the Completion
operation marks the trees for each literal (Definition 12). Such completely eval-
uated trees can then be used to simplify other trees in the evaluation.

According to Definition 13, if a conditional answer is resolved against the
selected literal in the set Goals of a node, the information about the delayed lit-
erals in the answer is not propagated. However, in certain cases, the propagation
of conditional answers can lead to a set of unsupported answers — conditional
answers that are false in the well founded model (see e.g. Example 1 of [17])10.

Definition 15. Let F be an SLG forest, S a root of a tree in F , and Answer be
an atom that occurs in the head of some answer of S. Then Answer is supported
by S in F if and only if:

1. S is not completely evaluated; or
2. there exists an answer node Answer :- Delays| of S such that for every

positive delay literal DCall
Ans , Ans is supported by Call.

We can obtain an interpretation from an SLG forest representing the truth values
of the roots of its trees. This interpretation will later also correspond to MWF

(cf. Theorem 4).
8 If we propagated the delay lists, we would propagate all derivations which could be

exponential in bad cases.
9 The underlying subgoal of literal L is L if L is positive and S if L = not S.

10 As an aside, we note that unsupported answers appear to be uncommon in practical
evaluations which minimize the use of delay such as [16].

10 J.J. Alferes, M. Knorr, and T. Swift

Definition 16. Let F be a forest. Then the interpretation induced by F , IF , is
the smallest set such that:

– A (ground) atom A ∈ IF iff A is in the ground instantiation of some uncon-
ditional answer Ans :- | in F .

– A (ground) literal not A ∈ IF iff A is in the ground instantiation of a
completely evaluated literal in F , and A is not in the ground instantiation
of any answer in a tree in F .

An atom S is successful (failed) in IF if S′ (not S′) is in IF for every S′ in the
ground instantiation of S. A negative delay literal not D is successful (failed) in a
forest F if D is (failed) successful in F . Similarly, a positive delay literal DCall

Ans is
successful (failed) in a F if Call has an unconditional answer Ans :- | in F .

In order to describe a tabled evaluation that is parameterized by an oracle,
we need to characterize the behavior of an abstract oracle, O11 that computes
entailment according to a theory, i.e. the ontology. For that purpose, we define
an oracle transition function that in just one step computes all possible atoms
required to prove the goal. In other words, such an oracle, when posed a query S
non-deterministically returns in one step a set of atoms defined in the program
(i.e. atoms for which there is at least one rule with it in the head) such that, if
added to the oracle theory, immediately derives S.

Definition 17. Let K = (O,P) be a hybrid MKNF knowledge base, S a goal,
and L a set of ground atoms which appear in at least one rule head in PG. The
complete transition function for O, denoted compTO, is defined by

compTO(IFn , S, L) iff O ∪ IFn ∪ L |= S

We are now able to characterize SLG(O) operations.

Definition 18 (SLG(O) Operations). Let K = (O,P) be a hybrid MKNF
knowledge base. Given a forest Fn of an SLG(O) evaluation of K, Fn+1 may be
produced by one of the following operations.

1. New Subgoal: Let Fn contain a tree with non-root node

N = Ans :- Delays|G,Goals

where G is the selected literal S or not S. Assume Fn contains no tree with
root S. Then add the tree S :- |S to Fn.

2. Program Clause Resolution: Let Fn contain a tree with root node N =
S :- |S and C be a rule Head :- Body such that Head unifies with S with
mgu θ. Assume that in Fn, N does not have a child Nchild = (S :- |Body)θ.
Then add Nchild as a child of N .

11 We overload O syntactically to represent the oracle and the ontology, since seman-
tically they are the same anyway.

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 11

3. Oracle Resolution: Let Fn contain a tree with root node N = S :- |S
and S and all G ∈ Goals be DL-atoms. Assume that compTO(IFn , S,Goals).
If N does not have a child Nchild = S :- |Goals in Fn then add Nchild as a
child

4. Equality Resolution: Let Fn contain a tree with root node N = S :- |S
where S and G ∈ Goal are ground non-DL-atoms with the identical predicate.
Assume that compTO(IFn , S,Goal). If N does not have a child Nchild =
S :- |Goal in Fn then add Nchild as a child

5. Positive Return: Let Fn contain a tree with non-root node N whose se-
lected literal S is positive. Let Ans be an answer for S in Fn and Nchild be
the SLG resolvent of N and Ans on S. Assume that in Fn, N does not have
a child Nchild. Then add Nchild as a child of N .

6. Negative Return: Let Fn contain a tree with a leaf node, whose selected
literal not S is ground

N = Ans :- Delays|not S,Goals.
(a) Negation Success: If S is failed in F then create a child for N of the

form: Ans :- Delays|Goals.
(b) Negation Failure: If S succeeds in F , then create a child for N of the

form fail.
7. Delaying: Let Fn contain a tree with leaf N = Ans :- Delays|not S,Goals,

such that S is ground, in Fn, but S is neither successful nor failed in Fn.
Then create a child for N of the form Ans :- Delays, not S|Goals.

8. Simplification: Let Fn contain a tree with leaf node N = Ans :- Delays|,
and let L ∈ Delays
(a) If L is failed in F then create a child fail for N .
(b) If L is successful in F , then create a child Ans :- Delays′| for N , where

Delays′ = Delays− L.
9. Completion: Given a completely evaluated set S of literals (Definition 14),

mark the trees for all literals in S as completed.
10. Answer Completion: Given a set of unsupported answers UA, create a

failure node as a child for each answer Ans ∈ UA.

The only thing now missing is the formalization of the initialization of an SLG
evaluation process.

Definition 19. Let K be a hybrid MKNF knowledge base and let q be a query
of the form q(Xi) ← A1, . . . , An,notB1, . . . ,notBm where Xi is the (possibly
empty) set of requested variables. We set F0 = {q(Xi) : − | q(Xi)} to be the
initial forest of an SLG(O) evaluation of Kd for q.

Of course, if the query is atomic we can usually simply start with that atomic
query. Note that since we use Kd, the technically correct way to query negative
literals is to use notBd instead of notB for any atom B.

Example 1. In order to illustrate the actions of SLG(O) we consider a derivation
of an answer to the query ?- discount(bill) to the KB due to [12]12:
12 We adopt that only DL-atoms start with a capital letter. Also, to ease the reading,

and since it has no influence in this example, instead of Kd we operate on K directly.

12 J.J. Alferes, M. Knorr, and T. Swift

NonMarried ≡ ¬Married ¬Married � HighRisk
∃Spouse.T �Married bill ∈ (∃Spouse.michelle)
NonMarried(X) ← not Married(X).
discount(X) ← not HighRisk(X)

Note that both TBox and ABox information are each distributed over both the
description logic and the program. Figure 1 shows the final forest for this evalu-
ation, where elements are marked in the order they are created. The initial for-
est for the evaluation consists of node 0 only. Since the selected literal of node
0, discount(bill) is a non-DL-atom and there are no equalities in the KB, we
can only apply Program Clause Resolution which produces node 1, followed
by a New Subgoal to produce node 2. Node 2 is a DL-atom, there are no rules
applicable for HighRisk(bill), but an Oracle Resolution operation can be
applied to derive bill ∈ NonMarried (node 3). Then via a New Subgoal oper-
ation node 4 is obtained. The selected literal for node 4, NonMarried(bill) is a
DL-atom that also is the head of a rule, so the oracle and the program evaluation
may both try to derive the atom. On the program side, Program Clause Res-
olution produces nodes 5 and 6. The selected literal of node 6, Married(bill),
is a DL-atom that is not the head of a program rule, so once again the only pos-
sibility is to use Oracle Resolution, and derive Married(bill); using this a
Negative Return operation produces node 8, and the tree for Married(bill)
can be early completed. The tree for NonMarried(bill) which does not have an
answer must be completed (step 10), and the same for HighRisk(bill) (step 11).
Once this occurs, a Negative Return operation is enabled to produce node 12.

12. discount(bill):−

7. Married(bill)

6. Married(bill):− Married(bill)

5. NonMarried(bill):− not Married(bill)

4. NonMarried(bill):− NonMarried(bill)

3. HighRisk(bill):− NonMarried(bill)

2. HighRisk(bill):− HighRisk(bill)

1. discount(bill):− | not HighRisk(bill)

8. fail

0. discount(bill):− |discount(bill)

9. complete

10. complete

11. complete

Fig. 1. Final Forest for query ?- discount(bill) to K1

The evaluation illustrates several points. First, the evaluation makes use of
classical negation in the ontology along with closed world negation in the rules.
From an operational perspective, the actions of the description logic prover and
the program are interleaved, with the program “calling” the oracle by creating
new trees for DL-atoms, and the oracle “calling” the rule system through Or-
acle Resolution operations. As a result, trees for DL-atoms must either be
early-completed, or explicitly completed by the tabulation system.

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 13

5 Properties

Theorem 2. Let q = L be a query to a hybrid MKNF knowledge base K. Then
any SLG(O) evaluation of q will terminate after finitely many steps, producing
a finite final forest.

The way SLG(O) is defined there is no real order in which to apply any of
the operations possible in a forest Fi. Some orders of application are in general
more efficient than others but it was shown in [2] that any order yields the same
outcome for any query. We adopt this statement here to SLG(O).

Theorem 3. Let E1 and E2 be two SLG(O) evaluations of a query q = L to a
hybrid knowledge based Kd

G. Let F1 be the final forest of E1 and F2 be the final
forest of E2. Then, IF1 = IF2 .

This theorem will also be helpful when it comes to proving that SLG(O) is
in fact a query procedure for MKNFWFS and may terminate within the same
complexity bounds as the semantics defined in [9]. At first, we will show that
the procedure presented in the previous section coincides with MKNFWFS . In-
tuitively, what we have to show is that the well-founded MKNF model, as pre-
sented in section 2 and based on the computation presented in Section 3, and
the interpretation IF induced by Fn for some query q to Kd coincide for each
ground literal appearing in Kd

G. We can simplify that by showing for each literal
L appearing in Kd

G that L ∈ MWF if and only if L ∈ IF with query q = L and
Fn for some n. Additionally, we prove that the same correspondence holds for
(positive)13 atoms only appearing in the ontology.

Theorem 4. Let K be a hybrid MKNF knowledge base and L be a modal atom
which appears inKd

G. SLG(O)resolution is correct and complete wrt. MKNFWFS,
i.e. L ∈ MWF if and only if L ∈ IF where IF is induced by the forest F of an
SLG(O)evaluation of Kd

G for query q = L and, for atoms P not appearing in any
rule, MWF |= P if and only if P ∈ IF .

Given the soundness of MKNFWFS wrt. the semantics of MKNF knowledge
bases of [12], it follows easily that:

Corollary 1. Let K be a consistent hybrid MKNF knowledge base and L be a
modal atom which appears in Kd

G. If L ∈ IF , where IF is induced by the forest F
of an SLG(O) evaluation of Kd

G for query q = L, then L belongs to all MKNF
two-valued models (as in [12]) of K.

In addition to the interpretation of the final forest IF being sound with respect
to the 2-valued MKNF model, the conditional answers in F can be seen as a well-
founded reduct of the rules in K, augmented with conditional answers derived
through Oracle Resolution and Equality Resolution operations. As a
13 We cannot query directly for explicit negated atoms, however, a simple transforma-

tion similar to the one yielding K+ provides a solution to that problem.

14 J.J. Alferes, M. Knorr, and T. Swift

result, the final forest can be seen as a residual program: a sound transformation
not only of the rules, but of information from the oracle, and can be used to
construct a partial 2-valued stable model.

Regarding complexity, it is clear that the complexity of the whole SLG(O)
depends on the complexity of the oracle, and also on the number of results
returned by each call to the oracle. Clearly, the complexity associated to the
computation of one result of the oracle function is a lower-bound of the com-
plexity of SLG(O). Moreover, even if e.g. the computation of one result of the
oracle is tractable, if exponentially many solutions are generated by the ora-
cle (e.g. returning all supersets of a solution), then the complexity of SLG(O)
becomes exponential. This is so, because our definition of the oracle is quite
general, and in order to prove interesting complexity results some assumptions
most be made about the oracle. We start by defining a correct partial oracle:

Definition 20. Let K = (O,P) be a hybrid MKNF knowledge base, S a goal,
and L a set of ground atoms which appear in at least one rule head in PG (called
program atoms). A partial oracle for O, denoted pTO, is a relation pTO(IFn , S, L)
such that if pTO(IFn , S, L) then O ∪ IFn ∪ L |= S.

A partial oracle pTO is correct iff when replacing compTO in SLG(O) suc-
ceeds for exactly the same set of queries.

Note that the complete oracle is indeed generating unnecessarily many answers,
and it can be replaced by a partial one which assures correctness. E.g. consider
a partial oracle that does not return supersets of other results. Such a partial
oracle is obviously correct. Making assumptions on the complexity and number
of results of an oracle, complexity results of SLG(O) are obtained.

Theorem 5. Let pTO be a correct partial oracle for the hybrid MKNF knowledge
base K = (O,P), such that for every goal S, the cardinality of pTO(IFn , S, L) is
bound by a polynomial on the number of program atoms. Moreover, assume that
computing each element of pTO is decidable with data complexity C. Then, the
SLG(O) evaluation of a query in Kd

G is decidable with data complexity PC.

In particular, this means that if the partial oracle is tractable, and only with
polynomial many results, then SLG(O) is also tractable. Clearly, for an ontology
part of the knowledge base which is a tractable fragment, it is possible to come
up with a correct partial oracle that is also tractable. Basically, all it needs
to be done is to proceed with the usual entailment method, assuming that all
program atoms hold, and collecting them for the oracle result. To guarantee
that the number of solutions of the oracle is bound by a polynomial, and still
keeping with correctness, might be a bit more difficult. It amounts to find a
procedure that returns less results, and at the same time does not damage the
completeness proof (similar to that of Theorem 4). At least for the tractable case
this is possible, albeit the oracle being the (polynomial complexity) bottom-up
procedure that defines MKNFWFS .

Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling 15

6 Discussion and Conclusions

Together with the alternate computation method of Section 3, SLG(O) provides
a sound and complete querying method for hybrid MKNF knowledge bases, that
unlike others (cf. below) freely allows bidirectional calls between the ontology
and the rules, and that does not impose a burden of complexity beyond that of
the ontology. As such it presents a significant step towards making hybrid MKNF
knowledge bases practically usable for the Semantic Web. In fact, work has be-
gun on a prototype implementation of the SLG(O) method presented here using
XSB Prolog and its ontology management library CDF [8]. Because the CDF the-
orem prover is implemented directly using XSB, the Oracle Resolution and
Equality Resolution operations of Section 4 are more easily implemented
than they would be using a separate prover, as is the detection of when a mu-
tually dependent set of subgoals is completely evaluated (Definition 14), and
the guarantee of the polynomial size of the oracle. The resulting implementa-
tion will enable further study into how hybrid MKNF knowledge bases can be
practically used and will indicate needed optimizations. For instance, since XSB
supports constraint processing, temporal or spatial constraints can be added to
the ABox. From a systems perspective, the multi-threading of XSB can allow
for the construction of hybrid MKNF knowledge servers that make use of either
Prolog rules or F-logic rules (via FLORA-2, which is implemented using XSB).
As mentioned in Section 5 the final forest of a SLG(O) evaluation produces a
well-founded reduct of the rules and oracle information. This reduct, which is
materialized in a table in XSB, can be sent to a stable model generator through
XSB’s XASP library to obtain a partial stable MKNF model of [12].

There are two other semantics which define a well-founded model for a combi-
nation of rules and ontologies, namely [5] and [3]. The approach of [5] combines
ontologies and rules in a modular way, i.e. keeps both parts and their semantics
separate, thus having similarities with our approach. The interface is done by the
dlv hex system [4]. Though with identical data complexity to the well-founded
MKNF semantics for a tractable DL, it has a less strong integration, having lim-
itations in the way the ontology can call back program atoms (see [5] for details).
Hybrid programs of [3] are even more restrictive in the combination: in fact it
only allows to transfer information from the ontology to the rules and not the
other way around. Moreover, the semantics of this approach differs from MKNF
[12,9] and also[5] in that if an ontology expresses B1 ∨B2 then the semantics in
[3] derives p from rules p← B1 and p← B2, p while MKNF and [5] do not.

While queries posed to KBs without an ontology are handled in the same way
as in SLG, strictly speaking the queries posed to the (oracle) DL fragment, are
not conjunctive queries in the sense of [7] where boolean queries may contain
anonymous variables which never get instantiated. Here we ask whether a ground
atom holds when querying the oracle. We nevertheless obtain conjunctive queries
up to a certain extent in the sense of [7] only wrt. the entire KB, and our queries
are not limited to fit the tree-shaped models there. One line of future work will
thus be an extension to such queries which is supported by possible anonymous
variables in XSB, the system in which the semantics is currently implemented.

16 J.J. Alferes, M. Knorr, and T. Swift

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

2. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. J. ACM 43(1), 20–74 (1996)

3. Drabent, W., Ma�luszynski, J.: Well-founded semantics for hybrid rules. In:
Marchiori, M., Pan, J.Z., de Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524,
pp. 1–15. Springer, Heidelberg (2007)

4. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declar-
ative rules with external evaluations for semantic web reasoning. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer,
Heidelberg (2006)

5. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics
for description logic programs in the semantic web. In: Antoniou, G., Boley, H.
(eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

6. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren,
Szeredi (eds.) ICLP 1990. MIT Press, Cambridge (1990)

7. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. J. of Artificial Intelligence Research 31, 151–198 (2008)

8. Gomes, A.S.: Derivation methods for hybrid knowledge bases with rules and on-
tologies. Master’s thesis, Univ. Nova de Lisboa (2009)

9. Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hy-
brid MKNF knowledge bases. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N.,
Avouris, N. (eds.) Proceedings of the 18th European Conference on Artificial In-
telligence, ECAI2008, pp. 99–103. IOS Press, Amsterdam (2008)

10. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: International
Joint Conferences on Artifical Intelligence, IJCAI 1991, pp. 381–386 (1991)

11. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1984)
12. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-

gramming. In: 20th Int. Joint Conf on Artificial Intelligence (IJCAI), Hyderabad,
India, January 6–12 2007, pp. 477–482. AAAI Press, Menlo Park (2007)

13. Pearce, D., Wagner, G.: Reasoning with negative information I: Strong negation
in logic programs. In: Haaparanta, L., Kusch, M., Niiniluoto, I. (eds.) Language,
Knowledge and Intentionality, Acta Philosophica Fennica, vol. 49, pp. 430–453
(1990)

14. Pereira, L.M., Alferes, J.J.: Well founded semantics for logic programs with explicit
negation. In: European Conference on Artifical Intelligence, ECAI, pp. 102–106
(1992)

15. Rosati, R.: On conjunctive query answering in EL. In: DL 2007.CEUR Electronic
Workshop Proceedings (2007)

16. Sagonas, K., Swift, T., Warren, D.S.: The limits of fixed-order computation. The-
oretical Computer Science 254(1-2), 465–499 (2000)

17. Swift, T., Pinto, A., Pereira, L.: Incremental answer completion. In: Hill, P.A.,
Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 519–524. Springer, Heidelberg
(2009)

18. van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Prin-
ciples of Database Systems, pp. 1–10. ACM Press, New York (1989)

19. van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded seman-
tics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)

Automatically Constructing Semantic Web
Services from Online Sources

José Luis Ambite, Sirish Darbha, Aman Goel, Craig A. Knoblock,
Kristina Lerman, Rahul Parundekar, and Thomas Russ

University of Southern California
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

{ambite,darbha,amangoel,knoblock,lerman,parundek,tar}@isi.edu

Abstract. The work on integrating sources and services in the Seman-
tic Web assumes that the data is either already represented in RDF or
OWL or is available through a Semantic Web Service. In practice, there
is a tremendous amount of data on the Web that is not available through
the Semantic Web. In this paper we present an approach to automati-
cally discover and create new Semantic Web Services. The idea behind
this approach is to start with a set of known sources and the correspond-
ing semantic descriptions and then discover similar sources, extract the
source data, build semantic descriptions of the sources, and then turn
them into Semantic Web Services. We implemented an end-to-end solu-
tion to this problem in a system called Deimos and evaluated the system
across five different domains. The results demonstrate that the system
can automatically discover, learn semantic descriptions, and build Se-
mantic Web Services with only example sources and their descriptions
as input.

1 Introduction

Only a very small portion of data on the Web is available within the Semantic
Web. The challenge is how to make Web sources available within the Semantic
Web without the laborious process of manually labeling each fact or converting
each source into a Semantic Web Service. Converting an existing Web service
into a Semantic Web Service requires significant effort and must be repeated for
each new data source. We have developed an alternative approach that starts
with an existing set of known sources and their descriptions, and then goes on to
automatically discover new sources and turn them into Semantic Web Services
for use in the Semantic Web.

The system starts with a set of example sources and their semantic descrip-
tions. These sources could be Web services with well-defined inputs and outputs
or even Web forms that take a specific input and generate a result page as the
output. The system is then tasked with finding additional sources that are simi-
lar, but not necessarily identical, to the known source. For example, the system

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 17–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 J.L. Ambite et al.

may already know about several weather sources and then be given the task of
finding new ones that provide additional coverage for the world. To do this it
must build a semantic description of these new weather sources to turn them
into Semantic Web Services. In general, the type of source that we focus on in
this paper are information-producing sources where there is a web form that
takes one or more input values and produces a result page that has the same
format across all output pages. We have found that this type of source is much
more common than Web services.

The overall problem can be broken down into the following subtasks. First,
given an example source, find other similar sources. Second, once we have found
such a source, extract data from it. For a web service, this is not an issue, but
for a Web site with a form-based interface, the source might simply return an
HTML page from which the data has to be extracted. Third, given the syntactic
structure of a source (i.e., the inputs and outputs), identify the semantics of the
inputs and outputs of that source. Fourth, given the inputs and outputs, find
the function that maps the inputs to the outputs. Finally, given the semantic
description, construct a wrapper that turns the source into a Semantic Web
Service that can be directly integrated into the Semantic Web.

In previous work we have developed independent solutions to each of these
subtasks. Here, we describe the integration of these separate components into a
single unified approach to discover, extract from, and semantically model new
online sources. In the previous work each of these components made assumptions
that were not consistent with the other components. We had to address these
issues to build an end-to-end system. This work provides the first general ap-
proach to automatically discovering and modeling new sources of data. Previous
work, such as the ShopBot system [16], did this in a domain-specific way where
a significant amount of knowledge was encoded into the problem (e.g., shopping
knowledge in the case of ShopBot).

In this paper we present Deimos, a system that provides an end-to-end ap-
proach to discovering and building Semantic Web Services. First, we review the
previous work on which the system is built (Section 2). Second, we describe the
architecture of Deimos (Section 3), and describe how we built on the previous
work to discover new sources (Section 3.1), invoke and extract data from the
discovered sources (Section 3.2), semantically type the inputs and outputs of
these sources (Section 3.3), semantically model the function performed by these
sources (Section 3.4), and then use this semantic model to turn the web source
into a Semantic Web Service (Section 4). Third, we present results of an end-to-
end evaluation in five different information domains, where the only input to the
system is an example of a source in that domain and a semantic description of
that source (Section 5). Finally, we compare with related work (Section 6) and
conclude with a discussion and directions for future research (Section 7).

2 Prior Work

In previous work, we have developed the core technologies used by the inte-
grated system. Plangprasopchok & Lerman [15] developed an automatic source

Automatically Constructing Semantic Web Services from Online Sources 19

discovery method that mines a corpus of tagged Web sources from the social
bookmarking site del.icio.us to identify sources similar to a given source. For
example, given a weather service that returns current weather conditions at a
specified location, the method can identify other weather services by exploiting
the tags used to describe such sources on del.icio.us. Tags are keywords from
an uncontrolled personal vocabulary that users employ to organize bookmarked
Web sources on del.icio.us. We use topic modeling techniques [4,10] to identify
sources whose tag distribution is similar to that of the given source.

Gazen & Minton [7] developed an approach to automatically structure Web
sources and extract data from them without any previous knowledge of the
source. The approach is based on the observation that Web sources that generate
pages dynamically in response to a query specify the organization of the page
through a page template, which is then filled with results of a database query.
The page template is therefore shared by all pages returned by the source. Given
two or more sample pages, we can derive the page template and use it to auto-
matically extract data from the pages.

Lerman et al. [13] developed a domain-independent approach to semantically
label online data. The method learns the structure of data associated with each
semantic type from examples of that type produced by sources with known
models. The learned structure is then used to recognize examples of semantic
types from previously unknown sources.

Carman and Knoblock [5] developed a method to learn a semantic descrip-
tion of a source that precisely describes the relationship between the inputs
and outputs of a source in terms of known sources. This is done as a logi-
cal rule in a relational query language. A data integration system can then
use these source descriptions to access and integrate the data provided by the
sources [14].

3 End-to-End Discovery, Extraction, and Modeling

The overall architecture of the Deimos system is shown in Figure 1. Deimos
starts with a known source and background knowledge about this source. It then
invokes each module to discover and model new related sources. Our techniques
are domain-independent, but we will illustrate them with examples from the
weather domain.

The background knowledge required for each domain consists of the semantic
types, sample values for each type, a domain input model, the known sources
(seeds), and the semantic description of each seed source. For the weather do-
main, the background knowledge consists of: (1) Semantic types: e.g., TempF,
Humidity, Zip; (2) Sample values for each type: e.g., “88 F” for TempF, and
“90292” for Zip; (3) Domain input model: a weather source may accept Zip

or a combination of City and State as input; (4) Known sources (seeds): e.g.,
http://wunderground.com; (5) Source descriptions: specifications of the function-
ality of the source in a formal language of the kind used by data integration

20 J.L. Ambite et al.

discovery
invocation
& extraction

source
modeling

Background
knowledge
BackgroundBackground
knowledgeknowledge•seed source

anotherWSunisys

unisys

•sample
input
values

http://wunderground.com

“90254”

•patterns

unisys(Zip,Temp,Humidity,…)

•definition of known
sources (e.g., seed)
•sample values

unisys(Zip,Temp,…)
:-weather(Zip,…,Temp,Hi,Lo)

semantic
typing

Fig. 1. Deimos system architecture

systems. For example, the following Local-as-View [14] Datalog rule1 specifies
that wunderground returns current weather conditions and five day forecast for a
given zip code:

wunderground($Z,CS,T,F0,S0,Hu0,WS0,WD0,P0,V0,

FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,FL4,FH4,S4,FL5,FH5,S5) :-

weather(0,Z,CS,D,T,F0,_,_,S0,Hu0,P0,WS0,WD0,V0)

weather(1,Z,CS,D,T,_,FH1,FL1,S1,_,_,_,_,_),

weather(2,Z,CS,D,T,_,FH2,FL2,S2,_,_,_,_,_),

weather(3,Z,CS,D,T,_,FH3,FL3,S3,_,_,_,_,_),

weather(4,Z,CS,D,T,_,FH4,FL4,S4,_,_,_,_,_),

weather(5,Z,CS,D,T,_,FH5,FL5,S5,_,_,_,_,_).

which has an input attribute (denoted by “$”) Z (of type Zip) and outputs
CS (CityState), T (Time), FHi and FLi high and low temperatures in Farenheit
degrees (TempInF) on the ith forecast day (0= today, 1= tomorrow, . . .), D (Date),
S (Sky conditions), Hu (Humidity), WS (Wind speed in MPH), WD (WindDirection),
P (Pressure in inches), and V (Visibility in miles). The semantics of the source are
specified by the conjunctive formula in the body of the rule that uses predicates
from a domain ontology (weather() in this example).
1 We use the usual rule syntax for LAV rules common in the data integration literature.

However, logically this rule should be interpreted as:

wunderground(. . .) → weather(. . .) ∧ weather(. . .) ∧ . . .

This means that every tuple from wunderground satisfies the formula over the do-
main predicates (weather), but not viceversa. That is, the source is not complete.

Automatically Constructing Semantic Web Services from Online Sources 21

Deimos first uses the discovery module to identify sources that are likely to
provide functionality similar to the seed. Once a promising set of target sources
has been identified, Deimos uses the invocation and extraction module to de-
termine what inputs are needed on Web forms and how to extract the returned
values. Deimos then invokes the semantic typing module to automatically infer
the semantic types of the output data. Once Deimos constructs a type signa-
ture for a new source, it then invokes the source modeling module to learn its
source description. We will describe each of these modules in turn, along with
the challenges in building an end-to-end solution.

3.1 Source Discovery

This module identifies sources likely to provide functionality similar to the seed.
Deimos first collects popular tags annotating the seed from the social bookmark-
ing site del.icio.us. As of October 2008, http://wunderground.com has been tagged
by over 3200 people. Among popular tags are useful descriptors of the service:
“weather,” “forecast,” and “meteo.” Next, Deimos retrieves all other sources
that were annotated with those tags on del.icio.us. By analogy to document topic
modeling, we view each source as a document, and treat the tags created by
users who bookmarked it as words.

The system uses Latent Dirichlet Allocation (LDA) [4] to learn a compressed
description, or ‘latent topics’, of tagged sources [17]. The learned topics form the
basis for comparing similarity between sources. If a source’s topic distribution is
similar to the seed’s, it is likely to have similar functionality. We rank retrieved
sources according to their similarity to the seed and pass the 100 top-ranked
sources to the next module. In the weather domain, among sources similar to
http://wunderground.com are weather sources such as http://weather.yahoo.com and
http://weather.unisys.com

3.2 Source Invocation and Extraction

To retrieve data from the discovered Web sources, Deimos has to figure out
how to invoke the source. These sources typically use standard HTML forms for
input and return a result page. During the invocation step, Deimos analyzes the
sources’s document model and extracts forms and form elements. For each of the
forms, Deimos identifies the input fields, which can be text (input) or menu (se-
lect) fields. Deimos relies on background knowledge to constrain the search for
valid inputs. The background knowledge contains information about the typical
input types expected by sources in the domain and sample values for each input
type: e.g., weather sources expect zipcodes or city and state combinations, while
mutual funds sources typically expect a fund symbol as input.

Deimos uses a brute force approach, trying all permutations of input types in
the input form’s fields. We do allow for optional input fields, leaving some input
fields blank. Since our domains generally have only a small number of possible
input types, the combinatorics of the brute force approach are manageable. How-
ever, some types of sources, such as hotel booking sites, had so many possible

22 J.L. Ambite et al.

form inputs that searching all combinations of possible inputs was intractable.
We believe the solution to this problem is to exploit more of the context infor-
mation on the form, such as the form label and variable name to narrow the
possible inputs to each field. This will be a direction for future work so that we
will be able to model information domains that have more numerous input fields
in the forms.

Deimos repeatedly invokes the source with the different permutations of do-
main input values, looking for a set of mappings that yields results pages from
which it can successfully extract data.

Next, Deimos extracts data from pages returned by the source in response
to a query. For this, Deimos uses the Autowrap algorithm, described in [7],
which exploits the regularity of dynamically generated pages. It assumes that the
organization of dynamically generated page is specified through a page template
that is shared by all pages returned by the source. Given two or more sample
pages, we can derive the page template and use it to extract data from the pages.

A template is a sequence of alternating stripes and slots. Stripes are the com-
mon substrings and slots are placeholders for data. Autowrap uses the Longest
Common Subsequence algorithm to induce a template from sample pages. The
common substrings are the template stripes and the gaps between stripes are the
slots. Given snippets from two pages, “HI:65
LO:50” and “HI:73
LO:61”, it
induces the template “HI:*
LO:*” where “*” marks a slot. The induced tem-
plate can be used to extract data from new pages that share the same template.
This involves locating the stripes of the template on the new page. Substrings
that lie between the stripes are extracted as field values. Applying the template
above to the snippet “HI:50
LO:33” results in two values: “50” and “33”.

We modified the basic approach described above to deal with the challenges
encountered while integrating the technology within Deimos. One extraction
problem we encountered was that some of the strings that were useful for disam-
biguating data values, such as units on numbers, ended up being considered part
of the page template by Autowrap. Consider, for example, a temperature value
of ‘10 C’ and a wind speed value of ‘10 mph’, which look very similar once you
remove the units. The extraction module finds strings that change across pages,
and in structured sources such as these, the units will not be extracted because
they rarely change. Since units are typically a single token that comes imme-
diately following the value, we built a post-processor that generated additional
candidates for semantic typing that included tokens that were most likely to cap-
ture unit information or other context. This is done by checking the document
object model (DOM) of the page and appending tokens immediately following a
value if it occurs at the same level in the DOM tree, which means that it likely
occurs immediately after the value on the page. For ‘10 mph’, the system would
generate both ‘10’ and ‘10 mph’ and the next step would attempt to determine
the semantic type of each of them.

Another challenge was that for seemingly minor variations across pages, there
were significant difference in the page structure, which prevented the system
from finding the page template. An example of this was in a weather source

Automatically Constructing Semantic Web Services from Online Sources 23

where some of the cities had a weather advisory on the page. This resulted in
a different underlying DOM structures and Autowrap failed to find the shared
portion of the structure. To address this problem requires searching a much
larger space to find the page template, so for the current set of results Deimos
fails on some sources that should be learnable.

3.3 Semantic Typing of Sources

This module semantically types data extracted from Web sources using the ap-
proach described in [13]. This approach represents the structure of a data field
as a sequence of tokens and syntactic types, called a pattern [12]. The syn-
tactic types, e.g., alphabetic, all-capitalized, numeric, one-digit, have regular
expression-like recognizers. The patterns associated with a semantic type can
be efficiently learned from example values of the type, and then used to recog-
nize instances of a semantic type by evaluating how well the patterns describe
the new data. We developed a set of heuristics to evaluate the quality of the
match. These heuristics include how many of the learned patterns match data,
how specific they are, and how many tokens in the examples are matched [13].

The output of this module is a semantically typed signature of a source with
its input and output parameters assigned to semantic types in the domain. For
example, a subset of the type signature learned for source weather.unisys.com is:

unisys($Zip,TempF,TempC,Sky,Humidity, ...)

The most significant challenge encountered in this module is that the typing
component did not always have enough information to distinguish between two
alternative types and chose the incorrect one. We plan to improve the semantic
typing by using additional features of the values, such as numeric ranges, which
will allow the system to make finer-grained semantic-typing distinctions.

3.4 Source Modeling

The typed input/output signature of a new source offers only a partial descrip-
tion of the source’s behavior. What we need is a semantic characterization of
its functionality—the relationship between its input and output parameters. We
use the approach described in Carman & Knoblock [5] to learn a Local-as-View
(LAV) description of the source (a Datalog rule) [14]. We illustrate the main
ideas of the inference algorithm using our running example.

Consider the following conjunctiveLAV source description for weather.unisys.com:

unisys($Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0,

FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,FL4,FH4,S4,FL5,FH5,S5):-

weather(0,Z,CS,D,T,F0,_,_,S0,Hu0,P0,WS0,WD0,V0)

weather(1,Z,CS,D,T,_,FH1,FL1,S1,_,_,_,_,_),

weather(2,Z,CS,D,T,_,FH2,FL2,S2,_,_,_,_,_),

weather(3,Z,CS,D,T,_,FH3,FL3,S3,_,_,_,_,_),

weather(4,Z,CS,D,T,_,FH4,FL4,S4,_,_,_,_,_),

weather(5,Z,CS,D,T,_,FH5,FL5,S5,_,_,_,_,_),

centigrade2farenheit(C0,F0).

24 J.L. Ambite et al.

A domain model/ontology (consisting of predicates weather and centigrade2farenheit

in the example) assigns precise semantics to sources (such as unisys) in an appli-
cation domain.

The Source Modeling module of Deimos learns these definitions by combining
known sources to emulate the input/output values of a new unknown source. For
the weather domain, the system already knows the description of wunderground
(cf. Section 3) and the following temperature conversion service:

convertC2F($C,F) :- centigrade2farenheit(C,F)

Using these known sources, the system learns the following join, which describes
some of the input/output values of the previously unknown unisys source:

unisys($Z,_,_,_,_,_,_,_,F9,_,C,_,F13,F14,Hu,_,F17,_,_,_,_,

S22,_,S24,_,_,_,_,_,_,_,_,_,_,S35,S36,_,_,_,_,_,_,_,_,_) :-

wunderground(Z,_,_,F9,_,Hu,_,_,_,_,F14,F17,S24,_,_,S22,_,_,

S35,_,_,S36,F13,_,_),

convertC2F(C,F9)

Replacing the known sources, wunderground and convertC2F, by their definitions
yields a version of the above LAV source description for unisys (cf. Section 4 for
a Semantic Web version of this source description).

Learning this definition involves searching the space of possible hypotheses
(Datalog conjunctive rules) that could explain the observed inputs and outputs.
Deimos uses an approach based on Inductive Logic Programming to enumerate
the search space in an efficient, best-first manner and finds the most specific
rule that best explains the observed data. During this search the system uses
the learned semantic types (for the unknown source) and the already known
types of the background sources to prune candidate hypotheses. The system
considers only conjunctive queries that join on variables of compatible types.

Deimos evaluates each candidate hypothesis (conjunctive query) over a set
of sample input tuples, generating a set of predicted output tuples. It then com-
pares the generated output tuples with those actually produced by the source
being modeled to see if the predicted and actual outputs are similar. As part
of its background knowledge, Deimos associates a similarity function with each
semantic type. For numbers, the similarity is an absolute or a relative (percent)
difference. For text fields, it uses string similarity metrics (e.g., Levenshtein
distance). Deimos uses the Jaccard similarity to rank different hypotheses ac-
cording to the amount of overlap between the predicted output tuples and the
observed ones. For some types we found a large variation in the values returned
for the same inputs by different sources. In the weather domain, for example,
the temperature and humidity values reported for the same location had a high
variance. We had to allow for larger differences in the similarity function used
by the source modeling module in order to discover any matches on these fields.

We encountered several challenges when integrating the source modeling com-
ponent within Deimos. First, there are often synonyms for values that are critical
to invoking sources and comparing resulting values. For example, in the flight
domain some sources take the airline name as input and others the corresponding

Automatically Constructing Semantic Web Services from Online Sources 25

3-letter airline code. We addressed the problem of synonyms and functionally-
equivalent values by providing synonym mapping tables as additional sources
that can be used in the source modeling step.

The second challenge is that sometimes closely-related attributes would be
typed incorrectly due to precision errors on the values. For example, in the
weather domain the forecast for the high temperature on the 3rd day would
get confused with the high temperature for the 5th day. The problem arose
because the 3rd-day and 5th-day high temperature values were very close for the
set of sample input cities. This problem can be addressed by using additional
input examples that can disambiguate between the attributes. However, a larger
number of examples sometimes entails a greater variability of the resulting pages,
which makes the extraction task harder (e.g., recall the page structure change
due to weather advisory events discussed in Section 3.2).

4 Automatically Building Semantic Web Services

After the source modeling phase, Deimos constructs a semantic web service
(SWS) encapsulating the discovered web source. The SWS accepts RDF input
and produces RDF output according to the domain ontology. Internally, the SWS
calls the discovered web form using the input values from the input RDF to the
semantic web service. It then extracts the data from the resulting HTML using
the learned page template (cf. Section 3.2). The output data obtained by applying
the page template is filtered according to the learned source description (cf.
Section 3.4). In this way the system is certain of the semantics of the extracted
values. Finally, the extracted values are converted to RDF according to the
specification of the source description.

We describe the construction of the semantic web service using our running
unisys weather source example. For brevity and convenience earlier in the paper,
we have used a domain model with n-ary predicates (such as weather()). However,
since we are interested in producing RDF-processing semantic web services, in
our source descriptions we actually use a domain ontology composed of unary
and binary predicates, which can be straightforwardly translated to RDF. For
example, the definition for wunderground is:

wunderground($Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0,

FL1,FH1,S1,FL2,FH2,S2,FL3,FH3,S3,FL4,FH4,S4,FL5,FH5,S5) :-

Weather(@w0),hasForecastDay(@w0,0),hasZIP(@w0,Z),hasCityState(@w0,CS),

hasTimeWZone(@w0,T),hasCurrentTemperatureFarenheit(@w0,F0),

hasCurrentTemperatureCentigrade(@w0,C0),hasSkyConditions(@w0,S0),

hasHumidity(@w0,Hu0),hasPressure(@w0,P0),hasWindSpeed(@w0,@ws1),

WindSpeed(@ws1),hasWindSpeedInMPH(@ws1,WS0),hasWindDir(@ws1,WD0),

hasVisibilityInMi(@w0,V0),

Weather(@w1),hasForecastDay(@w1,1),hasZIP(@w1,Z),hasCityState(@w1,CS),

hasLowTemperatureFarenheit(@w1,FL1),hasHighTemperatureFarenheit(@w1,FH1),

hasSkyConditions(@w1,S1), ...

26 J.L. Ambite et al.

Thus, the RDF-like source description learned for unisys (cf. Section 3.4) is:

unisys($Z,_,_,_,_,_,_,_,F9,_,C,_,F13,F14,Hu,_,F17,_,_,_,_,

S22,_,S24,_,_,_,_,_,_,_,_,_,_,S35,S36,_,_,_,_,_,_,_,_,_) :-

Weather(@w0),hasForecastDay(@w0,0),hasZIP(@w0,Z),

hasCurrentTemperatureFarenheit(@w0,F9),centigrade2farenheit(C,F9),

hasCurrentTemperatureCentigrade(@w0,C),hasHumidity(@w0,Hu0),

Weather(@w1),hasForecastDay(@w1,1),hasZIP(@w1,Z),hasCityState(@w1,CS),

hasTimeWZone(@w1,T),hasLowTemperatureFarenheit(@w1,F14),

hasHighTemperatureFarenheit(@w1,F17),hasSkyConditions(@w1,S24),

Weather(@w2),hasForecastDay(@w2,2),hasZIP(@w2,Z),hasSkyConditions(@w2,S22),

Weather(@w3),hasForecastDay(@w3,3),hasZIP(@w3,Z),hasSkyConditions(@w3,S35),

Weather(@w4),hasForecastDay(@w4,4),hasZIP(@w4,Z),hasSkyConditions(@w4,S36),

Weather(@w5),hasForecastDay(@w5,5),hasZIP(@w5,Z),

hasLowTemperatureFarenheit(@w5,F13).

°

°

Fig. 2. Results from invoking the Semantic Web Ser-
vice generated for the Unisys source

This rule means that given
an RDF object Z (of type zip)
as input, the SWS gener-
ated by Deimos produces
as output an RDF graph
consiting of 6 new objects
(@w0 . . . @w5) with literals
for some of their properties
as extracted from the web
form. For example, the learned
SWS for unisys produces the
current temperature in centi-
grade and farenheit degrees,
as well as the low temperature
of the fifth forecast day among other data. Note that all of the weather forecast
objects refer to the same zip code. This learned source description can be seen as
a lifting rule à la SA-WSDL [11]. Figure 2 illustrates the input/output behaviour
of the unisys SWS. The input RDF instance is the 90292 zip (shown with diagonal
shading) and the output RDF graph of weather objects (solid shading).

5 Results on Discovering and Modeling New Services

We performed an end-to-end evaluation of Deimos on the geospatial, weather,
flight, currency converter, and mutual fund domains. The seeds for these domains
are, respectively: geocoder.us, which returns geographic coordinates of a specified
address; wunderground.com, which returns weather conditions for a specified loca-
tion; flytecomm.com, which returns the status of a specified flight; xe.com, which
converts amounts from one currency to another based on conversion rates; and
finance.yahoo.com, which provides information about mutual funds.

Deimos starts by crawling del.icio.us to gather sources possibly related to each
seed according to the following strategy. For each seed we (i) retrieve the 20 most
popular tags that users applied to this resource; (ii) for each of the tags, retrieve

Automatically Constructing Semantic Web Services from Online Sources 27

0

10

20

30

40

50

60

70

80

90

100

Flight Geospatial Weather Currency MutualFunds

N
um

be
r

of
U

RL
s

Discovery
Extraction
Typing
Modeling

Fig. 3. URL filtering by module for all domains

other sources that have been annotated with that tag; and (iii) collect all tags
for each source. We removed low (< 10) and high (> 10, 000) frequency tags,
and applied LDA, with the number of topics fixed at 80 to learn the hidden
topics in each domain. We then ranked sources according to how similar their
topic distributions are to the seed.

The 100 top-ranked URLs from the discovery module are passed to the in-
vocation & extraction module, which tries to (1) recognize the form input pa-
rameters and calling method on each URL, and (2) extract the resulting output
data. For the successful extractions, the semantic typing module, produces a
typed input/ouput signature that allows Deimos to treat the web sources as
web services. Finally, for each typed service, the source modeling module learns
the full semantic description. In these experiments, Deimos invoked each target
source with 10–30 sample inputs.

Figure 3 shows the number of target sources returned by each Deimos
module.2 The Invocation & Extraction module provides very little filtering be-
cause it is often able to build a template, even in cases where there is no useful
data to extract. This happens in some cases when it turns out that the site re-
ally is not a good domain source. It can also occur if sample pages from the site
have some differences in the DOM structure that cannot be handled with our cur-
rent heuristics (for example, a weather source which dynamically inserts a severe
weather alert into results for some queries). In these cases, the extracted data of-
ten contains chunks of HTML that the Source Typing module cannot recognize.

The Semantic Typing and Semantic Modeling modules provide most of the
filtering. The Semantic Typing filters a source if it cannot recognize any semantic
types other than the input types (which often appear in the output). The Source

2 Note that we started with only 99 sources for the currency domain because one source
was dropped from the experiments at the request of a site administrator.

28 J.L. Ambite et al.

Table 1. Confusion matrices (A=Actual, P=Predicted, T=True, F=False) for each do-
main associated with (a) the top-ranked 100 URLs produced by the discovery module,
and (b) for the descriptions learned by the semantic modeling module

Geospatial Weather Flight Currency Mutual funds

PT PF
AT 8 8
AF 8 76

PT PF
AT 46 15
AF 15 24

PT PF
AT 4 10
AF 10 76

PT PF
AT 56 15
AF 15 14

PT PF
AT 21 16
AF 16 47

(a) Source Discovery

Geospatial Weather Flight Currency Mutual funds

PT PF
AT 2 0
AF 0 6

PT PF
AT 15 4
AF 8 14

PT PF
AT 2 0
AF 5 6

PT PF
AT 1 10
AF 0 0

PT PF
AT 17 4
AF 8 26

(b) Source Modeling

Modeling filters a source it fails to build a model that describes any of the
source outputs. The primary reasons for failing to find a source model are one
of following: (a) the source was not actually a domain source, (b) the semantic
typing module learned an incorrect type signature, (c) the source extraction
module extracted extraneous text following the extracted data value, or (d)
there was a mismatch in the attribute values.

We use two check-points, at the first and last module’s output, to evaluate the
system by manually checking the retained URLs. We judge the top-ranked 100
URLs produced by the discovery module to be relevant if they provide an input
form that takes semantically-similar inputs as the seed and returns domain-
relevant outputs. The geospatial had n = 16 relevant sources, weather n = 61,
flight n = 14, currency n = 71 and mutual funds n = 37.

Table 1(a) shows the confusion matrices associated with the top-ranked 100
sources in each domain. The numbers in the column PT show how many of the
top-ranked n sources were relevant (AT) and not relevant (AF) to the domain
in question. The R-precision3 for each domain is 50%, 75%, 29%, 79%, and 57%,
respectively (with the same recall values). Although there is a similar number
of geospatial and flight sources, there were twice as many relevant geospatial
sources (measured by R-precision) among the top-ranked results compared to
the flight sources. We suspect that the reason for this is less consistency in the
vocabulary of users tagging the flight sources.

At the second check-point, we count the services for which Deimos learned a
semantic description. Table 1(b) presents confusion matrices for this test. In
the geospatial domain Deimos learned source descriptions for 2 out of the
8 semantically-typed sources, namely geocoder.ca and the seed. We manually
checked the remaining 6 sources and found out that although some were related
to geospatial topics, they were not geocoders. Similarly, in the weather domain
3 R-precision is the precision of the n top-ranked sources, where n is the number of

relevant sources in our set of 100 sources.

Automatically Constructing Semantic Web Services from Online Sources 29

Table 2. Precision, Recall and F1-measure for actual sources in each domain for which
Deimos learned descriptions

domain Precision Recall F1-measure
weather 0.64 0.29 0.39

geospatial 1.00 0.86 0.92
flights 0.69 0.35 0.46

currency 1.00 1.00 1.00
mutualfund 0.72 0.30 0.42

Deimos correctly identified 15 relevant (true positives) and 14 not relevant (true
negatives) sources; it failed to recognize 4 weather sources and proposed de-
scriptions for 8 sources that were not actual weather sources. The false positives
(where the system found a description for a non-weather source) consisted of
very short descriptions with only a few attributes modeled. These were the re-
sult of invoking a search form, which returned the input, and one of the numeric
values on the page randomly matched a seed attribute with a weak pattern for
its semantic type. In the currency domain, Deimos learned the description of
one source accurately. It failed to learn description for most of the other sources
because the resultant currency value after conversion could not be extracted
from them because of their use of Javascript to perform the conversions with-
out generating a new result page. In the mutualfund domain, Deimos correctly
learned source descriptions for 17 sources. There were 8 sources that were in-
correctly identified to be from this domain (false positives) because their forms
returned a result page where the reported time taken to process the query (e.g.,
0.15 s) was incorrectly typed as the change in net value of the fund over a day.

We are ultimately interested in learning logical source descriptions, not just
identifying sources input/ouputs types. Therefore, we evaluated the quality of
the learned semantic source descriptions. We do this by comparing the learned
description to the model a human expert would write for the source. We report
precision (how many of the learned attributes were correct), and recall (how
many of the actual attributes were learned). The average precision, recall, and
F1-measure for the attributes in the source descriptions learned by Deimos for
actual services in each domain are shown in Table 2. As an example of our
evaluation methodology consider the description learned for geocoder.ca:

geocoder.ca(A,_,SA,_,Z,S,_,La,Lo) :- geocoder.us(A,S,C,SA,Z,La,Lo).

with attributes A (of semantic type Address), S (Street), C (City), SA (State),
Z (ZIP), La (Latitude), and Lo (Longitude). Manually verifying the attributes of
geocoder.ca yields a precision of 100% (6 correct attributes out of 6 learned) and
recall of 86% (6 correct out of 7 present in the actual source). Similarly, the
conjunctive source description learned for unisys.com, which is shown in Section
3.4, has a precision of 64% (7/11) and a recall of 29% (7/24).

We used strict criteria to judge whether a learned attribute was correct. In
one case, for example, the semantic typing component mistakenly identified the
field containing flight identifiers such as “United 1174” as Airline, which led to

30 J.L. Ambite et al.

a description containing the Airline attribute. We labeled this attribute as not
correct, even though the first component was the airline name. In the weather
domain, Deimos incorrectly labeled the 3rd-day forecast as a 5th-day forecast,
because the values of these attributes were sufficiently close. Learning using more
sample inputs would reduce the chance of a fortuitous value match.

Overall, we consider these results quite promising. Deimos was able to dis-
cover Web sources, convert them into programmatically accessible services and
learn semantic descriptions of these services in a completely automated fashion.
We would like to improve the precision and recall of the learned source models
and we believe this can be done largely by improving the semantic typing module
and learning over more data.

6 Related Work

Early work on learning semantic descriptions of Internet sources was the category
translation problem of Perkowitz et al. [16]. That problem can be seen as a
simplification of the source induction problem, where the known sources have
no binding constraints or definitions and provide data that does not change over
time. Furthermore, it is assumed that the new source takes a single value as input
and returns a single tuple as output. There has also been a significant amount of
work on extracting and labeling data found on structured web pages (e.g., the
work on Lixto [2]), but this work assumes that a user provides examples of the
data to extract and a label for the extracted data, while the approach in this
paper requires no labeling.

More recently, there has been work on classifying web services into different
domains [8] and on clustering similar services [6]. These techniques can indicate
that a new service is likely a weather service based on similarity to other weather
services. This knowledge is useful for service discovery, but too abstract for
automating service integration. We learn more expressive descriptions of web
services—view definitions that describe how the attributes of a service relate to
one another. Hess & Kushmerick [9] developed an approach that helps users to
semantically annotate Web services for data integration. It uses an ensemble of
classifiers to predict how various elements of the WSDL should be annotated.
The goal of this work is similar, but we handle the more general problem of
supporting web sources and our approach works in a completely unsupervised
fashion.

Within the bioinformatics space, where web services are widely used, there is
a pressing need to build semantic descriptions of existing bioinformatics services.
Belhajjame et al. [3] exploit the fact that many of these Web services have been
composed into workflows and the connections in the parameters of the workflows
can be used to infer constraints on the semantic types of the inputs and outputs of
each of these Web services. This is a clever way to infer semantics for Web service
parameters, but this method does not provide a complete semantic description
of a Web service. Afzal et al. [1] developed an NLP-based approach to learning
descriptions of bioinformatics Web services that attempts to extract both the

Automatically Constructing Semantic Web Services from Online Sources 31

type and the function performed by a service. This approach can provide broad
coverage since it can be applied to a wide variety of services, however, it can only
provide a high level classification of services (e.g., algorithm, application, data,
etc.) and a limited description of the function. In contrast, the goal of Deimos is
to build a semantic description that is sufficiently detailed to support automatic
retrieval and composition.

7 Conclusion

We presented a completely automatic approach to discover new online sources,
invoke and extract the data from those sources, learn the semantic types of their
inputs and outputs, and learn a semantic description of the function performed
by the source. These results allow us to turn an online source into a Semantic
Web Service. We also presented empirical results showing that the system can
learn semantic models for previously unknown sources. Our approach is general
and only requires a small amount of background knowledge for each domain.
This work makes it possible to automatically take existing online sources and
make them available for use within the Semantic Web.

A limitation of the current work is that it can only learn a new source if it
already has models of sources that contain the same information. In future work,
we plan to learn models of sources that cover information for which the system
has no previous knowledge. In particular, we will focus on learning models of
sources for which the current system can already learn partial models. For exam-
ple, the system might only learn a small subset of the attributes of a particular
source. We plan to develop an approach that can learn new semantic types (e.g.,
barometric pressure), new attributes (e.g., 10th-day forecasted high tempera-
ture), new relations that convert between new semantic types and known types
(e.g., converting Fahrenheit to Celsius; converting state names to two-letter ab-
breviations), and learning more accurate descriptions of the domain and ranges
of sources (e.g., distinguishing between a weather source that provides informa-
tion for the US versus one that provides information for the world). The ability
to learn models of sources that go beyond the current knowledge within a system
will greatly expand the range of sources that the system can discover and model
automatically.

Acknowledgments

We would like to thank Mark Carman, Cenk Gazen, Jeonhyung Kang, Steve
Minton, Maria Muslea, and Anon Plangprasopchok for their contributions to
the system and ideas presented in this paper. This research is based upon work
supported in part by the National Science Foundation under award numbers
IIS-0324955 and CMMI-0753124, in part by the Air Force Office of Scientific
Research under grant number FA9550-07-1-0416, and in part by the Defense
Advanced Research Projects Agency (DARPA) under Contract No. FA8750-07-
D-0185/0004.

32 J.L. Ambite et al.

References

1. Afzal, H., Stevens, R., Nenadic, G.: Mining semantic descriptions of bioinformatics
web services from the literature. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 535–549. Springer, Heidelberg (2009)

2. Baumgartner, R., Flesca, S., Gottlob, G.: Declarative information extraction, web
crawling, and recursive wrapping with lixto. In: Eiter, T., Faber, W., Truszczyński,
M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 21–41. Springer, Heidelberg
(2001)

3. Belhajjame, K., Embury, S.M., Paton, N.W., Stevens, R., Goble, C.A.: Automatic
annotation of web services based on workflow definitions. ACM Trans. Web 2(2),
1–34 (2008)

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

5. Carman, M.J., Knoblock, C.A.: Learning semantic definitions of online information
sources. Journal of Artificial Intelligence Research (JAIR) 30, 1–50 (2007)

6. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity search for
web services. In: Proceedings of VLDB (2004)

7. Gazen, B., Minton, S.: Autofeed: an unsupervised learning system for generat-
ing webfeeds. In: KCAP 2005: Proceedings of the 3rd international conference on
Knowledge capture, pp. 3–10. ACM, New York (2005)

8. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to Web services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 258–273. Springer, Heidelberg (2003)

9. Heß, A., Kushmerick, N.: Iterative ensemble classification for relational data: A case
study of semantic web services. In: Boulicaut, J.-F., Esposito, F., Giannotti, F.,
Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 156–167. Springer,
Heidelberg (2004)

10. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of UAI, pp. 289–296
(1999)

11. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for
WSDL and XML schema. IEEE Internet Computing 11(6), 60–67 (2007)

12. Lerman, K., Minton, S., Knoblock, C.: Wrapper maintenance: A machine learning
approach. Journal of Artificial Intelligence Research 18, 149–181 (2003)

13. Lerman, K., Plangprasopchok, A., Knoblock, C.A.: Semantic labeling of online
information sources. International Journal on Semantic Web and Information Sys-
tems, Special Issue on Ontology Matching 3(3), 36–56 (2007)

14. Levy, A.Y.: Logic-based techniques in data integration. In: Minker, J. (ed.) Logic-
Based Artificial Intelligence. Kluwer Publishers, Dordrecht (2000)

15. Plangprasopchok, A., Lerman, K.: Exploiting social annotation for resource dis-
covery. In: AAAI workshop on Information Integration on the Web, IIWeb 2007
(2007)

16. Perkowitz, M., Doorenbos, R.B., Etzioni, O., Weld, D.S.: Learning to understand
information on the Internet: An example-based approach. Journal of Intelligent
Information Systems 8, 133–153 (1999)

17. Plangprasopchok, A., Lerman, K.: Modeling social annotation: a bayesian ap-
proach. Technical report, Computer Science Department, University of Southern
California (2009)

Exploiting User Feedback to Improve
Semantic Web Service Discovery

Anna Averbakh, Daniel Krause, and Dimitrios Skoutas

L3S Research Center
Hannover, Germany

{averbakh,krause,skoutas}@l3s.de

Abstract. State-of-the-art discovery of Semantic Web services is based
on hybrid algorithms that combine semantic and syntactic matchmak-
ing. These approaches are purely based on similarity measures between
parameters of a service request and available service descriptions, which,
however, fail to completely capture the actual functionality of the ser-
vice or the quality of the results returned by it. On the other hand, with
the advent of Web 2.0, active user participation and collaboration has
become an increasingly popular trend. Users often rate or group relevant
items, thus providing valuable information that can be taken into account
to further improve the accuracy of search results. In this paper, we tackle
this issue, by proposing a method that combines multiple matching crite-
ria with user feedback to further improve the results of the matchmaker.
We extend a previously proposed dominance-based approach for service
discovery, and describe how user feedback is incorporated in the match-
making process. We evaluate the performance of our approach using a
publicly available collection of OWL-S services.

1 Introduction

Web services have emerged as a key technology for implementing Service Ori-
ented Architectures, aiming at providing interoperability among heterogeneous
systems and integrating inter-organization applications. At the same time, users
increasingly use the Web to search not only for pages or other multimedia re-
sources, but also to find services for fulfilling a given task. For example, a service
typically either returns some information to the user, such as a weather forecast
for a given location and time period, or it performs some task, such as flight book-
ing for a given date, departure and destination. Hence, as both the user needs
and the number of available services and service providers increases, improving
the effectiveness and accuracy of Web service discovery mechanisms becomes a
crucial issue.

A Web service description is a document written in a formal, standardized
language, providing information about what the service does and how it can
be used. Given a service request, expressed as the description of a desired ser-
vice, the task of matchmaking refers to identifying and selecting from a service
repository those services whose description closely matches the request, under

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 33–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

34 A. Averbakh, D. Krause, and D. Skoutas

one or more matching criteria. Typically, the matchmaking process is based
on computing a degree of match between the parameters of the requested and
advertised service, which may include both functional parameters (i.e., inputs,
outputs, pre-conditions, and effects), as well as non-functional parameters (i.e.,
QoS attributes, such as price, execution time, availability).

Several approaches, reviewed in Section 2, exist for this task, ranging from
methods relying on techniques commonly used in Information Retrieval [1], to
methods employing logic-based matching [2]. Also, hybrid methods have been
proposed [3], and, more recently, methods that combine multiple matching crite-
ria simultaneously [4]. Nevertheless, all these works rely solely on the parameters
involved in the service descriptions, thus facing an important drawback. A service
description may not always capture completely and accurately all the aspects re-
lated to the functionality and usage of the service. Additional information which
may be useful for determining how appropriate a service is for a given request,
often remains implicit, not being encoded in the formal description. Moreover,
different services may be more relevant to a specific request for different users
and in different contexts.

On the other hand, with the advent of Web 2.0, active user participation and
collaboration has become an increasingly popular trend. Users provide valuable
information by tagging, rating, or grouping similar resources, such as bookmarks
(e.g., Del.icio.us), music (e.g., Last.fm) or videos (e.g., YouTube). Essentially,
these activities allow collecting user feedback, which can then be exploited to
enhance the accuracy and effectiveness of the search [5].

In this paper, we propose a method for leveraging user feedback to improve the
results of the service discovery process. Given a service request, the matchmaker
searches the repository for available services and returns a ranked list of candi-
date matches. Then, the system allows the user posing the query to rate any of
these matches, indicating how relevant or appropriate they are for this request.
The provided ratings are stored in the system for future use, when the same
or a similar request is issued. Designing intuitive, easy-to-use user interfaces,
can help the process of collecting user feedback. In this work, we do not deal
with this issue; instead, our focus is on how the collected feedback is processed
and integrated in the matchmaking process to improve the results of subsequent
searches. Notice, that it is also possible to collect user feedback automatically,
assuming that the system can track which service(s) the user actually used;
however, this information would typically be incomplete, since not all relevant
services are used.

Our main contributions are summarized below.
– We consider the problem of employing user feedback to improve the quality

of search for Semantic Web services.

– We propose a method for processing user feedback and incorporating it in
the matchmaking process.

– We experimentally evaluate our approach on a publicly available collection of
Semantic Web services, applying standard Information Retrieval evaluation
metrics.

Exploiting User Feedback to Improve Semantic Web Service Discovery 35

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 presents our architecture for incorporating user feedback in the service
discovery process. Section 4 describes the basic matchmaking approach, employ-
ing multiple matching criteria. Applying user feedback to improve the search
results is presented in Section 5. Finally, Section 6 presents our experimental
results, while Section 7 concludes the paper.

2 Related Work

WSDL and UDDI are existing industry standards for describing and discover-
ing Web services. However, their focus lies on specifying the structure of the
service interfaces and of the exchanged messages. Thus, they address the discov-
ery problem relying on structural, keyword-based matching, which limits their
search capabilities. Other earlier works have also focused on applying Informa-
tion Retrieval techniques to the service discovery problem. For example, the work
presented in [1] deals with similarity search for Web services, using a clustering
algorithm to group names of parameters into semantically meaningful concepts,
which are then used to determine the similarity between input/output param-
eters. An online search engine for Web services is seekda1, which crawls and
indexes WSDL files from the Web. It allows users to search for services by en-
tering keywords, by using tag clouds, or by browsing using different facets, such
as the country of the service provider, the most often used services or the most
recently found ones.

To deal with the shortcomings of keyword search, several approaches have
been proposed for exploiting ontologies to semantically enhance the service de-
scriptions (WSDL-S [6], OWL-S [7], WSMO [8]). These so-called Semantic Web
services can better capture and disambiguate the service functionality, allowing
for formal, logic-based matchmaking. Essentially, a logic reasoner is employed
to infer subsumption relationships between requested and provided service pa-
rameters [2,9]. Along this line, several matching algorithms assess the similarity
between requested and offered inputs and outputs by comparing the positions
of the corresponding classes in the associated domain ontology [10,11,12]. Sim-
ilarly, the work in [13] semantically matches requested and offered parameters,
modeling the matchmaking problem as one of matching bipartite graphs. In [14],
OWL-S services are matched using a similarity measure for OWL objects, which
is based on the ratio of common RDF triples in their descriptions. An approach
for incorporating OWL-S service descriptions into UDDI is presented in [15],
focusing also on the efficiency of the discovery process. Efficient matchmaking
and ranked retrieval of services is also studied in [16].

Given that logic-based matching can often be too rigid, hybrid approaches
have also been proposed. In an earlier work [17], the need for employing many
types of matching has been discussed, proposing the integration of multiple
external matching services to a UDDI registry. The selection of the external
matching service to be used is based on specified policies, e.g., selecting the
1 http://seekda.com/

36 A. Averbakh, D. Krause, and D. Skoutas

first available, or the most successful. If more than one matching services are
invoked, again the system policies specify whether the union or the intersection
of the results should be returned. OWLS-MX [3] and WSMO-MX [18] are hy-
brid matchmakers for OWL-S and WSMO services, respectively. More recently,
an approach for simultaneously combining multiple matching criteria has been
proposed [4].

On the other hand, some approaches already exist about involving the user in
the process of service discovery. Ontologies and user profiles are employed in [19],
which then uses techniques like query expansion or relaxation to better satisfy
user requests. The work presented in [20] focuses on QoS-based Web service dis-
covery, proposing a reputation-enhanced model. A reputation manager assigns
reputation scores to the services based on user feedback regarding their perfor-
mance. Then, a discovery agent uses the reputation scores for service matching,
ranking and selection. The application of user preferences, expressed in the form
of soft constraints, to Web service selection is considered in [21], focusing on the
optimization of preference queries. The approach in [22] uses utility functions to
model service configurations and associated user preferences for optimal service
selection. In [1], different types of similarity for service parameters are combined
using a linear function, with manually assigned weights. Learning the weights
from user feedback is proposed, but it is left as an open issue for future work.

Collecting and exploiting user feedback as a form of interaction between a user
and an application is a key concept of Web 2.0 [23]. Users are more than ever
before willing to actively contribute by tagging, rating or commenting any kind of
content or offered service – even better, their feedback is very valuable to improve
search and retrieval algorithms [24,25]. In this work we employ a simple user
feedback model, focusing on how this feedback can be exploited in Semantic Web
service discovery, to improve the quality and accuracy of the search results. More
fine-grained forms of user feedback, as well as exploiting additional information
from social networks of users [26] are considered as possible extensions of our
approach.

In a different line of research, relevance feedback has been extensively con-
sidered in Information Retrieval [27]. The main idea is that the user issues a
query, the system returns an initial set of results, and the user marks some of
the returned documents as relevant or non-relevant; then, based on this user
feedback, the system revises the set of retrieved results to better capture the
user’s information need. However, approaches in this area typically rely on the
vector space model and term re-weighting, and, hence, they are not suitable for
service matchmaking.

3 Architecture

Typical service matchmaking systems are based on a unidirectional information
flow. First, an application that needs a specific Web Service to perform a task
creates a service request, containing the requirements that a service should fulfil.
This service request is then delivered to a matchmaking component that utilizes

Exploiting User Feedback to Improve Semantic Web Service Discovery 37

Fig. 1. Matchmaking service with feedback component

one or more match filters to retrieve the best-matching services from a repository
of Semantic Web service descriptions. These services are finally returned to the
application which invoked the matchmaker. The drawback in this scenario is
that if a service is not appropriate or sufficient for any reason to perform the
original task, the application has no option to inform the matchmaker about the
inappropriateness of this match result.

Hence, our matchmaking architecture is extended by a feedback loop, as il-
lustrated in Figure 1, enabling the matchmaking mechanism to use previously
provided user feedback in order to improve the quality of the retrieved results.

Enabling this feedback loop, relies on the assumption that the application
users can assess the quality of retrieved Web services. This is a common principle
in Web 2.0 applications, where users can rate available resources. One possibility
is that users can rate services explicitly. If it is not possible or easy for the users to
rate services directly, the application can still infer implicit ratings for a service
through user behavior. For example, if an applications uses services to generate
music recommendations, then users can be asked whether they consider the given
recommendations appropriate. Based on the assumption that services delivering
high quality recommendations are better matches for this task, the application
can infer the relevance of a service, and pass this information as a user rating to
the matchmaking service.

The user ratings are stored in an RDF triple store (e.g., SESAME [28]). As
user ratings refer to a given service request, each Rating instance contains the
user who performed the rating, the service request, the rated service, and finally
a rating score that ranges from 0 to 1 (with higher scores denoting higher rating).
For example, a rating from Bob about a request X and a service Y would be
stored as:

38 A. Averbakh, D. Krause, and D. Skoutas

<r:Rating>
<foaf:Person rdf:about="#bob"/>
<r:Request rdf:about="#requestX"/>
<r:Service rdf:about="#serviceY"/>
<r:Score rdf:datatype="&xsd;double">0.90</r:score>

</r:Rating>

This RDF database, which contains the user feedback in form of ratings, is
exploited by the user feedback component. This component aggregates previous
ratings provided by different users, to determine the relevance between a service
request and an actual service.

Then, given a service request, the matchmaker component combines the rel-
evance score from the feedback component with the similarity scores calculated
by the match filter(s) to assess the degree of match for each available service,
and returns a ranked list of match results to the application.

4 Service Matchmaking

In this section we describe the basic service matchmaking and ranking process,
without taking into account user feedback. For this task, we adopt the approach
from [4], because, as shown in Section 5, it allows us to integrate user feedback
in a more flexible and seamless way. In the following, we give a brief overview of
how the matchmaking and ranking of services is performed.

For simplicity, we focus on input and output parameters, annotated by onto-
logical concepts, but other types of parameters can be handled similarly. Let R
be a service request with a set of input and output parameters, denoted by RIN

and ROUT , respectively. We use R.pj to refer to the j-th input parameter, where
pj ∈ RIN (similarly for outputs). Also, assume an advertised service S with in-
puts and outputs SIN and SOUT , respectively. Note that S can be a match to
R, even when the cardinalities of their parameter sets differ, i.e., when a service
advertisement requires less inputs or produces more outputs than requested.

The matchmaking process applies one or more matching functions to assess
the degree of match between requested and offered parameters. Each match-
ing function produces a score in the range [0, 1], where 1 indicates a perfect
match, while 0 indicates no match. Typical examples are the matching functions
provided by the OWLS-MX service matchmaker [3]. These comprise a purely
logic-based match (M0), as well as hybrid matches based on string similarity
measures, namely loss-of-information (M1), extended Jaccard similarity coeffi-
cient (M2), cosine similarity (M3), and Jensen-Shannon information divergence
based similarity (M4). Given a request R, a service S, and a matching function
mi, the match instance of S with respect to R is defined as a vector si such that

si[j] =

⎧⎨⎩ max
pk∈SIN

{mi(S.pk, R.pj)}, ∀j : pj ∈ RIN

max
pk∈SOUT

{mi(S.pk, R.pj)}, ∀j : pj ∈ ROUT

(1)

Exploiting User Feedback to Improve Semantic Web Service Discovery 39

Table 1. Example of the match object for the request book price service.owls and
the service novel price service.owls

Match Filter Book Price
M0 0.88 1.00
M1 0.93 1.00
M2 0.69 1.00
M3 0.72 1.00
M4 0.93 1.00

The match instance si has a total of d = |RIN |+ |ROUT | entries that correspond
to the input and output parameters of the request. Intuitively, each si entry
quantifies how well the corresponding parameter of the request R is matched by
the advertisement S, under the matching criterion mi. Clearly, an input (output)
parameter of R can only match with an input (output) parameter of S.

Let M be a set of matching functions. Given a request R and an advertise-
ment S, each mi ∈ M results in a distinct match instance. We refer to the
set of instances as the match object of the service S. In the following, and in
the context of a specific request R, we use the terms service and match object
interchangeably, denoted by the same uppercase letter (e.g., S). On the other
hand we reserve lowercase letters for match instances of the corresponding ser-
vice (e.g., s1, s2, etc.). The notation si ∈ S implies that the match instance si

corresponds to the service S. Hence, a match object represents the result of the
match between a service S and a request R, with each contained match instance
corresponding to the result of a different match function.

As a concrete example, consider a request book price service.owls, with
input Book and output Price, and a service novel price service.owls, with
input Novel and output Price, matched applying the five aforementioned func-
tions M0–M4 of the OWLS-MX matchmaker. The resulting match object is
shown in Table 1, comprising an exact match for the outputs, while the degree
of match between Book and Novel varies based on the similarity measure used.

Next, we describe how services are ranked based on their match objects. Let
I be the set of all match instances of all services. Given two instances u, v ∈ I,
we say that u dominates v, denoted by u � v, iff u has a higher or equal degree
of match in all parameters and a strictly higher degree of match in at least one
parameter compared to v. Formally

u � v ⇔ ∀i u[i] ≥ v[i] ∧ ∃j u[j] > v[j] (2)

If u is neither dominated by nor dominates v, then u and v are incomparable.
Given this dominance relationship between match instances, we proceed with

defining dominance scores that are used to rank the available service descriptions
with respect to a given service request. Intuitively, a service should be ranked
highly in the list if

– its instances are dominated by as few other instances as possible, and

– its instances dominate as many other instances as possible.

40 A. Averbakh, D. Krause, and D. Skoutas

To satisfy these requirements, we formally define the following dominance scores,
used to rank the search results for a service request.

Given a match instance u, we define the dominated score of u as

u.dds =
1
|M|

∑
V �=U

∑
v∈V

|v�u| (3)

where |u � v| is 1 if u � v and 0 otherwise. Hence, u.dds accounts for the
instances that dominate u. Then, the dominated score of a service U is defined
as the (possibly weighted) average of the dominated scores of its instances:

U.dds =
1
|M|

∑
u∈U

u.dds (4)

The dominated score of a service indicates the average number of services that
dominate it, i.e., a lower dominated score indicates a better match result.

Next, we look at the instances that a given instance dominates. Formally,
given a match instance u, we define the dominating score of u as

u.dgs =
1
|M|

∑
V �=U

∑
v∈V

|u�v| (5)

Similarly to the case above, the dominating score of a service U is then defined
as the (possibly weighted) average of the dominating scores of its instances:

U.dgs =
1
|M|

∑
u∈U

u.dgs (6)

The dominating score of a service indicates the average number of services that
it dominates, i.e., a higher dominating score indicates a better match result.

Finally, we define the dominance score of match instances and services, to
combine both of the aforementioned criteria. In particular, the dominance score
of a match instance u is defined as

u.ds = u.dgs− λ · u.dds (7)

where the parameter λ is a scaling factor. This promotes u for each instance
it dominates, while penalizing it for each instance that dominates it. Then, the
dominance score of a service U is defined as the (possibly weighted) average of
the dominance scores of its instances:

U.ds =
1
M

∑
u∈U

u.ds (8)

The ranking process comprises computing the aforementioned scores for each
service, and then sorting the services in descending order of their dominance
score. Efficient algorithms for this computation can be found in [4].

Exploiting User Feedback to Improve Semantic Web Service Discovery 41

5 Incorporating User Feedback

In this section, we present our approach for processing user feedback and incor-
porating it in the dominance-based matchmaking and ranking method described
in Section 4.

Our approach is based on the assumption that the system collects feedback
from the users by allowing them to rate how appropriate the retrieved services
are with respect to their request (see feedback component in Section 3). Assume
that the collected user ratings are stored as a set T ⊆ U×R×S×F in the Ratings
Database, where U is the set of all users that have provided a rating, R is the set
of all previous service requests stored in the system, S is the set of all the available
Semantic Web service descriptions in the repository, and F ∈ [0, 1] denotes the
user rating, i.e., how relevant a particular service was considered with respect to
a given request (with higher values representing higher relevance). Thus, a tuple
T = (U,R, S, f) ∈ T denotes that a user U considers the service S ∈ S to be
relevant for the request R ∈ R with a score f .

To aggregate the ratings from different users into a single feedback score, dif-
ferent approaches can be used. For example, [29] employs techniques to identify
and filter out ratings from spam users, while [30] proposes the aging of feedback
ratings, considering the more recent ratings as more relevant. It is also possible
to weight differently the ratings of different users, assigning, for example, higher
weights to ratings provided previously by the same user as the one currently is-
suing the request, or by users that are assumed to be closely related to him/her,
e.g., by explicitly being included in his/her social network or being automati-
cally selected by the system through techniques such as collaborative filtering
or clustering. However, as the discussion about an optimal aggregation strategy
for user ratings is orthogonal to our main focus in this paper, without loss of
generality we consider in the following all the available user ratings as equally
important, and we calculate the feedback value as the average of all user ratings
of the corresponding service. Hence, the feedback score fb between a service
request R ∈ R and a service advertisement S ∈ S is calculated as:

fb(R,S) =

∑
(U,R,S,f)∈T

f

|{(U,R, S, f) ∈ T }| (9)

However, it may occur that for a given pair of a request R and a service S, no
ratings (U,R, S, f) exist in the database. This may be because the request R
is new, or because the service S has been recently added to the database and
therefore has been only rated for a few requests. Moreover, even if some ratings
exist, they may be sparse and hence not provide sufficiently reliable information
for feedback. In these cases, Equation (9) is not appropriate for determining
the feedback information for the pair (R,S). To address this issue, we general-
ize this method to consider not only those ratings that are directly assigned to
the current service requests R, but also user ratings that are assigned to requests

42 A. Averbakh, D. Krause, and D. Skoutas

that are similar to R. Let SIM(R) denote the set of requests which are consid-
ered to be similar to R. Then, the feedback can be calculated as:

fb(R,S) =

∑
(U,Q,S,f)∈T :Q∈SIM(R)

f ∗ sim(R,Q)

|{(U,Q, S, f) ∈ T : Q ∈ SIM(R)}| (10)

In Equation (10), sim(R,Q) is the match instance of Q with respect to R,
calculated by a matching function mi, as discussed in Section 4. Notice that
sim(R,Q) is a vector of size equal to the number of parameters of R, hence in
this case fb(R,S) is also such a vector, i.e., similar to a match instance. Also,
Equation (9) can be derived as a special case of Equation (10), by considering
SIM(R) = {R}. By weighting the given feedback by the similarity between the
requests, we ensure that feedback from requests which are more similar to the
considered one, is taken more into account.

A question that arises is how to select the similar requests for a given request
R, i.e., how to determine the set SIM(R). This choice involves a trade-off.
Selecting a larger number of similar queries, allows the use of more sources of
information for feedback; however, if the similarity between the original request
and the selected ones is not high enough, then the information from this feedback
is also not highly appropriate, and may eventually introduce noise in the results.
On the other hand, setting a very strict criterion for selecting similar queries,
reduces the chance of finding enough feedback information. As a solution to this
trade-off, we use a top-k query with constraints: given a request R, we select
the top-k most similar requests from the database, given that the values of their
match instances are above a specified threshold.

The process described above results in a feedback instance fb(R,S) for the
given request R and a service S. The next step is to integrate this instance to
the match object of the service S, comprising the other instances obtained by
the different matching functions mi. We investigate two different strategies for
this purpose:

1. Feedback instance as an additional match instance. In this case we add the
feedback information to the match object of the service as an additional
instance (combined with the average of the previous values). That is, this
method treats the feedback mechanism as an extra matchmaking function.

2. Feedback instance integrated with match instances. In this case we update the
values of the match instances by adding the values of the feedback instance.
That is, this method adjusts the results of the matchmaking functions ap-
plying the feedback information.

As a concrete example, consider the match object presented in Table 1. Assume
that the feedback instance for the pair (book price service.owls,
novel price service.owls) is fb = [0.77 1.00]. Then this match object will
be modified as shown in Table 2.

Exploiting User Feedback to Improve Semantic Web Service Discovery 43

Table 2. Example of the match object for the request book price service.owls and
the service novel price service.owls updated using feedback information

(a) Method 1

Match Filter Book Price
M0 0.88 1.00
M1 0.93 1.00
M2 0.69 1.00
M3 0.72 1.00
M4 0.93 1.00

AVG(Mi)+FB 1.60 2.00

(b) Method 2

Match Filter Book Price
M0+FB 1.65 2.00
M1+FB 1.70 2.00
M2+FB 1.46 2.00
M3+FB 1.49 2.00
M4+FB 1.70 2.00

6 Experimental Evaluation

In this section, we evaluate the quality of our feedback-based matchmaking ap-
proach in comparison to state-of-the-art matchmaking algorithms. In Section 6.1,
we discuss implementation issues and the data collections we have used. The eval-
uation metrics and the experimental results are then reported in Section 6.2.

6.1 Experimental Setup

We have implemented the feedback-based matchmaking and ranking process
described in Sections 4 and 5. The implementation utilizes the OWLS-MX ser-
vice matchmaker [3], to process service requests and advertisements described in
OWL-S, and to compute the pairwise similarities between parameters. In par-
ticular, OWLS-MX provides five different matching filters. The first performs a
purely logic-based match (M0), characterising the result as exact, plug-in, sub-
sumes, or subsumed-by. The other four perform hybrid match, combining the
semantic-based matchmaking with the following measures: loss-of-information
(M1), extended Jaccard similarity coefficient (M2), cosine similarity (M3), and
Jensen-Shannon information divergence based similarity (M4). Notice, that for
each pair (R,S) of a service request and service advertisement, OWLS-MX ap-
plies one of the filters M0–M4, and calculates a single score denoting the degree
of match between R and S. We have modified this functionality to get all the
individual degrees of match between the compared parameters of R and S (i.e.,
a vector); also, we have applied for each pair (R,S) all the similarity measures
M0–M4, to get the individual match instances, as described in Section 4. Fi-
nally, our implementation includes also the process described in Section 5 for
processing and using the available feedback information.

For our experiments, we have used the publicly available service retrieval test
collection OWLS-TC v22. This collection comes in two versions, an original one
containing 576 services, and an extended one, containing 1007 services. To bet-
ter assess the performance of our method, we have conducted our experiments on
2 This collection is available at http://projects.semwebcentral.org/projects/

owls-tc/. Before running the experiments we have fixed some typos that prevented
some services from being processed and/or retrieved.

http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/owls-tc/

44 A. Averbakh, D. Krause, and D. Skoutas

Table 3. Characteristics of the test collections

Collection # of requests # of services # of rel. services per req. (average)
OWL-S TC I 28 576 15.2
OWL-S TC II 28 1007 25.4

both versions, denoted in the following as OWLS-TC I and OWLS-TC II, respec-
tively. The contained service descriptions are based on real-world Web services,
retrieved mainly from public IBM UDDI registries, covering 7 different domains,
such as economy, education, and travel. Also, the collection comprises a set of 28
sample requests. Notice that the extended version of the collection comprises one
extra request, namely EBookOrder1.owls; however, in our experiments, we have
excluded this request, so that in both cases the set of queries used for the eval-
uation is the same. For each request, a relevance set is provided, i.e., the list of
services that are considered relevant to this request, based on human judgement.
The characteristics of the two data sets are summarized in Table 3.

To evaluate our feedback-based mechanism, there needs to be, for each re-
quest, at least one similar request for which some services have been rated as
relevant. As this was not the case with the original data set, due to the small
number of provided requests, we have extended both of the aforementioned col-
lections by creating a similar query for each of the 28 original ones. This was
done by selecting a request, then selecting one or more of its input and/or output
parameters, and replacing its associated class in the ontology with one that is
a superclass, subclass or sibling. Then, for each of these newly created queries,
some of the services in the collection were rated as relevant. To simplify this task,
we have restricted our experimental study in binary ratings, i.e., the value of the
user rating was either 1 or 0, based on whether the user considered the service
to be relevant to the request or not. The new queries and the ratings, provided
in the form of corresponding relevance sets, are made available for further use
at: http://www.l3s.de/~krause/collection.tar.gz

6.2 Experimental Results

In the following, we evaluate the performance of our approach, including both
strategies described in Section 5. For this purpose, we compare the retrieved
results to the ones produced without taking user feedback into consideration. In
particular, we have implemented and compared the following 5 methods:

– NF1 : No feedback is used; one match instance per service is considered. The
values of the match instance are the degrees of match between the request
and service parameters, computed applying the Jensen-Shannon similarity
measure, i.e., the filter M4 from OWLS-MX, which is shown in [3] to slightly
outperform the other measures.

– NF5 : No feedback is used; five match instances per service are considered. The
values of the match instances are the degrees of match between the request
and service parameters computed by the filters M0–M4 of OWLS-MX.

http://www.l3s.de/~krause/collection.tar.gz

Exploiting User Feedback to Improve Semantic Web Service Discovery 45

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

FB6

FB5

FB1

NF5

NF1

(a) OWLS-TC I

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

FB6

FB5

FB1

NF5

NF1

(b) OWLS-TC II

Fig. 2. Precision-Recall curve for the OWLS test collections

– FB1 : Feedback is used; one match instance per service is considered. The
values of the match instance are the sum of the degrees of match between
the request and service parameters computed by M4 and the feedback values
calculated by Equation (10).

– FB5 : Feedback is used; five match instances per service are considered. The
value of each match instance is the sum of the degrees of match between the
request and service parameters computed by one of the measures M0–M4
and the feedback values calculated by Equation (10).

– FB6 : Feedback is used; six match instances per service are considered. The
values of the first five match instances are the degrees of match between the
request and service parameters computed by the filters M0–M4. The values
of the sixth match instance are computed as the averages of the previous ones
plus the feedback values calculated by Equation (10). Notice, that the reason
for using also the average values of the initial instances, instead of only the
feedback values, is mainly to avoid penalizing services that constitute good
matches but have not been rated by users.

To measure the effectiveness of the compared approaches, we apply the following
standard IR evaluation measures [27]:

– Interpolated Recall-Precision Averages: measures precision, i.e., percent of
retrieved items that are relevant, at various recall levels, i.e., after a certain
percentage of all the relevant items have been retrieved.

– Mean Average Precision (MAP): average of precision values calculated after
each relevant item is retrieved.

– R-Precision (R-prec): measures precision after all relevant items have been
retrieved.

– bpref : measures the number of times judged non-relevant items are retrieved
before relevant ones.

46 A. Averbakh, D. Krause, and D. Skoutas

Table 4. IR metrics for the OWLS test collections

(a) OWLS-TC I
Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

FB6 0.8427 0.7772 0.8206 0.9762 0.9214 0.8357 0.7690 0.6589
FB5 0.8836 0.7884 0.8600 1.0000 0.9714 0.8857 0.7952 0.6696
FB1 0.8764 0.7962 0.8486 1.0000 0.9786 0.8786 0.7929 0.6625
NF5 0.8084 0.7543 0.7874 0.9405 0.9071 0.7964 0.7500 0.6393
NF1 0.8027 0.7503 0.7796 0.9405 0.9214 0.8143 0.7357 0.6357

(b) OWLS-TC II
Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

FB6 0.8426 0.7652 0.8176 1.0000 0.9714 0.8964 0.8476 0.7875
FB5 0.9090 0.8242 0.8896 1.0000 0.9857 0.9679 0.9214 0.8536
FB1 0.8960 0.8024 0.8689 1.0000 0.9857 0.9607 0.9167 0.8411
NF5 0.8007 0.7388 0.7792 0.9643 0.9429 0.8607 0.8119 0.7536
NF1 0.7786 0.7045 0.7499 0.9643 0.9357 0.8607 0.7976 0.7268

– Reciprocal Rank (R-rank): measures (the inverse of) the rank of the top
relevant item.

– Precision atN(P@N): measures the precision afterN items havebeen retrieved.

Figure 2 plots the precision-recall curves for the 5 compared methods, for both
considered test collections. Overall, the main observation is that the feedback-
aware methods clearly outperform the other two ones in both test collections.
The best overall method in both collections is FB5, because it provides two
advantages: a) it utilizes user feedback, and b) it combines all the available
similarity measures for matchmaking service parameters. The method FB1,
which combines feedback information with the Jensen-Shannon hybrid filter,
also demonstrates a very high accuracy. The method FB6, which treats the
feedback information as an additional match instance, achieves lower precision,
but it still outperforms the non-feedback methods. This behavior is due to the
fact that although feedback is utilized, its impact is lower since it is not consid-
ered for the 5 original match instances, but only as an extra instance. Regarding
NF5 and NF1, the former exhibits better performance, which is expected as it
combines multiple similarity measures. Another interesting observation is that
FB5 and FB1 follow the same trend as NF5 and NF1, respectively, which are
their non-feedback counterparts, however having considerably higher precision
values at all recall levels. Finally, for the collection OWLS-TC II, which com-
prises an almost double number of services, the trends are the same as before,
but with the differences between the feedback-aware and the non-feedback meth-
ods being even more noticeable. Another interesting observation in this case is
that after the recall level 0.8 the precision of FB1 drops much faster than that
of FB6; thus, although FB1 has an overall higher performance than FB6, the
latter appears to be more stable, which is due to having more instances per
match object, i.e., taking into account more similarity measures.

Table 4 presents the results for the other IR evaluation metrics discussed
above. These results again confirm the aforementioned observations. For all the
considered metrics, FB5 and FB1 perform better, followed by FB6.

Exploiting User Feedback to Improve Semantic Web Service Discovery 47

7 Conclusions

In this paper we have dealt with the problem of Semantic Web service discovery,
focusing on how to exploit user feedback to improve the quality of the search
results. This relies on the idea that modern Web 2.0 applications allow users to
explicitly express their opinion by giving feedback about available resources, in
the form of rating, tagging, etc. We have presented an architecture that allows
to collect user feedback on retrieved services and incorporate it in the Seman-
tic Web service matchmaking process. We have proposed different methods to
combine this user feedback with the output of matchmaking algorithms in order
to improve the quality of the match results. Further, we have discussed how
to overcome the problems of a limited amount of feedback or of previously un-
known requests (i.e., where no previous feedback is available for the request),
by utilizing information from similar requests. We have conducted an experi-
mental evaluation using a publicly available collection of OWL-S services. We
have compared our feedback-aware matchmaking strategies to state-of-the-art
matchmaking algorithms that do not take feedback into account. Our experi-
mental results show that user feedback is a valuable source of information for
improving the matchmaking quality.

Our current and future work focuses mainly on two directions: a) investigat-
ing in more detail the social aspects involved in the process of collecting and
aggregating user ratings for services, and b) extending our experimental setup
with additional scenarios.

Acknowledgements. This work was partially supported by the European Com-
mission in the context of the FP7 projects SYNC3 and GRAPPLE.

References

1. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: VLDB, pp. 372–383 (2004)

2. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

3. Klusch, M., Fries, B., Sycara, K.P.: Automated Semantic Web service discovery
with OWLS-MX. In: AAMAS, pp. 915–922 (2006)

4. Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Top-k Dominant
Web Services under Multi-criteria Matching. In: EDBT, pp. 898–909 (2009)

5. Bao, S., Xue, G.-R., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing Web Search Using
Social Annotations. In: WWW, pp. 501–510 (2007)

6. Akkiraju, R., et al.: Web Service Semantics - WSDL-S. In: W3C Member Submis-
sion (November 2005)

7. Burstein, M., et al.: OWL-S: Semantic Markup for Web Services. In: W3C Member
Submission (November 2004)

8. Lausen, H., Polleres, A., Roman, D. (eds.): Web Service Modeling Ontology
(WSMO). W3C Member Submission (June 2005)

9. Li, L., Horrocks, I.: A Software Framework for Matchmaking based on Semantic
Web Technology. In: WWW, pp. 331–339 (2003)

48 A. Averbakh, D. Krause, and D. Skoutas

10. Cardoso, J.: Discovering Semantic Web Services with and without a Common On-
tology Commitment. In: IEEE SCW, pp. 183–190 (2006)

11. Skoutas, D., Simitsis, A., Sellis, T.K.: A Ranking Mechanism for Semantic Web
Service Discovery. In: IEEE SCW, pp. 41–48 (2007)

12. Skoutas, D., Sacharidis, D., Kantere, V., Sellis, T.: Efficient Semantic Web Ser-
vice Discovery in Centralized and P2P Environments. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 583–598. Springer, Heidelberg (2008)

13. Bellur, U., Kulkarni, R.: Improved Matchmaking Algorithm for Semantic Web
Services Based on Bipartite Graph Matching. In: ICWS, pp. 86–93 (2007)

14. Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web
Services. In: Web Service Semantics Workshop at WWW (2005)

15. Srinivasan, N., Paolucci, M., Sycara, K.P.: An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC
2004. LNCS, vol. 3387, pp. 96–110. Springer, Heidelberg (2005)

16. Constantinescu, I., Binder, W., Faltings, B.: Flexible and Efficient Matchmaking
and Ranking in Service Directories. In: ICWS, pp. 5–12 (2005)

17. Colgrave, J., Akkiraju, R., Goodwin, R.: External Matching in UDDI. In: ICWS,
p. 226 (2004)

18. Kaufer, F., Klusch, M.: WSMO-MX: A Logic Programming Based Hybrid Service
Matchmaker. In: ECOWS, pp. 161–170 (2006)

19. Balke, W.-T., Wagner, M.: Cooperative Discovery for User-Centered Web Service
Provisioning. In: ICWS, pp. 191–197 (2003)

20. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based
Web Services Discovery. In: ICWS, pp. 249–256 (2007)

21. Kießling, W., Hafenrichter, B.: Optimizing Preference Queries for Personalized Web
Services. In: Communications, Internet, and Information Technology, pp. 461–466
(2002)

22. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: WWW, pp. 1013–1022 (2007)

23. O’Reilly, T.: O’Reilly Network: What is Web 2.0 (September 2005)
24. Abel, F., Henze, N., Krause, D.: Ranking in Folksonomy Systems: Can Context

Help?. In: CIKM, pp. 1429–1430 (2008)
25. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folk-

sonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

26. Mislove, A., Gummadi, K.P., Druschel, P.: Exploiting Social Networks for Internet
Search. In: Workshop on Hot Topics in Networks. (2006)

27. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Re-
trieval. Cambridge University Press, Cambridge (2008)

28. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

29. Whitby, A., Josang, A., Indulska, J.: Filtering Out Unfair Ratings in Bayesian
Reputation Systems. In: AAMAS (2004)

30. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer sys-
tems. In: IEEE Symposium on Multi-Agent Security and Survivability, pp. 1–10
(2004)

A Generic Approach for Large-Scale Ontological
Reasoning in the Presence of Access Restrictions

to the Ontology’s Axioms

Franz Baader1, Martin Knechtel2, and Rafael Peñaloza1

1 Theoretical Computer Science TU Dresden, Germany
{baader,penaloza}@tcs.inf.tu-dresden.de

2 SAP AG, SAP Research CEC Dresden, Germany
martin.knechtel@sap.com

Abstract. The framework developed in this paper can deal with sce-
narios where selected sub-ontologies of a large ontology are offered as
views to users, based on criteria like the user’s access right, the trust
level required by the application, or the level of detail requested by the
user. Instead of materializing a large number of different sub-ontologies,
we propose to keep just one ontology, but equip each axiom with a la-
bel from an appropriate labeling lattice. The access right, required trust
level, etc. is then also represented by a label (called user label) from this
lattice, and the corresponding sub-ontology is determined by compar-
ing this label with the axiom labels. For large-scale ontologies, certain
consequence (like the concept hierarchy) are often precomputed. Instead
of precomputing these consequences for every possible sub-ontology, our
approach computes just one label for each consequence such that a com-
parison of the user label with the consequence label determines whether
the consequence follows from the corresponding sub-ontology or not.

In this paper we determine under which restrictions on the user and
axiom labels such consequence labels (called boundaries) always exist,
describe different black-box approaches for computing boundaries, and
present first experimental results that compare the efficiency of these
approaches on large real-world ontologies. Black-box means that, rather
than requiring modifications of existing reasoning procedures, these ap-
proaches can use such procedures directly as sub-procedures, which al-
lows us to employ existing highly-optimized reasoners.

1 Introduction

Assume that you have a large ontology T , but you want to offer different users
different views on this ontology, i.e., each user can see only a subset of the actual
ontology, which is selected by an appropriate criterion. This criterion could be the
access right that this user has, the level of trust (in the axioms of the ontology)
that the user requires, the level of details that is deemed to be appropriate for
this user, etc. In principle, you could explicitly create a sub-ontology for each
(type of) user, but then you might end up with exponentially many different

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 49–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

50 F. Baader, M. Knechtel, and R. Peñaloza

ontologies, where each is a subset of T . Instead, we propose to keep just the
big ontology T , but label the axioms in T such that a comparison of the axiom
label with the user criterion determines whether the axiom belongs to the sub-
ontology for this user or not. To be more precise, we use a labeling lattice (L,≤),
i.e., a set of labels L together with a partial order ≤ on these labels such that a
finite set of labels always has a join (supremum, least upper bound) and a meet
(infimum, greatest lower bound) w.r.t. ≤.1. All axioms t ∈ T are now assumed
to have a label lab(t) ∈ L, and the user also receives a label
 ∈ L (which can be
read as access right, required level of trust, etc.). The sub-ontology that a user
with label
 can see is then defined to be2

T� := {t ∈ T | lab(t) ≥
}.

Of course, the user of an ontology should not only be able to see its axioms, but
also the consequences of these axioms. Thus, a user with label
 should be able
to see all the consequences of T�. For large ontologies, certain relevant conse-
quences are often pre-computed. The goal of the pre-computation is that certain
user queries can be answered by a simple look-up in the pre-computed conse-
quences, and thus do not require expensive reasoning during the deployment
phase of the ontology. For example, in the version of the large medical ontology
SNOMED CT3 that is distributed to hospitals, all the subsumption relationships
between the concept names occurring in the ontology are pre-computed. For a la-
beled ontology as introduced above, it is not enough to pre-compute the relevant
consequences of T . In fact, if the relevant consequence α follows from T , then
we also need to know for which user labels
 it still follows from T�. Otherwise, if
a user with label
 asks whether α holds, the system could not simply look this
up in the pre-computed consequences, but would need to compute the answer
on-the-fly by reasoning over the sub-ontology T�. Our solution to this problem
is to compute a so-called boundary for the consequence α, i.e., an element μα of
L such that α follows from T� iff
 ≤ μα.

There are basically two approaches for computing a boundary. The glass-
box approach takes a specific reasoner (or reasoning technique) for an ontology
language (e.g., a tableau-based reasoner for OWL DL [20]) and modifies it such
that it can compute a boundary. Examples for the application of the glass-
box approach to specific instances of the problem of computing a boundary
are tableau-based approaches for reasoning in possibilistic Description Logics
[15,13] (where the lattice is the interval [0, 1] with the usual order) and glass-
box approaches to axiom pinpointing in Description Logics [19,14,12,3,4] (where
the lattice consists of (equivalence classes of) monotone Boolean formulae with
implication as order [4]). The problem with glass-box approaches is that they

1 Figure 1 in Section 3 shows a small lattice. A detailed introduction to lattices and
orders can, e.g., be found in [9].

2 To define this sub-ontology, an arbitrary partial order would be sufficient. However,
the existence of suprema and infima will be important for the computation of a
boundary of a consequence (see below).

3 http://www.ihtsdo.org/snomed-ct/

Ontological Reasoning in the Presence of Access Restrictions 51

have to be developed for every ontology language and reasoning technique anew
and that optimizations of the original reasoning technique do not always apply
to the modified reasoners. In contrast, the black-box approach can re-use existing
optimized reasoners without modifications, and it can be applied to arbitrary
ontology languages: one just needs to plug in a reasoner for this language.

In this paper, we introduce three different black-box approaches for computing
a boundary, and compare their performance on real-world ontologies. The first
approach uses an axiom pinpointing algorithm as black-box reasoner, whereas
the second one modifies the Hitting-Set-Tree-based black-box approach to axiom
pinpointing [11,21]. The third uses binary search and can only be applied if the
labeling lattice is a linear order. It can be seen as a generalization of the black-
box approach to reasoning in possibilistic Description Logics described in [16].
All the proofs omitted in this paper can be found in [2].

2 Basic Definitions and Results

To stay as general as possible, we do not fix a specific ontology language. We
just assume that ontologies are finite sets of axioms such that every subset of
an ontology is again an ontology. If T ′ is a subset of the ontology T , then T ′

is called a sub-ontology of T . The ontology language determines which sets of
axioms are admissible as ontologies. For a fixed ontology language, a monotone
consequence relation |= is a binary relation between ontologies T of this language
and consequences α such that, for every ontology T , we have that T ′ ⊆ T and
T ′ |= α imply T |= α. If T |= α, then we say that α follows from T and that
T entails α. For instance, given a Description Logic L (e.g., the DL SHIN (D)
underlying OWL DL), an ontology is an L-TBox, i.e., a finite set of general
concept inclusion axioms (GCIs) of the form C � D for L-concept descriptions
C,D. As consequences we can, e.g., consider subsumption relationships A � B
for concept names A,B.

We consider a lattice (L,≤) and respectively denote by
⊕

�∈S
 and
⊗

�∈S

the join (least upper bound) and meet (greatest lower bound) of the finite set
S ⊆ L. A labeled ontology with labeling lattice (L,≤) is an ontology T together
with a labeling function lab that assigns a label lab(t) ∈ L to every element t of
T 4 We denote with Llab the set of all labels occurring in the labeled ontology T ,
i.e., Llab := {lab(t) | t ∈ T }. Every element of the labeling lattice
 ∈ L defines
a sub-ontology T� that contains the axioms of T that are labeled with elements
greater than or equal to
:

T� := {t ∈ T | lab(t) ≥
}.

Conversely, every sub-ontology S ⊆ T defines an element λS ∈ L, called the label
of S: λS :=

⊗
t∈S lab(t). The following lemma states some simple relationships

between these two notions.

Lemma 1. For all
 ∈ L, S ⊆ T , it holds that
 ≤ λT�
, S ⊆ TλS and T� = TλT�

.

4 An example of a labeled ontology is given in Example 2 in Section 3.

52 F. Baader, M. Knechtel, and R. Peñaloza

Notice that, if a consequence α follows from T� for some
 ∈ L, it must also
follow from T�′ for every
′ ≤
, since then T� ⊆ T�′ . A maximal element of L
that still entails the consequence will be called a margin for this consequence.

Definition 1 (Margin). Let α be a consequence that follows from the ontology
T . The label μ ∈ L is called a (T , α)-margin if Tμ |= α, and for every
 with
μ <
 we have T� 	|= α.

If T and α are clear from the context, we usually ignore the prefix (T , α) and
call μ simply a margin. The following lemma shows three basic properties of the
set of margins that will be useful throughout this paper.

Lemma 2. Let α be a consequence that follows from the ontology T . We have:

1. If μ is a margin, then μ = λTμ ;
2. if T� |= α, then there is a margin μ such that
 ≤ μ;
3. there are at most 2|T | margins for α.

If we know that μ is a margin for the consequence α, then we know whether α
follows from T� for all
 ∈ L that are comparable with μ: if
 ≤ μ, then α follows
from T�, and if
 > μ, then α does not follow from T�. However, the fact that μ is
a margin gives us no information regarding elements that are incomparable with
μ. In order to obtain a full picture of when the consequence α follows from T� for
an arbitrary element of l, we can try to strengthen the notion of margin to that
of an element ν of L that accurately divides the lattice into those elements whose
associated sub-ontology entails α and those for which this is not the case, i.e., ν
should satisfy the following: for every
 ∈ L, T� |= α iff
 ≤ ν. Unfortunately, such
an element need not always exist, as demonstrated by the following example.

Example 1. Consider the distributive lattice (S4,≤4) having the four elements
S4 = {0, a1, a2, 1}, where 0 and 1 are the least and greatest elements, respectively,
and a1, a2 are incomparable w.r.t. ≤4. Let T be the set formed by the axioms ax1
and ax2, which are labeled by a1 and a2, respectively, and let α be a consequence
such that, for every S ⊆ T , we have S |= α iff |S| ≥ 1. It is easy to see
that there is no element ν ∈ S4 that satisfies the condition described above.
Indeed, if we choose ν = 0 or ν = a1, then a2 violates the condition, as a2 	≤ ν,
but Ta2 = {ax2} |= α. Accordingly, if we choose ν = a2, then a1 violates the
condition. Finally, if ν = 1 is chosen, then 1 itself violates the condition: 1 ≤ ν,
but T1 = ∅ 	|= α.

It is nonetheless possible to find an element that satisfies a restricted version of
the condition, where we do not impose that the property must hold for every
element of the labeling lattice, but only for those elements that are join prime
relative to the labels of the axioms in the ontology.

Definition 2 (Join prime). Let (L,≤) be a lattice. Given a finite set K ⊆ L,
let K⊗ := {

⊗
�∈M
 |M ⊆ K} denote the closure of K under the meet operator.

An element
 ∈ L is called join prime relative to K if, for every K ′ ⊆ K⊗,

 ≤

⊕
k∈K′ k implies that there is an k0 ∈ K ′ such that
 ≤ k0.

Ontological Reasoning in the Presence of Access Restrictions 53

In Example 1, all lattice elements with the exception of 1 are join prime
relative to {a1, a2}.

Definition 3 (Boundary). Let T be an ontology and α a consequence. An
element ν ∈ L is called a (T , α)-boundary if for every element
 ∈ L that is join
prime relative to Llab it holds that
 ≤ ν iff T� |= α.

As with margins, if T and α are clear from the context, we will simply call such
a ν a boundary. In Example 1, the element 1 is a boundary. Indeed, every join
prime element
 relative to {a1, a2} (i.e., every element of L except for 1) is
such that
 < 1 and T� |= α. From a practical point of view, our definition of
a boundary has the following implication: we must enforce that user labels are
always join prime relative to the set Llab of all labels occurring in the ontology.

3 Computing a Boundary

In this section, we describe three black-box approaches for computing a bound-
ary. The first two approaches are based on Lemma 3 below, and the third one, a
modification of binary search, can be used if the labeling lattice is a linear order.

Lemma 3. Let μ1, . . . , μn be all (T , α)-margins. Then
⊕n

i=1 μi is a boundary.

By Lemma 2, a consequence always has finitely many margins, and thus Lemma 3
shows that a boundary always exists. Note, however, that a consequence may
have boundaries different from the one of Lemma 3. To identify the particular
boundary of Lemma 3, we will call it the margin-based boundary.

3.1 Using Full Axiom Pinpointing

From Lemma 3 we know that the set of all margins yields sufficient information
for computing a boundary. The question is now how to compute this set. In this
subsection, we show that all margins (and thus the margin-based boundary) can
be computed through axiom pinpointing. Axiom-pinpointing refers to the task of
computing MinAs [6]: minimal (w.r.t. set inclusion) sub-ontologies from which
a consequence α still follows. More formally, S ⊆ T is called a MinA for T and
α if S |= α, and S′ 	|= α for every S′ ⊂ S. The following lemma shows that every
margin can be obtained from some MinA.

Lemma 4. For every margin μ for α there is a MinA S such that μ = λS .

Notice that this lemma does not imply that the label of any MinA S corresponds
to a margin. However, as the consequence follows from every MinA, point 2 of
Lemma 2 shows that λS ≤ μ for some margin μ. The following theorem is an
immediate consequence of this fact together with Lemma 3 and Lemma 4.

Theorem 1. If S1, . . . ,Sn are all MinAs for T and α, then
⊕n

i=1 λSi is the
margin-based boundary for α.

54 F. Baader, M. Knechtel, and R. Peñaloza

Thus, to compute a boundary, it is sufficient to compute all MinAs. Several
methods exist for computing the set of all MinAs, either directly [19,11,7] or
through a so-called pinpointing formula [6,4,5], which is a monotone Boolean
formula encoding all the MinAs. The main advantage of using the pinpointing-
based approach for computing a boundary is that one can simply use existing
implementations for computing all MinAs, such as the ones offered by the on-
tology editor Protégé 45 and the CEL system.6

3.2 Label-Optimized Axiom Pinpointing

From Lemma 4 we know that every margin is of the form λS for some MinA
S. In the previous subsection we have used this fact to compute a boundary by
first obtaining the MinAs and then computing their labels. This process can be
optimized if we directly compute the labels of the MinAs, without necessarily
computing the actual MinAs. Additionally, not all the labels of MinAs are neces-
sary, but only the maximal ones. We present here a black-box algorithm that uses
the labels of the axioms to find the boundary in an optimized way. Our algorithm
is a variant of the Hitting-Set-Tree-based [17] method (HST approach) for axiom
pinpointing [11,21]. First, we briefly describe the HST approach for computing
all MinAs, which will serve as a starting point for our modified version.

The HST algorithm computes one MinA at a time while building a tree that
expresses the distinct possibilities to be explored in the search of further MinAs.
It first computes an arbitrary MinA S0 for T , which is used to label the root of
the tree. Then, for every axiom t in S0, a successor node is created. If T \ {t}
does not entail the consequence, then this node is a dead end. Otherwise, T \{t}
still entails the consequence. In this case, a MinA S1 for T \ {t} is computed
and used to label the node. The MinA S1 for T \ {t} obtained this way is also
a MinA of T , and it is guaranteed to be distinct from S0 since t /∈ S1. Then,
for each axiom s in S1, a new successor is created, and treated in the same way
as the successors of the root node, i.e., it is checked whether T \ {t, s} still has
the consequence, etc. This process obviously terminates, and the end result is a
tree, where each node that is not a dead end is labeled with a MinA, and every
MinA appears as the label of at least one node of the tree (see [11,21]).

An important ingredient of the HST algorithm is a procedure that computes
a single MinA from an ontology. Such a procedure can, for example, be obtained
by going through the axioms of the ontology in an arbitrary order, and removing
redundant axioms, i.e., ones such that the ontology obtained by removing this
axiom from the current sub-ontology still entails the consequence (see [6] for a
description of this and of a more sophisticated logarithmic procedure). As said
before, in our modified HST algorithm, we are now not interested in actually
computing a MinA, but only its label. This allows us to remove all axioms having
a “redundant” label rather than a single axiom. Algorithm 1 describes a black-
box method for computing λS for some MinA S that is based on this idea. In

5 http://protege.stanford.edu/
6 http://code.google.com/p/cel/

Ontological Reasoning in the Presence of Access Restrictions 55

Algorithm 1. Compute a minimal label set of one MinA.
Procedure min-lab(T , α)
Input: T : ontology; α: consequence
Output: ML ⊆ L: minimal label set for a MinA
1: if T �|= α then
2: return no MinA
3: S := T
4: ML := ∅
5: for every k ∈ Llab do
6: if

⊗
l∈ML

l �≤ k then
7: if S − k |= α then
8: S := S − k
9: else

10: ML := (ML \ {l | k < l}) ∪ {k}
11: return ML

fact, the algorithm computes a minimal label set of a MinA S, a notion that will
also be useful when describing our variant of the HST algorithm.

Definition 4 (Minimal label set). Let S be a MinA for α. A set K ⊆ {lab(t) |
t ∈ S} is called a minimal label set of S if distinct elements of K are incompa-
rable and λS =

⊗
�∈K
.

Algorithm 1 removes all the labels that do not contribute to a minimal label set.
If T is an ontology and
 ∈ L, then the expression T −
 appearing at Line 7
denotes the sub-ontology T −
 := {t ∈ T | lab(t) 	=
}. If, after removing all the
axioms labeled with k, the consequence still follows, then there is a MinA none
of whose axioms is labeled with k. In particular, this MinA has a minimal label
set not containing k; thus all the axioms labeled with k can be removed in our
search for a minimal label set. If the axioms labeled with k cannot be removed,
then all MinAs of the current sub-ontology need an axiom labeled with k, and
hence k is stored in the set ML. This set is used to avoid useless consequence
tests: if a label is greater than or equal to

⊗
�∈ML

, then the presence or absence
of axioms with this label will not influence the final result, which will be given
by the infimum of ML; hence, there is no need to apply the (possibly complex)
decision procedure for the consequence relation.

Theorem 2. Let T and α be such that T |= α. There is a MinA S0 for α such
that Algorithm 1 outputs a minimal label set of S0.

Once the label of a MinA has been found, we can compute new MinA labels
by a successive deletion of axioms from the ontology using the HST approach.
Suppose that we have computed a minimal label setM0, and that
 ∈ M0. If we
remove all the axioms in the ontology labeled with
, and compute a new minimal
label set M1 of a MinA of this sub-ontology, then M1 does not contain
, and
thusM0 	=M1. By iterating this procedure, we could compute all minimal label
sets, and hence the labels of all MinAs. However, since our goal is to compute

56 F. Baader, M. Knechtel, and R. Peñaloza

Algorithm 2. Hitting set tree (HST) algorithm for computing the boundary
Procedure hst-boundary(T , α)
Input: T : ontology; α: consequence
Output: boundary ν for α

1: Global : C,H := ∅; ν
2: M := min-lab(T , α)
3: C := {M}
4: ν :=

⊗
�∈M �

5: for each label � ∈ M do
6: expand-hst(T�≤�, α, {�})
7: return ν

Procedure expand-hst(T , α, H)
Input: T : ontology; α: consequence; H : list of lattice elements
Side effects: modifications to C, H and ν

1: if there exists some H ′ ∈ H such that {h ∈ H ′ | h �≤ ν} ⊆ H or
H ′ contains a prefix-path P with {h ∈ P | h �≤ ν} = H then

2: return (early path termination �)
3: if there exists some M ∈ C such that for all � ∈ M, h ∈ H , � �≤ h and � �≤ ν then
4: M′ := M (MinLab reuse)
5: else
6: M′ := min-lab(T�≤ν , α)
7: if T�≤ν |= α then
8: C := C ∪ {M′}
9: ν :=

⊕
{ν,

⊗
�∈M′ �}

10: for each label � ∈ M′ do
11: expand-hst(T�≤�, α, H ∪ {�})
12: else
13: H := H ∪ {H} (normal termination
)

the supremum of these labels, the algorithm can be optimized by avoiding the
computation of MinAs whose labels will have no impact on the final result. Based
on this we can actually do better than just removing the axioms with label
:
instead, all axioms with labels ≤
 can be removed. For an element
 ∈ L and
an ontology T , T�≤� denotes the sub-ontology obtained from T by removing all
axioms whose labels are ≤
. Now, assume that we have computed the minimal
label set M0, and that M1 	=M0 is the minimal label set of the MinA S1. For
all
 ∈ M0, if S1 is not contained in T�≤�, then S1 contains an axiom with label
≤
. Consequently,

⊗
m∈M1

m = λS1 ≤
⊗

m∈M0
m, and thus M1 need not be

computed. Algorithm 2 describes our method for computing the boundary using
a variant of the HST algorithm that is based on this idea.

In the procedure hst-boundary, three global variables are declared: C and
H, initialized with ∅, and ν. The variable C stores all the minimal label sets
computed so far, while each element of H is a set of labels such that, when all
the axioms with a label less than or equal to any label from the set are removed
from the ontology, the consequence does not follow anymore; the variable ν stores
the supremum of the labels of all the elements in C and ultimately corresponds

Ontological Reasoning in the Presence of Access Restrictions 57

to the boundary that the method computes. The algorithm starts by computing
a first minimal label set M, which is used to label the root of a tree. For each
element of M, a branch is created by calling the procedure expand-hst.

The procedure expand-hst implements the ideas of HST construction for pin-
pointing [11,21] with additional optimizations that help reduce the search space
as well as the number of calls to min-lab. First notice that eachM ∈ C is a min-
imal label set, and hence the infimum of its elements corresponds to the label of
some MinA for α. Thus, ν is the supremum of the labels of a set of MinAs for
α. If this is not yet the boundary, then there must exist another MinA S whose
label is not less than or equal to ν. This in particular means that no element of
S may have a label less than or equal to ν, as the label of S is the infimum of
the labels of the axioms in it. When searching for this new MinA we can then
exclude all axioms having a label ≤ ν, as done in Line 6 of expand-hst. Every
time we expand a node, we extend the set H , which stores the labels that have
been removed on the path in the tree to reach the current node. If we reach nor-
mal termination, it means that the consequence does not follow anymore from
the reduced ontology. Thus, any H stored in H is such that, if all the axioms
having a label less than or equal to an element in H are removed from T , then
α does not follow anymore. Lines 1 to 4 of expand-hst are used to reduce the
number of calls to the subroutine min-lab and the total search space. We describe
them now in more detail. The first optimization, early path termination, prunes
the tree once we know that no new information can be obtained from further
expansion. There are two conditions that trigger this optimization. The first one
tries to decide whether T�≤ν |= α without executing the decision procedure. As
said before, we know that for each H ′ ∈ H, if all labels less than or equal to any
in H ′ are removed, then the consequence does not follow. Hence, if the current
list of removal labels H contains a set H ′ ∈ H we know that enough labels have
been removed to make sure that the consequence does not follow. It is actually
enough to test whether {h ∈ H ′ | h 	≤ ν} ⊆ H since the consequence test we
need to perform is whether T�≤ν |= α. The second condition for early path ter-
mination asks for a prefix-path P of H ′ such that P = H . If we consider H ′

as a list of elements, then a prefix-path is obtained by removing a final portion
of this list. The idea is that, if at some point we have noticed that we have
removed the same axioms as in a previous portion of the search, we know that
all possibilities that arise from that search have already been tested before, and
hence it is unnecessary to repeat the work. Hence we can prune the tree here.

The second optimization avoids a call to min-lab by reusing a previously com-
puted minimal label set. Notice that our only requirement on min-lab that it
produces a minimal label set. Hence, any minimal label set for the ontology ob-
tained after removing all labels less than or equal to any h ∈ H or to ν would
work. The MinLab reuse optimization checks whether there is such a previously
computed minimal label set. If this is the case, it uses this set instead of com-
puting a new one by calling min-lab.

Theorem 3. Let T and α be such that T |= α. Then Algorithm 2 computes the
margin-based boundary of α.

58 F. Baader, M. Knechtel, and R. Peñaloza

0

5 4

3 2

1

Fig. 1. A lattice

n0 : 4 5

n1 : 2 3 n4 : 2 3

n2 : n3 : n6 :n5 :

4 5

2 3 2 3

Fig. 2. An expansion of the HST method

A proof of this theorem can be found in [2]. Here, we just illustrate how it works
by a small example.

Example 2. Consider the lattice in Figure 1, and let T be the (Description Logic)
ontology consisting of the following five axioms:

t1 : A � P1 �Q1, t2 : P1 � P2 �Q2, t3 : P2 � B,
t4 : Q1 � P2 �Q2, t5 : Q2 � B,

where each axiom ti is labeled with lab(ti) =
i. There are four MinAs for the
subsumption relation A � B w.r.t. T , namely {t1, t2, t3}, {t1, t2, t5}, {t1, t3, t4},
and {t1, t4, t5}. All the elements of the labeling lattice except
1 and
3 are
join prime relative to Llab. Figure 2 shows a possible run of the hst-boundary
algorithm. The algorithm first calls the routine min-lab(T , A � B). Consider
that the for loop of min-lab is executed using the labels
1, . . . ,
5 in that order.
Thus, we try first to remove t1 labeled with
1. We see that T −
1 	|= A � B;
hence t1 is not removed from T , and ML is updated to ML = {
1}. We then see
that T −
2 |= A � B, and thus t2 is removed from T . Again, T −
3 |= A � B,
so t3 is removed from T . At this point, T = {t1, t4, t5}. We test then whether
T −
4 |= A � B and receive a negative answer; thus,
4 is added to ML;
additionally, since
4 <
1, the latter is removed from ML. Finally, T −
5 	|=
A � B, and so we obtain ML = {
4,
5} as an output of min-lab.

The minimal label set {
4,
5}, is used as the root node n0, setting the value
of ν =
4 ⊗
5 =
0. We then create the first branch on the left by removing all
the axioms with a label ≤
4, which is only t4, and computing a new minimal
label set. Assume, for the sake of the example, that min-lab returns the minimal
label set {
2,
3}, and ν is accordingly changed to
4. When we expand the tree
from this node, by removing all the axioms below
2 (left branch) or
3 (right
branch), the subsumption relation A � B does not follow any more, and hence
we have a normal termination, adding the sets {
4,
2} and {
4,
3} to H. We
then create the second branch from the root, by removing the elements below
5.
We see that the previously computed minimal axiom set of node n1 works also
as a minimal axiom set in this case, and hence it can be reused (MinLab reuse),
represented as an underlined set. The algorithm continues now by calling expand-
hst(T�≤�2 , A � B, {
5,
2}). At this point, we detect that there is H ′ = {
4,
2}

Ontological Reasoning in the Presence of Access Restrictions 59

Algorithm 3. Compute a boundary by binary search.
Input: T : ontology; α: consequence
Output: ν: (T , α)-boundary
1: if T �|= α then
2: return no boundary
3: � := 0lab; h := 1lab

4: while l < h do
5: set m, � < m ≤ h such that δ(�,m) − δ(m,h) ≤ 1.
6: if Tm |= α then
7: � := m
8: else
9: h := pred(m)

10: return ν := �

satisfying the first condition of early path termination (recall that ν =
4), and
hence the expansion of that branch at that point. Analogously, we obtain an
early path termination on the second expansion branch of the node n4. The
algorithm then outputs ν =
4, which can be easily verified to be a boundary.

3.3 Binary Search for Linear Ordering

In this subsection, we assume that the labeling lattice (L,≤) is a linear order,
i.e., for any two elements
1,
2 of L we have
1 ≤
2 or
2 ≤
1.

Lemma 5. Let T and α be such that T |= α. Then the unique boundary of α is
the maximal element μ of Llab with Tμ |= α.

A direct way for computing the boundary in this restricted setting thus consists
of testing, for every element in
 ∈ Llab, in order (either increasing or decreasing)
whether T� |= α until the desired maximal element is found. This process requires
in the worst case n := |Llab| iterations. This can be improved using binary
search, which requires a logarithmic number of steps measured in n. Algorithm 3
describes the binary search algorithm. In the description of the algorithm, the
following abbreviations have been used: 0lab and 1lab represent the minimal and
the maximal elements of Llab, respectively; for
1 ≤
2 ∈ Llab, δ(
1,
2) := |{
′ ∈
Llab |
1 <
′ ≤
2}| is the distance function in Llab and for a given
 ∈ Llab,
pred(
) is the maximal element
′ ∈ Llab such that
′ <
.

The variables
 and h are used to keep track of the relevant search space.
At every iteration of the while loop, the boundary is between
 and h. At the
beginning these values are set to the minimum and maximum of Llab and are
later modified as follows: we first find the middle element m of the search space;
i.e., an element whose distance to
 differs by at most one from the distance to
h. We then test whether Tm |= α. If that is the case, we know that the boundary
must be larger or equal to m, and hence the lower bound
 is updated to the
value of m. Otherwise, we know that the boundary is strictly smaller than m as
m itself cannot be one; hence, the higher bound h is updated to the maximal

60 F. Baader, M. Knechtel, and R. Peñaloza

element of Llab that is smaller than m : pred(m). This process terminates when
the search space has been reduced to a single point, which must be the boundary.

4 Empirical Evaluation

4.1 Test Data and Test Environment

We test on a PC with 2GB RAM and Intel Core Duo CPU 3.16GHz. We im-
plemented all approaches in Java and used Java 1.6, CEL 1.0, Pellet 2.0.0-rc5
and OWL API trunk revision 1150. The boundary computation with full ax-
iom pinpointing (FP in the following) uses log-extract-mina() (Alg. 2 from [7],
which is identical to Alg. 8 from [21]) and the HST based hst-extract-all-minas()
(Alg. 9 from [21]). The set of extracted MinAs is then used to calculate the
label of the consequence. We break after 10 found MinAs in order to limit the
runtime, so there might be non-final label results. The boundary computation
with label-optimized axiom pinpointing (LP in the following) with min-lab() and
hst-boundary() are implementations of Alg. 1 and Alg. 2 of the present paper.
The boundary computation with binary search for linear ordering (BS in the
following) implements Alg. 3 of the present paper.

Although we focus on comparing the efficiency of the presented algorithms,
and not on practical applications of these algorithms, we have tried to use inputs
that are closely related to ones encountered in applications. The two labeling
lattices (Ld,≤d) and (Ll,≤l) are similar to ones encountered in real-world appli-
cations. The labeling lattice (Ld,≤d) was already introduced in Fig. 1. Lattices
of this structure (where the elements correspond to hierarchically organized user
roles) can be obtained from a real-world access matrix with the methodology
presented in [8]. The set of elements of Ld that are allowed to represent user
roles if all elements of the lattice can be used as axiom labels are the elements
that are join prime relative to the whole lattice, i.e.,
0,
2,
4,
5. The labeling
lattice (Ll,≤l) is a linear order with 6 elements Ll = Ld = {
0, . . . ,
5} with
≤l := {(
n,
n+1) |
n,
n+1 ∈ Ll ∧ 0 ≤ n ≤ 5}, which could represent an order of
trust values as in [18] or dates from a revision history.

We used the two ontologies OSnomed and OFunct with different expressivity
and types of consequences for our experiments. The Systematized Nomenclature
of Medicine, Clinical Terms (Snomed ct) is a comprehensive medical and clin-
ical ontology which is built using the Description Logic (DL) EL+. Our version
OSnomed is the January/2005 release of the DL version, which contains 379,691
concept names, 62 object property names, and 379,704 axioms. Since more than
five million subsumptions are consequences of OSnomed, testing all of them was
not feasible and we used the same sample subset as described in [7], i.e., we
sampled 0.5% of all concepts in each top-level category of OSnomed. For each
sampled concept A, all positive subsumptions A �OSnomed B with A as subsumee
were considered. Overall, this yielded 27,477 positive subsumptions. Following
the ideas of [7], we precomputed the reachability-based module for each sampled
concept A with CEL and stored these modules. This module for A was then used
as the start ontology when considering subsumptions with subsumee A.

Ontological Reasoning in the Presence of Access Restrictions 61

Table 1. Emprical results of FP and LP with lattice (Ld,≤d) on a sampled set of
21,001 subsumptions from OSnomed and on a set of 307 consequences from OFunct with
less than 10 MinAs (time in ms)

�early
termination

�reuse �calls to
extract
MinA

(MinLab)

�MinA
(�MinLab)

�axioms
(�labels) per

MinA
(MinLab)

lattice
operations

time

total
labeling

time

O
S
n
o
m
ed F
P

avg 81.05 9.06 26.43 2.07 5.40 0.25 143.55
max 57,188.00 4,850.00 4,567.00 9.00 28.67 45.00 101,616.00

stddev 874.34 82.00 90.48 1.86 3.80 0.86 1,754.03

L
P

avg 0.01 0.00 2.76 1.03 1.73 0.35 4.29
max 2.00 1.00 6.00 3.00 3.00 57.00 70.00

stddev 0.13 0.02 0.59 0.16 0.56 0.98 3.62

O
F
u
n
c
t

F
P

avg 43.59 29.52 26.56 4.26 3.05 0.49 3,403.56
max 567.00 433.00 126.00 9.00 6.50 41.00 13,431.00

stddev 92.16 64.04 30.90 2.84 1.01 2.38 3,254.25

L
P

avg 0.09 0.02 2.80 1.33 1.40 0.76 207.32
max 2.00 1.00 7.00 4.00 3.00 22.00 1,295.00

stddev 0.34 0.13 0.90 0.54 0.48 1.56 87.29

OFunct is an OWL ontology for functional description of mechanical engi-
neering solutions presented in [10]. It has 115 concept names, 47 object property
names, 16 data property names, 545 individual names, 3,176 axioms, and the
DL expressivity used in the ontology is SHOIN (D). Its 716 consequences are
12 subsumption and 704 instance relationships (class assertions).

To obtain labeled ontologies, axioms in both labeled ontologies received a ran-
dom label assignment of elements from Ll = Ld. As black-box subsumption and
instance reasoner we used the reasoner Pellet since it can deal with the expressiv-
ity of both ontologies. For the expressive DL SHOIN (D) it uses a tableau-based
algorithm and for EL+ it uses an optimized classifier for the OWL 2 EL profile,
which is based on the algorithm described in [1].

4.2 Results

The results for OSnomed and (Ld,≤d) are given in the upper part of Table 1.
LP computed all labels, but since we limit FP to <10 MinAs, only 21,001 sub-
sumptions have a final label, which is guaranteed to be equal to the boundary.
The 6,476 remaining subsumptions (31%) have a non-final label which might
be too low in the lattice since there might be further MinAs providing a higher
label. The overall labeling time for all 21,001 subsumptions with FP was 50.25
minutes, for LP 1.50 minutes which means that LP is about 34 times faster than
FP, but again this is only for the subset of subsumptions which were finished by
FP. An estimation for the time needed to label all of the more than 5 million
subsumptions in OSnomed with LP would be approximately 6 hours.

The final labels of FP and LP (i.e., the computed boundaries) were identical,
the non-final labels of FP were identical to the final labels of LP (i.e., the bound-
aries) in 6,376 of the 6,476 cases (98%), i.e., in most cases the missing MinAs
would not have changed the already computed label. Table 2 provides results
for the subsumptions with more than 10 MinAs: FP took 2.5 hours on this set
without final results (since it stopped after 10 MinAs), whereas LP took 0.6%
of that time and returned final results after 58 seconds. We started a test series

62 F. Baader, M. Knechtel, and R. Peñaloza

Table 2. Emprical results of FP and LP with lattice (Ld,≤d) on a sampled set of 6,476
subsumptions from OSnomed and on a set of 409 class assertions from OFunct with at
least 10 MinAs (time in ms)

�early
termination

�reuse �calls to
extract
MinA

(MinLab)

�MinA
(�MinLab)

�axioms
(�labels) per

MinA
(MinLab)

lattice
operations

time

total
(non-final)

labeling
time

O
S
n
o
m
ed F
P

avg 432.11 42.25 126.54 10.20 16.38 0.30 1,378.66
max 42,963.00 5,003.00 4,623.00 16.00 37.80 14.00 148,119.00

stddev 1,125.06 121.15 186.33 0.49 5.00 0.54 3,493.02

L
P

avg 0.04 0.00 3.12 1.06 2.05 0.32 8.88
max 3.00 2.00 6.00 3.00 3.00 46.00 86.00

stddev 0.21 0.04 0.50 0.25 0.44 1.04 4.26

O
F
u
n
c
t

F
P

avg 30.01 16.00 26.44 10.04 4.41 0.56 8,214.91
max 760.00 511.00 411.00 11.00 6.50 3.00 25,148.00

stddev 85.33 47.79 40.61 0.20 1.08 0.55 3,428.97

L
P

avg 0.09 0.01 2.76 1.38 1.32 0.77 200.55
max 3.00 2.00 7.00 4.00 2.00 16.00 596.00

stddev 0.33 0.12 0.91 0.64 0.43 1.40 61.11

Table 3. Emprical results of LP and BS on a sampled set of 27,477 subsumptions in
OSnomed/ all 716 consequences of OFunct with lattice (Ll,≤l) (time in ms)

LP BS
�early

termina-
tion

�reuse �calls to
extract
MinLab

�MinLab �labels
per

MinLab

lattice
opera-
tions
time

total
labeling

time

iterations total
labeling

time

OSnomed
avg 0.03 0.00 2.24 1.03 1.23 0.37 4.75 2.41 2.81
max 1.00 0.00 5.00 3.00 2.00 329.00 330.00 3.00 75.00

stddev 0.18 0.00 0.45 0.19 0.42 4.85 6.37 0.49 2.94

OFunct
avg 0.09 0.00 2.50 1.27 1.24 0.82 186.98 2.55 95.80
max 1.00 0.00 5.00 3.00 2.00 62.00 1147.00 3.00 877.00

stddev 0.28 0.00 0.72 0.49 0.40 2.74 69.55 0.50 45.44

limiting runs of FP to <30MinAs, which did not terminate after 90 hours, with
1,572 labels successfully computed and 30 subsumptions skipped since they had
≥30MinAs. Interestingly, in both consequence sets, LP can rarely take advantage
of the optimizations early termination and MinA reuse, which might be due to
the simple structure of the lattice.

For OFunct the comparison between FP and LP is given in the lower part
of Tables 1 and 2. Again, the computation of FP was restricted to <10 MinAs.
This time, only 363 out of 409 (88%) non-final labels of FP were equal to the
final labels of LP (i.e., the boundary). Although the ontology is quite small, LP
again behaves much better than FP. The reason could be that in this ontology
consequences frequently have a large set of MinAs. From Tables 1 and 2, one
can see that LP requires at most three MinLabs for OSnomed, at most four for
OFunct, and usually just one MinLab whereas FP usually requires more MinAs.

Table 3 provides results for LP vs. BS with the total order (Ll,≤l) as labeling
lattice. For OSnomed, LP takes 130.4 and BS takes 77.1 seconds to label all 27,477
subsumptions. For OFunct, LP takes 133.9 and BS takes 68.6 seconds to label
all 716 consequences. So BS is about twice as fast as LP. Interestingly, labeling
all consequences of OFunct and OSnomed takes roughly the same time, perhaps
due to a tradeoff between ontology size and expressivity.

Ontological Reasoning in the Presence of Access Restrictions 63

5 Conclusion

We have considered a scenario where ontology axioms are labeled and user la-
bels determine views on the ontology, i.e., sub-ontologies that are obtained by
comparing the user label with the axiom labels. Our approach can be used for
large-scale ontologies since, on the one hand, it allows to precompute conse-
quences without having to do do this separately for all possible views: once we
have computed a boundary for the consequence, checking whether this conse-
quence entailed by a sub-ontology is reduced to a simple label comparison. On
the other hand, the fact that we employ a black-box approach for computing
the boundary allows us to use existing highly-optimzed reasoners, rather than
having to implement a new reasoner from scratch.

Our general framework allows to use any restriction criterion that can be
represented using a lattice, such as user roles, levels of trust, granularity, or
degrees of uncertainty. In the presence of access restrictions, each user label de-
fines a sub-ontology containing the axioms visible to this user. In the presence
of trust restrictions, the user label specifies the trust level required for the on-
tology axiom. This supports scenarios with axioms from different sources, like
company-internal with high trust level and public Web with low trust level. In
the presence of uncertainty, e.g. in possibilistic reasoning, each axiom has an
associated certainty degree in the interval [0, 1]. The user label then specifies
the certainty degree required for the axioms and the consequences. Similarly,
granularity restrictions (i.e., on how much details the ontology should provide
for the user) can be expressed by a total order.

Our experiments have shown that this framework can be applied to large
ontologies. From the two black-box algorithms that can deal with arbitrary lat-
tices, the Full Axiom Pinpointing approach is clearly outperformed by the Label-
Optimized Axiom Pinpointing approach. For the special case where the labeling
lattice is a total order, the latter is again outperformed by the Binary Search
approach.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of 19th
Int. Joint Conf. on Art. Int. IJCAI 2005, Edinburgh, UK. Morgan-Kaufmann,
San Francisco (2005)

2. Baader, F., Knechtel, M., Peñaloza, R.: Computing boundaries for reasoning in
sub-ontologies. Technical Report 09-02, LTCS (2009),
http://lat.inf.tu-dresden.de/research/reports.html

3. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N.
(ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg
(2007)

4. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 226–241. Springer, Heidelberg (2008)

5. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation (To appear, 2009)

http://lat.inf.tu-dresden.de/research/reports.html

64 F. Baader, M. Knechtel, and R. Peñaloza

6. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI),
vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

7. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proc. of the International Conference on
Representing and Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix,
Arizona (2008)

8. Dau, F., Knechtel, M.: Access policy design supported by FCA methods. In:
Dau, F., Rudolph, S. (eds.) Proc. of the 17th Int. Conf. on Conceptual Structures,
ICCS (2009)

9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn.
Cambridge University Press, Cambridge (2002)

10. Gaag, A., Kohn, A., Lindemann, U.: Function-based solution retrieval and semantic
search in mechanical engineering. In: Proc. of the 17th Int. Conf. on Engineering
Design, ICED 2009 (to appear, 2009)

11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications
of OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 267–280. Springer, Heidelberg (2007)

12. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Sem. 3(4), 268–293 (2005)

13. Lesot, M.-J., Couchariere, O., Bouchon-Meunier, B., Rogier, J.-L.: Inconsis-
tency degree computation for possibilistic description logic: An extension of the
tableau algorithm. In: Proc. of NAFIPS 2008, pp. 1–6. IEEE Comp. Soc. Press,
Los Alamitos (2008)

14. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of the 21st Nat. Conf. on Artificial
Intelligence (AAAI 2006). AAAI Press/The MIT Press, Menlo Park (2006)

15. Qi, G., Pan, J.Z.: A tableau algorithm for possibilistic description logic. In:
Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 61–75.
Springer, Heidelberg (2008)

16. Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in
possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724,
pp. 828–839. Springer, Heidelberg (2007)

17. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

18. Schenk, S.: On the semantics of trust and caching in the semantic web. In: Sheth,
A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 533–549. Springer, Heidelberg (2008)

19. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico,
pp. 355–362. Morgan Kaufmann, Los Altos (2003)

20. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Description
Logic Workshop (DL 2004), pp. 212–213 (2004)

21. Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Mainte-
nance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik, TU
Dresden (2009), http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008

http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008

OntoCase-Automatic Ontology Enrichment
Based on Ontology Design Patterns�

Eva Blomqvist

StLab, ISTC-CNR, via Nomentana 56, 00161 Roma, Italy
eva.blomqvist@istc.cnr.it

Abstract. OntoCase is a framework for semi-automatic pattern-based
ontology construction. In this paper we focus on the retain and reuse
phases, where an initial ontology is enriched based on content ontol-
ogy design patterns (Content ODPs), and especially the implementation
and evaluation of these phases. Applying Content ODPs within semi-
automatic ontology construction, i.e. ontology learning (OL), is a novel
approach. The main contributions of this paper are the methods for pat-
tern ranking, selection, and integration, and the subsequent evaluation
showing the characteristics of ontologies constructed automatically based
on ODPs. We show that it is possible to improve the results of existing
OL methods by selecting and reusing Content ODPs. OntoCase is able to
introduce a general top structure into the ontologies, and by exploiting
background knowledge the ontology is given a richer overall structure.

1 Introduction

Ontology engineering, for the Semantic Web and other application fields, is a
tedious and error-prone process requiring expertise in knowledge modelling and
logical languages. With the emergence of the Semantic Web we have seen an
increase in popularity of light-weight ontologies that provide just a bit of formal
semantics to a data set. Additionally, general web developers have become more
and more interested in ontology engineering. To exploit the full benefits of the
Semantic Web, ontologies need to be easy to construct, perhaps automatically.
In line with this, we have focused on automatic methods (so called ontology
learning - OL) for light-weight ontology construction, and especially how the
ontology quality can be improved by applying ontology design patterns (ODPs).

Typically, learnt ontologies are quite shallow (in a taxonomical sense), sparse
(with respect to the number of relations) and contain a large set of uncon-
nected concepts. An inherent problem when OL is attempted based on text
corpora is the fact that most information is actually implicit in the text

� This research was primarily conducted at the Information Engineering research
group, Jönköping University (SE). Financially supported through projects SEMCO
(KK-foundation grant no. 2003/0241), MediaIlLOG (grant from Carl-Olof och Jenz
Hamrins Stiftelse), and DEON (STINT). Evaluations were also conducted within the
NeOn project, funded by the European Commission, grant no. IST-2005-027595.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 65–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 E. Blomqvist

(e.g. as observed in [1]). The consequence is that learnt ontologies lack an
overall general structure representing this background knowledge. We believe
that some of this knowledge can be added by means of ODPs, in particular
Content ODPs. Such patterns can also assist in structuring the existing learnt
knowledge.

In this paper we show a particular method for enriching learnt ontologies,
by means of Content ODPs. The method is not language dependent as such,
but is implemented based on current de facto standards, e.g. OWL. Evaluations
attempt to show the two main features of this method: 1) The ability to add a
(taxonomical) top structure to the ontology, representing background knowledge
implicit in the texts that were the basis of the input ontology. 2) The ability
to add more structure to the learnt ontology, i.e. to increase the taxonomical
depth and the relation-to-concept ratio. In the following sections we present
some background and related work with respect to OL and ODPs. In section 3
we discuss the OntoCase methods, and section 4 presents experiments validating
the OntoCase approach. We conclude and discuss future work in section 5.

1.1 Ontology Learning

So far OL approaches have largely dealt with element extraction (see
overviews [2,3]), i.e. extraction of single concepts or relations from text cor-
pora, such as in [4]. Approaches have mostly focused on adapting techniques
from NLP, computational linguistics, machine learning, and text mining. An ex-
ample of a state-of-the-art OL tool is Text2Onto1 [5]. A few recent approaches,
e.g. [6,7], have attempted to extract complex axioms, but primarily based on
structured input, such as dictionary entries. An approach sharing our goal of
providing a more structured output is [8]. The approach uses semantic frames,
from linguistics, to extract knowledge from text and transform the frames into
small ontologies.

Even though many of the techniques used in OL have been around for many
years, they remain subjects of research. The quality of the ontologies is far
from perfect; without manual revision the ontologies are not directly usable. An
important issue is improving the output ontology quality of OL systems, i.e. the
main focus of OntoCase, but still we are not attempting to replace the ontology
engineers, merely provide a better starting point for further development.

1.2 Content Ontology Design Patterns

There exist different types of ODPs having different characteristics, for details on
ODP types see [9], but in this paper we focus on Content ODPs. Content ODPs
are small ontologies with explicit documentation of design rationales, which can
be used as building blocks in ontology design, as shown in [10,11].

As an example we describe a Content ODP that is called Action. It represents
the relations between different types of actions, the state of the actions, and

1 http://ontoware.org/projects/text2onto/

OntoCase-Automatic Ontology Enrichment Based on ODPs 67

defines the relation between a plan and a set of proposed actions, see Fig. 1.
Content ODPs are collected and presented in different catalogues, such as the
ODP portal2. In addition to their diagrammatic representation Content ODPs
are described using a number of catalogue entry fields (c.f. software pattern
templates), such as name, intent, consequences, and building block (linking to
an OWL realization of the pattern). Reusing Content ODPs is a special case of
ontology reuse, when the elements of the Content ODP are specilized.

Fig. 1. The Action Content ODP’s graphical representation in UML

2 Related Work

Our research is inspired by early AI approaches in analogical reasoning, e.g.
scripts and frames, and case-based reasoning (CBR), see [12] for a discussion re-
lated to CBR, as well as earlier work in knowledge engineering (KE) and reuse of
problem-solving methods. However, recent developments in the KE and Seman-
tic Web fields have led to a situation where a lot of general background knowl-
edge and other knowledge resources, such as ODPs, are now readily available.
Consequently we are now able to realize the true potential of such techniques.

Within the ontology engineering field, this research is strongly related to on-
tology reuse, since Content ODPs are in essence small ontologies. However, no
previous approaches specifically target the automatic selection and integration of
Content ODPs. Related work exists in ontology search and ranking, e.g. search
engines such as Watson3, SWOOGLE4, and Sindice5. Tools such as the NeOn
toolkit in combination with the Watson plug-in let a developer integrate parts
of the retrieved ontologies into the one being built, but the matching is simple
keyword matching. The problems of selecting the right ontology, e.g. Content
ODP, specializing it, and composing several ontologies are largely unaddressed.

An elaborate ranking approach that has inspired our research is AktiveRank
[13]. However, this approach incorporates measures such as the centrality of the
keywords in the ontology, which are not suitable for small patterns where the
notion of centrality is not applicable. The methods in this paper are similar
2 http://www.ontologydesignpatterns.org
3 http://watson.kmi.open.ac.uk
4 http://swoogle.umbc.edu/
5 http://sindice.com/

68 E. Blomqvist

to ontology matching, see [14], and methods for analyzing names in ontologies
[15]. However, they have been tailored to the specific case of matching a large
diverse input ontology on one hand to a small Content ODP on the other hand.
To the best of our knowledge no such specific methods have been proposed
previously.

3 OntoCase - Retrieve and Reuse

OntoCase is a general framework for pattern-based semi-automatic ontology
construction, but in this paper we focus on the retrieve and reuse phases that
have been implemented for OWL ontologies. The overall framework can be seen
in Fig. 2. The third and fourth phases, revise and retain, are still future work.

3.1 Assumptions and Input

The process is initiated by the input of a data set from which to bootstrap the
ontology; “Input” in Fig. 2. The “Element extraction” step uses state-of-the-
art OL, i.e. deriving ontology elements from some non-ontological input, such
as a text corpus. Since such extraction has been treated in previous research,
we simply assume that a preliminary OWL ontology is present. Many OL tools
provide a notion of extraction confidence; if present, such values can be used by
OntoCase. The methods in this paper cover the “Pattern matching”, “Pattern
selection”, “Pattern adaptation”, and “Pattern composition” steps in Fig. 2.

A catalogue of Content ODPs is assumed to be available, “Pattern base” in
Fig. 2. Currently the OWL building block itself is used for retrieval and reuse.
The current implementation of OntoCase does not treat the pattern construc-
tion problem, although the problem is recognized as future work, i.e. the fourth
phase (retain). This is not an unreasonable assumption, since recently cata-
logues of Content ODPs have emerged, such as the ODP portal6 and catalogues
re-engineered from other sources (such as data model patterns [16]), as in [12].

For the matching procedure terms representing both concepts and properties
are used, i.e. names or labels (the best match is chosen disregarding if it is
a label or a local name). We are assuming that both Content ODPs and the
input ontology have human-readable local names (the local part of the resource
URI), and/or labels (defined through rdfs:label), defined for all classes and
properties. Content ODPs represent best practices, hence it should hold for all
patterns since this is in itself a good practice, and additionally most OL methods
apply some form of term extraction when forming concepts. When matching
properties, in the current implementation only the domains and ranges of the
properties are used. To explicitly define domain and range is also a best practice,
hence most pattern properties have explicit domain and range definitions. For
learnt ontologies this may not hold, but again due to the methods commonly
applied in OL, such as relation extraction through term co-occurrence, it is very
common that domains and ranges are actually present for most properties.
6 http://ontologydesignpatterns.org

OntoCase-Automatic Ontology Enrichment Based on ODPs 69

Input

Pattern base

Retrieved
patterns

Initial
ontology

Revised
ontology

Pattern
candidates

Retrieve

Reuse

Revise

Retain

OntoCase

Element
extraction

Pattern
matching

Pattern
selection

Pattern
adaptation

Pattern
composition

Ontology
evaluation

Ontology
revision

Feedback
generation

Pattern
extraction

Fig. 2. The overall OntoCase framework

3.2 Example Scenario

As an example, assume that we are constructing a software engineering ontology,
and we have extracted the concepts (with local names as follows) “project plan”
(with a confidence of 0.5), “schedule” (with a confidence of 0.5), “execution”
(with confidence 1.0), and “software engineering task” (with confidence 0.5) from
a text corpus. Additionally there is one extracted property named “compose”,
with domain “software engineering task” and range “project plan”. Let us also
assume that we have the pattern called Action in our pattern catalogue, see
section 1.2. This example will be used throughout the description of the method.

3.3 Pattern Ranking

Our pattern ranking and selection method (realizing the “Pattern matching”
and “Pattern selection” steps in Fig. 2) takes as input a catalogue of Content
ODPs and a preliminary OWL ontology, possibly extracted using some OL tool.
The ranking is based on matching between the patterns and the input ontology.
Content ODPs are inherently small ontologies, hence computationally expensive
graph operations can be applied without risking the performance. Content ODP
reuse is done through specialization, hence generalizations of pattern concepts
are disregarded. The ranking scheme contains three main parts; concept cov-
erage, relation coverage, and utility measures, which are applied as in Fig. 3.
Current formulas (details in [12]) are based on related work in ontology ranking,
and on analyzing what features intuitively impact pattern suitability.

70 E. Blomqvist

Fig. 3. Parts of the ranking scheme and their dependencies

Concept Coverage. Concept coverage is computed based on direct and in-
direct term matching. To determine the direct coverage, i.e. discover possible
candidates for equivalent concepts, string matching of concept names and labels
is used. In order to find only possible equivalences, the matching threshold has
to be set quite high. A future extension of this method would be to also study
partial inclusion of strings, which would indicate different kinds of relationships
between the concepts, or to use “naming patterns” as proposed by [15]. The
direct coverage is computed based on the fraction of the pattern concepts that
match terms representing a concept in the input ontology Oinput. The string
matching between terms produces a similarity value representing the degree of
similarity between two strings; any common normalised string matching mea-
sure could be used. These values are then composed into a weighted matching
value for each discovered match, using the string matching score and the confi-
dence (if present). For each concept the direct coverage score is computed as the
maximum weighted matching value, i.e. the matching score of the best match.

For our example (see section 3.2) we assume the string matching metric is
simple string inclusion. Only one term, i.e. “project plan”, will match any term,
i.e. “Plan”, in the Action pattern. The term “Plan” constitutes one third of the
character string “project plan”, hence the resulting score is 0.33. To arrive at
the weighted matching score we multiply this with the confidence value, i.e. 0.5,
and arrive at a final direct coverage of the “plan”-concept of 0.17.

For the indirect matching, i.e. hints of subclass relations, clues can be found
among hypernym relations between terms. Hyponymy/hypernymy denotes a hi-
erarchical relation between terms indicating the specificity of the terms; such a
hierarchy is for instance present in the WordNet dictionary. Two approaches are
used; hypernym chains in WordNet and the “head heuristic”. The “head heuris-
tic” states that a compound term is more specific than the head of the term, i.e.
“graduate student” is a specialization of “student”.

The dictionary approach starts with a concept in Oinput. The terms repre-
senting this concept are matched against the WordNet dictionary, through exact
string matching, and corresponding WordNet terms ti, if any, are retrieved. The
same is done for all pattern concepts. The hypernyms of each ti are searched
for pattern terms. Since ti can have several senses, there can be several paths,
not all leading to a pattern term. The dictionary coverage of a pattern concept

OntoCase-Automatic Ontology Enrichment Based on ODPs 71

is computed as the sum of the contributions by each Oinput concept, which in
turn depend on the number of paths, the length of the shortest path, and the
number of senses. The intuition is that the score increases if several paths are
found, while it decreases with an increased length of the shortest path, and with
an increased number of senses (i.e. an increased uncertainty).

In our example the terms “schedule” and “execution” can be found in Word-
Net. The noun “execution” has 7 senses, and for two of the senses we can find
a path of hypernym relations connecting them to the term “Action”. One path
is of length one and the other of length 6. When computing the dictionary
coverage of the “Action” concept the number of paths (i.e. two) is divided by
the length of the shortest path (i.e. one) and the number of senses (i.e. 7),
and weighted with the confidence, arriving at the value 0.29. “Schedule” has two
senses in WordNet, and one path of length one leads to the pattern term “Plan”.
The dictionary coverage of “Plan” is thereby 0.25.

For a concept in Oinput represented by a multi-word term also the “head
heuristic” is applied. The number of modifiers, in our case defined as the num-
ber of additional words (disregarding the possibility of multi-word terms being
individual modifiers) preceding the head word, are treated analogously to a step
in the hypernym chains above. Since we have no information about senses, this
is disregarded. In our example the only multi-word term matching a pattern
term is “project plan”, which matches “Plan” with one modifier (i.e. the word
“project”). The head coverage (weighted by the confidence) of “Plan” is 0.5 .

Although more elaborate weighting mechanisms could be applied, currently
the total concept coverage of each pattern concept is computed as the sum
of the three scores, with a maximum score set to 1. In our example this means
that the direct coverage, the dictionary coverage and the head coverage of “Plan”
are added, resulting in 0.92. The total concept coverage score of a pattern is the
average over all concepts. In the example we have 8 concepts in the pattern,
where two of them had matches, resulting in a total concept coverage of 0.15.

Relation Coverage. Matching of properties can be done both based on prop-
erty names and labels, and on the direct concept matches. The intuition behind
this is that neither the property name nor the domain and range is sufficient to
determine equivalence (or similarity) of the property, but in combination they
give a strong indication. For each pattern property from concept cd to concept
cr, the best match (if any) is selected from the extracted properties. The score is
calculated based on the individual matching scores of the direct concept matches
(see above). When matching property names and labels a string similarity mea-
sure is used. The score of one pattern property with respect to all properties
in Oinput, is the maximum matching value for any property, which in turn is
computed as the average of the string matching score and the combined direct
concept coverages (multiplied and weighted by the property confidence).

In our example there is only one direct concept match, hence no pair of such
matches connected by a property can be found. The name of the extracted
property “compose” can be found similar to the pattern property “composed of”
(with the score 0.64, based on string inclusion). The total relation coverage of the

72 E. Blomqvist

“composed of” property is then 0.32. The total relation coverage is the average
of the individual matching scores. In our example there are three properties,
hence the total coverage is 0.11. A more elaborate strategy for matching relation
names could include also common “naming patterns” to identify the possibility
of “composed of” being the inverse of “compose”, rather than the same relation.

Utility Measures. The intuition is to assess the “utility” of enriching the input
ontology with particular pattern, based on the concept and relation matches. We
remind the reader of the aim to give the input ontology a richer structure, thereby
utility is interpreted as the ability to add structure. Two utility measures are
used; density and proximity, which are inspired by [13].

Density refers to the amount of “structure” that surrounds a certain concept.
OntoCase currently considers the number of sub- and superclasses, taxonomi-
cal siblings, and concepts directly related through object properties (explicitly
defined domains and ranges). In our example, the “Action” concept has three
direct subclasses and is related to two other concepts, resulting in the density
5 divided by 8 (the total number of concepts), i.e. 0.63. The density of “Plan”
is 0.13. The density values are then weighted using the concept coverage; the
weighted density of “Plan” is 0.12 (0.92∗0.13). The complete density of a pat-
tern is the normalized sum of the densities of matched concepts.

The proximity measure considers the distance dist(ci, cj) between two
matched concepts ci and cj in a pattern, which is computed as the length of
the shortest path between the concepts, taking into account all relations (sub-
class and properties explicitly defined with domain and range, disregarding the
direction), except paths passing owl:Thing. The maximum distance between any
two concepts in a pattern is denoted the pattern diameter, which is used for nor-
malization together with the fraction of matched concepts. The total proximity
value of a pattern is the normalized sum of all the individual proximities.

Ranking and Selection. The three parts are then aggregated into one ranking
value. Although more advanced combinations could be imaginable, for simplicity
reasons a linear combination is used, currently with equal weights on all mea-
sures. The simplest approach for selection is to let the user set a threshold on the
ranking value. A more elaborate approach would be to study the total coverage
of the patterns over the input.

3.4 Pattern-Based Enrichment

The reuse phase is concerned with adapting, i.e. specializing, and composing
the selected Content ODPs, and integrating them into an enriched version of
the input ontology (steps “Pattern adaptation” and “Pattern composition” in
Fig. 2). More specifically, pattern specialization means adding all the matching
results (or those with a score above a certain threshold) as equivalence axioms
and subclass relations respectively. In our previous example this means that
“execution” would be added as a subclass of “Action” with a confidence of 0.29
(see above), “schedule” added as a subclass of “Plan”, and so on. “Project plan”

OntoCase-Automatic Ontology Enrichment Based on ODPs 73

is ambiguous, i.e. we have evidence of a subclass relation to “Plan” and also an
equivalence, hence both relations with their associated confidences are added.

We would additionally like to add the “composed of”-property, however the
“Proposed action” concept was not matched, only its superconcept “Action”.
The default heuristic is to only include those parts of a pattern that had some
match, not to introduce any unnecessary concepts, but the enrichment can be
enhanced by a set of additional heuristics, to create a more well-structured on-
tology. Firstly, the composition process can be performed in two different modes,
pruning or pure enrichment. The pruning mode implies that the input ontology
is pruned and only those parts that can be connected to any selected pattern
will be included. The pure enrichment leaves the input ontology as it is and only
adds the parts of the selected patterns that were matched. Secondly, the (slightly
overlapping) heuristics currently available include (some being applicable in only
one of the two modes; pruning or pure enrichment):

1. Add all properties (even if not matched) between included concepts.
2. Use the transitive property of subclass relations; if an intermediate concept

is missing then add the child directly at the level of the missing concept.
3. Add all extracted subconcepts of concepts in the input ontology, where the

parent-concept matched a pattern concept.
4. An object property that originally relates two concepts is added even if one

of the concepts is missing if there is a subconcept of the missing concept,
which can replace the missing one, present in the ontology.

5. Add all superclasses of matched pattern concepts.

The first heuristic is proposed since relations are harder to extract than terms,
hence it is very likely that there will be a number of properties missing in the
input ontology. Additionally, we are reluctant to decrease the structural density
of the pattern concepts. The second and fourth heuristics are intended to preserve
the structure even if there are “gaps” in the matched taxonomy. An alternative
strategy would be to include the complete taxonomy, even if only some parts
were matched, as suggested in heuristic three and five. Heuristic three is based
on the intuition that if a structure exists in the input ontology, this is based
on “real-world” evidence (e.g. texts), hence we do not attempt to change this.
The intuition for heuristic five, is that we want to use the patterns to add the
abstract knowledge that is often missing, even though it might be hard to match
it to the input ontology. Adding relations based on the first heuristic even if a
concept in the taxonomy is missing, is the focus of the fourth heuristic.

Pattern composition is another task. In the current implementation only sim-
ple composition is performed, i.e. relations are not explicitly discovered between
patterns. During pattern composition the focus is instead on overlaps between
patterns, which are handled using heuristics, for example assuming that two
concepts are equivalent if they have the same name and no conflicting axioms.
The confidence values resulting from the matching are stored with the ontology.

74 E. Blomqvist

3.5 Implementation

A first version of the OntoCase method, including the two first phases, has been
implemented as a command-line research prototype. The Jena API7 was used
for handling ontologies. Additional external software is the WordNet8 lexical
database. The pattern base is currently deployed as a simple database. The
actual pattern ontologies are locally stored as OWL-files, or directly linked to
online ontologies on the web. The initial text processing can be done through
the Text2Onto9 tool (an interface to an older version of the tool is provided).
The alternative is to provide an input ontology represented as an OWL-file. At
the moment a graphical user interface is not provided; plug-in implementations
for both Protégé10 and the NeOn toolkit11 will be considered in the future.

4 Evaluation

The OntoCase retrieval and reuse phases have been evaluated in three inde-
pendent settings; the SEMCO project’s requirements engineering ontology, the
JIBSNet university intranet ontology, and an agricultural ontology of the FAO.
All ontologies were constructed using the current OntoCase implementation, set
in its pruning mode (described in section 3.4).

4.1 Evaluation Setup

Ontology evaluation methods were used for studying the quality and charac-
teristics of the output of OntoCase. In [17] an overall framework for ontology
evaluation is described, consisting of three levels; structural, functional, and us-
ability evaluations. Structural evaluations analyze the quality of the syntax and
semantics of the ontology as it is represented. Functional evaluations analyze
how well the ontology conforms to the intended conceptualization, i.e. the re-
quirements. Usability evaluations concern the understandability and reusability
of the ontology, as well as user satisfaction. We have aimed to cover all levels,
although due to practical reasons it has not been feasible for all experiments.

The structural level was analyzed within all experiments, based on measures
such as number of concepts, number of concepts at the top level (i.e. root con-
cepts, with no other superclass but owl:Thing), number of subclass relations
and properties, and average depth of the taxonomy, as suggested in [17,18]. We
chose not to apply any formal measure of tangledness, but to evaluate this by
inspecting the ontology graphically. The two most well-known approaches for
taxonomic evaluation, presented in [19] and OntoClean in [20], were used when
feasible (these evaluations were conducted manually by two ontology engineers).

7 http://jena.sourceforge.net/
8 http://wordnet.princeton.edu/
9 http://ontoware.org/projects/text2onto/

10 http://protege.stanford.edu/
11 http://www.neon-toolkit.org/

OntoCase-Automatic Ontology Enrichment Based on ODPs 75

A weakness is that, for two of experiments, only a sample of the elements were
evaluated, resulting in the unfeasibility to evaluate, for example, improper se-
mantic leveling, level of detail, and other issues concerning the overall structure.

To evaluate functional characteristics, i.e. the content of the ontologies, a
subset of the OntoMetric framework suggested in [21] was used in the SEMCO
experiments. Only the dimension Content was deemed interesting. This evalua-
tion was performed by two domain experts at the enterprise in question. In the
JIBSNet and FAO cases the evaluation was performed using a random sample12

of classes and properties, whereby the same factors were not applicable. Instead
we applied individual assessment of the concepts and properties by domain ex-
perts (or ontology engineers in the FAO case). Through a graphical illustration of
the concepts, their placement in the taxonomy, and their properties, the experts
were asked to classify them into one of five categories; “essential” (i.e. highly
relevant for inclusion in the ontology), “accept” (i.e. correct but not essential),
“not sure” (i.e. confusing or hard to assess), “not correctly modeled” (i.e. ele-
ments that should be included but not in their current form, e.g. too general
concepts, or elements wrongly placed in the ontology structure), and “incorrect”
(i.e. not to be included). Six domain experts from JIBS participated, representing
different roles in the organization and different educational backgrounds. The in-
dividual opinions were weighted together, categorizing the elements as “correct”
(representing the essential and accept judgements), “uncertain”, and “incorrect”
(representing the not correctly modeled and incorrect judgements). For JIBSNet
this can be seen as a usability evaluation, since it was performed by end-users
of the application. While, for the FAO case the evaluation was performed by
two ontology engineers, using FAO knowledge sources for the evaluation, hence
it was a functional evaluation.

4.2 The SEMCO Requirements Engineering Ontology

Within the research project SEMCO an ontology was constructed with the aim
to support structuring and retrieval of information and artefacts during the
software development process of an enterprise, focussing on the requirements
engineering phase. Initially the ontology was aimed at structuring of artefacts
within a tool, i.e. ArtifactManager [22]. The aims of this set of experiments were
to compare the implementation of OntoCase to both manual ontology engineer-
ing, and to an alternative implementation using naive methods.

The naive implementation applies only existing tools, such as string matching
and basic heuristics for the enrichment, and resulted in the ontology OAnaive

as seen in Table 1 (all numbers represent absolute counts). Additionally the
resulting ontologies were compared to two versions of a manually constructed
ontology, an initial version, OMinitial , constructed manually based on the same
sources used by OntoCase, i.e. a set of documents, and an enriched version also

12 The sample sizes were between 3 and 72% of the total number of elements (the aim
was to stay above 10% but due to practical limitations on subject availability this
had to be reduced for the largest ontologies, hence reducing reliability).

76 E. Blomqvist

refined based on interviews with domain experts, OMfinal. OAimproved is an
ontology constructed using the same pattern catalogue but using the current
OntoCase implementation, and OAfinal is the final version of the automatically
constructed ontology, constructed using an extended pattern catalogue (includ-
ing both a domain specific catalogue and the complete set of patterns at that
time available from ontologydesignpatterns.org).

Table 1. General characteristics of the SEMCO ontologies

Characteristic OMinitial OAnaive OMfinal OAimproved OAfinal

Number of concepts 224 85 379 90 150
Number of root concepts 8 35 5 21 13
Number of properties 15 34 246 37 48
Number of subclass relations 224 48 380 95 243
Average depth 2,52 1,95 3,5 2,10 1,62

4.3 The JIBSNet Information Structure Ontology

The second set of experiments were performed in the university domain. JIBSNet
is an intranet present at Jönköping International Business School (JIBS). The
intranet contains internal documents of all kinds, from personnel instructions
to meeting minutes and information for students. An ontology could help to
improve classification, presentation and retrieval of information from JIBSNet.
The aim of this experiment was to thoroughly evaluate an ontology constructed
by means of OntoCase with actual domain experts, i.e. end-users of a tentative
application, but also to compare the resulting ontology to the input ontology.

The ontologies were first evaluated using structural measures, see Table 2
(all numbers are absolute counts within each ontology), and then the usability
evaluation was performed together with domain experts at JIBS. In Table 2 Oin

denotes the input ontology, constructed with the OL tool Text2Onto, and Oout

denotes the output from OntoCase when applying patterns on top of Oin.

4.4 The FAO Agricultural Ontology

The third evaluation was set in the agriculture domain, with focus on concepts
related to growing rice. The intention of this experiment was mainly to further
establish the previous results showing that OntoCase is in fact able to improve
the results of existing OL methods. The setting was the Food and Agriculture

Table 2. General characteristics of the JIBSNet ontology

Characteristic Oin Oout

Number of concepts 6535 2576
Number of root concepts 6368 15
Number of properties 218 147
Number of subclass relations 189 4714
Average depth 1.03 2.72

OntoCase-Automatic Ontology Enrichment Based on ODPs 77

Organization (FAO) of the United Nations and their work on improving the
use of agricultural resources around the globe. The organization is trying to
improve their processes by moving from simple structures, such as thesauri, to
more complex definitions of concepts, such as ontologies.

An existing manually engineered light-weight ontology was used as a starting
point, denoted O1 in Table 3 (all values represent absolute counts within each
ontology). Ontologies were also constructed directly from text corpora, using the
OL tool Text2Onto; O2, O3, and O4. Two of the text corpora were generated by
extracting DBPedia13 abstracts and comments respectively, collected by using
the concepts in O1 as search terms. A third text corpus was produced by FAO
based on article abstracts connected to the AGROVOC thesaurus14, related
to the term “rice”. The two final ontologies, O5 and O6, were constructed as
combinations of O1 and O2, and O1 and O3, respectively. “+OC” in the table
denotes the output ontologies, after applying OntoCase.

Table 3. General characteristics of the agricultural ontologies

Characteristic O1 O1+OC O2 O2+OC O3 O3+OC O4 O4+OC O5 O5+OC O6 O6+OC

No of concepts 266 280 1086 812 365 321 3575 2823 1256 1293 536 570
No of root conc. 155 112 1018 22 290 22 1822 27 1080 758 352 248
No of properties 37 46 17 28 3 16 49 63 53 73 39 62
No of subclass rel. 110 245 89 1471 189 628 1954 4162 199 1679 299 921
Avg depth 1.68 2.19 1.06 2.37 1.34 2.39 1.68 2.84 1.20 3.36 1.57 3.06

4.5 Result Summary

From the SEMCO experiment we see a clear difference between OntoCase and
naive methods. Primarily related to the ability to include abstract knowledge,
due to the more elaborate matching methods used, hence the ontology is given
a more abstract top structure. Although it is not inherently a positive feature
to include more abstract concepts, in the specific case of enriching very shallow
ontologies, such as the ones learnt by OL tools (even containing unconnected
concepts), this is actually an improvement. When compared to manual methods
the automatic approach of course does not perform as well, but it has some
merits, especially compared to manually constructing an ontology only based
on similar (textual) sources. For example, more properties were included in the
ontologies constructed by OntoCase. The manually constructed ontologies had
even fewer root concepts, i.e. an even more abstract top structure, but it remains
to be determined if they are in fact too abstract. Evaluation of the taxonomy
(see [19,20]) showed a comparable level of correctness between all ontologies.

The results of the functional and usability evaluations in the JIBSNet and
FAO experiments show that with respect to concepts OntoCase performs on
the same level of accuracy as Text2Onto, a state-of-the-art OL method. While,
with respect to the structure OntoCase considerably improves on the results
13 http://dbpedia.org/
14 http://www.fao.org/agrovoc/

78 E. Blomqvist

of Text2Onto. The top concepts added give a more intuitive structure to the
ontology and the relations are deemed correct to a larger extent than the relations
of the input ontologies. Table 4 presents the results for the JIBSNet ontology
(Oin being the input ontology and Oout the output of OntoCase). Randomly
selected sets were used in the evaluation, for concepts and taxonomic relations
one set representing a selection from the top level of the taxonomy and one
representing the overall ontology. The reason for this distinction was to show
that even the top structure, where most of the pattern concepts and relations
were added, is reasonable. The results of the correctness assessment of the FAO
agricultural ontologies can be seen in Table 5. The most significant increase in
correctness can be seen in the relation assessment (here subclass relations and
properties were assessed together).

An increased tangledness of the taxonomy, together with increased redun-
dancy, e.g. a direct subclass relation being present while simultaneously being
derivable from a chain of other subclass relations, could be noted in all of the
cases. It is important to point out that this might actually be an advantage,
if exploited in the right way. As we saw in the example previously, this is due
to the ambiguity of the matching results, but it also provides options for an
ontology engineer when continuing to refine the ontology, and guidance is given
in the form of confidence values. Intuitively the reader may agree that providing
some guidance and choices to the user is most likely better than to select one
alternative automatically, whereas wrong choices would sometimes be made.

Table 4. Results for JIBSNet concepts and relations

Evaluation set Assessment % of concepts % of subclass relations % of properties

Oin (top structure) Correct 85.1% 33.4% N/A
Uncertain 11.7% 17.5% N/A
Incorrect 3.2% 49.2% N/A

Oin (total) Correct 75.3% 26.8% 50.7%
Uncertain 15.9% 15.8% 16.2%
Incorrect 9.2% 57.4% 33.1%

Oout (top structure) Correct 80.6% 58.1% N/A
Uncertain 16.1% 38.7% N/A
Incorrect 3.2% 3.2% N/A

Oout (total) Correct 73.7% 53.4% 65.0%
Uncertain 16.1% 24.9% 11.9 %
Incorrect 10.2% 21.7% 23.1%

Table 5. Correctness of the agricultural ontologies

Measure O1 O1+OC O2 O2+OC O3 O3+OC O4 O4+OC O5 O5+OC O6 O6+OC

Concepts
Correct 92.8 97.8 85.5 87.9 94.2 93.0 84.9 88.5 87.8 88.1 92.0 93.6
Unsure 5.4 2.2 3.4 4.6 2.9 4.4 5.7 5.8 5.6 5.6 4.3 3.6
Incorrect 1.8 0.0 11.1 7.6 2.9 2.6 9.4 5.8 6.7 6.4 3.7 2.7
Relations
Correct 90.0 92.8 61.6 77.5 64.1 86.1 65.9 79.3 76.2 79.1 78.4 88.2
Unsure 5.7 2.9 12.8 2.5 11.5 6.3 13.2 6.9 10.7 8.1 4.9 5.9
Incorrect 4.3 4.4 25.6 20.0 24.4 7.6 20.9 13.8 13.1 12.8 16.7 5.9

OntoCase-Automatic Ontology Enrichment Based on ODPs 79

To summarize these results we can conclude that OntoCase in fact provides
an added structure to the ontologies, and does connect unconnected parts of the
ontologies produced by other OL methods. A general top structure is introduced,
adding some of the missing general background knowledge not found explicitly
in a text corpus. These improvements, conforming to our hypotheses presented
in section 1, are achieved without increasing the error-rate of the ontologies.

5 Conclusions and Future Work

Open issues within the OntoCase framework include to cover the complete cy-
cle, i.e. also address the revision and pattern construction problems. A graphical
user interface for the revision of OntoCase ontologies would be a great benefit
to the user, in order to study the alternative modelling choices present, and to
exploit the confidence values as decision support. This would also give the oppor-
tunity to experimentally study the amount of manual work required by ontology
engineers in different settings. More specific improvements can be found in the
use of background knowledge, where WordNet could for example be replaced by
domain specific knowledge or knowledge sources available on the Semantic Web,
e.g. online ontologies. Some of the rank calculations currently apply quite naive
numerical combinations of values, whereas a certain tuning most likely would
be beneficial. Also the composition step can benefit from future refinement, for
example by explicitly finding relations between patterns, and testing consistency
of hypotheses before adding them to the ontology. We do no envision that On-
toCase will replace manual editing of the ontologies, aiming for total correctness
would require reasoning mechanisms that will most likely not scale. However,
as an aid for providing assistance to the user when selecting and integrating
Content ODPs we find OntoCase quite useful, despite the simplicity of some of
the methods and heuristics currently implemented.

There are many challenges when semi-automatically constructing ontologies
from sources such as text corpora. A prime challenge is how to incorporate the
“missing information” that is not explicitly stated in domain specific texts. This
is both common-sense knowledge and domain knowledge that is assumed and
not stated explicitly. We have addressed this challenge by introducing Content
ODPs into semi-automatic ontology construction, and we have proposed a gen-
eral framework for pattern-based semi-automatic ontology construction called
OntoCase. Experiments have shown that the ontologies produced are reasonable
with respect to their intended domain, and improve the quality of output com-
pared to typical OL methods, primarily with respect to the ontology structure.

References

1. Brewster, C., Ciravegna, F., Wilks, Y.: Background and foreground knowledge in
dynamic ontology construction. In: Proc. Semantic Web Workshop, SIGIR (2003)

2. Cimiano, P.: Ontology Learning and Population from Text - Algorithms, Evalua-
tion and Applications. Springer, Heidelberg (2006)

80 E. Blomqvist

3. Cimiano, P., Buitelaar, P., Magnini, B. (eds.): Ontology Learning and from Text:
Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)

4. Ciaramita, M., Gangemi, A., Ratsch, E., Rojas, I., Saric, J.: Unsupervised learn-
ing of semantic relations between concepts of a molecular biology ontology. In:
Proceedings of IJCAI 2005 (2005)

5. Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-
driven change discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005.
LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

6. Voelker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Proceed-
ings of the 4th European Semantic Web Conference, Innsbruck (2007)

7. Völker, J., Haase, P., Hitzler, P.: Learning expressive ontologies. In: Ontology
Learning and Population: Bridging the Gap between Text and Knowledge. Fron-
tiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2008)

8. Coppola, B., Gangemi, A., Gliozzo, A., Picca, D., Presutti, V.: Frame detection
over the semantic web. In: Proc. of ESWC 2009. Springer, Heidelberg (2009)

9. Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies,
2nd edn. International Handbooks on Information Systems. Springer, Heidelberg
(2009)

10. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Proc. of
the Fourth International Semantic Web Conference, Galway. Springer, Heidelberg
(2005)

11. Presutti, V., Gangemi, A.: Content ontology design patterns as practical building
blocks for web ontologies. Proc. of ER 2008, 128–141 (2008)

12. Blomqvist, E.: Semi-automatic Ontology Construction based on Patterns. PhD
thesis, Linköping University, Department of Computer and Information Science at
the Institute of Technology (2009)

13. Alani, H., Brewster, C.: Ontology Ranking based on the Analysis of Concept Struc-
tures. In: Proceedings of KCAP 2005, Banff, Alberta, Canada (October 2005)

14. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
15. Svab-Zamazal, O., Svatek, V.: Analysing ontological structures through name pat-

tern tracking. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI),
vol. 5268, pp. 213–228. Springer, Heidelberg (2008)

16. Hay, D.C.: Data Model Patterns - Conventions of Thought. Dorset House (1996)
17. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Qood grid: A

metaontology-based framework for ontology evaluation and selection. In: Proc. of
the 4th International EON Workshop, Located at WWW (2006)

18. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion Metrics for Ontology Design and
Application. Journal of Computer Science 1(1), 107–113 (2005)

19. Gómez-Pérez, A.: Evaluation of Taxonomic Knowledge in Ontologies and Knowl-
edge Bases. In: Proc. of KAW 1999, Banff, vol.2 (1999)

20. Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. Com-
munications of the ACM 45(2), 61–65 (2002)

21. Lozano-Tello, A., Gómez-Pérez, A.: ONTOMETRIC: A Method to Choose the
Appropriate Ontology. Journal of Database Management 15(2) (April-June 2004)

22. Billig, A., Sandkuhl, K.: Enterprise ontology based artefact management. GI
Jahrestagung P134, 681–687 (2008)

Graph-Based Ontology Construction
from Heterogenous Evidences

Christoph Böhm1, Philip Groth2, and Ulf Leser2

1 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
christoph.boehm@hpi.uni-potsdam.de

2 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
{groth,leser}@informatik.hu-berlin.de

Abstract. Ontologies are tools for describing and structuring know-
ledge, with many applications in searching and analyzing complex know-
ledge bases. Since building them manually is a costly process, there are
various approaches for bootstrapping ontologies automatically through
the analysis of appropriate documents. Such an analysis needs to find the
concepts and the relationships that should form the ontology. However,
since relationship extraction methods are imprecise and cannot homo-
geneously cover all concepts, the initial set of relationships is usually
inconsistent and rather imbalanced - a problem which, to the best of our
knowledge, was mostly ignored so far. In this paper, we define the prob-
lem of extracting a consistent as well as properly structured ontology
from a set of inconsistent and heterogeneous relationships. Moreover, we
propose and compare three graph-based methods for solving the ontol-
ogy extraction problem. We extract relationships from a large-scale data
set of more than 325K documents and evaluate our methods against a
gold standard ontology comprising more than 12K relationships. Our
study shows that an algorithm based on a modified formulation of the
dominating set problem outperforms greedy methods.

1 Introduction

A primary use of ontologies in information systems is the description and struc-
turing of shared knowledge [11]. For instance, ontologies are used extensively
in Life Science databases to describe properties of biomedical objects, such as
the function of a gene [6] or properties of a biological sequence [4]. The most
prominent such ontology, the Gene Ontology [6], consists of more than 28,000
terms describing the molecular function, biological processes, and cellular lo-
cations of genes. It is used by dozens of databases throughout the world, is
constantly extended and revised, and has established itself as a major research
tool in functional genomics.

Building and maintaining a high-quality ontology is costly. Creating the first
version of the GO has taken more than two years and involved several people
from various research groups. Its maintenance and further development since
then requires a constant funding of 10-20 researchers. Due to these high costs,
there have been various proposals to automatically learn ontologies from a set

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 81–96, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

82 C. Böhm, P. Groth, and U. Leser

of domain-specific documents (ontology induction, e.g., [15]). Results of such
an endeavor may either be used directly, e.g., to support semantic search in
documents [12], or may serve as a basis for a subsequent manual verification
and extension process (ontology bootstrapping). However, ontology induction
is complex and involves a series of subproblems. First, the set of terms (con-
cepts) that are to be included in the ontology must be determined. Second, all
occurrences of those concepts in the available corpus must be found. This is not
trivial, because concepts may consist of several tokens, which may or may not
appear in different orders. Furthermore, morphological variations, abbreviations,
and usage of synonymous words are common. Next, evidences for the semantic
relationships between concepts must be found (relationship extraction), for in-
stance by searching for specific grammatical patterns involving two concepts.
Finally, the ontology itself must be constructed from the set of all extracted
relationships, a step we call ontology extraction.

Our work focusses on ontology extraction. This is an important step in onto-
logy induction, because in large-scale projects extracted relationships are often
redundant, contradicting, or circular. Such cases destroy the semantic consis-
tency of an ontology and need to be resolved. More precisely, we study the
following problem: Given a set S of ISA-relationships between concepts, find a
subset S′ ⊂ S such that S′ is cycle-free and also fulfills certain other criteria.
A natural first choice for additional criteria might be that S′ has maximal size,
i.e., that it is computed from S by removing the least number of edges. But
this is not necessarily the best choice in ontology extraction. It is common-sense
that an ontology should exhibit certain topological properties to make it better
accessible to humans (see, for instance, [1, 23, 24]). These properties include:

1. The topology should roughly resemble a tree, i.e., the number of nodes with
more than one parent should be low (trees are easier to grasp),

2. Nodes should not also be parents of their siblings (this is often perceived as
semantic nonsense),

3. Nodes with only one child should be avoided (merging them would be ap-
propriate),

4. Leaves should have a comparable depth (to avoid imbalanced subparts and
varying semantic granularity of leaves),

5. Grossly imbalanced numbers of children should be avoided (to prevent vary-
ing semantic granularity in inner nodes),

6. Nodes should not have (additional) parents that are more than one level
away (which goes beyond property 2 to avoid links completely inconsistent
with the tree-like ontology backbone), and

7. The ontology should have a single root node.

Consider Fig. 1 as an example. The left part shows a set of ISA-relationships
between concepts a, b, c, d, and e as it could emerge from a relationship extraction
phase (edges are not weighted to keep the example simple). The set contains
cycles and is thus inconsistent. There are various ways to break the cycles by
removing one or more edges. Some resulting (consistent) ontologies are shown
in the second to fifth part of the figure. Option 1 requires only one edge to

Graph-Based Ontology Construction from Heterogenous Evidences 83

a

dc

Option 1 Option 2

c b

Option 3 Option 4

c

b

bd a c e b a d

d

e

b ae d

e a

e c

Fig. 1. Extracting a consistent ontology from a set of inconsistent relationships. The
left part shows concepts and extracted (cyclic) relationships. The second to fifth part
depict different ontologies, which can be derived. Option 1: removal of edge d → c; 2:
c → d, b → d; 3: c → d, d → c; 4: c → d, c → b.

be removed, while Options 2, 3, and 4 require two edge removals. Most of the
options have some property that might be considered unfortunate for a ’clean’
ontology. For instance, in Option 1, node b is sibling and parent of node d, in
Option 3, the depth of the leaves varies greatly, and Options 3 and 4 contain
many nodes with only one child.

Certainly one should take into account that extracted relationships often are
simply false. The probably most important, yet also most difficult to evaluate,
criterium for S′ is whether it contains a maximal number of true relationships
and a minimal number of false relationships. Finally, it is important that rela-
tionship evidences usually carry method-specific confidence values. These values
must be considered when choosing the relationships to form the ontology.

In this work, we study the problem of constructing a semantically consistent,
correct and well-formed ontology from a given set of heterogeneous, weighted,
and possibly inconsistent evidences. For this, we use two different methods for
extracting ISA-relationships among concepts from a domain-specific corpus re-
sulting in a set of > 29K relationships. We propose three graph-based algorithms
for selecting a semantically consistent subset of relationships from this set. We
evaluate our methods by trying to (re-)construct a phenotype ontology (a phe-
notype is, broadly speaking, an observable property of an organism attributed
to the (mal-)function of a gene [8]), using as corpus a set of 327,200 phenotype
descriptions downloaded from PhenomicDB [7] as of 02/2008. We converted the
texts to lower case, removed URIs, punctuation, and tokens consisting only of
numbers. For evaluation we leverage as our gold standard the Mammalian Phe-
notype Ontology (MPO) [22], consisting of 11,700 concepts (plus synonyms) and
6,830 direct ISA-relationships (03/2008). For the evaluation we use all transitive
relationships from the MPO; we consider two concepts a and b to be in transitive
relationship if there is a path from a to b or a and b are synonyms. MPO contains
172.134 transitive relationships.

2 Related Work

Ontology induction in general is well studied (e.g. [25]). Systems covering the
entire process are, e.g., OntoEdit [15] or OntoLearn [16]. However, to the best of

84 C. Böhm, P. Groth, and U. Leser

our knowledge, the problem of ontology extraction with inconsistent evidences
has achieved little attention in the scientific literature so far, probably due to
the fact that most studies in ontology construction are rather small-scale and
therefore do not face this problem on a notable scale (e.g., [3, 9]).

We are aware of only few papers that explicitly deal with this problem.
Schmitz reported on a study for creating term hierarchies from flickr tags [21]. He
used subsumption for relationship extraction (see below) and suggested filtering
techniques for the resulting relationships, such as a required minimum occur-
rence of tags. The paper also proposed a pruning strategy that eliminates all
relationships that would form relations within the same hierarchy level. This ap-
proach is not comparable to ours, because no global consistency of the resulting
ontology is targeted or guaranteed and structural properties are not considered.
Krishna and Krishnapuram presented a clustering-based approach to hierarchy
construction in [13]. However, this algorithm is used to cluster documents for
improved browsing and works on entire documents, not extracted relations. This
paper also mentions desirable properties for concept hierarchies, which are more
usage-oriented than ours. We refrained from reusing these properties, because
their formulations is vague and an evaluation is only possible through usage ob-
servation. [14] described a method for constructing a concept hierarchy based on
a probabilistic language model derived from term co-occurrences. The authors
acknowledge the existence of inconsistent relationships and describe a pruning
strategy based on the Dominating Set Problem (DSP). This paper largely in-
fluenced our work; however, we go beyond their proposal by refining the DSP
approach and by comparing it to two other strategies; furthermore, we provide a
thorough, large-scale evaluation of both methods, which is lacking in [14] where
only 500 texts were used as input (compared to 327,200 in this work).

In sharp contrast to ontology extraction, relationship extraction has been
researched extensively over the last decades. In this work, we use Hearst-style
POS pattern [10] and subsumption [20], because of their simplicity and expected
coverage. Furthermore, we wanted to evaluate how our methods for ontology ex-
traction deal with heterogeneous sources of evidences. Using multiple sources of
evidence for relationship extraction is not a new idea; for instance, [3] combined
Hearst-style patterns, WordNet relations, head-modifier properties, and term co-
occurrence. Note that this work has a much smaller scale than our study and
does not cover ontology extraction.

3 Concept Occurrences and Relationship Extraction

In this work, we consider the set of concepts predefined by the gold standard
ontology, i.e., MPO, to allow a comparative evaluation. However, we still need
to spot occurrences of such concepts in the corpus, which we discuss first. We
then show how we extract weighted relationships between those concepts.

3.1 Concept Occurrences

We need to locate all occurrences of all concepts in our corpus. Note that this step
is non-trivial for biomedical ontologies, especially because concepts often consist

Graph-Based Ontology Construction from Heterogenous Evidences 85

of multiple tokens, which only rarely appear as such in a text. For instance, in
the MPO the average number of tokens per concept is 3.5 and only 5.5% of the
concepts consist of only one token. Thus, exact matching of concepts would yield
a low recall.

We apply approximative concept matching using various meanings of ’appro-
ximative’. We investigated the following options to determine whether a set of
tokens in a text should be considered as a match with a concept: (1) tokens
of a concept appear in a window of w consecutive tokens (integer parameter
w > 0) in the text; (2) tokens of the concept must or need not appear in the
same order in the text (boolean parameter order); (3) concepts and corpus are
stemmed before matching (boolean parameter stemming); (4) stop words are
removed from the concepts before matching (boolean parameter stopwords).
Stemming is accomplished using Porter Stemmer [17]. The list of stop words
was taken from [18] (320 terms). In the following, we describe the actual setting
of parameters using a vector p = (order, stemming, stopwords). We searched all
occurrences of 11,700 MPO concepts (incl. synonyms) using different parameter
settings over a range of values for w. We do evaluate our methods only by
counting the number of distinct concepts matched, because checking whether
matches are actually true would be extremely time-consuming and is not in the
focus of our work. We are not aware of any MPO-annotated corpus, which we
could use to compute classical IR metrics.

For w = 2...6 we find 4,500-6,500 concepts, which is ≈50% of all MPO con-
cepts. The highest number of different concepts is matched when token order
is ignored, stemming is used, and no stop words are removed (p = (0, 1, 0)).
Although, we expect p = (1, 0, 0) to produce the least number of false positives,
manual reviews have shown that p = (0, 1, 0) performs comparably. Considering
the number of transitive MPO relations, which only use matched concepts, we
find 35,000-61,500 MPO relations, which amounts to at most 35.5% of all tran-
sitive MPO relationships. Note that these numbers form an upper bound to all
subsequent steps, since a relationship including a concept that is never found in
the corpus cannot be inferred by any method.

3.2 Relationship Extraction

We use two methods for extracting relationships between concepts spotted in
the previous step: subsumption [20] and Hearst-style POS-patterns [10]. Both are
explained and evaluated on our corpus in the following subsections. Evaluation is
carried out in terms of precision and coverage. We omit figures for recall for the
following reason: Imagine a gold standard like a1 → a2 → . . .→ a10. These nine
direct relationships induce 45 transitive relationships. If a method would recover
all direct relationships but a5 → a6, it would miss 25 transitive relationships and
its recall would already drop down to 45%. Therefore, we consider recall values
under our evaluation scheme as somewhat misleading and instead give absolute
numbers of correctly extracted relationships (coverage).

86 C. Böhm, P. Groth, and U. Leser

Subsumption. The underlying hypothesis for subsumption is that if a concept
a always occurs close to a concept b, then a is related to b. If furthermore a occurs
more often than b, then a is considered to be more general than b. This intuition
is formalized as follows: Let a and b be two concepts and let p(a|b) denote the
relative frequency with which a occurs in a window of tokens of length v that
also contains b. We say that b ISA a if p(a|b) ≥ t and p(b|a) < 1, where t is a
threshold. Such a relationship is assigned the score sSub(a, b) = p(a|b).

For evaluating subsumption, we took six parameters into account: v, t and the
four parameters from the concept matching (w, order, stemming, stopwords).
The impact of varying t is generally as expected: the higher t, the higher precision
and the lower coverage. We found t = 0.9 to be a good compromise; results
for varying t are omitted for brevity. Also, changing w between 2 . . . 6 has no
significant influence on precision and coverage; we show data for w = 5.

Results for various other parameter settings are shown in Fig. 2. The main
tendency is that increasing v causes a decrease in precision but an increase in
coverage. p = (1, 0, 0) reaches the best precision (0.75−0.6) at average coverage,
while p = (0, 1, 0) yields a precision which is only 0.05 less but has a much better
coverage. To keep precision high, we fixed this setting (p = (0, 1, 0), t = 0.9,
w = 5) at v = 10 for all subsequent experiments.

2,000

2,500

3,000

3,500

4,000

4,500

0.20

0.30

0.40

0.50

0.60

0.70

0.80
tr

ue
po

si
ti

ve
s

(d
as

he
d

lin
es

)

pr
ec

is
io

n
(s

ol
id

lin
es

)

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

10 20 30 40

tr
ue

po
si

ti
ve

s
(d

as
he

d
lin

es
)

pr
ec

is
io

n
(s

ol
id

lin
es

)

subsumption window size v

all false order=true stemming=true stopwords=true

all false order=true stemming=true stopwords=true

Fig. 2. Performance of subsumption for different parameter settings and w = 5, t = 0.9:
precision (left axis, solid lines) and coverage (right axis, dashed lines)

POS-patterns. Hearst-style patterns are fixed patterns of word forms or word
types that hint to a certain relationship. Consider the following sentence: ”The
occurrence of cleft lip and palate in association with skeletal changes such as ab-
sent radius suggests Roberts syndrome.” From the key phrase ”such as” one can
conclude that absent radius is a skeletal change. In this work, we used the fol-
lowing patterns: [a such as b], [a includes b], [a especially b], [a like b] and [a for
example b]. However, we have to pay special attention to determining meaningful
borders of those a and b. We therefore perform a series of preprocessing steps

Graph-Based Ontology Construction from Heterogenous Evidences 87

on the corpus before searching the patterns. First, we run a sentence splitter [2]
to exclude matches across sentences boundaries. We discard sentences that do
not contain a key phrase. Finally, we used a chunker [2] to divide each sentence
into syntactically correlated phrases, especially noun phrases. Chunking is im-
portant, because the concepts connected in a pattern are not always the ones
that are immediately before or after the key phrase.

We considered x noun phrases before and x noun phrases after a key phrase
as being connected. The precision obviously decreases for increasing x since a
relation discovered by xj is also discovered by any xk > xj but not vice versa
(of course, recall increases). We use these precision values to score extracted
relationships in the following way: Let p1...pi be the precision values (in de-
scending order) the process achieves for x1...xi (x1 ≤ ... ≤ xi). We assign scores
sP (a, b) = pj

p1
if a → b was discovered using xj (1 ≤ j ≤ i) to all generated

relationships.
We ran experiments with different values for p and x (at w = 5); see Fig. 3.

Generally, precision decreases and coverage increases with increasing x. p =
(1, 0, 0) achieves the highest precision followed by p = (0, 1, 0). Coverage ranges
greatly, from 30 (p = (1, 0, 0), x = 1) to 1,900 (p = (0, 1, 0), x = 5). p = (0, 1, 0)
reaches the highest number of true positives at a precision that does not differ
significantly from the other settings for values x > 2. Accordingly, we used
p = (0, 1, 0) and x = 1 . . . 5 for subsequent experiments.

200

400

600

800

1000

1200

1400

1600

1800

2000

0.05

0.10

0.15

0.20

0.25

0.30

tr
ue

po
si

ti
ve

s
(d

as
he

d
lin

es
)

pr
ec

is
io

n
(s

ol
id

lin
es

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5

tr
ue

po
si

ti
ve

s
(d

as
he

d
lin

es
)

pr
ec

is
io

n
(s

ol
id

lin
es

)

number of noun phrases x

all false order=true stemming=true stopwords=true

all false order=true stemming=true stopwords=true

Fig. 3. Performance of POS pattern discovery for different parameter settings and
w = 5: precision (left axis, solid lines) and coverage (right axis, dashed lines)

4 Graph-Based Ontology Extraction

The result of the previous phase are lists of relationships with a score, either
resulting from subsumption or from Hearst-style patterns. This set of weighted
relationships does not yet form a consistent and well-formed ontology. First,
relationships often are found by both methods, which leads to redundant links;
those should be merged in a way that the weights of the original links are properly
considered. Second, relationships may be directly contradicting, even when we
look at only one source of evidence. Third, relationships may form cycles. Both,

88 C. Böhm, P. Groth, and U. Leser

cycles and contradicting relationships (essentially cycles of length two), destroy
the semantic consistency of an ontology.

Removing these inconsistencies requires choices onto which relationships to
exclude and which to include. These choices should be guided by the confidence
in the respective relationships, their influence on topological properties of the
resulting ontology (as discussed in the introduction), and their semantic correct-
ness. In this section, we devise graph-based algorithms for solving this problem.
All operate on a so-called concept graph, which unifies matched concepts and
all extracted relationships into a single graph. Note that a nice property of this
approach is that adding new sources of relationship evidence is trivial.

Definition 1. A concept graph is a directed graph G = (V,E), where V (nodes)
is the set of concepts and E (edges) is constructed from the extracted, weighted
evidences (see sSub, sP from Sec. 3.2). Let a, b ∈ V and 0 ≤ wS , wP ≤ 1 be
weighting factors. We define edges E, edge weights s(a, b), and node weights
s(a) as follows:

E = {(a, b)|sSub(a, b) > 0 ∨ sP (a, b) > 0}

s(a, b) = wS ∗ sSub(a, b) + wP ∗ sP (a, b)

s(a) =
∑

(a,b)∈E

s(a, b)

4.1 The Problem

As previously described, the concept graph itself cannot be used as an ontology
(in most cases), because it is semantically inconsistent. However, any cycle-
free subgraph of the concept graph could in principle be used as an ontology.
Therefore, we define the problem of ontology extraction as follows.

Definition 2. Let G = (V,E) be a concept graph. We call a subgraph G′ =
(V ′, E′) of G with V ′ = V and E′ ⊆ E consistent if G′ is cycle-free. The
problem of ontology extraction is to choose a consistent subgraph of a given
concept graph.

Consider again Fig. 1 and assume this concept graph would have edge weights
as given in Fig. 4. One way to further specify the ontology extraction problem
is to require the extracted subgraph to be consistent and maximal, i.e., that the
sum of the weights of extracted edges is maximal under all consistent subgraphs
(by definition V = V ′). This would result in option 4 with a total weight of
2.6. Using such a formulation would disregard many other criteria to judge good
from bad ontologies. Furthermore, the corresponding optimization problem is
too complex to be solved for concept graphs of non-trivial size. Actually it is
already NP-hard to solve the f-DAG problem, which is to find, given a weighted
digraph G and a parameter f , the heaviest DAG in G with out-degree ≤ f (by
reduction to Minimum Feedback Arc Set [5]).

Graph-Based Ontology Construction from Heterogenous Evidences 89

cba d e0.2

0.9

0.7 1.0 0.5
cba d e

0.2

Fig. 4. Weighted Concept Graph with inconsistent relationships from Fig. 1

In the following, we propose and compare three algorithms to solve the ontol-
ogy extraction problem. The first, which we call Greedy Edge Inclusion (GEI),
adds edges to an empty graph in the order of their weights. It is a heuristic
for finding cycle-free graphs that disregards the specific nature of the ontology
extraction problem. In contrast, the second and third solution, which we call
Hierarchical Greedy Expansion (HGE) and Weighted Dominating Set Problem
(wDSP), build balanced tree-like structures by iteratively adding strong nodes
to an empty graph, i.e, nodes that have strong evidences to be a super-concept of
many other nodes. They differ in the exact definition of strong. In the following,
we explain each of these algorithms in more depth.

4.2 Greedy Edge Inclusion (GEI)

The GEI algorithm works as follows: It first copies all nodes from the concept
graph into the emerging ontology graph. It then adds edges from the concept
graph to the ontology graph sorted by their weights. Every edge that introduces
a cycle is omitted.

The main advantage of this method is its simplicity. However, it has many
disadvantages. First, it completely disregards topological properties of the re-
sulting structure, which leads to DAGs with many nodes with many parents,
grossly imbalanced numbers of children, and many edges spanning large dis-
tances (see Sec. 5). Furthermore, due to its many cycle-checks it is rather costly
to be computed. Finally, it does not produce a rooted DAG (and therefore has
no distinct leaves). Rooting such a structure could be approached by a topologi-
cal sort, which would open further choices since a topological sort is not unique.
Therefore, we evaluate the GEI algorithm only in its unrooted form.

4.3 Strong Node Sets

The following two algorithms share a common idea captured by the notion of
strong node sets. We first explain this idea in more depth before we discuss the
HGE and wDSP algorithms.

Both algorithms iteratively build an ontology. They start from an artificial
root node and add, level by level, strong nodes from the concept graph. Therein,
they frequently need to solve the following problem: Given a node from the
concept graph, choose a subset of its children such that (a) the resulting ontology
is consistent, (b) that the overall sum of evidences added to the graph is high,
and (c) that it obeys the requirements formulated in the introduction as much
as possible. We approximate these requirements by the notion of a strong node

90 C. Böhm, P. Groth, and U. Leser

set. Intuitively, a strong node set is a set of nodes that have strong evidences to
be a super-concept for many other concepts. This idea leads to the algorithmic
framework shown in Listing 1. We use the following notations (let G = (V,E)):

– strong(G, f) computes a strong node set from G with maximally f members,
i.e., a set V ′ ⊆ V , |V ′| ≤ f and all v ∈ V ′ have high evidence to be super-
concepts of many other nodes. The concrete definition of strong is different
in HGE (Sec. 4.4) and wDSP (Sec. 4.5).

– subgraph(G,S) is the subgraph of G induced by S ⊆ V .
– (n, l,D) is a triple of a node n, a level l (an integer), and a (strong) set D

of nodes.

Listing 1. Ontology extraction from a concept graph

1 last level = 0
2 to be removed = {}
3 V ′ = {root} // r e s u l t i n g nodes
4 E′ = {} // r e s u l t i n g edges
5 strong set = strong(G, f)
6 V ′ = V ′ ∪ strong set
7 for each child ∈ strong set
8 E′ = E′ ∪ {(root, child)}
9 add (child, 1, strong set) to queue

10 while (queue not empty)
11 (n, current level, S) = next from queue
12 i f (current level > d)
13 break
14 i f (last level < current level)
15 last level = current level
16 G = subgraph(G, V − to be removed)
17 to be removed = {}
18 to be removed = to be removed ∪ {n}
19 subgraph nodes = {c|(n, c) ∈ E} − S // n ’ s c h i l d r en without S
20 strong set = strong(subgraph(G, subgraph nodes), f)
21 V ′ = V ′ ∪ strong set
22 for each child ∈ strong set
23 E′ = E′ ∪ {(n, child)}
24 add (child, l + 1, strong set) to queue
25 return G′ = (V ′, E′)

The first run of strong determines nodes for the first level of abstraction
(line 6). To obtain a hierarchy-like structure with a root the algorithm creates
edges from an artificial root node to the first-level-nodes (line 9). In a next
step, it inserts the first-level-nodes, the current level (here 1), and the current
strong set into a queue (line 10). The queue allows for a breadth-first processing
of the nodes. The current strong set is stored to avoid that nodes in the set
are part of following strong sets and thereby cause a cycle. The while loop
(line 11) successively processes the nodes in the queue. The algorithm exits the
loop if the maximum number d of levels is extracted from the concept graph
(line 13-14). The following steps in the while loop determine the descendants (in
the hierarchy) of the nodes in the queue. This is achieved by applying strong to
the children of the nodes in the queue (line 20-21). There is a set of candidate
nodes that may be direct descendants of a node n in the resulting hierarchy,
i.e., subgraph nodes = {c|(n, c) ∈ E}−S (line 20). The application of strong to

Graph-Based Ontology Construction from Heterogenous Evidences 91

subgraph(G, subgraph nodes) chooses a subset to form a part of the next level
of abstraction (line 21). A level l is complete when all nodes from level l−1 have
been processed and are thus removed from the queue. When a level has been
completely processed (line 15) the algorithm removes the nodes from the input
graph (line 16-18). To connect levels the process creates only edges from a node
n to nodes in the strong (sub)set of its children (line 24).

Regarding the requirements stated above, this algorithm has the following
properties. (a) It is consistent, because edges that cause cycles are removed
actively. (b) It tries to maximize the global sum of edges by maximizing the
local sum of edges emerging from each node. (c) The properties stated in Sec. 1
are considered as follows:

1. By repeating the strong node set computation in a breadth-first manner we
inherently extract a hierarchy-like structure.

2. We actively remove edges between members of a chosen strong node set and
neighboring strong node sets on each level.

3. Avoidance of nodes with only one child is not embedded in the algorithm;
however, we shall see that both algorithms create such cases rather rarely
(compared to the gold standard; see Sec. 5, Tab. 1).

4. We restrict the number of iterations and thus avoid leaves of grossly different
depths.

5. We fix a global upper bound for the size of a strong node set, which leads
to a relatively evenly distributed fanout.

6. We only add edges from nodes to strong (sub)set of its children and therefore
remain consistent with the tree-like ontology backbone across multiple levels
of abstraction.

7. The ontology has a single root by construction.

4.4 Hierarchical Greedy Expansion (HGE)

As stated above, strong node sets V ′ ⊆ V (|V ′| ≤ f) contain nodes that have a
strong evidence to be super-concepts for many other nodes. Therefore, a strong
node set wants to maximize

∑
v∈V ′ s(v) to gather as much evidence as possible;

however, it also needs to consider the sheer number of children added to the
graph, i.e., |

⋃
v∈V ′{w|v → w ∈ E}|, because many children likely lead to many

grand-children and so forth.
We implemented two ways of identifying such strong node sets from a con-

cept (sub)graph. Our first approach is called Hierarchical Greedy Expansion
and works as follows: For a given concept graph G = (V,E) and an upper
bound f it adds nodes n to a strong node set R in the order of their scores s(n)
(from Def. 1) until |R| = f . After adding a node, it removes the added node and
all its edges from G and adjusts the scores of the remaining nodes in V . Recall
that the score s(n) of a node n is the sum of the weights of its outgoing edges.

4.5 Weighted Dominating Set Problem (wDSP)
Our second approach models strong(G, f) as a slightly modified instance of the
Dominating Set Problem (DSP). Formally, the DSP is the following: Given a

92 C. Böhm, P. Groth, and U. Leser

graph G = (V,E), find a subset D ⊂ V (the superconcepts), such that for each
node v ∈ V −D a node d ∈ D exists, where (d, v) ∈ E, and |D| is minimal. Thus,
the DSP is quite similar to the problem of selecting a set of strong nodes in every
iteration of our framework. This was first observed by Lawrie et al. in [14]. We
reuse and refine their method in this section. Note that we need to modify the
original proposal to consider weights of nodes.

Definition 3. Let G = (V,E) be a concept graph and f be an upper bound. Let
d(D) := {v|v ∈ V −D∧∃d ∈ D|(d, v) ∈ E} denote the subset of V −D dominated
by D ⊂ V . The weighted Dominating Set Problem (wDSP) is to find a set
of nodes D ⊂ V , which satisfies the following requirements:

1. |D| ≤ f ,
2.

∑
d∈D s(d) is maximal,

3. �D̂ such that D̂ satisfies (1) and (2) as well as |d(D̂)| > |d(D)|.

However, solving DSP is NP-hard [5], and so is solving wDSP. Therefore, we
use an approximation called GreedyV ote (adapted to wDSP), which was shown
to be the best performing heuristic for solving DSP in [19]. GreedyV ote takes
the neighborhood of a node n into account when it decides whether n should be
added to a dominating set or not. It uses a score gv(n) that captures for every
node how ’difficult’ or ’easy’ it can be dominated; for details, we refer the reader
to [19]. We modified the algorithm to take node weights into account. For each
node, we compute a new score score(n) = gv(n) + s(a) and thus include both
maximization criteria, |

⋃
v∈V ′{w|v → w ∈ E}| as well as

∑
v∈V ′ s(v).

5 Evaluation

We run all three algorithms on the set of relationships extracted from the phe-
notype corpus using the methods explained in Sec. 3.2. For the HGE and wDSP
algorithm, we show results for varying values of f (max. size of strong node sets)
and d (max. depth of ontology); all other parameters were fixed as described
in Sec. 3.2. We compare all resulting ontologies to the MPO. In the following,
we first concentrate on precision and coverage and then discuss differences in
topological properties. Remember that we consider a relationship a → b to be
true if concepts a and b are in transitive relationship in MPO, i.e., there is a
path from a to b or a and b are synonyms.

We also ran experiments with different weights wS , wP for subsumption and
pattern discovery (see Definition 1). For brevity, we do not show results here.
In general, coverage and precision is better when both weights are set equally
compared to using only one evidence, but the increase is small (< 5% on cover-
age). All further results were produced with wS = wP = 0.5. Another interesting
information is the precision and coverage of the concept graph itself. Its coverage
serves as an upper bound to all algorithms. We considered all relationships with
sSub(a, b) > 0.5 or sP (a, b) > 0. Then, precision is 0.47 and coverage is 5,070.

We first compare precision and coverage of HGE and wDSP for varying values
of f and d. Fig. 5 gives coverage values for HGE and wDSP for increasing values

Graph-Based Ontology Construction from Heterogenous Evidences 93

of f . Additionally, it shows the fraction of true positives that are direct relations
in MPO. The figure shows that wDSP produces 10-25% more true positives
than HGE, both, for transitive and direct relations. At the same time, precision
(data not show) slightly decreases from 0.54 to 0.51 for wDSP and remains
almost constant ≈ 0.5 for HGE. Though the increase of true positives slows
down for increasing f , it is not bounded, i.e., the number of true positives grows
monotonously. This monotony implies that better coverage values than reported
here are possible, but only at the expense of less readable ontologies (many nodes
with > 50 children).

Fig. 6 show coverage of HGE and wDSP for different values of d. wDSP has
a steep increase until d = 6 and then roughly levels out, since the fluctuation
for d = 7...20 probably can be contributed to the random factor in GreedyV ote.
In contrast, HGE’s number of true positives is considerable lower but increases
constantly. As in the previous experiment, precision of wDSP is better than for
HGE (e.g., ≈ 0.54 versus ≈ 0.50 at d = 2 . . . 20). The difference in coverage is
mostly due to the fact that wDSP manages to include more relationships into
the ontology than HGE without loosing precision.

Compared to HGE and wDSP, the (parameter-free) GEI algorithm has a
much higher coverage (4,376 true positive relationships). However, this is at the
cost of a considerably lower precision (0.45) and a less well-formed topology (see
below). Fig. 5 and 6 indicate that the coverage of HGE and wDSP likely could
be increased by giving extremely high limits for f and d, but this would probably
lead to equally twisted structures as in the case of the GEI algorithm.

Table 1 compares the performance of the GEI, HGE, and wDSP algorithm
with regard to the topological properties stated in Sec. 1. We also computed
those number for the gold standard itself, i.e., the MPO. GEI clearly performs
the worst, since the standard deviation of both in- and out degree is much higher
than for the other two algorithms (recall the GEI produces an unrooted DAG and
therefore properties 4 and 6 are meaningless). The comparison between HGE and

500

1000

1500

2000

2500

tr
ue

po
si

ti
ve

s

0

500

1000

1500

2000

2500

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

tr
ue

po
si

ti
ve

s

maximum strong set size f

wDSP, total wDSP, direct HGE, total HGE, direct

Fig. 5. Coverage of HGE and wDSP for different maximum strong set sizes f (d = 10)

94 C. Böhm, P. Groth, and U. Leser

1400

1500

1600

1700

1800

1900

tr
ue

po
si

ti
vi

es

1200

1300

1400

1500

1600

1700

1800

1900

2 4 6 8 10 12 14 16 18 20

tr
ue

po
si

ti
vi

es

maximum hierarchy depth d

wDSP HGE

Fig. 6. Coverage of HGE and wDSP for different maximum hierarchy depths d (f = 50)

wDSP is less clear. wDSP has a much more homogeneous out-degree distribution,
but a slightly worse in-degree distribution. Its ontology is deeper and has a much
lower fan-out on average; furthermore, its values overall are considerable closer to
the gold standard than those of the HGE algorithm. Interestingly, MPO does not
quite adhere to Prop.3, i.e., it has 661 concepts that have only one child (which
could therefore be merged). We attribute this to the still immature nature of
the MPO where many concepts might still be placeholders for further expansion;
however, this problem is also ”reconstructed” by wDSP.

Overall, the evaluation shows that wDSP outperforms both, GEI and HGE.
It has the highest precision of all methods and a better coverage than HGE.
The topology of its computed ontology is closest to what one would consider as
desirable for ontologies. However, it is also important to state that the simple
GEI algorithm produces by far the best coverage at a small expense of precision.
Possibly, this expense could be lowered when an evidence cut-off value for edges
in the concept graph is applied. Therefore, we believe that further research on
greedy methods is valuable, which would also need to include a method to root
the ontology.

6 Discussion

In this paper, we defined and studied the problem of constructing a consistent
and well-formed ontology from a set of inconsistent and heterogenous concept
relationships. We presented and analyzed three different strategies ranging from
a simple greedy algorithm to a sophisticated reformulation of the DSP. We eval-
uated our approaches on a large-scale real-world scenario from the Life Sciences.
Algorithms were judged based on the semantic correctness and certain topolog-
ical properties of the created ontologies. Our results indicate that the wDSP
approach outperforms greedy solutions in terms of precision and topology of the
ontology, but it also has a a considerably lower coverage.

Graph-Based Ontology Construction from Heterogenous Evidences 95

Table 1. Topological properties for resulting ontologies compared to MPO

abs min max avg stdev

GEI 1) in degree - 1 53 2.83 2.42
2) sibling/parent nodes 11,271 - - - -
3) single-child-nodes 1101 - - - -
4) depth - - - - -
5) out-degree - 1 1129 4.92 28.35
6) multiple-level-parents - - - - -
7) rooted hierarchy no - - - -

HGE 1) in degree - 1 7 1.32 0.61
2) sibling/parent nodes 0 - - - -
3) single-child-nodes 163 - - - -
4) depth - 2 7 2.63 0.81
5) out-degree - 1 50 7.17 11.70
6) multiple-level-parents 0 - - - -
7) rooted hierarchy yes - - - -

wDSP 1) in degree - 1 7 1.45 0.83
2) sibling/parent nodes 0 - - - -
3) single-child-nodes 529 - - - -
4) depth - 2 8 3.09 0.92
5) out-degree - 1 50 3.76 7.14
6) multiple-level-parents 0 - - - -
7) rooted hierarchy yes - - - -

MPO 1) in degree - 1 4 1.18 0.41
2) sibling/parent nodes 0 - - - -
3) single-child-nodes 661 - - - -
4) depth - 1 13 5.53 1.41
5) out-degree - 1 38 3.15 3.18
6) multiple-level-parents 0 - - - -
7) rooted hierarchy yes - - - -

In the future, we will look into ways to directly incorporate topological require-
ments into the extraction algorithm. Additionally, we will work on increasing
coverage without scarifying precision. This can be achieved by either improving
the extraction algorithms or by refining the concept matching strategy or by
simply adding further sources of relationship evidences. Certainly, the first of
these options is the most interesting, but also most challenging one.

References

[1] Brank, J., Grobelnik, M., Mladenić, D.: A Survey of Ontology Evaluation Tech-
niques. In: Proc. Conf. Data Mining and Data Warehouses (2005)

[2] Buyko, E., Wermter, J., Poprat, M., Hahn, U.: Automatically Adapting an NLP
Core Engine to the Biology Domain. In: Proc. of the ISMB 2006: BioLink &
Bio-Ontoligies SIG Meeting (2006)

[3] Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning Taxonomic Re-
lations from Heterogeneous Sources of Evidence, ch. II.4, pp. 59–76. IOS Press
Publication, Amsterdam (2003)

[4] Eilbeck, K., Lewis, S.E., Mungall, C.J., Yandell, M., Stein, L., Durbin, R.,
Ashburner, M.: The Sequence Ontology: a tool for the unification of genome an-
notations. Genome Biol. 6 (2005)

[5] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

96 C. Böhm, P. Groth, and U. Leser

[6] Gene Ontology Consortium. Creating the gene ontology resource: design and im-
plementation. Genome Res 11, 1425–1433 (2001)

[7] Groth, P., Pavlova, N., Kalev, I., Tonov, S., Georgiev, G., Pohlenz, H.-D.,
Weiss, B.: PhenomicDB: a new cross-species genotype/phenotype resource. Nucl.
Acids Res. 35, 696–699 (2007)

[8] Groth, P., Weiss, B.: Phenotype Data: A Neglected Resource in Biomedical Re-
search? Current Bioinformatics, vol. 1, pp. 347–358 (2006)

[9] Gulla, J.A., Brasethvik, T.: A Hybrid Approach to Ontology Relationship Learn-
ing. In: Proc. of the 13th Int. Conf. on Natural Language and Information Systems,
pp. 79–90. Springer, Heidelberg (2008)

[10] Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proc. of the 14th Conf. on Computational Linguistics. Association for Computa-
tional Linguistics (1992)

[11] Jurisica, I., Mylopoulos, J., Yu, E.: Ontologies for Knowledge Management: An
Information Systems Perspective. Knowl. Inf. Syst. 6, 380–401 (2004)

[12] Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA:
Searching and Ranking Knowledge. In: Proc. of the 24th Int. Conf. on Data En-
gineering, pp. 953–962 (2008)

[13] Krishna, K., Krishnapuram, R.: A clustering algorithm for asymmetrically related
data with applications to text mining. In: Proc. of the 10th Int. Conf. on Infor-
mation and Knowledge Management, pp. 571–573. ACM, New York (2001)

[14] Lawrie, D., Croft, W.B., Rosenberg, A.: Finding topic words for hierarchical sum-
marization. In: Proc. of the 24th Annu. Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pp. 349–357. ACM Press, New York (2001)

[15] Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent
Systems 16, 72–79 (2001)

[16] Navigli, R., Velardi, P.: Learning Domain Ontologies from Document Warehouses
and Dedicated Web Sites. Comput. Linguist. 30, 151–179 (2004)

[17] Porter, M.F.: An algorithm for suffix stripping. Readings in Information Retrieval,
313–316 (1997)

[18] Rijsbergen, C.J.v.: Information retrieval. Butterworths (1979)
[19] Sanchis, L.A.: Exoerimental Analysis of Heuristic Algorithms for the Dominating

Set Problem. Algorithmica 33, 3–18 (2002)
[20] Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: Proc. of the

22nd Annu. Int. ACM SIGIR Conf. on Research and Development in Information
Retrieval, pp. 206–213. ACM Press, New York (1999)

[21] Schmitz, P.: Inducing Ontology from Flickr Tags. In: Proc. of the Collaborative
Web Tagging Workshop (WWW 2006). IW3C2 (2006)

[22] Smith, C.L., Goldsmith, C.A., Eppig, J.T.: The Mammalian Phenotype Ontol-
ogy as a tool for annotating, analyzing and comparing phenotypic information.
Genome Biol. 6 (2005)

[23] Supekar, K., Patel, C., Lee, Y.: Characterizing Quality of Knowledge on Semantic
Web. In: Proc. of the Seventeenth Int. Florida Artificial Intelligence Research
Society Conf., (2004)

[24] Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA:
Metric-Based Ontology Quality Analysis. In: Proc. of IEEE Workshop on Knowl-
edge Acquisition from Distributed, Autonomous, Semantically Heterogeneous
Data and Knowledge Sources (2005)

[25] Zhou, L.: Ontology learning: state of the art and open issues. Information Tech-
nology and Management 8, 241–252 (2007)

DOGMA: A Disk-Oriented Graph Matching Algorithm
for RDF Databases

Matthias Bröcheler1, Andrea Pugliese2, and V.S. Subrahmanian1

1 University of Maryland, USA
2 Università della Calabria, Italy

Abstract. RDF is an increasingly important paradigm for the representation of
information on the Web. As RDF databases increase in size to approach tens of
millions of triples, and as sophisticated graph matching queries expressible in
languages like SPARQL become increasingly important, scalability becomes an
issue. To date, there is no graph-based indexing method for RDF data where the
index was designed in a way that makes it disk-resident. There is therefore a
growing need for indexes that can operate efficiently when the index itself re-
sides on disk. In this paper, we first propose the DOGMA index for fast subgraph
matching on disk and then develop a basic algorithm to answer queries over this
index. This algorithm is then significantly sped up via an optimized algorithm that
uses efficient (but correct) pruning strategies when combined with two different
extensions of the index. We have implemented a preliminary system and tested
it against four existing RDF database systems developed by others. Our exper-
iments show that our algorithm performs very well compared to these systems,
with orders of magnitude improvements for complex graph queries.

1 Introduction

RDF is becoming an increasingly important paradigm for Web knowledge representa-
tion. As more and more RDF database systems come “online” and as RDF gets increas-
ing emphasis from both established companies like HP and Oracle, as well as from a
slew of startups, the need to store and efficiently query massive RDF datasets is be-
coming increasingly important. Moreover, large parts of query languages like SPARQL
increasingly require that queries (which may be viewed as graphs) be matched against
databases (which may also be viewed as graphs) – the set of all possible “matches” is
returned as the answer.

For example, the GovTrack database [1] tracks events in the US Congress and stores
the data in RDF. RDF triple stores primarily store triples (s, p, v) where s is a subject, p
is a property, and v is a value. Fig. 1(a) shows a small portion of the GovTrack dataset
(we have changed the names of individuals identified in that dataset). The reader can
readily see that the RDF data forms a graph where the nodes correspond to subjects
and values, and the edges linking them are labeled with a property. For instance, in
Fig. 1(a), we see that Jeff Ryster sponsored Bill B0045 whose subject is Health Care.
This corresponds to two triples (Jeff Ryster, sponsor, Bill B0045) and (Bill B0045,
subject, Health Care). A user who is using such a database might wish to ask queries

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 97–113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

98 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

Carla

Bunes

?v1

?v2

?v3

Male

Health

Care

sponsor

sponsor

gender

amendmentTo

subject

(a) (b)

Fig. 1. Example RDF graph (a) and query (b)

such as that shown in Fig. 1(b). This query asks for all amendments (?v1) sponsored by
Carla Bunes to bill (?v2) on the subject of health care that were originally sponsored
by a male person (?v3). The reader can readily see that when answering this query, we
want to find all matches for this query graph in the original database. The reader who
tries to answer this very simple query against this very tiny database will see that it
takes time to do so, even for a human being!

In this paper, we propose a graph-based index for RDF databases called DOGMA,
that employs concepts from graph theory to efficiently answer queries such as that
shown above. DOGMA is tuned for scalability in several ways. First, the index itself
can be stored on disk. This is very important. From experiences in relational database
indexing, it is clear that when the data is large enough to require disk space, the index
will be quite large and needs to be disk resident as well. DOGMA, defined in Section 3,
is the first graph-based index for RDF that we are aware of that is specifically designed
to reside on disk. We define the DOGMA data structure and develop an algorithm to
take an existing RDF database and create the DOGMA index for it. In Section 4, we
develop algorithms to answer graph matching queries expressible in SPARQL [2] (we
emphasize that we do not claim DOGMA supports all SPARQL queries yet). Our first
algorithm, called DOGMA basic, uses the index in a simple manner. Subsequently, we
provide the improved algorithm DOGMA adv and two extensions of the index called
DOGMA ipd and DOGMA epd, that use sophisticated pruning methods to make the
search more efficient without compromising correctness. Third, in Section 5, we show
the results of an experimental assessment of our techniques against four competing RDF
database systems (JenaTDB, Jena2, Sesame2, and OWLIM). We show that DOGMA
performs very well compared to these systems.

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 99

2 Preliminaries

In this section, we briefly explain our notation. We assume the existence of a set S
whose elements are called subjects, a set P whose elements are called properties and a
set V whose elements are called values. Throughout this paper, we assume that S,P ,V
are all arbitrary, but fixed sets. If s ∈ S, p ∈ P and v ∈ V , then (s, p, v) is called an
RDF triple. Note that V and S are not required to be disjoint. An RDF database is a
finite set of RDF triples. For example, as mentioned earlier, (Jeff Ryster, sponsor, Bill
B0045) and (Bill B0045, subject, Health Care) are RDF triples. Every RDF databaseR
has an associated RDF graph GR = (VR, ER, λR) where VR = S ∪ V , ER ⊆ S×V ,
and λR : ER → P is a mapping such that for all (s, p, v) ∈ R, λR(s, v) = p. 1 As
there is a one-one correspondence between RDF graphs and RDF databases, we will
often use the terms synonymously.

In this paper, we only focus on graph matching queries. In order to define such
queries, we assume the existence of some set VAR of variable symbols. In this paper, all
variable symbols will start with a “?”. A graph query is any graph Q = (VQ, EQ, λQ)
where VQ ⊆ VAR ∪ S ∪ V , EQ ⊆ VQ×VQ, and λQ : EQ → P is a mapping. Suppose
Q is a query. A substitution for query Q is a mapping VQ ∩ VAR → S ∪ V . In other
words, a substitution maps all variable vertices in query Q to either a subject or a value.
For instance, in Fig. 1, the mapping θ which assigns B0744 to ?v1, B0744 to ?v2 and
Jeff Ryster to ?v3 is a substitution. If θ is a substitution for query Q, then Qθ denotes
the replacement of all variables ?v in VQ by θ(?v). In other words, the graph structure
of Qθ is exactly like that of Q except that nodes labeled with ?v are replaced by θ(?v).
A substitution θ is an answer for query Q w.r.t. databaseR iff Qθ is a subgraph of GR.
The answer set for query Q w.r.t. an RDF database R is the set {θ | Qθ is a subgraph
of GR}.

Example 1. Consider the example query and RDF database in Fig. 1. In this case, the
substitution θ such that θ(?v1) = Amendment A0056, θ(?v2) = Bill B1432, and
θ(?v3) = Pierce Dickes is the only answer substitution for this query. �

3 The DOGMA Index

In this section, we develop the DOGMA index to efficiently answer graph queries in
situations where the index itself must be very big (which occurs when R is very big).
Before we define DOGMA indexes, we first define what it means to merge two graphs.

Suppose G is an RDF graph, and G1 and G2 are two RDF graphs such that V1, V2 ⊆
VR and k is an integer such that k ≤ max(|V1|, |V2|). GraphGm is said to be a k-merge
of graphs G1, G2 w.r.t. G iff: (i)|Vm| = k ; (ii) there is a surjective (i.e. onto) mapping
μ : V1 ∪ V2 → Vm called the merge mapping such that ∀v ∈ Vm, rep(v) = {v′ ∈
V1 ∪ V2 | μ(v′) = v}, and (v1, v2) ∈ E iff there exist v′1 ∈ rep(v1), v′2 ∈ rep(v2) such
that (v′1, v

′
2) ∈ E. The basic idea tying k-merges to the DOGMA index is that we want

1 For the sake of simplicity, we ignore many features in RDF such as reification, containers,
blank nodes, etc. Moreover, we define ER ⊆ S × V for notational convenience; our imple-
mentation allows for multiple edges between vertices.

100 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

DOGMA to be a binary tree each of whose nodes occupies a disk page. Each node is
labeled by a graph that “captures” its two children in some way. As each page has a
fixed size, the number k limits the size of the graph so that it fits on one page. The idea
is that if a node N has two children, N1 and N2, then the graph labeling node N should
be a k-merge of the graphs labeling its children.

A DOGMA index for an RDF database R is a generalization of the well known
binary-tree specialized to represent RDF graph data in a novel manner.

Definition 1. A DOGMA index of order k (k ≥ 2) is a binary tree DR with the follow-
ing properties:

1. Each node in DR equals the size of a disk page and is labeled by a graph.
2. DR is balanced.
3. The labels of the set of leaf nodes of DR constitute a partition of GR.
4. If node N is the parent of nodes N1, N2, then the graph GN labeling node N is a

k-merge of the graphs GN1 , GN2 labeling its children.

Note that a single RDF database can have many DOGMA indexes.

Example 2. Suppose k = 4. A DOGMA index for the RDF graph of Fig. 1(a) might
split the graph into the 8 components indicated by dashed lines in Fig. 1(a) that become
the leaf nodes of the index (Fig. 2). Consider the two left-most leaf nodes. They can be
4-merged together to form a parent node. Other leaf nodes can also be merged together
(due to space constraints, the results of k-merging are not shown in the inner nodes). �
Even though many different DOGMA indexes can be constructed for the same RDF
database, we want to find a DOGMA index with as few “cross” edges between sub-
graphs stored on different pages as possible. In other words, if node N is the parent
of nodes N1, N2, then we would like relatively fewer edges in R between some node

1

3

2
4

Alice

Nimber

Senate

MD

Term
10/12/94

Has Role

For Office

Carla

Bunes

Female

A0056

Term
11/06/90

gender

hasRoleTax

Code

A2187

B0744

A0342

subject

amendmentTo

1

3

2
4

1

3

2
4

1

3

2
4

B1432

John

McRie

A0772

Term
10/02/94

hasRole

sponsor

IL

forOffice

Jeff

Ryser

Male

Bill

B0045

US

Senate

Term
10/21/94

gender

hasRole

sponsor

Keith

Farmer

A1232

Term
10/02/94

Has Role

sponsor
Peter

Traves

Bill

B0532

Senate

NY

A1589

Term
11/10/90

For Office

sponsor

amendmentTo

1

3

2
4

1

3

2
4

1

3

2
4

Pierce

Dickes

Health

Care

A0467

Term
10/12/94

sponsor

subject

Has Role

N1 N2

Fig. 2. A DOGMA index for the RDF database of Fig. 1(a)

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 101

in GN1 and some node in GN2 . The smaller this number of edges, the more “self-
contained” nodes N1, N2 are, and the less likely that a query will require looking at
both nodes N1 and N2. In the description of our proposed algorithms, we employ an
external graph partitioning algorithm (many of which have been proposed in the liter-
ature) that, given a weighted graph, partitions its vertex set in such a way that (i) the
total weight of all edges crossing the partition is minimized and (ii) the accumulated
vertex weights are (approximately) equal for both partitions. In our implementation, we
employ the GGGP graph partitioning algorithm proposed in [3].

Fig. 3 provides an algorithm to build a DOGMA index for an RDF graph GR. The
BuildDOGMAIndex algorithm starts with the input RDF graph, which is set to G0.
It assigns an arbitrary weight of 1 to each vertex and each edge in G0. It iteratively
coarsens G0 into a graph G1 that has about half the vertices in G0, then coarsens G1
into a graph G2 that has about half the vertices as G1, and so forth until it reaches a Gj

that has k vertices or less.

Algorithm BuildDOGMAIndex
Input: RDF graph GR, page size k

(level L, colors C)
Output: DOGMA index DR

1 G0 ← GR
2 for all v ∈ VR
3 weight(v) ← 1
4 for all e ∈ ER
5 weight(e) ← 1
6 i ← 0
7 while |Gi| > k
8 i ← i + 1
9 Gi, μi ← CoarsenGraph(Gi−1)
10 root(DR) ← a new “empty” node R
11 BuildTree(R, i, Gi)
12 ColorRegions(L, DR, C) /∗ Only required for the DOGMA epd index discussed later ∗/
13 return DR

Algorithm CoarsenGraph
Input: RDF graph GR
Output: Coarsened graph G′

R, merge mapping μ
1 G′

R ← GR
2 μ ← (VR → V ′

R) /∗ identity map ∗/
3 while 2 × |V ′

R| > |VR|
4 v ← uniformly random chosen vertex from V ′

R
5 Nv ← {u | (u, v) ∈ E′

R}
6 m ← x ∈ Nv s.t. x � y ∀y ∈ Nv

7 weight(m) ← weight(m) + weight(v)
8 for all (v, u) ∈ E′

R
9 if (m, u) ∈ ER
10 weight((m, u)) ← weight((m, u))
11 +weight((v, u))
12 else
13 E′

R ← E′
R ∪ {(m, u)}

14 weight((m, u)) ← weight((v, u))
15 V ′

R ← V ′
R \ {v}

16 μ(μ−1(v)) ← m
17 E′

R ← E′
R \ {(v, u) ∈ E′

R}
18 return G′

R, μ

Algorithm BuildTree
Input: Binary tree node N , level i,

subgraph S at level i
Output: Graph merge hierarchy {Gj}j≥0

and merge mappings {μj}j≥0
1 label(N) ← S
2 if |S| > k
3 S1, S2 ← GraphPartition(S)
4 L ← leftChild(N)
5 R ← rightChild(N)
6 SL ← induced subgraph in Gi−1
7 by vertex set {v | μi(v) ∈ VS1}
8 SR ← induced subgraph in Gi−1
9 by vertex set {v | μi(v) ∈ VS2}
10 BuildTree(L, i − 1, SL)
11 BuildTree(r, i − 1, SR)
12 PN ← {v | μi(μi−1(. . . μ1(v))) ∈ VS}
13 for all v ∈ PN /∗ Only for DOGMA ipd ∗/
14 ipd(v, N) ← minu∈V0\PN

dG0(u, v)

Fig. 3. BuildDOGMAIndex, CoarsenGraph, and BuildTree algorithms

102 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

The coarsening is done by invoking a CoarsenGraph algorithm that randomly
chooses a vertex v in the input graph, then it finds the immediate neighbors Nv of v,
and then finds those nodes in Nv that are best according to a total ordering�. There are
many ways to define�; we experimented with different orderings and chose to order by
increasing edge weight, then decreasing vertex weight. The CoarsenGraph algorithm
appropriately updates node and edge weights and then selects a maximally weighted
node, denoted m, to focus the coarsening on. The coarsening associated with the node
v merges neighbors of the node m and m itself into one node, updates weights, and
removes v. Edges from m to its neighbors are removed. This process is repeated till we
obtain a graph which has half as many vertices (or less) than the graph being coarsened.
The result of CoarsenGraph is a k-merge where we have merged adjacent vertices.
The BuildDOGMAIndex algorithm then uses the sequence G0, G1, . . . , Gj denoting
these coarsened graphs to build the DOGMA index using the BuildTree subroutine.
Note that Line 12 in the BuildDOGMAIndex algorithm (where L denotes the level at
which to color the subgraphs and C is a list of unique colors) is only needed for the
DOGMA epd index introduced later, as well as lines 12–14 in BuildTree are for the
DOGMA ipd index. They are included here to save space.

Proposition 1. Algorithm BuildDOGMAIndex correctly builds a DOGMA index for
an RDF graphGR. Moreover, the worst-case time complexity of Algorithm BuildDOG-
MAIndex is O(|ER| + Λ(k) |VR|

k) where Λ(k) is the worst-case time complexity of
Algorithm GraphPartition over a graph with k vertices and O(k) edges.

4 Algorithms for Processing Graph Queries

In this section, we first present the DOGMA basic algorithm for answering queries
against a DOGMA index stored on external memory. We then present various exten-
sions that improve query answering performance on complex graph queries.

4.1 The DOGMA basic Query Processing Algorithm

Fig. 4 shows our basic algorithm for answering graph matching queries using the
DOGMA index. In the description of the algorithm, we assume the existence of two
index retrieval functions: retrieveNeighbors(DR, v, l) that retrieves from DOGMA in-
dex DR the unique identifiers for all vertices v′ that are connected to vertex v by an
edge labeled l, i.e., the neighbors of v restricted to label l, and retrieveVertex(DR, v)
that retrieves from DR a complete description of vertex v, i.e., its unique identifier and
its associated metadata. Note that retrieveVertex implicitly exploits locality, since af-
ter looking up neighboring vertices, the probability is high that the page containing the
current vertex’s description is already in memory.

DOGMA basic is a recursive, depth-first algorithm which searches the space of all
substitutions for the answer set to a given query Q w.r.t an RDF database R. For each
variable vertex v in Q, the algorithm maintains a set of constant vertices Rv ⊆ VR
(called result candidates) to prune the search space; for each answer substitution θ for
Q, we have θ(v) ∈ Rv. In other words, the result candidates must be a superset of the
set of all matches for v. Hence, we can prune the search space by only considering those

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 103

Algorithm DOGMA basic
Input: Graph query Q, DOGMA index DR, partial substitution θ, candidate sets {Rz}
Output: Answer set A, i.e. set of substitutions θ s.t. Qθ is a subgraph of GR

1 if ∀z ∈ VQ ∩ VAR : ∃c : (z → c) ∈ θ
2 A ← A ∪ {θ}
3 return /∗ done - a correct answer substitution has been found ∗/
4 if θ = ∅
5 for all z ∈ VQ ∩ VAR
6 Rz ← null /∗ no candidate substitutions for any vars in the query initially ∗/
7 for all c ∈ VQ ∩ (S ∪ V)
8 for all edges e = (c, v) incident on c and some v ∈ VQ ∩ VAR
9 if Rv = null
10 Rv ← retrieveNeighbors(DR, c, λQ(e)) /∗ use index to retrieve all nbrs of c with same label as e ∗ /
11 else
12 Rv ← Rv∩ retrieveNeighbors(DR, c, λQ(e)) /∗ restrict space of possible subst. for z ∗/
13 Rw ← argminRz �=null,s.t. z∈VQ∩V\dom(θ) |Rz|
14 if Rw = ∅
15 return “NO”
16 else
17 for all m ∈ Rw

18 retrieveVertex(DR, m)
19 θ′ ← θ ∪ {w → m}
20 for all z ∈ VQ ∩ VAR
21 R′

z ← Rz

22 for all edges e = (w, v) incident on w and some v ∈ VQ ∩ VAR \ dom(θ)
23 if Rv = null
24 R′

v ← retrieveNeighbors(DR, m, λQ(e))
25 else
26 R′

v ← Rv∩ retrieveNeighbors(DR, m, λQ(e))
27 DOGMA basic(θ′(Q), DR, θ′, {R′

z})

Fig. 4. DOGMA basic algorithm

substitutions θ for which θ(v) ∈ Rv for all variable vertices v in Q. DOGMA basic
is called initially with an empty substitution and uninitialized result candidates (lines
4-6). We use uninitialized result candidates Rv = null to efficiently denote Rv = VR,
i.e., the fact that there are no constraints on the result candidates yet. The algorithm then
initializes the result candidates for all variable vertices v in Q which are connected to
a constant vertex c in Q through an edge labeled by l (lines 7-12). Here we employ the
fact that any answer substitution θ must be such that θ(v) is a neighbor of c, and thus
the set of all neighbors of c in GR reachable by an edge labeled l are result candidates
for v. We use the DOGMA index DR to efficiently retrieve the neighborhood of c. If
v is connected to multiple constant vertices, we take the intersection of the respective
constraints on the result candidates.

At each recursive invocation, the algorithm extends the given substitution and
narrows down the result candidates for all remaining variable vertices correspondingly.
To extend the given substitution θ, we greedily choose the variable vertex w with the
smallest set of result candidates (line 13). This yields a locally optimal branching factor
of the search tree since it provides the smallest number of extensions to the current
substitution. In fact, if the set of result candidates is empty, then we know that θ cannot
be extended to an answer substitution, and we thus directly prune the search (lines
14-15). Otherwise, we consider all the possible result candidates m ∈ Rw for w by
deriving extended substitutions θ′ from θ which assign m to w (lines 17-19) and then
calling DOGMA basic recursively on θ′ (line 27). Prior to this, we update the result

104 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

candidates for all remaining variable vertices (lines 20-26). By assigning the constant
vertexm tow we can constrain the result candidates for all neighboring variable vertices
as discussed above.

Note that our description of the algorithm assumes that edges are undirected, to sim-
plify the presentation. Obviously, our implementation takes directionality into account
and thus distinguishes between outgoing and incoming edges when determining vertex
neighborhoods.

Example 3. Consider the example query and RDF database in Fig. 1. Fig. 5(a) shows
the initial result candidates for each of the variable vertices ?v1, ?v2, ?v3 in boxes. After
initialization, DOGMA basic chooses the smallest set of result candidates to extend
the currently empty substitution θ = ∅. We have that |Rv1 | = |Rv2 | = 3; suppose
Rv2 is chosen. We can now extend θ by assigning each of the result candidates (Bill
B0045, Bill B0532, Bill B1432) to ?v2. Hence, we first set θ′(?v2) = Bill B0045.
This introduces a new constant vertex into the query and we thus constrain the result
candidates of the two neighbor variable vertices v1, v3 by the “amendmentTo” and
“sponsor” neighborhood of Bill B0045 respectively. The result is shown in Fig. 5(b);
here we call DOGMA basic recursively to encounter the empty result candidates for
v1. Hence we reached a dead end in our search for an answer substitution and the
algorithm backtracks to try the remaining extensions for θ. Eventually, DOGMA basic
considers the extension v2 → Bill B1432 which leads to the query answer. �

Carla

Bunes
?v1

?v2

?v3Male

Health

Care

sponsor

sponsor

gender

amendmentTo

subject

Jeff Ryser

John McRie

Keith Farmer

Peter Traves

Pierce Dickes

Bill B0744

Amendment A0342

Amendment A0056

Bill B0045

Bill B0532

Bill B1432

Carla

Bunes
?v1

Bill

B0045

?v3Male

Health

Care

sponsor

sponsor

gender

amendmentTo

subject

Jeff Ryser

(a) (b)

Fig. 5. Execution of DOGMA basic on the example of Fig. 1

Proposition 2. Suppose DR is a DOGMA index for an RDF database R and Q is
a graph query. Then: DOGMA basic(Q,DR, {}, null) returns the set of all correct
answer substitutions for query Q w.r.t. R. Moreover, the worst-case complexity of the
DOGMA basic algorithm is O(|VR||VQ ∩V AR|).

The algorithm is therefore exponential in the number of variables in the query in
the worst case. However, the algorithm is efficient in practice as we will show in
Section 5. Furthermore, we propose two extensions of the DOGMA index that improve
its performance.

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 105

4.2 The DOGMA adv Algorithm

The basic query answering algorithm presented in the previous section only uses “short
range” dependencies, i.e., the immediate vertex neighborhood of variable vertices, to
constrain their result candidates. While this suffices for most simple queries, consider-
ing “long range” dependencies can yield additional constraints on the result candidates
and thus improve query performance. For instance, the result candidates for v1 in our
example query not only must be immediate neighbors of “Carla Bunes”: in addition,
they must be at most at a distance of 2 from “Health Care”. More formally, let dR(u, v)
denote the length of the shortest path between two vertices u, v ∈ VR in the undirected
counterpart of a RDF graph GR, and let dQ(u, v) denote the distance between two ver-
tices in the undirected counterpart of a query Q; a long range dependency on a variable
vertex v ∈ VQ is introduced by any constant vertex c ∈ VQ with dQ(v, c) > 1.

We can exploit long range dependencies to further constrain result candidates. Let
v be a variable vertex in Q and c a constant vertex with a long range dependency on
v. Then any answer substitution θ must satisfy dQ(v, c) ≥ dR(θ(v), c) which, in turn,
means that {m | dR(m, c) ≤ dQ(v, c)} are result candidates for v. This is the core
idea of the DOGMA adv algorithm shown in Fig. 6, which improves over and extends
DOGMA basic. In addition to the result candidates sets Rv , the algorithm maintains
sets of distance constraints Cv on them. As long as a result candidates set Rv remains
uninitialized, we collect all distance constraints that arise from long range dependencies
on the variable vertex v in the constraints set Cv (lines 15-16 and 34-35). After the
result candidates are initialized, we ensure that all elements in Rv satisfy the distance
constraints in Cv (lines 17-18 and 37-38). Maintaining additional constraints therefore
reduces the size of Rv and hence the number of extensions to θ we have to consider
(line 23 onward).

DOGMA adv assumes the existence of a distance index to efficiently look up
dR(u, v) for any pair of vertices u, v ∈ VR (through function retrieveDistance), since
computing graph distances at query time is clearly inefficient. But how can we build
such an index? Computing all-pairs-shortest-path has a worst-case time complexity
O(|VR|3) and space complexityO(|VR|2), both of which are clearly infeasible for large
RDF databases. However, we do not need to know the exact distance between two ver-
tices for DOGMA adv to be correct. Since all the distance constraints in DOGMA adv
are upper bounds (lines 18, 31, and 38), all we need is to ensure that ∀u, v ∈ VR, re-
trieveDistance(DR, u, v) ≤ dR(u, v).

Thus, we can extend the DOGMA index to include distance information and build
two “lower bound” distance indexes, DOGMA ipd and DOGMA epd, that use approx-
imation techniques to achieve acceptable time and space complexity.

4.3 DOGMA ipd

For building the DOGMA index, we employed a graph partitioner which minimizes
cross edges, to ensure that strongly connected vertices are stored in close proximity on
disk; this implies that distant vertices are likely to be assigned to distinct sets in the
partition. We exploit this to extend DOGMA to a distance index.

As seen before, the leaf nodes of the DOGMA index DR are labeled by subgraphs
which constitute a partition of GR. For any node N ∈ DR, let PN denote the union

106 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

Algorithm DOGMA adv
Input: Graph query Q, DOGMA Index DR, partial substitution θ, candidate sets {Rz}, constraint sets {Cz}
Output: Answer set A, i.e. set of substitutions θ s.t. θ(Q)⊂̃G

1 if ∀z ∈ VQ ∩ VAR : ∃c : (z → c) ∈ θ
2 A ← A ∪ {θ}
3 return
4 if θ = ∅
5 for all z ∈ VQ ∩ VAR
6 Rz ← null
7 for all c ∈ VQ ∩ (S ∪ V)
8 for all edges e = (c, v) incident on c and some v ∈ VQ ∩ VAR
9 if Rv = null
10 Rv ← retrieveNeighbors(DR, c, λQ(e))
11 else
12 Rv ← Rv∩ retrieveNeighbors(DR, c, λQ(e))
13 for all c ∈ VQ ∩ (S ∪ V)
14 for all variable vertices v ∈ VQ ∩ VAR s.t. dQ(c, v) > 1
15 if Rv = null
16 Cv ← Cv ∪ {(c, dQ(c, v))}
17 else
18 Rv ← {u ∈ Rv | retrieveDistance(DR, c, u) ≤ dQ(c, v)}
19 Rw ← argminRz �=null,s.t. z∈VQ∩VAR\dom(θ) |Rz|
20 if Rw = ∅
21 return
22 else
23 for all m ∈ Rw

24 retrieveVertex(DR, m)
25 θ′ ← θ ∪ {w → m}
26 for all z ∈ VQ ∩ VAR
27 R′

z ← Rz

28 C′
z ← Cz

29 for all edges e = (w, v) incident on w and some v ∈ VQ ∩ VAR \ dom(θ)
30 if Rv = null
31 R′

v ← {u ∈ retrieveNeighbors(DR, m, λQ(e)) | ∀(c, d) ∈ Cv : retrieveDistance(DR, c, u) ≤ d}
32 else
33 R′

v ← Rv∩ retrieveNeighbors(DR, m, λQ(e))
34 for all variable vertices v ∈ VQ ∩ VAR \ dom(θ) s.t. dQ(w, v) > 1
35 if Rv = null
36 Cv ← Cv ∪ {(m, dQ(w, z))}
37 else
38 Rv ← {w ∈ Rv | retrieveDistance(DR, m, v) ≤ dQ(w, v)}
39 DOGMA basic(θ′(Q), DR, θ′, {R′

z}, {C′
z})

Fig. 6. DOGMA adv algorithm

of the graphs labeling all leaf nodes reachable from N . Hence, PN is the union of
all subgraphs in GR that were eventually merged into the graph labeling N during
index construction and therefore corresponds to a larger subset of GR. For example,
the dashed lines in Fig 1(a) mark the subgraphs PN for all index tree nodes N of the
DOGMA index shown in Fig. 2 where bolder lines indicate boundaries corresponding
to nodes of lower depth in the tree.

The DOGMA internal partition distance (DOGMA ipd) index stores, for each index
node N and vertex v ∈ PN , the distance to the outside of the subgraph corresponding
to PN . We call this the internal partition distance of v,N , denoted ipd(v,N), which
is thus defined as ipd(v,N) = minu∈VR\PN

dR(v, u). We compute these distances
during index construction as shown in Fig. 3 (BuildTree algorithm at lines 12-14). At
query time, for any two vertices v, u ∈ VR we first use the DOGMA tree index to
identify those distinct nodes N 	= M in DR such that v ∈ PN and u ∈ PM , which
are at the same level of the tree and closest to the root. If such nodes do not exist
(because v, u are associated with the same leaf node in DR), then we set dipd(u, v) = 0.
Otherwise we set dipd(u, v) = max(ipd(v,N), ipd(u,M)). It is easy to see that dipd

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 107

is an admissible lower bound distance, since PN ∩PM = ∅. By choosing those distinct
nodes which are closest to the root, we ensure that the considered subgraphs are as large
as possible and hence dipd(u, v) is the closest approximation to the actual distance.

Proposition 3. Building the DOGMA ipd index has a worst-case time complexity
O(log |VR|

k (|ER|+ |VR| log |VR|)) and space complexity O(|VR| log |VR|
k).

Example 4. Consider the example of Fig. 1. As shown in Fig. 7(a), there is a long range
dependency between “Carla Bunes” and variable vertex v2 at distance 2. The boldest
dashed line in Fig. 1(a) marks the top level partition and separates the sets PN1 , PN2 ,
where N1, N2 are the two nodes directly below the root in the DOGMA index in Fig. 2.
We can determine that ipd(Carla Bunes, N2) = 3 and since Bill B0045 and B0532 lie in
the other subgraph, it follows that dipd(Carla Bunes,B0045/B0532) = 3 and therefore
we can prune both result candidates. �

(a) (b)

Fig. 7. Using DOGMA ipd and DOGMA epd for query answering

4.4 DOGMA epd

The DOGMA external partition distance (DOGMA epd) index also uses the partitions
in the index tree to compute a lower bound distance. However, it considers the distance
to other subgraphs rather than the distance within the same one. For some fixed level
L, let NL denote the set of all nodes in DR at distance L from the root. As discussed
above, P = {PN}N∈NL is a partition of GR. The idea behind DOGMA epd is to
assign a color from a fixed list of colors C to each subgraph PN ∈ P and to store,
for each vertex v ∈ VR and color c ∈ C, the shortest distance from v to a subgraph
colored by c. We call this the external partition distance, denoted epd(v, c), which is
thus defined as epd(v, c) = minu∈PN ,φ(PN)=c dR(v, u) where φ : P → C is the color
assignment function. We store the color of PN with its index node N so that for a given
pair of vertices u, v we can quickly retrieve the colors cu, cv of the subgraphs to which
u and v belong. We then compute depd(v, u) = max(epd(v, cu), epd(u, cv)). It is easy
to see that depd is an admissible lower bound distance.

Ideally, we want to assign each partition a distinct color but this exceeds our
storage capabilities for large database sizes. Our problem is thus to assign a limited

108 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

number of colors to the subgraphs in such a way as to maximize the dis-
tance between subgraphs of the same color. Formally, we want to minimize the
objective function

∑
PN∈P

∑
PM∈P,φ(PN)=φ(PM)

1
d(PN ,PM) where d(PN , PM) =

minu∈PN ,v∈PM dR(u, v). Inspired by the work of Ko and Rubenstein on peer-to-peer
networks [4], we designed a probabilistic, locally greedy optimization algorithm for the
maximum distance coloring problem named ColorRegions, that we do not report here
for reasons of space. The algorithm starts with a random color assignment and then iter-
atively updates the colors of individual partitions to be locally optimal. A propagation
radius determines the neighborhood that is analyzed in determining the locally optimal
color. The algorithm terminates if the cost improvement falls below a certain threshold
or if a maximum number of iterations is exceeded.

Proposition 4. Computing the external partition distance has a worst-case time com-
plexity O(|C| (|ER|+ |VR| log |VR|)) and space complexity O(|VR| |C|).

Example 5. Consider the example of Fig. 1(a) and assume each set in the lowest level
of the DOGMA index in Fig. 2 is colored with a different color. Figure 7(b) indicates
some long range dependencies and shows how the external partition distance can lead
to additional prunings in the three result candidates sets which can be verified against
Fig. 1(a). �

5 Experimental Results

In this section we present the results of the experimental assessment we performed of
the DOGMA adv algorithm combined with DOGMA ipd and DOGMA epd indexes.

We compared the performance of our algorithm and indexes with 4 leading RDF
database systems developed in the Semantic Web community that are most widely used
and have demonstrated superior performance in previous evaluations [5]. Sesame2 [6] is
an open source RDF framework for storage, inferencing and querying of RDF data, that
includes its own RDF indexing and I/O model and also supports a relational database
as its storage backend. We compare against Sesame2 using its native storage model
since initial experiments have shown that Sesame2’s performance drops substantially
when backed by a relational database system. Jena2 [7] is a popular Java RDF frame-
work that supports persistent RDF storage backed by a relational database system (we
used PostgreSQL [8]). SPARQL queries are processed by the ARQ query engine which
also supports query optimization [9]. JenaTDB [10] is a component of the Jena frame-
work providing persistent storage and query optimization for large scale RDF datasets
based on a native indexing and I/O model. Finally, OWLIM [11] is a high performance
semantic repository based on the Sesame RDF database. In the experiments, we com-
pared against the internal memory version of OWLIM which is called SwiftOWLIM
and is freely available. SwiftOWLIM loads the entire dataset into main memory prior
to query answering and therefore must be considered to have an advantage over the
other systems.

Moreover, we used 3 different RDF datasets. GovTrack [1] consists of more than 14.5
million triples describing data about the U.S. Congress. The Lehigh University Bench-
mark (LUBM) [12] is frequently used within the Semantic Web community as the basis

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 109

Fig. 8. Query times (ms) for graph queries of low complexity

for evaluation of RDF and ontology storage systems. The benchmark’s RDF genera-
tor employs a schema which describes the university domain. We generated a dataset
of more than 13.5 million triples. Finally, a fragment of the Flickr social network [13]
dataset was collected by researchers of the MPI Saarbrücken to analyze online social
networks [14] and was generously made available to us. The dataset contains infor-
mation on the relationships between individuals and their memberships in groups. The
fragment we used for the experiments was anonymized and contains approximately 16
million triples. The GovTrack and social network datasets are well connected (with
the latter being denser than the former), whereas the dataset generated by the LUBM
benchmark is a sparse and almost degenerate RDF graph containing a set of small and
loosely connected subgraphs.

In order to allow for a meaningful comparison of query times across the different
systems, we designed a set of graph queries with varying complexity, where constant
vertices were chosen randomly and queries with an empty result set were filtered out.
Queries were grouped into classes based on the number of edges and variable vertices.

110 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

Fig. 9. Query times (ms) for graph queries of high complexity

We repeated the query time measurements multiple times for each query, eliminated
outliers, and averaged the results. Finally, we averaged the query times of all queries
in each class. All experiments were executed on a machine with a 2.4Ghz Intel Core 2
processor and 3GB of RAM.

In a first round of experiments, we designed several relatively simple graph queries
for each dataset, containing no more than 6 edges, and grouped them into 8 classes.The
results of these experiments are shown in Fig. 8 which reports the query times for each
query class on each of the three datasets. Missing values in the figure indicate that
the system did not terminate on the query within a reasonable amount of time (around
20 mins). Note that the query times are plotted in logarithmic scale to accommodate
the large discrepancies between systems. The results show that OWLIM has low query
times on low complexity queries across all datasets. This result is not surprising, as
OWLIM loads all data into main memory prior to query execution. The performance
advantage of DOGMA ipd and DOGMA epd over the other systems increases with
query complexity on the GovTrack and social network dataset, where our proposed

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 111

Fig. 10. Index size (MB) for different datasets

techniques are orders of magnitude faster on the most complex queries. On the LUBM
dataset, however, Sesame2 performs almost equally for the more complex queries. Fi-
nally, DOGMA epd is slightly faster on the LUBM and social network dataset, whereas
DOGMA ipd has better performance on the Govtrack dataset.

In a second round of experiments, we significantly increased the complexity of the
queries, which now contained up to 24 edges. Unfortunately, the OWLIM, JenaTDB,
and Jena2 systems did not manage to complete the evaluation of these queries in reason-
able time, so we exclusively compared with Sesame2. The results are shown in Fig. 9.
On the GovTrack and social network dataset, DOGMA ipd and DOGMA epd con-
tinue to have a substantial performance advantage over Sesame2 on all complex graph
queries of up to 40000%. For the LUBM benchmark, the picture is less clear due to the
particular structure of the generated dataset explained before.

Finally, Fig. 10 compares the storage requirements of the systems under comparison
for all three datasets. The results show that DOGMA ipd,DOGMA epd and Sesame2
are the most memory efficient.

To wrap up the results of our experimental evaluation, we can observe that both
DOGMA ipd and DOGMA epd are significantly faster than all other RDF database
systems under comparison on complex graph queries over non-degenerate graph
datasets. Moreover, they can efficiently answer complex queries on which most of the
other systems do not terminate or take up to 400 times longer, while maintaining a sat-
isfactory storage footprint. DOGMA ipd and DOGMA epd have similar performance,
yet differences exist which suggest that each index has unique advantages for particular
queries and RDF datasets. Investigating these is subject of future research.

6 Related Work

Many approaches to RDF storage have been proposed in the literature and through
commercial systems. In Section 5 we briefly reviewed four such systems that we used in
the performance comparison. Discussing all prior work on RDF storage and retrieval in
detail is beyond the scope of this paper. Approaches differ with respect to their storage

112 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

regime, index structures, and query answering strategies. Some systems use relational
databases as their back-end [15]; for instance by inferring the relational schema of the
given RDF data [16,17], or using a triple based denormalized relational schema [7],
whereas others propose native storage formats for RDF [11]. To efficiently retrieve
triples, RDF databases typically rely on index structures, such as the popular B-tree and
its generalizations, over subjects, predicates, objects or any combination thereof [18].
Query answering is either handled by the relational database back-end after a SPARQL
query is translated into its SQL equivalent or employs existing index structures to re-
trieve stored triples that match the query. [19] does some additional tuning through
B+-tree page compression and optimized join processing. Recent work on query opti-
mization for RDF uses triple selectivity estimation techniques similar to those used in
relational database systems [9].

Despite these differences, the great majority of RDF databases are triple oriented
in the sense that they focus on the storage and retrieval of individual triples. In con-
trast, our work is graph oriented because we analyze the graph spanned by RDF data
and exploit graph properties, such as connectedness and shortest path lengths, for ef-
ficient storage and, more importantly, retrieval. This explains DOGMA’s performance
advantage on complex queries. GRIN [20] was the first RDF indexing system to use
graph partitioning and distances in the graphs as a basis for indexing for SPARQL-
like queries. However, GRIN did not operate on disk and the authors subsequently
found errors in the experimental results reported in that paper. There is also some re-
lated work in other communities. LORE [21], a database system for semi-structured
data, proposed path indexes based on the assumption that the input data can be ac-
curately represented as a tree. This assumption clearly does not hold for RDF data.
Furthermore, there is a lot work on approximate query answering over graph datasets in
the bioinformatics community [22]. However, the biological datasets are small enough
to fit into main memory and hence storage and retrieval are not being addressed. Fi-
nally, [19,23] focus on the physical data structures to optimally store RDF triples. Their
work is thus orthogonal to ours, since a DOGMA index could be built on the physical
data structures proposed in these papers in order to additionally exploit graph distance
locality.

7 Conclusions and Future Work

In this paper, we proposed the DOGMA index for fast subgraph matching on disk and
developed algorithms to answer queries over this index. The algorithms use efficient
(but correct) pruning strategies and can be combined with two different extensions of
the index. We tested a preliminary implementation of the proposed techniques against
four existing RDF database systems, showing very good query answering performance.
Future work will be devoted to an in-depth study of the advantages and disadvantages
of each of the proposed indexes when dealing with particular queries and RDF datasets.
Moreover, we plan to extend our indexes to support efficient updates, also trying to
improve over usual index maintenance schemes such as those based on a partial use of
the space in index nodes.

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 113

References

1. GovTrack dataset: http://www.govtrack.us
2. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C recommenda-

tion (January 2008)
3. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scientific Computing 20, 359–392 (1999)
4. Ko, B., Rubenstein, D.: Distributed self-stabilizing placement of replicated resources in

emerging networks. Networking, IEEE/ACM Transactions on 13(3), 476–487 (2005)
5. Lee, C., Park, S., Lee, D., Lee, J., Jeong, O., Lee, S.: A comparison of ontology reasoning

systems using query sequences. In: Proceedings of the 2nd international conference on Ubiq-
uitous information management and communication, Suwon, Korea, pp. 543–546. ACM,
New York (2008)

6. Sesame2: http://www.openrdf.org
7. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in

Jena2. In: Proceedings of SWDB, vol. 3, pp. 7–8 (2003)
8. PostgreSQL: http://www.postgresql.org
9. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph

pattern optimization using selectivity estimation. In: Proceeding of the 17th international
conference on World Wide Web, Beijing, China, pp. 595–604. ACM, New York (2008)

10. JenaTDB: http://jena.hpl.hp.com/wiki/TDB
11. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - a pragmatic semantic repository for

OWL. In: WISE Workshops, pp. 182–192 (2005)
12. The Lehigh University Benchmark:

http://swat.cse.lehigh.edu/projects/lubm
13. Flickr: http://www.flickr.com
14. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and

analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, pp. 29–42. ACM, New York (2007)

15. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database representations
of RDF/S Stores, pp. 685–701 (2005)

16. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing and
querying RDF data and schema information. In: Spinning the Semantic Web, pp. 197–222
(2003)

17. Sintek, M., Kiesel, M.: RDFBroker: A signature-based high-performance RDF store. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 363–377. Springer,
Heidelberg (2006)

18. Harth, A., Decker, S.: Optimized index structures for querying RDF from the Web. In: Pro-
ceedings of the 3rd Latin American Web Congress, pp. 71–80 (2005)

19. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659
(2008)

20. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A graph based RDF index. In: AAAI,
pp. 1465–1470 (2007)

21. Goldman, R., McHugh, J., Widom, J.: From semistructured data to XML: migrating the Lore
data model and query language. In: Proceedings of the 2nd International Workshop on the
Web and Databases (WebDB 1999), pp. 25–30 (1999)

22. Tian, Y., McEachin, R.C., Santos, C.: SAGA: a subgraph matching tool for biological graphs.
Bioinformatics 23(2), 232 (2007)

23. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In: SIGMOD
Conference, pp. 627–640 (2009)

http://www.govtrack.us
http://www.openrdf.org
http://www.postgresql.org
http://jena.hpl.hp.com/wiki/TDB
http://swat.cse.lehigh.edu/projects/lubm
http://www.flickr.com

Semantically-Aided Business Process Modeling

Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher,
Luciano Serafini, and Paolo Tonella

FBK-irst, Via Sommarive 18 Povo, I-38123, Trento, Italy
{dfmchiara,ghidini,rospocher,serafini,tonella}@fbk.eu

Abstract. Enriching business process models with semantic annotations taken
from an ontology has become a crucial necessity both in service provisioning,
integration and composition, and in business processes management. In our work
we represent semantically annotated business processes as part of an OWL knowl-
edge base that formalises the business process structure, the business domain, and
a set of criteria describing correct semantic annotations. In this paper we show
how Semantic Web representation and reasoning techniques can be effectively
applied to formalise, and automatically verify, sets of constraints on Business
Process Diagrams that involve both knowledge about the domain and the process
structure. We also present a tool for the automated transformation of an anno-
tated Business Process Diagram into an OWL ontology. The use of the semantic
web techniques and tool presented in the paper results in a novel support for the
management of business processes in the phase of process modeling, whose fea-
sibility and usefulness will be illustrated by means of a concrete example.

1 Introduction

Semantic Business Process Management [11,6] has the main objective of improving the
level of automation in the specification, implementation, execution, and monitoring of
business processes by extending business process management tools with the most sig-
nificant results from the area of semantic web. When the focus is on process modeling,
i.e. the activity of specification of business processes at an abstract level (descriptive
and non executable), annotating process descriptions with labels taken from a set of
domain ontologies provides additional support to the business analysis (see e.g. [16]).

A crucial step in process modeling is the creation of valid diagrams, which not only
comply with the basic requirements of the process semantics, but also satisfy properties
that take into account the domain specific semantics of the labels of the different process
elements. For instance, an important requirement for a valid on-line shopping process
should be the fact that the activity of providing personal data is always preceded by an
activity of reading the policy of the organization. As the notion of semantically anno-
tated processes becomes more and more popular, and business experts start to annotate
elements of their processes with semantic objects taken from a domain ontology, there
is an increasing potential to use Semantic Web technology to support business experts
in their modeling activities, including the modeling of valid diagrams which satisfy se-
mantically enriched and domain specific constraints. A clear demonstration of this, is
the stream of recent work on the introduction and usage of formal semantics to support
Business Process Management [19,20,13,2,5,18,15].

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 114–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Semantically-Aided Business Process Modeling 115

Analyzing this stream of work we can roughly divide the different approaches into
two groups: (i) those adding semantics to specify the dynamic behavior exhibited by a
business process, and (ii) those adding semantics to specify the meaning of the entities
of a business process in order to improve the automation of business process man-
agement. In this paper we place ourselves in the second group and we focus on the
usage of Semantic Web technology to specify and verify structural constrains, that is,
constraints that descend from structural requirements which refer to descriptive prop-
erties of the annotated process diagram and not to its execution. We focus on structural
requirements for two fundamental reasons: first, structural requirements complement
behavioral properties, as they can be used to express properties of the process which
cannot be detected by observing the execution of a process. Second, structural require-
ments provide an important class of expressions whose satisfiability can be directly
verified with existing Description Logic (DL) reasoners.

Thus, the purpose of this paper is to propose a concrete formalization of typical
classes of structural requirements over annotated BPMN processes [4], and to show
how DL reasoners can be used to provide the verification services to support modeling
activities. More in detail: we first recall how to represent semantically annotated BPMN
processes within an OWL-DL Business Process Knowledge Base (BPKB), firstly intro-
duced in [7]; with respect to [7], we extend the structure of BPKB to incorporate con-
straints used to formalize structural requirements (Section 3); then we provide concrete
examples of how to encode typical classes of structural requirements in BPKD (section
4); finally, we show how to automatically translate an annotated BPMN process into a
set of assertions of the Business Process Knowledge Base and we evaluate the usage
of Description Logic reasoners to validate structural requirements (Section 5). An ex-
ample, introduced in Section 2, is used throughout the paper to illustrate the proposed
formalism, while a comparison with related approaches is contained in Section 6.

2 A Motivating Example

In this section, we describe a portion of an on-line shopping process which we use
throughout the paper as a motivating and explanatory example. The annotated process
we refer to is illustrated in Figure 1. The Business Process Modeling Notation (BPMN)
[17] is the (graphical) language used to draw Business Process Diagrams (BPD). In our
semantic variant of BPMN we allow for the annotation of objects of a BPD with con-
cept descriptions taken from domain ontologies, i.e. shared formalizations of a specific
domain. Annotations are preceded in a BPD by the “@” symbol. Due to space limi-
tations we consider here only the initial steps of the on-line shopping process (e.g. the
product presentation and selection and the customer authentication), leaving out the last
phases, e.g. the checkout.

The realization of the on-line shopping process depicted in Figure 1 can involve a
team of business experts, who may wish to impose requirements (constraints) on the
process itself. These requirements could cover different aspects of the process, ranging
from the correct annotation of business processes to security issues, as in the following
examples:

116 C. Di Francescomarino et al.

Fig. 1. A portion of the On-line shopping business process diagram

– issues related to the semantic annotation:

(a) “to manage” is a complex action and can be used only to annotate BPMN
sub-processes (and not atomic activities).

– privacy issues:

(b) the activity of providing personal data is always preceded by an activity of
reading the policy of the organization;

Semantically-Aided Business Process Modeling 117

(c) the activity of reading the policy of the organization is activated by an event
generated from an activity of providing these policies to the customer itself ;

– security issues:

(d) the customer pool must contain an authentication sub-process which, in turn,
contains a log-in activity and an insertion of personal data activity;

– general issues :

(e) in the on-line shopping process there must be a “Customer” pool and an “On-
line shop” pool;

(f) inclusive gateway cannot be used in the on-line shopping process (to force all
the alternative actions to be mutually exclusive);

(g) each gateway must have at most 2 outgoing gates (to keep the process simple);

(h) each pool must contain a single authentication activity / sub-process (to ease
maintenance);

(i) the activity of managing a shopping cart is a sub-process which contains an
activity of removing products from the cart.

All these constraints are examples of structural requirements as they relate to the de-
scriptive properties of the annotated process diagram and complement properties which
may refer to the process execution. While some of the requirements listed above can
bear some similarity with behavioral properties, it is important to note here that ex-
pressing them as structural requirements allows to give them a different meaning, as
it is well known that the same process behavior can be obtained by completely differ-
ent process diagrams. To make a simple example we could “rephrase” constraint (h)
in the apparently equivalent the execution paths of all pools must contain a single au-
thentication activity. Nevertheless while this requirement is satisfied by both diagram
in Figure 2, requirement (h) is only satisfied by diagram 2(b), which is definitely easier
to maintain if changes to the authentication sub-process are foreseen. Thus, structural
requirements are the appropriate way to express static properties of the diagram, which
may even not be discovered by analyzing the behavior of the process.

(a) (b)

Fig. 2. Diagrams with equivalent behavior

3 Representing Semantically Annotated Processes

In order to represent semantically annotated BPDs, and to support automated reason-
ing on the requirements that can be expressed on them, we extend the notion of Business

118 C. Di Francescomarino et al.

Fig. 3. The Business Processes Knowledge Base

Fig. 4. The graphical elements of BPMNO

Processes Knowledge Base (BPKB), firstly introduced in [7] and schematized in Fig-
ure 3. The extension, described in details in Section 4, allows to define process specific
constraints which are used to state specific structural requirements on the process to be
modelled.

A BPKB is composed of four modules: a BPMN ontology, a domain ontology, a set
of constraints and the BPD instances.

The BPMN Ontology. The BPMN ontology, hereafter called BPMNO, formalizes the
structure of a BPD. It is a formalization of the BPMN standard as described in
Annex B of [17], and consists of a set of axioms that describe the BPMN elements
and the way in which they can be combined for the construction of BPDs. The tax-
onomy of the graphical elements of BPMNO is illustrated in Figure 4. The ontology
has currently the expressiveness of ALC H OI N (D) and a detailed description is con-
tained in [10]. We remark again that BPMNO provides a formalization of the structural
part of BPDs, i.e. which are the basic elements of a BPD and how they are (can be) con-
nected. BPMNO is not intended to model the dynamic behavior of BPDs (that is, how

Semantically-Aided Business Process Modeling 119

the flow proceeds within a process). Ontology languages are not particularly suited
to specify behavioral semantics. This part can be better modeled using formal lan-
guages for Workflow or Business Process Specification based on Petri Nets, as proposed
in [13].

The Domain Ontology. The domain ontology component, hereafter called BDO, con-
sists of a (set of) OWL ontology(es) that describes a specific business domain. It al-
lows to give a precise semantics to the terms used to annotate business processes. The
BDO can be an already existing business domain ontology (e.g. RosettaNet or similar
standard business ontologies), a customization of an existing ontology, or an artefact
developed on purpose. Top level ontologies such as DOLCE [8] can be included as
“standard” components of the domain ontology and used to provide typical annotation
patterns to the BPD objects.

The Constraints. Constraints are used to ensure that important semantic structural re-
quirements of process elements are satisfied. We distinguish among two different kinds
of constraints: merging axioms and process specific constraints. Merging axioms
state the correspondence between the domain ontology and the BPMN ontology. They
formalize the criteria for correct/incorrect semantic annotations. Process specific con-
straints are expressions used to state specific structural requirements that apply to the
process under construction. Differently from merging axioms, these expressions can
have many different forms to match a variety of different properties of the process.

The BPD Instances. The BPD instances (or BPD objects) contain the description of
a set of annotated BPDs in terms of instances of the BPMN ontology and the domain
ontology. Roughly speaking, the BPD instances obtained from an annotated BPD β are
all the graphical objects g of β. The assertions on these elements can be divided into
three groups: BPM-type assertions, BPM-structural assertions and BPM-semantic as-
sertions. The first two groups of assertions involve concepts from BPMNO only, while
the third group involves concepts from BDO only. BPM-type assertions are used to
store informations on the type of graphical object g. Thus we represent the fact that g
is an exclusive gateway with the BPM-type assertion data based exclusive gateway(g).
Analogously the assertion sequence flow(s) states that the BPM object s is of type se-
quence flow. BPM-structural assertions are used to store information on how the graph-
ical objects are connected. Thus for every connecting object c of β that goes from a to b,
we generate two structural assertions of the form SourceRef(c,a) and TargetRef(c,b).
For instance, the assertion has sequence flow source ref(c,a) states that the sequence
flow c originates from gateway a. Finally BPM-semantic assertions are used to repre-
sent annotation of graphical elements. For instance the assertion to search product(t)
states that task t is an instance of concept to search product and is obtained from the
semantic annotation to search product of the BPD in Figure 1.

We have implemented BPKB using the standard semantic web language OWL-DL
based on Description Logics (DL) [1]. The terminological part (Tbox), which is the
stable description of a given domain, is provided by the upper level modules of Figure
3. Instead, the changeable part, which corresponds to a specific process description, is
provided in the form of assertional knowledge (Abox).

120 C. Di Francescomarino et al.

4 Specifying Structural Requirements

To ensure that important structural requirements are satisfied, we make use of con-
straints. We distinguish between two different kinds of constraints: merging axioms
and process specific constraints.

4.1 Merging Axioms

Though belonging to different ontologies, concepts from the BMPN ontology and the
domain ontology are not totally unrelated. Indeed, precise correspondences often exist
which define criteria for correct / incorrect semantic annotations. Examples of these
criteria, which may hold in many application domains, are:

A BPMN activity can be annotated only with actions of the domain ontology

(and not e.g., with objects).
(1)

A BPMN data-object cannot be annotated with actions or events of the

domain ontology (but e.g., with objects).
(2)

A BPMN Event can be annotated only with events of the domain

ontology (and not e.g., with objects).
(3)

An additional domain specific criterion, which refer to the particular business process
or domain ontology at hand, is requirement (a) in Section 2.

To allow the business designer to specify the kind of positive and negative constraints
described above, in [7] we have proposed the usage of four relations: “annotatable only

by” (
AB−→) and “not annotatable by” (

nAB−→) from BPMNO concepts to BDO concepts,

and the symmetrical “annotates only” (
A−→) and “cannot annotate” (

nA−→) from BDO
concepts to BPMNO concepts. In the following table we report the intuitive meaning,
and the formalization as DL axioms, of these four constructs. We use x to denote a
concept of BPMNO and y to denote a concept of BDO.

Merging Axiom Intuitive meaning DL axiom1

x
AB−→ y

a BPMN element of type x can be annotated only with
a concept equivalent or more specific than y

x� y

x
nAB−→ y

a BPMN element of type x cannot be annotated with a
concept equivalent or more specific than y

x� ¬y

y
A−→ x

any concept equivalent or more specific than y can be
used to denote only BPMN elements of type x

y� x

y
nA−→ x

any concept equivalent or more specific than y can not
be used to denote BPMN elements of type x

y� ¬x

The formalization of the four constructs as DL axioms is the basis for the translation of
the informal expressions such as (1)–(3) and (a) into a formal set of expressions, denoted

with Merging Axioms(BPMNO,BDO). Note that though the meaning of x
nAB−→ y and

y
nA−→ x coincide, we provide both primitives as, depending on the case to be modeled,

one may result more intuitive than the other.

Semantically-Aided Business Process Modeling 121

Merging axioms can describe “domain independent” criteria, such as (1)–(3), and
“domain specific” criteria, such as requirement (a). Domain independent criteria, may
hold in many application domains, as they relate elements of BPMN, such as data-
objects, activities or events to very general concepts, like the elements of a top-level
ontology, e.g. DOLCE [8]. These kinds of constraints can be thought of as “default”
criteria for correct / incorrect semantic annotations, and in this case DOLCE can be
provided as a “default” component of the domain ontology in the workspace. The ad-
vantage of having these criteria already included in the BPKB is that in many situa-
tions it might be the case that the analysts, which are usually very focused on their
application domain, forget to add them explicitly while they may tend to add more
domain-specific constraints; note however that these “default” criteria could still be
modified by the analysts to reflect the actual annotation criteria for the specific domain
at hand.

To support the creation of merging axioms, we have implemented a first library of do-
main independent merging axioms between BPMN and DOLCE (see [9] for a detailed
description). Based on this work, expression (1) can be represented with the merging

axiom activity
AB−→ process (identifying action with class process in DOLCE) which

in turn is formally represented with the DL statement BPMNO:activity� BDO:process,

expression (2) can be represented with the merging axiom data object
nAB−→ perdurant

(where DOLCE class perdurant is a general class covering both processes and events)
which in turn is represented with BPMNO:data object�¬BDO:perdurant, and similarly
with the other expressions.

4.2 Process Specific Constraints

These constraints are expressions used to state specific properties that apply to the pro-
cess under construction. Differently from merging axioms, these expressions can have
many different forms to match a variety of different properties of the process. In this
paper we focus on three types of process specific constraints that can be expressed over
the Business Process Diagrams: (i) containment constraints (including existence con-
straints), (ii) enumeration constraints, and (iii) precedence constraints.

Containment Constraints. Containment constraints are of the form X contains Y or
X is contained in Y and are used to represent the fact that the BPD or certain graphical
elements contain other graphical elements. As such they can be used to express also
informal statements of the form exists X and non exists X, which are rephrased in the
containment constraint diagram X contains Y and diagram X does not contain Y. A
simple containment constraint of the form X contains Y which can be expressed over
the on-line shopping process is provided by requirement (i). A constraint of the form
exists X is instead provided by requirements (e), while a constraint of the form non
exists X is given by requirement (f).

Containment constraints can be encoded in Description Logics using specific BPMNO
roles which formalise the containment relations existing between different BPD objects
as described by specific attributes in [17]. Examples of these roles, used in DL to rep-
resent object properties and data properties, are:

122 C. Di Francescomarino et al.

– has embedded sub process sub graphical elements. This role corresponds to the
GraphicalElement attribute of an Embedded Sub-Process, as described in [17], and
represents all of the objects (e.g., Events, Activities, Gateways, and Artifacts) that
are contained within the Embedded Sub-Process;

– has pool process ref which corresponds to the ProcessRef attribute and is used to
represent the process that is contained within a pool;

– has process graphical element which corresponds to the GraphicalElements at-
tribute of BPMN and identifies all of the objects that are contained within a process;

– has business process diagram pools which allows to relate a BPD with the pools
it contains.

Using r to indicate one of the roles above, containment constraints are typically ex-
pressed as statements of the form X � ∃r.Y or X � ∀r.Y which use the basic ex-
istential and universal quantification constructs ∃r.Y and ∀r.Y . Requirement (i) can
therefore be formalized as follows, where we use has embedded as a shorthand for
has embedded sub process sub graphical elements for the sake of readability:

BDO:to manage cart�BPMN:embedded sub process (4)

BDO:to manage cart�∃BPMN:has embedded.(BPMN:activity

�BDO:to remove product)
(5)

Similarly, requirement (e) can be encoded as follows:

BPMNO:business process diagram�
∃BPMNO:has business process diagram pools.BDO:customer�
∃BPMNO:has business process diagram pools.BDO:on-line shop

(6)

while requirement (f) can be formalized by asserting:

BPMNO:process�
∀BPMNO:has process graphical element.¬BPMNO:inclusive gateway

(7)

A more complex example of containment constraint is provided by requirement (d).
The formalization of this constraint is omitted for lack of space.

Enumeration Constraints. Enumeration constraints further refine containment con-
straints by stating that X contains (at least / at most / exactly) n objects of type X. A
simple example of enumeration constraint which concern a plain BPMN element is
provided by requirements (g). An enumeration constraint which also involves semanti-
cally annotated objects is provided by requirement (h). Enumeration constraints can be
encoded in Description Logics using the constructors of number restriction and quali-
fied number restriction [1]. Number restrictions are written as≥nR (at-least restriction)
and ≤nR (at-most restriction), with n positive integer, while qualified number restric-
tions are written as ≥nR.C and ≤nR.C. The difference between the two is that number
restriction allows to write expressions such as, e.g., ≤ 3hasChild, which characterise
the set of individuals who have at most 3 children, while qualified number restriction

Semantically-Aided Business Process Modeling 123

allows to write expressions such as, e.g., ≤3hasChild.Female, which characterise the
set of individuals who have at most 3 female children. At-least and at-most operators
can be combined to obtain statement of the form =nR.

Thus, a formalization of requirements (g) can be provided by the DL statement:

BPMNO:gateway� (≤ 2)BPMNO:has gateway gate (8)

while a formalization of requirement (h) is given by:

BPMN:pool� ∀BPMN:has pool process ref.

(= 1)BPMN:has process graphical element.BDO:to authenticate
(9)

Precedence Constraints. Precedence constraints are used to represent the fact that cer-
tain graphical objects appear before others in the BPD. They can be of several forms.
Significant examples are: X is always preceded by Y in all possible paths made of se-
quence flows and X is once preceded by Y in at least a path composition of sequence
flows. Particular cases of these constraints are X is always immediately preceded by Y
and X is once immediately preceded by Y. These constraints also require that X is a
graphical object immediately preceded by Y by means of a sequence flow. Finally the
precedence constraint X is activated by Y requires that X is activated by Y by means
of a message flow. Two simple examples of precedence constraint are provided by re-
quirements (b) and (c).

Precedence constraints can be encoded in Description Logics using specific BPMNO
roles which formalize the connection between graphical objects. In particular the key
roles we can use are:

– has sequence flow source ref and has sequence flow target ref.
– has message flow source ref and has message flow target ref.

These roles represent the SourceRef and TargetRef attributes of BPMN and identify
which graphical elements the connecting object is connected from and to respectively.
The first two roles refer to connecting object which are sequence flow, while the other
two roles refer to message flow.
Constraint (b) can be formalized in DL by means of two statements

BDO:to provide sensible data� ∀BPMN:has sequence flow target ref−.

∀BPMN:has sequence flow source ref.BDO:to read policy∗
(10)

BDO:to read policy∗ ≡ ¬BPMN:start event� ((BDO:to read policy�
BPMN:activity)�∀BPMN:has sequence flow target ref−.

∀BPMN:has sequence flow source ref.BDO:to read policy∗)

(11)

The statements above use has sequence flow source ref and has sequence flow
target ref, together with an auxiliary concept BDO:to read policy∗. In a nutshell the
idea is that the concept BDO:to provide sensible data is immediately preceded, in all
paths defined by a sequence flow, by a graphical object of type BDO:to read policy∗.
This new concept is, in turn, defined as a graphical object which is not the start event
and either it is an activity of type BDO:to read policy or it is preceded in all paths by

124 C. Di Francescomarino et al.

BDO:to read policy∗. By replacing BDO:to provide sensible data, BDO:to read policy,
and BDO:to read policy∗ with X , Y and Y ∗ in (10) and (11) we can obtain a general
encoding of constraints of the form X is always preceded by Y. In addition by replacing
∀ with ∃ we can obtain an encoding of X is once preceded by Y.

Note that, if we replace the constraint (b) with a simpler constraint of the form “the
activity of providing personal data is always immediately preceded by an activity of
reading the policy of the organization” then, we do not need to introduce the auxiliary
concept Y ∗ and the encoding is directly provided by the statement

BDO:to provide sensible data� ∀BPMN:has sequence flow target ref−.

∀BPMN:has sequence flow source ref.BDO:to read policy
(12)

To formalise (c) we need to check that the activities annotated with BDO:to read policy
are activated by an intermediate event (message) which refers to a message flow which
originates by an activity of type BDO:to provide policy data:

BDO:to read policy� ∃BPMN:has sequence flow target ref−.

∃BPMN:has sequence flow source ref.(

BPMN:intermediate event�∃BPMN:has message flow target ref−.

∃BPMN:has message flow source ref.(
BDO:to provide policy data�BPMN:activity))

(13)

Again by replacing the specific BDO concepts with X and Y we can obtain a schematic
encoding of constraints of the form X is activated by Y.

Combining different constraints. By combining containment, enumeration and prece-
dence constraints, we can encode more complex requirements. An example is provided
by the following requirement

All the paths that originate from the exclusive gateways contained in the

On-line shop pool must start with an event which comes from the Customer pool.

Due to expressiveness limitation imposed by Description Logics and by the fact that we
want to remain in a decidable version of OWL, there are also constraints on the static
part of the BPMN diagram which are are not represented in our approach. In particular
all the properties that, once translated into first order logic, require more than two vari-
ables. A typical example of this kind of constraint is the fact that X mutually excludes
Y, that is that X and Y are always preceded by the same exclusive gateway. In fact we
can express this property as follows, where < is used to indicate the precedence relation
between graphical elements:

∀X .∀Y.∃Z(xor(Z)∧ precede(Z,X)∧ precede(Z,Y)∧∀W.(precede(Z,W)∧
precede(W,X)∧ precede(W,Y))→¬gateway(W))

(14)

We can instead represent a weaker version of the constraint above, which states that X
and Y are immediately preceded by an exclusive XOR gateway as in our BPD in Figure
1, by using precedence constraints. Similar limitations apply to constraints involving
parallel gateways.

Semantically-Aided Business Process Modeling 125

5 Checking Constraints as a Satisfiability Problem

Given an Abox Aβ which contains the OWL representation of a semantically annotated
BPD β, we can reduce the problem of checking constraints over a BPD to a satisfiability
problem in DL. In particular we can reformulate the fact that Aβ represents a business
process correctly annotated according to Merging Axioms(BPMNO,BDO) and which
satisfies a set of process specific constraints Constraints(BPMNO,BDO) as the fact that

BPMNO∪BDO∪Merging Axioms(BPMNO,BDO)∪Constraints(BPMNO,BDO)∪Aβ

is a consistent knowledge base. In this section we illustrate how we can support the
automatic transformation of a semantically annotated BPD β into the corresponding
Abox Aβ. We also provide an experimental evaluation of the performance of the tool,
and of reasoning systems used to check structural constraints over the BPD.

5.1 Automatically Encoding a BPD into an Abox

We developed a tool for the automated transformation of a BPD into an OWL Abox.
Given BPMNO, BDO, Merging Axioms(BPMNO,BDO) and an annotated BPD β, the tool
creates the Abox Aβ and populates the ontology with instances of BPMN elements
belonging to the specific process.

The input BPMN process is currently described in a .bpmn file, one of the files
generated by both the Eclipse SOA Tools Platform and the Intalio Process Modeler
tools. The .bpmn file is an XML file that contains just the structural description of the
process, leaving out all the graphical details. The ontology is populated by parsing the
file and instantiating the corresponding classes and properties in the BPKB Tbox.

The mapping between the XML elements/attributes used in the .bpmn file of the
Eclipse tool and concepts and properties in the BPKB Tbox is realized by means of
a mapping file. It associates each XML element of the .bpmn file to the corresponding
concept in BPMNO and each of its attributes and XML elements (with a correspondence
in the BPMNO) to the corresponding concept or property. The fragment of mapping file
in Figure 5 shows the correspondences between the pool process element (i.e. the XML
element having type bpmn:Pool in the .bpmn file) and the BPMNO. Each XML el-
ement of this type in the .bpmn file will be translated into an instance of the concept
BPMNO:Pool. The values of its attributes name and documentation will be the target of
the two data properties of the concept BPMNO:Pool, respectively has swimlane name
and has BPMN element documentation. Moreover, the two target objects (instances of
the classes BPMNO:Object and BPMNO:Process) of the BPMNO:Pool object proper-
ties has BPMN element id and has pool process ref, will be instatiated by exploiting
the unique id of the process element pool. Finally, the XML elements contained in
the element pool and annotated with the XML tags lanes and vertices will respec-
tively be the target objects of the BPMNO:Pool object property has pool lanes and of
the BPMNO:Process object property has process graphical elements.

The BPMN process descriptions currently generated by the Eclipse tool or the Intalio
tool do not exhaustively cover the features provided by the BPMN specification and,
therefore, the full ontology potential. Thus the mapping file is limited to the subset of
the specification actually implemented by the considered tools and is also based on

126 C. Di Francescomarino et al.

Fig. 5. A fragment of the mapping file

Table 1. Evaluation Results

Process
Process Semantic Abox Classification Classification of BPKB

Elements Annotations Creation of BPKB with Constraints
PROCESS A 79 13 185s 5s 205s
PROCESS B 196 30 601s 20s 143s
PROCESS C 324 56 1377s 28s 338s
PROCESS D 629 112 4075s 750s 1141s

assumptions implicitly made by the tools. Similarly, the mapping file depends on the
particular process representation adopted by these tools and must be adjusted whenever
a different tool is used for process editing.

Finally the semantic annotations added to process elements and contained in the
.bpmn file as XML elements of type bpmn:TextAnnotation are also used for populat-
ing the BDO concepts. By parsing the file, the process element associated to each XML
element having type bpmn:TextAnnotation will be added as an instance of the BDO
concept corresponding to the value of the semantic annotation.

Our tool uses the org.w3c.dom XML parsing library to manage the .bpmn input file,
Protégé libraries to populate the resulting OWL Abox, and Pellet for reasoning.

5.2 An Experimental Evaluation

We performed some experiments in order to evaluate the performances of our tool
in populating the BPKB Abox and the performance of DL reasoners for checking
the satisfiablity of structural constraints. We considered four processes of increasing
size and complexity. PROCESS A is composed by the “Customer” pool of the pro-
cess in Figure 1, PROCESS B is the process reported in Figure 1, PROCESS C extends
PROCESS B by describing the entire on-line shopping process, including the checkout
part, and finally PROCESS D is composed by doubling PROCESS C. The number of
BPMN graphical elements and of semantic annotations contained in the four BPDs is
contained in Table 1. The processor used for the experiments is a 1.86GHz Intel Core
2, with 2 Gb of RAM and running Windows XP. The reasoner was Pellet 1.5.

Table 1 reports, for all the processes, the time spent by our tool to generate the corre-
sponding Abox. It also reports the time spent to classify the ALC H OI N (D) BPKBs

Semantically-Aided Business Process Modeling 127

Fig. 6. Explanation generation

which encodes the annotated processes without constraints and the ALC H OI Q (D)
BPKBs enriched with a set of constraints similar to the ones described in the paper by
the Pellet reasoner. By looking at the results the time seems compatible with an off-
line usage of the tools on medium size processes. Note that, in the case of unsatisfiable
classes, which originate from conflicting requirements, an off-line usage of DL reason-
ers and explanation techniques similar to the ones described in [12] can be also useful
to provide justifications to the business experts. Figure 6 shows an explanation obtained
by using the Explanation Workbench plugin for Protege-4 of the unsatisfiable concept
to manage cart in the case the assertion BDO:to manage cart �BPMN:task is added to
the knowledge base, together with constraint (4).

6 Related Work

We can roughly divide the existing proposals for adding semantics to business processes
into two groups: (1) those adding semantics to specify the dynamic behavior exhibited
by a business process [19,20,13], and (2) those adding semantics to specify the mean-
ing of the entities of a BPD in order to improve the automation of business process
management [2,5,18,15]. We clearly belong to the second group.

Thomas and Fellmann [18] consider the problem of augmenting EPC process models
with semantic annotations. They propose a framework which joins process model and
ontology by means of properties (such as the “semantic type” of a process element).
Markovic [14] considers the problem of querying and reasoning on business process
models. He presents a framework for describing business processes which integrates
functional, behavioral, organizational and informational perspectives: the elements of
the process are represented as instances of an ontology describing the process behavior
(based on π-calculus), and the annotations of these elements with respect to the ontolo-
gies formalizing the aforementioned perspectives are described as relation instances.
Born et al. [3] propose to link the elements of a business process to the elements of
an ontology describing objects, states, transitions, and actions. These proposals dif-
fer substantially from ours, which establishes a set of subsumption (aka subclass or
is-a) relations between the classes of the two ontologies being integrated (BPMN meta-
model and domain ontology), instead of associating annotation properties to the process

128 C. Di Francescomarino et al.

instances. This difference has a direct impact on the kind of constraints that can be au-
tomatically enforced (e.g. BPMN elements annotatable by domain concepts).

De Nicola et al. [15] propose an abstract language (BPAL) that bridges the gap be-
tween high-level process description (e.g. in BPMN) and executable specification (e.g.
in BPEL). The formal semantics offered by BPAL refers to notions such as activity,
decision, etc., while the problem of integrating process model and domain ontology is
not their focus. In Weber et al. [19], semantic annotations are introduced for validation
purposes, i.e. to verify constraints about the process execution semantic. In their work,
semantic annotations with respect to a background ontology are used to ensure that an
executable process model behaves as expected in terms of preconditions to be fulfilled
for execution and its effects. In the SUPER project [5], the SUPER ontology is used
for the creation of semantic annotations of both BPMN and EPC process models in or-
der to support automated composition, mediation and execution. Our work represents
an extension of the existing literature in that we provide an ontology based approach
that supports automated verification of semantic constraints defining the correctness of
semantic process annotations and rich structural requirements.

7 Conclusions

In this paper we have presented an ontology-based framework to verify sets of structural
constraints that involve both knowledge about the domain and the process structure. We
have also described a tool for the automated transformation of an annotated business
process into an OWL ontology and evaluated how standard DL reasoners can be used
to automatically verify these constraints as ontology consistency violations.

Although some effort is required to create all the components of the BPKB, we envis-
age situations in which the business designer is mainly concerned with the specification
of constraints and the validation of this specification. In particular, we foresee a situa-
tion in which the domain ontology (or an adaptation of an existing one) is available to
the business designer, pre-defined high level merging axioms can be directly plugged
in the system, and (candidate) annotations can be provided automatically by means of
matching algorithms.

In our future work, we will work towards this objective by extending the library of
“domain independent” merging axioms by examining different upper-level ontologies,
including business domain ontologies. We will also investigate how to simplify the tasks
of constraint specification and checking for business experts by means of more user
friendly notations and tools. Finally, we will validate the approach further, on larger
case studies.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, Cambridge (2003)

2. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In: VLDB
2006, pp. 343–354 (2006)

Semantically-Aided Business Process Modeling 129

3. Born, M., Dörr, F., Weber, I.: User-friendly semantic annotation in business process model-
ing. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE Workshops 2007. LNCS, vol. 4832,
pp. 260–271. Springer, Heidelberg (2007)

4. Business Process Management Initiative (BPMI). Business process modeling notation:
Specification (2006), http://www.bpmn.org

5. Dimitrov, M., Simov, A., Stein, S., Konstantinov, M.: A bpmo based semantic business pro-
cess modelling environment. In: Proceedings of the Workshop on Semantic Business Process
and Product Lifecycle Management at the ESWC. CEUR-WS, vol. 251 (2007)

6. Wetzstein, B., et al.: Semantic business process management: A lifecycle based requirements
analysis. In: Proc. of the Workshop on Semantic Business Process and Product Lifecycle
Management. CEUR Workshop Proceedings, vol. 251 (2007)

7. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Reasoning
on semantically annotated processes. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 132–146. Springer, Heidelberg (2008)

8. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies
with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI),
vol. 2473, pp. 166–181. Springer, Heidelberg (2002)

9. Ghidini, C., Hasan, M.K., Rospocher, M., Serafini, L.: A proposal of merging axioms be-
tween bpmn and dolce ontologies. Technical report, FBK-irst (2009),
https://dkm.fbk.eu/index.php/BPMN_Related_Resources

10. Ghidini, C., Rospocher, M., Serafini, L.: A formalisation of BPMN in description logics.
Technical Report TR 2008-06-004, FBK-irst (2008),
https://dkm.fbk.eu/index.php/BPMN_Related_Resources

11. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel., D.: Semantic business process
management: A vision towards using semantic web services for business process manage-
men. In: ICEBE 2005: Proceedings of the IEEE International Conference on e-Business En-
gineering, pp. 535–540. IEEE Computer Society, Los Alamitos (2005)

12. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in owl. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008)

13. Koschmider, A., Oberweis, A.: Ontology based business process description. In: Proceedings
of the CAiSE 2005 Workshops. LNCS, pp. 321–333. Springer, Heidelberg (2005)

14. Markovic, I.: Advanced querying and reasoning on business process models. In: Abramow-
icz, W., Fensel, D. (eds.) BIS. LNBIP, vol. 7, pp. 189–200. Springer, Heidelberg (2008)

15. De Nicola, A., Lezoche, M., Missikoff, M.: An ontological approach to business process
modeling. In: Proceedings of the 3rd Indian International Conference on Artificial Intelli-
gence (IICAI), December 2007, pp. 1794–1813 (2007)

16. Thomas, M.F.O.: Semantic epc: Enhancing process modeling using ontology languages. In:
Proc. of the Workshop on Semantic Business Process and Product Lifecycle Management at
the ESWC. CEUR-WS, vol. 251 (2007)

17. OMG. Business process modeling notation, v1.1., www.omg.org/spec/BPMN/1.1/PDF
18. Thomas, O., Fellmann, M.: Semantic epc: Enhancing process modeling using ontology lan-

guages. In: Proceedings of the Workshop on Semantic Business Process and Product Lifecy-
cle Management (SBPM), June 2007, pp. 64–75 (2007)

19. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In: Proceedings
of the Workshop on Semantic Business Process and Product Lifecycle Management (SBPM)
(June 2008)

20. Wong, P.Y.H., Gibbons, J.: A relative timed semantics for bpmn. In: Proceedings of 7th
International Workshop on the Foundations of Coordination Languages and Software Archi-
tectures, FOCLASA 2008 (2008)

http://www.bpmn.org
https://dkm.fbk.eu/index.php/BPMN_Related_Resources
https://dkm.fbk.eu/index.php/BPMN_Related_Resources
www.omg.org/spec/BPMN/1.1/PDF

Task Oriented Evaluation of Module Extraction
Techniques

Ignazio Palmisano, Valentina Tamma, Terry Payne, and Paul Doran

Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, United Kingdom

{ignazio,V.Tamma,T.R.Payne,P.Doran}@liverpool.ac.uk

Abstract. Ontology Modularization techniques identify coherent and
often reusable regions within an ontology. The ability to identify such
modules, thus potentially reducing the size or complexity of an ontology
for a given task or set of concepts is increasingly important in the Seman-
tic Web as domain ontologies increase in terms of size, complexity and
expressivity. To date, many techniques have been developed, but evalu-
ation of the results of these techniques is sketchy and somewhat ad hoc.
Theoretical properties of modularization algorithms have only been stud-
ied in a small number of cases. This paper presents an empirical analysis
of a number of modularization techniques, and the modules they identify
over a number of diverse ontologies, by utilizing objective, task-oriented
measures to evaluate the fitness of the modules for a number of statistical
classification problems.

1 Introduction

One of the emerging areas of ontology engineering that has received considerable
attention by the community is that of ontology modularization (OM) [1,2,3,4,5,6].
OM is the collective name of approaches for fragmenting ontologies into smaller,
coherent components (modules), each of which are themselves ontologies. The
approaches can be broadly divided into two categories: ontology partitioning,
whereby the ontology is partitioned into a number of modules such that the
union of all the modules is semantically equivalent to the original ontology; or
module extraction techniques, whereby concepts that form a coherent fragment of
an ontology are extracted to form a module, such that it covers a given vocabu-
lary (based on an initial module signature). OM techniques, have been proposed
for a wide variety of tasks, such as ontology design, maintenance, and reuse;
knowledge selection; and integration [2,7], and hence the precise definition of
modularization can vary depending on the technique used, with respect to the
types of concepts, axioms and properties (found in the ontology) that are de-
sirable within the module, and on the characteristics that the modules should
exhibit [7].

The diversity of approaches can therefore make a comparative evaluation of
the different modularization processes extremely challenging. Most evaluation
approaches in the literature propose the use of the size of the module, which

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 130–145, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Task Oriented Evaluation of Module Extraction Techniques 131

includes the number of named concepts and properties in the module [2], as an
objective metric. However, size is a crude measure that does not fully reflect the
content of a module (for example it ignores the effect of restrictions over con-
cepts or properties). More recently, other approaches [8,9] propose various ways
to capture different aspects of the content of a module, in terms of its structural
properties, or information content. Whilst the criteria proposed by Schlicht and
Stuckenschmidt [8] focus on the structure of the ontology modules produced and
attempt to assess the trade-off between maintainability and efficiency of reason-
ing in distributed systems, the entropy-inspired approach [9] attempts to assess
the difference between modules by measuring the information content carried
by axioms modelling domain and language entities in the ontology. This latter
approach models the combined effect of both domain and language entities, by
aggregating the quantitative estimates of the dimensions represented by the cri-
teria. Whilst these different techniques capture to some extent the structural
differences between modules, they are based on objective measures that fail to
consider fully the suitability of a module for a specific task, and therefore are
limited in the level of assistance they can provide in supporting ontology engi-
neers and users alike in choosing the most appropriate modularization technique
for a specific task.

The focus of this paper is to provide a systematic and extensive empirical
evaluation of various module extraction approaches, from the perspective of their
suitability for a specific task. The aim is to identify the broad suitability of an
approach for a given task, and to detect possible boundary cases where other
approaches might be more suitable. In this way, we provide a guide that ontology
engineers and users alike can use to tailor the modularization process to their
problem. Three related problems have been identified that support a number of
common tasks such as query answering or service retrieval: Instance retrieval,
Subclass retrieval, and Superclass retrieval. In this paper, we provide a systematic
evaluation of a number of different modularization techniques for these problems.
In each case, a query is constructed and used as the signature (described below)
of an identified module. The resulting modules are then evaluated to determine
their utility for query answering, when compared to using the original ontologies.

The paper is therefore structured as follows: Section 2 reviews different ontol-
ogy modularization approaches and the different evaluation techniques. Section 3
presents the evaluation of the reviewed modularization approaches. The evalu-
ation problems are formally defined in terms of statistical classification prob-
lems, we then present and discuss the results. Finally, concluding remarks are
illustrated in Section 4.

2 Ontology Modularization

Ontology modularization [1,2,3,10,5,6] refers to the process of fragmenting exist-
ing ontologies into a set of smaller, and possibly interconnected parts, or modules.
Broadly speaking, modularization approaches aim to identify the minimal set
of necessary concepts and definitions for different parts of the original ontology.

132 I. Palmisano et al.

Whilst size could be considered a factor, the modules themselves should be fit for
purpose for some task; and hence the algorithms proposed can differ significantly
depending on this intended task. Likewise, the reasons for modularizing can be
different and range from ontology reuse in order to support the work of ontology
engineers [1,3,10] to information integration [2], or to support efficient agent
communication [11]. Thus, whilst size is often quoted for some modularization
techniques, it unsuitable as an objective indicator of the quality of a module or
the modularisation approach. This section reviews the different approaches for
modularizing ontologies, focussing in particular on module extraction techniques,
and presents the different techniques proposed in the literature for evaluating
the result of modularization approaches.

An ontology O is defined as a pair O = (Ax(O), Sig(O)), where Ax(O) is a set
of axioms (intensional, extensional and assertional) and Sig(O) is the signature
of O1. This signature consists of the set of entity names used by O, i.e., its
vocabulary. Ontology modularization is the process of defining a module M =
(Ax(M), Sig(M)), where M is a subset ofO, M ⊆ O, such that Ax(M) ⊆ Ax(O)
and Sig(M) ⊆ Sig(O). No assumptions beyond this are made here about the
nature of a module.

Approaches for modularizing ontologies belong to two main categories: ontol-
ogy partitioning and ontology module extraction. Ontology partitioning is the
process of fragmenting an ontology O into a set of (not necessarily disjoint2)
modules M= {M1,M2,,Mn}, such that the union of all the modules should
be equivalent to the original ontology O; i.e. {M1 ∪M2 ∪ ... ∪Mn} = O. Thus,
a function partition(O) can be formally defined as follows:

partition(O) →M = {{M1,M2,,Mn}|{M1 ∪M2 ∪ ... ∪Mn} = O}

Ontology module extraction refers to the process of extracting a module M from
an ontology O that covers a specified signature Sig(M), such that Sig(M) ⊆
Sig(O). M is the relevant part of O that is said to cover the elements defined
by Sig(M), as such M ⊆ O. M is now an ontology itself and could elicit fur-
ther modules, depending on the signatures subsequently used. Thus, a function
extract(O,Sig(M)) can be defined as follows:

extract(O,Sig(M)) → {M |M ⊆ O}

This paper focusses on ontology module extraction approaches, since the con-
cept queried can form the basis of the signature used to extract modules. On-
tology partitioning approaches are independent from any specific signature in
input, and thus would not reflect a query answering task. The techniques for
ontology module extraction in the literature can be further subdivided into
1 This definition is agnostic with respect to the ontology language used to represent

the ontology, but it should be noted that the modularization techniques detailed in
this section assume a description logic representation.

2 This is in contrast to the mathematical definition of partitioning that requires par-
titions to be disjoint.

Task Oriented Evaluation of Module Extraction Techniques 133

two distinct groups: traversal approaches and logical approaches. Traversal
approaches [3,1,4,5] represent the extraction as a graph traversal, with the mod-
ule being defined by the conditional traversal, which implicitly considers the
ontological semantics, of the graph. Logical approaches [2,12] focus on maintain-
ing the logical properties of coverage and minimality; as such, they explicitly
consider the ontological semantics when extracting an ontology module.

2.1 Traversal Based Extraction

All of the following methods for ontology module extraction can be considered as
traversal based extraction techniques. Each represents the ontology as a graph
and the ontology module is defined as a conditional traversal over this graph.

d’Aquin et al. [3] address the specific task of extracting modules related
to components found in a given web page. Their ontology module extraction
technique is integrated within a larger knowledge selection process. The specific
aim is to dynamically retrieve the relevant components from online ontologies
to annotate the webpage currently being viewed in the browser. The knowledge
selection process comprises three phases: (i) selection of relevant ontologies, (ii)
modularization of selected ontologies and (iii) merging of the relevant ontology
modules. The principle used for the extraction of an ontology module (i.e. phase
(ii)) is to include all the elements that participate in the definition, either directly
or indirectly, of the entities (similar to the approach proposed by Seidenberg and
Rector [5]). There are two distinct characteristics of this approach:

– Inferences are used during the extraction, rather than assuming an inferred
model (as is the case with techniques such as Doran et al. [1]), i.e. that all
inferences are made a priori to the module extraction process. For example,
the transitivity of the subClassOf edge allows new subclass relations to be
inferred in the input ontology.

– ‘Shortcuts′ are taken in the class hierarchy by including only the named
classes that are the most specific common super-classes of the included
classes. This is done by restricting the possible values of the Least Com-
mon Subsumer(LCS) algorithm [13] to the classes in the ontology.

Doran et al. [1] tackle the problem of ontology module extraction from the
perspective of an Ontology Engineer wishing to reuse part of an existing on-
tology. The approach extracts an ontology module corresponding to a single
user-supplied concept that is self-contained, concept centred and consistent. This
approach is agnostic with respect to the language the ontology is represented in,
provided that the ontology language itself can be transformed into the Abstract
Graph Model. A conditional traversal descends down the is-a hierarchy from the
signature concept via two edge sets: one set of edges to traverse and a second
set containing edges that are not traversed. Exceptions to these traversal sets
are permitted during the first iteration of the algorithm. For example, when ex-
tracting an ontology module from an OWL ontology, owl:disjointWith edges
are not traversed during the first iteration, but are considered in subsequent
iterations (to prevent relevant definitions from being skipped).

134 I. Palmisano et al.

Noy and Musen [4] define the notion of traversal view extraction, which
defines an ontology view of a specified concept, which is analogous to an ontology
module. Starting from one class of the ontology being considered, relations from
this class are recursively traversed to include the related entities. These relations
are selected by the user, and for each relation selected, a depth of traversal
(or traversal directive) is assigned. This traversal directive is used to halt the
traversal of the corresponding relation when the specified depth is reached. A
traversal view consists of a set of traversal directives. This flexible approach
(which was incorporated into PROMPT [14]) allows an Ontology Engineer to
iteratively construct the ontology module that they require by extending the
current ‘view’. However, this can require the Ontology Engineer to have a deep
understanding of the ontology that is being used.

We do not consider this approach in our evaluation since it has a high degree
of interactivity with the ontology engineer, that can affect the detemination of
a module.

Seidenberg and Rector [5] developed a technique specifically for extract-
ing an ontology module for a given signature, Sig(M), from the Galen ontology.
Their technique identifies all elements that participate (even indirectly) to the
definition of the signature, or other elements in the extracted module. The al-
gorithm can be decomposed as follows: assuming we have a Sig(M) = {A}.
Firstly the hierarchy is upwardly traversed (analogous to Upper Cotopy defined
in [15]), so all of the A’s superclasses are included. Next the hierarchy is down-
wardly traversed so that all the A’s subclasses are included. It should be noted
that the sibling classes of A are not included, they could be included by explicitly
adding them to the Sig(M). The restrictions, intersection, union and equivalent
classes of the already included classes can now be added to the module. Lastly,
links across the hierarchy from the previously included classes are traversed; the
target of these links are also upwardly traversed.

Whilst the degree of generality for this approach is high (with respect to
other ontologies), the focus on GALEN introduces certain features that may
be less suitable for other ontologies. For example, result of property filtering
can lead to class definitions becoming equivalent, whilst this is not incorrect it
does introduce unnecessary definitions that can be transformed into primitive
classes.

Table 1 compares the features of the traversal based extraction techniques.

Table 1. Comparison of features for traversal based ontology module extraction

Interactive Traversal Property Least Common Assume
Direction Filtering Subsumer Inferred Model

Whole Ontology ✗ Up & Down ✗ ✗ ✗
d’Aquin ✗ Up & Down ✗ ✓ ✓

Doran ✗ Down ✗ ✗ ✗
Noy and Musen ✓ Up & Down ✗ ✗ ✗

Seidenberg and Rector ✗ Up ✓ ✗ ✗

Task Oriented Evaluation of Module Extraction Techniques 135

2.2 Logical Based Extraction

The logical based extraction techniques are based on the notion of conservative
extension [16]. An ontology module extracted from a given ontology is a conser-
vative extension if the entailments regarding the ontology module are captured
totally within its signature. More formally Lutz et al. [16]present the following
definition:

Definition 1. Conservative Extension Let T1 and T2 be TBoxes formulated in
a DL L, and let Γ ⊆ sig(T1) be a signature. Then T1 ∪ T2 is a Γ -conservative
extension of T1 if for all C1, C2 ∈ L(Γ), we have T1 |= C1 � C2 iff T1 ∪ T2 |=
C1 � C2.

Thus, all the entailments regarding the signature of the ontology module are
equivalent to using the ontology module with the ontology it was taken from.
Unfortunately, Lutz et al. [16] also show that deciding if an O is a conservative
extension is undecidable for OWL DL. However, Konev et al. [12] have developed
an algorithm, MEX, for extracting conservative extensions from acyclic termi-
nologies formulated in ALCI or ELI. Whilst these restrictions limit the use of
this approach, it can be successfully applied to large, real world ontologies such
as SNOMED CT. The experimental evaluation presented later in Section 3 does
not include the method by Konev and colleagues since it has been shown to be
undecidable for ontologies of complexity higher than EL.

Grau et al. [2] overcome the limitations of conservative extensions for more ex-
pressive description logics by utilizing approximations; they term these modules
as locality-based modules. Coverage and safety are the properties that locality-
based modules can guarantee, but this is done at the expense of minimality
which is also guaranteed by conservative extensions. Coverage and safety [17]
are defined in terms of a module being imported by a local ontology (L) as
follows:

Coverage. Extract everything the ontology defines for the specified terms. The
module O′ covers the ontology O for terms from, some signature, X if for
all classes A and B built from terms in X , such that if L∪O |= A � B then
L ∪O′ |= A � B.

Safety. The meaning of the extracted terms is not changed. L uses the terms
from X safely if for all classes A and B built from terms in X , such that if
L ∪O′ |= A � B then O′modelsA � B.

Two different variants of locality are described by Grau et al. [18]. Syntactic
locality can be computed in polynomial time, but semantic locality is PSPACE-
complete. Syntactic locality is computed based on the syntactic structure of the
axiom whereas semantic locality is computed based on the interpretation (I)
of the axiom. The issue concerning the syntactic locality is that syntactically
different (but semantically equivalent) axioms can be treated differently. For
example, Borgida and Giunchiglia [19] raise this issue of the syntactic approxi-
mation via the following example; consider the two sets of axioms {A � (B�C)}

136 I. Palmisano et al.

and {A � B,A � C}. These axioms are semantically equivalent, but the syntac-
tic difference will effect the extraction process. The syntactic locality also can
not handle tautologies, but this is unlikely to affect real world applications as
ontologies with tautologies would be considered badly engineered.

Table 2 compares the features of the traversal based extraction techniques.

Table 2. Comparison of features for logical based ontology module extraction

Coverage Minimality DL Expressivity Tractable
Whole Ontology ✓ ✗ Any ✓
Locality Based ✓ ✗ OWL 1 (SHOIN) ✓

MEX ✓ ✓ EL++ ✓
Conservative Extension ✓ ✓ Any ✗

2.3 Evaluation of Ontology Modularization Approaches

Whilst a number of different approaches for modularizing ontologies have been
proposed in the literature, few efforts have addressed the problem of providing
objective measures for the evaluation of the outcome of modularization tech-
niques [7]. The prevalent measure to discriminate between ontology modules is
the module size, that is the number of named concepts and properties that com-
pose the module [18]. Other criteria have been proposed [8,20] that look at the
structure of the ontology modules produced and attempt to assess the trade-
off between maintainability and efficiency of reasoning in distributed systems.
These criteria include:

– Redundancy: The extent to which ontology modules overlap. The inclusion
of redundancy in modules improves efficiency and robustness but in contrast
it requires a higher effort to maintain the modules;

– Connectedness : The number of edges shared by the modules generated by
a modularization approach. This criterion assumes that the modules are
represented as a graph, where the vertices are the axioms in the ontology,
and the edges are the properties (roles) connecting two axioms with a shared
symbol3. Connectedness estimates the degree of independence of the set of
modules generated by the modularization approach.

– Distance: The process of modularization can simplify the structure of the
module wrt the ontology in input. Two different distance measures, inter-
module distance and intra-module distance have been defined that count the
number of modules that relate to entities, and the number of relations in the
shortest path from two entities in a module, respectively.

All the above criteria (including size) assess a specific aspect of the module
obtained that depends on the task for which modularization is carried out [7].
However, there is no measure that attempts to capure the combined effect and
3 The use of graph-based representations of ontologies has frequently been used for

ontology evaluation [21], and the transformation of an OWL ontology into a graph
has been defined (http://www.w3.org/TR/owl-semantics/mapping.html).

http://www.w3.org/TR/owl-semantics/mapping.html

Task Oriented Evaluation of Module Extraction Techniques 137

aggregates the quantitative estimates of the dimensions represented by the crite-
ria. In contrast, [9] proposes an entropy measure, based on the analogous notion
used in information theory [22], in order to provide a quantitative measure of
the information contained in a message. A variation of the entropy measure,
presented in [9], captures the information content of a module, i.e. the amount
of definition in a module, that is how precisely the concepts in the modules are
defined, thus providing a profile for the module.

A module’s information content accounts for both language and domain re-
lated content, whereby the former depends on the constructors allowed by the
ontology language used to represent a module; the domain-related content de-
pends on the domain entities represented in the module. This differentiation is
needed in order to capture the difference in meaning carried by the different types
of knowledge represented in the ontology, and their effect on the modelling. For
instance, a relationship between two concepts (represented by the OWL state-
ment <owl:ObjectProperty>) should not be considered in the same way as
an equivalence between two concepts (represented in OWL by the statement
<owl:equivalentClass>), because these two notions carry different meanings,
and have different consequences with respect to a modularization technique:
equivalent concepts should always be grouped together in a module, whilst this
is not necessarily the case with object properties.

The proposed reformulation of Shannon’s entropy measure accounts for the dif-
ferent types of relationships that can exist between concepts by separating the no-
tion of language level entropy, from domain level entropy. Language level entropy
thus estimates the information content carried by the edges that represent lan-
guage level constructs. These constructs are part of the ontological representation
that is being used, for instance the OWL statements <owl:equivalentClass> or
<rdfs:subClassOf> are language level constructs. The notion of domain level
entropy is concerned with the domain specific relationships; these are the con-
structs that allow an Ontology Engineer to tailor the ontology to their domain.
Such a construct in OWL would be the definition of an object property through
the <owl:ObjectProperty> statement. In contrast, domain level entropy cap-
tures the information content that a relationship contributes to an ontology or
to a module. These two types of entropy are then aggregated in the integrated
entropy, that is a function of the domain level entropy and language level en-
tropy, and that the authors postulate can be used to evaluate the outcome of the
modularization process. Given two modules M1 and M2, that have the same
size and the same signature, if the integrated entropy of M1 is greater than the
integrated entropy of M2 this indicates that the number of definitions of M1 is
greater than the number of definitions of M2. The integrated entropy measure
is a more accurate indicator than size only, because it takes into account not
only the number of named concepts in the module, but also the degree of the
nodes (thus accounting also for connectedness).

Although these evaluation techniques try to capture the structural features
and the content of a module, they do not help users in deciding which modu-
larization technique is the best suited for a task at hand. The reason for this is

138 I. Palmisano et al.

that these techniques do not bear any relation with the task for which the mod-
ularization process is performed. Thus, in this paper we present a systematic
evaluation of the modularization techniques with respect to the task of query
answering and we analyse the features of the module produced in an attempt to
correlate these features with the suitability for a task.

3 Evaluation

The main contribution of this paper is to provide a systematic evaluation of
the different modularization techniques presented in the previous section. We
identify three problems that support a number of common tasks such as query
answering or service retrieval: Instance retrieval, Subclass retrieval, and Super-
class retrieval.

These three tasks are considered as statistical classification problems over
the original ontology O, and the module Mi computed using a modulariza-
tion technique whose input signature is Smi = {Ci}. Let O = 〈T ,A〉 be a
knowledge base; let Ind(A) be the set of all individuals occurring in A, and let
C = {C1, C2, · · · , Cs} the set of both primitive and defined concepts in O.

The InstanceRetrieval(O,Ci) problem can be defined as follows: given an
individual a ∈ (A), and a class Ci ∈ C determine the set IO = {Instance(Ci) ⊆
Ind(A) such that O |= Ci(a)}.

For the purpose of this evaluation Mi is to be considered an ontology itself, so
the evaluation distinguishes between the task of instance retrieval in the original
ontology O, InstanceRetrieval(O,Ci), from the task of instance retrieval in the
module Mi where the signature of the module Smi = {Ci}, therefore the problem
becomes determining IMi = {Instance(Ci) ⊆ Ind(A) such that Mi |= Ci(a)}.

We can also define the tasks of subclass and superclass retrieval as follows:

– SubclassRetrieval(O,Ci)
given a class Ci ∈ C determine the set SubO = {X1, X2, · · · , Xm} ⊆ C
such that ∀Xj , j = 1, · · ·m : O |= IXj ⊆ ICi

– SuperclassRetrieval(O,Ci)
given a class Ci ∈ C determine the set SupO = {X1, X2, · · · , Xm} ⊆ C
such that ∀Xj , j = 1, · · ·m : O |= ICi ⊆ IXj

Analogously, we define the problems SubclassRetrieval(Mi,Ci), with the set
SubMi; and SuperclassRetrieval(Mi,Ci) for the module M i by substituting to
the definitions above Mi to any occurrence of O.

To evaluate the performance of a modularization technique, a named concept
Ci is selected in O; the corresponding module Mi is then built. Then we consider
the problems InstanceRetrieval(O,Ci) and InstanceRetrieval(Mi,Ci) obtaining
respectively IO and IMi (set of instances of Ci in O and in Mi), SubO and
SubMi (set of subclasses of Ci in O and in Mi), and SupO and SupMi (set of
superclasses of C in O and in IM).

We utilise these three pairs of results, in order to compute the number of true
positive, false positive and false negative for the sets generated by the problems of

Task Oriented Evaluation of Module Extraction Techniques 139

Instance retrieval, Subclass retrieval, and Superclass retrieval. The number of true
positive is the number of entities (classes or instances) that are classified correctly
(i.e. as Subclass, Superclass or Instance of a class Ci); the number of false positive
is the number of entities that were incorrectly classified as positive, whilst the
number of false negative is the number of correct entities that were missed (i.e.
entities that were not classified as belonging to the true positive class but should
have been). False negative can occur when the modularization approach does not
preserve all the constraints on class definitions that were present in the original
ontology, thus generating new class definitions that are included in the module,
for instance a disjunction axiom is lost in the modularization process (this can
occur those modularization approaches that do not guarantee safety, that is to
leave the concept definitions unchanged, as discussed in 2). We discuss this case
more in detail in Section 3.2.

1. truepositive = |IO ∩ IMi |: the number of instances of Ci in both O and Mi;
2. falsepositive = |IO \ IM |: the number of instances of Ci in O which are not

instances of Ci in MCi ;
3. falsenegative = |IM \ IO|: the number of instances of Ci in Mi which are

not instances of Ci in O.

The same values are computed for (SubO, SubM) and (SupO, SupM), substitut-
ing instances with subclasses and superclasses.

These values enable us to compute classical precision and recall measures for
the three problems in consideration, where precision and recall are defined as
follows:

precision =
truepositive

truepositive+ falsepositive

recall =
truepositive

truepositive+ falsenegative

To synthetize the values of precision and recall in a single value, we use the
F-measure:

F −measure =
2× precision× recall

precision+ recall

3.1 Evaluation Setup

The dataset for this evaluation consists of eleven ontologies from the OAEI 2007
Conference Track4; the full list, as well as some metrics for these ontologies, such
as expressivity, number of named concepts and roles, and number of anonymous
concepts, is available in Table 3.

The modularization techniques available for the experiment are:

1. Cuenca Grau et al. [2], lower variant, shortened in the following as CG-L;
2. Cuenca Grau et al. [2], upper variant, shortened as CG-U;
3. d’Aquin et al. [3], shortened as DAQ;

4 http://oaei.ontologymatching.org/2007/conference/

http://oaei.ontologymatching.org/2007/conference/

140 I. Palmisano et al.

Table 3. Classes, properties, and expressivity for each of the OAEI ontologies

Ontology Named Object Datatype Anonymous Expressivity
Classes Properties Properties Classes

cmt 29 49 10 11 ALCHIF(D)
Conference 59 46 18 33 ALCHIF(D)

confOf 38 13 23 42 SHIF(D)
crs dr 14 15 2 0 ALCHIF(D)
edas 103 30 20 30 ALCHIF(D)
ekaw 73 33 0 27 SHIN

MICRO 31 17 9 33 ALCHOIF(D)
OpenConf 62 24 21 63 ALCHOI(D)
paperdyne 45 58 20 109 ALCHOIF(D)

PCS 23 24 14 26 ALCHIF(D)
sigkdd 49 17 11 15 ALCHI(D)

Table 4. Comparison of the Module Size (in terms of named entities) for each of the
different modularization approaches. Both the number of modules generated containing
more than two named concepts, and this value as a percentage of all modules for each
ontology are given.

DAQ DOR SEID CG-L CG-U
Ontology # Modules (> 1) Modules (> 1) Modules (> 1) Modules (> 1) Modules (> 1)

Name Cl. Num % Cl. Num % Cl. Num % Cl. Num % Cl. Num % Cl.
Conference 59 26 44.1% 24 40.7% 49 83.1% 35 59.3% 35 59.3%
cmt 29 14 48.3% 11 37.9% 22 75.9% 9 31.0% 9 31.0%
confOf 38 7 18.4% 8 21.1% 33 86.8% 25 65.8% 25 65.8%
crs-dr 14 9 64.3% 3 21.4% 10 71.4% 0 0.0% 0 0.0%
edas 103 18 17.5% 25 24.3% 89 86.4% 102 99.0% 102 99.0%
ekaw 73 14 19.2% 23 31.5% 67 91.8% 15 20.5% 15 20.5%
MICRO 31 14 45.2% 6 19.4% 28 90.3% 24 77.4% 24 77.4%
OpenConf 62 12 19.4% 25 40.3% 60 96.8% 62 100.0% 62 100.0%
paperdyne 45 22 48.9% 8 17.8% 41 91.1% 36 80.0% 36 80.0%
PCS 23 13 56.5% 10 43.5% 17 73.9% 7 30.4% 7 30.4%
sigkdd 49 11 22.4% 14 28.6% 43 87.8% 8 16.3% 8 16.3%

Mean values: 36.7% 29.7% 85.0% 52.7% 52.7%

4. Doran et al. [1], shortened as DOR;
5. Seidenberg and Rector [5], shortened as SEID.

For each one of these techniques, the implementation made available by the
authors has been used to guarantee the behaviour of each approach as intended
by the original authors. Wrappers have been used to fit the techniques into the
testing framework, such as changes to the expected input method, from a URL
for the ontology to load to a local file. However, these do not modify the data,
and have no affect on the results of the evaluation.

For each ontology, the set of named concepts has been considered. For each
named concept, each technique has been used to produce the related module;
the modularization signature was in each case the single named concept.

Task Oriented Evaluation of Module Extraction Techniques 141

Table 5. Results broken down by ontology and technique; all the modules for a single
ontology and a single technique are averaged together; this table only reports the
instances results

CG-L CG-U DAQ DOR SEID
P R FM P R FM P R FM P R FM P R FM

Conference 1.00 0.84 0.912 1.00 0.84 0.912 1.00 0.80 0.888 1.00 1.00 1.000 0.83 0.72 0.773
cmt 1.00 0.76 0.862 1.00 0.76 0.862 1.00 0.78 0.875 1.00 1.00 0.998 0.76 0.60 0.670
confOf 1.00 0.83 0.909 1.00 0.83 0.909 1.00 0.83 0.909 1.00 1.00 1.000 0.87 0.74 0.801
crs dr 1.00 0.84 0.911 1.00 0.84 0.911 1.00 0.84 0.911 1.00 1.00 1.000 0.71 0.71 0.714
edas 1.00 0.86 0.926 1.00 0.86 0.926 1.00 0.83 0.907 1.00 0.99 0.995 0.87 0.81 0.838
ekaw 1.00 0.76 0.865 1.00 0.76 0.865 1.00 0.76 0.865 1.00 1.00 1.000 0.92 0.73 0.813
MICRO 1.00 0.87 0.928 1.00 0.87 0.928 1.00 0.82 0.903 1.00 0.97 0.987 0.94 0.81 0.869
OpenConf 0.90 0.78 0.835 0.90 0.78 0.835 1.00 0.73 0.841 0.89 1.00 0.942 0.97 0.81 0.885
paperdyne 0.96 0.82 0.884 0.96 0.82 0.884 0.99 0.87 0.924 0.84 1.00 0.910 0.91 0.82 0.862
PCS 1.00 0.75 0.860 1.00 0.75 0.860 1.00 0.76 0.864 1.00 1.00 1.000 0.74 0.61 0.667
sigkdd 1.00 0.81 0.893 1.00 0.81 0.893 1.00 0.81 0.893 0.99 1.00 0.996 0.88 0.76 0.816
Average 0.987 0.810 0.889 0.987 0.810 0.889 0.999 0.802 0.889 0.974 0.997 0.984 0.854 0.739 0.792

Table 6. Results broken down by ontology and technique; all the modules for a single
ontology and a single technique are averaged together; this table only reports the
subclasses results

CG-L CG-U DAQ DOR SEID
P R FM P R FM P R FM P R FM P R FM

Conference 1.00 0.87 0.928 1.00 0.87 0.928 1.00 0.84 0.910 1.00 1.00 1.000 0.83 0.74 0.784
cmt 1.00 0.80 0.892 1.00 0.80 0.892 1.00 0.82 0.901 1.00 1.00 0.999 0.76 0.64 0.692
confOf 1.00 0.86 0.924 1.00 0.86 0.924 1.00 0.86 0.924 1.00 1.00 1.000 0.87 0.76 0.813
crs dr 1.00 0.87 0.929 1.00 0.87 0.929 1.00 0.87 0.929 1.00 1.00 1.000 0.71 0.71 0.714
edas 1.00 0.88 0.939 1.00 0.88 0.939 1.00 0.87 0.929 1.00 1.00 1.000 0.87 0.82 0.845
ekaw 1.00 0.80 0.889 1.00 0.80 0.889 1.00 0.80 0.889 1.00 1.00 1.000 0.92 0.77 0.835
MICRO 1.00 0.89 0.941 1.00 0.89 0.941 1.00 0.88 0.934 1.00 1.00 1.000 0.94 0.83 0.882
OpenConf 0.90 0.81 0.852 0.90 0.81 0.852 1.00 0.83 0.907 0.98 1.00 0.992 0.97 0.90 0.931
paperdyne 0.96 0.84 0.896 0.96 0.84 0.896 0.99 0.89 0.937 0.98 1.00 0.990 0.91 0.83 0.871
PCS 1.00 0.81 0.893 1.00 0.81 0.893 1.00 0.81 0.896 1.00 1.00 1.000 0.74 0.63 0.682
sigkdd 1.00 0.84 0.912 1.00 0.84 0.912 1.00 0.84 0.912 0.99 1.00 0.997 0.88 0.78 0.826
Average 0.987 0.842 0.909 0.987 0.842 0.909 0.999 0.845 0.915 0.996 1.000 0.998 0.854 0.766 0.807

The total number of modules obtained in this way is the sum of the Concept
column in Table 3, multiplied by the number of techniques; this gives a total of
2630 modules, of which 526 were generated for each technique.

For each module, precision, recall and F-measure have been computed, as
outlined in Section 3. The results5 have then been presented by ontology and
technique (Tables 5, 6 and 7).

Table 4 lists the results for the modules generated by each of the modular-
ization techniques across each of the ontologies, as well as the number of named
classes defined by each ontology. For each technique, the number of modules
containing two or more named concepts is given. Cases where no modules can
be generated, or where modules of size one are generated are not given. This
is in part due to the fact that some techniques (such as DOR and SEID) are
guaranteed to generate a module containing at least the concept specified in the

5 The complete set of results are available at:
http://www.csc.liv.ac.uk/semanticweb/

http://www.csc.liv.ac.uk/semanticweb/

142 I. Palmisano et al.

Table 7. Results broken down by ontology and technique; all the modules for a single
ontology and a single technique are averaged together; this table only reports the
superclasses results

CG-L CG-U DAQ DOR SEID
P R FM P R FM P R FM P R FM P R FM

Conference 0.87 0.82 0.845 1.00 0.53 0.689 0.98 0.70 0.821 0.71 0.54 0.612 1.00 0.64 0.783
cmt 1.00 0.61 0.758 1.00 0.55 0.711 1.00 0.53 0.693 1.00 0.67 0.806 1.00 0.75 0.860
confOf 0.74 0.65 0.689 0.99 0.56 0.718 0.88 0.80 0.837 0.83 0.71 0.767 1.00 0.77 0.871
crs dr 1.00 0.55 0.707 1.00 0.72 0.839 1.00 0.77 0.871 1.00 0.56 0.718 1.00 0.61 0.758
edas 1.00 0.52 0.684 1.00 0.83 0.906 0.97 0.83 0.892 1.00 0.53 0.689 1.00 0.51 0.678
ekaw 1.00 0.66 0.792 0.94 0.91 0.922 0.99 0.57 0.722 0.92 0.77 0.837 1.00 0.84 0.912
MICRO 0.76 0.63 0.687 0.95 0.79 0.863 1.00 0.47 0.643 1.00 0.60 0.752 1.00 0.51 0.676
OpenConf 1.00 0.84 0.912 1.00 0.55 0.708 1.00 0.57 0.724 0.90 0.85 0.877 1.00 0.57 0.723
paperdyne 0.90 0.73 0.810 1.00 0.89 0.940 1.00 0.55 0.711 1.00 0.55 0.708 1.00 0.55 0.708
PCS 1.00 0.89 0.940 0.99 0.61 0.759 0.87 0.69 0.769 0.90 0.73 0.810 0.99 0.65 0.786
sigkdd 1.00 0.56 0.718 1.00 0.55 0.706 1.00 0.60 0.753 1.00 0.64 0.783 0.95 0.79 0.863
Average 0.934 0.677 0.777 0.988 0.680 0.796 0.972 0.644 0.767 0.933 0.651 0.760 0.994 0.654 0.783

module signature, whereas Cuenca Grau et al.’s two techniques (CGL and CGU)
can generate empty modules (i.e. of size zero). Finally, the number of modules
(of size > 1) generated for each ontology is given as a percentage of the total
number of named concepts. The mean values across all the ontologies for the
percentage of modules considered.

3.2 Monotonicity in DL and False Negatives

Some of the extracted modules cause some instances to be misclassified with
respect to the whole ontology, i.e., there is some concept Ci for which there
are instances in Mi that are not instances of C in O; this seems counterintuitive
given the monotonic nature of Description Logics. According to monotonicity, all
the inferences that can be drawn from a subset of axioms can be drawn against
the whole set of axioms in a knowledge base, so no inferences that can be drawn
from a module Mi should be lost when considering O. This intuition, however, is
not well founded; there are theoretical constraints on the assumptions that must
be made, i.e., O must be a conservative extension of Mi (or at least guarantee
safety, as defined in [2]); this is not guaranteed by all the techniques considered.

The same problem can arise with subclasses and superclasses; in the current
evaluation, these problems have been detected in 31 cases, involving two ontolo-
gies (paperdyne and openconf).

3.3 Discussion

The results presented demonstrate that all the modularization techniques evalu-
ated perform reasonably well in terms of precision and recall across all but two of
the considered ontologies. However, all the approaches but SEID experienced
some degradation in performance when applied to OpenConf and Paperdyne.
This could be due to the fact that these two ontologies are both very complex
and interconnected ontologies that cause all the approaches to degrade.

However, we note that Seidenberg’s technique seems to have the greatest
degree of variation with respect to the considered ontology, with many cases in

Task Oriented Evaluation of Module Extraction Techniques 143

which the precision is either 0 or 100%. This result seems to indicate that some
of the heuristics used by Seidenberg’s modularization approach might have been
overly specific to the characteristics of the GALEN ontology, and thus are not
so well suited for ontologies that have different characteristics with respect to
GALEN.

One interesting result is that there is no discernible difference between logic
based approaches and traversal based approaches in terms of precision of the re-
sults and recall. However the modules differ in sizes, and percentages of modules
with 0 or one concept only. This seems to indicate that users need to look at
the characteristics of the task they have in mind in order to choose the most
appropriate modularization approach. Hence, for instance, we might want to
distinguish the task of single instance retrieval from the more generic task of
Instance retrieval. The former is typical of queries where a single instance of a
concept is required. For example, in service provision, where the request of a ser-
vice that is of a certain class as Give me a service that is an instance of Weather
service. The latter provides all the instances of a class. In the first case, any of
the modularization approaches with high precision results (Cuenca Grau upper
and lower variants, DAQ and DOR) would perform equally well; whilst DOR
has the lowest precision, it is still within a 0.05% error. Recall, in this scenario
it would not be as important as finding just one correct instance which would
suffice to satisfy the user request.

Conversely, if we are looking at the problem of generalized instance retireval,
then recall becomes important, and in this case DOR has a better recall (whilst
maintanining a good performance) followed by DAQ, and Cuenca Grau’s vari-
ants, whose recall values are very similar.

If the problem consists of retrieving all the subclasses, then DOR once again
performs better than the others. This is an artefact of the type of traversal
used by the approach, that traverse mainly from the signature concept down.
Interestingly enough, the results for subclass retrieval and superclass retrieval
on this dataset seem to indicate that the content of a module is defined by
the definition of the subclasses of the signature concept, whilst the superclasses
seem to provide a lesser contribution to the module definition. For this reason
Doran’s approach, that includes only the constraints from the superclasses of
the signature that are inherited down the hierarchy, performs as well as other
approaches like d’Aquin or Cuenca Grau.

Other considerations that a user might want to take into account when choos-
ing a module are related to the specific characteristics of the task. If the module
produced is to be used for extensive reasoning, then Cuenca Grau’s approach is
to be preferred as it is the only one amongst those considered that guarantees
safety. If safety is not a concern, then Doran and d’Aquin are good candidates.

4 Conclusions

Whilst a number of modularization techniques have been proposed to date, there
has been little systematic analysis and comparison of these approaches with re-
spect to common tasks. Objective, measures such as size or Integrated Entropy

144 I. Palmisano et al.

[9] give some information about a module, but fail to capture task-related infor-
mation, such as whether the module is fit for purpose, or can lose information
(with respect to using the original ontology). To this end, we have presented
a systematic and extensive empirical evaluation of various module extraction
approaches, from the perspective of their suitability for a specific task. Three
related problems have been identified that support a number of common tasks
such as query answering or service retrieval: Instance retrieval, Subclass retrieval,
and Superclass retrieval.

The results suggest that pragmatic, heuristic approaches such as those that
assume graph traversal may be as good as logical-based approaches for most sce-
narios. Whilst better for tasks that may require safety guarantees or extensive
reasoning, logical based approaches may not offer many benefits when used for
generalized instance retrieval. However, in nearly all cases, little utility is gained
by considering the definition of concepts that are more general than those ap-
pearing in the signature. Future work will extend this analysis to better identify
boundary cases whereby certain techniques may be more suitable than others.

References

1. Doran, P., Tamma, V., Iannone, L.: Ontology module extraction for ontology reuse:
an ontology engineering perspective. In: CIKM, pp. 61–70. ACM, New York (2007)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. of Artificial Intelligence Research (JAIR) 31, 273–318
(2008)

3. d’Aquin, M., Sabou, M., Motta, E.: Modularization: a key for the dynamic selection
of relevant knowledge components. In: First Int.Workshop on Modular Ontologies,
ISWC, Athens, Georgia, USA (2006)

4. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: Int. Semantic
Web Conference (2004)

5. Seidenberg, J., Rector, A.: Web ontology segmentation: analysis, classification and
use. In: WWW 2006: Proceedings of the 15th Int. Conference on World Wide Web
(2006)

6. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hi-
erarchies. In: Proc. of the 3rd Int. Semantic Web Conference, Hiroshima, Japan
(2004)

7. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Ontology modularization
for knowledge selection: Experiments and evaluations. In: Wagner, R., Revell, N.,
Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 874–883. Springer, Heidelberg
(2007)

8. Schlicht, A., Stuckenschmidt, H.: Towards structural criteria for ontology modular-
ization. In: Proceedings of the 1st International Workshop on Modular Ontologies,
WoMO 2006, co-located with the International Semantic Web Conference, ISWC
2006, Athens, Georgia, USA, November 5 (2006)

9. Doran, P., Tamma, V., Payne, T.R., Palmisano, I.: An entropy inspired measure
for evaluating ontology modularization. In: 5th International Conference on Knowl-
edge Capture, KCAP 2009 (2009)

Task Oriented Evaluation of Module Extraction Techniques 145

10. Noy, N.F., Musen, M.A.: Prompt: Algorithm and tool for automated ontology
merging and alignment. In: Proc. of the 17th National Conference on Artificial In-
telligence and 12th Conference on Innovative Applications of Artificial Intelligence
(2000)

11. Doran, P., Tamma, V., Palmisano, I., Payne, T.R.: Dynamic selection of ontological
alignments: a space reduction mechanism. In: Twenty-First International Joint
Conference on Artificial Intelligence, IJCAI 2009 (2009)

12. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logics. In: Proceedings of ECAI 2008: 18th European
conference on Artificial Intelligence (2008)

13. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: AAAI, pp. 754–760 (1992)

14. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merg-
ing and mapping. International Journal of Human-Computer Studies 59, 983–1024
(2003)

15. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez,
A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263.
Springer, Heidelberg (2002)

16. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 453–458 (2007)

17. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: WWW 2007, Proceedings of the 16th
International World Wide Web Conference, Banff, Canada, May 8-12, 2007,
pp. 717–727 (2007)

18. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for mod-
ularity of ontologies. In: IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pp. 298–303 (2007)

19. Borgida, A., Giunchiglia, F.: Importing from functional knowledge bases - a pre-
view. In: Cuenca-Grau, B., Honavar, V., Schlicht, A., Wolter, F. (eds.) WOMO
(2007)

20. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Criteria and evalua-
tion for ontology modularization techniques. In: Stuckenschmidt, H., Parent, C.,
Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 67–89. Springer,
Heidelberg (2009)

21. Gangemi, A., Catenacci, C., Ciaramita, M., Lehman, J.: Ontology evaluation and
validation. an integrated formal model for the quality diagnostic task. Technical
report, Laboratory for Applied Ontology, ISTC-CNR (2005)

22. Shannon, C.E.: A mathematical theory of communication. Technical Report
27:379-423, 623-656, Bell System Technical Report (1948)

A Decomposition-Based Approach to Optimizing
Conjunctive Query Answering in OWL DL

Jianfeng Du1,2, Guilin Qi3,4, Jeff Z. Pan5, and Yi-Dong Shen2

1 Institute of Business Intelligence & Knowledge Discovery,
Guangdong University of Foreign Studies, Guangzhou 510006, China
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China
{jfdu,ydshen}@ios.ac.cn

3 AIFB, Universität Karlsruhe, D-76128 Karlsruhe, Germany
4 School of Computer Science and Engineering, Southeast University, Nanjing, China

5 Department of Computing Science, The University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract. Scalable query answering over Description Logic (DL) based
ontologies plays an important role for the success of the Semantic Web. Towards
tackling the scalability problem, we propose a decomposition-based approach to
optimizing existing OWL DL reasoners in evaluating conjunctive queries in OWL
DL ontologies. The main idea is to decompose a given OWL DL ontology into a
set of target ontologies without duplicated ABox axioms so that the evaluation of
a given conjunctive query can be separately performed in every target ontology by
applying existing OWL DL reasoners. This approach guarantees sound and com-
plete results for the category of conjunctive queries that the applied OWL DL
reasoner correctly evaluates. Experimental results on large benchmark ontolo-
gies and benchmark queries show that the proposed approach can significantly
improve scalability and efficiency in evaluating general conjunctive queries.

1 Introduction

Scalable query answering over Description Logic (DL) based ontologies plays an im-
portant role for the success of the Semantic Web (SW). On the one hand, the W3C
organization proposed the standard Web Ontology Language (OWL)1 to represent on-
tologies in the SW, which is based on DLs and provides shared vocabularies for different
domains. On the other hand, ontology query engines are expected to be scalable enough
to handle the increasing semantic data that the Web provides.

OWL DL is the most expressive species in the OWL family that is decidable in terms
of consistency checking. Though the decidability of conjunctive query answering in
OWL DL is still an open problem, many OWL DL reasoners implement decision proce-
dures for some categories of conjunctive queries (CQs) for which decidability is known,
e.g., for CQs that have a kind of tree-shape or CQs that do not contain non-distinguished
variables (i.e. existentially quantified variables). To name a few, Pellet [14] is a well-
known OWL DL reasoner that supports general CQs that have a kind of tree-shape

1 http://www.w3.org/TR/owl-semantics/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 146–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.w3.org/TR/owl-semantics/

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 147

(i.e. do not contain cycles through non-distinguished variables); KAON2 [11] is another
well-known OWL DL reasoner that supports CQs without non-distinguished variables.
These reasoners still suffer from the scalability problem and call for optimizations to
make them scale to larger ABoxes or more complex TBoxes.

To make existing OWL DL reasoners more scalable, we propose a decomposition-
based approach to optimizing conjunctive query answering in OWL DL (see Section 4).
Basically, the approach computes explicit answers (i.e. facts that satisfy the given CQ)
first and then identifies candidate answers and target ontologies that are sufficient for
checking whether candidate answers are indeed answers to the query. Different target
ontologies have no common ABox axioms but may have common TBox axioms. The
verification of whether a candidate answer is an answer is delegated to an existing OWL
DL reasoner. This approach guarantees sound and complete results for the categories of
CQs that the OWL DL reasoner correctly evaluates. For the categories of CQs that the
OWL DL reasoner cannot handle, this approach still returns all candidates and results
in an unsound but complete evaluation.

We implement the proposed approach and conduct experiments on LUBM [8] and
UOBM [10] ontologies (see Section 5). Experimental results on all benchmark CQs
given in [8,10] show that the proposed approach can significantly improve scalability
and efficiency in evaluating general CQs.

Related Work. There are approaches to conjunctive query answering that have certain
contributions to the scalability problem. Motik et al. [12] propose a resolution-based
approach, implemented in KAON2 [11], to evaluating CQs without non-distinguished
variables. This approach reduces the problem of conjunctive query answering to the
problem of reasoning in disjunctive datalog programs; the latter problem has more scal-
able solutions for handling large ABoxes. Currently KAON2 does not support nominals,
which are allowed in OWL DL. Dolby et al. [2] propose a summarization and refine-
ment approach to instance retrieval, which is later adapted to evaluating CQs without
non-distinguished variables by adding some optimizations for retrieving role instances
[3]. This approach improves scalability because it works on a summarization of the
ABox, but it does not support nominals either. Pan and Thomas [13] propose a seman-
tic approximation approach to OWL DL. The approach converts an OWL DL ontology
to a DL-Lite [1] ontology, which allows CQs to be evaluated in polynomial time. The
above approaches, however, do not support or may not correctly evaluate CQs with
non-distinguished variables.

The idea of decomposition has been exploited in managing large ontologies. The
result of decomposing an ontology is usually a set of subsets of axioms in the ontol-
ogy. Stuckenschmidt and Klein [15] propose a method for decomposing all concepts in
an ontology to facilitate visualization of the ontology. This method does not concern
ontology reasoning. Cuenca Grau et al. [6] propose a method for decomposing an on-
tology into a set of modules such that all inferences about the signature contained in
a module can be made locally. The method focuses on TBoxes and does not concern
conjunctive query answering. Guo and Heflin [7] propose a method for decomposing an
ABox into possibly overlapped subsets. Only instance retrieval of atomic concepts/roles
can be correctly performed in separate resulting subsets together with the whole TBox.
Compared with the above methods, the primary distinction of our proposed approach is

148 J. Du et al.

that it yields target ontologies without duplicated ABox axioms and ensures conjunctive
query answering to be correctly performed in separate target ontologies.

2 Preliminaries

OWL DL and Conjunctive Query Answering. OWL DL corresponds to DL
SHOIN . We assume that the reader is familiar with OWL DL and thus we do not
describe it in detail, but recall that an OWL DL ontology O = (OT ,OA) consists of a
terminological box (TBox)OT and an assertional box (ABox)OA. The TBox OT con-
sists of a finite set of concept inclusion axioms C � D, transitivity axioms Trans(R)
and role inclusion axioms R � S, where C and D are OWL DL concepts, and R and S
roles. The ABox OA consists of a finite set of concept assertions C(a), role assertions
R(a, b), equality assertions a ≈ b and inequality assertions a 	≈ b, where C is an OWL
DL concept, R a role, and a and b individuals.

We briefly introduce the direct model-theoretic semantics for an OWL DL
ontologyO. An interpretation I = (ΔI , ·I) consists of a domain ΔI and a function ·I
that maps every atomic concept A to a set AI ⊆ ΔI , every atomic role R to a binary
relation RI ⊆ ΔI ×ΔI , and every individual a to aI ∈ ΔI . I is called a model of O
if every axiom in O is satisfied by I. O is consistent or satisfiable iff it has a model.

A conjunctive query (CQ) is of the form q(−→x) ← ∃−→y .conj(−→x ,−→y ,−→c) or simply
q(−→x) ← conj(−→x ,−→y ,−→c), where q(−→x) is the head of q, conj(−→x ,−→y ,−→c) is the body of
q,−→x are distinguished variables,−→y are non-distinguished variables,−→c are individuals,
and conj(−→x ,−→y ,−→c) is a conjunction of atoms of the form A(v) or R(v1, v2) for A an
atomic concept, R an atomic role, and v, v1 and v2 variables in−→x and−→y or individuals
in−→c . Here allowing only atomic concepts/roles is not a big issue in practice as querying
against named relations is usual when people query over relational databases [13]. A
CQ is called a Boolean conjunctive query (BCQ) if it has no distinguished variables.

A tuple−→t of individuals in an ontologyO is called an answer of q(−→x) inO, denoted
by O |= q[−→x �→ −→

t], if every model of O satisfies q[−→x �→ −→
t], i.e. the body of q

with every variable in −→x substituted by its corresponding individual in −→t . A BCQ
q() ← conj(−→y ,−→c) is said to have an answer 〈〉 in O if O |= q[〈〉 �→ 〈〉] (simply
denoted by O |= q). The problem of evaluating a CQ in O, i.e. computing all answers
of the CQ in O, is called a problem of conjunctive query answering.

First-order Logic. We use the standard clausal form to represent a first-order logic
program. Terms are variables, constants or functional terms of the form f(t1, . . . , tn),
where f is a function symbol of arity n and t1, ..., tn are terms. Throughout this paper,
we use (possibly with subscripts) x, y, z for variables, a, b, c for constants, and s, t for
terms. We only consider unary function symbols because only unary function symbols
occur in first-order logic programs that are translated from OWL DL ontologies. Atoms
are of the form T (t1, . . . , tn) where T is a predicate symbol of arity n and t1, . . . , tn
are terms. A literal is a positive or negative atom and a clause is a disjunction of literals.
Terms, atoms and clauses that do not contain variables are called ground.

A first-order logic program is a set of clauses in which all variables are universally
quantified. For a clause cl = ¬A1 ∨ . . . ∨ ¬An ∨ B1 ∨ . . . ∨ Bm, the set of atoms

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 149

{A1, . . . , An} is denoted by cl−, whereas the set of atoms {B1, . . . , Bm} is denoted by
cl+. By |S| we denote the cardinality of a set S. A clause cl is called a fact if |cl−| = 0,
and said to be definite if |cl+| = 1.

A propositional program Π is a first-order logic program consisting of only ground
clauses. The set of ground atoms occurring in Π is denoted by atoms(Π).

For a first-order logic program P , the set of ground terms (resp. ground atoms)
defined from the first-order signature of P is called the Herbrand universe (resp. Her-
brand base) of P , denoted by HU(P) (resp. HB(P)). The set of ground clauses ob-
tained by replacing all variables occurring in each clause in P with ground terms from
HU(P) is called the primary grounding of P , denoted by G(P). An interpretation M
of P is a set of ground atoms in HB(P); it is a model of P if for any ground clause
cl ∈ G(P) such that cl− ⊆ M , cl+ ∩M 	= ∅; it is a minimal model of P if there is
no model M ′ of P such that M ′ ⊂ M . P is satisfiable iff it has a model. Given a CQ
q(−→x) ← conj(−→x ,−→y ,−→c), a tuple −→t of constants is called an answer of q(−→x) in P ,
denoted by P |= q[−→x �→ −→

t], if every model of P satisfies q[−→x �→ −→
t].

The first-order logic program P translated from a SHOIN ontology may contain
the equality predicate ≈, which is interpreted as a congruence relation and different
from ordinary predicates. This difference is not captured by the above first-order seman-
tics. However, the equality predicate≈ can be explicitly axiomatized via a well-known
transformation from [5]. Let E(P) denote the first-order logic program consisting of the
following clauses: (1) t ≈ t, for each ground term t ∈ HU(P); (2) ¬(x ≈ y) ∨ y ≈ x;
(3) ¬(x ≈ y)∨¬(y ≈ z)∨x ≈ z; (4) ¬(x ≈ y)∨f(x) ≈ f(y), for each function sym-
bol f occurring in P ; (5)¬T (x1, . . . , xi, . . . , xn)∨¬(xi ≈ yi)∨T (x1, . . . , yi, . . . , xn),
for each predicate symbol T other than ≈ occurring in P and each position i. Append-
ing E(P) to P allows to treat ≈ as an ordinary predicate, i.e., M is a model of P that
interprets≈ as a congruence relation, iff for any ground clause cl ∈ G(P ∪ E(P)) such
that cl− ⊆M , cl+ ∩M 	= ∅.

3 The Proposed Decomposition-Based Approach

Throughout this section, byO = (OT ,OA) we denote a given OWL DL ontology. We
assume that the given ontologyO is consistent and treatO as a set of axioms.

3.1 The Basic Idea of the Proposed Approach

We use a BCQ Q : q() ← p1(−→y1,−→c1) ∧ ... ∧ pn(−→yn,−→cn) to show the basic idea of our
approach. The approach to checking if O |= q consists of two phases.

In the first phase, we first translate O to a first-order logic program P such that
O |= q iff P ∪ {¬p1(−→y1 ,−→c1) ∨ ... ∨ ¬pn(−→yn,−→cn)} is unsatisfiable (see Subsection 3.2),
then consider transformingP to a proposition programΠ such that P ∪{¬p1(−→y1,−→c1)∨
... ∨ ¬pn(−→yn,−→cn)} is unsatisfiable iff Π ∪ InstBCQ(Π , Q) ∪ {¬wQ()} is unsatisfiable,
where wQ a new predicate symbol corresponding to Q and not occurring in Π , and
InstBCQ(Π , Q) is a set of ground clauses instantiated from the clause ¬p1(−→y1 ,−→c1) ∨
...∨¬pn(−→yn,−→cn)∨wQ() based on Π . We develop a basic method for extracting a target
ontology Orel ⊆ O such that Π ∪ InstBCQ(Π,Q) ∪ {¬wQ()} is unsatisfiable only if

150 J. Du et al.

Orel |= q (note that this impliesO |= q only ifOrel |= q). Since Π may be infinite due
to presence of function symbols in P , we instead transform P to a finite variant Π ′ of
Π (see Subsection 3.3), such that the target ontology O′

rel ⊆ O extracted from Π ′ ∪
Inst†BCQ(Π ′, Q) ∪ {¬wQ()} by using a similar method satisfies Orel ⊆ O′

rel, where

Inst†BCQ is a variant of InstBCQ. It should be noted that P and Π ′ are independent of
any given query, so this phase (i.e., computing P and Π ′) can be performed offline.

In the second phase (see Subsection 3.4), we check if there exists a ground sub-
stitution σ such that {p1(−→y1,−→c1), ..., pn(−→yn,−→cn)}σ is a set of ground atoms occurring
in definite ground facts in P . If such ground substitution exists, we conclude that
O |= q; otherwise, we extract the aforementioned target ontology O′

rel from Π ′ ∪
Inst†BCQ(Π ′, Q) ∪ {¬wQ()} and conclude that O |= q iff O′

rel |= q.
From the above descriptions, we can see that our approach is correct, i.e., O |= q

iff there is a ground substitution σ such that {p1(−→y1 ,−→c1), ..., pn(−→yn,−→cn)}σ is a set of
ground atoms occurring in definite ground facts in P , or O′

rel |= q.
Due to the space limitation, we do not provide proofs of lemmas and theorems in

this paper, but refer the interested reader to our technical report2.

3.2 Translating to First-Order Logic

Since a direct translation from SHOIN to first-order clauses may incur exponential
blowup [9], we apply the well-known structural transformation [11,9] to O before
translatingO to first-order clauses. ByΘ(ax) we denote the result of applying structural
transformation to an axiom ax, and by Θ(O) we denote

⋃
ax∈O Θ(ax). As structural

transformation is well-known, we do not give its definition here but refer the reader to
[11,9] or our technical report2.

Throughout this section, we use O† to denote Θ(O) if not otherwise specified and
treat O† as a set of axioms as well. By Ξ(ax) we denote the result of translating an
axiom ax inO† to a set of first-order clauses using the standard methods (see [9] or our
technical report2 for details). By Ξ(O†) we denote

⋃
ax∈O† Ξ(ax), and by Ξ ′(O†) we

denote Ξ(O†) ∪ E(Ξ(O†)) if some equational atom s ≈ t occurs positively in Ξ(O†),
or Ξ(O†) otherwise. Recall that E(Ξ(O†)) is used to axiomatize the equality predicate
in Ξ(O†) (see Section 2).

The following lemma shows that the problem of evaluating a BCQ in O can be
reduced to a satisfiability problem about Ξ ′(O†). This lemma is similar to existing
results given in [11,9].

Lemma 1. For a BCQ q() ← p1(−→y1,−→c1) ∧ ... ∧ pn(−→yn,−→cn) in O, O |= q iff Ξ ′(O†) ∪
{¬p1(−→y1,−→c1) ∨ ... ∨ ¬pn(−→yn,−→cn)} is unsatisfiable.

Example 1. In our running example, we consider an ontology O = {Man �≤1
hasFather �∃hasFather.Man � Human, Man(a1), hasFather(a1, a2)}. By applying
the structural transformation, we obtain O† = {Man �≤1 hasFather, Man � ∃
hasFather.Man, Man � Human, Man(a1), hasFather(a1, a2)}. By translating O† to

2 http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/
decompose-long.pdf

http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/decompose-long.pdf
http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/decompose-long.pdf

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 151

first-order clauses, we obtain Ξ(O†) = {cl1, ..., cl6}. Since y1 ≈ y2 occurs positively
in Ξ(O†), we have Ξ ′(O†) = {cl1, ..., cl13} ∪ {t ≈ t | t ∈ HU(Ξ(O†))}.
cl1 : ¬Man(x) ∨ ¬hasFather(x, y1) ∨ ¬hasFather(x, y2) ∨ y1 ≈ y2

cl2 : ¬Man(x) ∨ hasFather(x, f(x)) cl3 : ¬Man(x) ∨ Man(f(x))

cl4 : ¬Man(x) ∨ Human(x) cl5 : Man(a1) cl6 : hasFather(a1, a2)

cl7 : ¬(x ≈ y) ∨ y ≈ x cl8 : ¬(x ≈ y) ∨ ¬(y ≈ z) ∨ x ≈ z cl9 : ¬(x ≈ y) ∨ f(x) ≈ f(y)

cl10 : ¬Man(x) ∨ ¬(x ≈ y) ∨ Man(y) cl11 : ¬hasFather(x, y) ∨ ¬(x ≈ z) ∨ hasFather(z, y)

cl12 : ¬hasFather(x, y) ∨ ¬(y ≈ z) ∨ hasFather(x, z) cl13 : ¬Human(x) ∨ ¬(x ≈ y) ∨ Human(y)

3.3 Approximate Grounding of the First-Order Logic Program

According to Lemma 1, we need to address a satisfiability problem about Ξ ′(O†). This
can be done by considering a propositional program that is transformed from Ξ ′(O†)
and has the same set of minimal models as Ξ ′(O†) has. We extend the well-known
intelligent grounding (IG) technique [4] which computes, in a fixpoint-evaluation man-
ner, a semantically equivalent propositional program containing only derivable ground
atoms from a function-free first-order logic program. By generalizing the idea of the IG
technique, we define a method for grounding a general first-order logic program, called
reduced grounding and defined below.

Definition 1 (Reduced Grounding). For a first-order logic program P , the reduced
grounding of P , denoted by Gr(P), is the union of two sets of ground clauses Π1∪Π2,
where Π1 = {cl ∈ P | cl is a definite ground fact}, and Π2 is the least fixpoint of Π(n)

such that Π(0) = ∅ and for n > 0, Π(n) = {cl σ | cl ∈ P, σ is a ground substitution
such that cl−σ ⊆ atoms(Π(n−1) ∪Π1), cl+σ ⊆ HB(P) and cl+σ∩atoms(Π1) = ∅}.

Lemma 2. Let P be a first-order logic program in which the equality predicate ≈ has
been axiomatized. Then Gr(P) is a subset of G(P) and has the same set of minimal
models as P has.

In the following theorem, we show a method that uses Gr(Ξ ′(O†)) to check if O |= q
for a BCQ Q : q() ← p1(−→y1 ,−→c1) ∧ ... ∧ pn(−→yn,−→cn). By InstBCQ(Π,Q) we denote the
result of instantiating the clause cl : ¬p1(−→y1,−→c1) ∨ ... ∨ ¬pn(−→yn,−→cn) ∨ wQ() based on
a propositional program Π , i.e., InstBCQ(Π,Q) = {cl σ | σ is a ground substitution
such that cl−σ ⊆ atoms(Π)}, where wQ is a predicate symbol corresponding to Q
and not occurring in Π . The introduction of InstBCQ(Gr(Ξ ′(O†)), Q) enables the
checking of O |= q to be performed in a propositional program, while the introduction
of wQ facilitates extracting a target ontology w.r.t. Q.

Theorem 1. For a BCQ Q : q() ← p1(−→y1 ,−→c1) ∧ ... ∧ pn(−→yn,−→cn) in O, O |= q iff
Gr(Ξ ′(O†)) ∪ InstBCQ(Gr(Ξ ′(O†)), Q) ∪ {¬wQ()} is unsatisfiable.

Based on the above theorem, we develop a basic method that could improve the perfor-
mance in evaluating a BCQ Q : q() ← p1(−→y1 ,−→c1) ∧ ... ∧ pn(−→yn,−→cn) inO. This method
first extracts a relevant subset Πrel of Gr(Ξ ′(O†)) ∪ InstBCQ(Gr(Ξ ′(O†)), Q) ∪
{¬wQ()} such that Πrel is unsatisfiable iff Gr(Ξ ′(O†)) ∪ InstBCQ(Gr(Ξ ′(O†)), Q) ∪
{¬wQ()} is unsatisfiable, then identifies a subsetOrel of axioms in O† from Πrel such

152 J. Du et al.

that Πrel is unsatisfiable only ifOrel |= q, and finally checks ifOrel |= q. By Theorem
1, we have O |= q only if Orel |= q. Since Orel ⊆ O† and O |= q iff O† |= q, we also
haveO |= q if Orel |= q.

However, the basic method cannot be realized in general as Gr(Ξ ′(O†)) can be infi-
nite. We therefore consider a mapping function on ground terms occurring in a propo-
sitional program Π such that the range of this function is finite. We call a mapping
function λ : terms(Π) �→ terms(Π), where terms(Π) is the set of ground terms
occurring in Π , an equality-and-functional-term-collapsed mapping function (simply
eft-mapping function) for Π , if for every functional term f1(...fn(a)) (where n > 1)
occurring in Π , λ(f1(...fn(a))) = λ(fn(a)), and for every equational atom s ≈ t
occurring positively in Π , λ(s) = λ(t).

We naturally extend a mapping function λ on ground terms to other first-order ob-
jects, i.e., by λ(α), λ(cl), λ(A) and λ(P) we respectively denote the results obtained
from an atom α, a clause cl, a set A of atoms and a first-order logic program P by
replacing every ground term t occurring in it with λ(t).

It is clear that, when a propositional program Π is infinite but the number of con-
stants, predicate symbols and function symbols occurring in Π is finite, λ(Π) is finite
for any eft-mapping functionλ forΠ . Even whenΠ is finite, λ(Π) can be much smaller
than Π because the subset of ground clauses in Π that form a congruence relation is
collapsed in λ(Π).

By Inst′BCQ(Π,Q, λ) we denote the result of instantiating the clause cl : ¬p1(−→y1,
−→c1)∨...∨¬pn(−→yn,−→cn)∨wQ() based on a propositional programΠ and a mapping func-
tion λ, i.e., Inst′BCQ(Π,Q, λ) = {cl σ | σ is a ground substitution such that λ(cl−)σ ⊆
atoms(Π)}, where wQ is a predicate symbol corresponding to Q and not occurring in
Π . We revise the basic method by replacing Gr(Ξ ′(O†)) with a finite superset Πsup

of λ(Gr(Ξ ′(O†))), where λ is an eft-mapping function for Gr(Ξ ′(O†)). The revised
method first extracts a relevant subsetΠrel ofΠsup∪Inst′BCQ(Πsup, Q, λ)∪{¬wQ()},
then computes the setOrel of axioms ax inO† such that λ(cl σ) ∈ Πrel for some clause
cl ∈ Ξ(ax) and some ground substitution σ, and finally checks if Orel |= q.

Consider the extraction of a relevant subset Πrel mentioned above. Our extraction
method is based on the notion of connected component (see Definition 2 below). Simply
speaking, a connected component of a propositional program Π is a subset of Π such
that any two clauses in it have common ground atoms. This notion has been used to
confine the search space in solving SAT problems because an unsatisfiable propositional
program must have a maximal connected component that is unsatisfiable.

Definition 2 (Connected Component). Let Π be a propositional program. Two
ground clauses cl and cl′ are called connected in Π if there exists a sequence of clauses
cl0 = cl, cl1, . . . , cln = cl′ in Π such that cli−1 and cli have common ground atoms
for any 1 ≤ i ≤ n. A connected component Πc of Π is a subset of Π such that any
two clauses cl and cl′ in Πc are connected in Πc. Πc is called maximal if there is no
connected component Π ′

c of Π such that Πc ⊂ Π ′
c.

The basic idea for extractingΠrel is that whenΠsup∪Inst′BCQ(Πsup,Q, λ)∪{¬wQ()}
is unsatisfiable, the maximal connected component of Πsup ∪ Inst′BCQ(Πsup, Q, λ) ∪
{¬wQ()} where wQ() occurs is also unsatisfiable. To obtain a smaller unsatisfiable

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 153

subset, we extend the basic idea by removing a subset Πur from Πsup first and then
extracting the maximal connected componentΠrel of (Πsup ∪ Inst′BCQ(Πsup, Q, λ)∪
{¬wQ()}) \ Πur where wQ() occurs. The detailed description and the correctness of
the method are shown in the following theorem.

Theorem 2. Let Q : q() ← p1(−→y1,−→c1) ∧ ... ∧ pn(−→yn,−→cn) be a BCQ, λ be an eft-
mapping function for Gr(Ξ ′(O†)), Πsup be a superset of λ(Gr(Ξ ′(O†))) and Π ′ =
Πsup ∪ Inst′BCQ(Πsup, Q, λ) ∪ {¬wQ()}. Let Πur be a subset of Π ′ such that for all
clauses cl ∈ Πur, cl+ contains at least one ground atom not occurring in Π ′ \ Πur

and Πrel be the maximal connected component of Π ′ \ Πur where wQ() occurs. Let
Orel = {ax ∈ O† | there exists a clause cl ∈ Ξ(ax) and a ground substitution σ such
that λ(cl σ) ∈ Πrel}. Then O |= q iff Orel |= q.

Based on the above theorem, we develop an algorithm to compute a superset of
λ(Gr(Ξ ′(O†))) for some eft-mapping function λ. This algorithm, denoted by Approx-
Ground(O†), acceptsO† and returns a triple (Π,Sdf ,S), where Sdf and S are two sets
of sets of ground atoms and Π is a superset of λ(Gr(Ξ ′(O†))) for some eft-mapping
function λ that can be constructed from Sdf and S. Since the algorithm is rather techni-
cal, we only explains the basic idea here and refer the interested reader to our technical
report2 for technical details.

The output Sdf is actually the set of sets of constants such that for any constant a in
any C ∈ Sdf , there exists an equality assertion a ≈ b inO† for some constant b ∈ C. The
output S is actually the set of sets of ground terms whose functional depth is at most
one, such that for any ground term s in any C ∈ S, there exists a ground term t ∈ C
such that the equational atom s ≈ t appears in the execution of the algorithm. Both
Sdf and S are used to merge ground terms that may occur in the same equational atom
occurring positively in Gr(Ξ ′(O†)), making the output Π smaller. We call an element
of Sdf or S a congruence class.

The algorithm does not directly compute an eft-mapping function λ for Gr(Ξ ′(O†)),
because such mapping function can be constructed from Sdf and S. By map(t, Sdf , S)
we denote a function HU(Ξ ′(O†)) �→ HU(Ξ ′(O†)) based on Sdf and S, recursively
defined as follows, where a and b are constants, and s and t ground terms.

◦ map(f1(...fn(a)),Sdf ,S) = map(fn(a),Sdf ,S), where n > 1;
◦ map(f(a),Sdf ,S) = map(f(b), ∅,S), where b = min(C) if a ∈ C for some C ∈ Sdf , or

b = a otherwise;
◦ map(a,Sdf ,S) = map(b, ∅,S), where b = min(C) if a ∈ C for some C ∈ Sdf , or b = a

otherwise;
◦ map(s, ∅,S) = t, where t = min(C) if s ∈ C for some C ∈ S , or t = s otherwise.

We naturally extend the function map to other first-order objects, i.e., by map(α, Sdf ,
S), map(cl, Sdf , S), map(A, Sdf , S) and map(P , Sdf , S) we respectively denote the
results obtained from an atom α, a clause cl, a set A of atoms and a first-order logic
program P by replacing every ground term t occurring in it with map(t,Sdf ,S).

We call a mapping function λ : HU(Ξ ′(O†)) �→ HU′(Ξ(O†)) induced from
the function map w.r.t. Sdf and S if λ(t) = map(t,Sdf ,S) for all ground terms
t ∈ HU(Ξ ′(O†)). The first goal of the algorithm is to ensure the mapping function
λ induced from map w.r.t. Sdf and S to be an eft-mapping function for Gr(Ξ ′(O†)),

154 J. Du et al.

input
O†

merge constants occurring
−−−−−−−−−−−−−−−−−−−→
in equality assertions in O†

get
Sdf

instantiate clauses from Ξ ′(O†)
−−−−−−−−−−−−−−−−−−−−−−−−→

in a fixpoint-evaluation manner
get
S,Π

Fig. 1. The main steps for approximately grounding Ξ ′(O†)

i.e., ensure map(s,Sdf ,S) = map(t,Sdf ,S) for all equational atoms s ≈ t occurring
positively in Gr(Ξ ′(O†)). The second goal of the algorithm is to return a superset of
λ(Gr(Ξ ′(O†))). To achieve the above two goals, the algorithm works in two main steps,
as shown in Figure 1.

In the first step, the algorithm places any two constants a and b that occur in the same
equality assertion in O† into the same congruence class C and adds C to Sdf . After this
step, Sdf will not be changed anymore.

In the second step, the algorithm instantiates clauses from Ξ ′(O†) in a fixpoint-
evaluation manner to generate a superset of λ(Gr(Ξ ′(O†))), whereλ denotes a mapping
function induced from map w.r.t. Sdf and S.

Before giving a fixpoint-like characterization of a superset of λ(Gr(Ξ ′(O†))), we
need to introduce a restriction on O†. We call O† congruence-complete if (1) a ≈ b ∈
O† implies b ≈ a ∈ O†; (2) a ≈ b ∈ O† and b ≈ c ∈ O† imply a ≈ c ∈ O†; (3)
a ≈ b ∈ O† and A(a) ∈ O† imply A(b) ∈ O†; (4) a ≈ b ∈ O† and R(a, c) ∈ O†

imply R(b, c) ∈ O†; and (5) a ≈ b ∈ O† and R(c, a) ∈ O† imply R(c, b) ∈ O†.
Let Π1 denote the set of definite ground facts in Ξ ′(O†). By induction on the level n

of Π(n) given in Definition 1, we can show that, if Π is a subset of λ(G(Ξ ′(O†))) such
that (*) λ(cl σ) ∈ Π for any clause cl ∈ Ξ ′(O†) and any ground substitution σ such
that λ(cl−σ) ⊆ atoms(Π∪λ(Π1)) and every ground atom in λ(cl+σ)∩atoms(λ(Π1))
contains ground terms that are functional or occur in S, then Π ∪ λ(Π1) is a superset
of λ(Gr(Ξ ′(O†))) when O† is congruence-complete. We refer the interested reader to
our technical report2 to see the proof of the above conclusion, a counterexample on why
the restriction on congruence-completeness is needed, as well as a simple method for
makingO† congruence-complete when Θ(O) is not congruence-complete.

We in what follows assume thatO† is congruence-complete. Under this assumption,
we refine the second goal of the algorithm to finding a subset Π of λ(G(Ξ ′(O†))) that
satisfies the above condition (*). To achieve this goal, the second step of the algorithm
adds λ(cl σ) to Π for any clause cl ∈ Ξ ′(O†) and ground substitution σ such that (i)
λ(cl−σ) ⊆ atoms(ΠP∪λ(Π1)) and (ii) every ground atom in λ(cl+σ)∩atoms(λ(Π1))
contains ground terms that are functional or occur in S. Meanwhile, any equational
atom s ≈ t occurring positively in cl σ is handled by placing s and t into the same con-
gruence class C and by adding C to S. In order to achieve the first goal of the algorithm,
f(s) and f(t) for f a function symbol occurring in Ξ(O†) are merged similarly as s
and t, because the clause ¬(s ≈ t) ∨ f(s) ≈ f(t), instantiated from the clause of the
form (4) in Section 2, may belong to Gr(Ξ ′(O†)).

The following lemma shows the correctness and the complexity of the algorithm.

Lemma 3. Let (Π,Sdf ,S) be returned by ApproxGround(O†) and λ be a mapping
function induced from the function map w.r.t. Sdf and S. Then: (1) λ(Gr(Ξ ′(O†))) ⊆ Π

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 155

and λ is an eft-mapping function for Gr(Ξ ′(O†)); (2) ApproxGround(O†) works in
time polynomial in sm and |Π | is polynomial in s, where m is the maximum number in
number restrictions in O and s is the size of O.

Based on the above lemma, we can use the result (Π,Sdf ,S) of ApproxGround(O†)
to compute a subset Orel of O† such that O |= q iff Orel |= q for a BCQ q() ←
conj(−→y ,−→c), by applying the method given in Theorem 2.

Before ending this subsection, we show the result of ApproxGround(O†) for the
ontologyO† given in Example 1 (note that O† is congruence-complete).

Example 2 (Example 1 continued). ApproxGround(O†) returns a triple (Π,Sdf ,S),
where Π = {cl′1, ..., cl′30}, Sdf = ∅ and S = {{a2, f(a1)}}.

cl′1 : Man(a1) cl′2 : hasFather(a1, a2)
cl′3 : ¬Man(a1) ∨ ¬hasFather(a1, a2) ∨ ¬hasFather(a1, a2) ∨ a2 ≈ a2
cl′4 : ¬Man(a2) ∨ ¬hasFather(a2, f(a2)) ∨ ¬hasFather(a2, f(a2)) ∨ f(a2) ≈ f(a2)
cl′5 : ¬Man(f(a2)) ∨ ¬hasFather(f(a2), f(a2)) ∨ ¬hasFather(f(a2), f(a2)) ∨ f(a2) ≈ f(a2)
cl′6 : ¬Man(a1) ∨ hasFather(a1, a2) cl′7 : ¬Man(a2) ∨ hasFather(a2, f(a2))
cl′8 : ¬Man(f(a2)) ∨ hasFather(f(a2), f(a2)) cl′9 : ¬Man(a1) ∨ Man(a2)
cl′10 : ¬Man(a2) ∨ Man(f(a2)) cl′11 : ¬Man(f(a2)) ∨ Man(f(a2))
cl′12 : ¬Man(a1) ∨ Human(a1) cl′13 : ¬Man(a2) ∨ Human(a2) cl′14 : ¬Man(f(a2)) ∨ Human(f(a2))
cl′15 : a1 ≈ a1 cl′16 : a2 ≈ a2 cl′17 : f(a2) ≈ f(a2)
cl′18 : ¬(a2 ≈ a2) ∨ a2 ≈ a2 cl′19 : ¬(a2 ≈ a2) ∨ f(a2) ≈ f(a2)
cl′20 : ¬(f(a2) ≈ f(a2)) ∨ f(a2) ≈ f(a2) cl′21 : ¬(a2 ≈ a2) ∨ ¬(a2 ≈ a2) ∨ a2 ≈ a2

cl′22 : ¬(f(a2) ≈ f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ f(a2) ≈ f(a2)

cl′23 : ¬Man(a2) ∨ ¬(a2 ≈ a2) ∨ Man(a2) cl′24 : ¬Man(f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ Man(f(a2))
cl′25 : ¬hasFather(a1, a2) ∨ ¬(a2 ≈ a2) ∨ hasFather(a1, a2)
cl′26 : ¬hasFather(a2, f(a2)) ∨ ¬(a2 ≈ a2) ∨ hasFather(a2, f(a2))
cl′27 : ¬hasFather(a2, f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ hasFather(a2, f(a2))
cl′28 : ¬hasFather(f(a2), f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ hasFather(f(a2), f(a2))
cl′29 : ¬Human(a2) ∨ ¬(a2 ≈ a2) ∨ Human(a2)
cl′30 : ¬Human(f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ Human(f(a2))

3.4 Computing All Answers with the Help of the Grounding

In this subsection, we present a method for computing all answers of a general CQ by
using Ξ(O†) and the result of ApproxGround(O†).

For a propositional programΠ , two sets Sdf and S of sets of ground terms occurring
in Π , and a CQ Q : q(−→x) ← p1(−→x1,−→y1 ,−→c1) ∧ ... ∧ pn(−→xn,−→yn,−→cn), where −→x is the
union of −→x1, ...,−→xn, by InstCQ(Π,Q,Sdf ,S) we denote the result of instantiating the
clause cl : ¬p1(−→x1,−→y1,−→c1) ∨ ... ∨ ¬pn(−→xn,−→yn,−→cn) ∨ wQ(−→x) based on Π , Sdf and
S, where wQ is a predicate symbol corresponding to Q and not occurring in Π , i.e.,
InstCQ(Π,Q,Sdf ,S) = {cl σ | σ is a ground substitution such that all ground atoms
in map(cl−,Sdf ,S)σ occur in Π and −→x σ is a tuple of constants}. For example, for
Π,Sdf and S given in Example 2 and a CQ Q : q(x) ← Man(x) ∧ hasFather(x, y),
InstCQ(Π,Q,Sdf ,S) = {¬Man(a1)∨¬hasFather(a1, a2)∨wQ(a1)}∪{¬Man(a2)∨
¬hasFather(a2, f(a2)) ∨ wQ(a2)}. With the above denotation, the following lemma
gives a necessary condition that an answer of a CQ in O should satisfy.

Lemma 4. Let (Π,Sdf ,S) be returned by ApproxGround(O†). For a CQ Q :
q(−→x) ← conj(−→x ,−→y ,−→c) in O, a tuple of constants −→t is an answer of Q in O only if
map(wQ(−→t), Sdf , S) occurs in InstCQ(Π,Q,Sdf ,S).

156 J. Du et al.

The following lemma gives a sufficient condition that ensures a tuple−→t of constants to
be an answer of a CQ Q : q(−→x) ← conj(−→x ,−→y ,−→c) in O, where q[−→x �→ −→

t ,−→y �→ −→s]
denotes the body of q with every variable in −→x and −→y respectively substituted by its
corresponding ground terms in −→t and −→s .

Lemma 5. For a CQ Q : q(−→x) ← conj(−→x ,−→y ,−→c) in O, a tuple −→t of constants is an
answer of Q inO if there exists a tuple−→s of ground terms such that every ground atom
occurring in q[−→x �→ −→

t ,−→y �→ −→s] is satisfied by all models of Ξ ′(O†).

Based on the above two lemmas, we can identify a set of candidate answers of a CQ
Q : q(−→x) ← conj(−→x ,−→y ,−→c) in O. Afterwards, we may, for every candidate an-
swer −→t , compute a subset of axioms in O† to check if O |= q[−→x �→ −→

t] by ap-
plying the method given in Theorem 2. However, handling candidate answers one by
one is inefficient because it needs to extract, for each candidate answer −→t , a rele-
vant subset of Π ∪ InstCQ(Π,Q,Sdf ,S) ∪ {map(¬wQ(−→t),Sdf ,S)}; such compu-
tation is quite costly. To improve the efficiency, we extract all relevant subsets from
Π ∪ InstCQ(Π,Q,Sdf ,S) ∪ {map(¬wQ(−→t),Sdf ,S) | −→t is a candidate answer} in
one pass, then from each extracted subset, identify a subset Orel of axioms in O† and
evaluate Q overOrel by applying an OWL DL reasoner.

The algorithm for query answering is given in Figure 2, where the inputA can be the
set of ground atoms occurring in definite ground facts in Ξ(O†). We explain how the
algorithm works. Lines 1–2 respectively compute a set Ans of explicit answers and a
set Cands of candidate answers of Q inO based on Lemma 5 and Lemma 4. Line 3 de-
composesΠ† = Π ∪ InstCQ(Π,Q,Sdf ,S)∪{map(¬wQ(−→t),Sdf ,S) | −→t ∈ Cands}
to a set of disjoint subsets from which target ontologies can be extracted. The subproce-
dure Decompose(Π†) first filters the largest subset Π0 of Π† such that for all clauses
cl ∈ Π0, cl+ has at least one ground atom not occurring in Π† \ Π0, then returns
the set of maximal connected components of Π† \ Π0. Basically, Π0 is the greatest

fixpoint of Π(n)
0 such that Π(0)

0 = Π† and for n > 0, Π(n)
0 = {cl ∈ Π

(n−1)
0 |

cl+ \ atoms(Π† \ Π(n−1)
0) 	= ∅} (see our technical report2 for how to realize the

decomposition process). Lines 4–6 handle every maximal connected component Πrel

of Π† \ Π0: if any ground atom over wQ does not occur in Πrel, Πrel is irrelevant
to Q and thus neglected; otherwise, a subset Orel of O† is extracted from Πrel, and
all answers of Q in Orel are added to Ans (the evaluation of Orel of O† is realized
in TraditionalEvaluate, which applies an OWL DL reasoner). Note that different ex-
tracted ontologies have no common ABox axioms because ABox axioms correspond
to ground atoms in Π† \Π0 and different maximal connected components of Π† \Π0
have no common ground atoms.

Example 3 (Example 2 continued). Given a CQ Q : q(x) ← Man(x)∧hasFather(x, y)
in O given in Example 1, we show how DecompBasedEvaluate(Q,A, Π,Sdf ,S)
works, whereA is the set of ground atoms occurring in definite ground facts in Ξ(O†),
i.e., A = {Man(a1), hasFather(a1, a2)}, and Π,Sdf ,S are given in Example 2.
Line 1 in Figure 2 sets Ans as {a1}. Line 2 sets Cands as {a2}. Line 3 computes
Π† = Π ∪ InstCQ(Π,Q,Sdf ,S) ∪ {map(¬wQ(−→t),Sdf ,S) | −→t ∈ Cands} = {cl′1,
. . . , cl′33} and calls Decompose(Π†), where cl′1, . . . , cl′30 are given in Example 2, cl′31 is

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 157

Algorithm 1. DecompBasedEvaluate(Q,A, Π,Sdf ,S)

In: A CQ Q : q(−→x) ← p1(−→x1,−→y1,−→c1) ∧ ... ∧ pn(−→xn,−→yn,−→cn), a set A of ground atoms satisfied by all models of
Ξ′(O†) and the results Π,Sdf ,S returned by ApproxGround(O†).

Out: The set of answers of Q in O.
1. Ans := {−→x σ | σ is a ground substitution such that {p1(−→x1,−→y1,−→c1), . . . , pn(−→xn,−→yn,−→cn)}σ ⊆ A} and −→x σ

is a tuple of constants};
2. Cands := {−→x σ | σ is a ground substitution such that map(wQ(−→x σ),Sdf , S) occurs in InstCQ(Π, Q, Sdf ,

S) and −→x σ is a tuple of constants} \ Ans;
3. RSets := Decompose(Π ∪ InstCQ(Π, Q,Sdf ,S) ∪ {map(¬wQ(−→t),Sdf ,S) | −→t ∈ Cands});
4. for each Πrel ∈ RSets such that some ground atoms over wQ occur in Πrel do

5. Orel := {ax ∈ O† | there exists a clause cl ∈ Ξ(ax) and a ground substitution σ such that
map(cl σ,Sdf ,S) ∈ Πrel};

6. Ans := Ans ∪ TraditionalEvaluate(Q,Orel);
7. return Ans;

Fig. 2. A decomposition-based algorithm for evaluating a CQ

¬Man(a1)∨¬hasFather(a1, a2)∨wQ(a1), cl′32 is¬Man(a2)∨¬hasFather(a2, f(a2))∨
wQ(a2) and cl′33 is ¬wQ(a2). It can be checked that the filtered set Π0 of Π† is {cl′12,
cl′13, cl′14, cl′29, cl′30, cl′31} and the remaining set has a single maximal connected compo-
nent. Hence Decompose(Π†) returns {{Πrel}}, whereΠrel = Π†\Π0. Since wQ(a2)
occurs in Πrel, line 5 in Figure 2 is executed, yielding Orel = {Man �≤1 hasFather,
Man � ∃hasFather.Man, Man(a1), hasFather(a1, a2)}. Note that Orel is a subset of
O+ from which the axiom Man � Human is removed. By applying an OWL DL rea-
soner, we can check that a2 is the unique answer of Q in Orel, so Ans is updated to
{a1, a2} in line 6 and finally returned by DecompBasedEvaluate(Q, A, Π , Sdf , S).

In the remainder of this section, we assume that the OWL DL reasoner applied in
our approach is sound and complete for the category of given CQs, i.e., the subpro-
cedure TraditionalEvaluate is correct. The following theorem shows the correctness
of DecompBasedEvaluate.

Theorem 3. Let Q : q(−→x) ← conj(−→x ,−→y ,−→c) be a CQ, A be a set of ground atoms
satisfied by all models of Ξ ′(O†), (Π,Sdf ,S) be returned by ApproxGround(O†).
Then DecompBasedEvaluate(Q,A, Π,Sdf ,S) returns the set of answers of Q in O.

3.5 Optimization by Computing More ABox Entailments

Based on Figure 2 (line 1), we can see that if we obtain more definite ground facts of
Ξ(O†), we can compute more explicit answers of a given CQ; thus, we can further im-
prove the performance of our approach. We therefore present an important optimization
that computes more entailments of O† before calling ApproxGrounding(O†).

Basically, the optimization computes a set A of ground atoms from the set of
definite clauses in Ξ(Θ(O)) such that the functional depth of every ground term
occurring in A is at most one. Recall that Θ(O) is the result of applying struc-
tural transformation to O. We call such subset A the bounded entailment set of
Θ(O), which is defined as the least fixpoint of A(n) such that A(0) = ∅ and for
n > 0, A(n) =

⋃
{cl+σ | cl ∈ DS(Ξ ′(Θ(O))), σ is a ground substitution such that

158 J. Du et al.

cl−σ ⊆ A(n−1), cl+σ ⊆ HB(Ξ(Θ(O))) and depth(cl σ) ≤ 1}, where depth(cl)
denotes the maximum functional depth of all ground terms occurring in a ground clause
cl, and DS(Ξ ′(Θ(O))) denotes the set of all definite clauses in Ξ ′(Θ(O)).

Let A be the bounded entailment set of Θ(O). Since A is a set of ground atoms in
the least model of DS(Ξ ′(Θ(O)) and the least model of DS(Ξ ′(Θ(O))) is a subset
of every model of Ξ ′(Θ(O)), every ground atom in A is satisfied by all models of
Ξ ′(Θ(O)). Let AC be the subset of A that contains only constants. When Θ(O) ∪AC

has equality assertions, some equational atoms must occur positively in Ξ(Θ(O)), so
E(Ξ(Θ(O))) ⊆ DS(Ξ ′(Θ(O)). It follows that Θ(O) ∪ AC is congruence-complete.
In the remainder of this section, we assume thatO† = Θ(O)∪AC . Since every ground
atom in AC is satisfied by all models of Θ(O), Lemma 1 and whatever follows from
Lemma 1 still hold when O† = Θ(O) ∪AC .

To evaluate a CQ Q in O, we now call DecompBasedEvaluate(Q, A, Π ,
Sdf , S), where A is the bounded entailment set of Θ(O) and (Π,Sdf ,S) are returned
by ApproxGround(O†). Theorem 4 shows that the optimization also guarantees sound
and complete results. Example 4 illustrates that the optimization does take effect in our
running example.

Theorem 4. Let Q : q(−→x) ← conj(−→x ,−→y ,−→c) be a CQ, A be the bounded entailment
set of Θ(O), (Π,Sdf ,S) be returned by ApproxGround(O†) and Ans be returned by
DecompBasedEvaluate(Q,A, Π,Sdf ,S). Then Ans is the set of answers of Q in O.

Example 4 (Example 3 continued). For the ontology O given in Example 1, since
Ξ ′(Θ(O)) = {cl1, ..., cl13} ∪ {t ≈ t | t ∈ HU(Ξ(O†))}, where cl1, ..., cl13 are
given in Example 1, we have DS(Ξ ′(Θ(O))) = Ξ ′(Θ(O)). We can compute the
bounded entailment setA of Θ(O) as {Man(a1), Man(f(a1)), Man(a2), Man(f(a2)),
Human(a1), Human(f(a1)), Human(a2), Human(f(a2)), hasFather(a1, a2),
hasFather(a1, f(a1)), hasFather(a2, f(a2)), hasFather(f(a1), f(a2)), a2 ≈ f(a1),
f(a1) ≈ a2, a1 ≈ a1, f(a1) ≈ f(a1), a2 ≈ a2, f(a2) ≈ f(a2)}. By append-
ing to Θ(O) the set AC of ground atoms in A that contains only constants, we
obtain O† = {Man �≤1 hasFather, Man � ∃hasFather.Man, Man � Human,
Man(a1), Man(a2), Human(a1), Human(a2), hasFather(a1, a2), a1 ≈ a1, a2 ≈ a2}.
ApproxGround(O†) returns (Π,Sdf ,S), where Π = {cl′1, . . . , cl′11, cl′13, . . . , cl′30}
(see cl′1, ..., cl

′
30 in Example 2), Sdf = ∅ and S = {{a2, f(a1)}}. Consider again

the CQ Q : q(x) ← Man(x) ∧ hasFather(x, y) given in Example 3. By calling
DecompBasedEvaluate(Q, A, Π , Sdf , S), we get Ans = {a1, a2} in line 1 and
Cands = ∅ in line 2, thus we obtain the set of answers of Q inO without calling OWL
DL reasoners.

To summarize, our decomposition-based approach to conjunctive query answering
works as follows. In the offline phase, we compute the bounded entailment set A
of Θ(O) and set O† as Θ(O) ∪ {ax ∈ A | ax contains only constants}, then
call ApproxGround(O†), obtaining (Π,Sdf ,S). In the online phase, for every com-
ing CQ Q, we call DecompBasedEvaluate(Q, A, Π , Sdf , S), obtaining all answers
of Q.

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 159

4 Experimental Evaluation

We implemented the proposed approach in GNU C++, using MySQL as the back-end
SQL engine. The implemented system3 is called DecomBaR (abbr. for Decomposition-
Based Reasoner). It maintains ABox axioms and ground atoms in the approximate
grounding in databases, maintains ground clauses in the approximate grounding in disk
files, and calls Pellet [14] (version 2.0.0-rc6)4 to evaluate CQs over extracted ontolo-
gies. All our experiments were conducted on a machine with 2GHz Intel Pentium Dual
CPU and 2GB RAM, running Windows XP, where the maximum Java heap size was
set to (max) 1312MB.

4.1 Experimental Setup

We conducted experiments on Lehigh University Benchmark (LUBM) [8] and Uni-
versity Ontology Benchmark (UOBM) [10] (including UOBM-Lite and UOBM-DL)
ontologies. We used the above benchmark ontologies because they all come with bench-
mark CQs, which can provide a reasonable assessment on the effectiveness of our pro-
posed approach. By LUBMn, UOBM-Liten and UOBM-DLn we respectively denote
the instances of LUBM, UOBM-Lite and UOBM-DL that contain axioms about n uni-
versities. We specifically tested on LUBM1, LUBM10, UOBM-Lite1, UOBM-Lite10,
UOBM-DL1 and UOBM-DL10, where the former two were generated by the LUBM
data generator5, and the latter four were all downloaded from the UOBM Website6.

Before testing our approach we stored ABoxes to MySQL databases. Table 1 lists
the characteristics of the six test ontologies.

Table 1. The characteristics of test ontologies and the execution time in the offline phase

O |NC | |NR| |NI | |T | |A| |T †| |A†| Offline(sec)

LUBM1 59 16 50,253 94 100,543 105 100,543 17
LUBM10 59 16 629,568 94 1,272,575 105 1,272,575 219

UOBM-Lite1 51 43 95,010 130 245,864 151 245,864 101
UOBM-Lite10 51 43 820,208 130 2,096,973 151 2,096,973 1193
UOBM-DL1 112 44 96,081 151 260,540 210 260,587 242
UOBM-DL10 112 44 825,455 151 2,217,302 210 2,217,349 7103

Note: O = (T ,A) is a test ontology and Θ(O) = (T †,A†). NC , NR and NI are respectively
the sets of concept names, role names and individuals in O.

4.2 Experimental Results

We compared DecomBaR with the original Pellet reasoner (simply Pellet) and the
KAON2 reasoner (simply KAON2) on evaluating benchmark CQs given in [8,10]. We

3 http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/
4 http://clarkparsia.com/pellet/
5 http://swat.cse.lehigh.edu/projects/lubm/index.htm
6 http://www.alphaworks.ibm.com/tech/semanticstk/

http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/
http://clarkparsia.com/pellet/
http://swat.cse.lehigh.edu/projects/lubm/index.htm
http://www.alphaworks.ibm.com/tech/semanticstk/

160 J. Du et al.

Benchmark Queries for LUBM1 Benchmark Queries for LUBM10

KAON2PelletDecomBaR

#ont
CQ

E E

E E

0
Q14

0
Q13

0
Q12

0
Q11

0
Q10

0
Q9

0
Q8

0
Q7

0
Q6

0
Q5

0
Q4

0
Q3

0
Q2

0
Q1

0
Q14

0
Q13

0
Q12

0
Q11

0
Q10

0
Q9

0
Q8

0
Q7

0
Q6

0
Q5

0
Q4

0
Q3

0
Q2

0
Q1

10

1

0.1

0.01

Benchmark Queries for UOBM-Lite1 Benchmark Queries for UOBM-Lite10
|A|m
|T |m
#ont
CQ

M

T T
M M M M M M M M M M

M M M M M M M M M

—
—
0

Q13

—
—
0

Q12

—
—
0

Q11

—
—
0

Q10

40905
4
1

Q9

—
—
0

Q8

—
—
0

Q7

—
—
0

Q6

—
—
0

Q5

—
—
0

Q4

—
—
0

Q3

—
—
0

Q2

—
—
0

Q1

—
—
0

Q13

—
—
0

Q12

—
—
0

Q11

—
—
0

Q10

34746
4
1

Q9

—
—
0

Q8

—
—
0

Q7

—
—
0

Q6

—
—
0

Q5

—
—
0

Q4

—
—
0

Q3

—
—
0

Q2

—
—
0

Q1

1000

100

10

1

0.1

0.01

Benchmark Queries for UOBM-DL1 Benchmark Queries for UOBM-DL10
|A|m
|T |m
#ont
CQ

T T

M

T T T
M

M M M
M M M M M M M M

420K
19
36

Q15

572K
45
1

Q14

—
—
0

Q13

—
—
0

Q12

467K
19
1

Q11

—
—
0

Q10

40K
4
1

Q9

420K
19
1

Q8

—
—
0

Q7

—
—
0

Q6

—
—
0

Q5

—
—
0

Q4

—
—
0

Q3

—
—
0

Q2

—
—
0

Q1

50K
19
29

Q15

81K
45
1

Q14

—
—
0

Q13

—
—
0

Q12

55K
19
1

Q11

—
—
0

Q10

35K
4
1

Q9

50K
19
1

Q8

—
—
0

Q7

—
—
0

Q6

—
—
0

Q5

—
—
0

Q4

—
—
0

Q3

—
—
0

Q2

—
—
0

Q1

1000

100

10

1

0.1

0.01

Fig. 3. The execution time (in seconds) for evaluating all benchmark CQs

implemented an interface to allow Pellet or KAON2 to read ABoxes from databases.
We did not test KAON2 on UOBM-DLn ontologies nor CQs with non-distinguished
variables as they are not supported by KAON2.

The execution time (in seconds) in the offline phase of DecomBaR is shown in the
last column of Table 1. The results for evaluating every benchmark CQ are shown in
Figure 3. The execution time about DecomBaR is the total evaluation time in the online
phase, including the time for decomposing the propositional program compiled in the
offline phase and the time for loading extracted ontologies to the called reasoner, wait-
ing the called reasoner to return and handling the returned results. The execution time
about Pellet or KAON2 is the time for query answering only, excluding the time for
ontology loading and consistency checking (as we assume that the ontology is loaded
and checked consistency offline) and the time for writing results.

Below the horizontal axis in Figure 3, “#ont” denotes the number of extracted ontolo-
gies over which Pellet is called to evaluate a test query, and “|T |max” (resp. “|A|max”)
denotes the maximum number of axioms in the TBox (resp. the ABox) of every ex-
tracted ontology. The name of a CQ is framed iff the CQ has non-distinguished vari-
ables. Above a bar, “M” means running out of memory after the displayed time, “T”
means exceeding the time limit of 1000s, and “E” means that the set of computed an-
swers is incorrect; we call any of these cases an unsuccessful evaluation. For every
benchmark CQ that both DecomBaR and Pellet (resp. KAON2) successfully evaluate,
the answers computed by DecomBaR and Pellet (resp. KAON2) coincide.

A Decomposition-Based Approach to Optimizing Conjunctive Query Answering 161

Comparing DecomBaR with Pellet, DecomBaR is more efficient than Pellet except
for Q8 and Q15 on UOBM-DL1.7 Such exception is due to that sometimes decompo-
sition and interaction with the called reasoner introduce a significant overhead in the
execution of DecomBaR. However, when DecomBaR does not generate any candidate
answer (i.e. when #ont = 0), DecomBaR works very fast because it only needs to ex-
tract explicit and candidate answers by accessing the database through a SQL query.
For example, DecomBaR spends about 0.1s for evaluating Q8 on both UOBM-Lite1
and UOBM-Lite10, while for evaluating the same CQ Pellet spends about 180s on
UOBM-Lite1 and runs out of memory on UOBM-Lite10. Moreover, DecomBaR is
more scalable than Pellet against increasing size of ABoxes. This is because access-
ing databases through SQL queries is relatively scalable (in case #ont = 0) and ex-
tracted ontologies could have similar sizes for different size of ABoxes (in case #ont
> 0). For example, the UOBM-Lite benchmark query Q9 has an individual in the query
body, which forces InstCQ (defined in Subsection 3.4) to return similar ground clauses
and then forces the extracted ontologies to have similar sizes for UOBM-Lite1 and
UOBM-Lite10.

Comparing DecomBaR with KAON2, DecomBaR is generally more efficient (esp.
for UOBM-Liten ontologies, by orders of magnitude more efficient) than KAON2.
Moreover, the scalability of DecomBaR is comparable with that of KAON2 on
LUBMn ontologies, and is much better than that of KAON2 on UOBM-Liten on-
tologies. This shows that DecomBaR is much more scalable than KAON2 against
increasing complexity of TBoxes. It should also be mentioned that DecomBaR sup-
ports more expressive CQs than KAON2 does. In particular, KAON2 may not cor-
rectly evaluate CQs involving datatypes (e.g. the LUBM benchmark queries Q4
and Q8); this is a limitation of the resolution-based query mechanism [11] exploited
in KAON2.

5 Conclusion and Future Work

In this paper, we have proposed a decomposition-based approach to optimize conjunc-
tive query answering in OWL DL ontologies. The basic idea of the approach is to eval-
uate a CQ with the help of a precompiled propositional program: it computes explicit
answers first and then computes other answers over separate ontologies that are ex-
tracted from the precompiled propositional program. Experimental results demonstrate
the advantages of the proposed approach.

The proposed approach still has some limitations. First, it only works well on ontolo-
gies that rarely change as the offline phase is somewhat costly. We plan to upgrade the
compilation method to an incremental one to copy with ontology changes. Second, the
approach fails when some extracted ontologies are still too large to be handled by the
called reasoner. This is the reason why our implemented system DecomBaR does not
successfully evaluate six benchmark CQs in our experiments (see Figure 3). We will
tackle this limitation by exploiting the idea of summarization [2,3].

7 Here we do not compare DecomBaR and Pellet for those CQs that both DecomBaR and Pellet
do not successfully evaluate.

162 J. Du et al.

Acknowledgments. Thanks all anonymous reviewers for their useful comments. Jian-
feng Du is supported in part by NSFC grants 60673103 and 70801020. Yi-Dong Shen
is supported in part by NSFC grants 60673103, 60721061, and by the 863 Program.

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL − Lite: Tractable
description logics for ontologies. In: Proc. of AAAI 2005, pp. 602–607 (2005)

2. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.:
Scalable semantic retrieval through summarization and refinement. In: Proc. of AAAI 2007,
pp. 299–304 (2007)

3. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scal-
able grounded conjunctive query evaluation over large and expressive knowledge bases. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 403–418. Springer, Heidelberg (2008)

4. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In: Proc. of LPNMR 1997, pp. 364–375 (1997)

5. Fitting, M.: First-order Logic and Automated Theorem Proving, 2nd edn. Springer,
New York (1996)

6. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies. In:
Proc. of KR 2006, pp. 198–209 (2006)

7. Guo, Y., Heflin, J.: A scalable approach for partitioning OWL knowledge bases. In: Proc. of
SSWS 2006, pp. 47–60 (2006)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Jour-
nal of Web Semantics 3(2–3), 158–182 (2005)

9. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. Journal of
Automated Reasoning 40(2-3), 89–116 (2008)

10. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139.
Springer, Heidelberg (2006)

11. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Univesität karlsruhe, Germany (January 2006)

12. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal of Web
Semantics 3(1), 41–60 (2005)

13. Pan, J.Z., Thomas, E.: Approximating OWL-DL ontologies. In: Proc. of AAAI 2007,
pp. 1434–1439 (2007)

14. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

15. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hierarchies. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 289–303. Springer, Heidelberg (2004)

Goal-Directed Module Extraction for Explaining OWL
DL Entailments

Jianfeng Du1,2, Guilin Qi3,4, and Qiu Ji3

1 Institute of Business Intelligence and Knowledge Discovery,
Guangdong University of Foreign Studies, Guangzhou 510006, China
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China
jfdu@ios.ac.cn

3 AIFB, Universität Karlsruhe, D-76128 Karlsruhe, Germany
{gqi,qiji}@aifb.uni-karlsruhe.de

4 School of Computer Science and Engineering, Southeast University, Nanjing, China

Abstract. Module extraction methods have proved to be effective in improving
the performance of some ontology reasoning tasks, including finding justifica-
tions to explain why an entailment holds in an OWL DL ontology. However,
the existing module extraction methods that compute a syntactic locality-based
module for the sub-concept in a subsumption entailment, though ensuring the
resulting module to preserve all justifications of the entailment, may be insuffi-
cient in improving the performance of finding all justifications. This is because
a syntactic locality-based module is independent of the super-concept in a sub-
sumption entailment and always contains all concept/role assertions. In order to
extract smaller modules to further optimize finding all justifications in an OWL
DL ontology, we propose a goal-directed method for extracting a module that
preserves all justifications of a given entailment. Experimental results on large
ontologies show that a module extracted by our method is smaller than the cor-
responding syntactic locality-based module, making the subsequent computation
of all justifications more scalable and more efficient.

1 Introduction

As the Semantic Web (SW) is evolving, ontologies become more and more important
because they provide formal representation of knowledge shared within the SW. To
enable users to understand the knowledge in a consistent way, ontologies need to be
logically constructed and have well-defined semantics. To this end, the W3C organiza-
tion proposed the Web Ontology Language (OWL)1 for representing ontologies, which
is based on Description Logics (DLs) [1]. With well-defined semantics from DLs, some
important ontology reasoning tasks emerged, including classical reasoning tasks like
subsumption checking and instance retrieval [1], and non-standard reasoning tasks like
finding justifications to explain why an entailment holds in a given ontology [12,17],
where a justification of an entailment is a minimal subset of axioms in the given ontol-
ogy that are responsible for the entailment.

1 http://www.w3.org/TR/owl-semantics/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 163–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.w3.org/TR/owl-semantics/

164 J. Du, G. Qi, and Q. Ji

Reasoning tasks in OWL ontologies are in general computationally hard, thus rely
on optimization techniques. To improve the performance of ontology reasoning, mod-
ule extraction methods are often employed and their effectiveness has been adequately
verified. A module extraction method reduces a given ontology to a specific module
depending on specific tasks. These tasks include ontology reuse [16,4], subsumption
checking [21], incremental classification [7] and finding of justifications [2,22].

In this paper, we focus on the problem of extracting small modules to improve the
performance of an important reasoning task, namely finding all justifications of a given
entailment. The idea of using modules to optimize finding justifications is not new.
It has been shown in [2] and [22] that the syntactic locality-based module introduced
in [8] can be used to improve the performance of finding all justifications. As proved
in [22], a syntactic locality-based module is a module that preserves all subsumption
entailments A � B w.r.t. a concept name A and is independent of the super-conceptB.
It follows that the extraction of a syntactic locality-based module is not goal-directed;
it may yield an unexpectedly large module as illustrated below.

Example 1. Let O be an ontology consisting of the following axioms.
ax1 : ChiefActress � Person ax2 : ChiefActress � Actress ax3 : Actress � Woman

ax4 : Person � Man Woman ax5 : ChiefActress � ¬Man

Consider the above example. There are two justifications {ax1, ax4, ax5} and {ax2,
ax3} of the subsumption entailment ChiefActress � Woman in O. The syntactic
locality-based module w.r.t. ChiefActress in O is exactly O. This module cannot be
used to optimize finding all justifications of a subsumption entailment of the form
ChiefActress � B no matter what the concept nameB is. On the other hand, a syntactic
locality-based module must contain all concept/role assertions because these assertions
can never be local [8]. This means that extracting a syntactic locality-based module can
hardly optimize finding justifications of a membership entailment A(a) or R(a, b), as
all concept/role assertions in the given ontology must be involved.

In order to extract modules smaller than the syntactic locality-based ones to further
optimize finding justifications, we propose a goal-directed method for module extrac-
tion in SHOIQ ontologies (see Section 4). The DL SHOIQ corresponds to OWL DL
allowing qualifying number restrictions. Since the problem of finding justifications of
a subsumption entailment can be reduced to the problem of finding justifications of a
membership entailment by introducing new concept assertions, our method focuses on
finding a module that preserves all justifications of a given membership entailment. The
basic idea is to start from a given membership entailment and backward traverse a set of
axioms that might be responsible for the given entailment. To ensure the traversed set
to be an intended module, our method compiles a propositional program from the given
ontology in which each clause may have a flag corresponding to an axiom in the given
ontology, such that the traversal of clauses corresponds to the traversal of axioms, i.e.,
the set of flags appearing in the traversed clauses corresponds to an intended module.

We implement the proposed method and test on large ontologies (see Section 5).
Experimental results show that our method can extract modules that are much smaller
than syntactic locality-based modules. They also show that, with our proposed module
extraction method, it is possible to efficiently find all justifications of a membership
entailment in a large ontology with millions of ABox axioms.

Goal-Directed Module Extraction for Explaining OWL DL Entailments 165

2 Related Work

Module extraction methods form an important category in ontology modularization.
Some methods rely on syntactically traversing axioms in the ontology and exploiting
different heuristics to determine which axioms belong to the extracted module, such as
those given in [16], [18] and [4]. Other methods formally specify the intended outputs
by considering the semantics of the ontology language, such as the method proposed by
Cuenca Grau et al. [8], which computes a so-called locality-based module that preserves
all subsumption entailments A � B for a given concept name A. There are two kinds
of locality-based modules, namely semantic ones and syntactic ones, both contain all
concept/role assertions [8]. The method proposed by Suntisrivaraporn [21] computes
so-called reachability-based modules in EL+ ontologies, which coincide with syntactic
locality-based modules. The above methods do not concern extracting a suitable module
to optimize finding all justifications.

Another important category in ontology modularization is formed by ontology par-
titioning methods, each of which divides a given ontology into a set of modules. For
example, Stuckenschmidt and Klein [20] propose a method to partition all concepts in
an ontology to facilitate visualization of the ontology; Cuenca Grau et al. [9] propose a
method for dividing an ontology into a set of modules such that all inferences about the
signature contained in a module can be made locally. These methods are less relevant
to ours because they yield a set of modules other than a single one.

3 Preliminaries

SHOIQ Syntax and Semantics. A SHOIQ ontologyO consists of a terminolog-
ical box (TBox) OT and an assertional box (ABox) OA. The TBox OT consists of a
finite set of concept inclusion axioms C � D, transitivity axioms Trans(R) and role
inclusion axioms R � S, where C and D are SHOIQ concepts, and R and S roles.
A role is either a role name or an inverse role R− for some role name R; it is called
simple if it has not any transitive subrole. The set of SHOIQ concepts is the smallest
set such that each concept name A (also called atomic concept) is a SHOIQ concept
and, for C and D SHOIQ concepts, R a role, S a simple role, a an individual, and n a
nonnegative integer,�,⊥, {a}, ¬C, C�D, C�D, ∃R.C, ∀R.C,≤n S.C and≥n S.C
are also SHOIQ concepts. The ABoxOA consists of a finite set of concept assertions
C(a), role assertions R(a, b) or ¬R(a, b), equality assertions a ≈ b and inequality as-
sertions a 	≈ b, where C is a SHOIQ concept, R a role, and a and b individuals. In
this paper, both OT and OA are treated as sets of axioms, so is O = OT ∪ OA.

As a fragment of first-order logic, SHOIQ inherits its semantics from first-order
logic by the standard translations known e.g. from [14]. Let π denote the operator for
mapping a SHOIQ ontology (resp. axiom) to a first-order logic program (resp. clause)
as given in [14]. Then O is called consistent or satisfiable if π(O) has a model. An
atomic concept A is called satisfiable in O if there exists a model M of π(O) such
that A(a) ∈ M for some constant a. O is called coherent if all atomic concepts in O
are satisfiable. WhenO has atomic concepts,O being coherent impliesO being consis-
tent. An axiom ax is called an entailment ofO, denoted byO |= ax, if π(ax) is satisfied

166 J. Du, G. Qi, and Q. Ji

by all models of π(O). An entailment of O is called a subsumption entailment (resp. a
membership entailment) if it is of the form C � D (resp. C(a) or R(a, b)).

First-Order Logic. We use the standard clausal form to represent a first-order logic
program. Terms are variables, constants or functional terms of the form f(t1, . . . , tn),
where f is a function symbol of arity n and t1, ..., tn are terms. Throughout this paper,
we use (possibly with subscripts) x, y, z for variables, a, b, c for constants, and s, t for
terms. We only consider unary function symbols because only unary function symbols
occur in first-order logic programs that are translated from SHOIQ ontologies.

Atoms are of the form T (t1, . . . , tn) where T is a predicate symbol of arity n and
t1, . . . , tn are terms. A literal is a positive or negative atom and a clause is a disjunction
of literals. Terms, atoms and clauses that do not contain variables are called ground.

A first-order logic program is a set of clauses in which all variables are universally
quantified. For a clause cl = ¬A1 ∨ . . . ∨ ¬An ∨ B1 ∨ . . . ∨ Bm, the set of atoms
{A1, . . . , An} is denoted by cl−, whereas the set of atoms {B1, . . . , Bm} is denoted by
cl+. By |S| we denote the cardinality of a set S. A clause cl is called a fact if |cl−| = 0.

A propositional program Π is a first-order logic program consisting of only ground
clauses. The set of ground atoms occurring in Π is denoted by atoms(Π).

For a first-order logic program P , the set of ground terms (resp. ground atoms) de-
fined from the first-order signature ofP is called the Herbrand universe (resp. Herbrand
base) of P , denoted by HU(P) (resp. HB(P)). The set of ground clauses obtained by
replacing all variables occurring in each clause in P with ground terms from HU(P) is
called the primary grounding of P , denoted by G(P). An interpretation M of P is a set
of ground atoms in HB(P); it is a model of P if for any ground clause cl ∈ G(P) such
that cl− ⊆ M , cl+ ∩M 	= ∅; it is a minimal model of P if there is no model M ′ of P
such that M ′ ⊂M . P is said to be satisfiable if P has a model.

The first-order logic program P translated from a SHOIQ ontology may contain
the equality predicate ≈, which is interpreted as a congruence relation and different
from ordinary predicates. This difference is not captured by the above first-order seman-
tics. However, the equality predicate≈ can be explicitly axiomatized via a well-known
transformation from [6]. Let E(P) denote the first-order logic program consisting of the
following clauses: (1) t ≈ t, for each ground term t ∈ HU(P); (2) ¬(x ≈ y) ∨ y ≈ x;
(3) ¬(x ≈ y)∨¬(y ≈ z)∨x ≈ z; (4) ¬(x ≈ y)∨f(x) ≈ f(y), for each function sym-
bol f occurring in P ; (5)¬T (x1, . . . , xi, . . . , xn)∨¬(xi ≈ yi)∨T (x1, . . . , yi, . . . , xn),
for each predicate symbol T other than ≈ occurring in P and each position i. Append-
ing E(P) to P allows to treat ≈ as an ordinary predicate, i.e., M is a model of P that
interprets≈ as a congruence relation, iff for any ground clause cl ∈ G(P ∪ E(P)) such
that cl− ⊆M , cl+ ∩M 	= ∅.

4 Goal-Directed Module Extraction

We in this paper address the following problem: Given a coherentSHOIQ ontologyO
which contains atomic concepts (thus O is consistent too) and an entailment ax of the
form A � B, A(a) or R(a, b) in O, where A and B are concept names, R a role name,
and a and b individuals, extract a just-preserving module of O for ax, which preserves
all justifications of ax.

Goal-Directed Module Extraction for Explaining OWL DL Entailments 167

transform
P

a first-order logic program
Π

a given entailment
ax

Πrel

indentify
Orel

compile

How to compute?a given ontology

offline phase online phase
O

extract

a just-preserving module

an approximate grounding

a relevant subset of Π

Fig. 1. Illustration of our proposed method

Definition 1 (Justification). For O an ontology and ax an axiom such that O |= ax,
a subset J of axioms in O is called a justification of ax in O if J |= ax and for all
proper subsets J ′ of J , J ′ 	|= ax.

Definition 2 (Just-Preserving Module). ForO an ontology and ax an axiom such that
O |= ax, a subset M of axioms in O is called a just-preserving module of O for ax if
J ⊆M for all justifications J of ax in O.

We present a goal-directed method for extracting just-preserving modules, depicted in
Figure 1. The method consists of two phases. In the first phase, the method first compiles
a given SHOIQ ontology O to a first-order logic program P (see Subsection 4.1),
then transforms P to a propositional programΠ . Both P and Π are independent of any
given entailment, thus this phase can be performed offline. To show the correctness of
the method in a clearer way, we present two algorithms for transformingP to Π , though
only one of them is used in the method. One algorithm transforms P to a propositional
program which has the same set of minimal models as P has (see Subsection 4.2).
The other algorithm transforms P to a finite variant of the above propositional program
(see Subsection 4.4); it is actually used in the proposed method. In the second phase,
for every given entailment ax, the method extracts a relevant subset Πrel from Π in
a goal-directed manner and then identifies a just-preserving module for ax from Πrel

(see Subsection 4.3). Due to the space limitation, we do not provide proofs of lemmas
and theorems in this paper, but refer the interested reader to our technical report2.

4.1 Compiling a Diagnosing Program

Let O† denote O ∪ {A(aA) | A is an atomic concept in O and aA is a new globally
unique individual corresponding to A}. Recall that O is assumed coherent and having
concept names in our addressing problem, soO† is consistent. Since the new individuals
introduced in O† is unique, we have O |= A � B iff O† |= B(aA). Hence, J is
a justification of A � B in O iff J ∪ {A(aA)} is a justification of B(aA) in O†. It
follows thatM is a just-preserving module ofO for A � B iffM∪{A(aA)} is a just-
preserving module of O† for B(aA). That is, our addressing problem can be reduced
to a problem of extracting a just-preserving module for a membership entailment. We
therefore, in what follows, focus on membership entailments.

2 http://www.aifb.uni-karlsruhe.de/WBS/gqi/jp-module/
module-long.pdf

http://www.aifb.uni-karlsruhe.de/WBS/gqi/jp-module/module-long.pdf
http://www.aifb.uni-karlsruhe.de/WBS/gqi/jp-module/module-long.pdf

168 J. Du, G. Qi, and Q. Ji

Note that, for an concept/role assertion ax,O† |= ax iffO† ∪{¬ax} is inconsistent,
so J is a justification of ax in O† iff J ∪ {¬ax} is a minimally inconsistent subset of
axioms inO†∪{¬ax} (simply called a MIS ofO†∪{¬ax}). It follows thatM is a just-
preserving module ofO† for ax iff S ⊆M∪{¬ax} for all MISs S ofO†∪{¬ax}. To
extract a just-preserving module ofO† for ax, we characterize all MISs ofO†∪{¬ax}
by a first-order logic program, called the diagnosing program ofO†, denoted byD(O†),
in which every clause may have a positive literal �ax that corresponds to an axiom
ax ∈ O†. The atom �ax is called the decision atom of ax. It is nullary and works as
a flag to associate the clauses containing it with the axiom ax. We detail below the
method for computing the diagnosing program ofO†.

We first translate O† to a first-order logic program. Since a direct translation from
SHOIQ to first-order clauses may incur exponential blowup [13], we apply the well-
known structural transformation [11,13] to an axiom before translating it to first-order
clauses. ByΘ(ax) we denote the result of applying structural transformation and clausi-
fication (i.e. translating to clauses) to an axiom ax. As both structural transformation
and clausification are well-known, we do not give their definition here but refer the
reader to [13] or our technical report2.

Let Ξ(ax) denote the set of clauses obtained from Θ(ax) by adding the decision
atom �ax to every clause in Θ(ax), i.e., Ξ(ax) = {cl ∨ �ax | cl ∈ Θ(ax)}. Let
Ξ(O†) =

⋃
ax∈O† Ξ(ax). Then the diagnosing program of O†, i.e. D(O†), is defined

as follows: if some equational atom s ≈ t occurs positively in Ξ(O†), then D(O†) =
Ξ(O†) ∪ E(Ξ(O†)), otherwise D(O†) = Ξ(O†). Recall that E(Ξ(O†)) is used to
axiomatize the equality predicate in Ξ(O†) (see Section 3).

Example 2 (Example 1 continued). Consider the ontology O in Example 1. We com-
pute O† as O ∪ {ax6 : ChiefActress(a1), ax7 : Person(a2), ax8 : Actress(a3), ax9 :
Woman(a4), ax10 : Man(a5)}, where a1, . . . , a5 are all new individuals. We then com-
pute Ξ(O†) as {cl1, . . . , cl10} given below.

cl1 : ¬ChiefActress(x) ∨ Person(x) ∨ �ax1 cl2 : ¬ChiefActress(x) ∨ Actress(x) ∨ �ax2

cl3 : ¬Actress(x) ∨ Woman(x) ∨ �ax3 cl4 : ¬Person(x) ∨ Man(x) ∨ Woman(x) ∨ �ax4

cl5 : ¬ChiefActress(x) ∨ ¬Man(x) ∨ �ax5 cl6 : ChiefActress(a1) ∨ �ax6

cl7 : Person(a2) ∨ �ax7 cl8 : Actress(a3) ∨ �ax8

cl9 : Woman(a4) ∨ �ax9 cl10 : Man(a5) ∨ �ax10

Since there is no equational atom occurring positively in Ξ(O†), the diagnosing pro-
gram of O†, i.e. D(O†), is exactly Ξ(O†).

Before showing how to use the diagnosing program, we introduce some notions. Given
a first-order logic program P , a set X of ground atoms never occurring negatively in
P and a truth assignment ΦX on X , we define the reduction of P w.r.t. ΦX , denoted
by P ↓ ΦX , as a first-order logic program obtained from P by deleting every clause
cl ∈ P that contains a ground atom α ∈ X such that ΦX(α) = true, and by removing
all ground atoms in X from the remaining clauses. Since any ground atom in X does
not occur negatively in P , it is clear that P ↓ ΦX is satisfiable iff there exists a model
M of P such that M ∩X = {α ∈ X | ΦX(α) = true}.

In the remainder of this section, let X denote the set of decision atoms in D(O†),
i.e., X = {�ax | ax ∈ O†}, and ax a membership entailment of O† on concept/role

Goal-Directed Module Extraction for Explaining OWL DL Entailments 169

names if not otherwise specified. Consider an ontologyO′ such that O† ⊆ O′. For ΦX

a truth assignment on X , we define the reduction ofO′ w.r.t. ΦX , denoted byO′ ↓ ΦX ,
asO′\{ax′ ∈ O† | ΦX(�ax′) = true}, i.e. the subset ofO′ where all axioms ax′ ∈ O†

such that ΦX(�ax′) = true are absent. We have the following relationship.

Lemma 1. Let P = D(O†)∪{¬ax} andO′ = O†∪{¬ax}. For any truth assignment
ΦX on X , P ↓ ΦX is satisfiable iff O′ ↓ ΦX is satisfiable.

The above relationship implies a correspondence between MISs of O† ∪ {¬ax} and
maximally unsatisfiable X-assignments for D(O†) ∪ {¬ax} (see Lemma 2), where a
maximally unsatisfiable X-assignment for D(O†) ∪ {¬ax} is a truth assignment ΦX

on X such that (D(O†)∪ {¬ax}) ↓ ΦX is unsatisfiable and {α ∈ X | ΦX(α) = true}
is maximal, formally defined below.

Definition 3 (Maximally Unsatisfiable X-Assignment). For P a first-order logic pro-
gram and X a set of ground atoms never occurring negatively in P , a truth assignment
ΦX on X for P is called an unsatisfiable X-assignment for P if P ↓ ΦX is unsat-
isfiable; an unsatisfiable X-assignment ΦX for P is called a maximally unsatisfiable
X-assignment for P if there is no other unsatisfiable X-assignmentΦ′

X for P such that
{α ∈ X | ΦX(α) = true} ⊂ {α ∈ X | Φ′

X(α) = true}.

Lemma 2. Let P = D(O†) ∪ {¬ax} and O′ = O† ∪ {¬ax}. For a MIS S of O′, the
truth assignment ΦX on X , such that ΦX(�ax′) = true iff ax′ ∈ O′ \ S for all ax′ ∈
O†, is a maximally unsatisfiable X-assignment for P . For a maximally unsatisfiable
X-assignment ΦX for P , O′ \ {ax′ ∈ O† | ΦX(�ax′) = true} is a MIS of O′.

According to Lemma 2, we can characterize a just-preserving module ofO† for ax with
the help of maximally unsatisfiable X-assignments for D(O†) ∪ {¬ax}.

Theorem 1. M is a just-preserving module of O† for ax iff {ax′ ∈ O† | ΦX(�ax′) =
false} ⊆ M for all maximally unsatisfiable X-assignments ΦX for D(O†) ∪ {¬ax}.

4.2 Exact Grounding of the Diagnosing Program

According to Theorem 1, we need to consider satisfiability problems on D(O†) ∪
{¬ax}. This can be done by considering a propositional program that is transformed
fromD(O†)∪ {¬ax} and has the same set of minimal models as D(O†)∪ {¬ax} has.
We extend the well-known intelligent grounding (IG) technique [5] which computes,
in a fixpoint-evaluation manner, a semantically equivalent propositional program con-
taining only derivable ground atoms from a function-free first-order logic program. By
generalizing the idea of the IG technique, we define the so-called bottom-up grounding
of a general first-order logic program P , denoted by Gbu(P), as the least fixpoint of
Π(n) such that Π(0) = ∅ and for n ≥ 1, Π(n) = {cl σ | cl ∈ P, σ is a ground substi-
tution such that cl−σ ⊆ atoms(Π(n−1)) and cl+σ ⊆ HB(P)}.
Lemma 3. Let P be a first-order logic program in which the equality predicate ≈ has
been axiomatized. Then (1) Gbu(P) is the least subset S of G(P) such that cl σ ∈ S
for any clause cl ∈ P and any ground substitution σ such that cl−σ ⊆ atoms(S) and
cl+σ ⊆ HB(P); (2) Gbu(P) has the same set of minimal models as P has.

170 J. Du, G. Qi, and Q. Ji

Example 3 (Example 2 continued). This example shows the steps of computing the
bottom-up grounding ofD(O†) given in Example 2. By applying the fixpoint-evaluation
process for defining Gbu(D(O†)), we have Π(0) = ∅, Π(1) = {cl′1, ..., cl′5}, Π(2) =
{cl′1, ..., cl′9}, Π(3) = {cl′1, ..., cl′11}, Π(4) = {cl′1, ..., cl′12} and Π(5) = Π(4), so
Gbu(D(O†)) = {cl′1, ..., cl′12}, where cl′1, . . . , cl′12 are given below.

cl′1 : ChiefActress(a1) ∨ �ax6 cl′2 : Person(a2) ∨ �ax7
cl′3 : Actress(a3) ∨ �ax8 cl′4 : Woman(a4) ∨ �ax9
cl′5 : Man(a5) ∨ �ax10 cl′6 : ¬ChiefActress(a1) ∨ Person(a1) ∨ �ax1
cl′7 : ¬ChiefActress(a1) ∨ Actress(a1) ∨ �ax2 cl′8 : ¬Actress(a3) ∨ Woman(a3) ∨ �ax3
cl′9 : ¬Person(a2) ∨ Man(a2) ∨ Woman(a2) ∨ �ax4 cl′10 : ¬Actress(a1) ∨ Woman(a1) ∨ �ax3
cl′11 : ¬Person(a1) ∨ Man(a1) ∨ Woman(a1) ∨ �ax4 cl′12 : ¬ChiefActress(a1) ∨ ¬Man(a1) ∨ �ax5

Since ax is a membership entailment of O†, by lemma 3, Gbu(D(O†)) |= ax. Hence
ax occurs positively in some clauses in Gbu(D(O†)). Note that Gbu(D(O†) ∪ {¬ax})
can be computed by first grounding D(O†) then adding the clause {¬ax}, and that
the adding of clause ¬ax to Gbu(D(O†)) does not introduce new ground atoms to
Gbu(D(O†)), so Gbu(D(O†) ∪ {¬ax}) = Gbu(D(O†)) ∪ {¬ax}. It follows from The-
orem 1 and Lemma 3 that M is a just-preserving module of O† for ax iff {ax′ ∈
O† | ΦX(�ax′) = false} ⊆ M for all maximally unsatisfiable X-assignments ΦX for
Gbu(D(O†))∪{¬ax}. Subsequently, a just-preserving module ofO† for ax can be com-
puted as {ax′ ∈ O† | �ax′ ∈ atoms(Πrel)}, where Πrel is a subset of Gbu(D(O†)) ∪
{¬ax} such that {�ax′ ∈ X | ΦX(�ax′) = false} ⊆ atoms(Πrel) for all maximally
unsatisfiable X-assignments ΦX for Gbu(D(O†)) ∪ {¬ax}. We call such Πrel a just-
preserving relevant subset of Gbu(D(O†)) ∪ {¬ax} for ax.

4.3 Extracting a Justification-Preserving Module

In this subsection, by Π we denote Gbu(D(O†))∪{¬ax} if not otherwise specified. Our
method for extracting a just-preserving relevant subset of Π is based on the notion of a
connected component (see Definition 4 below), which is a subset of a propositional pro-
gram such that any two clauses in it have common ground atoms. This notion has been
used to confine the search space in solving SAT problems [3] because an unsatisfiable
propositional program must have a maximal connected component that is unsatisfiable.

Definition 4 (Connected Component). LetΠ be a propositional program. Two ground
clauses cl and cl′ are called connected in Π if there exists a sequence of clauses
cl0 = cl, cl1, . . . , cln = cl′ in Π such that cli−1 and cli have common ground atoms
for any 1 ≤ i ≤ n. A connected component Πc of Π is a subset of Π such that any
two clauses cl and cl′ in Πc are connected in Πc. Πc is called maximal if there is no
connected component Π ′

c of Π such that Πc ⊂ Π ′
c.

The basic idea employed in our method is that the maximal connected component of Π
where ax occurs is a just-preserving relevant subset of Π for ax. To obtain a smaller
just-preserving relevant subset, our method extends the basic idea by first removing
two subsets Πur1 and Πur2 from Π in turn, then extracting a maximal connected com-
ponent from the remaining set. The description and the correctness of the method are
shown in Lemma 4, while the idea is illustrated in Example 4.

Goal-Directed Module Extraction for Explaining OWL DL Entailments 171

Example 4 (Example 3 cont.). LetΠ = Gbu(D(O†))∪{¬Person(a1)} for Gbu(D(O†))
given in Example 3. This example shows the sets Πur1, Πur2 and Πrel that may be
computed by our method.

cl′2 : Person(a2) ∨�ax7 cl′12 : ¬ChiefActress(a1) ∨ ¬Man(a1) ∨ �ax5
cl′3 : Actress(a3) ∨�ax8 Πur2 : for all clauses cl ∈ Πur2 ,
cl′4 : Woman(a4) ∨�ax9 cl− �⊆

⋃
cl∈Π\(Πur1∪Πur2) cl+.

cl′5 : Man(a5) ∨�ax10 Note that M0 ∪ A is a model of Πur2 for any subset
cl′7 : ¬ChiefActress(a1)∨ Actress(a1) ∨�ax2 A of ground atoms occurring in Π \ (Πur1 ∪ Πur2).
cl′8 : ¬Actress(a3)∨ Woman(a3) ∨�ax3 ¬Person(a1)
cl′9 : ¬Person(a2)∨ Man(a2) ∨ Woman(a2) ∨�ax4 cl′6 : ¬ChiefActress(a1) ∨ Person(a1) ∨ �ax1
cl′10 : ¬Actress(a1)∨ Woman(a1) ∨�ax3 cl′1 : ChiefActress(a1) ∨ �ax6
cl′11 : ¬Person(a1) ∨ Man(a1)∨ Woman(a1) ∨�ax4 Πrel = the maximal connected component of Π\
Πur1 : for all clauses cl ∈ Πur1 , cl+ contains at least one (Πur1 ∪ Πur2) where Person(a1) occurs.

ground atom not in X ∪ atoms(Π \ Πur1). Πrel is a just-preserving subset of Π for Person(a1), and

The set M0 =
⋃

cl∈Πur1
cl+ \ atoms(Π \ Πur1), i.e. {ax′ ∈ O† | �ax′ ∈ atoms(Πrel)} = {ax1, ax6}

the set of framed ground atoms, is a model of Πur1 . is a just-preserving module of O† for Person(a1).

In this example, Π = Πur1 ∪ Πur2 ∪ Πrel . The key point to prove that Πrel is a just-preserving subset of Π is that
for any maximally unsatisfiable X-assignment ΦX of Π, ΦX(α) = true for all α ∈ X \ atoms(Πrel), otherwise
Π ↓ Φ′

X is satisfiable for Φ′
X the truth assignment on X such that Φ′

X(α) = ΦX(α) for all α ∈ X ∩ atoms(Πrel)
and Φ′

X(α) = true for all α ∈ X \ atoms(Πrel); this implies that Πrel ↓ ΦX = Πrel ↓ Φ′
X is satisfiable and

Πrel ↓ ΦX has a minimal model M , but then M ∪ M0 is model of Π ↓ ΦX (contradiction).

Algorithm 1. Extract(Πin, X, α)
Input: A propositional program Πin with decision atoms, the set X of decision atoms occurring

in Πin, and a ground atom α occurring in Πin.
Output: A subset of Πin ∪ {¬α}.
1. Πur1 := Πin; Π ′

ur1 := ∅;
2. while Π ′

ur1 �= Πur1 do
3. Π ′

ur1 := Πur1;
4. for each clause cl ∈ Πur1 such that cl+ ⊆ X ∪ atoms(Πin \ Πur1) do
5. Πur1 := Πur1 \ {cl};
6. Π0 := Πur1; Π ′

0 := ∅;
7. while Π ′

0 �= Π0 do
8. Π ′

0 := Π0;
9. for each clause cl ∈ Πin \ Π0 such that cl− �⊆

⋃
cl∈Πin\Π0

cl+ do

10. Π0 := Π0 ∪ {cl};
11. Πrel := {¬α}; Π ′

rel := ∅;
12. while Π ′

rel �= Πrel do
13. Π ′

rel := Πrel;
14. for each clause cl ∈ Πin \ Π0 such that (cl+ ∪ cl−) ∩ atoms(Πrel) �= ∅ do
15. Πrel := Πrel ∪ {cl};
16. return Πrel;

Fig. 2. The algorithm for extracting a just-preserving relevant subset of Πin ∪ {¬α} for α

Lemma 4. Let Πur1 be a subset of Π such that for all clauses cl ∈ Πur1, cl+ contains
at least one ground atom not in X∪atoms(Π\Πur1). Let Πur2 be a subset of Π\Πur1
such that cl− 	⊆

⋃
cl∈Π\(Πur1∪Πur2) cl

+ for all clauses cl ∈ Πur2. Let Πrel be the

172 J. Du, G. Qi, and Q. Ji

maximal connected component of Π \ (Πur1 ∪Πur2) where ax occurs. Then Πrel is
a just-preserving relevant subset of Π for ax, i.e., {�ax′ ∈ X | ΦX(�ax′) = false} ⊆
atoms(Πrel) for all maximally unsatisfiable X-assignments ΦX for Π .

According to Lemma 4, we develop an algorithm for extracting a just-preserving rele-
vant subset of Π for ax, shown in Figure 2. In the algorithm, lines 1–5 compute Πur1
given in Lemma 4, lines 6–10 compute Πur2 (where Π0 \Πur1 in the algorithm cor-
responds to Πur2 given in Lemma 4), and lines 11-15 compute Πrel. Note that Πrel is
computed in a goal-directed (backward traversal) manner.

Consider Extract(Gbu(D(O†)), X , Person(a1)) for Gbu(D(O†)) given in Example
3. It can be checked that the values of Πur1, Πur2 (i.e. Π0 \ Πur1 in the algorithm)
and Πrel are exactly those given in Example 4. By Lemma 4, Πrel is a just-preserving
subset of Π for Person(a1), thus {ax′ ∈ O† | �ax′ ∈ atoms(Πrel)} = {ax1, ax6} is
a just-preserving module of O† for Person(a1). Note that ChiefActress(a1) ∈ O† \ O,
so {ax1} is a just-preserving module of O for ChiefActress � Person. Recall that the
syntactic locality-based module of ChiefActress in O is exactly O. This shows that the
just-preserving module extracted by our goal-directed method can be much smaller than
the syntactic locality-based module.

The following theorem shows the correctness and complexity of the algorithm.

Theorem 2. Extract(Gbu(D(O†)), X , ax) returns a just-preserving relevant subset of
Gbu(D(O†)) ∪ {¬ax} for ax in time polynomial in |Gbu(D(O†))|.

It follows from the above theorem that {ax′ ∈ O† | �ax′ ∈ atoms(Πrel)} is a just-
preserving module of O† for ax, where Πrel is the result of Extract(Gbu(D(O†)), X ,
ax). The remaining issue for extracting just-preserving modules is that Gbu(D(O†))
can be infinite when there are function symbols occurring in D(O†). We in the next
subsection show that a just-preserving module of O† for ax can also be extracted from
a finite variant of Gbu(D(O†)) whose size is polynomial in the size ofO.

4.4 Approximate Grounding of the Diagnosing Program

To tackle the problem that the bottom-up grounding Π of a first-order logic program
can be infinite, we consider a mapping function on ground terms occurring in Π such
that the range of this function is finite and small. We call a mapping function λ :
terms(Π) �→ terms(Π), where terms(Π) is the set of ground terms occurring in Π ,
a convergent mapping function for Π , if for every functional term f1(...fn(a)) (where
a is a constant) occurring in Π , λ(f1(...fn(a))) = λ(a), and for every equational atom
s ≈ t occurring in Π , λ(s) = λ(t). For example, given a propositional program Π† =
{¬hasFather(a, b)∨¬hasFather(a, f(a))∨b ≈ f(a),¬Person(a)∨hasFather(a, f(a)),
¬Person(a) ∨ Person(f(a))}, the mapping function λ = {a �→ a, b �→ a, f(a) �→ a}
is a convergent mapping function for Π†, but the mapping function λ′ = {a �→ b, b �→
a, f(a) �→ a} is not since λ′(f(a)) 	= λ′(a).

Given a mapping function λ on ground terms, by λ(α), λ(cl), λ(A) and λ(Π) we
respectively denote the results obtained from a ground atom α, a clause cl, a set A of
ground atoms and a propositional program Π by replacing every ground term t occur-
ring in it with λ(t). Take Π† given above for example, for the mapping function λ =

Goal-Directed Module Extraction for Explaining OWL DL Entailments 173

Algorithm 2. ApproxGround(O†)
Input: An SHOIQ ontology O†.
Output: A propositional program and a set of sets of constants.
1. Let P be obtained from D(O†) by stripping all function symbols from functional terms;
2. Π := ∅; S := ∅;
3. repeat
4. Π ′ := Π ;
5. for each clause cl ∈ P and each ground substitution σ such that cl−σ ⊆ atoms(Π) ∩

HB(P) and cl+σ ⊆ HB(P) do
6. clinst := cl σ;
7. for each equational atom a ≈ b ∈ cl+inst such that a and b are different constants do
8. MergeConstants(a, b,S , clinst, P);
9. Π := Π ∪ {clinst};
10. until Π ′ = Π ;
11. Π := {cl ∈ Π | cl+ ∪ cl− ⊆ HB(P)};
12. return (Π,S);

Subprocedure MergeConstants(a, b,S , cl, P)
1. Let Ca be {a} if a does not occur in S , or the congruence class in S where a belongs to;
2. Let Cb be {b} if b does not occur in S , or the congruence class in S where b belongs to;
3. Cnew := Ca ∪ Cb; rep(Cnew) := b; S := (S \ {Ca, Cb}) ∪ Cnew;
4. Update cl and P by replacing every occurrence of a with b;

Fig. 3. The algorithm for approximately grounding the diagnosing program D(O†)

{a �→ a, b �→ a, f(a) �→ a}, λ(Π†) = {¬hasFather(a, a)∨¬hasFather(a, a)∨ a ≈ a,
¬Person(a) ∨ hasFather(a, a), ¬Person(a) ∨ Person(a)}.

It is obvious that for any convergent mapping function λ for Π , λ(Π) is finite when
Π is infinite but the number of constants and predicate symbols occurring in Π is
finite. Even when Π is finite and does not contain function symbols, λ(Π) can be much
smaller than Π because the subset of ground clauses in Π that form a congruence
relation is collapsed in λ(Π).

Lemma 5. Let λ be an convergent mapping function for Gbu(D(O†)) where deci-
sion atoms, treated as nullary atoms, are not in the domain of λ, Π be a superset of
λ(Gbu(D(O†))), and Πrel be returned by Extract(Π,X, λ(ax)). Then {ax′ ∈ O† |
�ax′ ∈ atoms(Πrel)} is a just-preserving module of O† for ax.

To employ the above lemma to extract a just-preserving module of O† for ax, we de-
velop an algorithm, shown in Figure 3, to compute a superset of λ(Gbu(D(O†))) for
some convergent mapping function λ for Gbu(D(O†)).

In the algorithm, P is a first-order logic program obtained from D(O†) by stripping
all function symbols from functional terms, i.e., by replacing every functional term
f1(...fn(t)) with t where t is a variable or a constant; HB(P) is the Herbrand base of
P , which does not contain any function symbol and is changed whenever P is changed;
S is the set of sets of constants such that for any constant a in any element C ∈ S, there
exists a constant b ∈ C such that the equational atom a ≈ b appears in the execution of

174 J. Du, G. Qi, and Q. Ji

the algorithm. We call an element in S a congruence class. Each congruence class C is
associated with a representative constant, denoted by rep(C), which is an element of C.

The algorithm does not directly compute a convergent mapping function λ for
Gbu(D(O†)), because such mapping function can be constructed from S. By map(t,
S) we denote the function for mapping a term t ∈ HU(D(O†)) to a constant occurring
in D(O†) based on S, recursively defined as follows, where a is a constant.

◦ map(f1(...fn(a)),S) = map(a,S), where n > 0;
◦ map(a,S) = b, where b = rep(C) if a ∈ C for some C ∈ S, or b = a otherwise.

We naturally extend the function map to (sets of) ground atoms and ground clauses, i.e.,
by map(α,S), map(A,S) and map(cl,S) we respectively denote the results obtained
from a ground atom α, a set A of ground atoms, and a clause cl by replacing every
ground term t occurring in it with map(t,S).

We call a mapping function λ : HU(D(O†)) �→ HU(D(O†)) induced from the
function map w.r.t. S if λ(t) = map(t,S) for all ground terms t ∈ HU(D(O†)). One
goal of the algorithm is to ensure the mapping function λ induced from map w.r.t.
S to be an convergent mapping function for Gbu(D(O†)), i.e., ensure map(s,S) =
map(t,S) for all equational atoms s ≈ t occurring positively in Gbu(D(O†)). Another
goal of the algorithm is to return a superset Π of λ(Gbu(D(O†))). Consider how to
achieve this goal. By Lemma 3, Gbu(D(O†)) is the least subset S of G(D(O†)) such
that cl σ ∈ S for any clause cl ∈ D(O†) and any ground substitutionσ such that cl−σ ⊆
atoms(S) and cl+σ ⊆ HB(D(O†)). It follows that λ(Gbu(D(O†))) is the least subset
S′ of λ(G(D(O†))) such that λ(cl σ) ∈ S′ for any clause cl ∈ D(O†) and any ground
substitution σ such that λ(cl−σ) ⊆ atoms(S′) and λ(cl+σ) ⊆ λ(HB(D(O†))). If Π
is a subset of λ(G(D(O†))) such that λ(cl σ) ∈ Π for any clause cl ∈ D(O†) and any
ground substitution σ such that λ(cl−σ) ⊆ atoms(Π) and λ(cl+σ) ⊆ λ(HB(D(O†))),
then we have λ(Gbu(D(O†))) ⊆ Π . Hence we refine the second goal to the goal of
finding the above subset Π .

In the following descriptions, we use λ to denote a mapping function induced from
map w.r.t. S. At the beginning (before line 3), it is clear that HU(P) = {map(t,S) | t ∈
HU(D(O†))}. Hence we can use HU(P) to represent {map(t,S) | t ∈ HU(D(O†))}
in the algorithm. To this end, we should ensure {map(t,S) | t ∈ HU(D(O†))} =
HU(P) throughout the algorithm.

We now describe the main part of the algorithm. All clauses in P are instantiated iter-
atively until a fixpoint is reached (lines 3–10), making the instantiated set Π satisfy (†)
λ(cl σ) ∈ Π for any clause cl ∈ D(O†) and any ground substitution σ s.t. λ(cl−σ) ⊆
atoms(Π) and λ(cl+σ) ⊆ λ(HB(D(O†))). Consider any clause cl ∈ D(O†) and any
ground substitution σ. Let cl′ be obtained from cl by stripping all function symbols from
functional terms and by replacing every occurrence of constant a with λ(a), and σ′ be
obtained from σ by replacing each mapping x �→ t with x �→ map(t,S). Then cl′ ∈ P
and λ(cl σ) = λ(cl′σ′). Hence we only need to consider adding λ(cl σ) to Π for every
clause cl ∈ P and every ground substitution σ such that every ground term occurring in
cl σ also occurs in {map(t,S) | t ∈ HU(D(O†))} = HU(P). Note that λ(cl σ) = cl σ
when every ground term occurring in cl σ also occurs in HU(P) and that HB(P) =
λ(HB(D(O†))), so in order to satisfy the condition (†), every clause cl ∈ P and every

Goal-Directed Module Extraction for Explaining OWL DL Entailments 175

ground substitution σ such that cl−σ ⊆ atoms(Π) ∩ HB(P) and cl+σ ⊆ HB(P) are
handled as follows (lines 5–9). Let clinst = cl σ. Every ground term a ≈ b ∈ cl+inst

such that a and b are different constants is handled by merging a and b to the same
congruence class in S and by updating clinst and P accordingly (see the subprocedure
MergeConstants). The merge of a and b is to ensure map(a,S) = map(b,S). The
update of clinst is to ensure map(clinst,S) = clinst. The update of P is to ensure again
{map(t,S) | t ∈ HU(D(O†))} = HU(P). Since S is only updated in the subprocedure
MergeConstants, {map(t,S) | t ∈ HU(D(O†))} = HU(P) holds throughout the al-
gorithm. After every ground term a ≈ b ∈ cl+inst is handled, the possibly updated clinst

is added to Π . After Π reaches a fixpoint, since Π should be a subset of λ(G(D(O†))),
every ground term occurring in Π should be in {λ(t) | t ∈ HU(D(O†))} = HU(P), so
those clauses in Π that contain ground atoms not in HB(P) are removed from Π (line
11). Since the propositional program Π returned by the algorithm satisfies the above
condition (†), we have the following lemma.

Lemma 6. Let (Π,S) be returned by ApproxGround(O†) and λ be a mapping func-
tion induced from the function map w.r.t. S. Then (1) λ(Gbu(D(O†))) ⊆ Π and λ is a
convergent mapping function for Gbu(D(O†)); (2) ApproxGround(O†) works in time
polynomial in sm and |Π | is polynomial in s, where m is the maximum number in all
qualifying number restrictions in O and s is the size of O.

The following theorem shows the correctness of our proposed method for extracting a
just-preserving module, which is immediately follows from Lemma 5 and Lemma 6.

Theorem 3. Let (Π,S) be returned by ApproxGround(O†), and Πrel be returned
by Extract(Π , X , map(ax,S)). Then {ax′ ∈ O† | �ax′ ∈ atoms(Πrel)} is a just-
preserving module of O† for ax.

To summarize, our proposed method works as follows. In the first and offline phase,
we first compute O† = O ∪ {A(aA) | A is an atomic concept in O and aA is a new
globally unique individual corresponding to A}, then compute (Π,S) as the result of
ApproxGround(O†). In the second and online phase, for every coming entailment ax,
we first set α = B(aA) if the given entailment ax is A � B, or α = ax otherwise, then
compute Πrel = Extract(Π,X,map(α,S)), and finally compute a just-preserving
module of O for ax as {ax′ ∈ O† | �ax′ ∈ atoms(Πrel)} ∩ O.

5 Experimental Evaluation

We implemented the proposed method in GNU C++, using MySQL as the back-end
SQL engine. In the implementation, ABox axioms are maintained in databases, instan-
tiated clauses in the course of grounding are maintained in disk files, and Pellet [19]
(version 2.0.0-rc6)3 is called to find all justifications of a given entailment. All our ex-
periments were conducted on a machine with 2.33GHz Intel Xeon E5410 CPU and
8GB RAM, running Windows Server 2003, where the maximum Java heap size was set
to (max) 1252MB. The implementation, test sets and complete test results are available
at http://www.aifb.uni-karlsruhe.de/WBS/gqi/jp-module/.

3 Pellet (http://clarkparsia.com/pellet/) employs a hitting set tree (HST) based
algorithm [12] to find all justifications.

http://www.aifb.uni-karlsruhe.de/WBS/gqi/jp-module/
http://clarkparsia.com/pellet/

176 J. Du, G. Qi, and Q. Ji

Table 1. The characteristics of test ontologies and the execution time in the offline phase

O |NC | |NR| |NI | |T | |A| Offline time(sec)

GALEN 2,748 412 0 4,529 0 1,431
GO 20,465 1 0 28,897 0 7,519
NCI 27,652 70 0 46,940 0 10,901

LUBM1 59 16 50,253 94 100,543 9
LUBM10 59 16 629,568 94 1,272,575 116

UOBM-Lite1 51 43 95,010 130 245,864 62
UOBM-Lite10 51 43 820,208 130 2,096,973 679

Note: O = (T ,A) is a test ontology. NC , NR and NI are respectively the sets of concept names,
role names and individuals in O.

5.1 Experimental Setup

We conducted experiments on the GALEN Medical Knowledge Base4, the Gene On-
tology (GO)5, the US National Cancer Institute Ontology (NCI)6, as well as Lehigh
University Benchmark (LUBM) [10] and University Ontology Benchmark (OWL Lite
version) [15] (UOBM-Lite) ontologies. By LUBMn and UOBM-Liten we respectively
denote the instances of LUBM and UOBM-Lite that contain axioms about n universi-
ties. We specifically tested on LUBM1, LUBM10, UOBM-Lite1 and UOBM-Lite10,
where the former two were generated by the LUBM data generator7, and the latter two
were all downloaded from the UOBM Website8.

Before testing our approach we stored ABoxes to MySQL databases. Table 1 lists
the characteristics of the seven test ontologies.

In our experiments, we randomly selected 40 subsumption entailments for each of
GALEN, GO and NCI, and randomly selected 40 membership entailments over concept
names for each of LUBM1, LUBM10, UOBM-Lite1 and UOBM-Lite10. For each se-
lected subsumption, we extracted the just-preserving module introduced in this paper;
for comparison, we also extracted the corresponding syntactic locality-based module. In
particular, for each selected subsumption entailment A � B, we extracted the syntactic
locality-based module for A; for each selected membership entailment A(a), we ex-
tracted the syntactic locality-based module for {a}. We set a time limit of 1000 seconds
for Pellet to find all justifications of a selected entailment.

5.2 Experimental Results

Regarding the offline phase of our method, the execution time (in seconds) in this phase
is shown in the last column of Table 1. Though the offline phase is rather costly, it
is reasonable due to the following reasons. First, the offline phase is independent of
any given subsumption/membership entailment; i.e., once it is executed, the extraction

4 http://www.openclinical.org/prj_galen.html
5 http://www.geneontology.org
6 http://www.mindswap.org/2003/CancerOntology/nciOntology.owl
7 http://swat.cse.lehigh.edu/projects/lubm/index.htm
8 http://www.alphaworks.ibm.com/tech/semanticstk/

http://www.openclinical.org/prj_galen.html
http://www.geneontology.org
http://www.mindswap.org/2003/CancerOntology/nciOntology.owl
http://swat.cse.lehigh.edu/projects/lubm/index.htm
http://www.alphaworks.ibm.com/tech/semanticstk/

Goal-Directed Module Extraction for Explaining OWL DL Entailments 177

Table 2. The test results on finding all justifications of a selected entailment

Module Extr. by Our Method Syn. Locality-based Module # SHLB # SzJP

#SH SHTavg(sec) Sizeavg #SH SHTavg(sec) Sizeavg \SHJP < SzLB

GALEN 40 3.555 69.75 40 3.814 134.78 0 40
GO 40 7.314 9.55 40 11.985 32.25 0 40
NCI 40 4.065 7.23 40 7.518 70.95 0 40

LUBM1 40 69.061 22.15 20 201.481 100,596.00 0 40
LUBM10 40 95.721 20.48 0 MO1 1,272,615.00 0 40

UOBM-Lite1 16 24.813 897.80 11 155.220 245,966.00 0 40
UOBM-Lite10 15 32.278 799.83 0 MO2 2,097,047.00 0 40

Note: “#SH” is the number of selected entailments that are successfully handled, i.e., all justi-
fications of the entailment can be computed over the extracted module without running out of
time/memory. “SHTavg” is the average execution time for finding all justifications of each se-
lected entailment that is successfully handled. “Sizeavg” is the average number of axioms in
each extracted module (counting all 40 selected entailments). “#SHLB \ SHJP” is the number
of selected entailments that are successfully handled in syntactic locality-based modules but not
successfully handled in modules extracted by our method. “#SzJP < SzLB” is the number of
selected entailments whose module extracted by our method is smaller than the corresponding
syntactic locality-based module. “MO1” (resp. “MO2”) means that all runs are out of memory
when finding justifications (resp. when loading modules).

of just-preserving modules for any given subsumption/membership entailment can be
done without executing it again. This mechanism is suitable for the situation where the
given ontology is stable, which can happen because users may want to know why an un-
wanted/surprising entailment holds when they get some implicit results from ontology
reasoning. Second, the offline phase is theoretically tractable. More precisely, it works
in time polynomial in the size of the given ontology under the assumption that numbers
in qualifying number restrictions are bounded by some constant (see Lemma 6).

Regarding the online phase of our method, the test results are reported in Table 2.
For comparison, Table 2 also shows the results for applying Pellet to find all justifi-
cations over syntactic locality-based modules. We need to point out that the execution
time for finding all justifications over a module extracted by our method includes the
module extraction time, but the execution time for finding all justifications over a syn-
tactic locality-based module excludes the module extraction time as we assume that all
syntactic locality-based modules are extracted offline.

The test results have some implications. First, a module extracted by our method
is smaller than the corresponding syntactic locality-based module; esp. for member-
ship entailments, by orders of magnitude smaller. Second, finding all justifications over
modules extracted by our method is generally more efficient than finding all justifi-
cations over syntactic locality-based modules. The efficiency improvement is rather
small for test ontologies with large TBoxes because most of the selected entailments
have only a small justification (which results in a small syntactic locality-based mod-
ule) and the module extraction time is only included in the former case. Third, finding
all justifications over modules extracted by our method is much more scalable than
over syntactic locality-based modules against increasing number of ABox axioms. In

178 J. Du, G. Qi, and Q. Ji

particular, a good number of membership entailments are handled efficiently in mod-
ules that are extracted from a test ontology with millions of ABox axioms using our
method. It seems that the size of a module extracted by our method does not depend on
the number of ABox axioms, but mainly depends on the TBox complexity.

6 Conclusion and Future Work

In this paper, we have proposed a goal-directed method for extracting a just-preserving
module for a given entailment. The basic idea of the method is to first extract a rele-
vant subset of a finite propositional program compiled from the given ontology, then
identify a just-preserving module for the given entailment from the extracted subset.
Experimental results on large ontologies show that a module extracted by our method is
smaller than the corresponding syntactic locality-based module, improving the perfor-
mance of the subsequent computation of all justifications. For future work, we plan to
adapt the method to optimize finding all justifications of the inconsistency/incoherence
of an OWL DL ontology, and upgrade the compilation method to an incremental one to
cope with ontology changes.

Acknowledgments. Thanks all anonymous reviewers for their useful comments.
Jianfeng Du is supported in part by NSFC grants 60673103 and 70801020. Guilin Qi is
supported in part by the EU under the IST project NeOn (IST-2006-027595).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, Cambridge (2003)

2. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the
description logic EL+. In: Proc. of KR-MED 2008 (2008)

3. Biere, A., Sinz, C.: Decomposing SAT problems into connected components. Journal on
Satisfiability, Boolean Modeling and Computation 2, 201–208 (2006)

4. Doran, P., Tamma, V.A.M., Iannone, L.: Ontology module extraction for ontology reuse: an
ontology engineering perspective. In: Proc. of CIKM 2007, pp. 61–70 (2007)

5. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In: Dix, J., Fuhrbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS
(LNAI), vol. 1265, pp. 364–375. Springer, Heidelberg (1997)

6. Fitting, M.: First-order Logic and Automated Theorem Proving, 2nd edn. Springer,
New York, Inc. (1996)

7. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: Incremental ontology
reasoning using modules. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 183–196.
Springer, Heidelberg (2007)

8. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: Extracting
modules from ontologies. In: Proc. of WWW 2007, pp. 717–726 (2007)

9. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies. In:
Proc. of KR 2006, pp. 198–209 (2006)

Goal-Directed Module Extraction for Explaining OWL DL Entailments 179

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Jour-
nal of Web Semantics 3(2–3), 158–182 (2005)

11. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to disjunc-
tive datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

12. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)

13. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. Journal of
Automated Reasoning 40(2-3), 89–116 (2008)

14. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal of Web
Semantics 3(1), 41–60 (2005)

15. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139.
Springer, Heidelberg (2006)

16. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725.
Springer, Heidelberg (2004)

17. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: Proc. of IJCAI 2003, pp. 355–362 (2003)

18. Seidenberg, J., Rector, A.L.: Web ontology segmentation: Analysis, classification and use.
In: Proc. of WWW 2006, pp. 13–22 (2006)

19. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

20. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hierarchies. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 289–303. Springer, Heidelberg (2004)

21. Suntisrivaraporn, B.: Module extraction and incremental classification: A pragmatic
approach for EL+ ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 230–244. Springer, Heidelberg
(2008)

22. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach to finding
all justifications for owl dl entailments. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008.
LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg (2008)

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 180–195, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Analysis of a Real Online Social Network Using Semantic
Web Frameworks

Guillaume Erétéo1, Michel Buffa2, Fabien Gandon3, and Olivier Corby3

1 Orange Labs, Sophia Antipolis, 06921 France
guillaume.ereteo@orange-ftgroup.com

2 KEWI, I3S, University of Nice, France
buffa@unice.fr

3 INRIA - Edelweiss, 2004 rt des Lucioles, BP 93, 06902 Sophia Antipolis
{fabien.gandon,olivier.corby}@sophia.inria.fr

Abstract. Social Network Analysis (SNA) provides graph algorithms to charac-
terize the structure of social networks, strategic positions in these networks, spe-
cific sub-networks and decompositions of people and activities. Online social
platforms like Facebook form huge social networks, enabling people to connect,
interact and share their online activities across several social applications. We
extended SNA operators using semantic web frameworks to include the seman-
tics of these graph-based representations when analyzing such social networks
and to deal with the diversity of their relations and interactions. We present here
the results of this approach when it was used to analyze a real social network
with 60,000 users connecting, interacting and sharing content.

Keywords: semantic web, social network analysis, graph representations.

1 Introduction

We are witnessing the deployment of a social media landscape where “expressing tools
allow users to express themselves, discuss and aggregate their social life”, “sharing
tools allow users to publish and share content”, and “networking tools allow users to
search, connect and interact with each other” [4]. Social platforms, like Facebook,
Orkut, Hi5, etc., are at the center of this landscape as they enable us to host and aggre-
gate these different social applications. You can publish and share your del.icio.us
bookmarks, your RSS streams or your microblog posts via the Facebook news feed,
thanks to dedicated Facebook applications. This integration of various means for pub-
lishing and socializing enables us to quickly share, recommend and propagate informa-
tion to our social network, trigger reactions, and finally enrich it.

More and more social solutions (e.g. Socialtext1) are deployed in corporate intra-
nets to reproduce information sharing success stories from the web into organizations’
intranets. However, the benefit of these platforms is often hindered when the social
network becomes so large that relevant information is frequently lost in an

1 http://www.socialtext.com/

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 181

overwhelming flow of activity notifications. Organizing this huge amount of informa-
tion is one of the major challenges of web 2.02 for its acceptance in corporate contexts
and to achieve the full potential of Enterprise 2.0, i.e., the efficient use of Web 2.0
technologies like blogs and wikis within the Intranet [17].

Social Network Analysis (SNA) proposes graph algorithms to characterize the
structure of a social network, strategic positions, specific sub-networks and network-
ing activities [22]. Collaborative applications now capture more and more aspects of
physical social networks and human interactions in a decentralized way. Such rich
and diffuse data cannot be represented using only raw graphs as in classical SNA
algorithms without some loss of knowledge. Semantic Web frameworks answer this
problem of representing and exchanging knowledge on such social networks with a
rich typed graph model (RDF3), a query language (SPARQL3) and schema definition
frameworks (RDFS3 and OWL3). Reporting on the experiments of SNA on online
social networks, we have shown in [10] the lack of techniques for applying SNA on
these rich typed representations of social networks. We proposed a framework to
exploit directly the RDF representations of social networks using semantic web search
engines, in order to take advantage of the rich information they hold and in particular
the typed relations that form these labeled graphs [1] [11].

Today, most common analyses of social networks rely directly on graph theory or
on algebraic approaches. Mika [18] showed that folksonomies can be exploited using
graph theory in order to identify user groups and interest emergence. An approach by
[19] uses FOAF profiles in order to identify communities of interest from the network
of LiveJournal.com. [14] studied trust propagation in social networks using semantic
web frameworks. [12] verified the power law of the degrees and community struc-
tures in FOAF profiles. [15] worked on merging FOAF profiles and identities used on
different sites. Other researchers like [8] (see [10] and [11]) have extended tools, e.g.,
the SPARQL query language, in order to find paths between semantically linked
resources in RDF-based graphs. These works will be a basis for us to work on graph-
based and ontology-based social network representation and analysis.

Many algorithms are available for detecting social structures, roles and positions.
But one aspect of our work that differentiates us from other approaches is in going
beyond the application of classical algorithms to social networks described with se-
mantic web technologies. We propose to extend these algorithms and to create new
ones, in order to manage communities’ life cycles, taking into account not only the
graph structure but also the semantics of the ontological primitives used to label its
nodes and arcs.

We first introduce our framework for exploiting the graph models underlying RDF
representations of social networks. We provide formal definitions in SPARQL of
SNA operators parameterized by the ontologies underlying these representations. In
addition we detail SemSNA, an ontology of SNA characteristics used to annotate
social networks. Finally we present how we conducted a semantic social network
analysis on an anonymized dataset from Ipernity.com and the results we obtained.

2 http://oreilly.com/web2/archive/what-is-web-20.html
3 Semantic Web, W3C, http://www.w3.org/2001/sw/

182 G. Erétéo et al.

2 Semantic Social Network Analysis

We use the RDF graphs to represent social networks, and we type those using existing
ontologies together with specific domain ontologies if needed. Some social data are
already readily available in a semantic format (RDF, RDFa, µformats, etc.). However,
today, most of the data are still only accessible through APIs (flickr, Facebook, etc.)
or by crawling web pages and need to be converted. To annotate these social network
representations with SNA indices, we designed SemSNA (Fig. 1), an ontology that
describes SNA notions, e.g., centrality. With this ontology, we can (1) abstract social
network constructs from domain ontologies to apply our tools on existing schemas by
having them extend our primitives; and we can (2) enrich the social data with new
annotations (Fig. 2) such as the SNA indices that will be computed. These annotations
enable us to manage more efficiently the life cycle of an analysis, by pre-calculating
relevant SNA indices and updating them incrementally when the network changes
over time. On top of SemSNA we propose SPARQL formal definitions of SNA op-
erators handling the semantics of the representations. The current tests use the seman-
tic search engine Corese [7] that supports powerful SPARQL extensions particularly
well suited for SNA features such as path computations [8].

Fig. 1. Schema of SemSNA: the ontology of Social Netwtok Analysis

2.1 A New Version of SemSNA: The Ontology of Social Network Analysis

We have designed a new version of SemSNA4, an ontology of Social Network Analy-
sis. The first version [11] was focused on strategic position based on Freeman's defi-
nition of centrality [13]. Since then, we introduced many new primitives to annotate
social data with different definitions of groups and useful indices to characterize their
properties.

4 http://ns.inria.fr/semsna/2009/06/21/voc

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 183

The main class SNAConcept is used as the super class for all SNA concepts. The
property isDefinedForProperty indicates for which relationship, i.e., sub-
network, an instance of the SNA concept is defined. An SNA concept is attached to a
social resource with the property hasSNAConcept. The class SNAIndice describes
valued concepts such as centrality, and the associated value is set with the property
hasValue. We have slightly modified the modelling of centralities of the previous
version [11]. We created a super class Centrality for all centralities defined by
the classes Degree, InDegree, OutDegree, Betweenness, Between-
nessCentrality and ClosenessCentrality. The property hasCentral-
ityDistance defines the distance of the neighbourhood taken into account to
measure the centrality.

We propose a set of primitives to define and annotate groups of resources linked by
particular properties. The class Group is a super class for all classes representing an
alternative concept of group of resources. The class Component represents a set of
connected resources. The class StrongComponent defines a component of a directed
graph where the paths connecting its resources do not contain any change of direction.

The Diameter, subclass of Indice, defines the length of the longest geodesics
(shortest paths between resources) of a component. The property maximumDistance
enables us to restrict component membership to a maximum path length between
members. A clique is a complete sub graph, for a given property according to our
model. An n-clique extends this definition with a maximum path length (n) between
members of the clique; the class Clique represents this definition, and the maximum
path length is set by the property maximumDistance. Resources in a clique can be
linked by shortest paths going through non clique members. An NClan is a restriction
of a clique that excludes this particular case. A KPlex relaxes the clique definition to
allow connecting to k members with a path longer than the clique distance, k is deter-
mined by the property nbExcept. Finally the concept Community supports different
community definitions: InterestCommunity, LearningCommunity, GoalOri-
entedCommunity, PraticeCommunity and EpistemicCommunity [16] [5].
These community classes are linked to more detailed ontologies like [23] used to
represent communities of practice.

sister

mother

supervisor

hasSNAConcept

isDefinedForProperty
hasValue

colleague

colleague

motherfather

hasCentralityDistance

colleague

colleague

hasSNAConcept

isDefinedForProperty

hasCentralityDistance

supervisor

hasValue

subProperty

father

Fig. 2. A social network annotated with SemSNA indices (Degree, Betweenness)

184 G. Erétéo et al.

2.2 Extract SNA Concepts with SPARQL

In [21], researchers have shown that SPARQL "is expressive enough to make all
sensible transformations of networks". However, this work also shows that SPARQL
is not expressive enough to meet SNA requirements for global metric querying (den-
sity, betweenness centrality, etc.) of social networks. Such global queries are mostly
based on result aggregation and path computation which are missing from the stan-
dard SPARQL definition. The Corese search engine [7] provides such features with
result grouping, aggregating function like sum() or avg() and path retrieving [8]
[11]. We present here how to perform social network analysis combining structural
and semantic characteristics of the network with queries performed with Corese, e.g.,
Figure 3 illustrates the calculation of a parameterized degree where only family
relations are considered.

Fig. 3. A Parameterized degree that considers a hierarchy of relations

We introduced a new syntactic convention in Corese for path extraction. A regular
expression is now used instead of the property variable to specify that a path is
searched and to describe its characteristics. The regular expression operators are: /
(sequence), | (or), * (0 or more), ? (optional), ! (not). We can bind the path with a
variable specified after the regular expression. The following example retrieves a path
between two resources ?x and ?y starting with zero or more foaf:knows properties
and ending with the rel:worksWith property; the path length must be equal to or
less than 3:

?x foaf:knows*/rel:worksWith::$path ?y
filter(pathLength($path) <= 3)

Path characteristics are defined by adding options before the regular expression: 'i'
to allow inverse properties, 's' to retrieve one shortest path, 'sa' to retrieve all
shortest paths, e.g., ?x i sa foaf:knows*/worksWith ?y.

Path retrieval enables us to exploit the hierarchy of relation, by taking into account
sub-properties at each step. Consequently we propose parameterized queries that
accept as argument a regular expression of properties. Figure 3 shows a parameterized
degree that only considers the hierarchy of family relationships.

)(guillaumed family><

parent sibling

mother father brother sister

colleague

knows

= 3

Gérard Fabien Mylène

Michel
Yvonne

father
sister

mother
colleague

colleague

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 185

Table 1. Definition of SNA notions in labeled oriented graphs and notations used

SNA indices and definition Notation

Graph: defined as in [1] and [11] G=(EG, RG, nG, lG) where :
• EG and RG are two disjoint finite sets

respectively, of nodes and relations.
• nG : RG → EG

* associates to each relation
a couple of entities called the arguments
of the relation. If nG(r)=(e1,e2) we note
nG

i(r)=ei the ith argument of r.
• lG : EG ∪ RG → L is a labelling function of

entities and relations.
Number of actors: the number of actors
of a given type.

)(Gnbactor
type><

Number of actors: the number of actors
involved in a given relation as subject
or object.

)(Gnbactor
rel><

Number of subject actors: the number
of actors involved in a given relation as
subject.

)(Gnb subject
rel><

Number of object actors: the number of
actors involved in a given relation as
object.

)(Gnbobject
rel><

Number of relations: number of pairs of
resources linked by a relation rel.

)(Gnbrelation
rel><

Path: a list of nodes of a graph G each
linked to the next by a relation belong-
ing to G.

)(),()(;

...,,

1

210

relrlxxrnRrni

xxxxppath

GiiGG

nrel

≤∧=∈∃<∀∧
>=<

+

><

Length: the number of rela-
tions/links/arcs involved in a path

nxxxxplength n =>=<)...,,(210

Density: proportion of the maximum
possible number of relationships. It
represents the cohesion of the social
network.)()(

)(

)(

)()(GnbGnb

Gnb

GDen

actor
relrange

actor
reldomain

relation
rel

rel

><><

><

><

∗

=

Component: a connected sub graph for
a given property (and sub-properties)
with no link to resources outside the
component

),...,,()(21 krel GGGGComp =><
where Gk is a subgraph of G such that for
every pair of nodes ni, nj of Gk there exist a
path from ni to nj in Gk.

Degree: number of paths of properties
of type rel (or subtype) having y at one
end and with a length smaller or equal
to dist. It highlights local popularities. () ()() ⎭

⎬
⎫

⎩
⎨
⎧

≤∧=∨=∧
>=<∃

=

><

><

distnyxyx

xxxxppathx

yD

n

nreln

distrel

0

210 ...,,;

)(,

186 G. Erétéo et al.

Table 1. (continued)

In-Degree: number of paths of proper-
ties of type rel (or subtype) ending by y
and with a length smaller or equal to
dist. It highlights supported resources. () ⎭

⎬
⎫

⎩
⎨
⎧

≤∧=∧
>=<∃

=

><

><

distnyx

xxxxppathx

yD

n

nreln

in
distrel

...,,;

)(,

210

Out-Degree: number of paths of proper-
ties of type rel (or subtype) starting by
y and with a length smaller or equal to
dist. It highlights influencing resources. () ⎭

⎬
⎫

⎩
⎨
⎧

≤∧=∧
>=<∃

=

><

><

distnyx

xxxxppathx

yD

nreln

out
distrel

0

210 ...,,;

)(,

Geodesic between from and to: a geo-
desic is a shortest path between two
resources, an optimal communication
path.

>=<>< toxxxfromtofromg nrel ,...,,,),(21

such that:
>=<∀ >< toyyyfromp mrel ,...,,, 21 n•mm

Diameter: the length of le longest geo-
desic in the network.

)(GDiam rel><

Number of geodesics between from and
to: the number of geodesics between
two resources shows the dependency of
their connectivity with their intermedi-
aries.

),(tofromnbg
rel><

Number of geodesics between from and
to going through node b: the number of
geodesics between two resources going
through a given intermediary node; it
shows the connectivity dependency of
these resources w.r.t. b.

),,(tofrombnbg
rel><

Closeness centrality: the inverse sum of
shortest distances to each other re-
source. It represents the capacity of a
resource to access or to be reached.

() ()()
1−

∈
><>< ⎥

⎦

⎤
⎢
⎣

⎡
= ∑

GEx
rel

c
rel xkglengthkC ,

Partial betweenness: the probability for
k to be on a shortest path of properties
of type rel (or subtype) between x and
y. It represent the capacity of k to be an
intermediary or a broker between x and
y for this type (or subtype) of property.

()
),(

),,(
,,

yxnb

yxbnb
yxbB

g
rel

g
rel

rel
><

><
< =

Betweenness centrality: the sum of the
partial betweenness of a node between
each other pair of nodes. It represents
the capacity of a node to be an interme-
diary in the whole network.

() ∑
∈

><>< =
GEyx

rel
b
rel yxbBbC

,

),,(

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 187

Table 2. Formal definition in SPARQL of semantically parameterized SNA indices

SNA indices SPARQL formal definition

)(Gnbactor
type>< select merge5 count(?x) as ?nbactor from <G>

where{
 ?x rdf:type param[type]6
}

)(Gnbactor
rel>< select merge count(?x) as ?nbactors from <G>

where{
 {?x param[rel] ?y}
 UNION{?y param[rel] ?x}
}

)(Gnb subject
rel>< select merge count(?x) as ?nbsubj from <G>

where{
 ?x param[rel] ?y
}

)(Gnbobject
rel>< select merge count(?y) as ?nbobj from <G>

where{
 ?x param[rel] ?y
}

)(Gnbrelation
rel>< select cardinality(?p) as ?card from <G> where

{
{ ?p rdf:type rdf:Property
 filter(?p ^ param[rel]) }
UNION
{ ?p rdfs:subPropertyOf ?parent
 filter(?parent ^ param[rel]) }
}

)(GComp rel>< select ?x ?y from <G> where {
 ?x param[rel] ?y
}group by any7

)(, yD distrel ><

select ?y count(?x) as ?degree where {
{?x (param[rel])*::$path ?y
filter(pathLength($path) <= param[dist])}
UNION
{?y param[rel]::$path ?x
filter(pathLength($path) <= param[dist])}
}group by ?y

)(, yDin
distrel ><

select ?y count(?x) as ?indegree where{
?x (param[rel])*::$path ?y
filter(pathLength($path)8 <= param[dist])
}group by ?y

5 The merge keyword merges all results in one with distinct values for each variable.
6 Corese accepts a list of parameters at the execution of a query.
7 The keyword any enables to group results having the same value for any result variables
8 The pathLength() function returns the length a the path given in parameter.

188 G. Erétéo et al.

Table 2. (continued)

)(, yDout
distrel ><

select ?x count(?y) as ?outdegree where {
?x (param[rel])*::$path ?y
filter(pathLength($path) <= param[dist])
}group by ?x

),(tofromg rel><
select ?from ?to $path pathLength($path) as
?length where{
?from sa (param[rel])*::$path ?to
}group by ?from ?to

)(GDiamrel> select pathLength($path) as ?length from <G>
where {
?y s (param[rel])*::$path ?to
}order by desc(?length) limit 1

),(tofromnbg
rel>< select ?from ?to count($path) as ?count where{

?from sa (param[rel])*::$path ?to
}group by ?from ?to

),,(tofrombnbg
rel>< select ?from ?to ?b count($path) as ?count

where{
?from sa (param[rel])*::$path ?to
graph $path{?b param[rel] ?j}
filter(?from != ?b)
optional { ?from param[rel]::$p ?to }
filter(!bound($p))
}group by ?from ?to ?b

)(yC c
rel><

select distinct ?y ?to pathLength($path) as
?length (1/sum(?length)) as ?centrality
where{
?y s (param[rel])*::$path ?to
}group by ?y

),,(tofrombB rel>< select ?from ?to ?b
(count($path)/count($path2)) as ?betweenness
where{
?from sa (param[rel])*::$path ?to
graph $path{?b param[rel] ?j}
filter(?from != ?b)
optional { ?from param[rel]::$p ?to } fil-
ter(!bound($p))
?from sa (param[rel])*::$path2 ?to
}group by ?from ?to ?b

()bC b
rel><

Non SPARQL post-processing on shortest paths.

We propose a set of queries (Table 2) to compute SNA metrics adapted to the
oriented labeled graphs described in RDF (Table 1). These queries exploit the path
retrieval features as well as grouping and aggregating functions. We implemented and
tested all the operators that we present.

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 189

3 Linking Online Interaction Data to the Semantic Web

Ipernity.com, the social network we analyzed, offers users several options for build-
ing their social network and sharing multimedia content. Every user can share pic-
tures, videos, music files, create a blog, a personal profile page, and comment on
other’s shared resources. Every resource can be tagged and shared. To build the social
network, users can specify the type of relationship they have with others: friend, fam-
ily, or simple contact (like a favorite you follow). Relationships are not symmetric,
Fabien can declare a relationship with Michel but Michel can declare a different type
of relationship with Fabien or not have him in his contact list at all; thus we have a
directed labeled graph. Users have a homepage containing their profile information
and pointers to the resources they share. Users can post on their profile and their con-
tacts’ profiles depending on access rights. All these resources can be tagged including
the homepage. A publisher can configure the access to a resource to make it public,
private or accessible only for a subset of its contacts, depending on the type of rela-
tionship (family, friend or simple contact), and can monitor who visited it. Groups can
also be created with topics of discussion with three kinds of visibility, public (all users
can see it and join), protected (visible to all users, invitation required to join) or
private (invitation required to join and consult).

3.1 SemSNI: Extending SIOC to Model Social Networking Interactions

Several Ontologies already exist to represent online social networks [10] [11], and we
use them as a basis for our model. We use FOAF9 to represent persons’ profiles and
their relationships in combination with the RELATIONSHIP10 ontology that extends
the foaf:knows property with sub-properties. RELATIONSHIP proposes many
family properties (parentOf, siblingOf, etc.) but it does not have the super prop-
erty we need for all these relations: family. Thus we extend the RELATIONSHIP
ontology with the property SemSNI:family as a super property for all these family
relationships. We modelled the favorite and friend relationship respectively with the
property knowsInPassing and friendOf of this ontology. The SIOC11 [3] ontology
provides the basis for defining a user (class User), the content he produces
(class Item, property has_creator) and the actions of others users on this
content (property has_reply). SIOC types12 extend sioc:Item to specify different
types of resources produced online. We use sioc:Post, sioct:ImageGallery,
sioct:Weblog and sioct:Comment to model respectively posts on homepages,
photo albums, blogs and comments on resources. We use SCOT13 to model tagging.

In order to model homepages, private messages, discussion topics, and
documents that do not exist in SIOC types with the required semantics, we designed
SemSNI (Semantic Social Network Interactions, Fig. 4). SemSNI defines the class
UserHome, PrivateMessage, Topic and Document as subclasses of sioc:Item

9 http://www.foaf-project.org/

10 http://vocab.org/relationship/
11 http://sioc-project.org/
12 http://rdfs.org/sioc/types
13 http://scot-project.org/

190 G. Erétéo et al.

(SemSNI:Document also extends foaf:Document). The class Visit and the prop-
erties visitedResource and hasVisitor enable us to describe the visits of a user
to a resource. In order to infer new relationships between users from their interactions
and the content they share, SemSNI defines the class Interaction and the property
hasInteraction (domain: sioc:User, range: sioc:User). The classes represent-
ing exchanges on a content (sioct:Comment, SemSNI:Visit and Sem-

SNI:PrivateMessage) are defined as subclasses of SemSNI:Interaction and we
can infer a relation hasInteraction between the creator of the resource and its
consumer. We did not type more precisely such relations, but we can extend this
property in order to increase the granularity in the description of interactions between
users. We use the types of access defined in AMO14 (Public, Private, Protected)
in combination with the property SemSNI:sharedThroughProperty to model the
kind of sharing for resources.

Fig. 4. Schema of SemSNI; an ontology of Social Network Interactions

3.2 Generating RDF from a Relational Database with Corese

We used another feature of Corese to transform the relational database of the Iper-
nity.com social network into RDF/XML. Indeed, Corese has an extension that enables
us to nest SQL queries within SPARQL queries. This is done by means of the sql()
function that returns a sequence of results for each variable in the SQL select
clause. Corese has an extension to the standard SPARQL select clause that enables
us to bind these results to a list of variables [9]. In the following example, we show
how we retrieve the friend relationships from the relational database, using this
sql() function and another one (genIdUrl()) that generates URIs from relational
database primary keys (ids):

14 Access Management Ontology, currently developed by the KEWI team at I3S.

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 191

construct { ?url_user1 rel:friendOf ?url_user2 }
select sql('jdbc:mysql://localhost:3306/mysql',
'com.mysql.jdbc.Driver', 'user', 'pwd',
'SELECT user1_id, user2_id from relations where rel = 2 limit
100000') as (?id1, ?id2)
fun:genIdUrl(?id1, 'http://semsni.fr/people/') as ?url_user1
fun:genIdUrl(?id2, 'http://semsni.fr/ people/') as ?url_user2
where { }

Like in [21], once exported in RDF, this network can be processed to leverage the
social network representation with a SPARQL query using a construct block.
Corese can automate some transformations with inference rules [6]. As an example
we can infer a property SemSNI:hasInteraction between two actors when one
commented on the other's resource using the following rule (future improvements
include using the Rule Interchange Format syntax):
<cos:if>
 { ?doc sioc:has_creator ?person1

?doc sioc:has_reply ?comment
?comment sioc:has_creator ?person2 }

</cos:if>
<cos:then>
 {?person1 semsni:hasInteraction ?person2 }
</cos:then>

4 Results

We tested our algorithms and queries on an bi-processor quadri-core Intel(R) Xeon(R)
CPU X5482 3.19GHZ, 32.0Gb of RAM. We applied the defined queries on relations
and interactions from Ipernity.com. We analyzed the three types of relations sepa-
rately (favorite, friend and family) and also used polymorphic queries to analyze them
as a whole using their super property: foaf:knows. We also analyzed the interac-
tions produced by exchanges of private messages between users, as well as the ones
produced by someone commenting someone else's documents.

We first applied quantitative metrics to get relevant information on the structure of
the network and activities: the number of links and actors, the components and the
diameters. 61,937 actors are involved in a total of 494,510 relationships. These rela-
tionships are decomposed in 18,771 family relationships between 8,047 actors, 136,311
friend relationships involving 17,441 actors and 339,428 favorite relationships

0
10000
20000
30000
40000
50000
60000
70000

number actors size largest component

knows

favorite

friend

family

message

comment

Fig. 5. Number of actors and size of the largest component of the studied networks

192 G. Erétéo et al.

Table 3. Performance of queries

Indice Relation Query time Nb of graph projections

Knows 1 m 41.93 s 10,000,000

Favorite 1 m 51.37 s 10,000,000

Friend 1 m 42.62 s 10,000,000

Family 1 m 54.28 s 10,000,000

Comment 35.06 s 1,000,000

)(GDiamrel>

Message 1 m 50.84 s 10,000,000

Knows 1 m 9.62 s 989,020

Favorite 2 m 35.29 s 678,856

Friend 11.67 s 272,622

Family 0.68 s 37,542

Message 17.62 s 1,448,225

)(Gnb relactors ><

Comment 8 m 27.25 s 7,922,136

Knows 0.71 s 494,510

Favorite 0.64 s 339,428

Friend 0.31 s 136,311

Family 0.03 s 18,771

Message 1.98 s 795,949

)(GComp rel><

Comment 9.67 s 2,874,170

Knows 20.59 s 989,020

Favorite 18.73 s 678,856

Friend 1.31 s 272,622

Family 0.42 s 37,542

Message 16.03 s 1,591,898

)(, yD rel >< 1

Comment 28.98 s 5,748,340

Knows Path length <= 2: 2h 56m 34.13s 1,000,000

Favorite Path length <= 2: 5h 33m 18.43s 2,000,000

Friend Path length <= 2: 1m 12.18 s 1,000,000

Shortest paths
used to calculate

)(bC relb ><

Family Path length <= 2 : 27.23 s
Path length <= 3 : 1m 10.71 s

1,000,000
1,000,000

for 61,425 actors. These first metrics show that the semantics of relations are globally
respected, as family relations are less used than friend and favorite. 7,627 actors have
interacted through 2,874,170 comments and 22,500 have communicated through
795,949 messages. All these networks are composed of a largest component contain-
ing most of the actors (Fig. 5) and few very small components (less than 100 actors)
that show "the effectiveness of the social network at doing its job" [20], in connecting
people. The interaction sub networks have a very small diameter (3 for comments and
2 for messages) due to their high density. The family network has a high diameter

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 193

(19), consistent with its low density. However the friend and favorite networks have a
low density and a low diameter revealing the presence of highly intermediary actors.

The betweenness and degree centralities confirm this last hypothesis. The favorite
network is highly centralized, with five actors having a betweenness centrality higher
than 0, with a dramatically higher value for one actor: one who has a betweenness
centrality of 1,999,858 and the other 4 have a value comprised between 2.5 and 35.
This highest value is attributed to the official animator of the social network who has
a favorite relationship15 with most actors of the network, giving him the highest de-
gree: 59,301. In the friend network 1,126 actors have a betweenness centrality going
from 0 to 96,104 forming a long tail, with only 12 with a value higher than 10,000.
These actors do not include the animator, showing that the friend network has been
well adopted by users. The family network has 862 actors with a betweenness central-
ity from 0 to 162,881 with 5 values higher than 10,000. Only one actor is highly
intermediary in both friend and family networks. The centralization of these three
networks presents significant differences showing that the semantics of relations have
an impact on the structure of the social network. The betweenness centralities of all
the relations, computed using the polymorphism in SPARQL queries with the knows
property, highlight both the importance of the animator who has again the signifi-
cantly highest centrality and the adoption by users with 186 actors playing a role of
intermediary. The employees of Ipernity.com have validated these interpretations of
the metrics that we computed, showing the effectiveness of a social network analysis
that exploits the semantic structure of relationships.

The Corese engine works in main memory and such an amount of data is memory
consuming. The 494,510 relations declared between 61,937 actors use a space of 4.9
Gb. Annotations of all messages use 14.7 Gb and the representation of documents
with their comments use 27.2 Gb. On the other hand working in main memory allows
us to process the network very rapidly. The path computation is also time and space
consuming and some queries had to be limited to a maximum number of graph pro-
jections when too many paths could be retrieved. However, in that case approxima-
tions are sufficient to obtain relevant metrics (Table 3) on a social network, i.e., for
centralities [2]. Moreover, we can limit the distance of the paths we are looking for by
using others metrics. For example, we limit the depth of paths to be smaller or equal
to the diameter of the components when computing shortest paths.

5 Conclusion

The huge amounts of social activities and user-generated contents have to be properly
organized and filtered to preserve the benefits of online collaboration. While SNA
provides relevant metrics to understand the structure of online activities, Semantic
Web technologies enable us to represent, to mash and to query social data from appli-
cations spanning both internet and intranet networks. The directed labeled graph
structure of RDF is well suited to represent such social knowledge and such socially
produced metadata. Our framework allows analyzing these rich typed representations
of social networks and handling the diversity of interactions and relationships with
parameterized SNA metrics. Classical SNA ignores the semantics of richly typed

15 This animator is an employee of the company that animates the social network. He declares

as favorite every user who just created an account and sends him welcome messages.

194 G. Erétéo et al.

graphs like RDF and classical Relational Database approaches do not offer simple
mechanisms for handling the semantics of type lattices. Subsumption relations are
natively taken into account when querying the RDF graph in SPARQL with an engine
like CORESE. Parameterized operators formally defined in SPARQL rely on this to
allow us to adjust the granularity of the analysis of relations. Moreover, a new range
of pre-processing can be used such as rules crawling the network to add types or rela-
tions whenever they detect a pattern, e.g., an actor frequently commenting on posts by
another actor is linked to him by a relation “monitors”.

New queries that compute new operators can be defined at anytime and SemSNA can
be extended. Network assortativity [20] is an example of future operators that could
both leverage the semantics of the schemas (e.g., similarity between two nodes) and
extension mechanisms of SPARQL (e.g., counting the number of shared connections).
In addition, using a schema to add the results of our queries (or rules) to the network
also allows us to decompose complex processing into two or more stages and to factor-
ize some computation among different operators, e.g., we can augment the network with
in-degree calculation and betweenness calculation and then run a query on both criteria
to identify nodes with an in-degree > y and a betweenness > x.

Furthermore we validated this framework on a real social network and revealed the
importance of considering the diversity of relationships and their semantic links. The
sub-networks we analyzed present different characteristics that highlight in particular
the strategic actors and the partioning of the different activities. The approach is applied
as batch processing on large RDF triple store (CORESE is a freeware handling millions
of nodes but other engines with the same extensions could be used just as well). Conse-
quently we annotate the social data with the results of these parameterized SNA metrics
using SemSNA ontology to provide services based on this analysis (e.g. filter social
activity notifications), to use them in the calculation of more complex indices or (in the
future) to support iterative or parallel approaches in the computations. Computation is
time consuming and even if CORESE runs in main memory, experiments reported in
the paper show that handling a network with millions of actors is out of our reach today.
We started to study different approaches for addressing that problem: (1) identifying
computation techniques that are iterative, parallelizable, etc. (2) identifying approxima-
tions that can be used and under which conditions they provide good quality results (3)
identifying graph characteristics (small worlds, diameters, etc.) that can help us cut the
calculation space and time for the different operators. Our perspectives include also the
development of a semantic based community detection algorithm and methods to man-
age the evolution of such ever-changing networks. More precisely, we plan to exploit
these semantic based SNA metrics to structure overwhelming flows of corporate social
data and to foster social interactions.

Acknowledgments. We thank the ANR for funding the ISICIL project ANR-08-CORD-
011 that led to these results. We thank Peter Sander for proof-reading this article.

References

1. Baget, J.-F., Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F., Giboin, A.,
Gutierrez, A., Leclère, M., Mugnier, M.-L., Thomopoulos, R.: Griwes: Generic Model
and Preliminary Specifications for a Graph-Based Knowledge Representation Toolkit. In:
Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 297–310.
Springer, Heidelberg (2008)

 Analysis of a Real Online Social Network Using Semantic Web Frameworks 195

2. Brandes, U., Pich, C.: Centrality estimation in large networks. Bifurcation and Chaos in
Applied Sciences and Engineering 17(7), 2303–2318 (2007)

3. Breslin, J.G., Harth, A., Bojars, U., Decker, S.: Towards Semantically-Interlinked Online
Communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
pp. 500–514. Springer, Heidelberg (2005)

4. Cavazza, F.:
http://www.fredcavazza.net/2009/04/10/
social-media-landscape-redux/ (2009)

5. Conein, B.: Communautés épistémiques et réseaux cognitifs: coopération et cognition dis-
tribuée. Revue D’Economie Politique 113, 141–159 (2004)

6. Corby, O., Faron-Zucker, F.: Corese: A Corporate Semantic Web Engine. In: Workshop on
Real World RDF and Semantic Web Applications (2002)

7. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the Semantic Web with the
Corese Search Engine. In: ECA/PAIS 2004 (2004)

8. Corby, O.: Web, Graphs and Semantics. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008.
LNCS (LNAI), vol. 5113, pp. 43–61. Springer, Heidelberg (2008)

9. Corby, O., Kefi-Khelif, L., Cherfi, H., Gandon, F., Khelif, K.: Querying the Semantic Web
of Data using SPARQL, RDF and XML. INRIA Research Report n°6847 (2009)

10. Erétéo, G., Buffa, M., Gandon, F., Grohan, P., Leitzelman, M., Sander, P.: A State of the
Art on Social Network Analysis and its Applications on a Semantic Web. In: SDoW 2008,
Workshop at ISWC 2008 (2008)

11. Erétéo, G., Gandon, F., Corby, O., Buffa, M.: Semantic Social Network Analysis. In: Web
Science 2009 (2009)

12. Finin, T., Ding, L., Zou, L.: Social networking on the semantic web. Learning organization
journal 5(12), 418–435 (2005)

13. Freeman, L.C.: Centrality in Social Networks: Conceptual Clarification. Social Net-
works 1, 215–239 (1979)

14. Golbeck, J., Parsia, B., Hendler, J.: Trust network on the semantic web. In: Proceedings of
cooperative information agents (2003)

15. Goldbeck, J., Rothstein, M.: Linking social Networks on the web with FOAF. In: Proceed-
ings of the twenty-third conference on artificial intelligence, AAA 2008 (2008)

16. Henri, F., Pudelko, B.: Understanding and analyzing activity and learning in virtual com-
munities. Journal of Computer Assisted Learning 19, 474–487 (2003)

17. McAfee, A.-P.: Enterprise 2.0: The Dawn of Emergent Collaboration, MIT Sloan Man-
agement Review, Management of Technology and Innovation (April 1, 2006)

18. Mika, P.: Ontologies are Us: a unified Model of Social Networks and Semantics. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 522–536. Springer, Heidelberg (2005)

19. Paolillo, J.C., Wright, E.: Social Network Analysis on the Semantic Web: Techniques and
Challenges for Visualizing FOAF. In: Book Visualizing the semantic Web Xml-based
Internet and Information (2006)

20. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM rev. 45,
167–256 (2003)

21. San Martin, M., Gutierrez, C.: Representing, Querying and Transforming Social Networks
with RDF / SPARQL. In: ESWC 2009 (2009)

22. Scott, J.: Social Network Analysis, a handbook, 2nd edn. Sage, Thousand Oaks (2000)
23. Vidou, G., Dieng-Kuntz, R., El Ghali, A., Evangelou, C., Giboin, A., Tifous, A., Jacquemart,

S.: Towards an Ontology for Knowledge Management in Communities of Practice (2006)

Coloring RDF Triples to Capture Provenance

Giorgos Flouris1, Irini Fundulaki1, Panagiotis Pediaditis1,2, Yannis Theoharis1,2,
and Vassilis Christophides1,2

1 Institute of Computer Science, FORTH, Greece
2 Computer Science Department, University of Crete, Greece

{fgeo,fundul,pped,theohari,christop}@ics.forth.gr

Abstract. Recently, the W3C Linking Open Data effort has boosted the pub-
lication and inter-linkage of large amounts of RDF datasets on the Semantic
Web. Various ontologies and knowledge bases with millions of RDF triples from
Wikipedia and other sources, mostly in e-science, have been created and are
publicly available. Recording provenance information of RDF triples aggregated
from different heterogeneous sources is crucial in order to effectively support
trust mechanisms, digital rights and privacy policies. Managing provenance be-
comes even more important when we consider not only explicitly stated but also
implicit triples (through RDFS inference rules) in conjunction with declarative
languages for querying and updating RDF graphs. In this paper we rely on col-
ored RDF triples represented as quadruples to capture and manipulate explicit
provenance information.

1 Introduction

Recently, the W3C Linking Open Data [29] effort has boosted the publication and in-
terlinkage of large amounts of RDF datasets on the Semantic Web [1]. Various ontolo-
gies and knowledge bases with millions of RDF triples from Wikipedia [26] and other
sources have been created and are available online [25]. In addition, numerous data
sources in e-science are published nowadays as RDF graphs, most notably in the area
of life sciences [27], to facilitate community annotation and interlinkage of both sci-
entific and scholarly data of interest. Finally, Web 2.0 platforms are considering RDF
and RDFS as non-proprietary exchange formats for the construction of information
mashups [16,28].

In this context, it is of paramount importance to be able to store the provenance of a
piece of data in order to effectively support trust mechanisms, digital rights and privacy
policies. Provenance means origin or source and refers to from where and how the piece
of data was obtained [33]. In the context of scientific communities, provenance infor-
mation can be used in the proof of the correctness of results and in general determines
their quality. In some cases, provenance of data is considered more important than the
result itself.

The popularity of the RDF data model [8] and RDF Schema language (RDFS) [2]
is due to the flexible and extensible representation of information, independently of the
existence or absence of a schema, under the form of triples. An RDF triple, (subject,-
property,object), asserts the fact that subject is associated with object through prop-
erty. RDFS is used to add semantics to RDF triples, by imposing inference rules [15]

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 196–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Coloring RDF Triples to Capture Provenance 197

(mainly related to the transitivity of subsumption relationships) which can be used to
entail new implicit triples (i.e., facts) that are not explicitly asserted.

Currently, there is no adequate support for managing (i.e., querying and updating)
provenance information of implicit RDF triples. There are two different ways in which
such implicit knowledge can be viewed and this affects the semantics of update opera-
tions only. Under the coherence semantics [10], implicit knowledge does not depend on
the explicit one but has a value on its own; therefore, there is no need for explicit “sup-
port” of some triple. Under this viewpoint, implicit triples are “first-class citizens”, i.e.,
considered of equal value as explicit ones. On the other hand, under the foundational
semantics [10] each implicit triple depends on the existence of the explicit triple(s) that
imply it: implicit knowledge is only valid as long as the supporting explicit knowledge
exists. It should be emphasized that the selected viewpoint is irrelevant as far as stan-
dard implication and querying is considered, but it affects the way updates should be
performed; in particular, the coherence semantics corresponds to “belief set changes”,
whereas foundational semantics corresponds to “belief base changes”, in the belief re-
vision terminology [10].

a1 p b1

b1 q d1

s p o c

c1

c2

c2

d1 r b2

b1 d1t

c3

c3

d2 r b1

(a)

(b)

(c)

a1 p b1

b1 q d1

s p o

d1 r b2

b1 d1t

d2 r b1

Fig. 1. Granularity Levels of Provenance

In this paper we propose the use of
colors (as in [4]) in order to capture
the provenance of RDF data and schema
triples. Intuitively, the color of an im-
plicit and explicit triple represents the
source from which the triple was ob-
tained. We record the color of an RDF
triple as a fourth column, hence obtain-
ing an RDF quadruple as in [7,17].

To provide the intuition of the gran-
ularity levels of provenance for RDF
datasets that we capture with this work,
we compare it with the representation of provenance information in the relational con-
text. For instance, authors in [4] use colors to capture the provenance of relational tables,
tuples and attributes. If we consider that a relational tuple of the form [a1:v1, . . . , ak:vk]
with tuple identifier tid corresponds to a set of triples (tid, aj , vj), j = 1, . . . k, then
(see Fig. 1): a color assigned to (a) a single triple captures provenance at the level of
an attribute of the relational tuple; (b) a collection of triples sharing the same subject
captures provenance at the level of the relational tuple and finally (c) a set of triples
whose subjects are instances of the same schema class, captures provenance of the rela-
tional table. The quadruples used to represent colored RDF/S triples leverage the syntax
of RDF Named Graphs [5]: an RDF named graph can be modeled by arbitrary sets of
triples sharing the same color.

The main contributions of this work are:

– We rely on the notion of colors to capture provenance information of explicit and
implicit RDF triples. In particular, we employ a semigroup structure, defined by a
set of colors to record and a binary operation “+” to reason over the provenance of
RDF triples.

198 G. Flouris et al.

– We extend the RDFS inference rules [15] for computing the composite provenance
of implicit RDF triples. In this respect, we devise an algorithm for determining on
the fly the provenance of non-materialized implicit RDF triples.

– We study the semantics of provenance propagation and querying for the subclass,
subproperty and type RDF hierarchies when colored RDF triples are represented
as quadruples. In addition, we discuss atomic update operations (i.e., inserts and
deletes) of RDF quadruples; updates are considered under the coherence semantics
which allow us to preserve more knowledge during update operations [10].

The paper is structured as follows: in Section 2 we present the motivating example that
we will use throughout this paper. Section 3 presents the basic RDF and RDFS notions.
In Section 4 we introduce the notions of color and quadruple and discuss inference rules
for sets of RDF quadruples. Section 5 discusses simple queries and atomic updates. We
present related work in Section 6 and conclude in Section 7.

2 Motivating Example

We will use, for illustration purposes, an example taken from the News application
domain. The RDFS schema of our News example captures information related to news-
papers and politicians as well as the relationships between them and is contributed by
different information sources.

s p o c

q1 &NYT endorses &B . Obama c2
q2 &NYT rdf:type Newspaper c4
q3 Newspaper rdf:type rdfs:Class c3
q4 Newspaper rdfs:subClassOf Mass Media c3
q5 Mass Media rdfs:subClassOf Media c5
q6 Candidate rdf:type rdfs:Class c5
q7 &B . Obama rdf:type Candidate c5
q8 endorses rdf:type rdf:Property c1
q9 endorses rdfs:domain Newspaper c1
q10 endorses rdfs:range Candidate c1
q11 Candidate rdfs:subClassOf Person c1
q12 supports rdf:type rdf:Property c1
q13 supports rdfs:domain MassMedia c1
q14 supports rdfs:range Person c1
q15 endorses rdfs:subPropertyOf supports c2
q16 &NYT endorses &B . Obama c1
q17 Media rdf:type rdfs:Class c5

Fig. 2. Relation Q(s, p, o, c)

Relation Q(s,p,o,c) that
stores both schema and data
triples is shown in Fig. 2.
For Q(s, p, o, c), the s , p
and o columns stand for the
subject, predicate and object
of an RDF triple. Column c
is used to store the prove-
nance (color) of a triple (s , p,
o), which corresponds to the
source from which this triple
originates from and is rep-
resented by a URI (the URI
of the source). We say that a
triple (s, p, o) is colored c iff
(s, p, o, c) is in Q(s, p, o, c).
The set of triples (s , p, o) can

be obtained by projecting on columns s , p and o ofQ(s, p, o, c). InQ(s, p, o, c), a triple
(s , p, o) can be assigned different colors (e.g., quadruples q1 and q16); this way, we can
capture data integration scenarios in which the same piece of information originates
from different sources.

Since RDF/S graphs can be seen as a kind of node and edge labeled directed graphs,
we use the following graphical notation: classes and properties (binary relations
between classes) of an RDFS vocabulary, are represented with boxes, and ovals re-
spectively. Instances of classes contain their URI reference and to distinguish between

Coloring RDF Triples to Capture Provenance 199

individual resources and classes, we prefix the URI of the former with the “&” symbol.
RDFS built-in properties rdfs:subClassOf, rdf:type and rdfs:subPropertyOf are repre-
sented by dashed, dotted and dotted-dashed arrows respectively. Fig. 3 shows the graph
obtained from the quadruples inQ(s, p, o, c) of Fig. 2. For (s, p, o, c), we color the edge
with c and we draw s p c ��o (except if p is one of the built-in RDF/S properties where
we draw s c ��o).

Fig. 3. Graph representation of Q(s, p, o, c)

A great part of the information captured by a set of RDF triples can be inferred [15]
by the transitivity of class and property subsumption relationships (rdfs:subClassOf
and rdfs:subPropertyOf respectively) stated in the associated schemas. For instance,
although not explicitly asserted in Q(s, p, o, c), we can infer that Newspaper is a sub-
class of Media because (i) Newspaper is a subclass of Mass Media (quadruple q4) and
(ii) Mass Media is a subclass of Media (quadruple q5).

The question raised here is the following: “what is the color of the implicit RDF
triple?”: the triple cannot be colored either c3 or c5 (colors of quadruples q4 and q5 re-
spectively). In terms of provenance, we view the origin of this triple as composite: this
triple should be colored c3 and c5. A possible way to represent this fact is to add quadru-
ples (Newspaper , rdfs:subClassOf, Media , c3) and (Newspaper , rdfs:subClassOf, -
Media , c5) in Q(s, p, o, c). But, in this case, the query “return the triples colored c3”
would falsely return (Newspaper , rdfs:subClassOf, Media). Hence, composite origin
cannot be captured by associating with the implicit triple separately the colors of its
implying triples.

Instead, we capture the provenance of implicit triples using colors defined by ap-
plying the special operation “+” on the colors of its implying triples. For instance,
we color triple (Newspaper , rdfs:subClassOf, Media) with the color c(3,5) = c3 + c5.
Color c(3,5) can be seen as a new, composite source of information: it is a new URI
and is assigned to the triples which are implied by triples colored c3 and c5 (as in the
above example). Note that in this paper, we only consider where provenance [33], i.e.,
we record the sources that contributed in generating a particular triple, not the processes

&NYT &B. Obamaendorses

Newspaper

Mass Media

Media

Candidateendorses c
1

c
1

c
4

Personsupports c
1

c
1

c
5

rdfs:Class

c
3

c
1c

2

rdf:Property

c
5

c
3
c
5

c
1

rdf:type

rdfs:subclassOf

rdfs:subpropertyOf

c
2

rdfs:domain rdfs:range

c
1

endorses c
1

c
5

c
5

200 G. Flouris et al.

(e.g., the particular inference rules) that led to its generation (how provenance) [33]. In
Section 4 we discuss the properties of operation “+” in more detail.

As with annotated databases [11,12], we aim at supporting both provenance propa-
gation and provenance querying over the subclass, subproperty and type RDF hierar-
chies. In the case of provenance propagation, queries are targeted to the original data
and provenance is propagated to the query results. The result of these queries are ex-
plicit and implicit colored RDF triples. For instance, one can ask the query “return all
instances of class Newspaper”. The result of the query will be (&NYT , rdf:type, -
Newspaper , c4). Query “return all subclasses of Media” will return (Newspaper ,
rdfs:subClassOf, Media , c(3,5)) and (Mass Media , rdfs:subClassOf, Media , c5). Note
that (Newspaper , rdfs:subClassOf, Media , c(3,5)) is an implicit quadruple obtained by
applying the transitive rdfs:subClassOf subsumption relationship on quadruples (Mass
Media , rdfs:subClassOf, Media , c5) and (Newspaper , rdfs:subClassOf, Mass Media ,
c3) as previously discussed. On the other hand, in the case of provenance querying,
queries are explicitly targeted at provenance information. Examples falling in this cat-
egory are queries asking for the color of a given triple, or queries that filter triples
given a color. For instance, the query “return the color of (Newspaper , rdfs:subClassOf,
Media)”, will return c(3,5).

In this work, we support atomic updates; more specifically, one can either (a) in-
sert a quadruple, or (b) delete an explicit or implicit quadruple. As previously stated,
for our update operations we adhere to the coherence semantics [10], according to
which we must explicitly retain all the implicit triples that will no longer be implied
after the deletion of an explicit triple; we must also ensure that the resulting set of
quadruples is redundant-free. As an example, consider the deletion of (&B . Obama ,
rdf:type, Candidate , c5). According to the coherence semantics we must retain the
implicit information (&B . Obama , rdf:type, Person , c(1,5)) implied by quadruples
(&B . Obama , rdf:type, Candidate , c5) and (Candidate , rdf:subClassOf, Person , c1).
Had we followed the foundational semantics, the implicit triple (and all the information
it carries) would be lost, which would correspond to an unnecessary loss of information.

3 Preliminaries

In this work, we ignore non-universally identified resources, called unnamed or blank
nodes [14]. In this respect, we consider two disjoint and infinite sets U, L, denoting the
URIs and literals respectively.

Definition 1. An RDF triple (subject, predicate, object) is any element of the set
T = U×U× (U ∪ L).

The RDF Schema (RDFS) language [2] provides a built-in vocabulary for asserting
user-defined schemas in the RDF data model. For instance, RDFS names rdfs:Resource
(res), rdfs:Class (class) and rdf:Property (prop)1 could be used as objects of triples de-
scribing class and property types. Furthermore, one can assert instance of relationships
of resources with the RDF predicate rdf:type (type), whereas subsumption relation-
ships among classes and properties are expressed with the RDFS rdfs:subClassOf (sc)

1 In parenthesis are the terms we use to refer to the RDFS built-in classes and properties.

Coloring RDF Triples to Capture Provenance 201

and rdfs:subPropertyOf (sp) predicates respectively. In addition, RDFS rdfs:domain
(domain) and rdfs:range (range) predicates allow one to specify the domain and range
of the properties in an RDFS vocabulary. In the rest of this paper, we consider two
disjoint and infinite sets of URIs of classes (C ⊂ U) and property types (P ⊂ U).

4 Provenance for RDF/S Data

In the same spirit as in [4] for relational databases, we assign a color to an RDF triple
in order to capture its provenance.

Definition 2. Structure (I, “+”) is a commutative semigroup where:

– I ⊂ U is the set of colors, disjoint from the sets of class C and property types P.
– “+” is a binary operation with the following properties: ∀c1, c2, c3 ∈ I

c1 + c1 = c1 (Idempotence)
c1 + c2 = c2 + c1 (Commutativity)
c1 + (c2 + c3) = (c1 + c2) + c3 (Associativity)

Binary operation “+” is defined to capture the provenance of implicit RDF triples (see
Table 1) and returns a composite color which is also in I, i.e., if a triple t is implied
by triple t1 (whose color is c1) and t2 (whose color is c2), then the color of t should
be c1 + c2 and is denoted by c(1,2). In fact, c(1,2) is a new URI in I whose exact
form is an implementation detail that we don’t address in this paper. Note that, for n
colors, there are O(2n) possible composite colors, so the storage of a composite color
would require O(n) bits in an efficient implementation. For an implicit RDF triple, its
implying triples are those used to obtain it through the application of the inference rules
that will be discussed in Section 4.1.

We say that color ck is a defining color of c(1,2,...,n) and write ck � c1,2,...,n iff k ∈
{1, 2, ..., n}, i.e., if c(1,2,...,n) can be obtained by an operation of the form c(1,2,...,n) =
ck + c for some color c. In other words, if a triple t is colored c(1,2,...,n) and ck is a
defining color of c(1,2,...,n), then t is an implicit triple which has been inferred using
some triple colored ck.

The intuition behind the properties of the “+” operation is the following: (a) an
implicit RDF triple obtained from triples of the same color inherits the color of its
implying triples (idempotence) (b) the color of an implicit triple is uniquely determined
by the colors of the triples that imply it and not by the order of application of the
inference rules (commutativity and associativity).

We should also note that c1 + c2 is a new color unless c1 = c2. In this manner, we
keep a clear separation of what is given (explicit) and what can be implied (implicit).
Moreover, the choice of idempotence is due to the semantics we give to colors as sources
of information and the type of provenance we support: we need to know which sources
participated in the creation of a new triple irrespective of which triples contributed to
its implication. On the other hand, commutativity and associativity stem from the fact
that the set of triples that are implied by a given triple set is the same irrespective of the
order in which the inference rules are applied.

202 G. Flouris et al.

Definition 3. An RDF quadruple (subject, predicate, object, color) is any element
of the set D = U×U× (U ∪ L)× I.

Using this definition, we can define the notion of an RDF dataset featuring triples asso-
ciated with their provenance information as follows:

Definition 4. An RDF Dataset d is a finite set of quadruples in D (d ⊆ D).

Note that none of the existing approaches in the literature combine intentional and ex-
tensional assignment of triples to provenance information (colors). In [30] RDF Named
Graphs, capturing the provenance of RDF triples, are defined intentionally through
SPARQL [31] views and do not support the explicit assignment of triples to such graphs,
whereas in [5] a purely extensional definition is followed. The notion of colors as in-
troduced in this paper allows us to capture both the intentional and extensional aspects
of RDF graphs (i.e., sets of RDF triples) that are useful to record and reason about
provenance information in the presence of updates.

4.1 Inference

Similarly to RDF graphs (i.e., sets of triples) we define a consequence operator that
abstracts a set of inference rules. These rules compute the closure of an RDF dataset d,
denoted by Cn(d), which is obtained using the inference rules of Table 1. We say that
a dataset d entails a quadruple q, and write d # q, iff q ∈ Cn(d). We say that a triple t
= (s, p, o) is colored c iff (s, p, o, c) ∈ Cn(d).

The inference rules shown in Table 1 extend those specified in [15] in a straight-
forward manner to take into account colors. They compute the color of an implicit
triple, using the colors of its implying triples. For instance, for our motivating example
of Section 2, quadruple (Newspaper , rdfs:subClassOf, Media , c(3,5)) is obtained by

applying the Transitivity of sc I
(2)
d rule on quadruples (Newspaper , rdfs:subClassOf,

Mass Media , c3) and (Mass Media , rdfs:subClassOf, Media , c5).

4.2 Redundancy Elimination

In our work we consider that the RDF datasets are redundant free. An RDF dataset is
redundant free if there does not exist a quadruple that can be implied by others when ap-
plying inference rules I(1)

d – I(6)
d of Table 1. The detection and removal of redundancies

is straightforward using these rules.
In the sequel, we assume that queries and updates are performed upon redundant

free RDF datasets. In effect, this means that redundancies are detected (and removed)
at update time rather than at query time. This choice was made because we believe
that in real scale Semantic Web systems, query performance should prevail over update
performance. Redundant free RDF datasets were chosen because they offer a num-
ber of advantages in the case of transaction management for concurrent updates and
queries.

Coloring RDF Triples to Capture Provenance 203

Table 1. A subset of the RDFS Inference Rules for RDF Datasets

Reflexivity of sc Transitivity of sc

I
(1)
d :

(C, type, class, c1)
(C, sc, C, c1) I

(2)
d :

(C1, sc, C2, c1), (C2, sc, C3, c2)
(C1, sc, C3, c(1,2))

Reflexivity of sp Transitivity of sp

I
(3)
d :

(P, type, prop, c1)
(P, sp, P, c1) I

(4)
d :

(P1, sp, P2, c1), (P2, sp, P3, c2)
(P1, sp, P3, c(1,2))

Transitivity of class instantiation Transitivity of property instantiation

I
(5)
d :

(x, type, C1, c1), (C1, sc, C2, c2)
(x, type, C2, c(1,2)) I

(6)
d :

(P1, sp, P2, c1), (x1, P1, x2, c2)
(x1, P2, x2, c(1,2))

5 Querying and Updating RDF Datasets

5.1 Querying RDF Datasets

In this section we discuss a simple class of queries that allow one to express queries
on the subclass, subproperty and type hierarchies of an RDF dataset. We consider V , C
to be two sets of variables for resources and colors respectively; V , C, U (URIs) and
L (literals) are mutually disjoint sets. We define a simple form of a quadruple pattern,
called q-pattern which is an element from (U ∪ V) × {type ∪ sc ∪ sp} × (U ∪ V) ×
(I∪ C). In our context, a query is of the form (H,B,C) where H (head) is a q-pattern,
B (body) is an expression defined after the antecedent of the inference rules presented
in Section 4.1, and C (constraints) is a conjunction of atomic predicates. Each atomic
predicate has the form: (1) v = const for v ∈ V ; (2) v � v′ for v, v′ ∈ C; (3)
c = c1 + c2 . . .+ ck where c ∈ C and ci ∈ I.

According to the above definition, one can express constraints on resources (1), on
colors (2), as well as to specify that a color considered in the query is defined by a set
of other colors (3). In addition, we require that all variables that appear in the head of
the query (H) appear in the query’s body (B). This restriction is imposed in order to
have computationally desirable properties.

We denote variables with ?x, ?y, . . . for resources and ?c1, ?c2, . . . for colors. To
define the query semantics, we use the notion of mapping (as in [21]) as follows: a
mapping μ is a partial function μ : (V ∪ C) → U. The domain of μ (dom(μ)) is the
subset of V ∪ C where μ is defined. For a variable ?v, μ(?v) denotes the resource or
color to which ?v is mapped through μ.

To define the semantics of a q-pattern we must define first the semantics of a property
r over an RDF dataset d, denoted by [[r]]d. Given an RDF dataset d, [[r]]d for properties
type, sc, sp, domain, range and user defined property p is given in Table 2. We write
d #S q to denote that dataset d entails quadruple q when the inference rules in S are
applied on d.

204 G. Flouris et al.

Table 2. [[r]]d for type, sc, sp, domain, range and user defined property p

[[type]]d = {(x, y, c) | d �{I
(2)
d

,I
(5)
d

} (x, type, y, c)}
[[sc]]d = {(x, y, c) | d �{I

(1)
d

,I
(2)
d

} (x, sc, y, c)}
[[sp]]d = {(x, y, c) | d �{I

(3)
d

,I
(4)
d

} (x, sp, y, c)}
[[domain]]d = {(x, y, c) | d � (x,domain, y, c)}
[[range]]d = {(x, y, c) | d � (x, range, y, c)}
[[p]]d = {(x, y, c) | d �{I

(4)
d

,I
(6)
d

} (x, p, y, c)}

Table 3. Semantics of q-patterns

[[(a, exp, ?y, ?c)]]d = {μ | dom(μ) = {?y, ?c} and (a, μ(?y), μ(?c)) ∈ [[exp]]d}
[[(?x, exp, a, ?c)]]d = {μ | dom(μ) = {?x, ?c} and (μ(?x), a, μ(?c)) ∈ [[exp]]d}
[[(?x, exp, ?y, c)]]d = {μ | dom(μ) = {?x, ?y} and (μ(?x), μ(?y), c) ∈ [[exp]]d}
[[(a, exp, b, ?c)]]d = {μ | dom(μ) = {?c} and (a, b, μ(?c)) ∈ [[exp]]d}
[[(a, exp, b, c)]]d = {μ | dom(μ) = ∅ and (a, b, c) ∈ [[exp]]d}

We write 〈r〉d to denote the semantics of property r when no inference rule is used.
We can now define the semantics of a q-pattern. Consider an RDF dataset d and q =
(?X, exp, ?Y, ?c) a q-pattern, where exp is one of sc, sp, type, domain and range. Then
the evaluation of q over d is defined as follows:

[[q]]d = {μ | dom(μ) = {?X, ?Y, ?c} and (μ(?X), μ(?Y), μ(?c)) ∈ [[exp]]d}

In Table 3 we give the semantics of some q-patterns when URIs and colors are consid-
ered (where a, b ∈ U and c ∈ I). Finally, given a mapping μ we say that μ satisfies an
atomic predicate C, denoted by μ # C, per the following conditions:

μ # (?x = const) iff μ(?x) = const, const ∈ U, ?x ∈ dom(μ)
μ # (?x =?y) iff μ(?x) = μ(?y), ?x, ?y ∈ dom(μ)
μ # (?c =?c′) iff μ(?c) = μ(?c′), ?c, ?c′ ∈ dom(μ)
μ # (?c�?c′) iff μ(?c) � μ(?c′) ?c, ?c′ ∈ dom(μ)
μ # (?c = c1 + ... + ck) iff μ(?c) = c1 + . . . + ck, ?c ∈ dom(μ)

For a query Q = (H,B,C) an RDF dataset d and mapping μ, such that μ ∈ [[B]]d, and
μ # C, μ(H) is the quadruple obtained by replacing every variable ?x in dom(μ) with
μ(?x). The color variable (if any) is replaced by the color obtained by applying the “+”

operator as specified by the inference rules I(1)
d to I

(6)
d of Table 1. The answer to Q is

the union of the quadruples μ(H) for each such mapping μ.

5.2 Updating RDF Datasets

In this section we discuss atomic update operations (inserts and deletes). Recall that in
our work we follow the coherence semantics [10] according to which we need to retain
implicit information that would be lost during a triple deletion. Moreover, we enforce

Coloring RDF Triples to Capture Provenance 205

that the resulting RDF datasets will remain valid with respect to the employed RDFS
schema. The notion of validity has been described in various fragments of the RDFS
language ([18,32]), and is used to overrule certain triple combinations. In the context
of RDF datasets, the validity constraints are applied (and defined) at the level of the
dataset, but the color-related part of the quadruple is not considered. The validity con-
straints that we consider in this work concern the disjointness between class, property
and color names and the acyclicity of rdfs:subClassOf and rdfs:subPropertyOf sub-
sumption relationships. An additional validity constraint that we consider in our work
is that the subject and object of the instance of some property should be correctly classi-
fied under the domain and range of the property respectively. For a full list of the related
validity constraints, see [19].

The semantics of each atomic update is specified by its corresponding effects and
side-effects. The effect of an insert or delete operation consists of the straightforward
insertion/deletion of the requested quadruples. The side-effects ensure that the result-
ing RDF dataset continues to be valid and non-redundant as discussed in [35]. Update
semantics adhere to the principle of minimal change [9], per which a minimal number
of insertions and deletions should be performed in order to restore a valid and non-
redundant state of an RDF dataset. The effects and side-effects of insertions and dele-
tions are determined by the kind of triple involved, i.e., whether it is a class instance or
property instance insertion or deletion. Due to space restrictions we only describe class
instance insertions and deletions.

INSERT Operation. A primitive insert operation is of the form: insert(s, p, o, i) where
s, p ∈ U, o ∈ U ∪ L, i ∈ I.

Algorithm 1. Class Instance Insertion Algorithm
Data: insert(x, type, y, i), RDF dataset d
Result: Updated RDF dataset d
if (∃ (x, y, i) ∈ [[type]]d) then return d;1

if (y /∈ C) then2

return d;3

forall ((x, z, i′) ∈ 〈type〉d s.t. ∃(y, z, i′′) ∈ [[sc]]d and i′ = i + i′′) do4

d = d \ {(x, type, z, i′)};5

end6

d = d ∪ {(x, type, y, i)};7

return d8

A formal description of the insertion of a quadruple (x, type, y, i) in an RDF dataset
d along with its side-effects can be found in Algorithm 1. At line 1 we examine if the
quadruple already belongs to the semantics of property type. If not, then we ensure that
y is a class (lines 2–3). If it is, then we remove all class instantiation quadruples from
the RDF dataset which can be implied through the quadruple to be inserted and the
class subsumption relationships (lines 4–6), to guarantee that the result is redundant
free. Finally, the quadruple is inserted (line 7). An example of a class instance insertion
is shown in Figures 4(a) and 4(b).

206 G. Flouris et al.

Algorithm 2. Class Instance Deletion Algorithm
Data: delete(x, type, y, i), RDF dataset d
Result: Updated RDF dataset d
if (� (x, y, i) ∈ [[type]]d) then return d;1

forall ((x, y′, i′) ∈ [[type]]d,(y′, y, i′′) ∈ [[sc]]d s.t. i = i′ + i′′) do2

forall (y′, z, k) ∈ 〈sc〉d s.t. y′! = z do3

if �(z, y, h) ∈ [[sc]]d then d = d ∪ {(x, type, z, i′ + k)}4

end5

d = d \ {(x, type, y′, i′)}6

end7

forall (x, o, h) ∈ 〈q〉d, s.t. (q, c, i) ∈ 〈domain〉d do8

if � (x, c, j) ∈ [[type]]d then9

d = d \ {(x, q, o, h)} ;10

forall q′ s.t. ∃ (q, q′, h′′) ∈ [[sp]]d do11

if ∃ (x, e, k) ∈ [[type]]d s.t. ∃ (q, e, k′) ∈ 〈domain〉d then12

d = d ∪ {(x, q′, o, h + h′′)}
end13

14

end15

forall (o, x, h) ∈ 〈q〉d, s.t. (q, c, i) ∈ 〈range〉d do16

if � (x, c, j) ∈ [[type]]d then17

d = d \ {(o, q, x, h)} ;18

forall q′ s.t. ∃ (q, q′, h′′) ∈ [[sp]]d do19

if ∃ (x, e, k) ∈ [[type]]d s.t. ∃ (q, e, k′) ∈ 〈range〉d then20

d = d ∪ {(o, q′, x, h + h′′)}
end21

22

end23

return d24

DELETE Operation. A primitive delete operation is of the form: delete(s, p, o, i)
where s, p ∈ U, o ∈ U ∪ L, i ∈ I.

A formal description of the deletion of a quadruple (x, type, y, i) is given in Algo-
rithm 2. At line 1 we examine if (x, type, y, i) belongs to the semantics of property
type. If this is the case, then we must (1) insert all the quadruples that are implied by
the quadruple that we wish to delete (per the coherence semantics) and (2) delete the
quadruples that if retained would imply the quadruple we wish to delete (lines 2–7). To
ensure that the RDF dataset is still valid after the updates, we must remove all proper-
ties originating from (or reaching resp.) x whose domain (or range resp.) is a class that
x is no longer an instance of (lines 8–23). Examples of class instance deletions can be
found in Figures 4(c) and 4(d).

5.3 Complexity Analysis

When working with colored RDF triples, one of the basic kinds of queries that we need
to answer is “what is the color of a triple”. This is a provenance query and essentially
boils down to finding, for a given triple (s, p, o) and RDF dataset d, all quadruples of

Coloring RDF Triples to Capture Provenance 207

(a) Class Instance Insertion (1) (b) Class Instance Insertion (2)

(c) Class Instance Deletion (1) (d) Class Instance Deletion (2)

Fig. 4. Examples of Class Instance Insertions ((a)–(b)) and Deletions ((c)–(d))

the form (s, p, o, c) in Cn(d). Given that we work with redundant free RDF datasets
(so implicit triples are not materialized), we present here an algorithm that computes
the color of RDF triples without materializing Cn(d), and discuss its complexity.

Fig. 5. sc Hierarchy

Consider an RDF dataset d whose size is N . In
order to determine the color of (s, p, o), without
computing Cn(d), we need to find all the possible
ways in which a quadruple of the form (s, p, o, c)
(for any c) can be inferred using quadruples from
d. Using the algorithm below, this can be made in
O(N log(N)) time.

Certain quadruples are not involved in the infer-
ence rules in Table 1, so they cannot be implied by
others: these are all the quadruples that do not in-
volve the RDFS type, sc and sp relationships. De-
termining the color of such a quadruple is trivial, as
we only need to check d (rather than Cn(d)), so it
can be made in O(log(N)) time by a simple search
in d (using an appropriate index).

208 G. Flouris et al.

To determine the color of quadruples that involve the aforementioned built-in RDFS
properties, we view the sc and sp hierarchies as directed acyclic graphs. Nodes in the
graph are classes (properties resp.), and there exists an edge between nodes x and y iff x
is a subclass (subproperty resp.) of y. The problem of obtaining the sequence of quadru-
ples from which e.g., quadruple (A, sc, B, c) (for any c), can be implied is equivalent
to discovering the path(s) (i.e., sequences of edges) in the DAG from node A to node
B. For each of these sequences of edges, we keep the color of each involved quadru-
ple. Recall that an edge may involve several quadruples (i.e., a triple can be colored
with different colors). The algorithm uses a depth-first search and terminates when B
is reached. At each step of the algorithm, we (i) find the superclasses of the context node
(i.e., the node that we are currently looking at) that are also subclasses of the target node
(e.g., B) and (ii) store the set of colors of the edges that we have already examined.

Algorithm 3. Traverse Subsumption Graph
Data: Classes source and target, RDF Dataset d, Set of colors S;
Result: Set of colors S;
if source=target then1

return S;2

res ← ∅ ;3

foreach class x, where x is a superclass of source and subclass of target do4

Let (source, sc, x, c) ∈ d;5

Let Sx ← ∅ ;6

forall colors ci in S do7

Sx ← Sx ∪ {ci + c};8

end9

res ← res ∪ Traverse Subsumption Graph(x,target,d,Sx);10

end11

return res12

In Algorithm 3 in order to obtain all the classes that are superclasses of source
and subclasses of target (line 4), we use the labeling scheme introduced in [6] that
captures the subsumption relationships between classes and properties and allows us
to determine whether a class (or property) is a subclass (or subproperty) of another in
constant time. This is achieved by simply comparing the labels of the classes/properties.
The labeling scheme is solely used to prune irrelevant subclass and subproperty paths,
thereby limiting our search space significantly, without taking into consideration colors
of triples.

As an example of application, consider the subclass hierarchy shown in Fig. 5. Sup-
pose that we need to discover the color of triple (A, sc, B). We start with class A and in
the first step we will keep classes A1,A2 and sets of colors SA1 = {c2}, SA2 = {c3, c9}
since the edges that determine that A is a subclass of A1, A2 are formed by triples col-
ored {c2}, {c3, c9} respectively. For each of the superclasses of A (i.e., A1, A2), we
perform exactly the same process and extend the sets of colors that we have obtained

Coloring RDF Triples to Capture Provenance 209

using operation “+”. Upon return of the recursion, these colors are placed into the
set res to be returned. The output of the algorithm are the colors: c(3,4), c(9,4), c(2,4),
c(2,9,3), where c(1,...,n) = c1 + . . . + cn.

Given the fact that we prune subsumption paths that are not relevant in line 4 (using
the labeling scheme), and that no cycles are allowed, the described process will, in the
worst case, consider each quadruple in the RDF dataset d once. Given that each access
requires a search in d, the cost of each access is O(log(N)) (using an adequate indexing
system). Therefore, the total complexity is O(N log(N)).

For the other triples that may appear as implicit ones, the algorithm is similar. In par-
ticular, if t is of the form (P, sp, Q), then the process is identical to the above, except
that properties and subproperty relationships are considered instead of class and sub-
class relationships. If t is of the form (A, type, B) then the process is almost identical,
except that, in the first step of the recursion, we search for all classes whose explicit
instance is A and are also (implicit or explicit) subclasses of B; the rest is the same. Fi-
nally, if t is of the form (x, P, y), then, again, the process is identical, except that, in the
first step of the recursion, we search for all explicit quadruples of the form (x,Q, y, c)
such that Q is an explicit or implicit subproperty of P . The rest of the recursion steps
are as in the above cases.

6 Related Work

So far, research on recording provenance for RDF data has focused on either associating
triples with an RDF named graph [5,34] or by extending an RDF triple to a quadruple
where the fourth element is a URI, a blank node or an identifier [7,17]. These works
vary in the semantics of the fourth element which is used to represent provenance, con-
text and access control information. RDF Named graphs have been proposed in [5,34]
to capture explicit provenance information by allowing users to refer to specific parts
of RDF/S graphs in order to decide “how credible is”, or “how evolves” a piece of
information. An RDF named graph is a set of triples to which a URI has been assigned
and can be referenced by other graphs as a normal resource; in this manner, one can
assign explicit provenance information to this collection of triples.

Currently, there is no adequate support on how to manage provenance of implicit
and explicit triples in the presence of queries and updates. Authors in [5] do not discuss
RDFS inference, queries and updates in the presence of RDF named graphs. Unfortu-
nately, existing declarative languages for querying and updating RDF triples have been
extended either with RDF named graphs (such as SPARQL [23] and SPARQL Up-
date [31]) or with RDFS inference support [22,24], but not with both. In this paper, we
attempt to fill this gap by proposing a framework based on the use of colors to cap-
ture provenance of RDF triples and reason about the provenance of implicit triples for
simple queries and atomic updates. In a previous work [20], we have introduced the
notion of RDF/S graphsets which builds upon and extends the notion of RDF named
graphs. In that paper we showed that the mechanism of RDF named graphs cannot cap-
ture the provenance of implicit RDF triples, and proposed RDF graphsets as a solution
to this problem. In this paper, we use colors as an elegant and uniform way to capture
the provenance of both explicit and implicit RDF triples. Colors are a generalization of

210 G. Flouris et al.

RDF named graphs [5]: a set of triples colored with a single color can be considered
as belonging to the RDF named graph whose URI is the color (recall that colors are
URIs). Colors obtained by applying the “+” operation on other colors simulate graph-
sets [20]. The notion of colors as introduced in this paper allows us to capture both the
intentional and extensional aspects of RDF graphs that are useful to record and reason
about provenance information in the presence of updates whereas none of the existing
approaches [5,30] combine intentional and extensional assignment of triples to prove-
nance information.

On the other side of the spectrum, a significant amount of work on the issue has
been done for relational and tree-structured databases [3,4,13,12]. Unlike these works,
we consider both recursion and updates, whereas [13] does not consider updates, [3,4]
supports updates but not recursion and [12] considers neither recursion or updates.
Moreover, we do not focus on provenance propagation through relational operators
but through inference rules that can be translated to relational unions and joins with
bounded recursion. However, inference rules compute on the fly implicit triples without
the need to materialize the provenance of intermediate results (per recursion step).

7 Conclusion

In this paper we proposed the use of colors to capture the provenance of RDF data and
schema triples. We used the logical representation of quadruples to store the color of an
RDF triple. The use of colors allows us to capture provenance at several granularity lev-
els and can be considered as a generalization of RDF Named Graphs. One of the main
contributions of the paper is the extension of RDFS inference rules to determine the
provenance of implicit RDF triples, an extension which is not possible under the RDF
named graphs approach and has been overlooked in the majority of approaches that
deal with managing provenance information for RDF graphs. Note that the extended
inference rules do not entail any additional complexity or scalability concerns to those
already involving RDFS reasoning (see complexity analysis). As a future work we will
study a more general algebraic structure (as in [13]) to capture the provenance of triples
and mappings obtained by the SPARQL operators [23]. In addition, we plan to study
the insertion and deletion of colors where the latter can be expressed as a batch deletion
of quadruples sharing the same color.

Acknowledgements. This work was partially supported by the EU project CASPAR
(FP6-2005-IST-033572).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American-American
Edition (2001)

2. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema (2004),
http://www.w3.org/TR/2004/REC-rdf-schema-20040210

3. Buneman, P., Chapman, A.P., Cheney, J.: Provenance Management in Curated Databases.
In: SIGMOD (2006)

http://www.w3.org/TR/2004/REC-rdf-schema-20040210

Coloring RDF Triples to Capture Provenance 211

4. Buneman, P., Cheney, J., Vansummeren, S.: On the Expressiveness of Implicit Provenance
in Query and Update Languages. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS,
vol. 4353, pp. 209–223. Springer, Heidelberg (2006)

5. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, Provenance and Trust. In: WWW
(2005)

6. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
semantic web. In: WWW (2003)

7. Dumbill, E.: Tracking Provenance of RDF Data. Technical report, ISO/IEC (2003)
8. McBride, B., Manola, F., Miller, E.: B.M.: RDF Primer (February 2004),

http://www.w3.org/TR/rdf-primer
9. Gardenfors, P.: Belief Revision: An Introduction. Belief Revision (29), 1–28 (1992)

10. Gardenfors, P.: The dynamics of belief systems: Foundations versus coherence theories.
Revue Internationale de Philosophie 44, 24–46 (1992)

11. Geerts, F., den Bussche, J.V.: Relational Completeness of Query Languages for Anno-
tated Databases. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797,
pp. 127–137. Springer, Heidelberg (2007)

12. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and Querying
Databases through Colors and Blocks. In: ICDE. (2006)

13. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS (2007)
14. Gutierrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of Semantic Web Databases.

In: PODS (2004)
15. Hayes, P.: RDF Semantics (February 2004), http://www.w3.org/TR/rdf-mt
16. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid Proto-

typing of Semantic Mash-ups through Semantic Web Pipes. In: WWW (2009)
17. MacGregor, R., Ko, I.Y.: Representing Contextualized Data using Semantic Web Tools. In:

Practical and Scalable Semantic Systems,conjunction with ISWC (2003)
18. Munoz, S., Perez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E.,

Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg
(2007)

19. Pediaditis, P.: Querying and Updating RDF/S Named Graphs. Master’s thesis, Computer
Science Department, University of Crete (2008)

20. Pediaditis, P., Flouris, G., Fundulaki, I., Christophides, V.: On Explicit Provenance Man-
agement in RDF/S Graphs. In: TAPP (2009)

21. Perez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

22. Perez, J., Arenas, M., Gutierrez, C.: nSPARQL: A Navigational Language for RDF. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 66–81. Springer, Heidelberg (2008)

23. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (January 2008),
http://www.w3.org/TR/rdf-sparql-query

24. PSPARQL, http://psparql.inrialpes.fr
25. DBLP Comp. Science Bibliography,

http://www.informatik.uni-trier.de/˜ley/db
26. DBPedia, http://www.dbpedia.org
27. Gene Ontology., http://www.geneontology.org
28. RDFizers, http://simile.mit.edu/wiki/RDFizers
29. W3C Linking Open Data,

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-mt
http://www.w3.org/TR/rdf-sparql-query
http://psparql.inrialpes.fr
http://www.informatik.uni-trier.de/~ley/db
http://www.dbpedia.org
http://www.geneontology.org
http://simile.mit.edu/wiki/RDFizers
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

212 G. Flouris et al.

30. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL rules,
SPARQL views and RDF data integration on the Web. In: WWW (2008)

31. Seaborne, A., Manjunath, G.: SPARQL/Update: A language for updating RDF graphs
(April 2008), http://jena.hpl.hp.com/˜afs/SPARQL-Update.html

32. Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and Minimization of
RDF/S Query Patterns. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 607–623. Springer, Heidelberg (2005)

33. Tan, W.C.: Provenance in databases: Past, current, and future. Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering (2007)

34. Watkins, E., Nicole, D.: Named Graphs as a Mechanism for Reasoning About Provenance.
In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS,
vol. 3841, pp. 943–948. Springer, Heidelberg (2006)

35. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the Foundations of Computing Deltas
Between RDF Models. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 637–651.
Springer, Heidelberg (2007)

http://jena.hpl.hp.com/~afs/SPARQL-Update.html

TripleRank: Ranking Semantic Web Data
by Tensor Decomposition

Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab

ISWeb - University of Koblenz-Landau, Germany
{franz,antjeschultz,sizov,staab}@uni-koblenz.de

http://isweb.uni-koblenz.de

Abstract. The Semantic Web fosters novel applications targeting a more effi-
cient and satisfying exploitation of the data available on the web, e.g. faceted
browsing of linked open data. Large amounts and high diversity of knowledge in
the Semantic Web pose the challenging question of appropriate relevance ranking
for producing fine-grained and rich descriptions of the available data, e.g. to guide
the user along most promising knowledge aspects. Existing methods for graph-
based authority ranking lack support for fine-grained latent coherence between
resources and predicates (i.e. support for link semantics in the linked data model).
In this paper, we present TripleRank, a novel approach for faceted authority rank-
ing in the context of RDF knowledge bases. TripleRank captures the additional
latent semantics of Semantic Web data by means of statistical methods in order
to produce richer descriptions of the available data. We model the Semantic Web
by a 3-dimensional tensor that enables the seamless representation of arbitrary
semantic links. For the analysis of that model, we apply the PARAFAC decompo-
sition, which can be seen as a multi-modal counterpart to Web authority ranking
with HITS. The result are groupings of resources and predicates that characterize
their authority and navigational (hub) properties with respect to identified topics.
We have applied TripleRank to multiple data sets from the linked open data com-
munity and gathered encouraging feedback in a user evaluation where TripleRank
results have been exploited in a faceted browsing scenario.

1 Introduction

Relevance ranking is a crucial component for a wide range of Semantic Web appli-
cations, such as semantic search and semantic browsing. Online services such as the
dbpedia.org [4] provide rich descriptions of Semantic Web resources that render man-
ual browsing extremely difficult. For instance, the resource The Beatles has no less than
1228 links going in and out of it. In the context of RDF knowledge bases, data can be
seen as a graph where nodes represent RDF resources and edges correspond to RDF
predicates that link resources. Consequently, graph-based authority ranking algorithms
known from Web retrieval, such as PageRank [8], HITS [23] or SALSA [27], can be
adopted for the Semantic Web setting, too. Instead of ratings for Web pages they will
then output ratings for RDF resources, with respect to one or more criteria, e.g. hub and
authority scores in HITS. These scores reflect the centrality/importance of particular
RDF resources in the knowledge representation and thus can be exploited for relevance
estimation.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 213–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

214 T. Franz et al.

Two important observations can be made about the authority ranking for RDF data.
On one hand, the computational models of standard algorithms for Web analysis only
consider structural information, i.e. the connectivity of graph nodes. Additional link
semantics, e.g. knowledge about different link types, is not used. On the other hand,
knowledge representation in the Semantic Web is heterogeneous. There is no single
ontology for the Semantic Web that describes all of the available data in a concise
way. Instead, there are many cases of overlapping, redundant, and conflicting ontolo-
gies describing similar information. Therefore, we may expect redundancies like the
co-existence of different predicates with highly similar (or identical) meaning. For in-
stance, even the well maintained data from dbpedia.org contains the redundant links
http://dbpedia.org/ontology/writer and http://dbpedia.org/property/writer which have the
same semantics. Common authority ranking algorithms provide no support for finding
such groups of semantically coherent relationships.

For incorporating missing link semantics, various adaptations to the common author-
ity ranking models can be constructed. However, changes to the computational model
may alter the original behavior of an algorithm and impose new restrictions. For in-
stance, the ObjectRank [6] approach adds link semantics to PageRank. However, it
requires to assign static probabilities to each type of link before its application. Thus,
ObjectRank lacks the flexibility of the original approach which can be easily applied to
arbitrary Semantic Web graphs without such upfront assignments. Moreover, the modi-
fication of the original models and algorithms can impose side effects and hampers the
comprehensibility of the approach. Interpretations on the impact of each modification
are required to enable the evaluation of such modifications.

In this paper, we introduce a new approach TripleRank for authority ranking of linked
data on the Semantic Web that naturally takes into account its additional semantics. We
reconsider the paradigm of two-dimensional graph representation (e.g. adjacency ma-
trix for HITS, probabilistic transition matrix for PageRank, a mixture of these models
for SALSA, etc.) and represent semantic graphs by 3-dimensional tensors. Our model
has a clear semantics and supports the seamless representation of RDF graphs, includ-
ing link/predicate semantics. For finding authoritative sources, we apply the PARAFAC
decomposition [18] which can be seen as a multi-dimensional correspondent to a sin-
gular value decomposition of a matrix. Tensor decomposition yields rich information
on the resources and predicates of the analyzed Semantic Web graph beyond simple
rankings. Rated groupings of RDF resources and RDF predicates with respect to their
(latent) topic, authority, and navigational (hub) characteristics are the outcome of the
analysis. These results can be exploited to support a variety of applications, such as
semantic faceted navigation. We present encouraging results of TripleRank gathered by
its application to multiple RDF data sets from the Wikipedia free encyclopedia and the
DBLP research publications database.

The contribution is organized as follows. In Section 2 we distinguish our work from
related approaches for rating Web pages and (semi-)structured data. Section 3 intro-
duces the tensor-based semantic graph representation for RDF knowledge bases and its
PARAFAC decomposition for authority ranking. Section 4 addresses design and archi-
tecture issues of TripleRank. Consequently, Section 5 shows results of systematic user

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 215

studies that demonstrate the viability of TripleRank and its advantages in comparison
with other methods. Section 6 summarizes and concludes the contribution.

2 Related Work

From the conceptual perspective, two topics can be seen as closely related to our
TripleRank approach: authority ranking for Web contents and graph-based relevance
ranking for semi-structured data. This section gives a short overview of these areas and
distinguishes TripleRank from other existing solutions.

2.1 Rating Web Pages

PageRank [8], HITS [23] and SALSA [27] are prominent algorithms for ranking Web
pages based on link analysis. PageRank builds upon a model of a random walk among
Web pages, where the stationary probability of passing through a certain page is in-
terpreted as measure of its importance. HITS is based on the notion of a mutual re-
enforcement between importance (authority) and connectivity (hub) scores of Web
pages. SALSA can be seen as a more complex hybrid solution that integrates ideas
of PageRank and HITS by combination of both link traversing directions (i.e. forward
and backward) for constructing graph models. The conceptual generalization for this
kind of methods is given in [14]. Unlike TripleRank, this family of methods provides
no natural mechanisms for expressing and exploiting link semantics.

The contextualization of graph models can be achieved through different customiza-
tions of the mentioned models. Possible adaptations include various custom weightings
of graph edges (e.g. based on appearance of particular terms in Web documents [31,29],
content classification [13,19], structural properties like in-domain vs. out-domain link-
ing [7], etc.) or joint probabilistic modeling for content and connectivity of Web pages
[12]. In contrast to TripleRank, these solutions are designed for the Web setting and do
not introduce distinguished link semantics. The solution presented in [26] uses for Web
authority ranking the higher-order representation of the hyperlink graph by labeling the
graph edges with the anchor text of the hyperlinks. This method is closely related to
TripleRank, but addresses a fully different problem setting (links and anchors in the
Web graph vs. linked data in Semantic Web RDF graphs). Additionally, our paper aug-
ments the introduction of TripleRank with a user evaluation that gives insight into the
applicability of the overall authority ranking approach.

Another kind of contextualization for authority ranking models can be observed in
the area of search personalization. For instance, Eirinaki and Vazirgiannis present a
modification of the PageRank algorithm to compute personalized recommendations of
Web pages given a path of visited pages [16]. Their approach requires access to web
server logs that provide statistics about the paths browsed by other users. BrowseRank
[28] is a further example of a page ranking approach that requires to collect statistics
on user behavior such as the time spent on a web page. The generalized algorithm for
personalized authority ranking is described in [22].

Our TripleRank approach is designed for a different scenario of resource recom-
mendation when browsing linked data. As when browsing the Web, detailed statistical

216 T. Franz et al.

information about prior user visits is not available in our problem setting. Our TripleR-
ank approach is conceptually more general and does not rely on user profiles and query
logs. As when browsing the Web, detailed statistical information about prior user visits
is often not available in our Semantic Web scenario. However, this information can be
easily integrated with TripleRank, if necessary.

2.2 Rating (Semi-)Structured Data

ObjectRank [6] adds authority transfer weights for different types of links to the PageR-
ank algorithm. Such weights influence the random walk of prospective users and are to
be assigned by domain experts. Beagle++ [10] is an extension for the Beagle desktop
search engine that applies ObjectRank to RDF meta data about desktop objects to im-
prove their ranking in desktop search scenarios. TripleRank also considers the seman-
tics of link types, however, it is an approach for computing ranks for RDF resources at
runtime, does not rely on manually assigned link weights, and is based on the general-
ized HITS algorithm instead of PageRank.

Several research works have dealt with information retrieval in the Semantic Web,
presenting approaches for ranking resources based on keyword input, e.g. Swoogle [15]
and ReConRank [21]. Browsing-based search strategies, as targeted by TripleRank, dif-
fer from keyword search with respect to the search process, its perception by users, and
the input and output data processed to implement browsing support [9]. Rocha et al.
[32] presented an approach to semantic search that associates tf-idf, represented by se-
mantic specificity and semantic similarity, to semantic relations to apply a spreading
activation approach on this augmented graph.

Anyanwu and Sheth present a framework for query answering with respect to so
called semantic associations [3]. A semantic association represents semantic similarity
between paths connecting different resources in an RDF model. Aleman-Meza et al.
[1] presented and evaluated methods for ranking semantic associations. As a continued
work of [3], the presented methods target the identification of similar resources to apply
it in scenarios like terror-prevention. Their approach involves ranking criteria consid-
ering graph structure, and user context. User context is defined statically by selecting
ontology concepts that are considered as representative for a user’s context. Ramakr-
ishnan et al. present heuristics for weighting graph patterns connecting two nodes in a
graph considering the differences of edges given by RDF graphs that include schema in-
formation encoded as RDFS ontologies [30]. Prior approaches on graph pattern analysis
presented methods assuming that only one type of edge exists. Next to a presentation of
the heuristics, they present an evaluation of them targeting the question which heuristic
results in higher quality patterns.

3 TripleRank: The Semantic Web as Tensor

The authority ranking approach by TripleRank builds upon the analysis of a tensor. In
this section, we first introduce our modeling approach for representing the Semantic
Web as tensor. We then continue with details on its analysis.

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 217

3.1 The TripleRank Model

We define a Semantic Web graph as a graph G = (V, L,E, linkType) where V is the
set of RDF resources in the graph, L is the set of literals contained, and E is the set of
links between RDF resources in V . Additionally, the function linkType : E → V re-
turns the URI of the property that links two resources. Fig. 1(a) shows a small Semantic
Web graph that contains seven resources (A,B,C,D,E,loves,hates) and ten links of two
different types: loves and hates.

(a) Sample Semantic Web Graph (b) Tensor Representation

Fig. 1. Modeling Example

We represent Semantic Web graphs by a 3-dimensional tensor T where each of its
slices represents an adjacency matrix for one RDF property. Figure 1(b) illustrates the
tensor resulting from the transformation of the sample graph shown in Fig. 1(a). The
first adjacency matrix T (:, :, 1)1 models linkage by the property loves. An entry > 0
corresponds to the existence of a link by this property, empty entries are considered as
zeroes. The second matrix T (:, :, 2) models links by the property hates. For instance,
the graph expresses that Alex hates Bob, which corresponds to T (1, 2, 2) = 1.

3.2 PARAFAC for Authority Ranking

The Semantic Web graph can be described by an adjacency matrix. For a network graph
matrix M the well known authority ranking methods like HITS [23] can be applied.
HITS defines the authority ranking problem through mutual reinforcement between so-
called hub and authority scores of graph nodes. The authority (relevance) score of each
node is defined as the sum of hub scores of its predecessors. Analogously, the hub
(connectivity) score of each node is defined as a sum of the authority scores of its
successors. By applying the Singular Value Decomposition (SVD) to the adjacency
matrix, we obtain hub and authority scores of graph nodes for each singular value of
M , which can be interpreted as rankings regarding different themes or latent topics of
interest. Formally, by this method, some arbitrary matrix M ∈ Rk×l is splitted into
three matrices U ∈ Rk×m, S ∈ Rm×m, V ∈ Rl×m. U and V represent the outlinks
and inlinks with respect to the principal factor contained in S. Corresponding to our

1 Throughout this paper we use the common Matlab-notation for addressing entries in tensors
and vectors.

218 T. Franz et al.

notation, M can be written as sum of rank-one-matrices by M =
∑m

k=1 S
k · Uk ◦ V k.

This 2-way decomposition yields authority and hub scores (cf. Fig. 2(a)) [25].
Modeling several link types by separate matrices results in very sparse and not con-

nected matrices. Instead, the tensor model applied by TripleRank enables the represen-
tation of all adjacency matrices including information about the connections between
link types. Tensor decomposition methods like PARAFAC can then detect further hid-
den dependencies.

These methods are regarded as higher-order equivalents to matrix decompositions.
The PARAFAC tensor decomposition has the advantage of robustness and computa-
tional efficiency. These advantages are due to its uniqueness up to scaling and per-
mutation of the produced component matrices [18]. By PARAFAC input tensors are
transformed to so called Kruskal tensors, a sum of rank-one-tensors. Consequently, in
TripleRank we derive authority and hub scores for particular latent aspects (topics) of
the analyzed data from particular rank-one-tensors of the decomposition. In the context
of this paper we focus on three-mode-tensors that represent connectivity between graph
nodes together with semantics of links (predicates).

Formally, a tensor T ∈ Rk×l×m is decomposed by n-Rank-PARAFAC into com-
ponents matrices U1 ∈ Rk×n, U2 ∈ Rl×n, U3 ∈ Rm×n and n principal factors
(pf) λi in descending order. Via these T can be written as a Kruskal tensor by T≈∑n

k=1 λk · Uk
1 ◦ Uk

2 ◦ Uk
3 where λk denotes the kth principal factor, Uk

i the kth col-
umn of Ui and ◦ the outer product [25]. Ui yields the ratio of the ith dimension to the
principal factors. So, similar to SVD, PARAFAC derives hidden dependencies related to
the pfs and expresses the dimensions of the tensor by relations to the pfs. Depending on
the number of pfs PARAFAC decomposition can be loss-free. For a third-mode-tensor
T ∈ Rk×l×m a weak upper bound for this rank is known: rank(T) ≤ min{kl, lm, km}
[25]. There is no proper way for estimating the optimal number of pfs for an appropriate
decomposition but several indicators like residue analysis or core consistency exist [2].

(a) Matrix Decomposition [25] (b) Tensor Decomposition [25]

The PARAFAC decomposition of a tensor derives authority and hub scores plus ad-
ditional scores for the relevance of link types (cf. Fig. 2(b)). The tensor T in section
3.1 combines information about who loves and hates who. So the PARAFAC decom-
position would yield U1 with subject-pf relation, U2 with object-pf relation and U3
with property-pf relation. In other words U1 keeps the hub scores as relevance of the
subjects to the pfs, U2 the authorities scores as relevance of the objects to the pfs and
U3 scores of the relevance of property types to the pfs. In line with HITS the largest
entry of U1

1 corresponds to the best hub for the first pf and the largest entry of U1
2 to

the best authority.
By the three matrices U1, U2 and U3, subjects, objects, and properties can be com-

pared in pairs regarding the pfs derived from all three dimensions. E.g. the relation of
a property to specific subjects or objects is derived by multiplying the corresponding
column of U3 with those of U1 or U2 respectively.

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 219

3.3 Ranking Example

Applying the above transformation and analysis to the graph illustrated by Fig. 1 yields
the results shown by the first four columns of Table 1. Two groups are identified, one
where the predicate hates has a high score, and one where loves is scored highly. The
authoritative resources for each group differ from each other. Bob and Chris have high
scores with respect to hates. Don and Alex are the top authorities with respect to loves.
The application of HITS results in the ranking shown by column 5 and 6. The HITS
ranking corresponds to a ranking based on the indegrees of the resources. Notably, the
rankings produced by the PARAFAC analysis are different from the HITS results as
they provide rankings with respect to different knowledge aspects in the data.

Table 1. PARAFAC vs. HITS Results

PARAFAC HITS
Score Predicate Score Resource Score Resource

Group 1 0.62 Chris
1.00 hates 0.71 Bob 0.56 Bob

- - 0.70 Chris 0.50 Alex
Group 2 0.16 Don

1.00 loves 0.70 Don 0.16 Elly
0.001 hates 0.70 Alex

- - 0.10 Elly

4 Implementation

Having introduced the theoretical background behind TripleRank, we present the imple-
mentation into an applicable system below. We describe the three core components of
the TripleRank architecture, which encapsulate a 3-step process, namely i) the collection
of data and its transformation to a tensor model, ii) its pre-processing, and iii) analysis.

4.1 Data Collection and Transformation

The first process step for the ranking of Semantic Web data is its collection. The
TripleRank-collector requests RDF data from (linked open) data providers on the Se-
mantic Web as follows. For a given starting point, i.e. some uniform resource iden-
tifier (URI), it executes a breadth first exploration of the surrounding resources. The
exploration is parameterized by the maximal exploration depth, the maximal number
of statements, and the maximal number of links to follow for each resource and link
type. The collected data is then transformed into the tensor representation introduced in
Section 3.1.

4.2 Pre-processing

The second component of the TripleRank architecture implements the pre-processing
step on the collected data. Pre-processing is applied for two reasons: First, to reduce
the amount of data to be analyzed. Second, to increase the quality of the collected data.

220 T. Franz et al.

Information-theoreticnotions ground the pre-processing as implemented by TripleRank.
Predicates linking the majority of resources are pruned as they convey little information
and dominate the data set. More precisely, for all of the results presented in this paper,
a threshold of 40% has been used, i.e. predicates that occur in more than 40% of all
statements are pruned. The predicate wikilink as used within the dbpedia.org [4] data set
is an example of such a dominating predicate. It corresponds to links between pages
of the Wikipedia encyclopedia, e.g. linking from a page describing a music band to
associated band members, producers, tracks and further different types of information.
Accordingly, the semantics of the relation established by this property are rather unclear.

A further pre-processing step is the weighting of the collected data to further rem-
edy the negative effects of domination. We amplify statements based on their predicate
frequency so that statements with less frequent predicates are amplified stronger than
more common statements. As an effect, the adjacency indicators in the tensor have the
following property:

T(x, y, z) =

{
1 + log α

links(z) , if x points to y using property z

0, else

The value α denotes the number of statements in which the most dominant predicate
participates. The function links(v) (links : V → N0) returns the number of statements
linked by property v.

We remark that the implemented pre-processing steps are valuable for generating
ranking analyses in general. Notably, simple methods for authority ranking, e.g. the
counting of inlink scores per resource and predicate, benefit more from such pre-
processing than more complex methods like PARAFAC.

4.3 Analysis

The analysis step implements the PARAFAC decomposition of the tensor, as modeled
and created by the previous process steps. We have integrated existing software pack-
ages [5] for this purpose. As indicated in Section 3.2, the number of factors for the
PARAFAC decomposition is crucial for the quality of the results of the analysis. The
determination of the optimal number of factors is a case of open research. However,
heuristics for determining a suitable number of factors have been published, e.g. the
core consistency diagnostic (CORCONDIA) [2]. The factor determination applied in
TripleRank builds upon such research.

The result of the analysis is a Kruskal (cf. Sect. 3.2) tensor [25] that approximates
the original tensor. As illustrated in Figure 2, the resulting vectors for the first (row),
second (column), and third dimension are represented by three matrices. The columns
of each of the matrices correspond to the scores calculated for the different factors
f1...fk. Analogue to the SVD, entries in the column vectors correspond to authority
scores, i.e. indicating the relevance of a resource with respect to its in-degree. Entries in
the row vectors correspond to hub scores, i.e. indicating the relevance of a resource with
respect to its out-degree. We refer to [23] for a thorough analysis of the correspondence
between SVD and its interpretation for link analysis. Entries of the vectors in the third
dimension indicate the relevance of a resource with respect to the hub and authority
resources. Based on this notion, we interpret hub scores as indicative for the relevance of

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 221

Fig. 2. Result of the analysis

resource when occurring as subject. Vice versa, authority scores indicate the relevance
of a resource as object of a statement. As we modeled RDF properties by the third
dimension, their relevance can be looked up in the vectors of the third dimension.

5 Evaluation

We have applied the implementation of TripleRank to existing Semantic Web data to
investigate on the quality of the results and the runtime performance of the approach.
Moreover, we have evaluated TripleRank in a user study where we have exploited it to
support faceted navigation.

5.1 Data Sets

We have created an evaluation testbed by applying the extraction and transformation
procedure introduced before. The testbed consists of multiple extracts around resources
from dbpedia.org and the SWETO DBLP corpus, e.g. The Beatles and Semantic Web.

Table 2 describes the different data sets. Data sets created with a different parameter-
ization are separated by a horizontal rule. The table shows, for each data set, the number
of statements contained initially, the number of distinct properties, the top 3 properties
with respect to the number of statements they occur in (shown in parentheses), and the
number of triples after the pre-processing. The first group of data sets has been crawled
by restricting the number of links per resource to 500 and the maximum exploration
depth to 10. For the second group, containing the data sets on the SPARQL query lan-
guage and the James Bond movie, a limit per predicate and resource has been set. For

Table 2. Description of Data Sets

Start Resource Triples Prop- Top 3 Link Types Triples
Before erties After

dbpr:The Beatles 5084 85 dbpp:wikilink(1719), dbpp:origin(509), dbpp:artist(315) 5084
dbpr:HITS algorithm 5145 70 dbpp:wikilink(2780), skos:subject(440), dbpp:wikiPageUsesTemplate(143) 5145
dbpr:Berlin 5044 82 dbpp:wikilink(1671), rdf:type(345), dbpp:birthplace(170) 5044
dbpr:The Lord of 5035 51 dbpp:wikiPageUsesTemplate(1234), skos:subject(1126), dbpp:wikilink(1063) 5035
the Rings
dbpr:SPARQL - 75 skos:subject(2640), rdf:type(426), owl:sameAs(288) 7853
dbpr:James Bond 18421 93 dbpp:wikilink(13257), rdf:type(182), skos:subject(121) 5164
dbpr:The Beatles 158608 421 dbpp:wikilink(105254), dbpo:birthPlace(11097), dbpp:countryofbirth(7067) 55354
dblp:semweb/2007 20421 7 rdf:type(9902), dc:publisher(5559), opus:in series(4849) 10519

Namespaces: dbpr:<http://dbpedia.org/resource/>, dbpp:<http://dbpedia.org/property/>,
skos:<http://www.w3.org/2004/02/skos/core#>, dblp:<http://dblp.uni-trier.de/rec/bibtex/>,
dc:<http://purl.org/dc/elements/1.1/>, opus:<http://lsdis.cs.uga.edu/projects/semdis/opus#>

222 T. Franz et al.

each resource, a maximum of 100 links per link type have been explored while the max-
imum exploration depth has been set to 8. The final two data sets have been created by
restricting only the exploration depth. Here we see significant differences between the
data sources dbpedia and dblp. The latter data set contains much less link types com-
pared to the first. Among all2 dbpedia data sets, we recognize the domination of the
predicate wiklink. The crawling parameterization used for the first group of data sets al-
ready alleviated the domination, however, for less restrictive crawling parameters there
is a strong domination. For instance, statements containing wikilink make up about 72%
of all statements in the data set on James Bond. We provide download links for these
data sets online at http://isweb.uni-koblenz.de/Research/DataSets

5.2 Performance

Applying TripleRank pre-processing and analysis steps to the data sets described above
has led to reasonable and interesting results that provide a rich description of the an-
alyzed data sets. As an example, Table 3 shows some of the results for the smaller
Beatles data set that contains 5048 triples. As explained above, the PARAFAC analysis
yields groupings of predicates and resources. A grouping corresponds to one box in
Table 3. The first two columns within a box show for each grouping, the highest ranked
predicates including their scores. The third and fourth column show the highest ranked
statement objects (authorities) and associated scores. Predicates with a score below 0.1
and resources with a score below 0.0001 have been omitted from the results. For in-
stance, the group on the top left shows the most authoritative resources for the topic de-
scribed by the predicates skos:subject, dbpo:label, dbpp:label, and dbpp:producer. The
top resources in this group are accordingly authoritative for the combination of these
predicates and do not necessarily have to be linked by the top predicate, skos:subject
for this group. For instance, the resource dbpr:Apple Records is contained as authority.
It describes a music label that produced songs of the Beatles.

As the quality of the results as illustrated by Table 3 seem sensible, we have also
measured the runtime performance of the analysis step. The data collection and trans-
formation steps have been excluded as these steps perform linear to the number of
statements. Specifically, the performance of the data collection depends heavily on net-
work bandwidth and the performance of the service providing the data. For all of the
data sets, the analysis execution times have been within 2 to 18 seconds on a standard
laptop computer with a dual core 2.0MHz processor and 2GB RAM.

5.3 User Evaluation: Faceted Browsing

We have evaluated TripleRank with 16 test persons to gather objective feedback on
the sensibility of its results. The fine-grained results produced by TripleRank can be
exploited for a number of applications ranging from similarity search for triples to
facet identification in RDF data. We have chosen the scenario of faceted browsing
for the user evaluation as we believe this scenario is well comprehensible for the
participants of the study.

2 The originally crawled data set on SPARQL has been accidently overwritten with the pre-
processed data set so that statements containing wikilink are missing.

http://isweb.uni-koblenz.de/Research/DataSets

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 223

Table 3. TripleRank Results for the Beatles Data Set

Score Predicate Score Resource Score Predicate Score Resource
0.66 skos:subject 0.35 dbpr:Category:Songs produced-

by George Martin
0.70 dbpo:genre 0.73 dbpr:Rock and Roll

0.49 dbpo:label 0.32 dbpr:Category:1968 songs 0.70 dbpp:genre 0.45 dbpr:Beat music
0.48 dbpp:label 0.27 dbpr:Category:Jazz songs 0.16 dbpp:wikilink 0.23 dbpr:Psychedelic rock
0.11 dbpp:producer 0.27 dbpr:Category:Psychedelic songs - - 0.23 dbpr:Jazz waltz
- - 0.27 dbpr:Category:Folk songs - - 0.23 dbpr:Folk music
- - 0.27 dbpr:Category:The Beatles songs-

sung by George Harrison
- - 0.13 dbpr:Folk rock

- - 0.27 dbpr:Category:George Harrison-
songs

- - 0.12 dbpr:Rock music

- - 0.16 dbpr:Apple Records - - 0.09 dbpr:And I Love Her
- - 0.11 dbpr:Category:Apple Records-

albums
- - 0.06 dbpr:Capitol Records

- - 0.11 dbpr:Category:Double albums - - 0.03 dbpr:Country rock
0.95 dbpp:tracks 0.36 dbpr:Cry Baby Cry 0.69 dbpo:label 0.5 dbpr:Apple Records
0.32 dbpp:wikilink 0.36 dbpr:Long 0.67 dbpp:label 0.26 dbpr:Capitol Records
- - 0.16 dbpr:Piggies 0.15 dbpp:wikilink 0.23 dbpr:EMI
- - 0.16 dbpr:Ob-La-Di - - 0.21 dbpo:Resource
- - 0.16 dbpr:I - - 0.18 dbpr:Template:infobox album
- - 0.16 dbpr:Rocky Raccoon - - 0.15 dbpo:MusicalWork
- - 0.16 dbpr:Good Night - - 0.15 dbpo:Work
- - 0.16 dbpr:While My Guitar Gently-

Weeps
- - 0.14 dbpr:Parlophone

- - 0.16 dbpr:Mother Nature - - 0.14 dbpr:Template:succession box
- - 0.16 dbpr:Julia - - 0.1 dbpo:Song
0.96 rdf:type 0.25 yago:TheBeatlesAlbums 0.70 dbpo:recordplace 0.93 dbpr:Abbey Road Studios
0.29 skos:subject 0.25 umbel:InstrumentalArtifact 0.70 dbpp:recorded 0.14 dbpr:1966
- - 0.25 umbel:Artifact 0.14 dbpp:wikilink 0.11 dbpr:9 May
- - 0.25 yago:AlbumsProducedBy-

GeorgeMartin
- - 0.11 dbpr:19 May

- - 0.25 dbpo:Album - - 0.11 dbpr:16 May
- - 0.25 yago:Album106591815 - - 0.09 dbpr:27 April
- - 0.12 yago:ParlophoneAlbums - - 0.09 dbpr:2 June
- - 0.12 yago:AppleRecordsAlbums - - 0.09 dbpr:27 February
- - 0.12 dbpo:Place - - 0.09 dbpr:1 July
- - 0.12 umbel:Place - - 0.09 dbpr:16 July
1.00 dbpp:origin 0.99 dbpr:England
- - 0.11 dbpr:Liverpool

Faceted browsing is a common means to ease the navigation in data by structur-
ing associated data into so called facets [20]. For some resource, e.g. as viewed in
a RDF browser, facets correspond to collections of associated resources. Resources
within these collections have a commonality with respect to the currently viewed re-
source, e.g. the facet band-members for the resource The Beatles should contain only
resources describing members of this band, e.g. John Lennon and Paul McCartney.

We have applied TripleRank to automatically select and order resources for given
facets. Accordingly, the evaluation has been centered around the following question:
Given a currently viewed resource (subject) and a predicate (facet) associated to it,
what are the most interesting, most related, most useful resources (objects) for the facet?

We have created 10 of such queries using the data sets explained above and presented
each of the 10 queries to each of the 16 test persons. As subject and predicate instances
we have used the start URIs from the collected data sets (cf. Table 2) and associated
properties. Test persons have been presented with candidate resources as produced by
the randomly ordered union of the top 10 results from the TripleRank method and a
baseline method. For each resource, they could indicate whether it is a good or bad
match for the query, or whether they are undecided. Figure 3 illustrates how queries
have been presented to test persons by the evaluation tool. Please note that the shown

224 T. Franz et al.

Fig. 3. Screenshot of the User Evaluation

resources (subject, predicate, objects) have been presented as hyperlinks to the service
providing the data. Test persons could use these links to investigate on the resource by
its complete description. For instance, the resource The Beatles links to the web page
http://dbpedia.org/resource/The_Beatles

5.4 Baseline Method

The evaluation scenario requires to rank resources with respect to their authority for a
given subject and facet. The baseline methods implement a straightforward strategy for
computing scores for ranking using the tensor T as follows.

Baseline I. The straightforward and obvious baseline method for computing such a
ranking given T follows a simple procedure:

1. Select statements matching the subject and predicate (facet) and project the objects.
2. Rank selected objects by their number of inlinks as known from the data set as

inlinks indicate authority [23].

For data sets that are available completely and that contain little or no noise, this pro-
cedure performs very well with respect to runtime and the quality of results. It will
select the relevant objects with high precision. The dbpedia and DBLP data sets obvi-
ously contain very little noise. Dbpedia data relies on the careful authoring by numerous
users, whereas DBLP data maps to settled and rigid structures maintained by a database
system. However, due to the fact that our data sets have been crawled from online ser-
vices, they are incomplete and represent only a small portion of these large data sets.
Accordingly, when applying this baseline method to our data sets, we have experienced

http://dbpedia.org/resource/The_Beatles

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 225

no or very little recall due to the sparsity of the data. For instance, applying this base-
line for answering the query “What are relevant subjects for James Bond?” it returns
only one resource while the enhanced Baseline II method we present in the following
returns 6 relevant resources. Nevertheless, we imagine that every method for ranking
facet objects will include this baseline method as it produces high precision when data
sets are complete and without noise.

Baseline II. We modified the Baseline I method in order to improve its competitive-
ness, i.e. improving its recall for incomplete data sets. Instead of considering only exact
matches of subject-predicate patterns, we extended this criteria to consider also predi-
cate matches only. As the data sets have been created around a URI that is central within
the data sets, this extended baseline method turned out to produce more competitive
results, specifically an increased recall. This method is also closer to the PARAFAC
analysis as used by TripleRank as it corresponds to the authority ranking based on the
in-degree (number of incoming links) of resources. In fact, this method can be seen
as an approximation of authority scores in HITS, which are highly correlated with in-
degrees of nodes [14] (see also the example given in Sect. 3.3). Accordingly, we have
evaluated TripleRank against this improved Baseline II method.

5.5 TripleRank Method

The TripleRank method is similar to the Baseline II method with the exception that
it builds upon the results of the PARAFAC decomposition of T instead of plain link-
counting using T. First, the top factors for the predicate (facet) in question are selected.
They are looked up from the matrix containing the predicate scores (cf. Figure 2). Those
factors are selected where the predicate is ranked first or has a score of at least 0.6.
Afterwards, the resource vectors of these factors, as given by the object-score matrix,
are considered for the selection of the ten resources with the highest scores.

5.6 Results

We have received 1387 answers by 16 test persons. On average, the union of the results
produced by the BaselineII and TripleRank method led to 8.669 candidate objects per
query. While we asked for the top 10 results by each method, the average number of
results is lower, as for several questions both methods produced less than 10 results.

We calculated the agreement among test persons using the index raw agreement [17].
It represents the ratio between the measured inter-rater agreement and the best possi-
ble agreement. Accordingly, a value of 1 corresponds to the maximal agreement, while
0 corresponds to no agreement. As expected, the evaluation shows a high inter-rater
agreement. Considering the specific agreement on the relevance of results, test persons
showed a higher agreement rate on positive candidates (agreement-ratio: 0.68) than on
negative candidates (agreement-ratio: 0.57). For the overall agreement, we have mea-
sured an even higher ratio of 0.70 among the test persons.

The evaluation results presented in Table 4 built on these user ratings and give
insight into the constitution of the union of the results. Table 4 lists the average
number of results found exclusively by each method (BaselineII−TripleRank,
TripleRank−BaselineII), and the average number of results suggested by both of the

226 T. Franz et al.

Table 4. Results of the User Evaluation

Avg Number of Results Avg Precision
Total Positive Negative Undecided Macro Micro

BaselineII−TripleRank 1.075 0.273 0.444 0.344 0.478 0.393
TripleRank−BaselineII 4.731 1.913 1.650 1.169 0.521 0.537
BaselineII∩TripleRank 2.863 1.338 0.763 0.763 0.659 0.637

BaselineII 3.948 1.626 1.207 1.107 0.607 0.574
TripleRank 7.594 3.251 2.413 1.932 0.557 0.574

methods, namely the intersection of their results (BaselineII∩TripleRank). In addition,
Table 4 also presents the average numbers of ratings received for the results. Here, we
notice that the TripleRank method succeeds in suggesting more positively rated results
than negative ones. Comparing the total number of results produced by each method,
the TripleRank approach nearly doubles the number of results (3.948 vs 7.594). For the
number of results considered relevant by users, TripleRank achieves an increase from
1.626 to 3.251, i.e. the recall is increased by the factor of 1.999. For these results, we
have also calculated additional confidence intervals with confidence degree 0.9. In most
of the cases, TripleRank outperforms the baseline with statistical significance.

Table 4 also lists the precision of each approach. For a fine-grained analysis, we have
calculated the macro precision, reflecting the users’ perspective on the performance of
the methods, and the micro precision, reflecting the systems view [11]. For the results
produced exclusively by each method, TripleRank has higher precision than the base-
line approach. Considering the overall results, the baseline method has equal precision
on the micro-level and higher precision on the macro-level. Significance tests with con-
fidence degree 0.9, however, have shown that all measured differences in precision are
not statistically significant. Accordingly, we conclude that the TripleRank approach re-
sults in a substantially increased recall without loss of precision.

5.7 Lessons Learned: TripleRank Advantages

By further analysis of the evaluation results, we have investigated why the TripleR-
ank approach outperforms the baseline method. Among the findings, we identified
that the results of the analysis step implicate similarities among properties. For in-
stance, it turned out that the dbpedia data sets contain predicates with similar semantics,
e.g. the predicate http://dbpedia.org/property/genre and the predicate
http://dbpedia.org/ontology/genre (cf. Table 3). Both properties asso-
ciate bands or songs to a genre. The analysis step identified this similarity producing a
factor where both properties are among the top two properties. The most authoritative
resources for that factor are accordingly those resources having both or either one of
these properties as inlink. As an effect, both precision and recall are increased when
compared to baseline approaches that cannot identify the similarities of links. The ad-
vantage of TripleRank, however, is not only given when properties are directly grouped
into one factor. The results of the tensor analysis also enable to increase recall by
considering multiple factors where a predicate is ranked high. Within our experiments
such increase of recall has been achieved without a loss of precision.

http://dbpedia.org/property/genre
http://dbpedia.org/ontology/genre

TripleRank: Ranking Semantic Web Data by Tensor Decomposition 227

6 Conclusion and Future Work

In this paper we presented TripleRank, a novel approach for authority ranking in Se-
manticWeb applications. Conceptually, TripleRank is a SemanticWeb correspondent to
authority ranking methods known from Web retrieval, such as PageRank or HITS. Our
approach exploits the novel representational model for semantic RDF graphs, based on
3-dimensional tensors. This allows us to exploit in the natural way the available seman-
tics of RDF predicates. By applying the PARAFAC tensor decomposition we identify
authoritative sources in the knowledge base as well as groups of semantically coherent
predicates and resources. The systematic evaluation shows the viability of TripleRank
for a wide range of search/browsing applications in the Semantic Web, such as semantic
faceted navigation and ranked retrieval. Therefore, TripleRank can be seen as a next step
towards efficient and effective search/retrieval technology for Semantic Web. As next
steps for this research, we pursue the integration of TripleRank into existing Linked
Open Data browsers, e.g. our own Semantic Web browser LENA [24], to investigate
on further enhancements of the method.We also envision the addition of semantic rela-
tions that go beyond link semantics. For instance, we consider the modeling of resource
similarity based on the similarity of the types of resources.

Acknowledgements. This work was funded by the X-Media project (www.x-media-
project.org) sponsored by the European Commission as part of the Information Society
Technologies (IST) programme under EC grant number IST-FP6-026978.

References

1. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.: Rank-
ing complex relationships on the semantic web. IEEE Internet Computing 9(3), 37–44 (2005)

2. Andersson, C.A., Bro, R.: The n-way toolbox for matlab. Chemometrics and Intelligent Lab-
oratory Systems 52(1), 1–4 (2000)

3. Anyanwu, K., Sheth, A.P.: The p operator: Discovering and ranking associations on the se-
mantic web. SIGMOD Record 31(4), 42–47 (2002)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: A nu-
cleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007)

5. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm proto-
typing. ACM Transactions on Mathematical Software 32(4), 635–653 (2006)

6. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search
in databases. In: VLDB, pp. 564–575 (2004)

7. Bharat, K., Henzinger, M.R.: Improved Algorithms for Topic Distillation in a Hyperlinked
Environment. In: 21st Annual International ACM SIGIR Conference, Melbourne, Australia,
pp. 104–111 (1998)

8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh
International World-Wide Web Conference, WWW 1998 (1998)

9. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
10. Chirita, P.A., Ghita, S., Nejdl, W., Paiu, R.: Beagle++: Semantically enhanced searching and

ranking on the desktop. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 348–362. Springer, Heidelberg (2006)

228 T. Franz et al.

11. Manning, H.S.C., Raghavan, P.: Introduction to Information Retrieval. Cambridge University
Press, Cambridge (2008)

12. Cohn, D.A., Hofmann, T.: The missing link - a probabilistic model of document content and
hypertext connectivity. In: 13th Conference on Advances in Neural Information Processing
Systems (NIPS), Denver, USA, pp. 430–436 (2000)

13. Diligenti, M., Gori, M., Maggini, M.: Web Page Scoring Systems for Horizontal and Verti-
cal Search. In: 11th International World Wide Web Conference (WWW), Honolulu, USA,
pp. 508–516 (2002)

14. Ding, C.H.Q., He, X., Husbands, P., Zha, H., Simon, H.D.: PageRank, HITS and a Unified
Framework for Link Analysis. In: 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Tampere, Finland, pp. 353–354 (2002)

15. Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: In: International Semantic Web
Conference, pp. 156–170 (2005)

16. Eirinaki, M., Vazirgiannis, M.: Usage-based pagerank for web personalization. In: IEEE In-
ternational Conference on Data Mining, pp. 130–137 (2005)

17. Von Eye, A., Mun, E.Y.: Analyzing Rater Agreement: Manifest Variable Methods. Lawrence
Erlbaum Associates, Mahwah (2004)

18. Harshman, R.A., Lundy, M.E.: Parafac: Parallel factor analysis. Computational Statistics &
Data Analysis 18(1), 39–72 (1994)

19. Haveliwala, T.H.: Topic-sensitive PageRank. In: 11th International World Wide Web Confer-
ence (WWW), Honolulu, USA, pp. 517–526 (2002)

20. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for heterogeneous
semantic web repositories. In: international Semantic Web Conference, pp. 272–285 (2006)

21. Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for semantic web
data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge Base Systems
(2006)

22. Jeh, G., Widom, J.: Scaling Personalized Web Search. In: 12th International World Wide
Web Conference (WWW), Budapest, Hungary, pp. 271–279 (2003)

23. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632
(1999)

24. Koch, J., Franz, T., Staab, S.: Lena - browsing rdf data more complex than foaf. In: Interna-
tional Semantic Web Conference (ISWC) Demo Session (2008)

25. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3) (to
appear) (September 2009)

26. Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-Order Web Link Analysis Using Multilinear
Algebra. In: 5th IEEE International Conference on Data Mining (ICDM), Houston, USA,
pp. 242–249 (2005)

27. Lempel, R., Moran, S.: SALSA: the Stochastic Approach for Link-Structure Analysis. ACM
Transactions on Information Systems (TOIS) 19(2), 131–160 (2001)

28. Liu, Y.-T., Gao, B., Liu, T.-Y., Zhang, Y., Ma, Z., He, S., Li, H.: Browserank: letting web
users vote for page importance. In: SIGIR, pp. 451–458 (2008)

29. Rafiei, D., Mendelzon, A.O.: What is this Page known for? Computing Web Page Reputa-
tions. Computer Networks 33(1-6), 823–835 (2000)

30. Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering informative connection
subgraphs in multi-relational graphs. SIGKDD Explor. Newsl. 7(2), 56–63 (2005)

31. Richardson, M., Domingos, P.: The Intelligent surfer: Probabilistic Combination of Link and
Content Information in PageRank. In: 14th Conference on Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada, pp. 1441–1448 (2001)

32. Rocha, C., Schwabe, D., de Aragão, M.P.: A hybrid approach for searching in the semantic
web. In: WWW, pp. 374–383 (2004)

What Four Million Mappings Can Tell You about Two
Hundred Ontologies

Amir Ghazvinian, Natalya F. Noy, Clement Jonquet, Nigam Shah, and Mark A. Musen

Stanford University, Stanford, CA 94305, US
{amirg,noy,jonquet,nigam,musen}@stanford.edu

Abstract. The field of biomedicine has embraced the Semantic Web probably
more than any other field. As a result, there is a large number of biomedical on-
tologies covering overlapping areas of the field. We have developed BioPortal—
an open community-based repository of biomedical ontologies. We analyzed on-
tologies and terminologies in BioPortal and the Unified Medical Language Sys-
tem (UMLS), creating more than 4 million mappings between concepts in these
ontologies and terminologies based on the lexical similarity of concept names
and synonyms. We then analyzed the mappings and what they tell us about the
ontologies themselves, the structure of the ontology repository, and the ways in
which the mappings can help in the process of ontology design and evaluation.
For example, we can use the mappings to guide users who are new to a field to
the most pertinent ontologies in that field, to identify areas of the domain that are
not covered sufficiently by the ontologies in the repository, and to identify which
ontologies will serve well as background knowledge in domain-specific tools.
While we used a specific (but large) ontology repository for the study, we believe
that the lessons we learned about the value of a large-scale set of mappings to
ontology users and developers are general and apply in many other domains.

1 Why Create the Mappings?

The field of biomedicine has embraced the Semantic Web probably more than
any other field. Ontologies in biomedicine facilitate information integration, data
exchange, search and query of heterogeneous biomedical data, and other critical
knowledge-intensive tasks [12]. As a result, there is a large number of biomedical
ontologies covering overlapping areas of the field [3]. Creating mappings among on-
tologies by identifying similar concepts is a critical step in integrating data and appli-
cations that use different ontologies. With these mappings, for example, we can link
resources annotated with terms in one ontology to resources annotated with related
terms in another ontology, discovering new relations among the resources themselves
(e.g., linking drugs and diseases).

As part of our work for the National Center for Biomedical Ontology (NCBO), we
have developed BioPortal—an open community-based repository of biomedical ontolo-
gies [10].1 This repository contains 140 ontologies with more than one million con-
cepts among them. We view mappings between concepts in different ontologies as an

1 http://bioportal.bioontology.org

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 229–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://bioportal.bioontology.org

230 A. Ghazvinian et al.

essential part of the ontology repository. Users can browse the mappings, create new
mappings, upload mappings created with other tools, download the mappings stored
in BioPortal, or comment on the mappings and discuss them [11]. Other NCBO tools,
such as a service for automatic creation of ontology-based text annotations [7], rely
on the mappings to annotate biomedical resources with terms from different ontologies
and for linking these resources to one another.

Over the past year, our team and our collaborators have uploaded more than 30,000
mappings to BioPortal. However, these mappings constitute only a tiny subset of the
mappings between concepts in BioPortal ontologies. Thus, one of our goals was to use
simple methods to generate quickly a large number of high-precision mappings to in-
clude in the repository. Our earlier studies have shown that in the case of biomedical
ontologies simple lexical techniques, such as comparing preferred names of concepts
and their synonyms, are extremely effective in creating mappings [6]. We have reported
elsewhere [6] that this simple method for generating mappings achieves extremely high
precision for biomedical ontologies—where preferred names of concepts and synonyms
are used extensively and represent a rich source of information. In addition, we com-
pared our results with the gold standard produced by the Ontology Alignment Eval-
uation Initiative (OAEI) [4]. For the use case of biomedical ontologies, our method
achieved levels of recall and precision comparable to the best tools in the competition.

We have applied this simple lexical matching of preferred names and synonyms to
generate mappings between concepts in BioPortal ontologies. In addition, the Unified
Medical Language System (UMLS) [9] is a large collection of biomedical ontologies
and terminologies that the researchers at the US National Library of Medicine have
integrated. We plan to include UMLS terminologies in BioPortal in the near future and
thus, when creating the mappings, we included the UMLS terminologies as well.

We generated mappings across all concepts in 140 BioPortal ontologies and 67
UMLS terminologies with more than 4 million concepts among them. We had two
goals in generating the mappings: (1) we wanted to create a large set of mappings for
the BioPortal resource that other applications can access and use; and (2) we wanted
to learn more about the characteristics of the ontologies and the relationships between
them. Using a set of more than 4 million mappings generated over our ontology set, we
would like to answer several practical questions with implications for ontology reuse
and development. These questions include, but are not limited to, the following:

To what degree are the domains covered by different ontologies connected? Mapping
out the connections between ontologies will help us understand which domains are
closely related, which ontologies may serve as a bridge between domains, and so on.

If you are new to a domain, what are the important or representative ontologies with
good coverage? Ontology developers seeking to develop or reuse knowledge from
a particular domain will be interested to know which ontologies have good coverage
within that domain.

If you want to build domain-specific tools for creating ontology mappings, what are
good ontologies to use for background knowledge? Many tools that seek to provide
mappings for the purpose of ontology alignment use background knowledge to improve
their ability to produce valid and accurate mappings (e.g., [15,1]). Such background

What Four Million Mappings Can Tell You about Two Hundred Ontologies 231

knowledge allows these tools to use information about the representation of the domain
to identify equivalent concepts. Thus knowing which ontologies are optimal for use as
a source of background knowledge may greatly improve these tools.

What can we learn about the characteristics of the ontologies themselves and the on-
tology repository from the mappings between them? A set of mappings can provide
insight about the ontologies themselves, their importance to their respective domains,
or their coverage.

Researchers have previously successfully applied network analysis to gain insights
into the structure and connectedness of large data sets [8]. In this paper, we apply
network-analysis methods to analyze the ontologies and their mappings, to answer the
questions posed above, and to reason about the distribution of mappings among the
ontologies.

Note that our analysis does not depend on the specific methods that was used to
generate the mappings and relies only on the fact that we have large set of high-precision
mappings.

This paper makes the following contributions:

– We demonstrate that large-scale mapping sets can be useful in understanding the
structure of an ontology repository, by identifying the most pertinent ontologies,
the domains of overlap among ontologies, and the missing parts in an ontology
repository.

– We propose network-based analysis metrics of ontologies based on mappings be-
tween them.

– We produce a set of more than 4 million mappings for the repository of ontologies
and terminologies in BioPortal and UMLS.

2 Materials and Methods: What’s in a Link?

We will now describe how we created the mappings used in this study and what data
we analyzed.

We define a mapping as a relationship between two classes from different ontolo-
gies. The mappings that we discuss in this paper are similarity mappings: we declare
that two classes from different ontologies are similar if the meaning that one class rep-
resents is similar or identical to the meaning of the other. We use the term “mapping”
throughout this paper to refer to similarity mapping.

2.1 The NCBO Ontology Set

To develop our mappings, we used a set of 207 ontologies in the domain of biomedicine.
These ontologies include 140 ontologies in BioPortal and 67 terminologies in the
UMLS. The ontologies in BioPortal come from two sources: (1) 70 ontologies are
downloaded nightly from the OBO Foundry repository;2 (2) 70 ontologies are sub-
mitted by their developers directly to BioPortal. Among them, the 207 ontologies and
terminologies that we used in this study contained 4,021,662 concepts.

2 http://obofoundry.org

http://obofoundry.org

232 A. Ghazvinian et al.

2.2 Creating Lexical Mappings between Concepts

We created the mappings using the following steps, which we describe in detail in the
rest of this section:

1. generate a database of terms used for preferred names and synonyms of ontology
concepts;

2. normalize the strings in the database;
3. find pairs of matching terms;
4. create mappings between concepts based on the matching terms identified in the

previous step.

In the first step—creating a database of preferred names and synonyms of all concepts
in all ontologies—we needed to identify for each ontology which properties contained
the strings representing these preferred names and synonyms. All UMLS terminolo-
gies have preferred names and synonyms clearly identified for all the concepts. Many
of the BioPortal ontologies are represented in the OBO format, which also has desig-
nated properties to define preferred name and synonyms of a class. The OWL language
does not itself provide any special annotation properties to store preferred names and
synonyms (although many ontologies use rdfs:label for the former).3 Thus, when
users submit an OWL ontology to BioPortal, we ask them to indicate which OWL prop-
erties their ontology uses for preferred names and synonyms. We store the names of
these properties as part of ontology metadata.

Extracting all terms for preferred names and synonyms resulted in a database of
7,637,125 terms. We then normalized all the strings, by converting them to lower case
and removing all delimiters (e.g., spaces, underscores, parentheses, etc.). We used a
mySQL database to store each term along with the ID for the ontology and the concept
that it came from.

We used an SQL query to find pairs of matched terms among the normalized terms.
From the database table of normalized terms, we utilized an SQL query to identify pairs
of terms that matched exactly. To improve precision, we compared only strings with at
least three characters and ignored the strings with three characters or less.

Since each term refers to a preferred name or synonym of a specific concept from
a particular ontology, we used matching terms to connect concepts from different
ontologies.

Consider the following example. The class “Myocardium” in Foundational Model
of Anatomy (FMA) has the preferred name “Myocardium.” The class “Heart my-
ocardium” in the ontology of Mouse adult gross anatomy has a synonym “my-
ocardium.”4 We will match the two normalized terms “myocardium” and therefore
create a mapping between the two classes, “Myocardium” in FMA and “Heart my-
ocardium” in Mouse adult gross anatomy ontology.

Such mapping between the mouse myocardium represented in Mouse adult gross
anatomy ontology and the human myocardium represented in FMA can facilitate

3 The Simple Knowledge Organization System (SKOS) provides the RDF-based vocabulary
for defining preferred names and synonyms for concepts, but so far none of the BioPortal
ontologies use SKOS.

4 http://bioportal.bioontology/org/ontologies

http://bioportal.bioontology/org/ontologies

What Four Million Mappings Can Tell You about Two Hundred Ontologies 233

cross-species data exploration and integration. Having created this mapping, we could
then integrate data annotated with the concept “Heart myocardium” in a database de-
scribing mouse experiments and data annotated with “Myocardium” describing human-
related data.

This process resulted in a set of 4,001,775 mappings, where each each mapping
represents a class from one ontology that is similar to a class from another ontology. The
mapping is bi-directional as the similarity relationship generated this way is symmetric.

Note that UMLS itself contains a large set of manually created mappings between
terms in different ontologies and terminologies. In the work described in this paper,
we did not include those mappings. Rather, we used only the lexical mappings that we
have generated. In future work, we plan to include the mappings that UMLS provides
for additional information.

2.3 Identifying Links between Ontologies

Because our goals include analysis of relations between ontologies and not individual
concepts, we define a link between two ontologies based on a set of mappings between
concepts from those ontologies. We use the notation mapping(c1, c2) to describe a
mapping between two concepts from different ontologies, such as the mappings that we
described in Section 2.2. We denote a set of all concept-to-concept mappings between
two ontologies S and T as M(S, T), where M(S, T) = {mapping(cs, ct), cs ∈ S,
ct ∈ T }.

Definition 1 (Mapping-Based Link between Ontologies). Given two ontologies, the
source ontology S and the target ontology T , and a set of mappings between them
M(S, T), we say that there exists a mapping-based link L between ontologies S and T
iff M is not an empty set: M 	= ∅.

If two ontologies have at least one pair of concepts with similar names or synonyms
between them, there will be a mapping-based link between the two ontologies. How-
ever, a more meaningful measure is the number of links between two ontologies or,
more precisely, the fraction of one ontology that is mapped to another. For instance, if
two ontologies each have 1,000 concepts, then, intuitively, the two ontologies are much
closer to each other if 700 of these concepts match than if 5 concepts do. Thus, we de-
fine the notion of a percent-normalized link between ontologies which reflects not only
how many mappings one ontology has to another, but also normalizes this measure with
respect to the ontology size.

Definition 2 (Percent-Normalized Link between Ontologies). Given two ontologies,
the source ontology S and the target ontology T , and a set of mappings M(S, T) be-
tween them, we say that there is a percent-normalized link between S and T , Lp(S, T)
where p ≥ 0 and p ≤ 100, iff at least p% of the concepts in the ontology S are sources
for the mappings in M(S, T). We say that L0(S, T) holds if there is at least one map-
ping between concepts in S and T

For instance, if an ontologyS has 1,000 concepts, and 500 of these concepts are mapped
to concepts in an ontology T , then Lp(S, T) is true for all values of p from 0% to 50%.

234 A. Ghazvinian et al.

Note that Lp(S, T) is directional and it is entirely possible (and, in fact, common)
for Lp(S, T) to be true and for Lp(T, S) to be false at the same time. If one ontology
is much larger than another, a large fraction of the smaller ontology may be mapped to
the larger ontology, but the set of mappings still constitutes a small portion of the larger
ontology.

Intuitively, the percent-normalized link reflects how significant a set of mappings
between ontologies is in the context of those ontologies. We evaluated the distribution of
these links for several different values of p. We determined what percent of all ontology
links were present at different values of p. Additionally, we implemented a graphical
visualization of the links at each of these thresholds to analyze the clustering patterns
and the link distribution for different values of p. Finally, we counted the number of
links for each ontology at different values. We used this data to analyze the frequency
with which an ontology has exactly k links.

3 Results

We used the data that we collected from the mappings to plot and analyze several met-
rics: First, we analyzed the number of links between ontologies at different values of p
(i.e., at varying sizes of the mapped portion of the ontology, normalized by the ontology
size) and the distribution of ontologies based on the number of links (Section 3.1). Sec-
ond, we treated ontologies and the links between them as nodes and edges in a graph,
again for several values of p. We analyzed the properties of these graphs as networks,
using metrics such as the number of hubs and clusters (Section 3.2). Finally, we exam-
ined the overall similarity of the ontologies (Section 3.3). We discuss and analyze our
results in Section 4.

3.1 How Many Links Do Ontologies Have?

Figure 1 shows a distribution of the number of links that ontologies have for two values
of p: 20% (Figure 1a) and 1% (Figure 1b). Recall that when p = 20%, we create a link
between source ontology S and target ontology T iff at least 20% of concepts from S
are mapped to concepts from T . In other words, ontologies that we count in the graph
on the right have a looser connection to each other than the ontologies in the graph on
the left. Due to lack of space, we do not present the graphs for values of p > 20%.5 The
distribution for larger values of p is very similar to the distribution for p = 20%.

The graphs in Figure 1 show that the links between ontologies follow a power-law
distribution for p = 20% (and larger values of p): There is a small number of ontologies
that have large number of links and a large number of ontologies with just a few links.
For smaller values of p, however, such as p = 1%, where we include ontologies with
very little overlap, our network becomes essentially random.

We analyzed the average distance between two nodes in the graph for some values
of p. We found that for small values of p, the network is quite well connected and

5 This data is available at http://www.bioontology.org/wiki/index.php/
Mapping_Set

http://www.bioontology.org/wiki/index.php/Mapping_Set
http://www.bioontology.org/wiki/index.php/Mapping_Set

What Four Million Mappings Can Tell You about Two Hundred Ontologies 235

Fig. 1. Number of Links between ontologies for(a) p = 20% and (b) p = 1%: The x-axis
represents a number of links to other ontologies that each ontology has. The y-axis represents the
number of ontologies with that number of links. The graph demonstrates the power-law distribu-
tion for p = 20%: there is a small number of ontologies that have a large number of links (the
hubs) and a large number of ontologies with just a few links. If we use p = 1% (there is a link
from one ontology to another if at least 1% of its concepts are mapped), the distribution becomes
essentially random.

represents a small world: A network exhibits the small world property if any one node
in the network is never more than a few hops away from any other [2]. For p = 10%,
the average distance between any two nodes is only 1.1 hops.

3.2 Hubs and Clusters

We constructed directed graphs of ontologies at several different thresholds of p
(Figure 2). Nodes in the graphs are ontologies. There is a directed edge from a node
corresponding to the ontology S to a node corresponding to an ontology T iff there is
a link Lp(S, T) between these ontologies for this values of p. We say that a particular
node is a hub in this graph if it has more than twice the number of links (incoming and
outgoing) than the average number of links for nodes in the graph. A set of connected
ontologies forms a cluster.

We used these graphs to identify connections between different ontologies, based on
varying levels of overlap. The graphs identified clear hubs, ontologies to which many
other ontologies link, with the Systematized Nomenclature of Medicine - Clinical Terms
(SNOMED-CT) ontology being the most prominent hub: We found that SNOMED-CT
had the most links of any ontology, with 58 links (57 as “target”, 1 as “source”) at
p = 20%. In other words, 58 out of 207 had at least 20% of their concepts mapped
to concepts to SNOMED-CT. On further analysis, we found that more than 85% of
SNOMED-CT concepts are mapped to at least one other concept in our repository.

Figure 3a shows variation of some key graph features (number of hubs, number of
ontologies, number of clusters, and size of the largest cluster) as we change the value
of p. Additionally, the plot in Figure 3b displays the percent of ontologies in the largest
cluster.

236 A. Ghazvinian et al.

Fig. 2. The graphs show percent-normalized links between ontologies that are true for p =
20%, 40%, 60%, and 70%. Nodes represent ontologies in the repositories. Please refer to
http://bioportal.bioontology.org/ontologies for the list of full ontology names corresponding to
the acronyms that we use as labels in the graph. An edge from a node representing on ontology
O1 to a node representing an ontology O2 means that at least p% of concepts from O1 map to
some concept in O2.

What Four Million Mappings Can Tell You about Two Hundred Ontologies 237

Fig. 3. Variation of graph features as p changes: (a) The graph shows how the number of
ontologies, clusters, hubs, and the size of the largest cluster, all on the y-axis, change as p changes.
As p decreases (from right to left), the number of clusters decreases slowly as clusters merge and
the number of hubs increases slowly. Additionally, the largest cluster increases to include a larger
fraction of the ontologies, which also increase in number because more ontologies are connected
as the threshold for p decreases. (b) The graph shows the percent of ontologies that are in the
largest cluster for different thresholds of p. As p decreases (right to left), almost all ontologies
become connected very quickly.

Note that the graphs have two distinct types of hubs: (1) hubs in which almost all of
the links (directed edges) were incoming and (2) hubs in which almost all of the directed
edges were outgoing. That is, some, usually small, ontologies have a large fraction of
their concepts covered by other ontologies. Other, usually larger, ontologies include
concepts that are similar to a large fraction of concepts in many smaller ontologies in
the repository.

Fig. 4. Percentage of overall links: The x-axis is the value of p. The y-axis shows the fraction
of all links between ontologies (L0) that are present for a given value of p (i.e., Lp / L0) as p
changes.

238 A. Ghazvinian et al.

3.3 How Similar Are the Ontologies?

Finally, Figure 4 shows a graph of the percentage of overall links that are included at
each threshold value of p. This graph demonstrates that:

– 96% of ontology links are between ontologies that are less than 20% similar
– 91% between ontologies less than 10% similar
– 65% between ontologies less than 1% similar

And our final observation: Out of 207 ontologies, 68 ontologies (or 33%) have at least
50% of their terms mapped to terms in some other ontology.

4 Discussion and Analysis

The figures and data that we presented in Section 3 allow us to make several observa-
tions and answer several of the questions that we posed at the beginning of the paper.

To what degree are the domains covered by different ontologies connected?

– If we use lexical mappings as the basis for determining how connected the on-
tologies are, then the biomedical ontologies in our repository are very closely con-
nected, with 33% of them having at least half of their concepts mapped to concepts
in other ontologies.

– With such a large overlap among the ontologies, attempts to find “canonical” repre-
sentations for concepts may be doomed: a large number of concepts in biomedicine
are already represented in many different ways. One could argue that our data shows
that given the state of the biomedical ontologies today, the most feasible way of in-
tegrating ontologies is by creating mappings, possibly complex ones, between them
rather than trying to eliminate overlap (as the OBO Foundry initiative is trying to
do [14]).

– Our study found that the small world property holds on our set of ontologies for low
values of p, with the average distance between the nodes being as low as 1.1 hops.
Other research has found the small world property to be true for other large data
sets as well[8]. Further analysis on the properties of small world networks, such
as strength of ties and k-core among others, may provide additional useful insight
about the connectedness of ontologies.

If you are new to a domain, what are the important or representative ontologies with
good coverage?

– The lexical mappings identified SNOMED-CT as the most prominent hub, and,
indeed, SNOMED-CT is the largest and one of the most prominent and popular
biomedical ontologies. Thus if we use mappings as a way of identifying prominent
ontologies in a domain (i.e., an ontology with lots of mappings to other ontologies is
an “important” one), then at least in this case, this approach would have identified
correctly the ontology that a newcomer to the domain of biomedical ontologies
must become familiar with.

What Four Million Mappings Can Tell You about Two Hundred Ontologies 239

– Hubs with many outgoing links show shared domains, particularly at high threshold
values for p. For these hub ontologies, a large portion of their concepts is mapped
to several different ontologies. Thus, ontologies that are linked through such a hub
likely share the content that is represented in the hub ontology. For example, at
p= 50%, the Common Anatomy Reference Ontology (CARO) is a hub with out-
going links to Foundational Model of Anatomy, Zebrafish anatomy and develop-
ment, Tick gross anatomy, Teleost anatomy and development, and Mosquito gross
anatomy—all ontologies in the anatomy domain. At p= 70%, the United States
Pharmacopeia Model Guidelines ontology (USPMG) has outgoing links to Mul-
tum MediSource Lexicon, RxNorm Vocabulary, Veterans Health Administration
National Drug File, National Drug File Reference Terminology, Medical Subject
Headings, National Cancer Institute Thesaurus, and SNOMED-CT—all ontologies
that describe drugs, among other things.

If you want to build domain-specific tools for creating ontology mappings, what are
good ontologies to use for background knowledge?

– The two previous points lead to several practical uses of hubs identified through
mappings: First, for ontology-mapping algorithms that require domain-specific
background knowledge, hubs with many incoming links (such as SNOMED-CT)
can serve as useful sources of such background knowledge. Second, these hubs are
also good candidates for being representative ontologies for a domain.

What can we learn about the characteristics of the ontologies themselves and the on-
tology repository from the mappings between them?

– Links at a low value of p (1%) (i.e., when less than 1% of the concepts from the
source ontology have a mapping to the target) do not say much about connectedness
of ontologies. The domain of biomedicine is such that there is a little bit of overlap
in everything, resulting in the extremely connected model we see at 1% mark. At
20%, however, we see a meaningful power-law distribution. At even higher thresh-
olds, we can see ontologies that are very closely related. For example, we see that
the Gene Ontology (GO) is very closely related to the cell cycle ontologies (CCO).
65% of links fall in a range lower than 1% similarity, which indicates that links be-
low the p = 1% threshold are not as informative of connections between ontologies.

– If we were to use mappings between terms (identified in any way) as an indication
of distance or similarity between ontologies in a repository, then the previous ob-
servation leads to the following practical implication: These links at low values of
p are not very meaningful and should probably not be used as an indication of any
relation between the ontologies.

5 Conclusions, Limitations, and Future Work

Our analysis does not depend on the specific method used to identify mappings between
concepts. We used a simple method because it worked well and was very scalable (cf
Section 2.2). Our earlier research has found that most of the openly available advanced

240 A. Ghazvinian et al.

mapping algorithms are simply not scalable to the size of biomedical ontologies in our
repository [6]. One of the interesting directions for future work, when more scalable
advanced algorithms become available, would be to perform similar analysis of rela-
tionships between ontologies taking a more advanced set of mappings as input.

Our main contribution in this paper is not the method for generating mappings be-
tween ontologies, but rather the analysis of these mappings. We believe that network
analysis serves as a powerful tool for analyzing the structure of an ontology repository
by providing insights into the characteristics of the ontologies and the structure of the
repository. As the Semantic Web grows in popularity and use of ontologies expands,
these methods may play an important role in understanding the connections among
ontologies.

Our approach has certain critical limitations. Because we use a simple lexical match-
ing method, our results are limited to the domain of biomedicine and other domains
where such mapping method works well. In other domains, where concept definitions
do not contain rich lexical information in the form of preferred names and synonyms,
one will need to find scalable tools that would produce a large number of mappings
that enable statistically significant analysis. Also, because of the way we generate the
mappings, we do not account for the ontologies that have alternate lexical structures to
represent the same concepts. Thus, we may miss a connection between two ontologies
that actually have a significant amount of overlap in terms of the actual concepts they
represent simply because these concepts have different lexical structures in the two on-
tologies. Our methods would work best for sets of ontologies that use similar naming
conventions [13].

Another limitation of our work is that it gives no information as to the nature of
the mappings or the actual specific relationship between linked ontologies. We cannot
know whether one ontology simply has the same concept names as another ontology
or if it imports terms from that ontology directly. Many BioPortal ontologies use OBO
format and often simply copy the ontology that they import rather than use the import
mechanism that recently has become available in OBO. As a result, a number of the
mappings that we created are not actually mappings in the traditional sense. We plan to
develop heuristics to identify this overlap and exclude it from the mappings set.

As part of our future work, we plan to compare our lexical mappings on the set of
UMLS terminologies to the set of mappings provided by UMLS. The UMLS has a large
number of mappings between the terminologies that were created manually. While the
purpose of those mappings was slightly different from ours, comparing the results of
the lexical mapping to the manual one will likely produce useful insights.

We also plan to implement automatic maintenance and updates on the set of map-
pings generated with this method. Not only does the number of BioPortal ontologies
increase regularly, but also new versions of some of the ontologies are uploaded every
night. These frequent updates makes manual creation of mappings among ontologies
in the repository a daunting, if not impossible, task. By contrast, UMLS terminologies
update twice a year.

In addition to the work outlined above, we plan to perform similar analysis on the
mappings from other sources if the number of mappings is significant enough to make

What Four Million Mappings Can Tell You about Two Hundred Ontologies 241

such analysis valid. For instance, the Alignment Server [5] in the NeON project could
prove to be one such source of mappings in the future.

Finally, we uploaded the set of mappings between BioPortal ontologies to BioPortal.
Users can browse the mappings through the BioPortal user interface and access them
programmatically through REST services. We believe that the mappings should prove
useful to developers of tools dependent on these mappings or for ontology developers
looking at specific domain ontologies. All the data that we used for the analysis in this
paper is available in raw spreadsheet form at http://www.bioontology.org/
wiki/index.php/Mapping_Set

The study that we reported in this paper offered the first glimpse at the possibilities
and challenges that large numbers of related ontologies bring to the fore. Our results
show that using network analysis on a network defined by mappings between ontology
terms helps us understand and navigate a world with a large number of ontologies. As
more ontologies become available on the Semantic Web, such analysis will become
more interesting, more useful, and more challenging.

Acknowledgements

This work was supported by the National Center for Biomedical Ontology, under
roadmap-initiative grant U54 HG004028 from the National Institutes of Health. Nick
Griffith has implemented the support for mappings in BioPortal.

References

1. Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching unstructured vocabular-
ies using a background ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI),
vol. 4248, pp. 182–197. Springer, Heidelberg (2006)

2. Barabsi, A.-L.: Linked: How Everything Is Connected to Everything Else and What It Means
for Business, Science, and Everyday Life. Basic Books (2003)

3. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions. Briefings
in Bioinformatics 7, 256–274 (2006)

4. Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malaise, V., Meilicke, C.,
Pane, J., Shvaiko, P., Stuckenschmidt, H., Svab Zamazal, O., Svatek, V.: Results of the on-
tology alignment evaluation initiative 2008. In: 3rd International Workshop on Ontology
Matching (OM-2008) at ISWC 2008, Karlsruhe, Germany (2008)

5. Euzenat, J.: Alignment infrastructure for ontology mediation and other applications. In:
Workshop on Mediation in Semantic Web Services (2005)

6. Ghazvinian, A., Noy, N.F., Musen, M.A.: Creating mappings for ontologies in biomedicine:
Simple methods work. In: AMIA Annual Symposium (AMIA 2009), San Francisco, CA
(2009)

7. Jonquet, C., Shah, N.H., Musen, M.A.: The open biomedical annotator. In: AMIA Summit
on Translational Bioinformatics, San Francisco, CA, USA, pp. 56–60 (2009)

8. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In:
17th International World Wide Web Conference (WWW 2008), Beijing, China (2008)

9. Lindberg, D., Humphreys, B., McCray, A.: The unified medical language system. Methods
of Information in Medicine 32(4), 281 (1993)

http://www.bioontology.org/wiki/index.php/Mapping_Set
http://www.bioontology.org/wiki/index.php/Mapping_Set

242 A. Ghazvinian et al.

10. Noy, N., Shah, N., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Montegut, M., Rubin, D.,
Youn, C., Musen, M.: Bioportal: A web repository for biomedical ontologies and data re-
sources. In: Demo session at 7th International Semantic Web Conference (ISWC 2008),
Karlsruhe, Germany. Springer, Heidelberg (2008)

11. Noy, N.F., Griffith, N., Musen, M.A.: Collecting community-based mappings in an ontol-
ogy repository. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 371–386. Springer, Heidelberg
(2008)

12. Rubin, D.L., Shah, N.H., Noy, N.F.: Biomedical ontologies: a functional perspective. Brief-
ings in Bioinformatics 9(1), 75–90 (2008)

13. Schober, D., Smith, B., Lewis, S.E., Kusnierczyk, W., Lomax, J., Mungall, C., Taylor, C.F.,
Rocca-Serra, P., Sansone, S.-A.: Survey-based naming conventions for use in obo foundry
ontology development. BMC Bioinformatics (2009)

14. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J.,
Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A.,
Sansone, S.A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry:
coordinated evolution of ontologies to support biomedical data integration. Nature Biotech-
nology 25(11), 1251–1255 (2007)

15. Zhang, S., Bodenreider, O.: Alignment of multiple ontologies of anatomy: Deriving indirect
mappings from direct mappings to a reference. In: AMIA Annual Symposium, pp. 864–868
(2005)

Modeling and Query Patterns for Process
Retrieval in OWL

Gerd Groener and Steffen Staab

ISWeb — Information Systems and Semantic Web,
Institute for Computer Science, University of Koblenz-Landau, Germany

{groener,staab}@uni-koblenz.de

Abstract. Process modeling is a core task in software engineering in
general and in web service modeling in particular. The explicit manage-
ment of process models for purposes such as process selection and/or
process reuse requires flexible and intelligent retrieval of process struc-
tures based on process entities and relationships, i.e. process activities,
hierarchical relationship between activities and their parts, temporal re-
lationships between activities, conditions on process flows as well as the
modeling of domain knowledge. In this paper, we analyze requirements
for modeling and querying of process models and present a pattern-
oriented approach exploiting OWL-DL representation and reasoning ca-
pabilities for expressive process modeling and retrieval.

1 Introduction

Process models are used in various applications like business process modeling,
modeling of system processes and also the combination and interaction of web
services are described as processes. In order to use existing processes it is nec-
essary to support basic process model management tasks like the retrieval of
processes [16].

There are various approaches for modeling processes and corresponding
retrieval methods like a keyword search or retrieval methods based on data
in- and output or process properties which are mainly process annotations. Re-
trieval with respect to the activities of a process and especially to the execution
order and dependencies of them requires the consideration of the control flow of
a process (cf. Section 2.2,[12]).

The problem of process retrieval based on control flow information depends on
the internal process structure. The structure includes sequences, choices, parallel
activities as well as activity specialization. Therefore, search capabilities for pro-
cesses must include reasoning facilities that are able to match the heterogeneous
requirements that exist at different levels of granularities of process descriptions
between a query and a process. Moreover, this matching capability needs to
distinguish modalities of matches, i.e. whether a specific condition on a process
(part) must be always fulfilled or only for some of its instances. In order to tackle
the described challenges, we consider two main tasks:

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 243–259, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 G. Groener and S. Staab

– A formal description of the control flow of a process which explicitly models
the various hierarchical and ordering relationships between activities.

– A characterization of query and reasoning tasks in order to retrieve processes
with specified control flow characteristics and modalities.

OWL-DL allows for the description of terminology of processes and activities.
DL reasoning enables matching of queries and processes (cf. Section 4). The
available reasoning procedures account for the aggregation of activities and for
different modalities.

OWL-DL and DL have been used for process modeling and retrieval before
(cf. [4,11,16,17]). However, in these process models, the control flow is either
not represented at all or represented by syntactic means that do not allow for
reasoning as needed or the process models are too weak to express realistic
control flows. A comprehensive survey is given in Section 6.

To remedy this situation, this paper provides a threefold contribution. First,
we analyze modeling and querying requirements for process retrieval in general
(Section 2). Second, we provide patterns for modeling process control flow in
OWL-DL (Section 3). Third, we demonstrate how to exploit these semantic-based
models for expressive retrieval of (parts of) process models by reasoning in OWL-
DL (Section 4). The retrieval capabilities of our model are evaluated in Section 5.

2 Process Retrieval Problems

This section outlines requirements for process modeling and retrieval motivated
by a retrieval scenario.

2.1 An Example Process Model as UML Activity Diagram

We use the widespread and standardized UML-Activity Diagrams for graphi-
cal process modeling. Figure 1 depicts three different process models describing
SalesOrder processes with different characteristics. The elements of UML Ac-
tivity Diagrams are described in Table 2. Activities are the tasks which are exe-
cuted by the process. An edge is the connection from an activity to the follower
activity.

The activities in the diagrams from Figure 1 are decomposed into more fine-
grained descriptions which are depicted in Figure 2. TheReorder process contains
a decision in combination with a condition. If the article is a standard article an
internal reorder activity is executed otherwise an external reorder activity.

2.2 Requesting Process Descriptions

We consider a situation where a customer wants to use an online shop to buy
a product. The selling procedure of the online shop is specified by a salesorder
process description. Depending on the individual preferences of the customer, he
may want to select a shopping service based on properties of the process control
flow which is realized by the shop. For instance, he may want to search for a
shop (Q) and expects a concrete response (R) fulfilling his request:

Modeling and Query Patterns for Process Retrieval in OWL 245

Q1: Which shop allows me to pay after delivery?
R1: Process that executes Delivery before Payment.

Q2: Which shop allows me to pay by cash?
R2: SalesOrder that offers cash payment as payment method.

Q3: Which shop accepts only cash payment?
R3: SalesOrder process that only offers cash payment.

Fig. 1. UML-Activity Diagrams for Sales Order Processes

Fig. 2. UML-Activity Diagrams for the Subprocesses

246 G. Groener and S. Staab

In fact, quite often an online shop is requested that fulfills multiple constraints
simultaneously. Besides the customer, the service provider may have further
queries in order to find an appropriate process.

Q4: Which process executes at least all activities of SalesOrder2?
R4: SalesOrder3 process contains all activities of SalesOrder2 and an ad-
ditional activity.

Q5: Which process runs are instances of SalesOrder2 and SalesOrder3?
R5: Process runs which are instances of both processes simultaneously.

2.3 Requirements for Process Modeling

In order to facilitate process retrieval we derived the requirements for process
modeling from the demonstrated queries. Table 1 describes the derived require-
ments with respect to the questions. (1) A query must consider the execution
order, e.g. that one activity happens (possibly indirectly) before another activity.
(2) Process specializations and (3) activity decomposition involve the terminol-
ogy, e.g. that one must consider the different specializations of payment types.
(4) Queries have to cover modality, e.g. that a property like the type of pay-
ment is unavoidable in all possible process enactments. (5) Instance queries are
relevant for all modeling dimensions. These requirements may be combined, e.g.
queries concerning the execution order have also to cover terminological informa-
tion. Obviously, these queries are general and imprecise process descriptions, e.g.
only a description of relevant parts of the process. Hence the process retrieval
has to account for incomplete process descriptions.

Table 1. Requirements derived from the queries

Requirements Questions
Order of Activities and Subactivities Q1
Specialization, Inheritance Q4
Activity Decomposition Q2, Q3
Modality Q2, Q3
Instance Queries Q5

3 Process Modeling in OWL

We have investigated two important design decisions for modeling processes in
OWL-DL. The first method models occurrences of activities and their relative
positioning in the control flow. The advantage is that each step can be modeled
separately and - as we see later - some advantages with regard to refinements
are implied. The second method models a process as one complex DL expression
capturing all the steps. In this second model it is not fully possible to capture all
temporal and refinement relationships simultaneously. However, the advantage
of the second approach is that there are more possibilities for retrieval queries
than in the first approach. In this paper we only focus on the second approach.

Modeling and Query Patterns for Process Retrieval in OWL 247

3.1 Design Principles and Transformation

A process model (sometimes called a process template) describes the set of all
process runs it allows, i.e. a concept in OWL-DL. Process runs are instances in
OWL-DL. A process run is a composition of activity instances. We translate the
language primitives of the UML-Activity Diagram into an OWL-DL1 represen-
tation. Table 2 lists our translation rules. A, B, C and D are activities, P is a
process name.

Table 2. Transformation to Description Logic

Construct UML Notation DL Notation
1. Start Starti

2. End Endi

3. Activity A

4. Edge TOi

5. Process P (Axiom) P ≡ Starti � ∃=1 TOi.

(A � ∃=1 TOi.Endi)
6. Flow A � ∃=1 TOi.B

7. Decision A � ∃=1 TOi. ((B � C)
� ∃=1 TOi.D

8. Condition A � ∃=1 TOi. ((B � κCond) �
(Stalled � ¬κCond))

9. Fork and A � ∃ TOi.(B � ∃=1 TOi.D)
Join � ∃ TOi.(C � ∃=1 TOi.D)

� = 2 TOi

10. Loop Loopj � ∃=1TOi.B,
Loopj ≡ A � ∃=1 TOj .

(Loopj � Endj)

The relation between an activity and the follower activity is represented by
roles in DL, i.e. TO 2. In order to allow for process composition and refinement
in combination with cardinality restrictions the roles for each process (TOi) are
distinguished from each other. All roles TOi are defined as subroles of TO in
order to simplify query formulations. Therefore we may use TO for the retrieval
of all processes. TOT is a transitive superrole of TO (cf. Table 3) which is similar
to the relation pattern in DOLCE plan extension [9]. The combination of both
roles enables process retrieval with respect to direct and indirect activity order.

A process is either atomic or composed. An atomic process is a non-
decomposable activity. A composed process is built using axioms (No.5). An
axiom defines a process starting with Starti followed by a sequence of composed
activities. The last activity is the concept Endi. The follower relation TOi refers
1 We use the DL language SHOIN (D) which corresponds to OWL-DL.
2 For sake of a short name, the role name TO is used instead of a more meaningful

name like FollowedBy.

248 G. Groener and S. Staab

to an edge in the process diagram. A flow (No.6) is translated to DL with the
expression A � ∃ TOi.B. This means that the process flow defines an execution
of activity A which is directly followed by the activity B. The disjointness of A
and B in a flow is here not required which accounts for a larger result set in the
retrieval (cf. 5).

Decisions (No.7) are modeled in DL as a concept union ∃ TOi.(B � C)
representing a non-deterministic choice between two possible following activi-
ties. Both activities reach an activity D. The cardinality restrictions guarantee
that there is only one follower activity. A condition can be assigned to a flow
(No.8). Adding disjoint conditions to each flow of a decision leads to determinis-
tic decisions. These deterministic decisions are used to model exclusive decisions
(exclusive or), i.e. exactly one path after the decision is executed.

Disjointness of the activities B and C is also not required. We describe con-
ditions as set of states that may be reached when the condition is fulfilled. The
notation of No.8 describes that directly after the activity A there is an activ-
ity B and the condition Cond holds, i.e. the activity B is only executed if the
condition is satisfied. We add an additional activity Stalled if the condition is
not satisfied. The activity Stalled means that the control flow of the process is
stopped due to a violation of the condition. All conditions are subclasses of a
general concept Condition (Table 3).

Table 3. Process Model Axiomatization

Statement DL Axiom
Stalled has no follower Stalled � ∃ TO.Activity � ⊥
All activities are subclasses of Activity A,B, C, D � Activity

Conditions are subclasses of the concept Condition κj � Condition

Domain and Range of TO is Activity ∃ TO.� � Activity

and � � ∀ TO.Activity

TO is superrole of all TOi TOi � TO

TOT is the transitive superrole of TO TO � TOT , and TO+ � TOT

Starti is the first activity Starti � ∃ TO−

i .Activity � ⊥
Endi is the last activity Endi � ∃ TOi.Activity � ⊥

A parallel execution (No.9) starts with a fork and ends with a join. The
fork is described by the explicit statement that there exist multiple follower
sequences, which is described by an intersection of the sequences. The join of
sequences like for decisions and parallel executions is represented by activity
(D) in the complex DL expression. Loops (No.10) are described by a subprocess
Loopj which contains the activities of the loop (A) and the follower activity is
either Loopj or Endj . This construct is a special decision with a self reference.
In case of a nested loop structure, i.e. there is a loop within another loop, the
transformation is straightforward. The inner loop is treated like a single activity
of the outer loop, e.g. activity A in No.10 could be an inner loop.

Modeling and Query Patterns for Process Retrieval in OWL 249

For each process definition we require that Starti has no predecessor, Endi

has no follower which is described in the second part of Table 3. In order to
model process refinements these conditions are only valid for this (sub-) process.
Therefore the start and end activities are distinguished from each other, using
levels (i) for each process. Further axioms like domain and range restrictions,
subclass relations between activities and conditions and the role hierarchy for
the follower relations (TOi) are described in the first part of Table 3.

In our OWL-DL model there are limitations in the accuracy. Some model
constructs are non-deterministic, e.g. we use a disjunction in DL to model a non-
deterministic control flow description and we do not require a general disjointness
of the activities of a process. However, this supports query expressions using
general and incomplete process descriptions with a maximal possible result set.

3.2 Process Transformation to OWL

Based on the described transformation pattern from UML process models to
OWL, we describe the SalesOrder processes from Section 2 in OWL-DL. Fig-
ure 3 depicts the axioms that describe the SalesOrder processes. For being more
readable, we omit here the cardinality restrictions in all process definitions and
the Stalled activity for violated conditions.

SalesOrder1 ≡ Start1 � ∃ TO1.(Order � ∃ TO1.(Delivery � ∃ TO1.End1)
� ∃ TO1.(Payment � ∃ TO1.End1))

SalesOrder2 ≡ Start2 � ∃ TO2.(Order � ∃ TO2.
(Delivery � ∃ TO2.(Payment � ∃ TO2.End2)))

SalesOrder3 ≡ Start3 � ∃ TO3.
(Order � ∃ TO3. (Delivery � ∃ TO3.(Payment � ∃ TO3.End3))
� ∃ TO3.(Reorder � ∃ TO3.(Payment � ∃ TO3.End3)))

Delivery ≡ Start4 � ∃ TO4.(ConfirmOrder �∃ TO4. (StockUpdate � ∃ TO4.End4))
� ∃ TO4(PrepareShipping � ∃ TO4.(Shipping �
∃ TO4.(StockUpdate � ∃ TO4.End4)))

Payment ≡ Start5 � ∃ TO5.(Invoice � ∃ TO5.(Debit � ∃ TO5.End5))
Reorder ≡ Start6 � ∃ TO6.(TestArticle � ∃ TO6. ((InternalReorder � Standard

ExternalReorder � ¬Standard) � ∃ TO6.
(SendReorder � ∃ TO6.End6)))

Fig. 3. The Sales Order Processes in DL

Domain knowledge (Figure 4) contains terminological information about ac-
tivities and subactivities of the processes, e.g. a credit card payment is a sub-
class of payment. Figure 5 contains further process definitions also without
cardinality restrictions. CreditCardPayment and CashPayment are special-
izations of the Payment activity. SalesOrder2 Credit and SalesOrder2 Cash
refine the SalesOrder2 process using the subconcepts CreditCardPayment and
CashPayment instead of Payment. In the remainder of this paper, we refer to
the set of axioms from Table 3, Figures 3, 4 and 5 as the knowledge base KB.

250 G. Groener and S. Staab

CreditCardPayment � Payment
CashPayment � Payment
CashPayment � CreditCardPayment � ⊥

Fig. 4. Domain Knowledge Axioms

SalesOrder2 Credit ≡ Start2 � ∃ TO2.(Order � ∃ TO2.
(Delivery � ∃ TO2.(CreditCardPayment � ∃ TO2.End2)))

SalesOrder2 Cash ≡ Start2 � ∃ TO2.(Order � ∃ TO2.
(Delivery � ∃ TO2.(CashPayment � ∃ TO2.End2)))

Fig. 5. Additional SalesOrder-Processes in DL

3.3 Relations between Processes

Specialization and refinements are orthogonal relationships between processes.
A specialization (or sometimes called an extension) is a relationships between
processes in which the specialization of a process consists either of additional
activities or some of the activities are specialized. An activity specialization or
a subactivity is a subclass of the more general activity. Specializations are de-
scribed as inheritance relationships in [20]. There is a distinction between four
different inheritance relationships. One of them is the projection inheritance
which refers to the notion of specialization in our process model. A formal defi-
nition is given in Definition 1.

As in [20] we use the term hidden activity to refer to an activity in a pro-
cess which is not executed, i.e. this activity would be removed from the flow.
The edges to and from the hidden activity remain in the process as a valid
path but without these activity. For instance SalesOrder3 is a specialization
of SalesOrder2. The additional activity is Reorder. If Reorder is hidden in
SalesOrder3 the processes are equivalent. With equivalence we refer to bisimu-
lation equivalence. The path via Reorder is still an existing path, but without
any activity. Therefore a hidden activity is also called an activity without effect.

Definition 1. A process P ′ is a specialization or extension of P if the following
conditions hold: (1) Each activity from process P is either an activity in P ′ or
there is a subactivity in P ′ with respect to the terminology. The subactivity is
subsumed by the activity from P . (2) If all additional activities in P ′ are hidden
then P ′ and P are bisimilar. Additional activities of P ′ are activities that are
neither in P nor subactivities of them are in P .

These definition refers to definitions like in [5,20]. In our model, we use DL con-
cept subsumption to analyze process specializations. If a process specialization
contains a parallel execution instead of a sequential or it contains additional
activities or additional conditions, this specialization is subsumed, since it is
modeled as concept intersection. These DL concept subsumptions conform to
Definition 1, e.g. SalesOrder3 is subsumed by SalesOrder2 and SalesOrder3
is a specialization with respect to the definition.

Modeling and Query Patterns for Process Retrieval in OWL 251

A process containing a decision like Reorder is not subsumed by a process
without the decision. For instance the Reorder process without InteralReorder
activity does not subsume the Reorder process, since the decision is modeled as
a concept union and therefore define a more general concept. However, decisions
are not specializations with respect to our definition, since hidden additional
activities do not lead to the same process. The path of the hidden activity (e.g.
InternalReorder) still exists, and therefore the activity ExternalReorder could
be omitted using the other path (with no effect) which is still available. For loops
the DL subsumption also confirms to the definition. Adding a Loopj to a process
is like adding a single activity to the more general process.

In [21] process specialization is defined using execution set semantics. The ex-
ecution set of a process contains all process runs. Process P ′ is a specialization
with respect to the minimal execution set semantics, if it contains at least all
process runs from the general process. This definition is valid for processes P ′

containing decisions compared to a process P without decision. Under the max-
imal execution set the specialization consists of a subset of the process P . This
definition refers to all other primitives except decisions that satisfy the concept
subsumption P ′ � P . Therefore this model can not be referred to only one of
these specialization notions.

A refinement is an equivalent representation with another granularity
(cf. [21]). The same process is described in a more fine-grained representation.
The inverse of a refinement is an abstraction. A refinement replaces activities
of a process with corresponding subprocesses, e.g. Payment is replaced in a
SalesOrder process as described in Figure 2. A subprocess can also consist of a
single activity.

4 Semantic Query Patterns for Process Retrieval

In Section 3 we have used the expressiveness of OWL to describe the control flow
of processes, activity decomposition and specialization of activities and processes
(Figure 4,5). In order to satisfy the requirements from Section 2.3 we express
queries in DL and use DL reasoning to query the process models and derive
process information and relationships.

Queries are general and incomplete process descriptions which specify the
requested core functionality of the process. The query result contains all pro-
cesses of the KB satisfying the query specification. The retrieval of a process
with respect to the query depends on the axioms in the KB, i.e. the process
information. We apply two different inference strategies in order to demonstrate
how information or missing information in the KB may lead to different query
results, depending on the applied inference method.

A strong inference method is the entailment of concept subsumption, i.e.
the query subsumes the retrieved processes. The subsumption is used only in
one direction. The result processes are specializations of the query. A weaker
inference method is the satisfiability of concept conjunction, i.e. to test whether
a process and the query process may have a common process run. This weaker

252 G. Groener and S. Staab

condition leads to a higher number of results. The result processes are candidates
for the query process. Missing information, e.g. missing disjointness axioms leads
to a higher number of positive results. In general, adding further axioms to the
KB reduces the result set for this inference method.

We consider three non-disjoint query patterns with respect to the control
flow of a process. The first pattern mainly considers the retrieval of processes
with respect to the execution order. The second pattern considers terminologi-
cal queries. Queries for the modality are demonstrated with the third pattern.
The query pattern consist of three components: query, inference and result. The
query input P is a process description. Inference is the description of the applied
reasoning strategy, i.e. entailment or satisfiability. For sake of a shorter presen-
tation, we only depict the applied inference for one process (here SalesOrder1),
but this is performed for all processes in the KB.

Pattern for Execution Order. A query for question Q1 from section 2.2 is
described below. The query result contains all processes from the KB which
conform to the described execution order.

Query. Which processes execute Payment after Delivery?
{P ≡ ∃ TOT.(Delivery � ∃ TOT.Payment)}
Inference. Test entailment of concept subsumption:
KB |= SalesOrder1 � P , . . .

Result. {SalesOrder2, SalesOrder2 Cash, SalesOrder2 Credit, SalesOrder3}
The result contains all processes that execute Delivery before Payment with
an arbitrary number of activities between them. The result includes also pro-
cesses which specialize the Payment activities. If the query should only retrieve
processes with directly connected activities, the transitive role TOT is replaced
by the role TO in the query. For instance the following query searches for all
processes with Payment as direct follower of Order.

Query. Which processes execute Payment directly after Order?
{P ≡ ∃ TOT.(Order � ∃ TO.Payment)}

Inference. Test entailment of concept subsumption:
KB |= SalesOrder1 � P , . . .

Result. {SalesOrder1}

Pattern for Process Terminology. This pattern uses the terminological
knowledge. This covers the extension of processes and the specialization of ac-
tivities. The following query searches for all processes in which the Delivery
activity is executed before the Debit activity. In all described processes there is
at least the Invoice step between these activities.

Query. Which processes execute Delivery before Debit?
{P ≡ ∃ TOT.(Delivery � ∃ TOT.Debit)}

Modeling and Query Patterns for Process Retrieval in OWL 253

Inference. Test entailment of concept subsumption:
KB |= SalesOrder1 � P , . . .

Result: {SalesOrder2, SalesOrder2 Cash, SalesOrder2 Credit, SalesOrder3}
The query refers to the refinement of Payment, since only the decomposed
process contains the Debit activity. If the query only uses the TO relationship
the result-set is empty.

The next query searches for all extensions of the process SalesOrder2, as
described in question Q4.

Query. Which processes extend SalesOrder2?
{P ≡ SalesOrder2}
Inference. Test entailment of concept subsumption:
KB |= SalesOrder1 � P , . . .

Result. {SalesOrder2 Credit, SalesOrder2 Cash, SalesOrder3}
The extensions SalesOrder2 Credit and SalesOrder2 Cash are generalized
by SalesOrder2 since they contain a payment activity which is defined as
a specialization of Payment. The extension relation between SalesOrder2
and SalesOrder3 is inferred since SalesOrder3 contains all activities from
SalesOrder2 and additional activities (Recorder). For the entailment the same
TOi roles are required.

Pattern for Process Modality. This pattern considers queries which express
the modality of processes that refer to questions like Q2 and Q3 and also ter-
minological query Q4 from Section 2.2. The first query searches processes that
offer a credit card payment.

Query. Which process offers CreditCardPayment?
{P ≡ ∃ TOT.CreditCardPayment}

Inference. Test entailment of concept subsumption:
KB |= SalesOrder1 � P , . . .

Result. {SalesOrder2 Credit} There is only one process definition with an ex-
plicit statement that the payment method is CreditCardPayment. The next
query searches for all processes that only offer credit card payment. Using con-
cept subsumption there is no process that fulfills this condition, i.e. is subsumed
by the query process. Since in no process definition the condition is explicitly
stated. However, if the inference is changed to the weaker satisfiability of concept
intersection, there are processes which are candidates for satisfying the query.
The p in the query refers to a process run which is not in the KB.

Query. Which process only offers CreditCardPayment?
{P ≡ ∀ TOT.(¬Payment � CreditCardPayment)}
Inference. Test satisfiability of concept intersection: KB ∪{p : (SalesOrder1 �
P)}, . . .

254 G. Groener and S. Staab

Result. {SalesOrder1, SalesOrder2, SalesOrder2 Credit, SalesOrder3} The
query description P describes that if there is a Payment activity in the pro-
cess it must be a CreditCardPayment. The formula is valid for all SalesOrder
processes except for the SalesOrder2 Cash processes since there is an axiom
in the KB that the payment methods CreditCardPayment and CashPayment
are disjoint.

5 Evaluation

Dataset: We evaluated the process retrieval with a KB of 182 different process
models. These process models are based on ten real world processes (business
processes) from the SAP Business Workflow library3, from the Enterprise Ser-
vices (ES) Workplace at the SAP Developer Network (SDN)4 and from the
process library 5. We used multipliers in order to create from each basic process
model between 16 and 25 different models. A multiplier modifies the processes us-
ing the following operators: (1) Add and remove activities (2) Change of activity
order, (3) Replace activity with sub- or superactivity and (4) Add and remove
flow conditions. These process models were transformed into OWL. The pro-
cess models contain unconditional decisions (70%), conditional decisions (65%),
split/fork (40%) and loops (25%). The DL expressivity is SHIQ.

Methodology. For the evaluation we used the Pellet 2.0.0 reasoner in Java 1.6
running on a computer with 1.7 GHz CPU and 1 GB RAM. The retrieval is
evaluated on four knowledge bases with different size. The first contains 52, the
second contains 107, and the third and fourth contain 182 process models. In
the last two KB the size of the processes (number of activities) is different. Due
to this generation method the KB contains many similar process models that
only differ in some activities or their ordering.

Depending on the size of the KB the evaluation consists of 25 until 35 queries
like the demonstrated queries from Section 4. In the evaluation each query in-
vokes the reasoner without caching. The queries for activity order also considered
activities within non-sequential process parts, like in parallel executions or deci-
sions. For terminology, we queried also for flow conditions and their complement.

Result. The evaluation result is depicted in Table 4. The first column refers
to the number of processes in the KB. The second column contains the average
number (Av.) of activities in a process and the third column the maximal (Max.)
activities of a process. The number of axioms of the ontology is described in
column four. The columns five and six describe the retrieval time (average and
maximum) for simple queries in milliseconds (ms). Simple queries contain only
one activity or a negated activity. All other queries with multiple activities (at
least three) are referred to as complex queries, the retrieval time is in the columns
3 http://help.sap.com
4 http://esworkplace.sap.com/sdn
5 http://bpt.hpi.uni-potsdam.de/Prozessbibliothek/WebHome

Modeling and Query Patterns for Process Retrieval in OWL 255

Table 4. Retrieval Evaluation Result

No. KB Size Process Size Axioms Simple Query Complex Query Concept Sat.
Time [msec.] Time [msec.] Time [msec.]

Av. Max. Av. Max. Av. Max. Av.
1 52 12.7 19 238 1420 1504 1508 1820 1390
2 107 12.9 19 416 1684 1720 1608 1754 1603
3 182 12.9 21 568 4548 4606 4391 4590 4141
4 182 21.2 28 587 4793 4890 4460 4557 4178

seven and eight. The average size of the result set (number of process models) of
the queries using concept subsumption is 9.3 for the smallest KB, 9.8 for the KB
with 107 models, 13.7 and 14.6 for the knowledge bases with 182 models. The
retrieval time for all processes which satisfy the concept intersection with the
query process (weak reasoning condition) are outlined in column nine (Sat.).

The performance evaluation from Table 4 indicates the following results. The
influence of the size of the process models is negligible, as described in No.3, 4.
In both settings there are 182 process models in the KB but the average size of
the process models in No.4 is about 60% higher. For simple queries the retrieval
time is even lower. The retrieval time increases by the number of processes in the
KB. As indicated in the settings No.1 - 3 the retrieval time increases lightly from
a KB with 52 processes compared with the KB with 107. If the KB is extended
to 182 which is an increase of 70% the retrieval time is more than doubled. There
is no performance difference between queries which contain activities either at
the beginning of a process or at the end. The complexity of the query process
(simple or complex) has also no influence. This indicates that only the number
of process models in the KB affects the retrieval time.

The evaluation outlines the following qualitative results. (i) Processes form the
KB are subsumed by the more general query process using the rolesTO and TOT ,
except queries with decisions, since decisions are not considered as specializations
and therefore not subsumed. (ii) However, if the query contains activities which
are after a decision and before the merging of the flows the query has to cover either
every sequence after the decision or use the disjoint flow conditions to retrieve the
processes containing the decision. Since loops are special decisions, the retrieval
of processes containing loops is realized in the same way.

(iii) The retrieval of refined processes depends on the refinement. If the re-
finement is realized by the decomposition of activities into subprocesses at the
end of a process, the processes are retrieved using concept subsumption. Oth-
erwise it requires two queries. For instance the query for a refined process
∃ TOT.(StockUpdate � ∃ TOT.Payment) is transformed into a first query that
selects the subprocess, the second query uses the start-activity of the refined pro-
cess, e.g. ∃ TOT.(Starti � ∃ TOT.Payment), at which Starti is the start-activity
(first activity) of the subprocess containing StockUpdate. The problem is that
the order relation TO is not inferred for the subactivities (e.g. StockUpdate)
with respect to the following activities of the original process (e.g. the relations

256 G. Groener and S. Staab

Table 5. Comparison of Modeling Dimensions

Modeling Characteristic [3] [8] [10] [11] [6, 16] [19] Our Model
Control Flow Modeling y y n y n n y
Realization of Process Retrieval n n y y y y y
Activity Terminology in Modeling and Retrieval n n n y y n y
Process Refinement y y y n y y y
Modality n n n n n n y
State Change n n n n n y n

from StockUpdate to Payment). (iv) More complex refinements, e.g. change of
the original execution order in combination with activity specialization is not
retrieved by concept subsumption.

Distinction to other Technological Approaches. (i) Another way of using OWL for
process modeling is the annotation of process models, i.e. other process models
like UML are enriched with OWL annotations. However, the aim of our model is a
generic process model in OWL with an explicit description of activity relations
within a process. (ii) Non-ontological models like graph-based representations
and queries [7] or tree-shaped diagram unraveling can manage the same ordering
queries, but there is no reasoning benefit for process retrieval and a lack of
representing terminological information, which is another aim of our approach.

Lessons Learned

Process Modeling. Modeling with cardinality restrictions leads to a more pre-
cise model. The difference between a decision and a parallel execution is empha-
sized with this restriction that there exists either exactly one follower or exactly
n follower. There is a modeling tradeoff between accuracy and generic modeling.
Generic descriptions account for a larger result set with respect to the demon-
strated query mechanism. We do not model the join of decisions and parallel
flows, which could be easily added with axioms like D � ∃ TO−

i .B � ∃ TO−
i .C

for No.7 and 9 in Table 2. The join is described by the occurrence of the same ac-
tivity (name) in all paths after the decision or split. This accounts for a maximal
possible result set.

For the same reason we model decisions as union ∃ TOi.(B � C) with only
one TOi relationship instead of ∃ TOi.B � ∃ TOi.C in order to retrieve a process
with this decision also for queries which contain both activities simultaneously,
e.g. either B before C or vice versa. We do not require disjointness of activities
in a flow and within decisions and parallel flows which could be simply added to
the knowledge base by disjointness axioms.

Process Retrieval. Retrieval of refined processes is difficult due to the pro-
cess definition using complex expressions. The relation from an activity to its
successor is only defined for the process as a whole and not for the activities.
However, in the demonstrated modeling methodology the reasoning complexity

Modeling and Query Patterns for Process Retrieval in OWL 257

is lower than in the other modeling approach with explicit descriptions of the
activity relations since the number of defined concepts in the ontology would
be significantly higher. The query expressions are also more intuitive. Another
benefit from the chosen modeling technique is the possibility to identify relation-
ships between processes, e.g. process specializations. Since processes would be
modeled by explicit relationships between activities, an activity can not occur
in two different processes. Therefore it is required to use subclasses to denote
the activities of the different processes.

6 Related Work

A comparison of our model with other process models is depicted in Table 5.
The comparison contains modeling and retrieval.

For a core of our model, i.e. sequences only, this had already been accom-
plished by [14]. We significantly extend their model to account also for decisions,
conditions, forks, joins, and loops. The matching of processes with different rea-
soning strategies is adopted from [13]. Process retrieval based on process infor-
mation and annotation is realized in in [19]. A layered process representation is
used. A service retrieval with additional functional information is described in
[8,15] Other applications use search algorithms for process retrieval, like [6,16].
Similarity measure with respect to the process annotations and descriptions is
used instead of logical reasoning. They use a process ontology and a correspond-
ing query language. The retrieval in [10] also uses search algorithms instead of
reasoning. DL based process models are described in [11] in order to enable
process reuse. The model does not consider complex control flow.

The following approaches are focused on modeling and analyzing without
retrieval. The OWL-S process model [1] is an OWL ontology for process descrip-
tion. Flow sequences are modeled as ordered lists. Like in OWL-S, processes are
described as service interactions in WS-BPEL [2]. A XML messaging protocol is
defined in order to specify the interoperability of services. The process specifica-
tion language (PSL) [18] provides a mathematical model for activities, relations
between activities and for data exchange. In [3] the control flow is analyzed ac-
cording to the OWL-S process model. A combination of OWL and petri nets is
demonstrated in [17]. OWL is only used to annotate the process models.

7 Conclusion

In this paper, we described process control flow modeling and retrieval in
OWL-DL. For an application scenario we outlined the requirements of process
retrieval with respect to the internal process structure. In order to fulfill these
requirements it is necessary to describe explicitly the execution order of a process
and to express the modality and terminology of process activities and structures.
This also requires reasoning support to identify process extensions and termi-
nological relationships between activities. Based on a process description with
UML Activity Diagram the process models were transformed into OWL-DL. This

258 G. Groener and S. Staab

contained a general description of the transformation and the design principles.
The query patterns for process retrieval with respect to the control flow also cover
the relationship between processes and demonstrate the usage of terminology and
modality in the retrieval. In the evaluation the modeling and retrieval results,
strengths and weaknesses are discussed.

Acknowledgements

This work has been supported by the European Projects MOST (ICT-FP7-2008
216691) and X-Media (IST-FP6-026978).

References

1. OWL-S: Semantic Markup for Web Services (2004),
http://www.w3.org/Submission/OWL-S

2. Web Services Business Process Execution Language V. 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

3. Ankolekar, A., Paolucci, M., Sycara, K.: Spinning the OWL-S Process Model - To-
ward the Verification of the OWL-S Process Models. In: Proc. of ISWC Workshop
on Semantic Web Services (2004)

4. Aslam, M.A., Auer, S., Shen, J., Herrmann, M.: Expressing Business Process Mod-
els as OWL-S Ontologies. In: Proc. of Int. Workshop on Grid and Peer-to-Peer
based Workflows (GPWW). Springer, Heidelberg (2006)

5. Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. J. Log. Algebr. Pro-
gram. 47(2), 47–145 (2001)

6. Bernstein, A., Klein, M.: Towards High-Precision Service Retrieval. In:
Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 84. Springer,
Heidelberg (2002)

7. Bildhauer, D., Ebert, J.: Querying Software Abstraction Graphs. In: Working on
Query Technologies and Applications for Program Comprehension (2008)

8. Ferndriger, S., Bernstein, A., Dong, J.S., Feng, Y., Li, Y.-F., Hunter, L.: Enhancing
Semantic Web Services with Inheritance. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 162–177. Springer, Heidelberg (2008)

9. Gangemi, A., Borgo, S., Catenacci, C., Lehmenn, J.: Task Taxonomies for Knowl-
edge Content D07. In: Metokis Deliverable, pp. 20–42 (2004)

10. Gil, Y., Gonzalez-Calero, P.A., Kim, J., Moody, J., Ratnakar, V.: Automatic Gen-
eration of Computational Workflows from Workflow Templates Using Distributed
Data and Component Catalogs (2008)

11. Goderis, A., Sattler, U., Goble, C.: Applying DLs to workflow reuse and repurpos-
ing. In: Description Logic Workshop (2005)

12. Goderis, A., Sattler, U., Lord, P., Goble, C.: Seven Bottlenecks to Workflow Reuse
and Repurposing. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 323–337. Springer, Heidelberg (2005)

13. Grimm, S., Motik, B., Preist, C.: Variance in e-Business Service Discovery. In:
Proc. of the ISWC Workshop on Semantic Web Services (2004)

14. Hirsh, H., Kudenko, D.: Representing Sequences in Description Logics. In: Proc.
of AAAI (1997)

http://www.w3.org/Submission/OWL-S
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Modeling and Query Patterns for Process Retrieval in OWL 259

15. Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., Stevens, R.: Deciding
Semantic Matching of Stateless Services. In: Proc. of AAAI (2006)

16. Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic Process Re-
trieval with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007.
LNCS, vol. 4519, pp. 609–623. Springer, Heidelberg (2007)

17. Koschmider, A., Oberweis, A.: Ontology Based Business Process Description. In:
EMOI-INTEROP (2005)

18. Menzel, C., Grüninger, M.: A formal Foundation for Process Modeling. In: Proc.
of Int. Conf. on Formal Ontology in Information Systems, pp. 256–269 (2001)

19. Wolverton, M., Martin, D., Harrison, I., Thomere, J.: A Process Catalog for Work-
flow Generation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 833–846.
Springer, Heidelberg (2008)

20. van der Aalst, W.M.P.: Inheritance of Business Processes: A Journey Visiting Four
Notorious Problems. In: Petri Net Technology for Communication-Based Systems,
pp. 383–408 (2003)

21. Wyner, G., Lee, J.: Defining Specialization for Process Models. In: Organizing
Business Knowledge: The Mit Process Handbook. MIT Press, Cambridge (2003)

Context and Domain Knowledge Enhanced
Entity Spotting in Informal Text

Daniel Gruhl1, Meena Nagarajan2, Jan Pieper1, Christine Robson1,
and Amit Sheth2

1 IBM Almaden Research Center
650 Harry Road, San Jose, CA

{dgruhl,jhpieper,crobson}@us.ibm.com
2 Knoesis, 377 Joshi Research Center

3640 Colonel Glenn Highway, Dayton, OH
{meena,amit}@knoesis.org

Abstract. This paper explores the application of restricted relationship
graphs (RDF) and statistical NLP techniques to improve named entity
annotation in challenging Informal English domains. We validate our
approach using on-line forums discussing popular music. Named entity
annotation is particularly difficult in this domain because it is charac-
terized by a large number of ambiguous entities, such as the Madonna
album “Music” or Lilly Allen’s pop hit “Smile”.

We evaluate improvements in annotation accuracy that can be obtained
by restricting the set of possible entities using real-world constraints. We
find that constrained domain entity extraction raises the annotation ac-
curacy significantly, making an infeasible task practical. We then show
that we can further improve annotation accuracy by over 50% by apply-
ing SVM based NLP systems trained on word-usages in this domain.

1 Introduction

The semantic web and the plethora of relationships expressed as RDF files pro-
vide a wealth of information as to how entities in a document might relate.
However, in the absence of a training corpus with in-line references to the enti-
ties (a “pre-annotated corpus”), it becomes difficult to identify and disambiguate
named entities in text[13] to leverage these relationships in more complex tasks.
The mapping of regions of text to entries in an ontology becomes harder when
the regions are words used commonly in everyday language, such as “Yesterday,”
which could refer to the previous day, a Beatles song (one of 897 songs with that
title), or a movie (there are three productions so named).

Sense disambiguation (the process of identifying which meaning of a word is
used in any given context) becomes even more challenging when there is insuf-
ficient context surrounding the discourse; the language used is in the Informal
English domain common to social networking sites – a blend of abbreviations,
slang and context dependent terms delivered with an indifferent approach to
grammar and spelling. Understanding the semantic relationships between enti-
ties in these challenging domains is necessary for a variety of information-centric

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 260–276, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 261

applications, including the BBC SoundIndex [1]. This application, developed by
the authors and others, provides a realtime “top 40” chart of music popularity
based on sources such as MySpace and YouTube.

If we wish to utilize this type of content we need to transform it into a structured
form by identifying and sense disambiguating particular entities such as mentions
of artists, albums and tracks within the posts. In this paper we explore how the
application of domain models (represented as a relationship graph, e.g., RDF) can
complement traditional statistical NLP techniques to increase entity spotting1 ac-
curacy in informal content from the music domain. Semantic annotation of track
and album name mentions are performed with respect to MusicBrainz RDF2 - a
knowledge base of instances, metadata and relationships in the music domain. An
example snapshot of the MusicBrainz RDF is shown in Figure 1.

1.1 Challenging Features of the Music Domain

Table 1. Challenging features of the music
domain

Bands with a song “Merry Christmas” 60
Songs with “Yesterday” in the title 3,600
Releases of “American Pie” 195
Artists covering “American Pie” 31

Availability of domain models
is increasingly common with
today’s many Semantic Web
initiatives. However, employing
them for annotating Informal
English content is non-trivial,
more so in the music domain
(see Table 1). Song titles are of-
ten short and ambiguous. Songs
such as “The” (four songs), “A” (74 songs), “If” (413 songs), and “Why” (794
songs) give some idea of the challenges in spotting these entities. In annotating
occurrence of these elements in text, for example, ‘Yesterday’ in “loved your
song Yesterday!”, we need to identify which entity ‘Yesterday’, among the many
in the ontology, this one refers to.

Here, we present an approach that systematically expands and constrains the
scope of domain knowledge from MusicBrainz used by the entity spotter to ac-
curately annotate such challenging entity mentions in text from user comments.
The MusicBrainz data set contains 281,890 artists who have published at least
one track and 4,503,559 distinct artist/track pairs.

1.2 Our Approach and Contributions

We begin with a light weight, edit distance based entity spotter that works off
a constrained set of potential entities from MusicBrainz. The entities we are
interested in spotting in this work are track, album and song mentions. We
constrain the size of the set of potential entities by manually examining some of
the restrictions that can be applied on the MusicBrainz ontology. Restrictions
are obtained using additional information from the context of the entity spot.

1 We define spotting as finding a known list of named entities in text in real-time.
2 http://wiki.musicbrainz.org/RDF

262 D. Gruhl et al.

For example, when considering a spot in a comment from a discussion group on
country music, we may only consider artists and songs from that genre.

Further improvement is needed to disambiguate the usage of song titles. For
example, while Lilly Allen has a song titled ‘Smile,’ not all mentions of this
word on her MySpace page refer to the song, for example, “your face lights up
when you smile”. We disambiguate the output of our naive spotter with more
advanced NLP techniques using an SVM classifier that takes into account the
characteristics of word usages.

We find that constraining the domain of possible entity matches before spot-
ting can improve precision by several orders of magnitude over an admittedly
poor baseline of the light weight spotter. We note that these improvements fol-
low a Zipf distribution, where a reduction of possible entity matches by 50%
equals a doubling of precision. We also find that use of our NLP system can
improve accuracy by more than another 50%. These two steps, presented in the
rest of this paper, can form the beginning of a processing pipeline to allow higher
precision spot candidates to flow to upstream applications.

Pop

Madonna

genre

Rihanna

genre

Madonna

creator

Like a Prayer

creator

Music

creator

A Girl Like Me

creator

Music of the Sun

creator

Good Girl Gone Bad

creator

Runaway Lover

track

Don’t Tell Me

track

American Pie

track

Pon de Replay

track

The Last Time

track

Rush

track

I went to <artist id=89>Madge’s</artist> concert last night.
<artist id=262731>Rihanna</artist> is the greatest!
I love <artist id=357688>Lily’s</artist> song <track id=8513722>smile</track>.

Fig. 1. RDF Snapshot of MusicBrainz and example of in-line annotations. These an-
notations illustrate how messages in our corpus can be tagged with universally unique
identifiers (in this case the MusicBrainz id number) to facilitate searches both for in-
dividual mentions as well as Business Intelligence style roll-ups of aggregate statistics
on mentions in the corpus.

2 Related Work

2.1 Named Entity Recognition and Use of Domain Knowledge

Named Entity Recognition (NER) is an important task in information extrac-
tion. Nadeau and Sekine present a comprehensive survey of NER since 1991 [15].
The KnowItAll Information Extraction system [8] makes use of entity recogni-
tion techniques, in a domain-independent fashion. Related work by Chieu and
Ng has shown high performance in entity extraction with a single classifier and
information from the whole document to classify each word [6].

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 263

Closely related to our work, domain dictionaries have been widely used in
NER, including Wikipedia[4] and Wiktionary [14], DBLP [10], KAON [3], and
MusicBrainz [1]. They have also been used for the task of disambiguating entity
senses, an important step in accurately extracting entities. Work in [4] exploited
the link and textual features of Wikipedia to perform named entity disambigua-
tion. Entity disambiguation by gathering context from the document and com-
paring it with context in the knowledge base was also explored in [10].

These provide inspiration for our work, demonstrating that it is possible to
do efficient and accurate NER on a document-by-document basis using domain
knowledge supplemented with natural language processing techniques. Our work
differs in how we constrain a domain knowledge base in order to annotate a set
of known named entities in Informal English content.

2.2 Named Entity Recognition in Informal English

The challenge of NER in noisy and informal text corpora has been explored
from several angles. Minkov et al. were the first to address NER in “informal
text” such as bulletin board and newsgroup postings, and email [13]. Their work
on recognizing personal names in such corpora is particularly relevant, as it
uses dictionaries and constraining dictionary entries. They use a TF/IDF based
approach for constraining the domain space, an approach we considered in early
versions of our music miner. However, we found this approach to be problematic
in the music domain, as song titles often have very low novelty in the TF/IDF
sense (e.g. the Beatles song, “Yesterday”). Work by Ananthanarayanan et al. has
also shown how existing domain knowledge can be encoded as rules to identify
synonyms and improve NER in noisy text [2].

Our approach to NER in informal text differs in that it is a two step process.
Given a set of known named entities from the MusicBrainz RDF, we first elim-
inate extraneous possibilities by constraining the domain model using available
metadata and further use the natural language context of entity word-usages to
disambiguate entities that appear as entities of interest and those that do not.
Some word-usage features we employ are similar to those used in the past [13],
while others are derived from our domain of discourse.

3 Restricted Entity Extraction

We begin our exploration of restricted RDF graphs or Ontologies to improve
entity spotting by investigating the relationship between the number of entities
(artists, songs and albums) considered for spotting and the precision of the en-
tity spotter. The result is a calibration curve that shows the increase in precision
as the entity set is constrained. This can be used to gauge the benefit of imple-
menting particular real world constraints in annotator systems. For example, if
detecting that a post is about an artist’s recent album requires three weeks of
work, but only provides a minor increase in precision, it might be deferred in fa-
vor of an “artist gender detector” that is expected to provide greater restriction
in most cases.

264 D. Gruhl et al.

3.1 Ground Truth Data Set

Our experimental evaluation focuses on user comments from the MySpace pages
of three artists: Madonna, Rihanna and Lily Allen (see Table 2). The artists
were selected to be popular enough to draw comment but different enough to
provide variety. The entity definitions were taken from the MusicBrainz RDF (see
Figure 1), which also includes some but not all common aliases and misspellings.

Table 2. Artists in the Ground Truth Data Set

Madonna an artist with a extensive discography as well as a current album and
concert tour

Rihanna a pop singer with recent accolades including a Grammy Award and a
very active MySpace presence

Lilly Allen an independent artist with song titles that include “Smile,” “Allright,
Still”, “Naive”, and “Friday Night” who also generates a fair amount
of buzz around her personal life not related to music

Table 3. Manual scoring agreements on naive
entity spotter results

Artist Good spots Bad spots
(Spots scored) Agreement Agreement

100% 75 % 100% 75%
Rihanna (615) 165 18 351 8
Lily (523) 268 42 10 100
Madonna (720) 138 24 503 20

We establish a ground truth
data set of 1858 entity spots for
these artists (breakdown in Ta-
ble 3). The data was obtained
by crawling the artist’s MyS-
pace page comments and iden-
tifying all exact string matches
of the artist’s song titles. Only
comments with at least one spot
were retained. These spots were
then hand scored by four of the
authors as “good spot,” “bad spot,” or “inconclusive.” This dataset is available
for download from the Knoesis Center website3.

The human taggers were instructed to tag a spot as “good” if it clearly was a
reference to a song and not a spurious use of the phrase. An agreement between
at least three of the hand-spotters with no disagreement was considered agree-
ment. As can be seen in Table 3, the taggers agreed 4-way (100% agreement) on
Rihanna (84%) and Madonna (90%) spots. However ambiguities in Lily Allen
songs (most notably the song “Smile”), resulted in only 53% 4-way agreement.

We note that this approach results in a recall of 1.0, because we use the
naive spotter, restricted to the individual artist, to generate the ground truth
candidate set. The precision of the naive spotter after hand-scoring these 1858
spots was 73%, 33% and 23% for Lilly Allen, Rihanna and Madonna respectively
(see Table 3). This represents the best case for the naive spotter and accuracy
drops quickly as the entity candidate set becomes less restricted. In the next
Section we take a closer look at the relationship between entity candidate set
size and spotting accuracy.
3 http://knoesis.wright.edu/research/semweb/music

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 265

3.2 Impact of Domain Restrictions

One of the main contributions of this paper is the insight that it is often possible
to restrict the set of entity candidates, and that such a restriction increases
spotting precision. In this Section we explore the effect of domain restrictions
on spotting precision by considering random entity subsets.

We begin with the whole MusicBrainz RDF of 281,890 publishing artists and
6,220,519 tracks, which would be appropriate if we had no information about
which artists may be contained in the corpus. We then select random subsets
of artists that are factors of 10 smaller (10%, 1%, etc). These subsets always
contain our three actual artists (Madonna, Rihanna and Lily Allen), because we
are interested in simulating restrictions that remove invalid artists. The most
restricted entity set contains just the songs of one artist (≈0.0001% of the Mu-
sicBrainz taxonomy). In order to rule out selection bias, we perform 200 random
draws of sets of artists for each set size - a total of 1200 experiments. Figure 2
shows that the precision increases as the set of possible entities shrinks. For each
set size, all 200 results are plotted and a best fit line has been added to indicate
the average precision. Note that the figure is in log-log scale.

We observe that the curves in Figure 2 conform to a power law formula,
specifically a Zipf distribution (1

nR2). Zipf’s law was originally applied to demon-
strate the Zipf distribution in frequency of words in natural language cor-
pora [18], and has since been demonstrated in other corpora including web
searches [7]. Figure 2 shows that song titles in Informal English exhibit the
same frequency characteristics as plain English. Furthermore, we can see that
in the average case, a domain restrictions of 10% of the MusicBrainz RDF
will result approximately in a 9.8 times improvement in precision of a naive
spotter.

.0001%

.001%

.01%

.1%

1%

10%

100%
.0001% .001% .01% .1% 1% 10% 100%

Percent of the Music Brainz taxonomy

Pr
ec

is
io

n
of

 th
e

Sp
ot

te
r

Lily Allen's Myspace Page
Rihanna's Myspace Page
Madonna's Myspace Page

Lily Allen

Rihanna

Madonna

Fig. 2. Precision of a naive spotter using differently sized portions of the MusicBrainz
Taxonomy to spot song titles on artist’s MySpace pages

266 D. Gruhl et al.

This result is remarkably consistent across all three artists. The R2 values
for the power lines on the three artists are 0.9776, 0.979, 0.9836, which gives a
deviation of 0.61% in R2 value between spots on the three MySpace pages.

4 Real World Constraints

The calibration results from the previous Section show the importance of “ruling
out” as many artists as possible. We observe that simple restrictions such as
gender that might rule out half the corpus could potentially increase precision
by a factor of two. One way to impose these restrictions is to look for real world
constraints that can be identified using the metadata about entities as they
appear in a particular post. Examples of such real world constraints could be
that an artist has released only one album, or has a career spanning more than
two decades.

0

100

200

300

400

1500 1600 1700 1800 1900 2000
Birth year of artist or founding year of band

Sp
ot

s
pe

r a
rt

is
t

60 per. Mov. Avg. (spots per artist)Moving Average

Fig. 3. Songs from all artists in our MySpace corpus, normalized to artists per year

We are interested in two questions. First, do real world constraints reduce the
size of the entity spot set in a meaningful way? Second, by how much does the
trivial spotter improve with these real world constraints and does this match with
our predicted improvements from Figure 2? The effect of restricting the RDF by
artist’s age can be seen in Figure 3, which shows spots per artist by birth date.
Interestingly, we can see a spike in the graph beginning around 1920 with the
emergence of Jazz and then Rock and Roll, reflecting the use of common words
as song titles, (e.g. “Blues” and “South” by Louis Armstrong). For all artists
since this date (94% of the MusicBrainz Ontology, and 95.5% of the naive spots
on our corpus), the increased use of natural language utterances as song titles
is evidence that we should expect the Zipf distribution to apply to any domain
restriction over the corpus.

Having established that domain restrictions do reduce spot size, we look for
further constraints that can be inferred from the user-generated text. As an
example, we observe that comments such as “Saw you last night in Denver!!!”
indicate the artist is still alive. A more informational post such as “Happy 25th
B-DAY!” would allow us to further narrow the RDF graph to 0.081% of artists
in the Ontology, and 0.221% of the naive spots on Lily Allen’s MySpace Page.

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 267

Table 4. The efficacy of various sample restrictions

Key Count Restriction
Artist Career Length Restrictions- Applied to Madonna

B 22 80’s artists with recent (within 1 year) album
C 154 First album 1983
D 1,193 20-30 year career

Recent Album Restrictions- Applied to Madonna
E 6,491 Artists who released an album in the past year
F 10,501 Artists who released an album in the past 5 years

Artist Age Restrictions- Applied to Lily Allen
H 112 Artist born 1985, album in past 2 years
J 284 Artists born in 1985 (or bands founded in 1985)
L 4,780 Artists or bands under 25 with album in past 2 years
M 10,187 Artists or bands under 25 years old

Number of Album Restrictions- Applied to Lily Allen
K 1,530 Only one album, released in the past 2 years
N 19,809 Artists with only one album

Recent Album Restrictions- Applied to Rihanna
Q 83 3 albums exactly, first album last year
R 196 3+ albums, first album last year
S 1,398 First album last year
T 2,653 Artists with 3+ albums, one in the past year
U 6,491 Artists who released an album in the past year

Specific Artist Restrictions- Applied to each Artist
A 1 Madonna only
G 1 Lily Allen only
P 1 Rihanna only
Z 281,890 All artists in MusicBrainz

Our constraints are tabulated in Table 4, and are derived manually from
comments such as, “I’ve been a fan for 25 years now,” “send me updates about
your new album,” and “release your new album already! i’m getting tired of
playing your first one on repeat!” Since we have chosen our corpus to represent
three specific artists, the name of the artist is a further narrowing constraint.

We consider three classes of restrictions - career, age and album based re-
strictions, apply these to the MusicBrainz RDF to reduce the size of the entity
spot set in a meaningful way and finally run the trivial spotter. For the sake of
clarity, we apply different classes of constraints to different artists.

We begin with restrictions based on length of career, using Madonna’s MyS-
pace page as our corpus. We can restrict the RDF graph based on total length of
career, date of earliest album (for Madonna this is 1983, which falls in the early
80’s), and recent albums (within the past year or 5 years). All of these restric-
tions are plotted in Figure 4, along with the Zipf distribution for Madonna from
Figure 2. We can see clearly that restricting the RDF graph based on career
characteristics conforms to the predicted Zipf distribution.

For our next experiment we consider restrictions based on age of artist, using
Lily Allen’s MySpace page as our corpus. Our restrictions include Lily Allen’s
age of 25 years, but overlap with bands founded 25 years ago because of how
dates are recorded in the MusicBrainz Ontology. We can further restrict using
album information, noting that Lily Allen has only a single album, released in
the past two years. These restrictions are plotted in Figure 4, showing that these
restrictions on the RDF graph conform to the same Zipf distribution.

268 D. Gruhl et al.

Fig. 4. Naive spotter using selected portions of the MusicBrainz RDF based on de-
scriptive characteristics of Madonna, Lily Allen and Rihanna, respectively. The Key to
the data points is provided in Table 4.

Finally, we consider restrictions based on absolute number of albums, using
Rihanna’s MySpace page as our corpus. We restrict to artists with three al-
bums, or at least three albums, and can further refine by the release dates of
these albums. These restrictions fit with Rihanna’s short career and dispropor-
tionately large number of album releases (3 releases in one year). As can be seen
in Figure 4, these restrictions also conform to the predicted Zipf distribution.

The agreement of the three types of restrictions from above with the random re-
strictions from the previous Section are clear from comparing the plots in Figure 4.
This confirms the general effectiveness of limiting domain size to improve preci-
sion of the spotter, regardless of the type of restriction, as long as the restriction
only removes off-target artists. A reduction in the size of the RDF graph results in
an approximately proportionate increase in precision. This is a particularly useful
finding, because it means that any restriction we can apply will improve precision,
and furthermore we can estimate the improvement in precision.

5 NLP Assist

While reducing extraneous possibilities improved precision of the naive spotter
significantly, false positives resulting from spots that appear in different senses
still need attention (see Table 5). The widely accepted ‘one sense per discourse’
notion[17] that the sense or meaning of a word is consistent within a discourse
does not hold for this data given the use of common words as names for songs
and albums.

Table 5. Spots in multiple senses

Valid: Got your new album Smile. Loved it!

Invalid: Keep your SMILE on. You’ll do great!

The task is to assess whether a
spot found is indeed a valid track or
album. This is similar to the word
sense disambiguation problem where
the task is to resolve which one of
many pre-defined senses is applicable to a word[9]. Here, we use a learning algo-
rithm over local and surrounding word contexts, an approach similar in principle
to several past efforts but adapted to our domain of discourse [16].

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 269

Formally, our task can be regarded as a binary classification problem. Consider
the set of all spots found by the naive spotter. Each spot in this set can be labeled
1 if it is a track; and −1 if it is not, where the label is associated with a set of
input features that characterize a spot s. This is implemented as a Support Vector
Machine (SVM), a machine learning approach known to be effective for solving
binary pattern recognition, named entity recognition and document classification
problems[11].

5.1 Features

We trained and tested the SVM learner on two sets of features collectively ob-
served in the tagged data (see Section 3.1); basic features, that characterize
a spot and advanced features that are based on the context surrounding the
spot.

Basic Features. We encode a set of spot-level boolean features (see Table 6)
that include whether the spot is all capitalized, starts with capital letters or is
enclosed in quotes. If the entire comment including the spot is capitalized, we
do not record a 1 for s.allCaps or s.firstCaps. We also encode features derived
from the part-of-speech (POS) tags and NP-chunking of comments (see syntactic
features in Table 6)4. To encode syntactic features, we created a list of the Penn
Treebank tag set5 also used by the Stanford parser. If the parser returns a tag
for the spot, we obtain the tag’s index position in the list to encode this feature.
If the sentence is not parsed this feature is not encoded.

Advanced features. We encode the following advanced features intended to
exploit the local context surrounding every spot. We encode the POS tags of
word tokens appearing before and after a spot in a sentence.

Sentiment expressions and domain-specific terms. We found that spots that co-
occurred with sentiment expressions and domain-specific words such as ‘music’,
‘album’, ‘song’, ‘concert’, etc. were more likely to be valid spots. We encode
these boolean features in the following manner.

First, we curated a sentiment dictionary of 300 positive and negative ex-
pressions from UrbanDictionary6 (UD), given the use of slang by this poster
demographic. Starting with expressions such as ‘good’, and ‘bad’, we obtained
the top 10 related sentiment expressions for these words. We continued this pro-
cess for the newly obtained words until we found no new words. Note that we
are not concerned with the polarity, but mere co-occurrence of sentiment ex-
pressions with spots. A dictionary of 25 domain-specific terms, such as ‘music’,
‘album’, ‘track’, ‘song’ etc. was created manually by consulting MusicBrainz.
These dictionaries are available for download from the Knoesis Center website7.
4 Obtained using the Stanford NL Parser http://nlp.stanford.edu/software/lex-

parser.shtml
5 http://www.cis.upenn.edu/˜treebank/
6 www.urbandictionary.com
7 http://knoesis.wright.edu/research/semweb/music

270 D. Gruhl et al.

Table 6. Features used by the SVM learner

Syntactic features Notation-S
+POS tag of s s.POS
POS tag of one token before s s.POSb

POS tag of one token after s s.POSa

Typed dependency between s and sentiment word s.POS-TDsent
∗

Typed dependency between s and domain-specific term s.POS-TDdom
∗

Boolean Typed dependency between s and sentiment s.B-TDsent
∗

Boolean Typed dependency between s and domain-specific term s.B-TDdom
∗

Word-level features Notation-W
+Capitalization of spot s s.allCaps
+Capitalization of first letter of s s.firstCaps
+s in Quotes s.inQuotes
Domain-specific features Notation-D

Sentiment expression in the same sentence as s s.Ssent

Sentiment expression elsewhere in the comment s.Csent

Domain-related term in the same sentence as s s.Sdom

Domain-related term elsewhere in the comment s.Cdom
+Refers to basic features, others are advanced features
∗These features apply only to one-word-long spots.

If one or more sentiment expressions, domain-specific terms or their word
forms were spotted in the same sentence as the spot, values for s.Ssent and s.Sdom

are recorded as 1. Corresponding s.Csent and s.Cdom features were also used to
record similar values when these terms were found elsewhere in the comment.
Encoding the actual number of co-occurring sentiment or domain expressions
did not significantly change the classification result.

Table 7. Typed Dependencies Example

Valid spot: Got your new album Smile.
Simply loved it!
Encoding: nsubj(loved-8, Smile-5) imply-
ing that Smile is the nominal subject of
the expression loved.

Invalid spot: Keep your smile on. You’ll
do great !
Encoding: No typed dependency between
smile and great

Typed Dependencies
We also captured the typed depen-
dency paths (grammatical relations)
via the s.POS-TDsent and s.POS-
TDdom boolean features. These were
obtained between a spot and co-
occurring sentiment and domain-
specific words by the Stanford
parser[12] (see example in 7). We also
encode a boolean value indicating
whether a relation was found at all
using the s.B-TDsent and s.B-TDdom

features. This allows us to accommo-
date parse errors given the informal
and often non-grammatical English
in this corpus.

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 271

Table 8. Classifier accuracy in percentages for different feature combinations. Best
performers in bold.

Features Valid Invalid Spots Acc.
Set1 Set2 Set3 Avg. Split

(1) W 45 88 84 86 45 - 86
(2) W+S 74 43 37 40 74 - 40
(3) W+D 62 85 83 84 62 - 84
(4) D 70 50 62 56 70 - 56
(5) D+S 72 34 36 35 72 - 35
(6) W+D+s.POS 61 66 74 70 61 - 70
(7) W+D+s.POSb,a+s.POS-TDs 78 47 53 50 78 - 50
(8) W+D+s.POSb,a+s.B-TDs 90 33 37 35 90 - 35
(9) W+D+only s.POSb,a 62 81 87 84 62 - 84
(10) W+D+only s.POS-TDs 60 79 91 85 60 - 85
(11) W+D+only s.B-TDs 71 68 72 70 71 - 70
(12) All features 42 89 93 91 42 - 91

5.2 Data and Experiments

Our training and test data sets were obtained from the hand-tagged data (see
Table 3). Positive and negative training examples were all spots that all four
annotators had confirmed as valid or invalid respectively, for a total of 571 posi-
tive and 864 negative examples. Of these, we used 550 positive and 550 negative
examples for training. The remaining spots were used for test purposes.

Our positive and negative test sets comprised of all spots that three annotators
had confirmed as valid or invalid spots, i.e. had a 75% agreement. We also
included spots where 50% of the annotators had agreement on the validity of
the spot and the other two were not sure. We further divided our negative test
set into two disjoint equal sets that allowed us to confirm generality of the
effect of our features. Finally, our test set of valid spots, Set 1, contained 120
spots and the two test sets for invalid spots, Set 2 and Set 3, comprised of 229
spots each.

We evaluated the efficacy of features shown in Table 6 in predicting the labels
assigned by the annotators. All our experiments were carried out using the SVM
classifier from [5] using 5-fold cross-validation. As one way of measuring the
relative contribution of advanced contextual and basic spot-level features, we
removed them one after another, trying several combinations. Table 8 reports
those combinations for which the accuracy in labeling either the valid or invalid
datasets was at least 50% (random labeling baseline). Accuracy in labeling valid
and invalid spots refer to the percentage of true and false positives that were
labeled correctly by the classifier. In the following discussion, we refer to the
average performance of the classifier on the false positives, Sets 2 and 3 and its
performance on the true positives, Set 1.

272 D. Gruhl et al.

5.3 Usefulness of Feature Combinations

Our experiments revealed some expected and some surprising findings about the
usefulness of feature combinations for this data. For valid spots, we found that
the best feature combination was the word-level, domain-specific and contextual
syntactic tags (POS tags of tokens before and after the spot) when used with
the boolean typed dependency features. This feature combination labeled 90%
of good spots accurately. The next best and similar combination of word-level,
domain-specific and contextual tags when used with the POS tags for the typed
dependency features yielded an accuracy of 78%. This suggests that local word
descriptors along with contextual features are good predictors of valid spots in
this domain.

For the invalid spots (see column listing average accuracy), the use of all fea-
tures labeled 91% of the spots correctly. Other promising combinations included
the word-level; word-level and domain-specific; word-level, domain-specific and
POS tags of words before and after the spot; word-level, domain-specific and the
typed dependency POS tags, all yielding accuracies around 85%.

Table 9. Average performance of best fea-
ture combinations on 6 sets of 500 invalid
spots each

Feature Combination Mean
Acc.

Std.Dev
Acc.

All Features 99.4% 0.87%
W 91.3% 2.58%
W+D 83% 2.66%
W+D+only s.POS-TDs 80.8% 2.4%
W+D+only s.POSb,a 77.33% 3.38%

It is interesting to note that the
POS tags of the spot itself were not
good predictors for either the valid
or invalid spots. However, the POS
typed dependencies were more use-
ful than the boolean typed depen-
dencies for the invalid spots. This
suggests that not all syntactic fea-
tures are useless, contrary to the
general belief that syntactic features
tend to be too noisy to be beneficial
in informal text. Our current inves-
tigations to improve performance
include the use of other contextual features like commonly used bi-grams and
tri-grams and syntactic features of more tokens surrounding a spot.

Accuracy in Labeling Invalid Spots. As further confirmation of the gener-
ality of effect of the features for identifying incorrect spots made by the naive
spotter, we picked the best performing feature combinations from Table 8 and
tested them on a dataset of 3000 known invalid spots for artist Rihanna’s com-
ments from her MySpace page. This dataset of invalid spots was obtained using
the entire MusicBrainz taxonomy excluding Rihanna’s song/track entries - ef-
fectively allowing the naive spotter to mark all invalid spots. We further split
the 3000 spots into 6 sets of 500 spots each. The best feature combinations were
tested on the model learned from the same training set as our last experiment.
Table 9 shows the average and standard deviation performance of the feature
combinations across the 6 sets. As we see, the feature combinations performed
remarkably consistently for this larger test set. The combination of all features
was the most useful, labeling 99.4% of the invalid spots correctly.

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 273

6 Improving Spotter Accuracy Using NLP Analysis

The last set of experiments confirmed the usefulness of the features in classifying
whether a spot was indeed a track or not. In this next experiment, we sought
to measure the improvement in the overall spotting accuracy - first annotating
comments using the naive spotter, followed by the NLP analytics. This approach
of boosting allows the more time-intensive NLP analytics to run on less than the
full set of input data, as well as giving us a certain amount of control over the
precision and recall of the final result.

Figure 5 shows the improvement in precision for spots in the three artists after
boosting the naive spotter with the NLP component. Ordered by decreasing
recall, we see an increase in precision for the different feature combinations. For
example, the precision of the naive spotter for artist Madonna’s spots was 23%
and almost 60% after boosting with the NLP component and using the feature
combinations that resulted in a 42−91 split in accurately labeling the valid and
invalid spots.

Although our classifier was built over the results of the naive spotter, i.e.
it already knew that the spot was a potential entity, our experiments suggest
that the features employed might also be useful for the traditional named entity
recognition problem of labeling word sequences as entities.

Our experiments also suggest that although informal text has different char-
acteristics than formal text such as news or scientific articles, simple and inex-
pensive learners built over a dictionary-based naive spotter can yield reasonable
performance in accurately extracting entity mentions.

0%

20%

40%

60%

80%

100%

na
ïv

e
sp

ot
te

r

90
-3

5

78
-5

0

74
-4

0

72
-3

5

71
-7

0

70
-5

6

62
-8

4

61
-7

0

60
-8

5

45
-8

6

42
-9

1

Classifier accuracy splits (valid-invalid)

Pr
ec

is
io

n
&

 R
ec

al
l

Precision for Lily Allen
Precision for Rihanna
Precision for Madonna
Recall (all three)

Fig. 5. NLP Precision-Recall curves for three artists and feature combinations

7 Conclusion and Future Work

Spotting music tracks in Informal English is a critical enabling technology
for applications such as the BBC SoundIndex that allows real-time tracking of

274 D. Gruhl et al.

opinions in on-line forums. The presented approach is applicable to other do-
mains as well. We are currently adopting our system to spot automobiles and
find that car brands, makes and models provide a well formed ontology as well.
We believe that such on-demand information will play an increasingly important
role in business as companies seek to better understand their customers. Rapid
detection of events (e.g. the artist “OK Go” ramping up the chart within hours
of being featured on the popular TV show Big Brother) illustrate the possibilities
of these systems.

There are several challenges in constructing these systems. Discussions of
music produce millions of posts a day, which need to be processed in real-
time, prohibiting more computational intensive NLP techniques. Moreover, since
1920, song titles based on common words or phrases have become very popular
(see Figure 3), making it difficult to spot and disambiguate song titles.

In this paper, we presented a two stage approach - entity spotting based
on scoping a domain model followed by SVM based NLP system to facilitate
higher quality entity extraction. We studied the impact of restricting the size of
the entity set being matched and noted that the spot frequency follows a Zipf
distribution. We found that R2 for this distribution is fairly consistent among a
sample of artists. This allows a reasonable a priori evaluation of the efficacy of
various restriction techniques using the calibration curve shown in Figure 2. We
found that in many cases such restrictions can come from the language of the
spotted text itself.

Given these potential spots, we show that simple classifiers trained on generic
lexical, word and domain specific characteristics of a spot can effectively elimi-
nate false positives in a manner that can improve accuracy up to a further 50%.
Our experiments suggest that although informal text has different characteris-
tics than formal text, learners that improve a dictionary-based naive spotter can
yield reasonable performance in accurately extracting entity mentions.

7.1 Future Work

Future areas of interest include applying standard measures such as TF-IDF to
predict the ambiguity of entities for use with the NLP component. One drawback
of the current approach for scoping the linked data or RDF graph to a single
artist occurs when references to multiple artists are made in text (e.g. your song
“X” reminds me of Y’s song “Z”). Even though these mentions are sparse, we
are planning to include non-ambiguous artist names as “activators” in the base
spotting set. If a post mentions another artist, the spotter would temporarily
activate entities from the RDF belonging to that specific artist.

Another area of interest is to examine automatic constraint selection based on
the posts themselves. For example a “birthdate note” detector, a gender of artist
identifier, a recent album release detector, etc. Using the Zipf distribution in
Figure 2 we can estimate how helpful each detector might be before we implement
it. Once a robust set of post based constraint detectors are developed we can
begin to experiment on “free domain” spotting - that is spotting in domains
where less focused discussions are expected, e.g. Twitter messages.

Context and Domain Knowledge Enhanced Entity Spotting in Informal Text 275

We also plan to extend our work to other free text domains. The ability to
achieve reasonable performance in this problem suggests that this approach will
work well in other, less challenging domains where the entities are less overlap-
ping (e.g. company name extraction) or the English is less informal (e.g. news
releases).

Acknowledgements

We would like to thank the BBC SoundIndex team for their help and support.
We would also like to thank Marti Hearst, Alexandre Evfimievski, Guozhu Dong,
Amy Vandiver and our shepherd Peter Mika for their insightful reviews and
suggestions.

References

1. Alba, A., Bhagwan, V., Grace, J., Gruhl, D., Haas, K., Nagarajan, M., Pieper, J.,
Robson, C., Sahoo, N.: Applications of voting theory to information mashups. In:
ICSC, pp. 10–17. IEEE Computer Society, Los Alamitos (2008)

2. Ananthanarayanan, R., Chenthamarakshan, V., Deshpande, P.M., Krishnapuram,
R.: Rule based synonyms for entity extraction from noisy text. In: ACM Workshop
on Analytics for noisy unstructured text data, pp. 31–38 (2008)

3. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B.,
Oberle, D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R.,
Stumme, G., Sure, Y., Tane, J., Volz, R., Zacharias, V.: KAON - towards a large
scale semantic web. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web
2002. LNCS, vol. 2455, pp. 304–313. Springer, Heidelberg (2002)

4. Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity disam-
biguation. In: EACL. The Association for Computer Linguistics (2006)

5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

6. Chieu, H.L., Ng, H.T.: Named entity recognition: A maximum entropy approach
using global information. In: COLING (2002)

7. Cunha, C., Bestavros, A., Crovella, M.: Characteristics of www client-based traces.
Technical report, Boston University, Boston, MA, USA (1995)

8. Etzioni, O., Cafarella, M., et al.: Web-scale information extraction in knowitall
(preliminary results). In: WWW 2004, pp. 100–110. ACM Press, New York (2004)

9. Ide, N., Véronis, J.: Word sense disambiguation: The state of the art. Computa-
tional Linguistics 24, 1–40 (1998)

10. Aleman-Meza, B., Hassell, J., Arpinar, I.B.: Ontology-driven automatic entity
disambiguation in unstructured text. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 44–57. Springer, Heidelberg (2006)

11. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Machine Learning. LNCS, pp. 137–142. Springer,
Heidelberg (1998)

12. Marneffe, M., Maccartney, B., Manning, C.: Generating typed dependency parses
from phrase structure parses. In: Proceedings of LREC-2006, pp. 449–454 (2006)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

276 D. Gruhl et al.

13. Minkov, E., Wang, R.C., Cohen, W.W.: Extracting personal names from email:
Applying named entity recognition to informal text. In: HLT/EMNLP. The Asso-
ciation for Computational Linguistics (2005)

14. Muller, C., Gurevych, I.: Using wikipedia and wiktionary in domain-specific in-
formation retrieval. In: Working Notes for the CLEF 2008 Workshop, Aarhus,
Denmark (2008)

15. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Linguisticae Investigationes (2007)

16. Doina, T.: Word sense disambiguation by machine learning approach: A short
survey. Fundam. Inf. 64(1-4), 433–442 (2004)

17. Yarowsky, D.: Hierarchical Decision Lists for WSD. Kluwer Acadmic Publishers,
Dordrecht (1999)

18. Zipf, G.K.: Human Behavior and the Principle of Least Effort: An Introduction to
Human Ecology. Addison-Wesley, Cambridge (1949)

Using Naming Authority to Rank Data and
Ontologies for Web Search

Andreas Harth1,2, Sheila Kinsella1, and Stefan Decker1

1 National University of Ireland, Galway
Digital Enterprise Research Institute

2 Institut AIFB, Universität Karlsruhe (TH), Germany

Abstract. The focus of web search is moving away from returning rel-
evant documents towards returning structured data as results to user
queries. A vital part in the architecture of search engines are link-based
ranking algorithms, which however are targeted towards hypertext doc-
uments. Existing ranking algorithms for structured data, on the other
hand, require manual input of a domain expert and are thus not applica-
ble in cases where data integrated from a large number of sources exhibits
enormous variance in vocabularies used. In such environments, the au-
thority of data sources is an important signal that the ranking algorithm
has to take into account. This paper presents algorithms for prioritising
data returned by queries over web datasets expressed in RDF. We intro-
duce the notion of naming authority which provides a correspondence
between identifiers and the sources which can speak authoritatively for
these identifiers. Our algorithm uses the original PageRank method to
assign authority values to data sources based on a naming authority
graph, and then propagates the authority values to identifiers referenced
in the sources. We conduct performance and quality evaluations of the
method on a large web dataset. Our method is schema-independent, re-
quires no manual input, and has applications in search, query processing,
reasoning, and user interfaces over integrated datasets.

1 Introduction

More and more structured interlinked data is appearing on the web, in the form
of microformats, XML, and RDF (Resource Description Format). A common
feature of these formats is that they take a loosely object-oriented view, de-
scribing objects such as people, events, or locations. Given that the information
published in these formats exhibits more structure and a fine-grained description
of objects, typical keyword-based search engines do not exploit the full potential
that the more structured data offers. The established methods for information
retrieval are not directly applicable to structured data, since i) the basic result
units of search moves from documents to objects which may be associated with
several sources and ii) the users are able, in addition to keyword searches, to
more accurately state their information needs via precise queries.

The problem of search in hypertext collections has been extensively studied,
with the web as the premier example. Given the large number of data providers

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 277–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

278 A. Harth, S. Kinsella, and S. Decker

compared to traditional database scenarios, an information retrieval system for
hypertext on the web must be able to handle data with the following properties:

– Domain variety: the web contains data about many topics (e.g., from social
networks to protein pathways to entertainment)

– Structural variety: aggregating data from many autonomous web sources,
with no data curation or quality control of any sort, results in datasets with
overlapping, redundant, and possibly contradictory information

– Noise: with the number of data contributors the amount of errors increase
(e.g., syntax errors, spelling mistakes, wrong identifiers)

– Spam: when everybody can say anything about anything with little effort or
cost, malicious activity emerges

– Scale: identifiers and documents on the web number in the trillions

We expect the properties identified above to also hold for structured informa-
tion sources on the web, though they are typically not taken into account for
classical relational query processing or data warehousing, where the number of
autonomous sources is orders of magnitude lower. In traditional data integra-
tion systems, the schema of the integrated data is known in advance, and is
hard-coded into applications to, for example, determine the order in which data
elements are displayed. In this paper we focus on the problem of ranking in
structured datasets which have been integrated from a multitude of disparate
sources without a-priori knowledge on the vocabulary used. We assume a basic
interlinked data model, enabling the definition of objects and relationships be-
tween those objects. Further, we assume the possibility of global identifiers which
enable the reuse of identifiers across sources and thus the interlinkage of data.
RDF, and to a limited extent XML and microformats fulfil these assumptions.

Based on the above scenario the contributions of this paper are as follows:

– We introduce the notion of naming authority which establishes a connection
between an identifier (in our case a URI) and the source which has authority
to assign that identifier (in our case a web source, also identified via a URI).
The notion of naming authority can be generalised to other identifier schemes
(e.g., trademarks) for which it is possible to establish a connection to the
provenance of the identifier, such as a person or an organisation (Section 4).

– We present a method to derive a naming authority matrix from a dataset,
and use the PageRank algorithm to determine rankings for sources. In a
second step, an algorithm ranks individual identifiers based on the values
assigned to their sources (Section 5).

– We provide an experimental evaluation on real-world web datasets containing
up to 1.1bn data items from 6.5m web sources, and provide evidence for the
quality of the rankings with a user study of 36 participants (Section 6).

We present an example scenario in Section 2, and provide an overview in Section
3. Section 7 outlines related approaches and Section 8 concludes.

Using Naming Authority to Rank Data and Ontologies for Web Search 279

2 Motivating Example

For the motivating example, we use social network information describing people,
who they know and what they do, as there is large amounts of this data available.
Data sources typically express person-related information in the Friend-of-a-
Friend (FOAF) vocabulary, but also use their own schemas (i.e. sub-classing
the general Person class with classes such as Professor or Ph.D. student). The
personal data available on the web exhibits the properties we expect from any
large-scale loosely coordinated distributed knowledge base.

In our running example URIs are used to identify both the objects
(e.g. http://danbri.org/foaf.rdf#danbri) and the data sources (e.g.
http://danbri.org/foaf.rdf). Identifiers might be reused across sources, for
example, the source http://danbri.org/foaf.rdf uses the URI http://www.-
w3.org/People/BernersLee/card#i to denote the Person Tim Berners-Lee.
The reuse of identifiers provides a direct means to consolidate information about
objects from different sources. In our experimental dataset, Dan’s URI is refer-
enced in at least 70 sources. Representing only a small subset of the available
data, the graphs in Figure 1 depict object descriptions from two sources.

Several challenges arise when displaying data aggregated from the web:

1. How to prioritise results from keyword searches (i.e. in which order to show
the resulting objects)?

http://danbri.org/

dc:title ’Dan Brickley’s Home Page’
http://xmlns.com/foaf/0.1/Documentrdf:type

http://www.w3.org/People/Berners-Lee/card#i

foaf:name ’Tim Berners-Lee’

http://dbpedia.org/resource/Tim_Berners-Leeowl:sameAs

http://xmlns.com/foaf/0.1/Person

rdf:type

http://danbri.org/foaf.rdf#danbri

foaf:name ’Dan Brickley’

foaf:homepage

foaf:knows

http://sws.geonames.org/3333134/

rdfs:label ’City of Bristol’
geo:lon ’-2.6’
geo:lat ’51.45’ foaf:based_near

http://www.w3.org/People/DanBri/mugshot1.jpg

foaf:depiction

rdf:type

http://www.geonames.org/ontology#Featurerdf:type

http://xmlns.com/foaf/0.1/Imagerdf:type

http://danbri.org/foaf.rdf

http://dblp.l3s.de/.../authors/Dan_Brickley

rdfs:label ’Dan Brickley’
foaf:name ’Dan Brickley’

http://danbri.org/

foaf:homepage

http://www.bibsonomy.org/uri/author/Dan+Brickley
rdfs:seeAlso

http://xmlns.com/foaf/0.1/Agent
rdf:type

http://dblp.l3s.de/Authors/Dan+Brickley

rdfs:seeAlso

http://dblp.l3s.de/.../publications/conf/w3c/DeckerBSA98

dc:title ’A Query Service for RDF.’
dc:identifier ’DBLP conf/w3c/DeckerBSA98’

foaf:maker

foaf:maker

http://dblp.l3s.de/.../authors/Janne_Saarela

foaf:maker

http://xmlns.com/foaf/0.1/Documentrdf:type

http://swrc.ontoware.org/ontology#InProceedings

rdf:type

http://dblp.l3s.de/.../authors/J%C3%BCrgen_Angele

foaf:maker

http://dblp.l3s.de/.../authors/Stefan_Decker

foaf:maker

http://dblp.l3s.de/d2r/resource/publications/conf/w3c/DeckerBSA98

Fig. 1. A subset of RDF descriptions about Dan, taken from two sources

280 A. Harth, S. Kinsella, and S. Decker

Fig. 2. Rendering of information pertaining to the object http://www.danbri.org/-

foaf.rdf#danbri (datatype properties and values on the left, object properties and
objects on the right, and data sources on the bottom). The decision on ordering of all
data elements on the page has been taken based on rankings alone, without a priori
schema knowledge.

2. How to prioritise predicates (i.e. which predicate/value pairs to show first)?
3. How to prioritise objects from multi-valued attributes (i.e. which image to

show first in case there are multiple depictions of the person)?
4. How to prioritise sources that contribute data to an object (i.e. in which

order to present the sources, from the most important to the least)?

Question 1) surfaces mainly in a web search scenario, where a search engine
returns a list of identifiers matching the user-specified query (keywords or
structured queries such as “return all instances of type owl:Class" or “re-
turn all instances of type foaf:Person that have foaf:workplaceHomepage
http://www.deri.org/"). Questions 2) to 4) are also relevant for Linked Data
browsers such as Disco1, Data Explorer2, or Tabulator3 in case vocabularies

1 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
2 http://demo.openlinksw.com/rdfbrowser2/
3 http://www.w3.org/2005/ajar/tab

Using Naming Authority to Rank Data and Ontologies for Web Search 281

which are unknown to the browsers are used in the data. Figure 2 shows the ren-
dering of information about an object using rankings derived with the method
presented here in VisiNav4, which also has Linked Data browsing functionality.

3 Method Overview

We introduce the data model, present the requirements for a ranking method on
web data and outline our procedure for ranking data sources and data items.

3.1 Data Model

In general, our ranking method can be applied to datasets with i) global, reused
identifiers, ii) tracking of provenance, and iii) correspondence between object
identifiers and source identifiers. Specifically, we assume the following:

– a set of identifiers I, encompassing a set of global identifiers U , a set of local
identifiers B, and a set of strings L (we omit datatypes such as integer or
date for brevity)

– a set of data sources S ⊆ U
– a function ids which maps sets of global and local identifiers and literals
i ∈ I to the sources s ∈ S in which they occur

This generic model applies to a wide variety of data models, such as hypertext,
graph-structured data, and relational data.

3.2 Requirements

A ranking procedure operating on collaboratively-edited datasets should exhibit
the following properties:

– The use of an identifier owned by source sa by a source sb indicates an
acknowledgement of the authority of sa and should benefit the ranking of sa

– Data providers who reuse identifiers from other sources should not be pe-
nalised, i.e. their data sources should not lose any rank value.

– A data provider who simply links to other important identifiers (requiring no
external effort) should not gain any rank from doing so. Using only the node-
link graph without taking into account the source (e.g. [4]) makes the ranking
method receptive for spam: by adding a triple pointing from a popular URI
to a spam URI, the spam URI gains rank from the popular URI.

– We cannot make any assumptions of directionality of links between objects,
since link direction is arbitrary (is ua related to ub or ub related to ua?).
Thus we cannot use links occurring in the data graph as a vote.

3.3 Algorithm Outline

Our method for deriving a rank value for all data elements in a dataset consists
of the following steps:
4 http://visinav.deri.org/

282 A. Harth, S. Kinsella, and S. Decker

1. Based on the occurrence of identifiers u ∈ S, construct the naming authority
graph S × S that serves as input to a fixpoint calculation.

2. The naming authority graph is used to derive PageRank scores for the data
sources S.

3. The source ranks are used to derive a rank value for both global identifiers
u ∈ U and data elements with local scope b ∈ B, l ∈ L.

4 Naming Authority

The main point of ranking on the web is to rate popular pages higher than
unpopular ones. Indeed, PageRank[15] interprets hyperlinks to other pages as
votes. A possible adaptation for structured data sources would rank popular
data sources higher than unpopular ones. However data models such as RDF
do not specify explicit links to other web sites or data sources. Therefore a
straightforward adaptation of PageRank for structured data is not possible, since
the notion of a hyperlink (interpreted as a vote for a particular page) is missing.

However, a closer examination of the data model leads to the following obser-
vation: a crucial feature of structured data sources is the use of global identifiers.
Typically, these global identifiers – URIs in case of the web – have a specified
syntax, and exploit naming mechanisms such as the domain name system.

Consider Dan’s identifier http://www.danbri.org/foaf.rdf#danbri.
Clearly the owner of the danbri.org domain can claim authority for creating
this URI. Thus if the URI is used on danbri.org to denote Dan, the usage of
the URI on other sites can be seen as a vote for the authority of the data source
danbri.org.

To generalise this idea, one needs to define the notion of ”naming authority”
for identifiers. A naming authority is a data source with the power to define
identifiers of a certain structure. Naming authority is an abstract term which
could be applied to the provenance of a piece of information, be that a document,
host, person, organisation or other entity. Data items which are denoted by
unique identifiers may be reused by sources other than the naming authority.

We now define the general notion of naming authority:

Definition 1 (Naming Authority). The naming authority of a global identi-
fier u ∈ U is the data source s ∈ S which has the authority to mint the globally
unique identifier u.

4.1 Naming Authority for URIs

For naming authority in the RDF case, we assume a relation between u ∈ U and
s ∈ S in the following way:

– if e contains a #, we assume the string before the # as the naming authority of
the element, e.g. the naming authority for http://danbri.org/foaf.rdf#-
danbri is http://www.danbri.org/foaf.rdf

Using Naming Authority to Rank Data and Ontologies for Web Search 283

– if e does not contain a #, we take the full element URI as the naming au-
thority, e.g. the naming authority for http://xmlns.com/foaf/0.1/maker
is http://xmlns.com/foaf/0.1/maker

The Hypertext Transfer Protocol (HTTP)5, which is used to retrieve content
on the web, allows the redirection of URIs, possibly multiple times, result-
ing in redirect chains. Redirect chains are unidirectional, i.e. the redirect re-
lation does not follow the logical properties of the equivalence relation. To
derive the correct naming authority we have to take HTTP redirects into
account. Thus, for each naming authority, we check if the naming author-
ity URI is redirected to another URI. If there is a redirect, we assume the
redirected URI as the naming authority. E.g. http://xmlns.com/foaf/0.1/-
maker redirects to http://xmlns.com/foaf/spec/, hence the naming authority
becomes http://xmlns.com/foaf/spec/. This is in-line with the Linked Data
principles6.

4.2 Deriving the Naming Authority Matrix

As a first step, we derive the naming authority graph from the input dataset.
That is, we construct a graph encoding links between data sources based on the
implicit connections via identifiers.

Definition 2 (Naming Authority Matrix). Given a data source si ∈ S we
define the naming authority matrix A as a square matrix defined as:

ai,j =

{
1 if si uses identifiers for which sj has naming authority
0 otherwise

A naming authority graph for the example in Figure 1 is shown in Figure 3.
In this example we assume the naming authority on a pay-level domain (PLD)
level as described in the following.

4.3 Pay-Level Domains

In a variation of our algorithm we use the notion of pay-level domains (PLDs)
as defined in [13]. A top-level domain (TLD) is a domain one level below the
root in the DNS tree and appears as the label after the final dot in a domain
name (e.g., .com, .ie). A pay-level domain is a domain that must be paid for
at a TLD registrar. PLDs may be one level below the corresponding TLD (e.g.,
livejournal.com), but there are many exceptions where they are lower in the
hierarchy (e.g., cam.ac.uk).

Bharat and Henzinger [5] suggest using a host rather than a web page as
the unit of voting power in their HITS-based [11] ranking approach. PLD-level
granularity is preferable to domain or host-level granularity because some sites
5 http://www.ietf.org/rfc/rfc2616.txt
6 http://www.w3.org/DesignIssues/LinkedData.html

284 A. Harth, S. Kinsella, and S. Decker

danbri.org dbpedia.org

geonames.org

purl.org

w3.org

xmlns.com

l3s.de

bibsonomy.org

ontoware.org

Fig. 3. Naming authority graph for data in Figure 1 on a pay-level domain granularity

like Livejournal assign subdomains to each user, which would result in large
tightly-knit communities if domains were used as naming authorities. The use
of PLDs reduces the size of the input graph to the PageRank calculation.

Previous work has performed PageRank on levels other than the page level,
for example at the more coarse granularity of directories, hosts and domains [10],
and at a finer granularity such as logical blocks of text [6] within a page.

4.4 Internal vs. External Links

Regardless of the level of granularity for naming authorities, there exist internal
references occurring within a single naming authority, and external references
occurring between different naming authorities. An internal reference is when a
data source refers to an identifier which it has the authority to mint. An external
reference is when a data source refers to an identifier which is under the authority
of a different data source. Since our authority algorithm considers a reference as
analogous to a vote for a source, it may be desirable to treat external references
(from another source) differently to internal links (from the same source).

Similarly, in the HTML world, the HITS algorithm [11] considers only links
which exist between different domains (which they call transverse links) and
not links which occur within a single domain (which they call intrinsic links).
The reason why only cross-domain links are taken into account in the HITS
algorithm is that many intra-domain links are navigational and do not give
much information about the authority of the target page. In variations of our
algorithm we use either all links or take only external links into account.

5 Calculating Ranks

Having constructed the naming authority matrix, we now can compute scores for
data sources, and in another step propagate data source scores to both global
identifiers and identifiers and literals with a local scope which cannot be re-
used in other sources. The algorithm can be implemented using a single scan

Using Naming Authority to Rank Data and Ontologies for Web Search 285

over the dataset which derives both the naming authority matrix and a data
structure that records the use of terms in data sources. As such, the method can
be applied to streaming data. Subsequent calculations can then be carried out
on the intermediate data structures without the use of the original data.

5.1 Calculating Source Ranks

For computing ranking scores we calculate PageRank over the naming authority
graph. Essentially, we calculate the dominant eigenvector of the naming author-
ity graph using the Power iteration while taking into account a damping factor.

In the input graph there may be sources which have no outlinks, referred to
by the inventors of PageRank as dangling nodes [15]. The rank of these dangling
nodes is split and distributed evenly across all remaining nodes. Conversely,
there might be sources which have no inlinks, in the case where nobody uses
the source’s identifier, or identifiers the source speaks authoritatively for; these
sources only receive the damping factor plus the rank of the dangling nodes.

5.2 Calculating Identifier Ranks

Based on the rank values for the data sources, we now calculate the ranks for
individual identifiers. The rank value of the individual identifier u ∈ U depends
on the rank values of the data sources s ∈ S where the identifier occurs. The
identifier rank of a global identifier u ∈ U is defined as the sum of the ranks of
the sources s ∈ S in which u occurs.

identifierrank(u) =
∑

s∈{s|u∈s;s∈S}
sourcerank(s) (1)

The identifier rank of local identifiers b ∈ B and l ∈ L are defined as the source
rank of the source in which b or l occurs.

6 Experiments and Evaluation

In the following we evaluate our method on two real-world web datasets. We
first introduce the datasets (one small and one large), then present runtime per-
formance results, and finally present and analyse results of a quality evaluation
of several variants of our method.

6.1 Datasets

We constructed two datasets:

– a small-scale RDF dataset crawled from a seed URI7. All unique URIs
were extracted and their content downloaded in seven crawling rounds. The
uncompressed dataset occupies 622MB of disk space.

– a large-scale RDF dataset derived from the 2008 Billion Triple Challenge
datasets8. From these seed sets (around 450m RDF statements) we extracted

7 http://www.w3.org/People/Berners-Lee/card
8 http://challenge.semanticweb.org/; we used the Falcon, Swoogle, Watson,

SWSE-1, SWSE-2 and DBpedia datasets.

286 A. Harth, S. Kinsella, and S. Decker

all unique URIs and downloaded their contents during June and July 2008.
The uncompressed dataset occupies 160GB of disk space.

Table 1 lists the properties of the datasets. In our experiments we followed one
redirect, however, it is possible to take longer redirect chains into account.

Table 1. Dataset properties

Symbol Small Dataset Large Dataset
S 14k 6.5m
U 500k 74.3m
tuple 2.5m 1.1bn
Redirects 77k 4.5m

6.2 Evaluation Variants

The experiments were carried out on five different algorithms which are enumer-
ated in in Table 2. The methods evaluated include four variants of our algorithm
which differ according to the level of the naming authority (URI or PLD), and
the references which we took into consideration for the authority calculation (all
references, or external references only). We compared our method to a naive
version of PageRank operating directly on the node-link graph without taking
sources into account. We did not compare to ObjectRank [4] because ObjectRank
requires manual assignment of weights to each of the thousands of properties in
the dataset, which is infeasible.

On the small dataset, we compared performance of all the methods listed in
Table 2, and carried out a quality evaluation on the results. On the large dataset,
we conducted a scale-up experiment on the EU variant to demonstrate the scal-
ability of our algorithm. We performed all experiments on a quad-core Xeon
2.33GHz machine with 8GB of main memory and a 500GB SATA drive.

Table 2. Ranking methods evaluated

Method Description

AU All links contribute authority
URI-level naming authorities

EU External links exclusively contribute authority
URI-level naming authorities

AP All links contribute authority
PLD-level naming authorities

EP External links exclusively contribute authority
PLD-level naming authorities

PR PageRank over the object graph

Using Naming Authority to Rank Data and Ontologies for Web Search 287

The implementation assures the uniqueness of links in the naming authority
graph via sorting, and aggregates rank scores by writing the rank fractions to a
file, sorting the file to group common identifiers together, and summing up the val-
ues via file scan. For the PageRank calculation, we fixed the number of iterations
to ten rather than having the method converge in specified error bounds, which
means we have to maintain only the current version of the rank vector rather than
also maintaining the version from the previous iteration for comparison.

6.3 Performance Evaluation

The runtime of the five tested variants on the small dataset is plotted in Figure 4.
Each processing step is plotted separately. The relatively large amounts of time
spent on the AP and EP variants is due to the reduction of full URIs to pay-level
domains. Given the coarser granularity of pay-level domains, the derived naming
authority graph is quite small and thus accounts for the short running time of
the PageRank calculation. In all approaches, a significant time is spent on the
pre-processing of the data, processing steps which could be either carried out
in-memory for small datasets or could be distributed across machines if required.

6.4 Scale-Up Experiment

We also conducted a scale-up experiment in which the algorithm performed
ranking on a dataset with 1.1bn statements. In the scale-up experiment we used
the Linux command sort with 6GB of main memory for sorting and uniquing
instead of our standard Java implementation. The runtime of each processing
step is listed in Table 3.

6.5 Quality Evaluation

In the information retrieval community, there are clearly defined processes and
well-established metrics for evaluating how well an system performs in meeting

Fig. 4. Runtime of algorithm variations

288 A. Harth, S. Kinsella, and S. Decker

Table 3. Runtime of processing steps for the large dataset

Processing Step Duration
Deriving Naming Authority Graph 55h36m22s
Uniquing Naming Authority Graph 40h17m52s
PageRank Calculation 12h30m24s
Deriving Identifier Ranks 39h7m13s
Sorting Identifier Ranks 14h36m27s
Aggregating Identifier Ranks 1h56m43s

the information requirements of its users. Standard test collections consisting
of documents, queries, and relevance judgements are available and are widely
used. Search over Semantic Web data is a relatively new area however, and
equivalent labelled collections do not yet exist. Therefore, given the lack of a
labelled dataset, we use an alternative approach to quality assessment.

To compare the quality of the methods, we conducted a study in which we
asked participants to manually rate results of queries for each algorithm. For
every query, we presented the evaluators with five different ranked lists, each
corresponding to one of the ranking methods. The result lists consisted of the
top ten results returned by the respective method.

Table 4. Scenarios used for evaluation. N is the number of evaluators.

Scenario Request N
S1 Query for all persons in the dataset 11
S2 Keyword search: evaluator’s own name 11
S3 Keyword search: “Tim Berners-Lee” 15
S4 Keyword search: “Dan Brickley” 15
S5 Keyword search: “John Breslin” 15

The evaluators were asked to order these lists from 1 to 5, according to which
lists they deemed to represent the best results for each query. Our analysis
covered the five scenarios listed in Table 4. For each scenario there were between
11 and 15 evaluators. Scenarios 1 and 2 were evaluated by the participants of a
Semantic Web related workshop held in November 2008. During this evaluation,
we presented each participant with results to a general query (S1) and with
results of a query for their own name (S2), which was possible since all eleven
participants have FOAF files and thus satisfactory data coverage. Scenarios 3 -
5 were evaluated by Ph.D. students and post-docs in the university. These final
three scenarios were queries for people with whom the evaluators are familiar.

For each scenario we plotted the mean rank assigned by evaluators for each
method. Error bars represent one standard deviation. We determine significance
of the results using the Wilcoxon test with p < .05.

Figure 5 shows the average ranks which resulted for S1, a query for all people
in the dataset. For this query, the top ten results of the methods AU and EU
were identical. The differences between methods in this table are all statistically

Using Naming Authority to Rank Data and Ontologies for Web Search 289

significant. The evaluators were almost unanimous in ranking this particular
query which is why for three of the points there is no standard deviation marked.

Figure 6 shows the average ranks which were assigned by evaluators to a query
for their own name (S2). In this table, the differences between each variant of our
method and the PageRank method are all statistically significant. However the
differences between the variants of our method are not statistically significant.

Figures 7, 8 and 9 show the average ranks which resulted for queries for three
people involved in the Semantic Web community - scenarios S3, S4 and S5. The
differences between each variant of our method and the PageRank method are
statistically significant for all queries, with one exception (scenario S4, methods
AP and OR). For S5, every evaluator rated PR as the worst method so for
the corresponding point there is no standard deviation marked. The differences
between the variants of our method are generally not statistically significant.

For scenarios 2 - 5 the average ranks follow similar patterns, showing that the
evaluator’s assessments of the methods were consistent over different queries.

We can conclude from the quality evaluation that our algorithm gives signifi-
cantly better results than simply implementing PageRank on the object graph.

 0

 1

 2

 3

 4

 5

 6
AU AP EU EP PR

A
ve

ra
ge

 R
an

k

Method

Mean ± 1 SD

Fig. 5. Average ranks for scenario S1: Query for all persons in the dataset

 0

 1

 2

 3

 4

 5

 6
AU AP EU EP PR

A
ve

ra
ge

 R
an

k

Method

Mean ± 1 SD

Fig. 6. Average ranks for scenario S2:
Keyword search for the evaluator’s own
name

 0

 1

 2

 3

 4

 5

 6
AU AP EU EP PR

A
ve

ra
ge

 R
an

k

Method

Mean ± 1 SD

Fig. 7. Average ranks for scenario S3:
Keyword search for “Tim Berners-Lee”

290 A. Harth, S. Kinsella, and S. Decker

 0

 1

 2

 3

 4

 5

 6
AU AP EU EP PR

A
ve

ra
ge

 R
an

k

Method

Mean ± 1 SD

Fig. 8. Average ranks for scenario S4:
Keyword search for “Dan Brickley”

 0

 1

 2

 3

 4

 5

 6
AU AP EU EP PR

A
ve

ra
ge

 R
an

k

Method

Mean ± 1 SD

Fig. 9. Average ranks for scenario S5:
Keyword search for “John Breslin”

We cannot determine the best variant of our algorithm with statistical signif-
icance. However with the exception of the query for all people in the dataset,
the best method is always EU (where naming authorities are URIs, and only
external links contribute to authority).

7 Related Work

Citation-based algorithms have been investigated in sociology in the area of
social network analysis [16], which states as unresolved issue the mismatch be-
tween two-dimensional graph theory and multi-dimensional social networks. We
have extended links-based connectivity algorithms such as PageRank [15] and
HITS [11] to operate on data graphs. PageRank scales very well but only operates
on two-dimensional matrices, the graph derived from the hyperlink structure.

An extension to PageRank and HITS to the multi-dimensional case is
TOPHITS [12], a ranking procedure rooted in multilinear algebra which en-
codes the hypertext link structure (including link labels) as a three-way tensor.
Rather, our approach operates on a general model for semistructured data, and
is centred around the notion of trustworthiness of data sources.

ObjectRank [4] is an approach to rank a directed labelled graph using PageR-
ank. The work includes a concept called authority transfer schema graphs, which
defines weightings for the transfer of propagation through different types of links.
ObjectRank relies on user input to weight the connections between nodes to de-
scribe their semantic weight, so that the three-way representation can be collapsed
into a two-way matrix, on which a PageRank-style algorithm is applied. Our ap-
proach does not require any manual input, which is not feasible given the scale
and heterogeneity of the input. In addition, omitting the provenance of data as
in ObjectRank opens up the method to abuse - anyone could maliciously link to
their own identifiers from well-known, highly ranked identifiers and therefore gain
reputation by association. Using our notion of naming authority, reusing popular
identifiers only results in a propagation of reputation from the containing sources
to the popular source. As an added benefit, taking into account the naming au-
thority results in a much smaller graph for PageRank calculation.

ReConRank [8] applies a PageRank-type algorithm to a graph which unifies
the documents and resources in a dataset. The method generates scores for the

Using Naming Authority to Rank Data and Ontologies for Web Search 291

documents and entities in a collection, but not for the properties. ReConRank
does take data provenance into account, however because it simultaneously op-
erates on the object graph, it is still susceptible to spamming.

SemRank [3] ranks relations and paths on Semantic Web data using
information-theoretic measures. In contrast, we assign a rank value to all identi-
fiers occurring in the data sources, based on a fixpoint calculation on the naming
authority graph.

Swoogle [7] ranks documents using the OntoRank method, a variation on
PageRank which iteratively calculates ranks for documents based on references
to terms (classes and properties) defined in other documents. We extend the
method described in [7] in several important ways: we generalise the notion of
term use to naming authority which establishes a connection between identifier
and source; we include the PLD abstraction layer which has been found to be
advantageous for ranking in the web environment; and we extend our ranking
scheme to not only cover vocabulary terms but instance identifiers as well, which
is important in our Linked Data browser use-case scenario.

The notion of naming authority is related to that of authoritative sources as
considered by the SAOR reasoning system [9]. SAOR uses authoritative sources
to determine whether a source has authority to extend a class or property, while
we use naming authority to rank sources and identifiers.

AKTiveRank [1] is a system for ranking ontologies based on how well they
cover specified search terms. AKTiveRank combines the results of multiple ana-
lytic methods to rank each ontology. Individual instances and vocabulary terms
are not ranked. Ontocopi [2] provides a way of locating instances in a knowledge
base which are most closely related to a target instance. The Ontocopi tool uses
a spreading activation algorithm and allows both manual and automatic tun-
ing. However the source of data is not taken into consideration. Similarly, the
SemSearch system [14] ranks entities according to how well they match the user
query but does not consider the source of data.

8 Conclusion

Ranking provides an important mechanism to prioritise data elements and as-
suage the noise inherent in datasets which have been aggregated from disparate
sources or have been created in a decentralised way. We have demonstrated a
set of scalable algorithms for ranking over a general model of structured data
collected from an open, distributed environment, based on the notion of nam-
ing authority. We adapted the general model to the case of RDF, taking the
intricacies of RDF data from the web into account.

In comparison to using plain PageRank on a node-link graph representation
of RDF, our methods exhibit similar runtime properties while improving on the
quality of the calculated rankings. Contrary to methods which require manual
input of a domain expert to specify schema weights, our method derives rankings
for all identifiers in the dataset automatically.

We foresee our method having applications in search, query processing, reason-
ing, and user interfaces over integrated datasets from a large number of sources,

292 A. Harth, S. Kinsella, and S. Decker

an environment where assessing trustworthiness of sources and prioritising data
items without a priori schema knowledge is vital.

References

1. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 1–15. Springer, Heidelberg
(2006)

2. Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying communities of
practice through ontology network analysis. IEEE Intelligent Systems 18(2), 18–25
(2003)

3. Anyanwu, K., Maduko, A., Sheth, A.: Semrank: ranking complex relationship
search results on the semantic web. In: 14th International Conference on World
Wide Web, pp. 117–127 (2005)

4. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: authority-based key-
word search in databases. In: Proceedings of the 13th International Conference on
Very Large Data Bases, pp. 564–575 (2004)

5. Bharat, K., Henzinger, M.R.: Improved algorithms for topic distillation in a hy-
perlinked environment. In: 21st International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 104–111 (1998)

6. Cai, D., He, X., Wen, J.R., Ma, W.Y.: Block-level link analysis. In: 27th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 440–447 (2004)

7. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)

8. Hogan, A., Harth, A., Decker, S.: ReConRank: A scalable ranking method for
semantic web data with context. In: 2nd Workshop on Scalable Semantic Web
Knowledge Base Systems (2006)

9. Hogan, A., Harth, A., Polleres, A.: SAOR: Authoritative Reasoning for the Web.
In: 3rd Asian Semantic Web Conference, pp. 76–90 (2008)

10. Jiang, X.-M., Xue, G.-R., Song, W.-G., Zeng, H.-J., Chen, Z., Ma, W.-Y.: Exploit-
ing PageRank at Different Block Level . In: 5th International Conference on Web
Information Systems, pp. 241–252 (2004)

11. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

12. Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-order web link analysis using multi-
linear algebra. In: 5th IEEE International Conference on Data Mining, pp. 242–249
(2005)

13. Lee, H.-T., Leonard, D., Wang, X., Loguinov, D.: Irlbot: scaling to 6 billion pages
and beyond. In: 17th International Conference on World Wide Web, pp. 427–436
(2008)

14. Lei, Y., Uren, V., Motta, E.: Semsearch: A search engine for the semantic web. In:
14th International Conference on Knowledge Engineering and Knowledge Manage-
ment, pp. 238–245 (2006)

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

16. Scott, J.: Trend report: Social network analysis. Sociology 22(1), 109–127 (1988)

Executing SPARQL Queries over the
Web of Linked Data

Olaf Hartig1, Christian Bizer2, and Johann-Christoph Freytag1

1 Humboldt-Universität zu Berlin
lastname@informatik.hu-berlin.de

2 Freie Universität Berlin
firstname.lastname@fu-berlin.de

Abstract. The Web of Linked Data forms a single, globally distributed
dataspace. Due to the openness of this dataspace, it is not possible
to know in advance all data sources that might be relevant for query
answering. This openness poses a new challenge that is not addressed
by traditional research on federated query processing. In this paper we
present an approach to execute SPARQL queries over the Web of Linked
Data. The main idea of our approach is to discover data that might be
relevant for answering a query during the query execution itself. This
discovery is driven by following RDF links between data sources based
on URIs in the query and in partial results. The URIs are resolved over
the HTTP protocol into RDF data which is continuously added to the
queried dataset. This paper describes concepts and algorithms to im-
plement our approach using an iterator-based pipeline. We introduce a
formalization of the pipelining approach and show that classical itera-
tors may cause blocking due to the latency of HTTP requests. To avoid
blocking, we propose an extension of the iterator paradigm. The eval-
uation of our approach shows its strengths as well as the still existing
challenges.

1 Introduction

An increasing amount of data is published on the Web according to the Linked
Data principles [1,2]. Basically, these principles require the identification of enti-
ties with URI references that can be resolved over the HTTP protocol into RDF
data that describes the identified entity. These descriptions can include RDF
links pointing at other data sources. RDF links take the form of RDF triples,
where the subject of the triple is a URI reference in the namespace of one data
source, while the object is a URI reference in the namespace of the other. The
Web of Linked Data that is emerging by connecting data from different sources
via RDF links can be understood as a single, globally distributed dataspace [3].

Querying this dataspace opens possibilities not conceivable before: Data from
different data sources can be aggregated; fragmentary information from multiple
sources can be integrated to achieve a more complete view. However, evaluating
queries over the Web of Linked Data also poses new challenges that do not arise

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 293–309, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

294 O. Hartig, C. Bizer, and J.-C. Freytag

1 SELECT DISTINCT ? author ?phone WHERE {
2 <http : // data . semanticweb . org / con f e r en c e/eswc /2009/ proceed ings>
3 swc : hasPart ?pub .
4 ?pub swc : hasTopic ? top i c .
5 ? top i c rd f s : l a b e l ? t op i cLabe l .
6 FILTER regex (str (? t op i cLabe l) , ” onto logy eng in e e r i ng ” , ” i ”) .
7

8 ?pub swrc : author ? author .
9 {? author owl : sameAs ? authAlt } UNION {? authAlt owl : sameAs ? author}

10

11 ? authAlt f o a f : phone ?phone
12 }

Fig. 1. SPARQL query which asks for the phone numbers of people who authored an
ontology engineering related paper at ESWC’09 (prefix declarations omitted)

in traditional federated query processing: Due to the openness of the dataspace,
it is not possible to know all data sources that might be relevant for answering
a query in advance.

Consider, for instance, the SPARQL query [4] in Figure 1 which asks for the
phone number of people who authored an ontology engineering related paper at
the European Semantic Web Conference 2009 (ESWC’09). This query cannot be
answered from a single dataset but requires data from a large number of sources
on the Web. For instance, the list of papers and their topics (cf. lines 2 to 4) is
part of the Semantic Web Conference Corpus1; the names of the paper topics (cf.
line 5) are provided by the sources authoritative for the URIs used to represent
the topics; the phone numbers (cf. line 11) are provided by the authors. Hence,
this kind of queries can only be answered using a method to execute queries
without knowing the sources that contribute to the query result in advance. In
this paper we present such a method.

The main idea of our approach is the asynchronous traversal of RDF links to
discover data that might be relevant for a query during the query execution itself.
Hence, the query engine executes each query over a growing set of potentially
relevant data retrieved from the Web. Notice, in contrast to federated query
processing [5] – which presumes each data source provides a query service –
we do not distribute parts of the query evaluation. Instead, we only require the
data sources to publish data following the Linked Data principles. This approach
enables the execution of queries without knowing the sources that contribute to
the query result in advance. Our main contributions are:

– an approach to execute SPARQL queries over the Web of Linked Data,
– a formal description of the realization of our approach with an iterator-based

pipeline that enables an efficient query execution, and
– an extension of the iterator paradigm that avoids blocking of the query

execution caused by waiting for data from the Web.

This paper is structured as follows. First, Section 2 gives an overview of our
approach. In Section 3 we introduce an iterator-based evaluation of queries and
1 http://data.semanticweb.org

Executing SPARQL Queries over the Web of Linked Data 295

present a formalism to describe this kind of evaluation. Section 4 discusses the
application of an iterator-based query evaluation to our query execution ap-
proach and presents a strategy to execute these queries more efficiently. Even
with these strategies, waiting for data from the Web may cause delays in query
execution. Thus, in Section 5 we introduce an extension to the iterator paradigm
that avoids blocking caused by these delays. An evaluation of our approach and
the concepts to implement it is given in Section 6. Finally, we review related
work in Section 7 and conclude in Section 8.

2 Overview of the Query Execution Approach

This section gives an informal overview of the proposed approach to execute
SPARQL queries over the Web of Linked Data. SPARQL, the query language
for RDF data [4], is based on graph patterns and subgraph matching. The ba-
sic building block from which more complex SPARQL query patterns are con-
structed is a basic graph pattern (BGP). A BGP is a set of triple patterns which
are RDF triples that may contain query variables at the subject, predicate,
and object position. During query evaluation solutions that bind values to the
variables are determined.

To query the Web of Linked Data, we propose to intertwine query execution
with the traversal of RDF links to discover data that might be relevant to an-
swer the query. Using the data retrieved from looking up the URIs in a query
as a starting point we evaluate parts of the query. The intermediate solutions
resulting from this partial evaluation usually contain further URIs. These URIs
link to additional data which may provide further solutions for the same or for
other parts of the query. To determine results for the whole query we alternately
evaluate query parts and dereference URIs. Hence, during query evaluation we
continuously augment the queried dataset with potentially relevant data from
the Web. The discovery of this data is driven by the URIs in intermediate results.

Example 1. The evaluation of the query in Figure 1 may start with RDF data
retrieved from the Semantic Web Conference Corpus by dereferencing the URI
identifying the ESWC’09 proceedings. This data contains a set of RDF triples
that match the triple pattern in lines 2 and 3 of the query. The query engine
generates a set of intermediate solutions from this set. Each of these solutions
binds query variable ?pub to the URI representing one of the papers in the
ESWC’09 proceedings. Dereferencing these URIs yields RDF data about the pa-
pers including the topics of the publications. Hence, in this newly retrieved data
the query engine finds matching triples for the pattern at line 4 with the given
?pub binding. Based on these matches existing intermediate solutions can be
augmented with bindings for variable ?topic. Since the topics are also resources
represented by URIs additional data will be added to the queried dataset. The
query engine proceeds with the outlined strategy in order to determine solutions
that are results of the whole query.

To consider all data that is available by traversing RDF links from matching
triples our approach uses the following heuristic. Before we evaluate a triple

296 O. Hartig, C. Bizer, and J.-C. Freytag

pattern in order to find matching triples in the local dataset we ensure that the
local dataset contains at least all data retrievable from dereferencing all URIs
that are part of the triple pattern. For instance, the evaluation of the triple
pattern in line 4 of our sample query using the intermediate solutions from the
triple pattern in lines 2 and 3 comprises the evaluation of multiple triple pattern,
actually – one for each ?pub binding. As discussed before, we dereference each
URI bound to variable ?pub before we evaluate the corresponding triple pattern.
Notice, in addition to the data retrieved by dereferencing the URIs in a query
as an initial seed it is also possible to load further RDF data in the local dataset
before executing the query. This possibility allows to explicitly ensure considering
data that must not be missed during query execution. Furthermore, reusing the
same local dataset for different queries may yield more complete results since an
already filled local dataset may contain data relevant to a query that would not
be discoverable by executing the query itself. Such a shared dataset, however,
requires the application of caching strategies which identify formerly retrieved
data that might be stale and that has to be requested again.

Due to the openness and the widely distributed nature of the Web we cannot
assume to find all data that is relevant to answer a query with our approach.
Hence, we should never expect complete results. The degree of completeness
depends on the structure of the network of RDF links as well as on the number
of links. In a Web sparsely populated with links chances are slight to discover
relevant data. Nonetheless, we are convinced the Web of Linked Data will rapidly
grow in the coming years and so will the number and density of links. Further
limitations of our approach are i) the need for initial URIs in the queries to start
the link traversal, ii) infinite link discovery, iii) the retrieval of unforeseeable
large RDF graphs from the Web, iv) URI dereferencing that takes unexpectedly
long, v) Linked Data servers that put restrictions to clients such as serving only
a limited number of requests per second, and vi) the possibility to overload a
server. Some of these issues might be addressed with user-configurable options
such as seed URIs, timeouts, and limits on traversal depth and filesizes. However,
further investigation is required to find suitable defaults for these options and
to address the listed issues in general.

3 Pipelining-Based Basic Graph Pattern Matching

We propose to implement our query execution approach using an iterator-based
pipeline that enables an efficient, parallelized execution of queries. Introducing
the pipelined evaluation of BGP queries over a dataset that is continuously aug-
mented with potentially relevant data from the Web requires an understanding
of the static case. Therefore, this section presents a formalism to describe a
pipelining-based evaluation of BGPs over a fixed set of RDF graphs. While the
SPARQL specification introduces different types of graph patterns we focus on
BGPs, the fundamental building block, in this paper; the application of the pre-
sented concepts to more complex query patterns is subject to further research.

Executing SPARQL Queries over the Web of Linked Data 297

3.1 Solutions in SPARQL Query Execution

A formal description of our approach requires an explicit definition of the notion
of a solution. Solutions in SPARQL are defined in the context of BGP matching
where each solution basically represents a matching subgraph in the queried
RDF graph. To describe these solutions the SPARQL specification [4] introduces
a solution mapping that binds query variables to RDF terms such as URIs and
literals. Solution mappings can be understood as a set of variable-term-pairs
where no two pairs contain the same variable. The application of such a solution
mapping μ to a BGP b, denoted with μ[b], implies replacing each variable in the
BGP by the RDF term it is bound to in the mapping; unbound variables must
not be replaced. Based on these mappings the specification defines solutions
of BGPs for RDF graphs. Since our approach is based on a local dataset that
contains multiple RDF graphs – one from each dereferenced URI – we slightly
adjust this definition and introduce solutions of BGPs for sets of RDF graphs:

Definition 1. Let b be a BGP; let G be a set of RDF graphs. The solution
mapping μ is a solution for b in G if i) μ[b] is a subgraph of

⋃
G∈G G and ii) μ

does not map variables that are not in b.

3.2 An Algorithm to Evaluate Basic Graph Patterns

During query processing a query is represented by a tree of logical operators.
From this operator tree the query engine generates a query execution plan
that implements the logical operators by physical operations. A well established
approach to realize query plans is pipelining in which each solution produced
by one operation is passed directly to the operation that uses it [6]. The main
advantage of pipelining is the rather small amount of memory that is needed com-
pared to approaches that completely materialize intermediate results. Pipelining
in query engines is typically realized by a tree of iterators that implement the
physical operations [7]. An iterator is a group of three functions: Open, GetNext,
and Close. Open initializes the data structures needed to perform the operation;
GetNext returns the next result of the operation; and Close ends the iteration
and releases allocated resources. An iterator allows a consumer to get the results
of an operation separately, one at a time. In a tree of iterators the GetNext
functions of an iterator typically call GetNext on the child(ren) of the iterator.
Hence, a tree of iterators calculates solutions in a pull fashion.

Many in-memory RDF stores realize the evaluation of BGP queries by a tree
of iterators as follows: Each iterator is responsible for a single triple pattern of
the BGP {tp1, ... , tpn}. The iterators are chained together such that the iterator
Ii which is responsible for triple pattern tpi is the argument of the iterator Ii+1
responsible for tpi+1. Each iterator returns solution mappings that are solutions
for the set of triple patterns assigned to it and to its predecessors. For instance,
the iterator Ii returns solutions for {tp1, ... , tpi} (i ≤ n). To determine these
solutions the iterators basically execute the following three steps repeatedly:
first, they consume the solution mappings from their direct predecessor; second,
they apply these input mappings to their triple pattern; and, third, they try to

298 O. Hartig, C. Bizer, and J.-C. Freytag

1 FUNCTION Open
2 LET G := the queried set of RDF graphs ;
3 LET Ii−1 := the iterator responsible for tpi−1 ;
4 CALL Ii−1.Open ;
5

6 LET μcur := NotFound ;
7 LET Ifind := an iterator over an empty set of RDF triples ;
8

9 FUNCTION GetNext
10 LET t := Ifind.GetNext ;
11 WHILE t = NotFound DO
12 {
13 LET μcur := Ii−1.GetNext ;
14 IF μcur = NotFound THEN
15 RETURN NotFound ;
16

17 LET Ifind := an iterator over a set of all triples that match μcur [{tpi}] in G ;
18 LET t := Ifind.GetNext ;
19 }
20 LET μ′ := the solution for μcur [{tpi}] in G that corresponds to t ;
21 RETURN μcur ∪ μ′ ;
22

23 FUNCTION Close
24 CALL Ii−1.Close ;

Fig. 2. Pseudo code notation of the Open, GetNext, and Close functions for an iterator
Ii that evaluates triple pattern tpi

find triples in the queried RDF data that match the triple patterns resulting from
the applications of the input mappings. Figure 2 illustrates the corresponding
algorithm executed by the GetNext function of the iterators. Notice, the third
step is realized with another type of iterator that returns the matching triples.
We do not discuss this helper iterator in detail because its realization is not
important for the concepts presented in this paper. Hence, in the remainder we
simply assume the helper iterator iterates over a set of all RDF triples that
match a triple pattern in a set of RDF graphs.

3.3 A Formalization of Iterator-Based Pipelining

The set of solutions provided by an iterator Ii can be divided in subsets where
each subset corresponds to one of the solutions consumed from the direct prede-
cessor; i.e. each of these subsets contains all solutions that have been determined
based on the same input solution. We denote these subsets with SuccG(μ, i).

SuccG(μ, i) =
{
μ ∪ μ′ |μ′ is a solution for μ[{tpi}] in G

}
(1)

Notice, the μ′s in Equation (1) correspond to the μ′ in the algorithm (cf. line 20
in Figure 2). There is no μ′ in Equation (1) that binds a variable which is already
bound in μ because the application of μ to {tpi} yields {tp′i} where tp′i does not
contain a variable bound in μ. Hence, each μ′ merely adds new bindings for
variables not considered in μ. For this reason it holds, if μ is a solution for
{tp1, ... , tpi−1} then each μ∗ ∈ SuccG(μ, i) is a solution for {tp1, ... , tpi}.

Executing SPARQL Queries over the Web of Linked Data 299

With ΩG
i we denote all solutions determined by the ith iterator. It holds

ΩG
i =

{
SuccG(μ0, 1) ; if i = 1⋃

μ∈ΩG
i−1

SuccG(μ, i) ; else
(2)

where μ0 = ∅ is the empty solution mapping consumed by the first iterator.

Proposition 1. ΩG
n is the result for BGP {tp1, ... , tpn} from RDF graph set G.

Proof. Each μ ∈ ΩG
1 is a solution from G for {tp1} because

ΩG
1 = SuccG(μ0, 1) =

{
μ0 ∪ μ′ |μ′ is a solution for μ0[{tp1}] from G

}
=

{
μ′ |μ′ is a solution for {tp1} from G

}
Let i > 1 and let ΩG

i−1 all solutions from G for {tp1, ... , tpi−1}. Due to Equa-
tion (1) it holds for each μ ∈ ΩG

i−1 that each μi ∈ SuccG(μ, i) is a solution
from G for {tp1, ... , tpi}. Furthermore, ΩG

i is complete because it is the union of
SuccG(μ, i) for all possible μ ∈ ΩG

i−1. Hence, ΩG
n is the complete result from G

for {tp1, ... , tpn}. �

4 Evaluating Basic Graph Patterns over the Web

In this section we formalize our approach to evaluate BGP queries over the
Web of Linked Data and we introduce strategies to execute these queries more
efficiently.

To query the Web of Linked Data we cannot evaluate BGP queries over a
fixed set of RDF graphs as introduced in the previous section. Instead, the
queried dataset grows during the evaluation since we continuously add further,
potentially relevant data by following the heuristic outlined in Section 2. The
heuristic is based on the assumption that RDF graphs retrieved by looking up
the URIs in a triple pattern might contain triples that match the triple pattern.
Hence, we require that the local dataset contains these RDF graphs before we
evaluate the triple pattern. More formally, we have to guarantee the following
requirement.

Requirement 1. The calculation of SuccG(μ, i) requires that

1. deref
(
subj (μ[tpi])

)
∈ G if subj (μ[tpi]) is a URI,

2. deref
(
pred(μ[tpi])

)
∈ G if pred(μ[tpi]) is a URI, and

3. deref
(
obj (μ[tpi])

)
∈ G if obj (μ[tpi]) is a URI

where μ[tp] denotes the application of solution mapping μ to a triple pattern tp;
subj (tp), pred(tp), and obj (tp) denote the subject, predicate and object of a triple
pattern tp, respectively; and deref (u) represents the RDF graph that we retrieve
by dereferencing the URI u.

300 O. Hartig, C. Bizer, and J.-C. Freytag

1 FUNCTION GetNext
2 LET t := Ifind.GetNext ;
3 WHILE t = NotFound DO
4 {
5 LET μcur := Ii−1.GetNext ;
6 IF μcur = NotFound THEN
7 RETURN NotFound ;
8

9 CALL EnsureRequirement for μcur [{tpi}] ;
10 LET Ifind := an iterator over a set of all triples that match μcur [{tpi}] in G ;
11 LET t := Ifind.GetNext ;
12 }
13

14 LET μ′ := the solution for μcur [{tpi}] in G that corresponds to t ;
15 RETURN μcur ∪ μ′ ;

Fig. 3. Pseudo code notation of the GetNext function for an iterator Ii that evaluates
triple pattern tpi over the Web of Linked Data

To guarantee Requirement 1 we adjust the GetNext function of our iterators
as follows. Before the algorithm initializes the embedded helper iterator (cf.
line 17 in Figure 2) it invokes a function called EnsureRequirement. This func-
tion checks the requirement and, if necessary, it dereferences URIs and waits
until dereferencing has been finished. Figure 3 illustrates the adjusted GetNext
function. Based on this adjustment the queried dataset G grows during the iter-
ative calculation of ΩG

n . The calculation of any solution subset SuccG(μ, i) uses
the dataset G that is augmented with all RDF graphs retrieved for the calcula-
tion of previous subsets. However, each time the algorithm initializes Ifind (cf.
line 10 in Figure 3) it uses an isolated snapshot of G that cannot be augmented
by other iterators. This isolation avoids conflicts and an endless query execution
because once the calculation of any subset SuccG(μ, i) has been initiated later
additions to G are ignored for that calculation. The downside of this isolation
is that the completeness of a query result depends on the order by which the
iterators for the patterns in a query are chained. The development of concepts
to find an order that is optimal with respect to maximizing result completeness
is subject to further research.

The dereferencing requests in function EnsureRequirement of the adjusted
iterators should be implemented by asynchronous function calls such that mul-
tiple dereferencing tasks can be processed in parallel. However, waiting for the
completion of the dereferencing tasks in function EnsureRequirement delays the
execution of the GetNext function and, thus, slows down query execution times.
It is possible to address this problem with the following prefetching strategy.

Instead of dereferencing each URI at the time when the corresponding RDF
graph is required we suggest to initiate the dereferencing task as soon as the
URI becomes part of a solution. Considering that dereferencing requests are
implemented by asynchronous function calls the query engine can immediately
proceed the evaluation while the dereferencing tasks are executed separately.
Whenever a subsequent iterator requires the corresponding dereferencing re-
sult chances are high that the dereferencing task has already been completed.

Executing SPARQL Queries over the Web of Linked Data 301

1 FUNCTION GetNext
2 LET t := Ifind.GetNext ;
3 WHILE t = NotFound DO
4 {
5 LET μcur := Ii−1.GetNext ;
6 IF μcur = NotFound THEN
7 RETURN NotFound ;
8

9 CALL EnsureRequirement for μcur [{tpi}] ;
10 LET Ifind := an iterator over a set of all triples that match μcur [{tpi}] in G ;
11 LET t := Ifind.GetNext ;
12 }
13

14 LET μ′ := the solution for μcur [{tpi}] in G that corresponds to t ;
15

16 FOR EACH (var, val) ∈ μ′ DO
17 IF val is a URI AND deref

(
val

)
/∈ G THEN Request the retrieval of deref

(
val

)
;

18

19 RETURN μcur ∪ μ′ ;

Fig. 4. Pseudo code notation of the GetNext function for an iterator Ii that prefetches
URIs during the evaluation of triple pattern tpi

Figure 4 illustrates an adjusted GetNext function that realizes our URI prefetch-
ing strategy in lines 16 and 17. In Section 6.2 we analyze the impact of URI
prefetching on query execution times.

5 Non-blocking Iterators

In this section we introduce an extension to the iterator paradigm. This exten-
sion prevents unnecessary long execution times caused by delays that cannot be
avoided with URI prefetching.

URI prefetching as introduced in the previous section is an attempt to avoid
delays during the execution of the GetNext function. However, this approach is
not always sufficient as the following example demonstrates.

Example 2. Let tpi = (?x,?p,?o) the ith triple pattern in a BGP {tp1, ... , tpn}
where 1 < i ≤ n. Consider the iterator Ii which is responsible for tpi is asked for
the next solution by calling its GetNext function. Let the current helper iterator
Ifind of Ii be exhausted so that the algorithm enters the while loop (cf. line 3
in Figure 4) and requests the next input solution from the predecessor iterator
Ii−1 (cf. line 5). Let Ii−1 return a solution mapping μi−1 that binds variable
?x to URI uri where this binding has been determined by Ii−1; i.e. it holds
(?x, uri) ∈ μi−1 where μi−1 ∈ SuccG(μ, i − 1) ⊆ ΩG

i−1 but (?x, uri) /∈ μ. Let
deref (uri) /∈ G. In this case, Ii−1 has requested the retrieval of deref (uri) just
before it has returned μi−1 to Ii. Since Ii immediately calls EnsureRequirement
for μi−1[{tpi}] = (uri,?p,?o) it is very likely that the dereferencing of uri is still
in progress. Hence, Ii has to wait before it can initialize the next helper iterator
and return the next solution.

302 O. Hartig, C. Bizer, and J.-C. Freytag

As can be seen from Example 2 the prefetching of URIs does not prevent delays
in the GetNext function in general. Unfortunately, an iterator that waits during
the execution of GetNext causes a blocking of the whole query execution because
the subsequent iterators wait for the result of GetNext and the predecessor iter-
ators are not requested to do anything either. This problem might be addressed
with program parallelism and the use of asynchronous pipelines [8]. According
to this approach all iterators work in parallel; each pair of connected iterators
shares a buffering queue to which the providing iterator asynchronously adds
its intermediate solutions; the consuming iterator dequeues these solutions to
process them. However, the realization of this approach would require a major
rewrite of existing query engines that are based on synchronous pipelines. For
this reason we propose an extension to the iterator paradigm which is compat-
ible with the commonly used synchronous pipelining approach presented in this
paper.

The core idea of our extension is to enable iterators to temporarily reject
a solution consumed from its predecessor. Given such a possibility an iterator
that finds Requirement 1 is not fulfilled for an input solution could reject that
solution and ask the predecessor for another solution. To enable this possibility
we add a new function, called Reject, to the iterator paradigm and we slightly
extend the semantics of the GetNext function. The new function Reject treats
the result that has most recently been provided by the GetNext function as
if this result has never been provided by GetNext. This means Reject takes
the rejected result back and keeps it for later requests. The extended GetNext
function either returns the next result of the operation performed by the iterator
or it returns one of the rejected results. Once a formerly rejected result is not
being rejected again it must not be kept any further. Notice, we allow GetNext
to decide nondeterministically to return a newly calculated result or to return a
formerly rejected result. This approach provides more flexibility for realizations
of our extended iterator paradigm. Analogously, we do not prescribe which of the
rejected results have to be returned. However, in most cases it would probably
be unwise to immediately reoffer a recently rejected result.

Figure 5 illustrates an application of the extended iterator paradigm to the
iterators that evaluate BGP queries over the Web of Linked Data. Notice, these
iterators call a function CheckRequirement which is similar to the function
EnsureRequirement introduced in Section 4. Both functions check Require-
ment 1 and, if necessary, request the dereferencing of URIs. However, in contrast
to EnsureRequirement the function CheckRequirement does not wait until the
requested data has been retrieved, but, it returns an indication that either Re-
quirement 1 is fulfilled or that the retrieval of data has been requested. In the
latter case the algorithm in function GetNext rejects the current input solution
from the predecessor iterator (cf. line 39 in Figure 5). Hence, the extended it-
erator paradigm allows to temporarily reject input solutions. This possibility to
postpone the processing of certain solutions has a significant impact on query
execution times as our evaluation in Section 6.2 illustrates.

Executing SPARQL Queries over the Web of Linked Data 303

1 FUNCTION Open
2 LET G := the queried set of RDF graphs ;
3 LET Ii−1 := the iterator responsible for tpi−1 ;
4 CALL Ii−1.Open ;
5

6 LET μcur := NotFound ;
7 LET Ifind := an iterator over an empty set of RDF triples ;
8

9 LET Ψ := an empty list ; // used to keep rejected solutions
10 LET μlast := NotFound ; // used to hold the most recently provided solutions
11

12

13 FUNCTION GetNext
14 LET new := a randomly choosen element from {TRUE,FALSE} ;
15 IF Ψ is not empty AND new = FALSE THEN
16 LET μlast := the first element in Ψ ;
17 Remove μlast from Ψ ;
18 RETURN μlast ;
19

20 LET t := Ifind.GetNext ;
21 WHILE t = NotFound DO
22 {
23 LET μcur := Ii−1.GetNext ;
24 IF μcur = NotFound THEN
25 {
26 IF Ψ is empty THEN
27 LET μlast := NotFound ;
28 RETURN μlast ;
29

30 LET μlast := the first element in Ψ ;
31 Remove μlast from Ψ ;
32 RETURN μlast ;
33 }
34

35 IF CheckRequirement for μcur [{tpi}] returned TRUE THEN
36 LET Ifind := an iterator over a set of all triples that match μcur [{tpi}] in G ;
37 LET t := Ifind.GetNext ;
38 ELSE
39 CALL Ii−1.Reject ;
40 }
41

42 LET μ′ := the solution for μcur [{tpi}] in G that corresponds to t ;
43

44 FOR EACH (var, val) ∈ μ′ DO
45 IF val is a URI AND deref

(
val

)
/∈ G THEN Request the retrieval of deref

(
val

)
;

46

47 LET μlast := μcur ∪ μ′ ;
48 RETURN μlast ;
49

50

51 FUNCTION Reject
52 IF μlast �= NotFound THEN Append μlast to Ψ ;
53

54

55 FUNCTION Close
56 CALL Ii−1.Close ;

Fig. 5. Pseudo code notation of the Open, GetNext, Reject, and Close functions for a
non-blocking iterator Ii that evaluates triple pattern tpi

304 O. Hartig, C. Bizer, and J.-C. Freytag

6 Evaluation

As a proof-of-concept, we implemented our approach to query the Web of Linked
Data in the Semantic Web Client Library2 (SWClLib). This library is available
as Free Software; it is portable to any major platform due to its implementation
in Java. Based on SWClLib we evaluate our approach in this section; we present
real-world use cases and we evaluate the iterator-based implementation in a
controlled environment.

6.1 Real-World Examples

To demonstrate the feasibility of our approach we tested it with the following
four queries that require data from multiple data sources to be answered:

Q1: Return phone numbers of authors of ontology engineering papers at ESWC09
Q2: What are the interests of the people Tim Berners-Lee knows?
Q3: What natural alternatives can be used instead of the drug “Varenicline”?
Q4: Return the cover images of soundtracks for movies directed by Peter Jackson.

Our demo page3 provides the SPARQL representations of the test queries and
it allows to execute these queries using SWClLib. In Table 1 we present average
measures for these executions; the table illustrates the number of query results
for each query, the number of RDF graphs retrieved during query execution, the
number of servers from which the graphs have been retrieved, and the execution
time. The first query, Q1, which is the sample query introduced in Section 1
(cf. Figure 1) has been answered using the Semantic Web Conference Corpus,
DBpedia, and personal FOAF profiles. Answering query Q2 required data from
Tim Berners-Lee as well as data from all the people he knows. Query Q3 was an-
swered with data retrieved from the DrugBank database, the Diseasome dataset,
and the Traditional Chinese Medicine dataset. The results for Q4 have been
constructed with data from LinkedMDB and the MusicBrainz dataset.

In addition to the test queries we developed Researchers Map [9] to demon-
strate that our approach is suitable for applications that consume Linked Data.
Researchers Map is a simple mash-up that is solely based on the results of queries
evaluated over the Web of Linked Data. The main feature of Researchers Map

Table 1. Statistics about the test queries

query Q1 Q2 Q3 Q4
of results 2 27 7 5

of retrieved graphs 297 85 28 442
of accessed servers 16 46 6 6

execution time 3min 47sec 1min 11sec 0min 46sec 1min 24sec

2 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/semwebclient/
3 http://squin.informatik.hu-berlin.de/SQUIN/

Executing SPARQL Queries over the Web of Linked Data 305

is a map of professors from the German database community; the list of profes-
sors in the map can be filtered by research interests; selecting a professor opens
a list of her/his publications. This application relies on data published by the
professors as well as on data from DBpedia and the DBLP dataset.

6.2 The Impact of URI Prefetching and Non-blocking Iterators

Based on the SWClLib we conducted experiments to evaluate the presented
concepts for an iterator-based realization of our query execution approach. For
our tests we adopt the Berlin SPARQL Benchmark (BSBM) [10]. The BSBM
executes a mix of 12 SPARQL queries over generated sets of RDF data; the
datasets are scalable to different sizes based on a scaling factor. Using these
datasets we set up a Linked Data server4 which publishes the generated data
following the Linked Data principles. With this server we simulate the Web of
Linked Data in our experiments.

To measure the impact of URI prefetching and of our iterator paradigm ex-
tension we use the SWClLib to execute the BSBM query mix over the simulated
Web. For this evaluation we adjust the SPARQL queries provided by BSBM in
order to access our simulation server. We conduct our experiments on an Intel
Core 2 Duo T7200 processor with 2 GHz, 4 MB L2 cache, and 2 GB main mem-
ory. Our test system runs a recent 32 bit version of Gentoo Linux with Sun Java
1.6.0. We execute the query mix for datasets generated with scaling factors of 10
to 60; these datasets have sizes of 4,971 to 26,108 triples, respectively. For each
dataset we run the query mix 6 times where the first run is for warm up and is
not considered for the measures.

Figure 6(a) depicts the average times to execute the query mix with three
different implementations of SWClLib: i) without URI prefetching, ii) with
prefetching, and iii) with the extended iterators that postpone the processing
of input solutions. As can be seen from the measures URI prefetching reduces
the query execution times to about 80%; our non-blocking iterators even halve
the time.

The chart in Figure 6(b) puts the measures in relation to the time it takes
to execute the query mixes without the need to retrieve data from the Web. We
obtained this optimum by executing each query twice over a shared dataset; we
measured the second executions which did not require to look up URIs because
all data has already been retrieved in the first pass. These measures represent
only the time to actually evaluate the queries as presented in Section 3. Hence,
these times are a lower bound for possible optimizations to the iterator-based
execution of our approach to query the Web of Linked Data. Using this lower
bound we calculate the times required for data retrieval in the three implemen-
tations. These times are the differences between execution times measured for
the three implementations and the lower bound, respectively. Figure 6(b) de-
picts these numbers which illustrate the significant impact of the possibility to

4 Our server is based on RAP Pubby which is available from http://www4.wiwiss.
fu-berlin.de/bizer/rdfapi/tutorial/RAP Pubby.htm

306 O. Hartig, C. Bizer, and J.-C. Freytag

(a) (b)

Fig. 6. Average times to execute the BSBM query mix with the SWClLib over a
simulated Web of different sizes measured without URI prefetching, with prefetching,
and with the extended iterators that temporarily reject input solutions, respectively

postpone the processing of certain input solutions in our non-blocking iterators.
The chart additionally illustrates that the data retrieval times compared to the
whole query execution time decreases for larger datasets, in particular in the
case of the non-blocking iterators.

7 Related work

In this paper we present an approach to execute queries over the Web of Linked
Data. Different solutions with a similar goal have been proposed before. These
approaches can be classified in two categories: query federation and data
centralization.

Research on federated query processing has a long history in database
research. Sheth and Larson [5] provide an overview of the concepts developed
in this context. Current approaches adapt these concepts to provide integrated
access to distributed RDF data sources on the Web. The DARQ engine [11], for
instance, decomposes a SPARQL query in subqueries, forwards these subqueries
to multiple, distributed query services, and, finally, integrates the results of the
subqueries. Very similar to the DARQ approach the SemWIQ [12] system con-
tains a mediator service that transparently distributes the execution of SPARQL
queries. Both systems, however, do not actively discover relevant data sources
that provide query services.

In contrast to federation based systems the idea of centralized approaches
is to provide a query service over a collection of Linked Data copied from dif-
ferent sources on the Web. For instance, OpenLink Software republishes the
majority of the datasets from the Linking Open Data community project5 on a
5 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

Executing SPARQL Queries over the Web of Linked Data 307

single site6; users can issue SPARQL queries over the whole set of mirrored
datasets. As with the federation based systems this approach executes queries
only on selected datasets that are part of the collection. Another form of the
centralized approach are search engines for the Web of Linked Data such as
Sindice [13], Swoogle [14], and Watson [15]. These search engines crawl the Web
by following RDF links, index discovered data, and provide query interfaces to
their indexes. In contrast to our approach where the queried data is discovered
and retrieved at query execution time the crawlers collect the queried data in
advance. Due to the possibility to consider data that would not be discovered
by our method a crawling-based approach might return more complete query
results. However, setting up an index that covers large amounts of data on the
Web requires much more resources (e.g. storage, compute power, administrative
personnel) than is needed to apply our approach. Furthermore, our method is
superior with respect to the timeliness of query results because we only use that
data that is available at the time of query execution.

The idea of looking up URIs during application runtime as in our approach
has first been proposed by Berners-Lee et al. [16]. The authors outline an algo-
rithm that traverses RDF links in order to obtain more data about the resources
presented in the Tabulator Linked Data browser. Our approach is based on the
idea of Berners-Lee et al. We integrate this idea in the process of query execu-
tion and, thus, resolve the need to implement link traversal algorithms in each
application that consumes Linked Data.

8 Conclusion

In this paper we introduce an approach to query the Web of Linked Data and
we present concepts and algorithms to implement this approach. Our approach
is based on traversing RDF links to discover data that might be relevant for a
query during the query execution itself. We propose to implement this idea with
an iterator-based pipeline and a URI prefetching approach to execute queries
efficiently. To improve the performance of query execution even more the paper
introduces an extension to the iterator paradigm that allows to temporarily re-
ject certain input results. We provide the Semantic Web Client Library as a first
prototype that implements our approach; an application that uses this library
demonstrates the feasibility of our idea.

Our approach benefits from a high number of links in the Web of Linked Data;
the more links exist the more complete results can be expected because more
relevant data might be discovered. In addition to relying on a dense network of
links, sharing the queried dataset and in advance crawling show great promise
to improve the completeness of the results. In both approaches query execution
does not have to start on an empty dataset. Instead, potentially relevant data
might already be available. Hence, we are investigating possibilities to combine
these techniques with our approach. Such a combination introduces the need

6 http://lod.openlinksw.com

308 O. Hartig, C. Bizer, and J.-C. Freytag

for a proper caching solution with suitable replacement strategies and refreshing
policies. We are currently working on these issues.

The openness of the Web of Linked Data holds an enormous potential which
could enable users to benefit from a virtually unbound set of data sources. How-
ever, this potential will become available not until applications take advantage
of the characteristics of the Web which requires approaches to discover new data
sources by traversing data links. This paper presents a proof of concept to enable
this evolutionary step.

References

1. Berners-Lee, T.: Design Issues: Linked Data. (retrieved May 25, 2009),
http://www.w3.org/DesignIssues/LinkedData.html

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Journal on
Semantic Web and Information Systems (in press, 2009)

3. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: A new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

4. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-
ommendation (January 2008),
http://www.w3.org/TR/rdf-sparql-query/ (retrieved June 11, 2009)

5. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys 22(3),
183–236 (1990)

6. Garcia-Molina, H., Widom, J., Ullman, J.D.: Database Systems: The Complete
Book. Prentice-Hall, Inc., Upper Saddle River (2002)

7. Graefe, G.: Query evaluation techniques for large databases. ACM Computing
Surveys 25(2), 73–169 (1993)

8. Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S., Selinger, P.: Parallelism in relational
data base systems: Architectural issues and design approaches. In: Proceedings
of the 2nd International Symposium on Databases in Parallel and Distributed
Systems (DPDS), pp. 4–29. ACM, New York (1990)

9. Hartig, O., Mühleisen, H., Freytag, J.-C.: Linked data for building a map of re-
searchers. In: Proceedings of 5th Workshop on Scripting and Development for the
Semantic Web (SFSW) at ESWC (June 2009)

10. Bizer, C., Schultz, A.: Benchmarking the performance of storage systems that
expose SPARQL endpoints. In: Proceedings of the Workshop on Scalable Semantic
Web Knowledge Base Systems at ISWC (October 2008)

11. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

12. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data
integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg
(2008)

13. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies 3(1) (2008)

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf-sparql-query/

Executing SPARQL Queries over the Web of Linked Data 309

14. Ding, L., Finin, T.W., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari,
P., Doshi, V., Sachs, J.: Swoogle: A search and metadata engine for the se-
mantic web. In: Proceedings of the 13th ACM Conference on Information and
Knowledge Management (CIKM), November 2004, pp. 652–659. ACM, New York
(2004)

15. d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V.,
Guidi, D.: Toward a new generation of semantic web applications. IEEE Intelligent
Systems 23(3), 20–28 (2008)

16. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the
semantic web. In: Proceedings of the 3rd Semantic Web User Interaction Workshop
(SWUI) at ISWC (November 2006)

Dynamic Querying of Mass-Storage RDF Data with
Rule-Based Entailment Regimes�

Giovambattista Ianni1, Thomas Krennwallner2, Alessandra Martello1,
and Axel Polleres3

1 Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy
{ianni,a.martello}@mat.unical.it

2 Institut für Informationssysteme 184/3, Technische Universität Wien, Austria
tkren@kr.tuwien.ac.at

3 Digital Enterprise Research Institute, National University of Ireland, Galway
axel.polleres@deri.org

Abstract. RDF Schema (RDFS) as a lightweight ontology language is gaining
popularity and, consequently, tools for scalable RDFS inference and querying
are needed. SPARQL has become recently a W3C standard for querying RDF
data, but it mostly provides means for querying simple RDF graphs only, whereas
querying with respect to RDFS or other entailment regimes is left outside the cur-
rent specification. In this paper, we show that SPARQL faces certain unwanted
ramifications when querying ontologies in conjunction with RDF datasets that
comprise multiple named graphs, and we provide an extension for SPARQL that
remedies these effects. Moreover, since RDFS inference has a close relationship
with logic rules, we generalize our approach to select a custom ruleset for spec-
ifying inferences to be taken into account in a SPARQL query. We show that
our extensions are technically feasible by providing benchmark results for RDFS
querying in our prototype system GiaBATA, which uses Datalog coupled with a
persistent Relational Database as a back-end for implementing SPARQL with dy-
namic rule-based inference. By employing different optimization techniques like
magic set rewriting our system remains competitive with state-of-the-art RDFS
querying systems.

1 Introduction

Thanks to initiatives such as DBPedia or the Linked Open Data project,1 a huge amount
of machine-readable RDF [1] data is available, accompanying pervasive ontologies de-
scribing this data such as FOAF [2], SIOC [3], or YAGO [4].

A vast amount of Semantic Web data uses rather small and lightweight ontologies
that can be dealt with rule-based RDFS and OWL reasoning [5,6,7], in contrast to the
full power of expressive description logic reasoning. However, even if many practi-
cal use cases do not require complete reasoning on the terminological level provided

� This work has been partially supported by the Italian Research Ministry (MIUR) project Inter-
link II04CG8AGG, the Austrian Science Fund (FWF) project P20841, by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

1 http://dbpedia.org/ and http://linkeddata.org/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 310–327, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://dbpedia.org/
http://linkeddata.org/

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 311

by DL-reasoners, the following tasks become of utter importance. First, a Semantic
Web system should be able to handle and evaluate (possibly complex) queries on large
amounts of RDF instance data. Second, it should be able to take into account implicit
knowledge found by ontological inferences as well as by additional custom rules in-
volving built-ins or even nonmonotonicity. The latter features are necessary, e.g., for
modeling complex mappings [8] between different RDF vocabularies. As a third point,
joining the first and the second task, if we want the Semantic Web to be a solution to –
as Ora Lassila formulated it – those problems and situations that we are yet to define,2

we need triple stores that allow dynamic querying of different data graphs, ontologies,
and (mapping) rules harvested from the Web. The notion of dynamic querying is in
opposition to static querying, meaning that the same dataset, depending on context,
reference ontology and entailment regime, might give different answers to the same
query. Indeed, there are many situations in which the dataset at hand and its supporting
class hierarchy cannot be assumed to be known upfront: think of distributed querying
of remotely exported RDF data.

Concerning the first point, traditional RDF processors like Jena (using the default
configuration) are designed for handling large RDF graphs in memory, thus reaching
their limits very early when dealing with large graphs retrieved from the Web. Cur-
rent RDF Stores, such as YARS [9], Sesame, Jena TDB, ThreeStore, AllegroGraph, or
OpenLink Virtuoso3 provide roughly the same functionality as traditional relational
database systems do for relational data. They offer query facilities and allow to im-
port large amounts of RDF data into their persistent storage, and typically support
SPARQL [10], the W3C standard RDF query language. SPARQL has the same expres-
sive power as non-recursive Datalog [11,12] and includes a set of built-in predicates in
so called filter expressions.

However, as for the second and third point, current RDF stores only offer lim-
ited support. OWL or RDF(S) inference, let alone custom rules, are typically fixed
in combination with SPARQL querying (cf. Section 2). Usually, dynamically assigning
different ontologies or rulesets to data for querying is neither supported by the SPARQL
specification nor by existing systems. Use cases for such dynamic querying involve,
e.g., querying data with different versions of ontologies or queries over data expressed
in related ontologies adding custom mappings (using rules or “bridging” ontologies).

To this end, we propose an extension to SPARQL which caters for knowledge-
intensive applications on top of Semantic Web data, combining SPARQL querying
with dynamic, rule-based inference. In this framework, we overcome some of the above
mentioned limitations of SPARQL and existing RDF stores. Moreover, our approach is
easily extensible by allowing features such as aggregates and arbitrary built-in predi-
cates to SPARQL (see [8,14]) as well as the addition of custom inference and mapping
rules. The contributions of our paper are summarized as follows:

• We introduce two additional language constructs to the normative SPARQL lan-
guage. First, the directive using ontology for dynamically coupling a dataset with

2 http://www.lassila.org/publications/2006/SCAI-2006-keynote.pdf
3 See http://openrdf.org/, http://jena.hpl.hp.com/wiki/TDB/, http://
threestore.sf.net/, http://agraph.franz.com/allegrograph/,
http://openlinksw.com/virtuoso/, respectively.

http://www.lassila.org/publications/2006/SCAI-2006-keynote.pdf
http://openrdf.org/
http://jena.hpl.hp.com/wiki/TDB/
http://
threestore.sf.net/
http://agraph.franz.com/allegrograph/
http://openlinksw.com/virtuoso/

312 G. Ianni et al.

an arbitrary RDFS ontology, and second extended dataset clauses, which allow to spec-
ify datasets with named graphs in a flexible way. The using ruleset directive can
be exploited for adding to the query at hand proper rulesets which might used for a va-
riety of applications such as encoding mappings between entities, or encoding custom
entailment rules, such as RDFS or different rule-based OWL fragments.
• We present the GiaBATA system [15], which demonstrates how the above extensions
can be implemented on a middle-ware layer translating SPARQL to Datalog and SQL.
Namely, the system is based on known translations of SPARQL to Datalog rules. Ar-
bitrary, possibly recursive rules can be added flexibly to model arbitrary ontological
inference regimes, vocabulary mappings, or alike. The resulting program is compiled to
SQL where possible, such that only the recursive parts are evaluated by a native Datalog
implementation. This hybrid approach allows to benefit from efficient algorithms of de-
ductive database systems for custom rule evaluation, and native features such as query
plan optimization techniques or rich built-in functions (which are for instance needed
to implement complex filter expressions in SPARQL) of common database systems.
• We compare our GiaBATA prototype to well-known RDF(S) systems and provide
experimental results for the LUBM [16] benchmark. Our approach proves to be com-
petitive on both RDF and dynamic RDFS querying without the need to pre-materialize
inferences.

In the remainder of this paper we first introduce SPARQL along with RDF(S) and
partial OWL inference by means of some motivating example queries which existing
systems partially cannot deal in a reasonably manner in Section 2. Section 3 sketches
how the SPARQL language can be enhanced with custom ruleset specifications and
arbitrary graph merging specifications. We then briefly introduce our approach to trans-
late SPARQL rules to Datalog in Section 4, and how this is applied to a persistent stor-
age system. We evaluate our approach with respect to existing RDF stores in Section 5,
and then conclusions are drawn in Section 6.

2 SPARQL and Some Motivating Examples

Similar in spirit to structured query languages like SQL, which allow to extract, com-
bine and filter data from relational database tables, SPARQL allows to extract, combine
and filter data from RDF graphs. The semantics and implementation of SPARQL in-
volves, compared to SQL, several peculiarities, which we do not focus on in this paper,
cf. [10,18,11,19] for details. Instead, let us just start right away with some illustrating
example motivating our proposed extensions of SPARQL; we assume two data graphs
describing data about our well-known friends Bob and Alice shown in Fig. 1(b)+(c).
Both graphs refer to terms in a combined ontology defining the FOAF and Relation-
ship4 vocabularies, see Fig. 1(a) for an excerpt.

On this data the SPARQL query (1) intends to extract names of persons mentioned in
those graphs that belong to friends of Bob. We assume that, by means of rdfs:seeAlso
statements, Bob provides links to the graphs associated to the persons he is friend with.

4 http://vocab.org/relationship/

http://vocab.org/relationship/

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 313

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix rel: <http://purl.org/vocab/relationship/>.
...
rel:friendOf rdfs:subPropertyOf foaf:knows.
foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:homepage rdf:type owl:inverseFunctionalProperty.
...

(a) Graph GM (<http://example.org/myOnt.rdfs>), a combination of the
FOAF&Relationship ontologies.

<http://bob.org#me> foaf:name "Bob"; a foaf:Person;
foaf:homepage <http://bob.org/home.html>;
rel:friendOf [foaf:name "Alice";

rdfs:seeAlso <http://alice.org>].

(b) Graph GB (<http://bob.org>)

<http://alice.org#me> foaf:name "Alice"; a foaf:Person;
rel:friendOf [foaf:name "Charles"],

[foaf:name "Bob";
foaf:homepage <http://bob.org/home.html>

].

(c) Graph GA (<http://alice.org>)

Fig. 1. An ontology and two data graphs

select ?N from <http://example.org/myOnt.rdfs>
from <http://bob.org>
from named <http://alice.org>

where { <http://bob.org#me> foaf:knows ?X . ?X rdfs:seeAlso ?G .
graph ?G { ?P rdf:type foaf:Person; foaf:name ?N } }

(1)

Here, the from and from named clauses specify an RDF dataset. In general, the dataset
DS = (G,N) of a SPARQL query is defined by (i) a default graph G obtained by the
RDF merge [20] of all graphs mentioned in from clauses, and (ii) a set N = {(u1, G1),
. . . , (uk, Gk)} of named graphs, where each pair (ui, Gi) consists of an IRI ui, given in
a from named clause, paired with its corresponding graphGi. For instance, the dataset
of query (1) would be DS1 = (GM $ GB , {(<http://alice.org>, GA)}), where
$ denotes merging of graphs according to the normative specifications.

Now, let us have a look at the answers to query (1). Answers to SPARQL select

queries are defined in terms of multisets of partial variable substitutions. In fact the
answer to query (1) is empty when – as typical for current SPARQL engines – only
simple RDF entailment is taken into account, and query answering then boils down to
simple graph matching. Since neither of the graphs in the default graph contain any
triple matching the pattern <http://bob.org#me> foaf:knows ?X in the where

clause, the result of (1) is empty. When taking subproperty inference by the statements
of the ontology in GM into account, however, one would expect to obtain three substitu-
tions for the variable ?N: {?N/"Alice", ?N/"Bob", ?N/"Charles"}. We will explain
in the following why this is not the case in standard SPARQL.

In order to obtain the expected answer, firstly SPARQL’s basic graph pattern match-
ing needs to be extended, see [10, Section 12.6]. In theory, this means that the graph
patterns in the where clause needs to be matched against an enlarged version of the
original graphs in the dataset (which we will call the deductive closure Cl(·)) of a given
entailment regime. Generic extensions for SPARQL to entailment regimes other than
simple RDF entailment are still an open research problem,5 due to various problems:
(i) for (non-simple) RDF entailment regimes, such as full RDFS entailment, Cl(G) is
infinite, and thus SPARQL queries over an empty graph G might already have infinite
answers, and (ii) it is not yet clear which should be the intuitive answers to queries over

5 For details, cf. http://www.polleres.net/sparqltutorial/, Unit 5b.

http://www.polleres.net/sparqltutorial/

314 G. Ianni et al.

inconsistent graphs, e.g. in OWL entailment, etc. In fact, SPARQL restricts extensions
of basic graph pattern matching to retain finite answers. Not surprisingly, many ex-
isting implementations implement finite approximations of higher entailment regimes
such as RDFS and OWL [6,5,21]. E.g., the RDF Semantics document [20] contains
an informative set of entailment rules, a subset of which (such as the one presented
in Section 3.2 below) is implemented by most available RDF stores. These rule-based
approximations, which we focus on in this paper, are typically expressible by means
of Datalog-style rules. These latter model how to infer a finite closure of a given RDF
graph that covers sound but not necessarily complete RDF(S) and OWL inferences. It
is worth noting that Rule-based entailment can be implemented in different ways: rules
could be either dynamically evaluated upon query time, or the closure wrt. ruleset R,
ClR(G), could be materialized when graph G is loaded into a store. Materialization of
inferred triples at loading time allows faster query responses, yet it has drawbacks: it is
time and space expensive and it has to be performed once and statically. In this setting,
it must be decided upfront.

(a) which ontology should be taken into account for which data graph, and
(b) to which graph(s) the inferred triples “belong”, which particularly complicates the

querying of named graphs.

As for exemplifying (a), assume that a user agent wants to issue another query on
graph GB with only the FOAF ontology in mind, since she does not trust the Rela-
tionship ontology. In the realm of FOAF alone, rel:friendOf has nothing to deal
with foaf:knows. However, when materializing all inferences upon loading GM and
GB into the store, bob:me foaf:knows :a would be inferred from GM $ GB and
would contribute to such a different query. Current RDF stores prevent to dynamically
parameterize inference with an ontology of choice at query time, since indeed typically
all inferences are computed upon loading time once and for all.

As for (b), queries upon datasets including named graphs are even more problematic.
Query (1) uses GB in order to find the IRI identifiers for persons that Bob knows by
following rdfs:seeAlso links and looks for persons and their names in the named
RDF graphs found at these links. Even if rule-based inference was supported, the an-
swer to query (1) over dataset DS1 is just {?N/"Alice"}, as “Alice” is the only
(explicitly) asserted foaf:Person in GA. Subproperty, domain and range inferences
over the GM ontology do not propagate to GA, since GM is normatively prescribed
to be merged into the default graph, but not into the named graph. Thus, there is no
way to infer that "Bob" and "Charles" are actually names of foaf:Persons within
the named graph GA. Indeed, SPARQL does not allow to merge, on demand, graphs
into the named graphs, thus there is no way of combining GM with the named graph
GA.

To remedy these deficiencies, we suggest an extension of the SPARQL syntax, in
order to allow the specification of datasets more flexibly: it is possible to group graphs
to be merged in parentheses in from and from named clauses. The modified query,
obtaining a dataset DS2 = (GM $ GB , {(http://alice.org, GM $ GA)}) looks as
follows:

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 315

select ?N
from (<http://example.org/myOnt.rdfs> <http://bob.org/>)
from named <http://alice.org>

(<http://example.org/myOnt.rdfs> <http://alice.org/>)
where { bob:me foaf:knows ?X . ?X rdfs:seeAlso ?G .

graph ?G { ?X foaf:name ?N . ?X a foaf:Person . } }

(2)

For ontologies which should apply to the whole query, i.e., graphs to be merged into
the default graph as well as any specified named graph, we suggest a more convenient
shortcut notation by adding the keyword using ontology in the SPARQL syntax:

select ?N
using ontology <http://example.org/myOnt.rdfs>
from <http://bob.org/>
from named <http://alice.org/>

where { bob:me foaf:knows ?X . ?X foaf:seeAlso ?G .
graph ?G { ?X foaf:name ?N . ?X a foaf:Person. } }

(3)

Hence, the using ontology construct allows for coupling the entire given dataset
with the terminological knowledge in the myOnt data schema. As our investigation
of currently available RDF stores (see Section 5) shows, none of these systems easily
allow to merge ontologies into named graphs or to dynamically specify the dataset of
choice.

In addition to parameterizing queries with ontologies in the dataset clauses, we also
allow to parameterize the ruleset which models the entailment regime at hand. Per de-
fault, our framework supports a standard ruleset that “emulates” (a finite subset of) the
RDFS semantics. This standard ruleset is outlined in Section 3 below. Alternatively, dif-
ferent rule-based entailment regimes, e.g., rulesets covering parts of the OWL semantics
á la ter Horst [5], de Bruijn [22, Section 9.3], OWL2 RL [17] or other custom rulesets
can be referenced with the using ruleset keyword. For instance, the following query
returns the solution {?X/<http://alice.org#me>, ?Y/<http://bob.org#me>},
by doing equality reasoning over inverse functional properties such as foaf:homepage
when the FOAF ontology is being considered:

select ?X ?Y
using ontology <http://example.org/myOnt.rdfs>
using ruleset rdfs
using ruleset <http://www.example.com/owl-horst>
from <http://bob.org/>
from <http://alice.org/>
where { ?X foaf:knows ?Y }

(4)

Query (4) uses the built-in RDFS rules for the usual subproperty inference, plus a ruleset
implementing ter Horst’s inference rules, which might be available at URL http://

www.example.com/owl-horst. This ruleset contains the following additional rules,
that will “equate” the blank node used inGA for “Bob” with <http://bob.org#me>:6

?P rdf:type owl:iFP . ?S1 ?P ?O . ?S2 ?P ?O . → ?S1 owl:sameAs ?S2.
?X owl:sameAs ?Y → ?Y owl:sameAs ?X.
?X ?P ?O . ?X owl:sameAs ?Y → ?Y ?P ?O.
?S ?X ?O . ?X owl:sameAs ?Y → ?S ?Y ?O.
?S ?P ?X . ?X owl:sameAs ?Y → ?S ?P ?Y.

(5)

6 We use owl:iFP as shortcut for owl:inverseFunctionalProperty.

http://www.example.com/owl-horst
http://www.example.com/owl-horst

316 G. Ianni et al.

3 A Framework for Using Ontologies and Rules in SPARQL

In the following, we will provide a formal framework for the SPARQL extensions out-
lined above. In a sense, the notion of dynamic querying is formalized in terms of the
dependence of BGP pattern answers [[P]]O,R from a variable ontologyO and rulesetR.
For our exposition, we rely on well-known definitions of RDF datasets and SPARQL.
Due to space limitations, we restrict ourselves to the bare minimum and just highlight
some standard notation used in this paper.

Preliminaries. Let I , B, and L denote pairwise disjoint infinite sets of IRIs, blank
nodes, and RDF literals, respectively. A term is an element from I ∪ B ∪ L. An RDF
graph G (or simply graph) is defined as a set of triples from I ∪B× I ∪B× I ∪B ∪L
(cf. [18,12]); by blank(G) we denote the set of blank nodes of G.7

A blank node renaming θ is a mapping I ∪ B ∪ L → I ∪ B ∪ L. We denote by tθ
the application of θ to a term t. If t ∈ I ∪ L then tθ = t, and if t ∈ B then tθ ∈ B. If
(s, p, o) is a triple then (s, p, o)θ is the triple (sθ, pθ, oθ). Given a graph G, we denote
by Gθ the set of all triples {tθ | t ∈ G}. Let G and H be graphs. Let θG

H be an arbitrary
blank node renaming such that blank(G) ∩ blank(HθG

H) = ∅. The merge of G by H ,
denoted G $H , is defined as G ∪HθG

H .
An RDF dataset D = (G0, N) is a pair consisting of exactly one unnamed graph,

the so-called default graph G0, and a set N = {〈u1, G1〉, . . . , 〈un, Gn〉} of named
graphs, coupled with their identifying URIs. The following conditions hold: (i) each Gi

(0 ≤ i ≤ n) is a graph, (ii) each uj (1 ≤ j ≤ n) is from I , and (iii) for all i 	= j,
〈ui, Gi〉, 〈uj , Gj〉 ∈ N implies ui 	= uj and blank(Gi) ∩ blank(Gj) = ∅.

The syntax and semantics of SPARQL can now be defined as usual, cf. [10,18,12]
for details. For the sake of this paper, we restrict ourselves to select queries as shown
in the example queries (1)–(4) and just provide an overview of the necessary concepts.
A query in SPARQL can be viewed as a tuple Q = (V,D, P), where V is the set of
variables mentioned in the select clause, D is an RDF dataset, defined by means of
from and from named clauses, and P is a graph pattern, defined in the where clause.

Graph patterns are in the simplest case sets of RDF triples (s, p, o), where terms
and variables from an infinite set of variables Var are allowed, also called basic graph
patterns (BGP). More complex graph patterns can be defined recursively, i.e., if P1 and
P2 are graph patterns, g ∈ I ∪Var and R is a filter expression, then P1 optional P2,
P1 union P2, P1 filter R, and graph g P1 are graph patterns.

Graph Pattern Matching. Queries are evaluated by matching graph patterns against
graphs in the dataset. In order to determine a query’s solution, in the simplest case BGPs
are matched against the active graph of the query, which is one particular graph in the
dataset, identified as shown next.

Solutions of BGP matching consist of multisets of bindings for the variables men-
tioned in the pattern to terms in the active graph. Partial solutions of each subpattern
are joined according to an algebra defining the optional, union and filter opera-
tors, cf. [10,18,12]. For what we are concerned with here, the most interesting operator
though is the graph operator, since it changes the active graph. That is, the active graph

7 Note that we allow generalized RDF graphs that may have blank nodes in property position.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 317

is the default graph G0 for any basic graph pattern not occurring within a graph sub
pattern. However, in a subpattern graph g P1, the pattern P1 is matched against the
named graph identified by g, if g ∈ I , and against any named graph ui, if g ∈ Var ,
where the binding ui is returned for variable g. According to [12], for a RDF dataset D
and active graph G, we define [[P]]DG as the multiset of tuples constituting the answer to
the graph pattern P . The solutions of a query Q = (V,D, P) is the projection of [[P]]DG
to the variables in V only.

3.1 SPARQL with Extended Datasets

What is important to note now is that, by the way how datasets are syntactically defined
in SPARQL, the default graph G0 can be obtained from merging a group of differ-
ent source graphs, specified via several from clauses – as shown, e.g., in query (1) –
whereas in each from named clause a single, separated, named graph is added to the
dataset. That is, graph patterns will always be matched against a separate graph only.
To generalize this towards dynamic construction of groups of merged named graphs,
we introduce the notion of an extended dataset, which can be specified by enlarging the
syntax of SPARQL with two additional dataset clauses:

– For i, i1, . . . , im distinct IRIs (m ≥ 1), the statement “from named i(i1 . . . im)”
is called extended dataset clause. Intuitively, i1 . . . im constitute a group of graphs
to be merged: the merged graph is given i as identifying IRI.

– For o ∈ I we call the statement “using ontology o” an ontological dataset
clause. Intuitively, o stands for a graph that will merged with all graphs in a given
query.

Extended RDF datasets are thus defined as follows. A graph collection G is a set of RDF
graphs. An extended RDF dataset D is a pair (G0, {〈u1,G1〉, . . . , 〈un,Gn〉}) satisfying
the following conditions: (i) each Gi is a nonempty graph collection (note that {∅}
is a valid nonempty graph collection), (ii) each uj is from I , and (iii) for all i 	= j,
〈ui,Gi〉, 〈uj ,Gj〉 ∈ D implies ui 	= uj and for G ∈ Gi and H ∈ Gj , blank(G) ∩
blank(H) = ∅. We denote G0 as dg(D), the default graph collection of D.

Let D and O be an extended dataset and a graph collection, resp. The ordinary RDF
dataset obtained from D and O, denoted D(D,O), is defined as(⊎

g∈dg(D)

g $
⊎
o∈O

o,
{
〈u,

⊎
g∈G

g $
⊎

o∈O
o〉 | 〈u,G〉 ∈ D

})
.

We can now define the semantics of extended and ontological dataset clauses as follows.
Let F be a set of ordinary and extended dataset clauses, and O be a set of ontological
dataset clauses. Let graph(g) be the graph associated to the IRI g: the extended RDF
dataset obtained from F , denoted edataset(F), is composed of:

(1) G0 = {graph(g) | “from g” ∈ F}. If there is no from clause, then G0 = ∅.
(2) A named graph collection 〈u, {graph(u)}〉 for each “from named u” in F .
(3) A named graph collection 〈i, {graph(i1), . . . , graph(im)}〉for each “from named

i(i1 . . . im)” in F .

318 G. Ianni et al.

The graph collection obtained from O, denoted ocollection(O), is the set {graph(o) |
“using ontology o”∈ O}. The ordinary dataset ofO andF , denoted dataset(F,O),
is the set D(edataset(F), ocollection(O)).

Let D andO be as above. The evaluation of a graph pattern P overD andO having
active graph collection G, denoted [[P]]D,O

G , is the evaluation of P over D(D,O) having

active graph G =
⊎

g∈G g, that is, [[P]]D,O
G = [[P]]D(D,O)

G .
Note that the semantics of extended datasets is defined in terms of ordinary RDF

datasets. This allows to define the semantics of SPARQL with extended and ontological
dataset clauses by means of the standard SPARQL semantics. Also note that our exten-
sion is conservative, i.e., the semantics coincides with the standard SPARQL semantics
whenever no ontological clauses and extended dataset clauses are specified.

3.2 SPARQL with Arbitrary Rulesets

Extended dataset clauses give the possibility of merging arbitrary ontologies into any
graph in the dataset. The second extension herein presented enables the possibility of
dynamically deploying and specifying rule-based entailments regimes on a per query
basis. To this end, we define a genericR-entailment, that is RDF entailment associated
to a parametric rulesetR which is taken into account when evaluating queries. For each
such R-entailment regime we straightforwardly extend BGP matching, in accordance
with the conditions for such extensions as defined in [10, Section 12.6].

We define an RDF inference rule r as the pair (Ante, Con), where the antecedent
Ante and the consequent Con are basic graph patterns such that V(Con) and V(Ante)
are non-empty, V(Con) ⊆ V(Ante) and Con does not contain blank nodes.8 As in
Example (5) above, we typically write RDF inference rules as

Ante→ Con . (6)

We call sets of inference rules RDF inference rulesets, or rulesets for short.

Rule Application and Closure. We define RDF rule application in terms of the imme-
diate consequences of a rule r or a rulesetR on a graph G. Given a BGP P , we denote
as μ(P) a pattern obtained by substituting variables in P with elements of I ∪ B ∪ L.
Let r be a rule of the form (6) and G be a set of RDF triples, then:

Tr(G) = {μ(Con) | ∃μ such that μ(Ante) ⊆ G}.
Accordingly, let TR(G) =

⋃
r∈R Tr(G). Also, let G0 = G and Gi+1 = Gi ∪ TR(Gi)

for i ≥ 0. It can be easily shown that there exists the smallest n such that Gn+1 = Gn;
we call then ClR(G) = Gn the closure of G with respect to rulesetR.

We can now further define R-entailment between two graphs G1 and G2, written
G1 |=R G2, as ClR(G1) |= G2. Obviously for any finite graph G, ClR(G) is finite.
In order to define the semantics of a SPARQL query wrt.R-entailment we now extend
graph pattern matching in [[P]]DG towards respectingR.

8 Unlike some other rule languages for RDF, the most prominent of which being CONSTRUCT
statements in SPARQL itself, we forbid blank nodes; i.e., existential variables in rule conse-
quents which require the “invention” of new blank nodes, typically causing termination issues.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 319

Definition 1 (Extended Basic Graph Pattern Matching for R-Entailment). Let D
be a dataset and G be an active graph. The solution of a BGP P wrt. R-entailment,
denoted [[P]]D,R

G , is [[P]]DClR(G).

The solution [[P]]D,R
G naturally extends to more complex patterns according to the

SPARQL algebra. In the following we will assume that [[P]]D,R
G is used for graph pat-

tern matching. Our extension of basic graph pattern matching is in accordance with the
conditions for extending BGP matching in [10, Section 12.6]. Basically, these condi-
tions say that any extension needs to guarantee finiteness of the answers, and defines
some conditions about a “scoping graph.” Intuitively, for our extension, the scoping
graph is just equivalent to ClR(G). We refer to [10, Section 12.6] for the details.

To account for this generic SPARQL BGP matching extension parameterized by an
RDF inference rulesetRQ per SPARQL query Q, we introduce another novel language
construct for SPARQL:

– For r ∈ I we call “using ruleset r” a ruleset clause.

Analogously to IRIs denoting graphs, we now assume that an IRI r ∈ I may not only
refer to graphs but also to rulesets, and denote the corresponding ruleset by ruleset(r).
Each query Q may contain zero or more ruleset clauses, and we define the query ruleset
RQ =

⋃
r∈R ruleset(r), where R is the set of all ruleset clauses in Q.

The definitions of solutions of a query and the evaluation of a pattern in this query
on active graph G is now defined just as above, with the only difference that answer to
a pattern P are given by [[P]]D,RQ

G .
We observe that whenever R = ∅, then R-entailment boils down to simple RDF

entailment. Thus, a query without ruleset clauses will just be evaluated using standard
BGP matching. In general, our extension preserve full backward compatibility.

Proposition 1. ForR = ∅ and RDF graph G, [[P]]D,R
G = [[P]]DG .

Analogously, one might useR-entailment as the basis for RDFS entailment as follows.
We consider here the ρDF fragment of RDFS entailment [6]. Let RRDFS denote the
ruleset corresponding to the minimal set of entailment rules (2)–(4) from [6]:

?P rdfs:subPropertyOf ?Q . ?Q rdfs:subPropertyOf ?R . → ?P rdfs:subPropertyOf ?R.
?P rdfs:subPropertyOf ?Q . ?S ?P ?O . → ?S ?Q ?O.
?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E . → ?C rdfs:subClassOf ?E.
?C rdfs:subClassOf ?D . ?S rdf:type ?C . → ?S rdf:type ?D.
?P rdfs:domain ?C . ?S ?P ?O . → ?S rdf:type ?C.
?P rdfs:range ?C . ?S ?P ?O . → ?O rdf:type ?C.

Since obviously G |=RDFS ClRRDFS (G) and hence ClRRDFS (G) may be viewed as
a finite approximation of RDFS-entailment, we can obtain a reasonable definition for
defining a BGP matching extension for RDFS by simply defining [[P]]D,RDFS

G =
[[P]]D,RRDFS

G . We allow the special ruleset clause using ruleset rdfs to conve-
niently refer to this particular ruleset. Other rulesets may be published under a Web
dereferenceable URI, e.g., using an appropriate RIF [23] syntax.

Note, eventually, that our rulesets consist of positive rules, and as such enjoy a natural
monotonicity property.

320 G. Ianni et al.

Proposition 2. For rulesets R and R′, such that R ⊆ R′, and graph G1 and G2, if
G1 |=R G2 then G1 |=R′ G2.

Entailment regimes modeled using rulesets can thus be enlarged without retracting for-
mer inferences. This for instance would allow to introduce tighter RDFS-entailment ap-
proximations by extendingRRDFS with further axioms, yet preserving inferred triples.

4 Translating SPARQL into Datalog and SQL

Our extensions have been implemented by reducing both queries, datasets and rulesets
to a common ground which allows arbitrary interoperability between the three realms.
This common ground is Datalog, wherein rulesets naturally fit and SPARQL queries can
be reduced to. Subsequently, the resulting combined Datalog programs can be evaluated
over an efficient SQL interface to an underlying relational DBMS that works as triple
store.

From SPARQL to Datalog. A SPARQL query Q is transformed into a correspond-
ing Datalog program DQ. The principle is to break Q down to a series of Datalog
rules, whose body is a conjunction of atoms encoding a graph pattern. DQ is mostly
a plain Datalog program in dlvhex [24] input format, i.e. Datalog with external pred-
icates in the dlvhex language. These are explained along with a full account of the
translation in [11,19]. Main challenges in the transformation from SPARQL to Datalog
are (i) faithful treatment of the semantics of joins over possibly unbound variables [11],
(ii) the multiset semantics of SPARQL [19], and also (iii) the necessity of Skolemization
of blank nodes in construct queries [8]. Treatment of optional statements is car-
ried out by means of an appropriate encoding which exploits negation as failure. Special
external predicates of dlvhex are used for supporting some features of the SPARQL lan-
guage: in particular, importing RDF data is achieved using the external &rdf predicate,
which can be seen as a built-in referring to external data. Moreover, SPARQL filter

expressions are implemented using the dlvhex external &eval predicate in DQ.
Let us illustrate this transformation step by an example: the following queryA asking

for persons who are not named “Alice” and optionally their email addresses

select * from <http://alice.org/>
where { ?X a foaf:Person. ?X foaf:name ?N.

filter (?N != "Alice") optional { ?X foaf:mbox ?M } }
(7)

is translated to the program DA as follows:

(r1) "triple"(S,P,0,default) :- &rdf["alice.org"](S,P,0).
(r2) answer1(X_N,X_X,default) :- "triple"(X_X,"rdf:type","foaf:Person",default),

"triple"(X_X,"foaf:name",X_N,default),
&eval[" ?N != ’Alice’ ","N", X_N](true).

(r3) answer2(X_M,X_X,default) :- "triple"(X_X,"foaf:mbox",X_M,default).
(r4) answer_b_join_1(X_M,X_N,X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r5) answer_b_join_1(null,X_N,X_X,default) :- answer1(X_N,X_X,default),

not answer2_prime(X_X,default).
(r6) answer2_prime(X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r7) answer(X_M,X_N,X_X) :- answer_b_join1(X_M,X_N,X_X,default).

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 321

where the first rule (r1) computes the predicate "triple" taking values from the
built-in predicate &rdf. This latter is generally used to import RDF statements from the
specified URI. The following rules (r2) and (r3) compute the solutions for the filtered
basic graph patterns {?X a foaf:Person. ?X foaf:name ?N. filter (?N !=

"Alice")} and {?X foaf:mbox ?M }. In particular, note here that the evaluation of
filter expressions is “outsourced” to the built-in predicate &eval, which takes a filter
expression and an encoding of variable bindings as arguments, and returns the evalua-
tion value (true, false or error, following the SPARQL semantics). In order to em-
ulate SPARQL’s optional patterns a combination of join and set difference operation
is used, which is established by rules (r4)–(r6). Set difference is simulated by using
both null values and negation as failure. According to the semantics of SPARQL, one
has to particularly take care of variables which are joined and possibly unbound (i.e.,
set to the null value) in the course of this translation for the general case. Finally, the
dedicated predicate answer in rule (r7) collects the answer substitutions for Q. DQ

might then be merged with additional rulesets whenever Q contains using ruleset

clauses.

From Datalog to SQL. For this step we rely on the system DLVDB [25] that imple-
ments Datalog under stable model semantics on top of a DBMS of choice. DLVDB is
able to translate Datalog programs in a corresponding SQL query plan to be issued to
the underlying DBMS. RDF Datasets are simply stored in a database D, but the native
dlvhex &rdf and &eval predicates in DQ cannot be processed by DLVDBdirectly over
D. So, DQ needs to be post-processed before it can be converted into suitable SQL
statements.

Rule (r1) corresponds to loading persistent data into D, instead of loading triples
via the &rdf built-in predicate. In practice, the predicate "triple" occurring in pro-
gram DA is directly associated to a database table TRIPLE in D. This operation is
done off-line by a loader module which populates the TRIPLE table accordingly, while
(r1) is removed from the program. The &eval predicate calls are recursively broken
down into WHERE conditions in SQL statements, as sketched below when we discuss
the implementation of filter statements.

After post-processing, we obtain a programD′
Q, which DLVDBallows to be executed

on a DBMS by translating it to corresponding SQL statements. D′
Q is coupled with a

mapping file which defines the correspondences between predicate names appearing in
D′

Q and corresponding table and view names stored in the DBMS D.
For instance, the rule (r4) of DA, results in the following SQL statement issued to

the RDBMS by DLVDB :

INSERT INTO answer_b_join_1
SELECT DISTINCT answer2_p2.a1, answer1_p1.a1, answer1_p1.a2, ’default’
FROM answer1 answer1_p1, answer2 answer2_p2
WHERE (answer1_p1.a2=answer2_p2.a2)
AND (answer1_p1.a3=’default’)
AND (answer2_p2.a3=’default’)
EXCEPT (SELECT * FROM answer_b_join_1)

322 G. Ianni et al.

Whenever possible, the predicates for computing intermediate results such as answer1,
answer2, answer b join 1, . . . , are mapped to SQL views rather than materialized
tables, enabling dynamic evaluation of predicate contents on the DBMS side.9

Schema Rewriting. Our system allows for customizing schemes which triples are
stored in. It is known and debated [26] that in choosing the data scheme of D several
aspects have to be considered, which affect performance and scalability when handling
large-scale RDF data. A widely adopted solution is to exploit a single table storing
quadruples of form (s, p, o, c) where s, p, o and c are, respectively, the triple subject,
predicate, object and context the triple belongs to. This straightforward representation
is easily improved [27] by avoiding to store explicitly string values referring to URIs
and literals. Instead, such values are replaced with a corresponding hash value.

Other approaches suggest alternative data structures, e.g., property tables [27,26].
These aim at denormalizing RDF graphs by storing them in a flattened representation,
trying to encode triples according to the hidden “schema” of RDF data. Similarly to
a traditional relational schema, in this approach D contains a table per each known
property name (and often also per class, splitting up the rdf:type table).

Our system gives sufficient flexibility in order to program different storage schemes:
while on higher levels of abstraction data are accessible via the 4-ary triple predicate,
a schema rewriter module is introduced in order to match D′

Q to the current database
scheme. This module currently adapts D′

Q by replacing constant IRIs and literals with
their corresponding hash value, and introducing further rules which translate answers,
converting hash values back to their original string representation.

Magic Sets. Notably, DLVDB can post-process D′
Q using the magic sets technique,

an optimization method well-known in the database field [28]. The optimized program
mD′

Q tailors the data to be queried to an extent significantly smaller than the original
D′

Q. The application of magic sets allows, e.g., to apply entailment rules RRDFS only
on triples which might affect the answer to Q, preventing thus the full computation
and/or materialization of inferred data.

Implementation of filter Statements. Evaluation of SPARQL filter statements
is pushed down to the underlying database D by translating filter expressions to appro-
priate SQL views. This allows to dynamically evaluate filter expressions on the DBMS
side. For instance, given a rule r ∈ DQ of the form

h(X,Y) :- b(X,Y), &eval[f_Y](bool).

where the &eval atom encodes the filter statement (f Y representing the filter ex-
pression), then r is translated to

h(X,Y) :- b’(X,Y).

where b’ is a fresh predicate associated via the mapping file to a database view. Such a
view defines the SQL code to be used for the computation of f Y , like

CREATE VIEW B’ AS (SELECT X,Y FROM B WHERE F_Y)

9 For instance, recursive predicates require to be associated with permanent tables, while re-
maining predicates are normally associated to views.

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 323

where F Y is an appropriate translation of the SPARQL filter expression f Y at
hand to an SQL Boolean condition,10 while B is the DBMS counterpart table of the
predicate b.

5 Experiments

In order to illustrate that our approach is practically feasible, we present a quantitative
performance comparison between our prototype system, GiaBATA, which implements
the approach outlined before, and some state-of-the-art triple stores. The test were done
on an Intel P4 3GHz machine with 1.5GB RAM under Linux 2.6.24. Let us briefly
outline the main features and versions of the triple stores we used in our comparison.

AllegroGraph works as a database and application framework for building Semantic
Web applications. The system assures persistent storage and RDFS++ reasoning, a se-
mantic extension including the RDF and RDFS constructs and some OWL constructs
(owl:sameAs, owl:inverseOf, owl:TransitiveProperty, owl:hasValue). We
tested the free Java edition of AllegroGraph 3.2 with its native persistence mechanism.11

ARQ is a query engine implementing SPARQL under the Jena framework.12 It can
be deployed on several persistent storage layers, like filesystem or RDBMS, and it in-
cludes a rule-based inference engine. Being based on the Jena library, it provides in-
ferencing models and enables (incomplete) OWL reasoning. Also, the system comes
with support for custom rules. We used ARQ 2.6 with RDBMS backend connected to
PostgreSQL 8.3.

GiaBATA [15] is our prototype system implementing the SPARQL extensions de-
scribed above. GiaBATA is based on a combination of the DLVDB [25] and dlvhex [24]
systems, and caters for persistent storage of both data and ontology graphs. The former
system is a variant of DLV [13] with built-in database support. The latter is a solver
for HEX-programs [24], which features an extensible plugin system which we used
for developing a rewriter-plugin able to translate SPARQL queries to HEX-programs.
The tests were done using development versions of the above systems connected to
PostgreSQL 8.3.

Sesame is an open source RDF database with support for querying and reasoning.13 In
addition to its in-memory database engine it can be coupled with relational databases or
deployed on top of file systems. Sesame supports RDFS inference and other entailment
regimes such as OWL-Horst [5] by coupling with external reasoners. Sesame provides
an infrastructure for defining custom inference rules. Our tests have been done using
Sesame 2.3 with persistence support given by the native store.

First of all, it is worth noting that all systems allow persistent storage on RDBMS.
All systems, with the exception of ours, implement also direct filesystem storage. All

10 A version of this translation can be found in [29].
11 System available at http://agraph.franz.com/allegrograph/
12 Distributed at https://jena.svn.sourceforge.net/svnroot/jena/ARQ/
13 System available at http://www.openrdf.org/

http://agraph.franz.com/allegrograph/
https://jena.svn.sourceforge.net/svnroot/jena/ARQ/
http://www.openrdf.org/

324 G. Ianni et al.

cover RDFS (actually, disregarding axiomatic triples) and partial or non-standard OWL
fragments. Although all the systems feature some form of persistence, both reasoning
and query evaluation are usually performed in main memory. All the systems, except
AllegroGraph and ours, adopt a persistent materialization approach for inferring data.

All systems – along with basic inference – support named graph querying, but, with
the exception of GiaBATA, combining both features results in incomplete behavior as
described in Section 2. Inference is properly handled as long as the query ranges over
the whole dataset, whereas it fails in case of querying explicit default or named graphs.
That makes querying of named graphs involving inference impossible with standard
systems.

For performance comparison we rely on the LUBM benchmark suite [16]. Our tests
involve the test datasets LUBMn for n ∈ {1, 5, 10, 30}with LUBM30 having roughly
four million triples (exact numbers are reported in [16]). In order to test the additional
performance cost of our extensions, we opted for showing how the performance figures
change when queries which require RDFS entailment rules (LUBM Q4-Q7) are consid-
ered, w.r.t. queries in which rules do not have an impact (LUBM Q1-Q3, see Appendix
of [16] for the SPARQL encodings of Q1–Q7). Experiments are enough for compar-
ing performance trends, so we didn’t consider at this stage larger instances of LUBM.
Note that evaluation times include the data loading times. Indeed, while former perfor-
mance benchmarks do not take this aspect in account, from the semantic point of view,
pre-materialization-at-loading computes inferences needed for complete query answer-
ing under the entailment of choice. On further reflection, dynamic querying of RDFS
moves inference from this materialization to the query step, which would result in an
apparent advantage for systems that rely on pre-materialization for RDFS data. Also,
the setting of this paper assumes materialization cannot be performed una tantum, since
inferred information depends on the entailment regime of choice, and on the dataset at
hand, on a per query basis. We set a 120min query timeout limit to all test runs.

Our test runs include the following system setup: (i) “Allegro (native)” and “Alle-
gro (ordered)” (ii) “ARQ”; (iii) “GiaBATA (native)” and “GiaBATA (ordered)”; and
(iv) “Sesame”. For (i) and (iii), which apply dynamic inference mechanisms, we use
“(native)” and “(ordered)” to distinguish between executions of queries in LUBM’s na-
tive ordering and in a optimized reordered version, respectively. The GiaBATA test runs
both use Magic Sets optimization. To appreciate the cost of RDFS reasoning for queries
Q4–Q7, the test runs for (i)–(iv) also include the loading time of the datasets, i.e., the
time needed in order to perform RDFS data materialization or to simply store the raw
RDF data.

The detailed outcome of the test results are summarized in Fig. 2. For the RDF test
queries Q1–Q3, GiaBATA is able to compete for Q1 and Q3. The systems ARQ and
Sesame turned out to be competitive for Q2 by having the best query response times,
while Allegro (native) scored worst. For queries involving inference (Q4–Q7) Alle-
gro shows better results. Interestingly, systems applying dynamic inference, namely
Allegro and GiaBATA, query pattern reordering plays a crucial role in preserving per-
formance and in assuring scalability; without reordering the queries simply timeout. In
particular, Allegro is well-suited for queries ranging over several properties of a single
class, whereas if the number of classes and properties increases (Q7), GiaBATA exhibits

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 325

 0.1

 1

 10

 100

LUBM1 LUBM5 LUBM10 LUBM30

ev
al

ua
tio

n
tim

e
/ s

ec
s

(lo
gs

ca
le

)

Q1

tim
eo

ut

Allegro 3.2 (native)
ARQ 2.6

GiaBATA (native)
Sesame 2.3

 0.1

 1

 10

 100

 1000

 10000

LUBM1 LUBM5 LUBM10 LUBM30

Q2

tim
eo

ut

tim
eo

ut

Allegro 3.2 (native)
ARQ 2.6

GiaBATA (native)
Sesame 2.3

 0.1

 1

 10

 100

LUBM1 LUBM5 LUBM10 LUBM30

Q3

tim
eo

ut

Allegro 3.2 (native)
ARQ 2.6

GiaBATA (native)
Sesame 2.3

 10

 100

 1000

 10000

LUBM1 LUBM5 LUBM10 LUBM30

ev
al

ua
tio

n
tim

e
/ s

ec
s

(lo
gs

ca
le

)

Q4

tim
eo

ut

tim
eo

ut

Allegro 3.2 (ordered)
Allegro 3.2 (native)

ARQ 2.6
GiaBATA (ordered)

GiaBATA (native)
Sesame 2.3

 10

 100

 1000

 10000

LUBM1 LUBM5 LUBM10 LUBM30

Q5

tim
eo

ut

tim
eo

ut

Allegro 3.2 (ordered)
Allegro 3.2 (native)

ARQ 2.6
GiaBATA (ordered)

GiaBATA (native)
Sesame 2.3

 10

 100

 1000

 10000

LUBM1 LUBM5 LUBM10 LUBM30

ev
al

ua
tio

n
tim

e
/ s

ec
s

(lo
gs

ca
le

)

Q6

tim
eo

ut

tim
eo

ut

Allegro 3.2 (ordered)
Allegro 3.2 (native)

ARQ 2.6
GiaBATA (ordered)

GiaBATA (native)
Sesame 2.3

 10

 100

 1000

 10000

LUBM1 LUBM5 LUBM10 LUBM30

Q7
tim

eo
ut

tim
eo

ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

Allegro 3.2 (ordered)
Allegro 3.2 (native)

ARQ 2.6
GiaBATA (ordered)

GiaBATA (native)
Sesame 2.3

Fig. 2. Evaluation

better scalability. Finally, a further distinction between systems relying on DBMS sup-
port and systems using native structures is disregarded, and since figures (in logarithmic
scale) depict overall loading and querying time, this penalizes in specific cases those
systems that use a DBMS.

6 Future Work and Conclusion

We presented a framework for dynamic querying of RDFS data, which extends SPARQL
by two language constructs: using ontology and using ruleset. The former is
geared towards dynamically creating the dataset, whereas the latter adapts the entail-
ment regime of the query. We have shown that our extension conservatively extends the

326 G. Ianni et al.

standard SPARQL language and that by selecting appropriate rules in using ruleset,
we may choose varying rule-based entailment regimes at query-time. We illustrated
how such extended SPARQL queries can be translated to Datalog and SQL, thus pro-
viding entry points for implementation and well-known optimization techniques. Our
initial experiments have shown that although dynamic querying does more computa-
tion at query-time, it is still competitive for use cases that need on-the-fly construction
of datasets and entailment regimes. Especially here, query optimization techniques play
a crucial role, and our results suggest to focus further research in this direction. Further-
more, we aim at conducting a proper computational analysis as it has been done for Hy-
pothetical datalog [30], in which truth of atoms is conditioned by hypothetical additions
to the dataset at hand. Likewise, our framework allows to add ontological knowledge
and rules to datasets before querying: note however that, in the spirit of [31], our frame-
work allows for hypotheses (also called “premises”) on a per query basis rather than a
per atom basis.

References

1. Klyne, G., Carroll, J.J. (eds.): Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. W3C Rec. (February 2004)

2. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91 (2007),
http://xmlns.com/foaf/spec/

3. Bojãrs, U., Breslin, J.G., Berrueta, D., Brickley, D., Decker, S., Fernández, S., Görn, C.,
Harth, A., Heath, T., Idehen, K., Kjernsmo, K., Miles, A., Passant, A., Polleres, A., Polo, L.,
Sintek, M.: SIOC Core Ontology Specification. W3C member submission (June 2007)

4. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: WWW
2007. ACM, New York (2007)

5. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. J. Web Semant. 3(2–3), 79–115
(2005)

6. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg
(2007)

7. Hogan, A., Harth, A., Polleres, A.: Scalable authoritative owl reasoning for the web. Int. J.
Semant. Web Inf. Syst. 5(2) (2009)

8. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for mapping between RDF vocabu-
laries. In: ODBASE 2007, pp. 878–896. Springer, Heidelberg (2007)

9. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository For Querying
Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 211–224.
Springer, Heidelberg (2007)

10. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Rec.
(January 2008)

11. Polleres, A.: From SPARQL to rules (and back). In: WWW 2007, pp. 787–796. ACM,
New York (2007)

12. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 114–129. Springer, Heidelberg (2008)

http://xmlns.com/foaf/spec/

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes 327

13. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3),
499–562 (2006)

14. Euzenat, J., Polleres, A., Scharffe, F.: Processing ontology alignments with SPARQL. In:
OnAV 2008 Workshop, CISIS 2008, pp. 913–917. IEEE Computer Society, Los Alamitos
(2008)

15. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A Rule Systemfor Querying Persistent
RDFS Data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554,
pp. 857–862. Springer, Heidelberg (2009)

16. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. J.
Web Semant. 3(2–3), 158–182 (2005)

17. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontol-
ogy Language Profiles W3C Cand. Rec. (June 2009)

18. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

19. Polleres, A., Schindlauer, R.: dlvhex-sparql: A SPARQL-compliant query engine based on
dlvhex. In: ALPSWS 2007. CEUR-WS, pp. 3–12 (2007)

20. Hayes, P.: RDF semantics. W3C Rec. (February 2004)
21. Ianni, G., Martello, A., Panetta, C., Terracina, G.: Efficiently querying RDF(S) ontologies

with answer set programming. J. Logic Comput. 19(4), 671–695 (2009)
22. de Bruijn, J.: SemanticWeb Language Layering with Ontologies, Rules, and Meta-Modeling.

PhD thesis, University of Innsbruck (2008)
23. Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft (July 2009)
24. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules

with external evaluations for semantic-web reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

25. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. Theory Pract. Log. Program. 8(2), 129–165 (2008)

26. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database Representa-
tions of RDF/S Stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005)

27. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Man-
agement Using Vertical Partitioning. In: VLDB, pp. 411–422. ACM, New York (2007)

28. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10(3-4), 255–299
(1991)

29. Lu, J., Cao, F., Ma, L., Yu, Y., Pan, Y.: An Effective SPARQL Support over Relational
Databases. In: SWDB-ODBIS, pp. 57–76 (2007)

30. Bonner, A.J.: Hypothetical datalog: complexity and expressibility. Theor. Comp. Sci. 76(1),
3–51 (1990)

31. Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of semantic web databases. In:
PODS 2004, pp. 95–106. ACM, New York (2004)

Decidable Order-Sorted Logic Programming for
Ontologies and Rules with Argument

Restructuring

Ken Kaneiwa1 and Philip H.P. Nguyen2

1 National Institute of Information and Communications Technology, Japan
kaneiwa@nict.go.jp

2 Department of Justice, Government of South Australia
philip.nguyen@sa.gov.au

Abstract. This paper presents a decidable fragment for combining
ontologies and rules in order-sorted logic programming. We describe
order-sorted logic programming with sort, predicate, and meta-predicate
hierarchies for deriving predicate and meta-predicate assertions. Meta-
level predicates (predicates of predicates) are useful for representing
relationships between predicate formulas, and further, they conceptu-
ally yield a hierarchy similar to the hierarchies of sorts and predicates.
By extending the order-sorted Horn-clause calculus, we develop a query-
answering system that can answer queries such as atoms and meta-atoms
generalized by containing predicate variables. We show that the expres-
sive query-answering system computes every generalized query in single
exponential time, i.e., the complexity of our query system is equal to
that of DATALOG.

1 Introduction

In the Semantic Web context, conceptual knowledge representation and
reasoning [23] have been studied for modeling ontologies in OWL (Web Ontol-
ogy Language) [20]. In general, concepts are interpreted by sets of individuals,
and concept hierarchies are constructed by subsumption (similar to IS-A rela-
tions). The formal semantics and reasoning of concept description languages are
guaranteed by logical formalizations. Order-sorted logic [4,22,14] (as first-order
logic with partially ordered sorts) provides sorts and sort hierarchy that repre-
sent concepts and their concept hierarchy, respectively. A predicate hierarchy,
which is an extension of the sort hierarchy, consists of n-ary predicates that are
conceptually related to each other. In [13], order-sorted logic programming was
extended by introducing such a predicate hierarchy. Furthermore, the concep-
tual structure theory [19] was extended to include relation types and their type
hierarchy for building complex ontologies.

Meta-level predicates (predicates of predicates) are expressions that can be
employed for representing relationships between facts in knowledge bases. Similar
to hierarchies of sorts and predicates, these meta-predicates can be used to con-
ceptually construct a hierarchy, e.g., the meta-predicate causes implies the super

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 328–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Decidable Order-Sorted Logic Programming for Ontologies and Rules 329

meta-predicate likelyCauses. In the OWL family, meta-concepts are supported
by OWL-Full (the most expressive language of OWL). The semantics of mod-
eling for meta-concepts and the undecidability of meta-modeling in OWL-Full
have been discussed in [18]. Further, higher-order expressions may conceptually
yield a hierarchy when they are named using natural language words. However,
order-sorted (or typed) logic programming lacks representation and reasoning
for such meta-level predicates.

Alternatively, logic programming provides formal semantics and decidable
reasoning services for RuleML (Rule Makeup Language) [1] in the Semantic
Web. This language is a restricted fragment of first-order logic, and its complex-
ities [5] have been studied in the area of automated deduction. It is known that
full logic programming is undecidable, but function-free logic programming (i.e.,
DATALOG) is EXPTIME-complete with respect to the length of a program. In
addition, non-recursive logic programming is NEXPTIME-complete, even if it
includes functions.

However, SWRL (Semantic Web Rule Language) [11], a combination of OWL
and RuleML, leads to undecidable reasoning between ontologies and rules (as
shown in [10]). Several decidable fragments for combining ontologies and rules,
such as DL-safe [9,21], DLP (Description Logic Programs) [7], and the rule-based
language ELP [16] (related to the tractable language profile OWL 2 EL [2]),
have been proposed by restricting the expressive power of rules. Similar to the
approaches adopted in past studies, in order to make ontologies and rules in
logic programing expressive and at the same time retain decidability, the logic
programming language must be carefully extended for conceptual knowledge
representation and reasoning. HILOG [3], which involves the second-order ex-
pression of meta-level predicates, has been developed as a decidable higher-order
language for logic programming, and it may be more complex than the EXP-
TIME complexity of DATALOG. Unfortunately, in most cases, higher-order logic
programming [12] makes reasoning increasingly difficult because complex struc-
tures of higher-order terms need to be treated.

To overcome the aforementioned difficulties related to expressiveness and com-
plexity, we introduce meta-predicates and their hierarchy in a restricted and
decidable fragment for combining ontologies and rules. In particular, we formal-
ize an order-sorted logic programming language with a meta-predicate hierar-
chy. As a result, three kinds of hierarchies (sort hierarchy, predicate hierarchy,
and meta-predicate hierarchy) are included in the syntax and semantics of the
sorted logic programming. We develop the order-sorted Horn-clause calculus [8],
which serves as a sorted deductive system, for reasoning on concept hierarchies
where predicate assertions and relationships among the assertions are derived.
This calculus terminates if the knowledge bases are function free (i.e., only con-
stants such as 0-ary functions are allowed). Using this calculus, we develop a
query-answering system that is extended by generalizing queries with predicate
variables. Our result shows that the complexity of the expressive query system
(even for meta-predicates and predicate variables) is single exponential time and
equal to the complexity of DATALOG.

330 K. Kaneiwa and P.H.P. Nguyen

��

human

minor adult

child

area

river

mountain

coastalArea

volcano

illegalAct natural
Disaster

assaults robs

hits

eruption tsunami

earthquake

country

robsWith
Violence

Fig. 1. Sort and predicate hierarchies

�

likelyCauses

causes

likelyStops

stops

includes

spatially temporally

Includes Includes

isFollowedBy

exclusively
Happens

spatioTemporally
Includes

Fig. 2. A meta-predicate hierarchy

2 Motivating Examples

We now present some examples of hierarchies in a query-answering system. Given
the sort, predicate, and meta-predicate hierarchies in Figs. 1 and 2, we con-
sider logical reasoning using a knowledge base for the hierarchies. If the fact
hits(tom:minor,john:adult) is valid, then the super predicate illegalAct
can be derived in the predicate hierarchy (shown in Fig. 1).

hits(tom:minor,john:adult)
?-illegalAct(x:human)
yes
x=tom:minor

In this derivation, the second argument john:adult is deleted if the argument
structure of the predicate illegalAct lacks the second argument of the predicate
hits. Conceptually, both the name and argument structure of illegalAct are
more abstract than hits in the predicate hierarchy.

Moreover, we employ meta-predicates (predicates of predicates) to express re-
lationships among facts in the knowledge base. For example, the meta-predicate

Decidable Order-Sorted Logic Programming for Ontologies and Rules 331

isFollowedBy is used to indicate that a tsunami in Phuket c2 occurred after the
earthquake in Indonesia c1.

isFollowedBy(earthquake(c1:country),tsunami(c2:coastalArea))
?-likelyCauses(earthquake(c1:country),tsunami(c2:coastalArea))
yes

If the relationship between the two facts is valid, the super meta-predicate
likelyCauses can be inferred in the meta-predicate hierarchy (shown in Fig. 2).

Additionally, the fact earthquake(c1:country) is derived from this relation-
ship because it is the first argument of the meta-predicate isFollowedBy.

?-earthquake(c1:country)
yes

The assumption underlying the abovementioned derivation is that the meta-
predicate points to the occurrence of facts in addition to indicating the existence
of a relationship between them.

An expression with predicate variables X and Y is used to query the validity
of a causal relationship between two natural disasters as follows.

?-likelyCauses(X:naturalDisaster(x:area),
Y:naturalDisaster(y:area))

yes
X=earthquake, x=c1:country, Y=tsunami, y=c2:coastalArea

Using the meta-predicate hierarchy, the reasoning engine should return the an-
swer yes with a successful substitution of the variables, such as X=earthquake,
x=c1:country, Y=tsunami, and y=c2:coastalArea.

In the Semantic Web context, the argument manipulation shown above is very
useful when software agents derive semantically related terms and assertions
using ontologies. This is because the differences between argument structures in
predicates must facilitate such flexible reasoning for predicate assertions in the
sorted logic programming.

3 Order-Sorted Logic with Meta-predicates

We introduce meta-predicates as new conceptual symbols in a sorted language.
These meta-predicates represent n-ary relations among atomic predicate formu-
las and are used to construct a concept hierarchy.

Definition 1. The alphabet of a sorted first-order language L with sort, predi-
cate, and meta-predicate hierarchies contains the following symbols:

1. S: a countable set of sort symbols
2. Fn: a countable set of n-ary function symbols
3. Pn: a countable set of n-ary predicate symbols
4. Ψn : a countable set of n-ary meta-predicate symbols

332 K. Kaneiwa and P.H.P. Nguyen

5. ←, {, }: the connective and auxiliary symbols
6. Vs: an infinite set of variables x : s, y : s, z : s, . . . of sort s

The set of all predicates is denoted by P =
⋃

n≥1 Pn, and the set of variables of
all sorts is denoted by V =

⋃
s∈S Vs.

Definition 2 (Sorted Signatures). A signature of a sorted first-order lan-
guage L with sort, predicate, and meta-predicate hierarchies (called a sorted sig-
nature) is a tuple Σ = (S, P,Ψn , Ω,≤) such that:

1. (S,≤) is a partially ordered set of sorts (called a sort hierarchy);
2. (P,≤) is a partially ordered set of predicates (called a predicate hierarchy);
3. (Ψn ,≤) is a partially ordered set of n-ary meta-predicates (called a meta-

predicate hierarchy);
4. Ω is a set of function and predicate declarations such that

(a) if f ∈ Fn, then there is a unique function declaration of the form f : s1×
· · · × sn → s ∈ Ω, and

(b) if p ∈ Pn, then there is a unique predicate declaration of the form p : s1×
· · · × sn ∈ Ω.

The predicate hierarchy includes predicates with different argument structures,
e.g., a binary predicate can be a subpredicate of a unary predicate. On the
contrary, the meta-predicate hierarchy only contains meta-predicates with a fixed
arity. In the sorted signature,Ω contains function and predicate declarations that
determine the domains and ranges of functions f and predicates p. In particular,
F0 is the set of 0-ary functions (i.e., constants), and each constant c ∈ F0 has a
unique constant declaration of the form c : → s.

We generally call sorts, predicates, and meta-predicates concepts. Let cp1, cp2,
and cp3 be three concepts. A concept cp2 is called a upper bound for cp1 if
cp1 ≤ cp2, and a concept cp2 is called a lower bound for cp1 if cp2 ≤ cp1.
The least upper bound cp1 � cp2 is a upper bound for cp1 and cp2 such that
cp1 � cp2 ≤ cp3 holds for any other upper bound cp3. The greatest lower bound
cp1 � cp2 is a lower bound for cp1 and cp2 such that cp3 ≤ cp1 � cp2 holds for
any other lower bound cp3.

We define the following sorted expressions in the sorted signature Σ: terms,
atoms (atomic formulas), meta-atoms (meta atomic formulas), goals, and clauses.

Definition 3 (Sorted Terms). Let Σ = (S, P,Ψn , Ω,≤) be a sorted signature.
The set Ts of terms of sort s is defined by the following:

1. If x : s ∈ Vs, then x : s ∈ Ts.
2. If t1 ∈ Ts1 , . . . , tn ∈ Tsn , f ∈ Fn, and f : s1 × · · · × sn → s ∈ Ω, then

f(t1, . . . , tn) : s ∈ Ts.
3. If t ∈ Ts′ and s′ ≤ s, then t ∈ Ts.

Note that Ts contains not only terms of sort s but also terms of subsorts s′ of
sort s if s′ ≤ s. The set of terms of all sorts is denoted by T =

⋃
s∈S Ts.

The function sort is a mapping from sorted terms to their sorts, defined by
(i) sort(x : s) = s and (ii) sort(f(t1, . . . , tn) : s) = s. Let Var(t) denote the set

Decidable Order-Sorted Logic Programming for Ontologies and Rules 333

of variables occurring in a sorted term t. A sorted term t is called ground if
Var(t) = ∅. T0 = {t ∈ T |Var(t) = ∅} is the set of sorted ground terms, and the
set of ground terms of sort s is denoted by T0,s = T0 ∩ Ts. We write T Σ

s , T Σ
0 ,

T Σ
s,0, and T Σ for explicitly representing the sorted signature Σ.
In the following definition, sorted Horn clauses [17,6] are extended by meta-

atoms ψ(A1, . . . , An) that consist of meta-predicates ψ and atoms A1, . . . , An.

Definition 4 (Atoms, Meta-atoms, Goals, and Clauses)
Let Σ = (S, P,Ψn , Ω,≤) be a sorted signature. The set A of atoms, the set MA
of meta-atoms, the set G of goals, and the set C of clauses are defined by:

1. If t1 ∈ Ts1 , . . . , tn ∈ Tsn , p ∈ Pn, and p : s1× · · · × sn ∈ Ω, then p(t1, . . . , tn)
∈ A.

2. If A1, . . . , An ∈ A and ψ ∈ Ψn , then ψ(A1, . . . , An) ∈ MA.
3. If L1, . . . , Ln ∈ A ∪MA (n ≥ 0), then {L1, . . . , Ln} ∈ G.
4. If G ∈ G and L ∈ A ∪MA, then L← G ∈ C.

Meta-atoms assert n-ary relations ψ over atoms A1, . . . , An and can appear
in the heads and bodies of extended Horn clauses. For example, the atoms
earthquake(c1 : country) and tsunami(c2 : coastalArea) are used to assert the
meta-atom causes(earthquake(c1 : country), tsunami(c2 : coastalArea)), where
causes is a binary meta-predicate. A clause L← G is denoted by L← if G = ∅.

We define a sorted substitution such that each sorted variable x : s is replaced
with a sorted term in Ts. Each sorted substitution is represented by {x1 : s1/t1,
. . . , xn : sn/tn}. Let θ be a sorted substitution. Then, θ is said to be a sorted
ground substitution if for every variable x : s ∈ Dom(θ), θ(x : s) is a sorted
ground term. Let E be a sorted expression. The substitution θ is a sorted ground
substitution for E if Eθ is ground and Dom(θ) = Var(E). The composition θ1θ2
of sorted substitutions θ1 and θ2 is defined by θ1θ2(x : s) = θ2(θ1(x : s)).

In Σ, there are various argument structures in the predicate hierarchy (P,≤)
because P contains predicates with various arities. Additionally, we declare the
argument structure for each predicate p ∈ P in Σ as follows.

Definition 5 (Argument Declaration). Let Σ = (S, P,Ψn , Ω,≤) be a sorted
signature. An argument declaration Λ is a pair (AN,Π) of a set AN of argument
names and a set Π of argument structures of the form p : 〈a1, . . . , an〉 where
p ∈ Pn, a1, . . . , an ∈ AN , and for any i 	= j, ai 	= aj.

Given an argument declaration Λ = (AN,Π), we define an argument function
Arg : P → 2AN such that Arg(p) = {a1, . . . , an} for each p : 〈a1, . . . , an〉 ∈ Π . An
argument declaration Λ is well arranged in the predicate hierarchy if Arg(q) ⊆
Arg(p) for any p, q ∈ P with p ≤ q. Intuitively, the well-arranged argument
declaration implies that the predicate q does not have any argument that its
subpredicate p does not have.

Definition 6 (Argument Elimination). Let Σ = (S, P,Ψn , Ω,≤) be a sorted
signature with an argument declaration Λ = (AN,Π), let 〈d1, . . . , dn〉 be an

334 K. Kaneiwa and P.H.P. Nguyen

n-tuple, and let p ∈ Pn, q ∈ Pm with Arg(q) ⊆ Arg(p). An argument elimination
from p to q is a function σ−p→q(〈d1, . . . , dn〉) = 〈d′1, . . . , d′m〉 such that

d′i = dj if a′i = aj for each 1 ≤ i ≤ m

where p : 〈a1, . . . , an〉 and q : 〈a′1, . . . , a′m〉 in Π.

The argument eliminations will be used in the semantics and inference system of
the order-sorted logic. An important property of argument eliminations that is
used for the development of predicate-hierarchy reasoning is expressed as follows.

Proposition 1 (Transitivity of Argument Eliminations).
Let Σ be a sorted signature with an argument declaration Λ, let τ be an n-tuple,
and let p ∈ Pn, q ∈ Pm, and r ∈ Pk. If p ≤ q, q ≤ r, and Λ is well arranged in
Σ, then σ−q→r(σ−p→q(τ)) = σ−p→r(τ).

This proposition guarantees that argument eliminations are safely embedded in
predicate-hierarchy reasoning if the argument declaration is well arranged.

We define the semantics of the order-sorted logic with sort, predicate, and
meta-predicate hierarchies as follows.

Definition 7 (Σ-Models). Let Σ be a sorted signature with a well-arranged
argument declaration Λ. A Σ-model M is a tuple (U,UF , I) such that

1. U is a non-empty set of individuals;
2. UF is a non-empty set of facts;
3. I is a function with the following conditions:

(a) if s ∈ S, then I(s) ⊆ U (in particular, I(�) = U),
(b) if si ≤ sj for si, sj ∈ S, then I(si) ⊆ I(sj),
(c) if f ∈ Fn and f : s1×· · ·× sn → s ∈ Ω, then I(f) : I(s1)×· · ·× I(sn) →

I(s),
(d) if p ∈ Pn and p : s1× · · ·× sn ∈ Ω, then I(p) : I(s1)× · · · × I(sn)→ 2UF ,
(e) if p ≤ q for p ∈ Pn and q ∈ Pm, then I(p)(τ) ⊆ I(q)(σ−p→q(τ)),
(f) if ψ ∈ Ψn , then I(ψ) ⊆ Un

F ,
(g) if ψ ≤ φ for ψ, φ ∈ Ψn , then I(ψ) ⊆ I(φ).

The class of Σ-models is a restricted class of standard models such that the
domains and ranges of functions and predicates are constrained by sorts and the
hierarchies of sorts, predicates, and meta-predicates are interpreted by subset
relations over U , UF , and Un

F .
By the argument eliminations in the predicate hierarchy, the following two

properties are derived in the class of Σ-models.

Proposition 2 (Conceptuality of Predicates). Let p ∈ Pn, q ∈ Pm, and
r ∈ Pk and let τ1 ∈ Un, τ2 ∈ Um, and τ ∈ Uk. Every Σ-model M has the
following properties:

1. p�q ≤ r implies I(p)(τ1)∪I(q)(τ2) ⊆ I(r)(τ) with τ = σ−p→r(τ1) = σ−q→r(τ2).
2. r ≤ p � q implies I(r)(τ) ⊆ I(p)(σ−r→p(τ)) ∩ I(q)(σ−r→q(τ)).

Decidable Order-Sorted Logic Programming for Ontologies and Rules 335

This property is important for showing that predicates are consistently concep-
tualized in a hierarchy. However, this is not simple because predicates have their
respective arguments that have different structures in the predicate hierarchy.

Even if predicates are conceptually interpreted as sets of tuples, it is necessary
to define a model that can identify each fact expressed by predicate formulas.

Proposition 3 (Identifiability of Predicates). Let τ be an n-tuple in Un,
and let p ∈ Pn, q ∈ Pm (p 	= q). Some Σ-models M have the following properties:

1. If Arg(p) = Arg(q), then there are two facts e1 ∈ I(p)(τ) and e2 ∈ I(q)(τ).
2. If Arg(p) � Arg(q), then there are two facts e1 ∈ I(p)(τ) and e2 ∈ I(q)(σ−p→q

(τ)).

This proposition indicates that any two ground atoms with identical arguments
p(t1, . . . , tn) and q(t1, . . . , tn) can be identified as distinct facts, if necessary. In
the Σ-models, the set of facts UF is used to identify ground atoms such that
predicate assertions correspond to different elements in UF .

A variable assignment on a Σ-model M = (U,UF , I) is a function α : V → U
where α(x : s) ∈ I(s). The variable assignment α[x : s/d] is defined by (α −
{(x : s, α(x : s))})∪{(x : s, d)}. In other words, if v = x : s, then α[x : s/d](v) = d,
and otherwise α[x : s/d](v) = α(v). Let Δ ⊆ UF be a valuation of facts on M . A
Σ-interpretation I is a tuple (M,Δ,α) of a Σ-model M , a valuation of facts Δ on
M , and a variable assignment α on M . The Σ-interpretation (M,Δ,α[x : s/d])
is simply denoted by Iα[x : s/d].

We define an interpretation of sorted terms and atoms as follows.

Definition 8. Let I = (M,Δ,α) be a Σ-interpretation. The denotation func-
tion [[]]α : T → U is defined by the following:

1. [[x : s]]α = α(x : s),
2. [[f(t1, . . . , tn) : s]]α = I(f)([[t1]]α, . . . , [[tn]]α) with f : s1 × · · · × sn → s ∈ Ω,
3. [[p(t1, . . . , tn)]]α = I(p)([[t1]]α, . . . , [[tn]]α) with p : s1 × · · · × sn ∈ Ω.

The satisfiability of atoms, meta-atoms, goals, and clauses is defined by a Σ-
interpretation I.

Definition 9 (Σ-Satisfiability Relation). Let I = (M,Δ,α) with M = (U,
UF , I) be a Σ-interpretation and let F ∈ A ∪MA ∪ G ∪ C. The Σ-satisfiability
relation I |= F is defined inductively as follows:

1. I |= A iff [[A]]α ∩Δ 	= ∅.
2. I |= ψ(A1, . . . , An) iff I |= A1, . . . , I |= An and ([[A1]]α × · · · × [[An]]α) ∩

I(ψ) 	= ∅.
3. I |= {L1, . . . , Ln} iff I |= L1, . . . , I |= Ln.
4. I |= L ← G iff for all d1 ∈ I(s1),. . . ,dn ∈ I(sn), Iα[x1 : s1/d1, . . . ,

xn : sn/dn] |= G implies Iα[x1 : s1/d1, . . . , xn : sn/dn] |= L where Var (L←
G) = {x1 : s1, . . . , xn : sn}.

Let F ∈ A∪MA∪G ∪C. An expression F is said to be Σ-satisfiable if for some
Σ-interpretation I, I |= F . Otherwise, it is Σ-unsatisfiable. F is a consequence
of a set of expressions S in the class of Σ-interpretations (denoted S |= F) if for
every Σ-interpretation I, I |= S implies I |= F .

336 K. Kaneiwa and P.H.P. Nguyen

4 Horn-Clause Calculus for Predicate Hierarchies

In this section, we define the order-sorted Horn-clause calculus that is extended
by adding inference rules for predicate and meta-predicate hierarchies. A knowl-
edge base K is a finite set of sorted clauses in Σ where Σ = (S, P,Ψn , Ω,≤) is
a sorted signature with a well-arranged argument declaration Λ.

Definition 10 (Sorted Horn-Clause Calculus). Let C be a ground clause,
K be a knowledge base, and l be a label (non-negative integer). A derivation of
C from K (denoted K # l : C) in the sorted Horn-clause calculus is defined as
follows:

– Sorted substitution rule: Let L ← G ∈ K and θ be a sorted ground
substitution for L← G. Then, K # l : (L← G)θ and l is incremented.

– Cut rule: Let L← G and L′ ← G′∪{L} be ground clauses. If K # l1 : L← G
and K # l2 : L′ ← G′ ∪ {L}, then K # l2 : L′ ← G ∪G′.

– Predicate hierarchy rule: Let p(t1, . . . , tn) ← G be a ground clause. If
K # l1 : p(t1, . . . , tn) ← G and p ≤ q, then K # l1 : q(t′1, . . . , t

′
m) ← G where

σ−p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉.
– Meta-predicate hierarchy rule: Let ψ(A1, . . . , An) ← G be a ground

clause. If K # l1 : ψ(A1, . . . , An)← G and ψ ≤ φ, then K # l1 : φ(A1, . . . , An)
← G.

– Fact derivation rule: Let ψ(A1, . . . , An) ← G be a ground clause. If K #
l1 : ψ(A1, . . . , An) ← G, then K # l : Ai ← G with 1 ≤ i ≤ n and l is
incremented.

We simply write K # l : L if K # l : L ←. The sorted substitution rule and
the cut rule serve as sorted inference rules in ordinary order-sorted logic. The
sorted substitution rule yields well-sorted ground clauses in the sort hierarchy.
The predicate hierarchy rule and the meta-predicate hierarchy rule can be used
to derive predicate and meta-predicate assertions in the predicate and meta-
predicate hierarchies, respectively. The fact derivation rule derives atoms from
meta-atoms, which was used in the third motivating example of Section 2.

To prove the completeness of the Horn-clause calculus, we construct extended
Herbrand models for knowledge bases where positive atoms labeled by non-
negative integers are used to identify different facts. We write K #ψ(A1,...,An)
l : Ai if a labeled atom l : Ai is directly derived from a labeled meta-atom
l1 : ψ(A1, . . . , An) using the fact derivation rule. Let L ← G be a clause. We
define ground(L← G) as the set of sorted ground clauses for L← G. We define
ground(K) =

⋃
L←G∈K ground(L ← G) as the set of sorted ground clauses for

all L← G in K.

Definition 11 (Herbrand Models). Let K be a knowledge base. A Herbrand
model MH for K is a tuple (UH , UF,H , IH) such that

1. UH = T0,
2. UF,H = N− {l ∈ N | ground(K) # l : L← G & L ∈MA},
3. IH is a function with the following conditions:

Decidable Order-Sorted Logic Programming for Ontologies and Rules 337

(a) IH(s) = T0,s for each sort s ∈ S,
(b) if f ∈ Fn and f : s1 × · · · × sn → s ∈ Ω, then IH(f)(t1, . . . , tn) =

f(t1, . . . , tn) : s where t1 ∈ IH(s1), . . . , tn ∈ IH(sn),
(c) if p ∈ Pn and p : s1 × · · · × sn ∈ Ω, then IH(p)(τ) =

⋃
q≤p{l ∈ UF,H |

ground(K) # l : q(τ ′)} with σ−q→p(τ
′) = τ ,

(d) if ψ ∈ Ψn , then IH(ψ) =
⋃

φ≤ψ{(l1, . . . , ln) ∈ Un
F,H | for every 1 ≤ i ≤

n, ground(K) #φ(A1,...,An) li : Ai}.

A Herbrand interpretation IH for K is a tuple (MH , ΔH , α) such that MH =
(UH , UF,H , IH) is a Herbrand model for K, ΔH =

⋃
p∈P

τ∈T0,s1×···×T0,sn

IH(p)(τ)

with p : s1 × · · · × sn ∈ Ω is a valuation of facts on MH , and α is a variable
assignment on MH .

We show that a Herbrand interpretation IH is a Σ-interpretation that satisfies
a knowledge base K.

Lemma 1. Let K be a knowledge base, let IH be a Herbrand interpretation for
K, and let L← G be a clause. Then, the following statements hold:

1. IH |= L← G if and only if IH |= ground (L← G).
2. IH is a Σ-interpretation of K.

We use the Herbrand model and the abovementioned lemma to prove the com-
pleteness of the Horn-clause calculus as follows.

Theorem 1 (Completeness of Horn-Clause Calculus). Let K be a knowl-
edge base in a sorted signature Σ and L be a ground atom or meta-atom. K |= L
iff K # l : L.

We show the termination of the Horn-clause calculus where a sorted signature
is function-free.

Theorem 2 (Termination of Horn-Clause Calculus). Let K be a knowl-
edge base in a sorted signature Σ. Then, the Horn-clause calculus terminates if
Σ is function-free.

The termination of the calculus is proved by the fact that the set of derivable
clauses Con(K) = {L← G | K # l : L← G} is finite. In other words, the calculus
cannot generate terms and clauses infinitely because the cardinality of Con(K)
is bounded by finite constant, predicate, and meta-predicate symbols in K.

We show the complexity of the derivation for atoms or meta-atoms L (not
limited to ground) from a knowledge base where the set of ground atoms or
meta-atoms Lθ is computed using the Horn-clause calculus.

Corollary 1 (Complexity of Derivation for Atoms or Meta-atoms)
Let K be a knowledge base in a sorted signature Σ, L be an atom or meta-
atom, and θ be a sorted ground substitution for L. If Σ is function-free, then
deriving the set of ground atoms or meta-atoms Lθ with K # l : Lθ is (single)
EXPTIME-complete (w.r.t. the length of K).

338 K. Kaneiwa and P.H.P. Nguyen

5 Query System

We describe a query-answering system for our order-sorted logic programming.
In this system, query expressions are generalized by adding predicate variables
in meta-atoms. The set of predicate variables is denoted by V . The set of atoms
with predicate variables is defined by AV = {X : p(t1, . . . , tn) | X ∈ V , p(t1, . . . ,
tn) ∈ A}. We call the form X : p(t1, . . . , tn) a predicate variable atom.

Definition 12 (Queries). Let Σ = (S, P,Ψn , Ω,≤) be a sorted signature with
a well-arranged argument declaration Λ, and let MAV = {ψ(A+

1 , . . . , A
+
n) | ψ ∈

Ψn , A
+
1 , . . . , A

+
n ∈ A ∪ AV} be the set of meta-atoms with predicate variables.

The set Q of queries is defined by that if L1, . . . , Lh ∈ A ∪ AV ∪ MAV , then
{L1, . . . , Lh} ∈ Q.

We introduce substitutions for predicate variables X ∈ V such that each predi-
cate variable atom X : q(t′1, . . . , t

′
m) is replaced with an atom A ∈ A. We denote

the set of atoms restricted to the subpredicates p of q by Aq = {p(t1, . . . , tn) ∈
A | p ≤ q & σ−p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉}.

Definition 13 (Substitutions for Predicate Variables)
A substitution for predicate variables is a partial function δ : AV → A such that
δ(X : q(t′1, . . . , t

′
m)) ∈ Aq and the domain of δ (denoted Dom(δ)) is finite.

The substitutions for predicate variables follow the predicate hierarchy, i.e., a
subpredicate p of q is substituted for the predicate variable atom X : q(τ). A sub-
stitution δ is a most specific substitution for a predicate variable atom X : q(τ)
if δ(X : q(τ)) = p(τ ′) with σ−p→q(τ ′) = τ and there is no other substitution δ′

such that δ′(X : q(τ)) = r(τ ′′) with σ−r→q(τ
′′) = τ and r ≤ p.

Definition 14 (Query System). Let Q be a query in Q, δ be a substitution
for predicate variables in Q, and θ be a sorted substitution for Qδ. Then, the
query system Query : Q→ {yes, no} is defined by the following rule.

(i) If there exists K # l : Qδθ such that V ar(Qδ) ∩ V = ∅ and V ar(Qδθ) = ∅,
then Query(Q) = yes.

(ii) Otherwise, Query(Q) = no.

Without losing decidability, the query system is realized in the following two
steps. First, atoms are substituted for predicate variable atoms in a query Q
along with the predicate hierarchy. Second, predicate and meta-predicate asser-
tions in the substituted query Qδ are derived using the Horn-clause calculus.

Theorem 3 (Termination of Query System). Let K be a knowledge base in
a sorted signature Σ. Then, the query system terminates if Σ is function-free.

The termination leads to the following corollary that the complexity of the query-
answering system is unaffected by the introduction of predicate variables in the
queries.

Corollary 2 (Complexity of Query System). Let K be a knowledge base in
a sorted signature Σ and let Q be a query. If Σ is function-free, then deciding
Query(Q) is (single) EXPTIME-complete (w.r.t. the length of K).

Decidable Order-Sorted Logic Programming for Ontologies and Rules 339

6 Derivation Using Argument Restructuring

In the Horn-clause calculus (discussed in Section 4), redundant arguments in each
predicate are deleted during the derivation of super predicates if the argument
structures are well-arranged in a hierarchy. In this section, we generalize sorted
signatures by removing the condition of their being well-arranged, i.e., some
predicates may have an argument that their subpredicates do not have.

We give some examples of hierarchies in a query-answering system for the case
where argument structures are not well-arranged in the sort, predicate, and meta-
predicate hierarchies shown in Figs. 1 and 2. If the fact assaults(tom:minor)
is valid, then the super predicate illegalAct can be derived in the predicate
hierarchy as follows.

assaults(tom:minor)
?-illegalAct(x:human,mary:woman)
no
?-illegalAct(x:human,y:human)
yes
x=tom:minor, y=c:human

In the first case, there is no fact that indicates someone acts against the second
argument mary:woman in the query. Thus, the answer to the first query is no. In
the second case, we can obtain the answer yes to the second query from the fact
assaults(tom:minor) and the predicate hierarchy. A new constant c:human is
substituted for the variable y because the argument structure of the predicate
assaults lacks the second argument of the predicate illegalAct.

For such argument structures in a predicate hierarchy (in a sorted signature),
we perform the addition of missing arguments for the derivation of super predi-
cates as follows.

Definition 15 (Naive Argument Restructuring). Let Σ = (S, P,Ψn , Ω,≤)
be a sorted signature with an argument declaration Λ = (AN,Π), let 〈d1, . . . , dn〉
be an n-tuple, and let p ∈ Pn and q ∈ Pm. An argument restructuring from p to
q is a function σ+

p→q(〈d1, . . . , dn〉) = 〈d′1, . . . , d′m〉 such that

d′i =

{
dj if a′i = aj

ci otherwise

where p : 〈a1, . . . , an〉 and q : 〈a′1, . . . , a′m〉 in Π and each ci is a new element.

We refine the definition of Σ-models such a way that every argument elimination
σ−p→q is replaced with an argument restructuring σ+

p→q . The satisfiability relation
|= is denoted by |=σ+ if an argument restructuring σ+ is employed in each
Σ-model. The conceptuality and identifiability of predicates in Propositions 2
and 3 hold for the case where the Σ-models are refined by replacement with an
argument restructuring σ+.

In order to embed an argument restructuring σ+ in the Horn-clause calculus,
we further extend the calculus as follows.

340 K. Kaneiwa and P.H.P. Nguyen

Definition 16 (Extended Sorted Horn-Clause Calculus)
Let C be a ground clause and K be a knowledge base. A derivation of C from K
(denoted K #σ+ l : C) in the sorted Horn-clause calculus is extended by replacing
the predicate hierarchy rule with the following rule:

– Predicate hierarchy rule+: Let p(t1, . . . , tn) ← G be a ground clause. If
K # l1 : p(t1, . . . , tn) ← G and p ≤ q, then K # l1 : q(t′1, . . . , t′m) ← G where
σ+

p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉.

An atom A1 is a parent of another atom A2 if K #σ+ l : A2 ← G is derived from
K #σ+ l : A1 ← G by an application of the predicate hierarchy rule. An atom
A1 is an ancestor of another atom A2 if (i) A1 is a parent of A2 or (ii) A1 is an
ancestor of an atom A and A is a parent of A2. Let A be an atom p(t1, . . . , tn)
with p : 〈a1, . . . , an〉 ∈ Π . We denote the occurrence of an argument name ak and
a term tk in A by A[ak, tk] if 1 ≤ k ≤ n. The set of pairs of argument names and
terms for a labeled atom l : A is defined by AL(l : A) = {(a, t) | A[a, t]}∪{(a, t) |
A′[a, t] is an ancestor of A}.

In the following definition, we introduce a label-based argument restructuring
in order to solve the problem of incomplete derivation, i.e., the transitivity in
Proposition 1 no longer holds if the argument structures are not well-arranged.
Hence, it is necessary to solve the problem to prove the completeness of the
extended sorted Horn-clause calculus.

Definition 17 (Label-Based Argument Restructuring in Derivation)
Let Σ = (S, P,Ψn , Ω,≤) be a sorted signature with an argument declaration
Λ = (AN,Π), let 〈d1, . . . , dn〉 be an n-tuple, let p ∈ Pn and q ∈ Pm, and l be a
label (non-negative integer). An argument restructuring from p to q is label-based
if it is defined as a function σ∗p→q(〈t1, . . . , tn〉) = 〈t′1, . . . , t′m〉 such that

t′i =

{
tj if a′i = aj with (aj , tj) ∈ AL(l : p(t1, . . . , tn))

cl,a′
i

otherwise

where p : 〈a1, . . . , an〉 and q : 〈a′1, . . . , a′m〉 in Π and each cl,a′
i

is a new constant
indexed by the pair of the label l and the argument name a′i.

We denote the set of new constants that are used to add missing arguments in
a label-based argument restructuring σ∗ by F0,new. The label-based argument
restructuring σ∗ can be applied to a tuple of terms t1, . . . , tn in a labeled atom
l : p(t1, . . . , tn) in the derivation. This leads to the following transitivity, although
the transitivity of naive argument restructurings σ+ does not hold.

Proposition 4 (Transitivity of Label-Based Argument Restructurings)
Let Σ be a sorted signature with an argument declaration Λ, let τ be an n-tuple,
and let p ∈ Pn, q ∈ Pm, and r ∈ Pk. If p ≤ q and q ≤ r, then σ∗q→r(σ

∗
p→q(τ)) =

σ∗p→r(τ).

The transitivity of label-based argument restructurings will be used to show the
completeness of the extended sorted Horn-clause calculus.

Decidable Order-Sorted Logic Programming for Ontologies and Rules 341

Theorem 4 (Completeness of Extended Horn-Clause Calculus)
Let K be a knowledge base in a sorted signature Σ and L be a ground atom or
meta-atom. K |=σ+ L iff K #σ∗ L.

Note that the consequence relation K |=σ+ L is defined with a naive argument
restructuring σ+ but the derivation K #σ∗ L is extended to contain a label-based
argument restructuring σ∗. This is because K #σ+ L is incomplete for K |=σ+ L,
i.e., the derivation is insufficient for the semantics.

However, the label-based argument restructurings σ∗ lead to the undecidabil-
ity of the extended sorted Horn-clause calculus as follows.

Theorem 5 (Undecidability of Extended Horn-Clause Calculus)
The extended Horn-clause calculus does not terminate for a knowledge base K
in a function-free sorted signature Σ.

Let p be an n-ary predicate and τ be an n-tuple of sorted terms. We denote an
atom or meta-atom L by Lp if L = p(τ) or L = ψ(A1, . . . , Am) with Ai = p(τ)
for some 1 ≤ i ≤ m.

Definition 18 (Paths in a Knowledge Base). Let K be a knowledge base in
a sorted signature Σ, let Lp, Lq be atoms or meta-atoms, let a, a′ be argument
names, and let t be a sorted term. Then, there is a path from Lp[a, t] to Lq[a′, t]
in K if one of the following conditions holds:

1. a = a′, p ≤ q, and a ∈ arg(p) ∩ arg(q),
2. Lq[a′, x : s]← G where Lp[a, x : s] ∈ G and t ∈ Ts, and
3. there are two paths from Lp[a, t] to Lr[a′′, t] and from Lr[a′′, t] to Lq[a′, t].

In order to avoid the undecidability, we define a restricted set of knowledge bases
(called safe knowledge bases).

Definition 19 (Safe Knowledge Bases). A knowledge base K is safe if

1. V ar(L) ⊆ V ar(G) for every clause L← G in K, and
2. there is no path from Lp[a, t] to Lq[a′, t] in K such that q ≤ p, a 	= a′,

a 	∈ arg(q), and a ∈ arg(p).

Lemma 2. Let K be a safe knowledge base in a sorted signature Σ. Then, the
extended Horn-clause calculus with label-based argument restructuring does not
generate new constants infinitely.

Furthermore, we can show the complexity of the extended sorted Horn-clause
calculus with label-based argument restructuring where Σ is function-free.

Theorem 6 (Complexity of Derivation for Atoms or Meta-atoms)
Let K be a safe knowledge base in a sorted signature Σ, L be an atom or meta-
atom, and θ be a sorted ground substitution for L. If Σ is function-free, then
deriving the set of ground atoms or meta-atoms Lθ with K #σ∗ l : Lθ is (single)
EXPTIME-complete (w.r.t. the length of K).

342 K. Kaneiwa and P.H.P. Nguyen

Table 1. The complexities of Horn-clause calculus with argument manipulation

Horn-clause calculus complexities
argument elimination EXPTIME

naive argument restructuring undecidable and incomplete
label-based argument restructuring undecidable and complete
label-based argument restructuring EXPTIMEfor safe knowledge bases

Table 1 lists the complexities of the Horn-clause calculus with argument elimina-
tion, naive argument restructuring, and label-based argument restructuring. We
can extend the query system by using the Horn-clause calculus with label-based
argument restructuring.

Theorem 7 (Complexity of Extended Query System)
Let K be a safe knowledge base in a sorted signature Σ and let Q be a query.
If Σ is function-free, then deciding Query(Q) is (single) EXPTIME-complete
(w.r.t. the length of K).

Due to spatial constraints, detailed proofs of the lemmas and theorems in this
paper have been omitted (see http://kc.nict.go.jp/kaneiwa/).

7 Conclusions

We have developed an order-sorted logic programming language equipped with
concept hierarchies of sorts, predicates, and meta-predicates. Predicates with
differently structured arguments are conceptually interpreted in the semantics.
According to the semantics, predicate-hierarchy reasoning is realized in the hi-
erarchies of predicates and meta-predicates such that predicate assertions are
used as arguments of meta-level predicates. To achieve such enhanced reason-
ing, we design inference rules for predicate and meta-predicate hierarchies in the
order-sorted Horn-clause calculus. We employ the calculus to develop a query-
answering system for generalized queries containing predicate variables. We show
that the complexity of our expressive query-answering system is identical to that
of DATALOG. We analyze several complexity results where argument restruc-
turing gives rise to undecidable reasoning services in the derivation of super
predicates in a predicate hierarchy, but a set of safe knowledge bases preserves
the decidability of the derivation with argument restructuring.

References

1. http://www.ruleml.org/

2. http://www.w3.org/tr/owl2-profiles/

3. Chen, W., Kifer, M.: Sorted HiLog: Sorts in higher-order logic data languages. In:
Y. Vardi, M., Gottlob, G. (eds.) ICDT 1995. LNCS, vol. 893, pp. 252–265. Springer,
Heidelberg (1995)

http://www.ruleml.org/
http://www.w3.org/tr/owl2-profiles/

Decidable Order-Sorted Logic Programming for Ontologies and Rules 343

4. Cohn, A.G.: Taxonomic reasoning with many sorted logics. Artificial Intelligence
Review 3, 89–128 (1989)

5. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive
power of logic programming. In: IEEE Conference on Computational Complexity,
pp. 82–101 (1997)

6. Doets, K.: From Logic to Logic Programming. MIT Press, Cambridge (1994)
7. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combin-

ing Logic Programs with Description Logics. In: Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), Budapest, Hungary (2003)

8. Hanus, M.: Logic programming with type specifications. In: Pfenning, F. (ed.)
Types in Logic Programming. The MIT Press, Cambridge (1992)

9. Hitzler, P., Parsia, B.: Ontologies and rules. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, 2nd edn. (2009)

10. Horrocks, I., Patel-Schneider, P.F.: A proposal for an owl rules language. In:
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
pp. 723–731. ACM, New York (2004)

11. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Recommendation, http://www.w3.org/submission/swrl/

12. Jouannaud, J.-P., Okada, M.: Satisfiability of systems of ordinal notations with
the subterm property is decidable. In: Leach Albert, J., Monien, B., Rodŕıguez-
Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 455–468. Springer, Heidelberg
(1991)

13. Kaneiwa, K.: Order-sorted logic programming with predicate hierarchy. Artificial
Intelligence 158(2), 155–188 (2004)

14. Kaneiwa, K., Mizoguchi, R.: An order-sorted quantified modal logic for meta-
ontology. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702,
pp. 169–184. Springer, Heidelberg (2005)

15. Kaneiwa, K., Mizoguchi, R.: Distributed reasoning with ontologies and rules in
order-sorted logic programming. In: Journal of Web Semantics (in press, 2009)

16. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer,
Heidelberg (2008)

17. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
18. Motik, B.: On the Properties of Metamodeling in OWL. Journal of Logic and

Computation 17(4), 617–637 (2007)
19. Nguyen, P.H.P., Kaneiwa, K., Corbett, D.R., Nguyen, M.-Q.: An ontology formal-

ization of relation type hierarchy in conceptual structure theory. In: Wobcke, W.,
Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 79–85. Springer, Heidelberg
(2008)

20. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax, W3C Recommendation,
http://www.w3.org/tr/2004/rec-owl-semantics-20040210/

21. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics 3(1), 41–60 (2005)

22. Socher-Ambrosius, R., Johann, P.: Deduction Systems. Springer, Heidelberg (1996)
23. Woods, W., Schmolze, J.: The KL-ONE family. Computers and Mathematics with

Applications, Special Issue on Semantic Networks in Artificial Intelligence, Part
1 23(2–5), 133–178 (1992)

http://www.w3.org/submission/swrl/
http://www.w3.org/tr/2004/rec-owl-semantics-20040210/

Semantic Web Service Composition in Social
Environments

Ugur Kuter1 and Jennifer Golbeck2

1 Institute of Advanced Computer Studies,
University of Maryland,

College Park, Maryland 20742, USA
2 College of Information Studies

University of Maryland,
College Park, Maryland 20742, USA

Abstract. This paper describes how to generate compositions of semantic Web
services using social trust information from user ratings of the services. We
present a taxonomy of features, such as interoperability, availability, privacy,
security, and others. We describe a way to compute social trust in OWL-S style se-
mantic Web services. Our formalism exploits the users’ ratings of the services and
execution characteristics of those services. We describe our service-composition
algorithm, called Trusty, that is based on this formalism. We discuss the for-
mal properties of Trusty and our implementation of the algorithm. We present
our experiments in which we compared Trusty with SHOP2, a well-known AI
planning algorithm that has been successfully used for OWL-S style service
composition. Our results demonstrate that Trusty generates more trustworthy
compositions than SHOP2.

1 Motivations

Web services are finding life in new forms, which is forecasting the future of what the
web service environment will look like.

Apps for the iPhone and iPod touch are essentially web services with a wrapper to
make them run on the iPhone. The Apple App Store provides a model of how web
services are likely to evolve if they are to remain relevant and useful. There is a demand
for these apps - there are roughly 20,000 apps in the store - and even simple services in
app form receive thousands of downloads. As web services are integrated into forms like
apps where there is user demand, we expect to see the same evolution with thousands of
services available, many with the same functionality and semantic structure (inputs and
outputs). As this becomes the web service environment, a mechanism for choosing from
many similar services will be important for creating service compositions that meet the
user’s preferences and that the user trusts.

There are many apps offering classic web service functionality - finding weather con-
ditions and forecasts, currency conversion, stock quotes, zip code lookup, and others.
Consider weather forecasts; there are at least a dozen apps that provide current condi-
tions for a given location. How does a user decide which app (or web service) to use if

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 344–358, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Semantic Web Service Composition in Social Environments 345

the functionality is identical? There are many attributes to consider. Cost is one; some
apps are free, others charge a small fee. The quality of the information is another con-
sideration; some weather services are more accurate or current than others. The service
provider is also an option. A user may trust the National Weather Service as a provider
because they have no commercial interest in the user’s personal information while a
corporate entity may store the user’s personal data for other purposes. Other users may
be more inclined to trust the way companies will handle their data more than the way
the government would. Ratings of the app provided by other users are also very useful
in making a decision about which to choose.

Artificial Intelligence (AI) planning techniques have been successfully used to
decide which Web services to use and how to compose them in order to achieve a
functionality on the Web. In this approach, a service composition is a ground sequence
of service invocations that accomplishes a goal or task. A planning algorithm takes as
an input a formal description of the Semantic Web service composition problem and
generates a sequence of actions (a.k.a., a plan or a composition) that achieves the goals
specified in the problem description.

Existing automated AI planning techniques have been focused on a purely functional
automation of the service-composition process in great detail, and there have been great
strides in this direction [1, 2, 3, 4, 5]. However, we believe that the next-generation
of Web services will possibly have the following characteristics, which have not been
entirely addressed in the existing Web Service Composition (WSC) research:

• One of the most significant aspects of planning and service composition on the Web
is the “human factor;” i.e., the users who are exploiting the services and doing com-
positions on the Web to achieve some objectives. Although it makes sense to develop
automated systems in order to perform service composition to achieve a functionality
on the Web, in many situations it is important to appreciate the input of the human
users who are initiating the composition process and generate reliable compositions
that the user will be comfortable with.

For example, the users may have concerns and preferences about the quality of
a service and may not rate that service as reliable and trustworthy with respect to
their objectives. The security and privacy policies of services may also be critically
important to the users, even if they do not affect the direct outcome. The organization
offering the service may also be of concern to users who want do not want to share
their personal information with certain entities.

• Existing WSC planning algorithms usually make the assumption that the in-
puts/outputs/preconditions/results of a service process model are known; otherwise,
the composition algorithm would not be able to do the chaining of services in
order to generate a composition. In reality, however, it is not usually possible to know
whether the execution of the service will follow exactly what is stated in the descrip-
tion/process model of that service. Web services do not always produce the outcomes
as specified in their process models. This uncertainty makes the execution of the
service unreliable for the user.

For example, when a user is trying to finalize a travel itinerary something
using a travel-agency Web service, the user may not get the desired itinerary due to

346 U. Kuter and J. Golbeck

a database problem at the end or the service may request the user to recreate it due to
a communication problem between the provider of the service and the user. All these
issues are natural, but makes the service unreliable in the eyes of the user. Then the
question that a user will face is, given prior information about the Web services (e.g.,
his/her experience with it as well as other users’ ratings of the service), should the
user use that service?

2 Overview

In this paper, we describe a way to address the above aspects of Web service compo-
sition by using users’ ratings about their experiences with the service and exploit this
information to compute our “trust” in the service. A composition algorithm can then
decide whether to execute the service based on that trust value.

Our contributions are as follows:

• We outline a taxonomy of features of Web services. This taxonomy specifies service
characteristics such as privacy, security, usability/availability, reliability, and others.
Most of the features in this taxonomy are already discussed in distributed systems
and computing, multi-agent systems, and similar research areas, and our taxonomy
is not complete by any means. But, to the best of our knowledge, these features have
not been considered for the purposes of semantic Web service composition. While
this feature taxonomy may change from application to application, it is meant to
provide a general example here.

• We describe a formal treatment of how to take into account users’ previous history
of service ratings. This formalism is based on our taxonomy of service features men-
tioned above. The formalism allows us to develop ways of computing a user’s trust
in service composition process and we present such way of reasoning with trust in
composing semantic Web services.

• We describe a new WSC planning algorithm, called Trusty. In Trusty, We focus
on semantic Web services that are modeled in the prominent OWL-S service mark-
up language [6]. Trusty generalizes the Hierarchical Task-Network (HTN) planner
SHOP2, a well-known AI planning algorithm that has been successfully used for
Web service composition [1], by incorporating reasoning mechanisms for social trust.
This new WSC procedure uses the trust information on the services in order to infer
the trustworthiness of a composition (or a partial composition), and returns the most
trustworthy composition as a solution to a service-composition problem.

• We define three trust-computation strategies for Trusty; namely, overly-cautious,
overly-optimistic, and average. These strategies differ in the way they compute the
trust in a composite OWL-S service given the trust values of its sub-services. An
overly-cautious trust computation produces compositions that maximize the mini-
mum possible trust in the services. An overly-optimistic computation, on the other
hand, maximizes the maximum possible trust in the services.

• We present theorems showing the correctness properties of Trusty.

• In our experimental evaluation, we compared Trusty using the three trust-
computation strategies with SHOP2 in the well-known WSC domain of scheduling

Semantic Web Service Composition in Social Environments 347

doctor appointments for patients [1, 2]. Our statistical analyses of the results of
the experiments, using ANOVA and t-tests as statistical methods, showed that
overly-optimistic strategy enables Trusty to generate statistically more trustworthy
compositions than SHOP2. The analyses also showed that overly-cautious strategy
results in statistically worse trustworthy compositions compared to those generated
by SHOP2. Although this might seem a bad result at first, note that it actually shows
that the compositions generated by the overly-cautious strategy are the most trust-
worthy ones under the assumption that the worst will happen during the execution
of those services. Consequently, both of these strategies, taken together, provide the
most information for the human user doing the composition.

3 A Feature Taxonomy for the Behavioral Characteristics of Web
Services

We compiled a feature taxonomy based on some known behavioral characteristics of
Web Services. These characteristics describe the social aspects of a service that a user
(human or machine alike) will consider when deciding whether to include the service
in the composition being generated.While this feature taxonomy may change from ap-
plication to application, it is meant to provide a general example here.

The following is a description of our feature taxonomy for WSC:

Interoperability. Web services provide a way for seamless communication, data and
functional capability exchange between software applications and themselves. Service
interoperability requires the following features to be implemented and handled prop-
erly by a service system: service management, data and meta-data handling, service
descriptions, messaging, and service usability/availability.

Service management involves techniques for implementing how a service communi-
cate and exchange data with other services on the Web.

Web services were originally designed to be stateless; i.e., a service is a functionality
that performs a computation given some inputs and returns the outputs of that computa-
tion. However, many Web services use a database or a data storage/management back-
end in order to have a memory of their computations and operations and the results of
those operations. Data Handling involves managing this backend system of a service
by the service itself.

The description of a service also plays an important role in the interoperability of
the service; the users of a service must know what the service does, what input/output
requirements it has, and what conditions need to be satisfied in order to execute the
service. If these are not known or the service does operate according to its description
then the user may consider it as unreliable to include in a composition.

The availability of a service is also important for a user considering to use it. A ser-
vice that publishes itself for the achievement of a functionality but that is never available
(e.g., the server that runs the service is down or has limited processing power most of
the time) is of no use to the user.

Privacy. Privacy concerns exist wherever personally identifiable information is
collected and stored - in digital form or otherwise. In the context of Web services,

348 U. Kuter and J. Golbeck

the service is expected to implement a privacy policy in order to control the collection
and dissemination of any personal information from the users. Thus, such privacy poli-
cies implemented by Web services are usually an important piece in the user’s decision
process of which service to use and whether he/she should execute it.

Security. The security of Web services have increasingly become an important issue.
Security related features include the authentication of the service, its credentials, and
whether a communication protocol (e.g., SSL) used by the service. Authentication and
credentials describe how reliable the service is with respect to its provider and its de-
scription (see above for a discussion of service descriptions as an interoperability issue).

The communication protocol that a service uses is important for some users, depend-
ing on the objective of the service. For example, a user might look for secure connec-
tions from a Web service that performs banking transactions; on the other hand, a Web
service that displays the current weather conditions at a particular location does not
necessarily need a secure connection to its server.

Computation. Computational issues arise in Web services because a service usually
operates on a remote server (or on a cluster of remote servers) on the Web and the user
does not necessarily have access or control on that computational resource.

Thus, it is important for a service provider to ensure some measure of computational
reliability of the service to the requesters of that service. Computational reliability of
a service involves a good and honest description of what the service does (i.e., the
functional definition of the service from its inputs to outputs), what it does not do, and
what it may do when executed. This last issue arises if the description of the service and
the outcome of its execution do not match to each other. In such cases, the user may not
achieve his/her goals in using the service.

Another feature of a Web service is its complexity – i.e., its functional granular-
ity. Web services are usually designed to be simple, achieving basic functionalities on
the Web and designed to be composed into more complex functionalities via service-
composition algorithms. A Web service that implements many functionalities in a very
fine-grained way may or may not be attractive to the users depending their preferences
and objectives.

The taxonomy and the features mentioned above are not complete by any means,
but include the most typical examples of such behavioral features of Web services
that influence users’ decision on whether and how to use those services. Depending
on the particular composition problem, this taxonomy can be expanded to include
some domain-specific features as well. For example, a shopping service may require
a licensing agreement with its provider and the user. Depending on the terms of that
requirement, the user may or may not choose to use that service (e.g., if the terms are
very restrictive, then the user may choose to use another service that has less restrictive
requirements).

4 Social Trust

Users can determine the trust they have for a service by considering the features of
the taxonomy above and their experience with a service. However, when a user has no

Semantic Web Service Composition in Social Environments 349

experience with the service, it can be difficult to judge how trustworthy the service is.
Information from other users who have interacted with the service can be used to help
make these decisions. This is parallel to considering the ratings and reviews of apps for
the iPhone. However, rating systems can be easily manipulated. For example, a mali-
cious user can build a service that steals credit card numbers and then create hundreds
of accounts to assign high ratings this service. To circumvent this, we consider trust
between users along with ratings to help find trustworthy services for the composition.

4.1 Computing Trust between Users

There are several methods by which we can compute the trust that user c has in user
u. These fall into two broad categories: trust can be computed using a social network
or approximated through the ratings they have provided. Which approach to use, or if a
combination of the two methods is preferable, will depend on the data available and the
specific application.

When a social network is available, any trust-inference algorithm such as TidalTrust
[7], advogato [8], Appleseed [9] , moletrust [10], and SUNNY [11] can be used to
compute trust(c, u). In the Web service composition spaces, typically services are not
associated with social networks but the data is available to approximate trust using user
ratings. For example, in the Apple AppStore, each app/service is rated by many users
and those ratings are publicly available for a user considering to use that app/service.
Thus, we are going to focus here how to compute trust via user ratings.

Trust can also be computed from nuanced similarity measures over ratings users add
into a system. In this context, the ratings would be on the web services. Research has
shown that there is a strong correlation between trust and overall similarity [12, 13].
Further work indicates that trust is more complex than overall user-user similarity, and
shows that trust can be estimated by a combination of more nuanced similarity measures
[14]. That research identified four measures made over users’ item ratings that relate
to trust: overall similarity, similarity on extremes , the single largest difference, and
the source’s propensity to trust. We can compute similarity measures in two ways: as
mean average error (MAE) and using the Pearson correlation. Thus, we had six total
measures: the average difference (AD), overall correlation (COR), average difference
on extremes (XD), correlation on extremes (XCOR), the single largest difference (MD),
and the source’s propensity to trust (PT). A linear combination of these values can
predict trust is given in the following equation:

trust(source, sink) = θAD ∗AD + θCOR ∗ COR + θXD ∗XD+
θXCOR ∗XCOR + θMD ∗MD + θPT ∗ PT

When the weights are estimated using multivariate linear regression, this equation gen-
erates a trust estimate accurate to within approximately 10%. This is as good or better
than most trust inference algorithms that run on a social network as described above.

4.2 Semantic Web Services, User Ratings and Trust

We assume the existence of a finite set W of Web services that are given. Let F be a
finite set of all of the available taxonomical features related to the services in W . A

350 U. Kuter and J. Golbeck

user’s service-composition rating (or rating, for short) is partial function that models a
user’s rating of a service w:

ρ : W × F → [0, 1].

Intuitively, a user rating specifies a subjective value of a Web service w with respect
to a behavioral feature f . For example, let f be the privacy policy of the service w.
A low ρ(w, f) value would mean that the user does not agree with the terms of the
privacy requirements of the service, whereas a high ρ(w, f) value would point to a
more positive rating.

In most systems using social trust, a single value is computed that indicates the trust
user c has for a user u. However, in the case of Web service composition, we have a
set of features F of services and we can potentially compute the trust between c and
u on feature f . Some methods for inferring trust between users will not have the data
available to compute the values on each feature. In those cases, we will use the single
trust value as the trust for all features. For example, if an algorithm computes that the
user c should trust the user u at a level of 0.8 on a [0, 1] scale, we would use 0.8 as the
trust value for each feature f ∈ F .

As mentioned before, we focus on the well-known semantic Web services formalism
OWL-S [6] to model Web services. OWL-S differentiates between atomic and com-
posite services. The former can be directly executed in the world, whereas the latter
must be decomposed into atomic ones for execution. Other formalisms model only
atomic services. Below, we describe our definitions for trust to encapsulate both service
formalisms.

Suppose R is a finite set of user ratings and let w be a Web service. Let Uρ be the
set of all users who rated the service w. In other words, for each user u ∈ Uρ, there
exists a user rating ρu ∈ R such that ρu(w, f) is defined for some feature f . Finally, let
c denote the user who is performing the Web service composition and Fc(w) be the set
of features the user c is interested in the service w.

We define the trust value tc(w, f) that the composer user c has in a Web service w
based on the feature f as follows:

tc(w, f) =
∑

u∈Uρ

ρu(w, f)× trust(c, u),

where trust(c, u) is the trust that c has in the user u, as described in the previous section.
Then, the expected trust that c has in the service w is:

tc(w) =

∑
f∈Fc(w) tc(w, f)

|Fc(w)| .

If there is a composite Web service w in W then the idea is to generate a composition
(i.e., a sequence of atomic services) for the composite service and propagate the trust
values of the atomic services in the composition upwards, starting from smaller services
to the composed ones and eventually to w.

Let M be a set of process models for w and for each process model m ∈ M , let
sub(m,w) denote the set of services that are sub-processes of w in m. We devise three
different strategies that define the trust value t(w) of w. These are as follows:

Semantic Web Service Composition in Social Environments 351

Overly-Cautious. The overly-cautious strategy for defining the trust in a service w
aims to maximize the minimum expected trust value that the composer user has in
the sub-processes of w. In other words, this strategy implements the well-known
minimax game-tree evaluation criteria [15], adapted for social trust in Web service
composition. Formally, the trust value in a service is

t(w) =maxm∈MQ(m)
Q(m) = min

w′∈sub(m,w)
t(w′)

Overly-Optimistic. This strategy can be seen as an opposite of the overly-cautious
strategy above. The overly-cautious strategy assumes that if something bad could
happen in the composed services (i.e., if the least trusted service fails our trust
as expected), it would definitely happen. On the other hand, the overly-optimistic
strategy assumes the opposite: nothing bad will happen (i.e., even if we have a low
trust on a service, that service will not fail the expectations from it), and therefore,
we can evaluate a composition based on the user’s maximum trust on the sub-
processes of a service. More formally,

t(w) =maxm∈MQ(m)
Q(m) = max

w′∈sub(m,w)
t(w′)

Average. Finally, the Average strategy computes the trust value in a process model m
for w by taking the average of the trust computed for each of the sub-processes of
w in m:

t(w) =maxm∈MQ(m)

Q(m) =

∑
w′∈sub(m,w) t(w

′)

|sub(m,w)|

Above |sub(m,w)| denotes the number of services in sub(m,w).

5 Web Service Composition with Social Trust

We start with our definitions for trust-based service composition. We define a trust-
based service composition problem as a tuple P = (S, c,G,W,F,R), where S is the
initial state, c is the user that performs the composition, G is the OWL-S process model
to be achieved, W is the available set of OWL-S services, F is the set of all features in
the problem, andR is a finite set of user ratings.

A solution for P is a composition that maximizes the trust value of achieving G.
Figure 1 shows a high-level description of our Web service-composition algorithm,

Trusty. Trusty is inspired by HTN planning algorithms for WSC, in particular, from the
previous work on SHOP2 [1]. Unlike SHOP2, Trusty incorporates the notion of social
trust and several trust computation strategies to reason with trust in order to generate
trustworthy compositions.

352 U. Kuter and J. Golbeck

Procedure Trusty(s, c, G, W, F,R, π)
1. if G = ∅ then return(π)
2. nondeterministically choose a subgoal w from G that has no predecessors

and remove w from G
3. if w can be achieved in s by an atomic service then
4. if there is no such process model in W for w then
5. return(failure)
6. insert the process model for w into π
7. τ ← 0
8. for each feature f ∈ F do
9. for each user u who has a rating for w do
10. τ ← τ + ρu(w, f) × trust(c, u)
11. Θ(w) ← t

|R||F |
12. π ← Trusty(s′, c, G, W, F,R, π)
13. else
14. D ← {d | m is a process model for w in s and d is a

composition generated by applying m to w in s}
15. πmax ← ∅
16. for each composition d ∈ D do
17. G′ ← UpdateComposition(G, s, t,m, d)
18. π ← Trusty(s, c, G′, W, F,R, π)
19. if π = failure then return(failure)
20. Q(d) ← ComputeTrust(d,Θ)
21. if Q(d) > Θ(w) then πmax ← π; τ ← Q(d)
22. Θ(w) ← τ
23. return(π)

Fig. 1. A high-level description of the Trusty procedure for Web service composition using trust.
Above, s is the current state, c is the user who requested the composition, G are the goals of the
user c, W is the set of available services, F is the set of features of those services, R is the set of
user ratings, π is the (partial) solution composition. Initially s is the initial state, π is the empty
composition, and β is 0. Θ is a global table that holds all of the trust information over the services
that is computed by the algorithm.

The input to Trusty consists of a service composition problem with social trust
P = (s, c,G,W,F,R) and the empty plan π. We define Θ, a table that holds the trust-
values on services. We assume that Θ is accessible globally by the Trusty procedure
and initially, it specifies a trust value of 0 for each service in W .

With this input, Trusty starts from the goalG and recursively generates compositions
forG and its subgoals, until a solution composition is generated or a failure is returned
during the problem-solving process.

At each invocation of the algorithm, Trusty first checks whether the goal func-
tionality is achieved or not (i.e., whether G = ∅ or not). If the goal is empty,
then Trusty returns the current composition π in Line 1. Otherwise, the algorithm
nondeterministically chooses a subgoal w from G that has no predecessors in G. If w
can be achieved by an atomic service, and there is a service process model defined forw

Semantic Web Service Composition in Social Environments 353

in W , then Trusty inserts that process model into π since when executed, that service
process will achieve the goal w.

Next, Trusty computes the trust the current user c has that the service, when exe-
cuted, will conform to c’s composition profile (Lines 7–10). The algorithm then updates
the trust-values table with the newly-computed trust value for the service for w (Line
11). It continues with the remainder of the goals to be accomplished in G via a recursive
call to itself at Line 12.

If the subgoal w chosen at Line 2 is a nonprimitive functionality, then Trusty gener-
ates the set D of all possible compositions that might achieve w. At Line 14, the set D
of compositions are generated via the available methods for w that are applicable in the
current state of the world.

Then, for each possible composition for w, Trusty performs a series of steps as fol-
lows. Trusty first generates the next goal to achieve given the goal functionalities in
the current composition for w and the remaining goals in G. The UpdateComposition
function is responsible for this operation. UpdateComposition is a standard HTN task
decomposition mechanism described in [1, 2], so we are not going into the details of
this subroutine in this paper.

Then, Trusty calls itself recursively to achieve the new goalG′. When Trusty returns,
there are two bits of knowledge that the algorithm needs to process. One is the partial
composition π returned by the call. If π is a failure, than means that the current com-
position cannot generate a solution for w; in that case, Trusty ignores this composition
and continues with the next one (if any).

If π is not failure when Trusty returned, then the trust table Θ must contain a value
for the trust of c computed for each sub-service for w. The Q value of the current com-
position d is then computed by applying a trust computation strategy. As we described
in the previous section, we developed three strategies for this purpose: namely, overly-
cautious, overly-optimistic, and average. In Line 20, the ComputeTrust subroutine
is responsible for implementing one of these strategies as specified by the user.

If the Q value of the decomposition d is greater than the current α value, then Trusty
returns updates the trust value for the service w since it found a partial composition that
has a higher value trustworthiness than the previously best one. It also keeps track of
the current partial composition by marking as the current best solution candidate (see
Line 21).

After Trusty processes and computes the best composition for w, it updates the trust
table Θ with the trust value of that composition (Line 22) and returns that composition
from the current invocation (Line 23).

The following theorems establish the soundness and completeness of Trusty:

Theorem 1. Let P = (s, c,G,W,F,R) be a social trust-based composition problem.
Then, if Trusty returns a composition π for this problem P , then π is a solution of P .

Note that there are two aspects of a solution π for P . First, π must achieve the function-
ality G specified in P . Second, if there is another composition π′ then the user c’s trust
in π′ must be lower or equal that in π. Trusty guarantees the first aspect given the set
of services in the input W since we assume that for each goal that can be achieved by
an atomic service, there is one corresponding process model in W , and for each goal
that can be achieved by a composite service, there is one process model in W for that

354 U. Kuter and J. Golbeck

goal and for each of its subgoals. Then, the proof follows by induction on the number
of decompositions of the G that needs to make until we generate a sequence of atomic
services that, when executed, accomplishes G.

The second aspect follows from the bounding condition of Line 21 of the pseudo-
code shown in Figure 1.

Theorem 2. Let P = (s, c,G,W,F,R) be a social trust-based composition problem.
Then, if there exists at least one solution composition π for P then Trusty returns π.

If there is no solution to P , then Trusty returns failure.

If there is a solution π for the service-composition problem P , then Trusty will even-
tually generate that solution since (1) it searches for every possible composition for the
goal G, and (2) it prunes a composition only if that composition induces an inferior
trust value compared to an alternative one. If there is no solution to P , then Trusty will
try every possible composition (with possible prunings), and return failure in one of its
recursive invocations.

The next section describes our implementation of Trusty and the experiments we ran
with our implementation.

5.1 Discussion

Investigating the uncertainty due to the interactions between the users and their ratings
is extremely interesting and realistic; however, reasoning about such uncertainty is hard
and complex too. In fact, it indeed requires a different model to compute incremental
inferences over social trust correctly, where a newer service with few or no ratings (and
hence low trust) arrives and it is to end up in a solution composition, given the fact that
there are many services that already have higher trust.

We to stay away from that uncertainty in our current model by assuming that each
user and his/her rating is independent of another. This assumption allows us to adapt a
typical assumption with most service-composition research that all the services (with
their ratings in our case) are available up front and there are no changes to the service set
during composition. Certainly, here are cases in which this assumption is not realistic;
however this assumption simplified the initial model presented in this paper and allowed
us to gain insights.

6 Experiments

We implemented a prototype of the Trusty algorithm using the code base of the SHOP2
planning system [16, 1], which was previously use for WSC quite successfully. We
extended this planning system in order to implement our trust reasoning mechanisms
and our optimizing search search algorithm to extend SHOP2’s usual depth-first search
implementation.1 The particular implementation of optimization in Trusty depends on
the strategies which one of the overly-cautious, overly-optimistic, or average trust
computation is used.

1 The SHOP2 planning system also implements a form of branch-and-bound search for simple
optimization planning problems but it is designed for reasoning with action costs, not with
trust values of both atomic and composite compositions.

Semantic Web Service Composition in Social Environments 355

Table 1. Trust values of the solution composition found by Trusty and SHOP2. In Trusty,
we used three trust-inference strategies as described in text: Average, Overly-Cautious, and
Overly-Optimistic. Each data point is an average of 50 random service-composition problems.

Algorithm Trust-Inference Strategy Average Trust
Trusty Average 0.0043
Trusty Overly-Cautious 0.0016
Trusty Overly-Optimistic 0.0097
SHOP2 None (Depth-First Search) 0.0039

Our experimental scenario was based on the well-known WSC domain on schedul-
ing of doctor-patient appointments. This scenario was first described in the Scientific
American article about the Semantic Web [17]. In this domain, two people are trying to
take their mother to a physician for a series of treatments and follow-up meetings. The
service-composition problem is to come up with a sequence of appointments that will
fit in to everyone’s schedules, and at the same time, to satisfy everybody’s preferences.

Since our system requires a mechanism for computing trust, we had to artificially
generate realistic underlying data that could be used to compute trust. To do this, we
used the social network and user ratings from FilmTrust [18], a social network where
users rated their trust for one another and also rated movies. We kept the same social
network and trust ratings between users, and randomly mapped users’ ratings of movies
to ratings of services for doing doctor-patient appointment assignments. This provided
a realistic test dataset that represented user’s distribution of preferences and their social
relationships.

We generated 50 random mappings (i.e., random user ratings and trust values among
users), and ran both SHOP2 and Trusty in this scenario with those ratings. We used
the three trust-computation strategies in Trusty. In all of these runs, Trusty was able to
generate compositions that have higher trust values than those generated by SHOP2,
as summarized in Table 1.

Using the Overly-Optimistic trust-inference strategy, Trusty the average trust value
of the solutions generated by SHOP2 was 0.0039, whereas that of the solutions gen-
erated by Trusty was 0.0097. The average trust value of the composition generated
by Trusty’s Average trust-inference strategy was 0.0016. An ANOVA shows statis-
tically significant differences among the population, and pairwise t-tests indicate that
the value of the Overly-Optimistic strategy statistically significantly higher than the
Overly-Cautious strategy for p < 0.01.

In fact, our analyses showed that Trusty’s Overly-Cautious strategy caused the al-
gorithm to generate compositions whose average trust value is statistically worse than
the average trust values generated by SHOP2. Although this result may suggest that
this strategy is not good for service composition, this is not necessarily true. The objec-
tive of this strategy is to be conservative – i.e., the objective is to maximize the minimum
possible trust in the services so that if a service fails fails to meet the composer’s ex-
pectations, the ramifications of such a failure is minimal. The overly-cautious strategy
just ensures this criterion while guaranteeing to generate service compositions when-
ever there are any for a composition problem.

356 U. Kuter and J. Golbeck

Consequently, both of these strategies, taken together, provide the most information
for the human user doing the composition.

We also ran a second set of experiments with Trusty using the average trust-
computation strategy in order to determine the range of the trust values generated by the
two planning systems. For these experiments, we used the same 50 randomly-generated
mappings as above. In order to find the upper bound of the range of trust values, we set
each trust value that appears in the user profiles to 1, the maximum possible trust value
in our formalism. For the lower bound, we set each trust value that appears in the user
profiles to 0.01, in order to estimate the minimum possible trust value in our formalism.
We did not use 0’s for the minimum trust values since then the compositions returned
by both of the planners would always have 0 values.

When we set all of the trust values in the user profiles to 1, the average trust value
of the solutions generated by SHOP2 in this setting was 0.0059, whereas that of the
solutions generated by Trusty was 0.0065. When we set all of the trust values in the user
profiles to 0.01, the average trust value of the solutions generated by SHOP2 in this
setting was 0.000059, whereas that of the solutions generated by Trusty was 0.000065.
In both cases, as above, Trusty’s solution compositions had higher trust values than
those of SHOP2.

The results with the maximum trust values in the profiles also show that SHOP2
cannot generate the best solution (i.e., the solution with maximum possible trust values)
in our scenarios; the best composition it can generate has a trust value lower than that
is generated by Trusty.

7 Related Work

Existing approaches for Web Service Composition formulate the problem in different
ways, depending mainly on how the developers of those approaches perceive the prob-
lem. However, as we mentioned at the beginning of the paper, an important common-
ality among these approaches is that they focused on a purely functional automation
of the service-composition process without any consideration for social trust, as we
studied in this paper.

One of the first techniques developed for WSC is reported in [3]. Here, the states
of the world and the world-altering actions are modeled as Golog programs, and the
information-providing services are modeled as external functions calls made within
those programs. The goal is stated as a Prolog-like query and the answer to that query
is a sequence of world-altering actions that achieves the goal when executed in the
initial state of the world. During the composition process, however, it is assumed that
no world-altering services are executed. Instead, their effects are simulated in order to
keep track of the state transitions that will occur when they are actually executed.

In [1], the WSC procedure is based on the relationship between the OWL-S process
ontology [6] used for describing Web services and Hierarchical Task Networks as in
HTN Planning [16]. OWL-S processes are translated into tasks to be achieved by the
SHOP2 planner [16], and SHOP2 generates a collection of atomic process instances
that achieves the desired functionality.

[19] extends the work in [1] to cope better with the fact that information-providing
Web services may not return the needed information immediately when they are

Semantic Web Service Composition in Social Environments 357

executed, or at all. The ENQUIRER algorithm presented in this work does not cease
the search process while waiting answers to some of its queries, but keeps searching for
alternative compositions that do not depend on answering those specific queries.

[20] models Web services and information about the world using the “knowledge-
level formulation” first introduced in the PKS planning system [21]. This formulation
models Web services based not on what is actually true or false about them, but what
the agent that performs the composition actually knows to be true or false about their
operations and the results of those operations. A composition is formulated as a condi-
tional plan, which allows for interleaving the executions of information-providing and
world-altering services, unlike the work described above.

In [4] and [5], a planning technique based on the “Planning as Model Checking”
paradigm is described for the automated composition of Web services. The BPEL4WS
process models was first translated into state transition systems that describe the dy-
namic interactions with external services. Given these state-transition systems, the plan-
ning algorithm, using symbolic model checking techniques, returns an executable pro-
cess rather than a linear sequence of actions.

8 Conclusions and Future Work

In this paper, we presented a new formalism for composing Web services when user
ratings are present and Trusty, a new service-composition algorithm for creating trust-
worthy Web service compositions. This incorporates user preferences as considerations
when generating compositions. The social trust component also allows users to bene-
fit from the experiences and ratings of others, thus providing some information on the
trustworthiness of unknown services. This, in turn, can be used as a mechanism for
making choices when generating Web service compositions, resulting in selections and
compositions that are personalized and more trustworthy from the user’s perspective.

More extensive evaluation is the most important next step in this work. We provided
some preliminary results in one sample domain. However, a more extensive study is
needed to strongly demonstrate that Trusty will generate useful trust information about
service compositions in a real domain and that users will significantly prefer these com-
positions. This will require recruiting users who have expertise and strong preferences
regarding web services and who can understand the resulting compositions. Further-
more, we will require some method of extracting trust relationships between users. This
can be done by implementing or recruiting subjects from an existing social network, or
by computing trust from profile similarity, which will require a dense set of service
ratings. With this data, we can illustrate that our algorithm effectively improves the
quality of service compositions for users.

Acknowledgments. This work was supported in part by the DARPA/Air Force
Integrated Learning Program, through the contract # FA8650-06-C-7606, and by the
National Science Foundation. The opinions expressed in this paper are those of authors
and do not necessarily reflect the opinions of the funders.

References
[1] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composi-

tion using SHOP2. Journal of Web Semantics 1, 377–396 (2004)

358 U. Kuter and J. Golbeck

[2] Kuter, U., Sirin, E., Parsia, B., Nau, D., Hendler, J.: Information gathering during planning
for web service composition. Journal of Web Semantics (2005)

[3] McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In:
KR-2002, Toulouse, France (2002)

[4] Pistore, M., Barbon, F., Bertoli, P.G., Shaparau, D., Traverso, P.: Planning and monitoring
web service composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI),
vol. 3192, pp. 106–115. Springer, Heidelberg (2004)

[5] Traverso, P., Pistore, M.: Automated composition of semantic web services into executable
processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

[6] OWL Services Coalition: OWL-S: Semantic markup for web services, OWL-S White Paper
(2004), http://www.daml.org/services/owl-s/1.1/owl-s.pdf

[7] Golbeck, J.: Computing and Applying Trust in Web-based Social Networks. PhD thesis,
University of Maryland, College Park, MD, USA (2005)

[8] Levien, R., Aiken, A.: Attack-resistant trust metrics for public key certification. In: 7th
USENIX Security Symposium, pp. 229–242 (1998)

[9] Ziegler, C.N., Lausen, G.: Spreading activation models for trust propagation. In: Proceed-
ings of the IEEE International Conference on e-Technology, Taipei, Taiwan, IEEE Com-
puter Society Press, Los Alamitos (2004)

[10] Avesani, P., Massa, P., Tiella, R.: Moleskiing.it: a trust-aware recommender system for ski
mountaineering. International Journal for Infonomics (2005)

[11] Kuter, U., Golbeck, J.: Sunny: A new algorithm for trust inference in social networks, using
probabilistic confidence models. In: Proceedings of the National Conference on Artificial
Intelligence, AAAI (2007)

[12] Ziegler, C.N., Lausen, G.: Analyzing correlation between trust and user similarity in online
communities. In: Proceedings of the Second International Conference on Trust Manage-
ment (2004)

[13] Ziegler, C.N., Golbeck, J.: Investigating Correlations of Trust and Interest Similarity. De-
cision Support Services 1 (2006)

[14] Golbeck, J.: Trust and nuanced profile similarity in online social networks. In: Transactions
on the Web (to appear, 2009)

[15] Chi, P., Nau, D.S.: Predicting the Performance of Minimax and Product in Game Tree
Searching. In: Second Workshop on Uncertainty and Probability in Artificial Intelligence
(1986)

[16] Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An
HTN planning system. JAIR 20, 379–404 (2003)

[17] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284,
34–43 (2001)

[18] Golbeck, J.: Generating predictive movie recommendations from trust in social networks.
In: Proceedings of the Fourth International Conference on Trust Management, pp. 93–104
(2006)

[19] Kuter, U., Sirin, E., Nau, D.S., Parsia, B., Hendler, J.: Information gathering during plan-
ning for web service composition. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 335–349. Springer, Heidelberg (2004)

[20] Martinez, E., Lespérance, Y.: Web service composition as a planning task: Experiments
using knowledge-based planning. In: ICAPS-2004 Workshop on Planning and Scheduling
for Web and Grid Services (2004)

[21] Petrick, R.P.A., Bacchus, F.: A knowledge-based approach to planning with incomplete
information and sensing. In: AIPS (2002)

http://www.daml.org/services/owl-s/1.1/owl-s.pdf

XLWrap – Querying and Integrating Arbitrary
Spreadsheets with SPARQL

Andreas Langegger and Wolfram Wöß

Institute of Applied Knowledge Processing
Johannes Kepler University Linz

Altenberger Straße 69, 4040 Linz, Austria
{al,wolfram.woess}@jku.at

Abstract. In this paper a novel approach is presented for generating RDF graphs
of arbitrary complexity from various spreadsheet layouts. Currently, none of the
available spreadsheet-to-RDF wrappers supports cross tables and tables where
data is not aligned in rows. Similar to RDF123, XLWrap is based on template
graphs where fragments of triples can be mapped to specific cells of a spread-
sheet. Additionally, it features a full expression algebra based on the syntax of
OpenOffice Calc and various shift operations, which can be used to repeat similar
mappings in order to wrap cross tables including multiple sheets and spread-
sheet files. The set of available expression functions includes most of the native
functions of OpenOffice Calc and can be easily extended by users of XLWrap.

Additionally, XLWrap is able to execute SPARQL queries, and since it is
possible to define multiple virtual class extents in a mapping specification, it
can be used to integrate information from multiple spreadsheets. XLWrap sup-
ports a special identity concept which allows to link anonymous resources (blank
nodes) – which may originate from different spreadsheets – in the target graph.

1 Introduction

The translation of information stored in various legacy information systems and data
formats to RDF is an important requirement of many Semantic Web applications. While
for the Web of Data relational database management systems (RDBMS) are consid-
ered to be the most important legacy information systems, in case of corporate Se-
mantic Web applications, spreadsheets play a similar important role. Spreadsheets are
frequently used by people in companies, organizations, and research institutions to
share, exchange, and store data. Whenever there is no database in place, spreadsheets
are often the primary fall-back tool for maintaining structured information.

Compared to wrapping a relational database, which has a fixed schema, data types,
and integrity constraints, wrapping spreadsheets is more difficult because the implicit
schema has to be captured first when creating a formal mapping. Currently available
spreadsheet wrappers treat spreadsheets as flat tables like single database relations or
comma-separated value (CSV) files. In this paper we will present a novel mapping
approach for spreadsheets which is based on template graphs similar to RDF123 [5],
which we will explain in the related work part. However, the XLWrap mapping ap-
proach is not based on a simple row oriented iteration of tables. It allows to define

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 359–374, 2009.
© Springer-Verlag Berlin Heidelberg 2009

360 A. Langegger and W. Wöß

template mappings as RDF graphs and to repeat them based on various shift and repeat
operations in order to map arbitrary layouts including multi-dimensional cross tables
and spreadsheets over multiple files. XLWrap supports expressions to reference cells
and ranges from template graphs including sheet ranges and absolute references to other
external spreadsheets such as supported by Microsoft Excel and OpenOffice Calc (the
grammar is printed in Listing 1 on page 368).

Additionally, XLWrap features a server component called XLWrap-Server, which
provides a SPARQL endpoint as well as a linked data browser similar to D2R-Server
[3]. XLWrap-Server observes a configurable directory for mapping files and whenever
a mapping file or one of the referred spreadsheet files of the mapping is added, modi-
fied, or removed, it automatically executes the translation process and caches the gen-
erated RDF data. XLWrap-Server integrates Joseki [6] to provide a SPARQL endpoint
and Snorql, which has been adopted from D2R-Server and allows the user to explore
the wrapped information on-the-fly. Together with the Semantic Web Integrator and
Query Engine (SemWIQ) [7], XLWrap can be used to integrate various spreadsheets
and other data sources such as relational databases and ODBC data sources. A simple
setup procedure and ease of use have been two major requirements for the development
of XLWrap-Server. The setup procedure is a matter of starting the server and putting
mapping files into the observation folder. XLWrap-Server is also considered to become
a practical tool for experimenting with linked data. It can be used to quickly expose
information via SPARQL while editing it in a human-friendly way. XLWrap can be
downloaded from its homepage at http://www.langegger.at/xlwrap

In the next section we will explore different spreadsheet layouts in order to create
a sound mapping framework. In Section 3 related work is discussed. In Section 4 the
XLWrap mapping formalism is presented and in Section 5 the transformation process
is explained. In order to demonstrate XLWrap, an example is discussed as part of these
sections. Section 6 concludes the contribution with some final remarks.

2 Background

In order to develop a generic mapping framework for spreadsheets, the spreadsheet
paradigm has been analyzed and different ways of information representation have been
examined. Some of these findings are presented as part of this section before related
work will be discussed. In the following, we will use the terms workbook to refer to a
file of a spreadsheet application, and worksheet (or just sheet) to denote a single two-
dimensional sheet of a workbook.

2.1 Information Representation in Spreadsheets

Firstly, it is important to distinguish between the information model and the represen-
tation model, which is used to represent information within a spreadsheet. The infor-
mation model is defined implicitly by the semantics of the entailed information. The
resulting RDF graph should as closely as possible reflect the information model, as
for example, expenditures by category, year, and sub-division or personal information
about employees. The actual information representation as an RDF graph is a subject of

http://www.langegger.at/xlwrap

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 361

Fig. 1. Information representation in spreadsheets

data modeling and in fact, there are many ways how to represent expenditures in RDF.
A generic wrapper should not enforce any fixed rules and structures that depend on the
representation of the information model in the spreadsheet. Concerning the representa-
tion model, three different layouts could be identified, whereas the third one is a hybrid
approach of the first two:

One-Dimensional Flat Table. In this layout (Figure 1(a)) information is represented,
regardless of its dimensionality, in a flat table with a single column (or row) head-
ing. It is used to represent information such as data lists, e.g. persons with fixed
properties such as name, mailbox, age, etc. Except for RDF123, all existing wrap-
pers create exactly one RDF resource per row as shown in Figure 2(a). Currently
available spreadsheet wrappers, which will be discussed in Section 3, are restricted
to this kind of representation.
However, flat tables can also be used to represent information with multiple dimen-
sions (typically >2) in so-called de-normalized tables which are also the basis of
pivot tables and OLAP programs. Some cells of the header represent dimensions
of the information model, the other header cells represent values specific to each
instance. The domain values of dimensions repeatedly occur in the instance rows
as shown in Figure 1(a). Note that regarding the previous example of a person data
list, no dimensions will be used and each value is regarded as specific to the person
instance. Alternatively, each person property may be regarded as a dimension or
facet (for instance, the dimension first name may have all occurring first names as
its domain).

Cross Tables. In this layout, which is shown in Figure 1(b), the representation of in-
formation is organized in cross tables, which may span multiple columns, rows,

A1 B1 C1 ... 10 ...
A1 B1 C1 ... 12 ...
A1 B2 C1 ... 23 ...
A1 B1 C1 ... 21 ...
A1 B3 C2 ... 23 ...
A2 B2 C2 ... 12 ...
A2 B3 C1 ... 24 ...
A1 B1 C1 ... 34 ...

A B C ... V1 ...
Dimensions Values

typically only one
value per record,
but multiple values
are also valid

(a) Flat table

B (Columns)

C (Sheets)

A (Rows)

(b) Three-dimensional cross table

B

C

A

D (Files)

...B

C

A
B

C

A

(c) Four-dimensional cross table

C1

C2

C...

B (Columns)A (Rows)

Single
Sheet

(d) Cross table on single sheet

362 A. Langegger and W. Wöß

Fig. 2. Straight-forward translation of spreadsheet data to RDF resources

sheets, and even files and directories (Figure 1(c)). Each cell represents a single
entity or instance. In a straight-forward approach, the translation could be done
as shown in Figure 2(b). Instead of a single column/row header, cross tables have
multiple headers, one for each dimension. Along the sheet axis, the header is de-
fined either by the names of the sheets in the workbook or by text labels placed
into the worksheet. Similarly, when using multiple files, the domain values of the
corresponding axis are either defined by file names or text labels on worksheets.
Because a single sheet is already restricted to columns and rows, cross tables are
often represented by repeating similar table layouts on the same sheet as depicted
in Figure 1(d). Similar to pivot tables or de-normalized tables as mentioned before,
a higher dimensionality is broken down into two dimensions by repeating similar
structures.

Hybrid Layouts. Finally, there is the possibility of combining flat tables with cross
tables (e.g. de-normalized tables can be repeated across several sheets or files).

Independent of the representation model, a wrapper must be able to translate the in-
formation into an RDF graph by best reflecting the source information model. To give
another example, revenues for different products, years, and countries can either be rep-
resented in a de-normalized flat table with the heading (product, year, country, revenue)
or in a cross table with one sheet per product, each one representing revenues per year
and country.

2.2 Definition of Spreadsheet Applications

The following definition for spreadsheet applications is the basis for the mapping frame-
work presented in Section 4.

Definition 1. A spreadsheet application A is defined as a set of named workbooks wi,
i ∈ N0, where name(wi) is the canonical workbook filename denoted by its URI. A
spreadsheet application has at least one workbook w0, called the base workbook and
optionally a set of external workbooks wi, i ≥ 1, which are referenced from w0 by means
of absolute cell references.

URI/bnode

cell(C, i)
cell(A, i)

A C
constant rdf:type

cell(B, i)

B

cell(X, i)
X

one statement
per column A, B, C, ...

one resource
per row i

constant statements
...

(as URI resource)

(a) One RDF resource per row

dimensions A, B, C, ...
as statements

URI/bnode

cell value

A B
C

rdf:value

constant
rdf:type

...

one resource
per cellconstant

statements
...

(b) One RDF resource per cell

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 363

Within companies it is very common that multiple spreadsheets are interlinked by ex-
ternal cell references. To be able to process external references in XLWrap mappings,
this definition takes external workbooks into account. The URI scheme for local files is
file://. Workbook files on the Web can be referenced by means of HTTP URIs.

Definition 2. A workbook wi ∈ A is defined as a set of named worksheets s j, j ∈ N,
where name(s j) is the sheet name as specified in the application (a string).

Beside single worksheets, it is also common to use multiple worksheets. As will be
shown later, XLWrap supports a special sheet shift operation, which allows to repeat-
edly apply template mappings on multiple sheets.

Definition 3. A worksheet s j ∈ wi is defined as a matrix of cell values V = [vc,r]n×m

where c ∈ N0, c < m, is the column index and r ∈ N0, r < n, is the row index of the
corresponding worksheet table. m, n denote the total number of columns and rows used
in worksheet s j.

Although there is a space limit for m and n in practice, there is no limitation enforced
by this definition. The same applies to the number of worksheets in a workbook.

Definition 4. A cell value vc,r has a type annotation denoted as type(vc,r)→ T with T =
{ttext, tnumber, tdatetime, tboolean, tempty}. Additionally, a cell value may have a formatting
(e.g. for number, currency, date/time formatting) and a formula annotation denoted as
formula(vc,r) → E, where e ∈ E is a compositional expression according to a pre-
defined grammar GE.

A cell formula, is not a specific type ∈ T . Instead, it is an annotation defining the
expression which can be evaluated to reproduce or update vc,r. Values with formula an-
notations are explicitly stored in the corresponding workbook files. In our definition of
spreadsheet applications, the grammar GE supports range references denoted as ere f .
Range references are used to refer to other cells of the same spreadsheet, other sheets of
the same workbook, or external workbooks. In Section 4 it will be described, how ex-
pressions and range references are also used for XLWrap mappings to map spreadsheet
cells to RDF graphs. The proper definition of a range reference is given below.

Definition 5. A range reference sub-expression ere f is generally defined as a set of
partial 7-tuples of the form (wi, s j1, c1, r1, s j2, c2, r2). These components specify a
workbook, a start cell consisting of a sheet, column, row, as well as a target cell spec-
ified by a sheet, column, and row. Some tuple components are optional and may be left
empty. If |ere f | > 1, the range reference is called multi range reference, because it con-
tains multiple single range references. In case of OpenOffice Calc, the general lexical
representation of a single range reference is:

((wi “#$”)? s j1 “.”)? c1 r1 (“:” (s j2 “.”)? c2 r2)?

For multi range references, single range references are separated with a semicolon. The
following two sub-types are defined:

364 A. Langegger and W. Wöß

– Cell reference, which has the optional components wi, s j1, the mandatory compo-
nents c1, r1, and the component s j2, c2, r2 left empty (e.g. A3, ’Sheet 1’.A3, or
file:foo.xls#$’Sheet 1’.A3)

– Box reference, which has the optional components wi, s j1, s j2 and the mandatory
components c1, r1, c2, r2 (e.g. A3:B9, or file:foo.xls#$’Sheet 1’.A3:B28.

Whenever the components wi and s j1, s j2 are omitted, the range reference is interpreted
relative to the worksheet of its originating cell formula. Hence, a range reference can
either be absolute or relative its base sheet or workbook file.

2.3 Dumping versus On-the-Fly Processing of SPARQL Queries

Concerning the wrapping approach, a distinction can be made based on the direction of
the mapping formalism, which can either be source/spreadsheet-centric, or target/RDF-
centric. In general, when mapping between two different data models, it is possible to
define one of the data models as a view onto the other data model. Since in our case,
the RDF model acts as the target model, the spreadsheet-centric variant is similar to
the Local-as-View (LaV) approach and the RDF-centric variant is similar to the Global-
as-View approach (GaV) in information integration [8]. Only XLWrap and RDF123,
support the GaV-approach and allow the user to define RDF-centric mappings based
on graphs. All other wrappers are based on a spreadsheet-centric view definition which
map columns or cells to specific properties and do not allow the definition of custom
target graphs.

Another distinction can be made concerning the actual transformation of spreadsheet
data into RDF when executing SPARQL queries. For queries, the wrapping process can
either be based on materialization involving a single data dump into a volatile or persis-
tent RDF store, or it can be an on-the-fly query execution process (e.g. D2R-Server [3]).
Actually, our initial motivation for developing XLWrap have been experiments towards
a generic guideline for the generation of virtual RDF wrappers supporting SPARQL for
the Semantic Web Integrator and Query Engine (SemWIQ). Based on experiences with
D2R-Server while contributing some optimizations like push-down of filters into SQL,
our assumption was, that simple RDF wrappers can be written based on Jena ARQ by
supporting triple patterns and let ARQ process all higher level algebra operations. For
instance, a wrapper providing SPARQL access to the directory structure of a file sys-
tem or an FTP server can be written very easily this way. It only needs to correctly
interpret subsequent triple patterns and generate the necessary variable bindings which
correspond to a virtual RDF graph similar to a database access plan. However, for larger
information sources, low-level index structures such as hash tables or B+ trees are nec-
essary in order to achieve acceptable performance results. They may be managed by
the wrapper in volatile memory caches and will have to be updated by means of a no-
tification mechanism or pre-defined periods. Additionally, a wrapper for a large data
source should provide cardinality estimations for triple patterns in order to support the
re-ordering in a BGP by expected cardinalities. During the evaluation of a BGP, subse-
quent joins over triple patterns are executed by ARQ based on a substitute algorithm:
already obtained variable bindings of triples produced by upper triple patterns are used
as constraints for matching subsequent triple pattern. Thus, triple patterns with a lower
cardinality should be executed first.

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 365

However, experiments have shown that in most situations it is still better to apply a
materialized approach and dump data into an RDF store instead of maintaining separate
index structures and insisting on the virtual approach. In particular, these findings apply
to spreadsheets, because they are typically small in size (compared to databases) and
there is actually no need to process queries on-the-fly. In fact, the dumping process is
so fast, that even if the materialized cache has to be re-generated, it is only a matter of
seconds or milliseconds. XLWrap tracks any changes in mapping files and referenced
workbook files and re-generates caches in the background which is hardly noticed by
end-users.

3 Related Work

Among the currently available spreadsheet wrappers there are two open source projects,
Excel2RDF [4] and RDF123 [5], and there is TopBraid Composer from TopQuadrant1,
which is a commercial ontology development environment integrating support for im-
porting and exporting RDF from/to spreadsheet files. We were unable to find any further
spreadsheet RDF wrapper in the literature and on the Web. There is another notable
software called Anzo for Excel from Cambridge Semantics2, which is actually not a
dedicated RDF wrapper, but which can be used to map information from spreadsheets
to vocabularies for distributed, collaborative work. Because Anzo is targeted to em-
ployees who typically do not know about RDF, it hides any details of the internals.
Although it provides a graphical plugin for Microsoft Excel, which allows to map cells
and ranges to vocabularies, it is unclear how it can be used to map spreadsheets to cus-
tom graphs. As a marginally related project the Aperture3 framework developed for the
Nepomuk Semantic Desktop is mentioned, which is extracting meta data from spread-
sheet files. However, the content of spreadsheets is not processed or wrapped based on
a formalized mapping. Instead, Aperture tries to extract significant features and terms
from spreadsheets in order to support semantic search and interlinking of documents in
the Nepomuk framework.

Unfortunately, nearly all existing dedicated wrappers are rather limited in practice.
The simplest one is Excel2RDF and an extended version called ConvertToRDF, which
supports basic mappings for column headers. As both tools follow the spreadsheet-
centric mapping approach, the output graph is fixed and for each row of only a single
spreadsheet table, one RDF resource is created with property/object pairs for all mapped
columns. Resources as objects or typed literals are not supported. The spreadsheet im-
port feature of TopBraid Composer is similarly basic. Actually, only CSV text files are
supported and the mapping is similar to ConvertToRDF. Typed literals and resource
objects are supported, but target types have to be specified manually.

The most relevant wrapper related to our work is RDF123 [5]. Beside XLWrap, it is
the only wrapper that supports an RDF-centric mapping approach. However, although
with RDF123 it is possible to define arbitrary target graphs, it is restricted to a specific
spreadsheet layout, like all of the other existing wrappers. It only supports flat tables

1 http://www.topquadrant.com
2 http://www.cambridgesemantics.com/
3 http://aperture.sourceforge.net/

http://www.topquadrant.com
http://www.cambridgesemantics.com/
http://aperture.sourceforge.net/

366 A. Langegger and W. Wöß

as shown in Figure 1(a) of the previous section. The available prototype is capable of
reading CSV text files but does not support Excel or OpenOffice spreadsheets. An RDF
mapping in RDF123 is described as part of the spreadsheet itself in a special meta data
section starting with the specific label rdf123:metadata. Among several Dublin Core
metadata, the section specifies the start row, the end row, the start column, whether there
is a row header which has to be skipped, and the URI of the template graph used for
producing the results. When processing a spreadsheet, the execution engine scans the
sheet for the metadata section and if it cannot be found, the complete sheet (only one
worksheet is supported) is wrapped in a similar way as with Excel2RDF. If the metadata
section is found, the execution engine retrieves the template graph from the specified
location. The template graph is an RDF graph which may contain references to the
columns of the current row being processed to generate nodes based on values obtained
from the spreadsheet. Thus, the execution process is fixed to one row by row iteration.
In order to refer to the columns of the active row being processed, expressions can
be specified as special literals and faked URIs as for example "Ex:$1" and <Ex:$1>,
which both refer to the first column. Unfortunately, this approach has the following
severe consequences: all other literals starting with Ex: will be matched as expressions
and cause errors. Furthermore, because expressions may contain spaces and special
characters, encoding them as URIs (with Ex: as a pseudo protocol) will cause further
troubles at runtime and lead to incompatibilities with other systems.

RDF123 provides a GUI which facilitates the process of creating mappings. How-
ever, the tool only provides a viewer for CSV files and a basic graph designer which
both are not combined in any special way. The graph designer uses a proprietary format
to store graphs specific to the Open JGraph library, which has been used. Developing
a powerful graphical support tool is not easy and requires a lot of effort. It would be
desirable for a graphical mapping tool to provide features specific to the mapping pro-
cess such as drag and drop, highlighting of referenced cells, and a simulation feature
for debugging the wrapping process.

Because XLWrap can be used to semantically integrate different spreadsheets and to
query the entailed information based on logical inference, it can also be compared to
the system proposed by [9] which is called LESS for Logic Embedded in SpreadSheets.
Instead of writing typical numerical formulas into the cells of a spreadsheet, LESS
allows to logically annotate facts and use logical functions for calculations.

4 XLWrap Mapping Formalism

XLWrap is based on an RDF-centric mapping approach which allows to map the in-
formation stored in a spreadsheet to arbitrary RDF graphs independent from the rep-
resentation model as discussed in Section 2. Similar to RDF123, the output graph is
defined by means of template graphs which are repeatedly applied during the wrapping
process. With XLWrap expressions it is possible to refer to arbitrary cells and combine
them with expressions like in spreadsheet applications.

4.1 XLWrap Mappings

In the following, XLWrap mappings are defined based on the definitions of Sect. 2.

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 367

Definition 6. An XLWrap mapping M is defined as a set of map templates mk, k ∈ N.

Definition 7. A map template mk = (wk, sk,Ck,Gk, Fk) consists of the following com-
ponents: a base workbook wk ∈ wi, a base worksheet sk ∈ s j, a constant RDF graph Ck,
an RDF template graph Gk, and a sequence of transform operations Fk = (fl), l ∈ N.

Definition 8. A constant graph Ck and a template graph Gk are valid RDF graphs,
according to the W3C specification, which may contain literals of the custom data type
xl:Expr called XLWrap expressions4.

Definition 9. A transform operation fl can modify the template graph Gk and change
range references in expressions.

During the wrapping process, each map template mk ∈ M contributes a sub-graph [[Gk]]
to the overall result similar to RDF123, but with the difference that a graph template is
not moved from the first row to the last one in a fixed direction, instead, it is moved
based on the transformation sequence defined by (fl). The bracket notation [[. . .]] is
used to denote the application of a template graph including the evaluation of all XL-
Wrap expressions. While Ck is evaluated and merged into the target graph once, the
template graph Gk is subsequently transformed by (fl) and evaluated multiple times. If
|Fk| = 0, no transformations are specified and Gk is applied once in its initial form.

Because by definition subjects and predicates cannot be literals, in order to specify
XLWrap expressions for subjects or predicates, they have to be wrapped in blank nodes
as part of the template graph. The special property xl:uri is then used to replace these
blank nodes by URI resources in the target graph. Similarly, the property xl:id can be
used to link blank nodes: XLWrap will produce blank nodes with equal local IDs in the
target graph

Definition 10. An XLWrap expression is defined as a compositional expression of basic
expression symbols similar to spreadsheet formulas (see Definition 4). XLWrap expres-
sions are parsed from the lexical representation by the custom data type implementa-
tion5 according to the grammar defined in Listing 1.

Range references, including cell, box, and multi range references are supported as spec-
ified in Definition 5. Additionally, XLWrap supports the special range types null range,
full sheet range, and any range, which are lexically denoted as the empty string, (s j

“.*”), and “*.*”. Depending on the semantics of operations and functions, only specific
range sub-types are valid6. Optionally, a worksheet s j can be prefixed with “#” and
specified by the sheet number starting with 1 (e.g. “#1.A1”, “#3.*”).

XLWrap supports all standard arithmetic and also logical operators, string concatena-
tion, and an extensible function library (additional implementations can be easily added
at runtime). The most important functions for string manipulation, including SHA-1

4 The full namespace for the prefix xl: is http://langegger.at/xlwrap/vocab#
5 In Jena it is possible to register a custom data type handler by extending BaseDatatype.
6 For example, while SUM() takes any range reference and also numbers as arguments (the

number of arguments is not restricted), the expression "A3:B5" is invalid, since it is only
possible to obtain values from a single cell.

http://langegger.at/xlwrap/vocab#

368 A. Langegger and W. Wöß

XLExpression = "="? OrExpr <EOF> OrExpr = AndExpr (
"||" AndExpr)* AndExpr = Comparable ("&&" Comparable)*
Comparable = Concatable (CompOp Concatable)* Concatable =
Expr ("&" Expr)* Expr = Term (("+"|"-") Term)* Term
= Factor (("*"|"/") Factor)* Factor = Atom ("ˆ" Atom)*
Atom =
("+"|"-"|"!")
(
<NUMBER> ("%")? |
(<TRUE>|<FALSE>) |
<STRING> |
<CELLRANGE> |
"(" Concatable ")" ("%")? |
<FUNCIDENT> "(" (Concatable ((","|";") Concatable)*)? ")" ("%")?

)
CompOp = "<=" | "<" | ">=" | ">" | ("!="|"<>") | ("=="|"=")

Listing 1. Grammar of XLWrap expressions

hashing (which, for instance, is required for foaf:mbox sha1sum property values in
FOAF applications), type casting (to enforce specific literal data types in the RDF out-
put), aggregate functions such as SUM(), which takes cell, box, and multi ranges as
arguments, have already been implemented.

The following transform operations are available in the current implementation:

– column shift: fColumnS hi f t(d, n, z, ec)
– row shift: fRowS hi f t(d, n, z, ec)
– sheet shift: fS heetS hi f t(d, n, z, ec)
– sheet repeat: fS heetRepeat((gi), z, ec)
– file repeat: fFileRepeat((hi), z, ec)

Common to all operations is z, a multi range reference, which can be used to restrict
the transform operation on a set of ranges (default is AnyRange) and ec can be a logical
XLWrap expression, which is evaluated each time before the transformation is applied
(default is true). For all the shift operations d is the amount of columns/rows/sheets to
shift (defaults to 1), n is the number of times to apply the operation (defaults to the
maximum integer value of the runtime system), and for the repeat operations, (gi) and
(hi), respectively, specify the set of sheets or files to apply the template for. In order
to dynamically wrap evolving spreadsheets, n can be omitted and the iteration can be
controlled based on the condition ec. As a consequence, the transform operation will
be repeated until the condition evaluates to false. For convenience, the special function
EMPTY(ere f), which takes a multi range argument and returns true if all cells in ere f are
empty, can be used to detect the end of a data range in the spreadsheet.

As mentioned along with Definition 5, a range reference can be absolute or rela-
tive. Relative range references are extended during the mapping process by the base
workbook wk and base worksheet sk defined in the mapping M. For example, “A3”
may refer to “file:foo.xls#$Sheet1.A3” at runtime. The sheet/file repeat transforma-
tions will override the sheet/file component as needed, but absolute range references are
never modified by transform operations. There are special expression functions which
can be used to track the origin of the generated RDF triple by obtaining the current

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 369

filename, sheet name, sheet number, row and column of a cell at runtime: FILENAME(),
SHEETNAME(), SHEETNUM(), COLUMN(), and ROW(). All these functions take a cell
range as an argument.

4.2 Example Mapping

The source data for the example is printed in Table 1. The workbook w0 used for this
demonstration contains two sheets s1, s2 of information on revenues of a company. For
each country the company operates in, revenues are organized in a cross table containing
sold items and total revenue per product and year. As can be seen, data for 2008 is
missing for Germany, and there is one more product for Germany.

Table 1. Source data for the discussed example (s1, s2 ∈ w0)

Austria
2007 2008 2009

product items sold revenue items sold revenue items sold revenue
Product 1 342 7,866.00 376 8,648.00 490 11,760.00
Product 2 4,333 1,005,256.00 5,655 1,328,925.00 3,493 838,320.00
Product 3 3,312 1,136,016.00 4,566 1,598,100.00 5,993 1,917,760.00
Product 4 45 19,350.00 56 24,304.00 54 23,328.00
Totals 8,032 2,168,488.00 10,653 2,959,977.00 10,030 2,791,168.00

Germany
2007 2009

product items sold revenue items sold revenue
Product1 2,431 55,913.00 3,419 82,056.00
Product2 31,230 7,339,050.00 32,123 7,709,520.00
Product3 23,121 8,092,350.00 31,039 9,932,480.00
Product4 3,423 1,198,050.00 3,412 1,091,840.00
Product5 121 52,514.00 312 134,784.00
Totals 60,326 16,737,877.00 70,305 18,950,680.00

Depending on the desired target graph, Ck,Gk, andFk can be specified differently.
For instance, the target graph could be modeled as one resource per country having
linked resources for all products, and years. A more direct representation of the multi-
dimensional information is defined in the example mapping shown in Listing 2. We
will describe the generation process for this mapping in the next section. A third rep-
resentation using the Statistical Core Vocabulary7 (SCOVO) is provided as part of the
distribution (mappings/iswc09-example.trig). In order to be able to include the
template graphs in the mapping specification, the TriG syntax8, which allows to de-
note named graphs, is used. XLWrap searches for an instance of xl:Mapping in all
graphs and starts parsing the specification. The XLWrap mapping vocabulary, which
is published at http://www.langegger.at/xlwrap/vocab#, corresponds to the
definitions provided in Section 4.1.

7 http://purl.org/NET/scovo
8 http://www4.wiwiss.fu-berlin.de/bizer/TriG/

http://www.langegger.at/xlwrap/vocab#
http://purl.org/NET/scovo
http://www4.wiwiss.fu-berlin.de/bizer/TriG/

370 A. Langegger and W. Wöß

@prefix r d f : < h t t p : / /www. w3 . o rg /1999 /02 /22 − rd f −s yn tax −ns#> .
@prefix x l : < h t t p : / / l a n g e g g e r . a t / x lwrap / vocab#> .
@prefix ex : < h t t p : / / example . o rg /> .
@prefix : < h t t p : / / myAppl i ca t io n / mapping#> .

{ [] a x l : Mapping ;
x l : t e m p l a t e [

x l : f i l eName ” f i l e s / t e s t i n g / i swc09−example . x l s ” ;
x l : sheetNumber ”0” ;
x l : t e m p l a t e G r a p h : Revenues ;
x l : t r a n s f o r m [

a r d f : Seq ;
r d f : 1 [a x l : RowShift ;

x l : r e s t r i c t i o n ”A4 ; B4 : C4” ;
x l : c o n d i t i o n ”LEFT (A4 , 7) == ’ Produc t ’ ” ;
x l : s t e p s ”1”] ;

r d f : 2 [a x l : C o l S h i f t ;
x l : r e s t r i c t i o n ”B2 ; B4 : C4 ” ˆ ˆ x l : Expr ;
x l : c o n d i t i o n ” !EMPTY(B4 : C4) ” ;
x l : s t e p s ”2”] ;

r d f : 3 [a x l : S h e e t S h i f t ;
x l : r e s t r i c t i o n ” # 1 . * ” ˆ ˆ x l : Expr ;
x l : r e p e a t ”2”] ;

]
] .

}

: Revenues {
[x l : u r i ” ’ h t t p : / / example . o rg / revenue ’ & URLENCODE(SHEETNAME(A1) & ’ ’ & B2 &

’ ’ & A4) ” ˆ ˆ x l : Expr] a ex : Revenue ;
ex : c o u n t r y ”DBP COUNTRY(SHEETNAME(A1)) ” ˆ ˆ x l : Expr ;
ex : y e a r ”DBP YEAR(B2) ” ˆ ˆ x l : Expr ;
ex : p r o d u c t ”A4 ” ˆ ˆ x l : Expr ;
ex : i t e m s S o l d ”B4 ” ˆ ˆ x l : Expr ;
ex : r e v e n u e ”C4 ” ˆ ˆ x l : Expr .

}
Listing 2. Example mapping specified in TriG syntax

In our approach, the mapping is stored separately from the actual spreadsheet files
and not as part of them. It is assumed that the creator of the mapping file may not
have the authorization or possibility to modify spreadsheet files to be wrapped. XL-
Wrap is capable of loading local files and downloading spreadsheet files from the Web.
Currently, Excel files, Open Document spreadsheets, and also CSV files are supported
(although they could also be wrapped with other tools). The layout of CSV files (de-
limiters, separators, white spaces) can be specified. CSV files are streamed in order to
support large data files. The implementation simulates a workbook and requests new
rows from the input stream as needed by the execution engine. Because a single tem-
plate graph typically refers to a small section of the whole spreadsheet, it is sufficient
to keep the last n (where n = 1000 by default) rows in a cache.

5 Transformation Process

To give an overview of the transformation process, a flow chart is depicted in Figure
3. For each map template mk ∈ M, Ck and all generated template graphs qi are evalu-
ated based on the current state of the execution context X, which contains a reference
to the currently processed map template mk (activeTmpl) in order to retrieve wk and

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 371

sk. The base workbook wk and the base worksheet sk are required for the evaluation of
relative range references and obtaining values from the cells of the spreadsheets. The
execution context also contains a reference to the target graph (targetGraph) where
the generated statements are inserted. While in Section 4 we used [[Gk]] to denote the
evaluation of Gk including the application of transform operations Fk, the notation of
[[Ck]]X and [[qi]]X in the flow chart only represents the evaluation of XLWrap expres-
sions for the given graphs Ck and qi. The application of Fk is completely hidden by the
TemplateModelGenerator, which subsequently applies the defined transform opera-
tions fl ∈ Fk against Gk and returns multiple template graphs qi.

Fig. 3. Overview of the wrapping process

The TemplateModelGenerator is implemented as an iterator which uses a
sequence of stacked instances of TransformationStage – one for each transform
operation fl. Each stage transforms its current stage graph q fl

i1,...,in
according to the cor-

responding transform operation as depicted in Figure 4. Initially, all stage graphs are
equal to the template graph: q fl

0,...,0 = Gk. The blue nodes on the bottom represent fi-
nal template graphs which are returned by TemplateModelGenerator. Each call to
TemplateModelGenerator.hasNext() results in a transformation at the lowest stage
that has more transformations to apply. For example, if there are no more rows to shift
by f1, the corresponding stage triggers its parent stage and tracks back its internal state.
Likewise, if the condition defined for the transform operation does not hold, it is skipped
and the parent stage is triggered.

When a template graph is applied, before its triples are added into the target graph,
any blank node with a xl:uri property is replaced with a URI node, blank node la-
bels with equal xl:id properties are aligned, and any xl:Expr literal is evaluated as
an XLWrap expression e. The result of [[e]] is an instance of XLExprValue, which
can be a URI, blank node, string, long integer, double, boolean, or date value. When
obtaining cell values, the type is automatically detected based on the type annotation
(Definition 4). When creating literals for the target graph, long integers and floats are

X := new ExecutionContext()
M := MappingParser.parse(<file>)

M has more
templates?

Gk = templateModel(mk)
Fk = transformOperations(mk)
Q := new TemplateModelGenerator(X, Gk, Fk)

mk := next map template
X.activeTmpl := mk

Q has more
tmpl models?

true

qi := next template model
addStatements([[qi]]X, X.targetGraph)

true

Ck := constantModel(mk)
addStatements([[Ck]]X, X.targetGraph)

false

false

return X.targetGraph

372 A. Langegger and W. Wöß

Fig. 4. Transform stages for the mapping specification of Listing 2

automatically reduced to the required size as long as they have not been explicitly casted
with a type casting function before. Depending on the type, a matching typed literal is
created.

For the example spreadsheet given in Table 1, after applying the mapping in Listing
2, the following triples are generated:

ex:revenue_Austria_2007_Product1 a ex:Revenue ;
ex:country <http://dbpedia.org/resource/Austria> ;
ex:itemsSold "342"ˆˆ<http://www.w3.org/2001/XMLSchema#short> ;
ex:product "Product1" ;
ex:revenue "7866"ˆˆ<http://www.w3.org/2001/XMLSchema#int> ;
ex:year <http://dbpedia.org/resource/2007> .

ex:revenue_Austria_2007_Product2 a ex:Revenue ;
ex:country <http://dbpedia.org/resource/Austria> ;
ex:itemsSold "4333"ˆˆ<http://www.w3.org/2001/XMLSchema#short> ;
ex:product "Product2" ;
ex:revenue "1005256"ˆˆ<http://www.w3.org/2001/XMLSchema#int> ;
ex:year <http://dbpedia.org/resource/2007> .

ex:revenue_Austria_2007_Product3 ...
ex:revenue_Austria_2007_Product4 ...
ex:revenue_Austria_2008_Product1 ...
...
ex:revenue_Austria_2009_Product1 ...
...
ex:revenue_Germany_2007_Product1 ...
...
ex:revenue_Germany_2009_Product1 ...
...
ex:revenue_Germany_2009_Product5 ...

Range reference sub-expressions of the stage template graph q f 1
0,0,0 = Gk are shifted

down by one row first until the condition LEFT(A4, 7) == ’Product’ is false, pro-
ducing resources for all products sold in Austria in 2007. However, only those range
references within the range restriction z f 1 = "A4; B4:C4" are actually transformed.
For instance, the expression "A4" (literal for ex:product) is subsumed by the restric-
tion range and is therefore changed to "A5", but "DBP YEAR(B2)" remains unchanged.
Next, q f 2

0,1 is calculated by a 2-step column shift of q f 2
0,0. The stage model of the sub-stage

is initialized as q f 1
0,1,0 := q f 2

0,1 for the next execution of f1 (row shift). If both, f1 and f2

qf3
0

qf2
0,0 qf2

0,1 qf2
0,n2

initial column

qf1
0,0,0 qf1

0,0,1 qf1
0,0,n1

initial row

Gk

initial sheet

f3: sheet shift

f2: column shift

f1: row shift

shift row

shift column

next sheet
parent
stage

parent
stage

null

...
qf1

0,1,0 qf1
0,1,1 qf1

0,1,n1

shift row ...
... qf1

0,n2,n1

...

...
qf1

n3,n2,n1

qf2
n3,n2

qf3
n3...

parent.proceed() parent.proceed() parent.proceed()

parent.proceed()

initial row

parent.proceed()

parent.proceed()

parent.proceed()

parent
stage

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 373

have no more transformations (or both stage conditions do not hold), the sheet is shifted
according to f3, producing similar RDF data for Germany.

Transform operations are not only applied to range references in xl:Expr literals of
q fl

i1,...,in
, they must be applied also to the range restrictions z fl and to the conditions e fl

c of
the corresponding transform operations. For instance, the range restriction on the row
shift "A4; B4:C4" has to be shifted to "A5; B5:C5" in the first stage and then to "A4;
D4:E4", "A5; D5:E5", and "A4; F4:G4", "A5; F5:G5", etc. in the second stage.
When proceeding at the second stage, the transformation of the original f1-restriction is
itself restricted by the current range restriction of f2, which is "B2; B4:C4". As visual-
ized in Figure 5, thus only a subset of "A4; B4:C4" is shifted leading to "A4; D4:E4".
Currently, XLWrap is not capable of automatically splitting arbitrary box ranges based
on restrict ranges. This is why, “A4; B4:C4” was not specified as ”A4:C4” in the map-
ping9. However, intersections of box ranges are detected during the initialization of a
map template in order to be corrected.

Fig. 5. Column shift of range restriction “A4; B4:C4” restricted by “B2; B4:C4”

6 Conclusion

In this contribution we have presented XLWrap, which is an RDF-centric mapping ap-
proach to support the transformation of spreadsheets with different representation mod-
els to arbitrary RDF graphs. The mapping concept has been formally defined and im-
plemented based on the Jena Semantic Web framework. The server component called
XLWrap-Server was not further discussed due to the page limit. It is a stand-alone
Web application based on Joseki and Snorql from the D2R-Server project including a
SPARQL endpoint and a linked data interface.

XLWrap is powerful enough to represent mappings for spreadsheets with different
representation models and target graphs. Because it supports external references, HTTP
URLs, and the wrapping of multiple spreadsheets into a combined cache including
OWL inference, it can be used very easily to semantically integrate multiple spread-
sheets locally or in intranets and extranets. The possibility of adding custom functions
– which is a matter of extending XLExprFunction and providing an implementation
for eval() – can be very practical for end-users. Beside adding custom mathematical
and statistical functions, it is possible to access a database or Web resources by XLWrap
functions. The future support for aggregate functions in SPARQL is a very important
requirement in order to support typical operations on spreadsheet data.

9 Especially in combination with the multi sheet and any range, ranges cannot be split straight-
forward and the implementation would additionally require support for exclusion ranges.

1
2
3
4
5

A B C D E

shift 2 columns

F
1
2
3
4
5

A B C D E F

374 A. Langegger and W. Wöß

Future work will include the development of a graphical support tool including some
kind of mapping debugger and auto-detection of cross-tables to facilitate the mapping
specification task. Considerable work regarding auto-detection of headers and units has
already been published [1,2].

Acknowledgements

This work is funded by the Austrian BMBWK (Federal Ministry for Education, Science
and Culture), contract GZ BMWF-10.220/0002-II/10/2007. We would like to thank
Bernhard Haslhofer, Bernhard Schandl, Thomas Leitner, and Berndt Zinnöcker for the
helpful inputs and discussions held during the implementation of XLWrap.

References

1. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses.
In: VLHCC 2004: Proceedings of the 2004 IEEE Symposium on Visual Languages - Hu-
man Centric Computing, Washington, DC, USA, pp. 165–172. IEEE Computer Society Press,
Los Alamitos (2004)

2. Chambers, C., Erwig, M.: Dimension inference in spreadsheets. In: VLHCC 2008: Proceed-
ings of the 2008 IEEE Symposium on Visual Languages and Human-Centric Computing,
Washington, DC, USA, pp. 123–130. IEEE Computer Society Press, Los Alamitos (2008)

3. Cyganiak, R., Bizer, C.: D2R Server – Publishing Relational Databases on the Web as
SPARQL Endpoints. In: Developers Track at the 15th International World Wide Web Con-
ference (WWW2006), Edinburgh, Scotland (May 2006)

4. Group, M., Reck, R.P.: Excel2RDF,
http://www.mindswap.org/˜rreck/excel2rdf.shtml (Last visit, June 2009)

5. Han, L., Finin, T.W., Parr, C.S., Sachs, J., Joshi, A.: RDF123: From Spreadsheets to RDF. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)

6. HP Labs, Bristol, UK: Joseki – A SPARQL Server for Jena,
http://www.joseki.org/ (Last visit, June 2009)

7. Langegger, A., Wöß, W.: SemWIQ – Semantic Web Integrator and Query Engine. In:
Hegering, H.G., Lehmann, A., Ohlbach, H.J., Scheideler, C. (eds.) Beiträge der 38. Jahresta-
gung der Gesellschaft für Informatik e.V (GI), vol. 1. Bonner Köllen Verlag (2008)

8. Maurizio, L.: Data integration: a theoretical perspective. In: PODS 2002: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 233–246. ACM, New York (2002)

9. Valente, A., Van brackle, D., Chalupsky, H., Edwards, G.: Implementing logic spreadsheets in
less. Knowl. Eng. Rev. 22(3), 237–253 (2007)

http://www.mindswap.org/~rreck/excel2rdf.shtml
http://www.joseki.org/

Optimizing QoS-Aware Semantic Web Service
Composition�

Freddy Lécué

The University of Manchester
Booth Street East, Manchester, UK

firstname.lastname@manchester.ac.uk

Abstract. Ranking and optimization of web service compositions are some of
the most interesting challenges at present. Since web services can be enhanced
with formal semantic descriptions, forming the “semantic web services”, it be-
comes conceivable to exploit the quality of semantic links between services (of
any composition) as one of the optimization criteria. For this we propose to use
the semantic similarities between output and input parameters of web services.
Coupling this with other criteria such as quality of service (QoS) allow us to
rank and optimize compositions achieving the same goal. Here we suggest an
innovative and extensible optimization model designed to balance semantic fit
(or functional quality) with non-functional QoS metrics. To allow the use of this
model in the context of a large number of services as foreseen by the strategic
EC-funded project SOA4All we propose and test the use of Genetic Algorithms.

Keywords: Semantic Web, Web service, Service composition, Quality of service
and composition, Automated reasoning.

1 Introduction

The Semantic Web [1], where the semantic content of the information is tagged using
machine-processable languages such as the Web Ontology Language (OWL) [2], is con-
sidered to provide many advantages over the current “formatting only” version of the
World-Wide-Web. OWL is based on concepts from Description Logics [3] and ontolo-
gies, formal conceptualization of a particular domain. This allows us to describe the
semantics of services, e.g., their functionality in terms of input and output parameters,
preconditions, effects and invariants. Such descriptions can then be used for automatic
reasoning about services and automating their use to accomplish “intelligent” tasks such
as selection, discovery and composition.

Here we focus on web service composition and more specifically on its functional
level, where a set of services is composed to achieve a goal on the basis of the semantic
similarities between input and output parameters as indicators of service functionality.
To measure semantic similarity, we use the concept of (functional) semantic link [4],
defined as a semantic connection (i.e., part of data flow) between an output and an
input parameter of two services. Web service compositions could thus be estimated

� Foundation Project: Supported by European Commission VII Framework IP Project Soa4All.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 375–391, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

376 F. Lécué

and ranked not only along well known non functional parameters such as Quality of
Services (QoS) [5] but also along the dimension of semantic similarity as indicator of
functional fit [6]. Considering semantics on connections of services is useful in case
the information required and provided by services does not match perfectly in every
data flow. This is the case of semantic-based description of services. In this work we
propose to unify both types of criteria in an innovative and extensible model allowing
us to estimate and optimise the quality of service compositions.

Maximizing the quality of service composition using this model is essentially a
multi-objective optimization problem with constraints on quality of services and
semantic links, which is known to be NP-hard [7]. Most approaches in the literature
addressing optimization in web service composition are based on Integer linear Pro-
gramming (IP) e.g., [8]. However, IP approaches have been shown to have poor scala-
bility [5] in terms of time taken to compute optimal compositions when the size of the
initial set of services grows. Such a case can arise in the future semantic web, where
a large number of semantic services will be accessible globally. This is the vision of
SOA4All, a strategic EC-funded project. Rapid computation of optimal compositions
is especially important for interactive systems providing service composition facilities
for end users, where long delays may be unacceptable. Here we demonstrate that the
optimisation problem can be automated in a more scalable manner using Genetic Al-
gorithms (GAs), and propose an approach to tackle QoS-aware semantic web service
composition.

The remainder of this paper is organised as follows. In the next section we briefly
review i) semantic links, ii) their common descriptions and iii) the web service com-
position model. Section 3 introduces the quality criteria for QoS-aware semantic web
service composition. Section 4 details the GA-based evolutionary approach, includ-
ing the strategies of the crossover, mutation and fitness function. Section 5 reports
and discusses results from the experimentations. Section 6 briefly comments on re-
lated work. Finally section 7 draws some conclusions and talks about possible future
directions.

2 Background

In this section we describe how semantic links can be used to model web service com-
position. In addition we remind the definition of Common Description in semantic links.

2.1 Semantic Links between Web Services

In the semantic web, input and output parameters of services referred to concepts in a
common ontology1 or Terminology T (e.g., Fig.2), where the OWL-S profile [9] or SA-
WSDL [10] can be used to describe them (through semantic annotations). At functional
level web service composition consists in retrieving some semantic links [4] noted sli,j
(Fig.1) i.e.,

sli,j
.= 〈si, SimT (Out si, In sj), sj〉 (1)

1 Distributed ontologies are not considered here but are largely independent of the problem
addressed in this work.

Optimizing QoS-Aware Semantic Web Service Composition 377

between output parameters Out si ∈ T of services si and input parameters In sj ∈ T
of other services sj . Thereby si and sj are partially linked according to a matching func-
tion SimT . Given a terminology T , [11] and [12] value the range of the latter function
along five matching types: i) Exact i.e., Out si ≡ In sj , ii) PlugIn i.e., Out si �
In sj , iii) Subsume i.e., In sj � Out si, iv) Intersection i.e., ¬(Out si � In sj � ⊥)
and v) Disjoint i.e., Out si � In sj � ⊥.

Output ParameterService Input Parameter

ServiceService

Inn sj

Semantic Link sl

sjOut si
si

In0 si

Ink si

Inn si

(SimT (Out si, In sj))

In sj

Out sj

Semantic Link sli,j
Out0 si In0 sj

Outn si

Fig. 1. A Semantic Link sli,j between Services si and sj

Example 1 (Matching Type)
Suppose sl1,2 (Fig.3) be a semantic link between two services s1 and s2 such that the
output parameter NetworkConnection of s1 is (semantic) linked to the input pa-
rameter SlowNetworkConnection of s2. According to Fig.2 this link is valued by
a Subsume matching type since NetworkConnection � SlowNetworkConnection.

The matching function SimT enables, at design time, finding some types of semantic
compatibilities (i.e., Exact, PlugIn, Subsume, Intersection) and incompatibilities (i.e.,
Disjoint) among independently defined service descriptions. In this direction the latter
function can be used to define the quality of data flow in web service composition at
semantic level.

2.2 Common Description of a Semantic Link

Besides computing the matching type of a semantic link, authors of [13] suggest com-
puting a finer level of information i.e., the Extra and Common Descriptions between
Out si and In sj of a semantic link sli,j . They adapt the definition of syntactic differ-
ence [14] for comparingALE DL descriptions and then obtaining a compact represen-
tation. The Extra Description In sj\Out si:

In sj\Out si
.= min

�d

{E|E �Out si ≡ In sj �Out si} (2)

refers2 to information required by In sj but not provided by Out si to ensure a correct
data flow between si and sj . The Common Description of Out si and In sj , defining
as their Least Common Subsumer [15] lcs, refers to information required by In sj and
provided by Out si

3.

2 With respect to the subdescription ordering �d.
3 In case Out si � ¬In sj � ⊥, In sj\Out si is replaced by its more general form i.e.,
In sj\lcs(In sj , Out si).

378 F. Lécué

NetworkConnection ≡ ∀netPro.Provider � ∀netSpeed.Speed
SlowNetworkConnection ≡ NetworkConnection �

∀netSpeed.Adsl1M
Adsl1M ≡ Speed � ∀mBytes.1M

Fig. 2. Sample of an ALE Domain Ontology T

Example 2 (Extra & Common Description)
Suppose sl1,2 in Example 1. On the one hand the Extra Description missing in Net-
work Connection to be used by the input parameter SlowNetwork
Connection is defined by SlowNetworkConnection\NetworkConnection i.e.,
∀netSpeed.Adsl1M . On the other hand the Common Description is defined by
lcs(SlowNetworkConnection, NetworkConnection) i.e., NetworkConnection.

2.3 Modelling Web Service Composition

In this work, the process model of web service composition and its semantic links is
specified by a statechart [16]. Its states refer to services whereas its transitions are la-
belled with semantic links. In addition some basic composition constructs such as se-
quence, conditional branching (i.e., OR-Branching), structured loops, concurrent
threads (i.e., AND-Branching), and inter-thread synchronization can be found. To sim-
plify the presentation, we initially assume that all considered statecharts are acyclic and
consists of only sequences, OR-Branching and AND-Branching.

Example 3 (Process Model of a Web Service Composition)
Suppose a composition extending Example 1 with six more services si,1≤i≤8, eight more
semantic links sli,j . Its process model is depicted in Fig.3.

The example 3 illustrates a composition wherein tasks Ti and abstract semantic link
slAi,j have been respectively concretized by one of their n candidate services (e.g., si)
and n2 candidate links (e.g., sli,j). Indeed some services with common functionality,

Connection

Slow

s: ServiceT: TaskInput ParameterSemantic Link sl Output Parameter

Network

Connection

Network

sl7,8

s4

s8s1 s5

s2 s3

OR-Branching
AND

Branching

s6

s7

sl5,7

sl5,6 sl6,8

T4

T2 T3 T6

T7

T8T1 T5

sl1,2

sl1,4

sl2,3
sl3,5

sl4,5

Fig. 3. A (Concrete) Web Service Composition

Optimizing QoS-Aware Semantic Web Service Composition 379

preconditions and effects although different input, output parameters and quality can be
selected to perform a target task Ti and obtaining a concrete composition. Such a selec-
tion will have a direct impact on semantic links involved in the concrete composition.

In the following we assume that compositions of tasks (achieving a goal) have been
pre-computed. This computation can be performed by template-based and parametric-
design-based composition approaches [17]. So the control flow of the pre-computed
compositions is fixed since it is pre-defined. The choice of the service (that fulfills a
given task) will be done at composition time, based on both quality of i) services and
ii) their semantic links (i.e., quality of data flow).

3 Quality Model

Here we present a quality criterion to value semantic links. Then we suggest to extend
it with the non functional QoS to estimate both quality levels of any compositions.

3.1 Quality of Semantic Link

We consider two generic quality criteria for semantic links sli,j defined by 〈si, SimT
(Out si, In sj), sj〉: its i) Common Description rate, and ii) Matching Quality.

Definition 1 (Common Description rate of a Semantic Link)
Given a semantic link sli,j between si and sj , the Common Description rate qcd ∈ (0, 1]
provides one possible measure for the degree of similarity between an output parameter
of si and an input parameter of sj . This rate is computed using the following expression:

qcd(sli,j) =
|lcs(Out si, In sj)|

|In sj\Out si| + |lcs(Out si, In sj)|
(3)

This criterion estimates the proportion of descriptions which is well specified for ensur-
ing a correct data flow between si and sj .

The expressions in between | refer to the size of ALE concept descriptions ([18] p.17)
i.e., |�|, |⊥|, |A|, |¬A| and |∃r| is 1; |C �D| .= |C|+ |D|; |∀r.C| and |∃r.C| is 1+ |C|.
For instance |Adsl1M | is 3 in the ontology illustrated in Fig. 2.

Definition 2 (Matching Quality of a Semantic Link)
The Matching Quality qm of a semantic link sli,j is a value in (0, 1] defined by SimT
(Out si, In sj) i.e., either 1 (Exact), 3

4 (PlugIn), 1
2 (Subsume) or 1

4 (Intersection).

The discretization of the matching types follows a partial ordering [19] where the as-
signment of values to matching types is driven by the data integration costs. Behind
each matching type, tasks of XML (Extensible Markup Language) data type integration
and manipulation are required. The PlugIn matching type is more penalized than the
Exact matching type in this model. Indeed the data integration process is lower (in term
of computation costs) for the Exact matching type than for PlugIn matching type.

380 F. Lécué

Contrary to qcd, qm does not estimate similarity between the parameters of semantic
links but gives a general overview (discretized values) of their semantic relationships.
Given these quality criteria, the quality vector of a semantic link sli,j is defined by:

q(sli,j)
.=
(
qcd(sli,j), qm(sli,j)

)
(4)

The quality of semantic links can be compared by analysing their qcd and qm elements.
For instance q(sli,j) > q(sl′i,j) if qcd(sli,j) > qcd(sl′i,j) and qm(sli,j) > qm(sl′i,j).
Alternatively we can compare a weighted average of their normalised components in
case the value of the first element of sli,j is better than the first element of sl′i,j but
worse for the second element [20].

Example 4 (Quality of Semantic Links)
Let s′2 be another candidate service for T2 in Fig.3 with NetworkConnection as
an input. The link sl′1,2 between s1 and s′2 is better than sl1,2 since q(sl′1,2) > q(sl1,2).

In case si, sj are related by more than one link, the value of each criterion is retrieved
by computing their average. This average is computing by means of the And-Branching
row of Table 1, independently along each dimension of the quality model.

3.2 QoS-Extended Quality of Semantic Link

We extend the latter quality model by exploiting the non functional properties of ser-
vices (also known as QoS attributes [21] - given by service providers or third parties)
involved in each semantic link. We simplify the presentation by considering only:

– Execution Price qpr(si) ∈ %+ of service si i.e., the fee requested by the service
provider for invoking it.

– Response Time qt(si) ∈ %+ of service si i.e., the expected delay between the
request and result moments.

A quality vector of a service si is then defined as follows:

q(si)
.= (qpr(si), qt(si)) (5)

Thus a QoS-extended quality vector of a semantic link sli,j :
∗
q (sli,j)

.= (q(si), q(sli,j), q(sj)) (6)

Given an abstract link between tasks Ti, Tj , one may select the link with the best func-
tional quality (matching quality, common description rate), and non-functional (the
cheapest and fastest services) quality values, or may be a compromise (depending on
the enduser preferences) between the four by coupling (4) and (6) in (6). Moreover the
selection could be influenced by predefining some constraints e.g., a service response
time lower than a given value.

Example 5 (QoS-Extended Quality of Semantic Link)
Suppose T2 and its two candidate services s2, s′2 wherein q(s′2) < q(s2). According
to example 4, s′2 should be preferred regarding the quality of its semantic link with s1,
whereas s2 should be preferred regarding its QoS. So what about the best candidate for

slA1,2 regarding both criteria:
∗
q? Before addressing this question in Section 4 through

equation (9), we first focus in quality of composition in Section 3.3.

Optimizing QoS-Aware Semantic Web Service Composition 381

3.3 Quality of Composition

We present definitions for comparing and ranking different compositions along the com-
mon description rate and matching quality dimension. The rules for aggregating quality
values (Table 1) for any concrete composition c are driven by them. In more details the
approach for computing semantic quality of c is adapted from the application-driven
heuristics of [6], while the computation of its non functional QoS is similar to [22].

Definition 3 (Common Description rate of a Composition)
The Common Description rate of a composition measures the average degree of simi-
larity between all corresponding parameters of services linked by a semantic link.

The Common Description rate Qcd of both a sequential and AND-Branching composi-
tion is defined as the average of its semantic links’ common description rate qcd(sli,j).
The common description rate of an OR-Branching composition is a sum of qcd(sli,j)
weighted by psli,j i.e., the probability that semantic link sli,j be chosen at run time.
Such probabilities are initialized by the composition designer, and then eventually up-
dated considering the information obtained by monitoring the workflow executions.

Definition 4 (Matching Quality of a Composition)
The matching quality of a composition estimates the overall matching quality of its
semantic links. Contrary to the common description rate, this criteron aims at easily
distinguishing and identifying between very good and very bad matching quality.

The matching quality Qm of a sequential and AND-Branching composition is defined
as a product of qm(sli,j). All different (non empty) matching qualities involved in
such compositions require to be considered together in such a (non-linear) aggregation
function to make sure that compositions that contains semantic links with low or high
matching quality will be more easily identified, and then pruned for the set of poten-
tial solutions. The matching quality of an OR-Branching composition is defined as its
common description rate by changing qcd(sli,j) by qm(sli,j).

Details for computing Execution Price Qpr and Response Time Qt can be found
in Table 1, and further explained in [22].

Table 1. Quality Aggregation Rules for Semantic Web Service Composition

Composition
Quality Criterion

Construct
Functional Non Functional

Qcd Qm Qt Qpr

Sequential/ 1
|sli,j |

∑
sli,j

qcd(sli,j)
∏

sli,j
qm(sli,j)

∑
si

qt(si) ∑
si

qpr(si)
AND- Branching maxs qt(s)

OR-Branching
∑

sli,j
qcd(sli,j).psli,j

∑
sli,j

qm(sli,j).psli,j

∑
si

qt(si).psi

∑
si

qpr(si).psi

Using Table 1, the quality vector of any concrete composition can be defined by:

Q(c) .= (Qcd(c), Qm(c), Qt(c), Qpr(c)) (7)

382 F. Lécué

Although the adopted quality model has a limited number of criteria (for the sake of
illustration), (4), (5), (6) as well as (7) are extensible: new functional criteria can be
added without fundamentally altering the service selection techniques built on top of
the model. In this direction the binary criterion of robustness [13] in semantic links can
be considered4. In addition, other non-functional criteria such as reputation, availability,
reliability, successful execution rate, etc., can also be considered in such an extension.

4 A Genetic Algorithm Based Optimization

The optimization problem (i.e., determining the best set of services of a composition
with respect to some quality constraints) which can be formalized as a Constraints
Satisfaction Optimization Problem (T,D,C, f) where T is the set of tasks (variables)
in the composition, D is the set of services’ domains for T (each Di representing a set
of possible concrete services that fulfil the task Ti), C is the set of constraints and f
is an evaluation function that maps every solution tuple to a numerical value, is NP-
hard. In case the number of tasks and candidate services are respectively n and m, the
naive approach considers an exhaustive search of the optimal composition among all
the mn concrete compositions. Since such an approach is impractical for large-scale
composition, we address this issue by presenting a GA-based approach [23] which i)
supports constraints on QoS and also on quality of semantic links and ii) requires the
set of selected services as a solution to maximize a given objective. Here compositions
refer to their concrete form.

4.1 GA Parameters for Optimizing Composition

By applying a GA-based approach the optimal solution (represented by its genotype)
is determined by simulating the evolution of an initial population (through generation)
until survival of best fitted individuals (here compositions) satisfying some constraints.
The survivors are obtained by crossover, mutation, selection of compositions from pre-
vious generations. Details of GA parameterization follow:

T: Task s: Service

s2
′

s5

T1

s1

T2

s2

T3 T5 T6

s6

T7

s7

T8

s8

T4

s4

s3

Selected si for Ti

Fig. 4. Genotype Encoding for Service Composition

4 Contrary to [6], we did not consider robustness because of its strong dependency with the
matching quality criterion. Indeed they are not independent criteria since the robustness is 1 if
the matching type is either Exact or PlugIn, and 0 otherwise.

Optimizing QoS-Aware Semantic Web Service Composition 383

• Genotype: It is defined by an array of integer. The number of items is equal to the
number tasks involved in the composition. Each item, in turn, contains an index to an
array of candidate services matching that task. Each composition, as a potential solution
of the optimization problem, can be encoded using this genotype (e.g., Fig.4 is encod-
ing the genotype of composition in Fig.3).

• Initial Population: It consists of an initial set of compositions (characterized by their
genotypes) wherein services are randomly selected.

• Global, Local Constraints have to be met by compositions c e.g., Qcd(c) > 0.8.

• Fitness Function: This function is required to quantify the “quality” of any compo-
sition c. Such a function f needs to maximize semantic quality attributes, while mini-
mizing the QoS attributes of c:

f(c) =
ωcdQ̂cd(c) + ωmQ̂m(c)
ωprQ̂pr(c) + ωtQ̂t(c)

(8)

where Q̂l∈{pr,t,cd,m} refer to Ql normalized in the interval [0, 1]. ωl ∈ [0, 1] is the
weight assigned to the lth quality criterion and

∑
l∈{pr,t,cd,m} ωl = 1. In this way

preferences on quality of the desired compositions can be done by simply adjusting ωl

e.g., the Common Description rate could be weighted higher.
In addition f must drive the evolution towards constraint satisfaction. To this end

compositions that do not meet the constraints are penalized by extending (8) wrt. (9).

f ′(c) = f(c)− ωpe

∑
l∈ {pr,t,

cd,m}

(ΔQ̂l

Q̂max
l (c)− Q̂min

l (c)

)2
(9)

where Q̂max
l , Q̂min

l are respectively the maximum and minimal value of the lth quality
constraint, ωpe weights the penalty factor and ΔQ̂l∈{pr,t,cd,m} is defined by:

ΔQ̂l =

⎧⎨⎩
Q̂l − Q̂max

l if Q̂l > Q̂max
l

0 if Q̂min
l ≤ Q̂l ≤ Q̂max

l

Q̂min
l − Q̂lif Q̂l < Q̂min

l

(10)

Contrary to [5], compositions that violate constraints do not receive the same penalty.
Indeed the factor ωpe is further penalized in (9). This function avoids local optimal by
considering also compositions that disobey constraints. Unfortunately, (9) contains a
penalty for concrete compositions, which is the same at each generation. If, as usual, the
weight ωpe for this penalty factor is high, there is a risk that also concrete composition
violating the constraints but “close” to a good solution could be discarded.

The alternative is to adopt a dynamic penalty, i.e., a penalty having a weight that
increases with the number of generations. This allows, for the early generations, to also
consider some individuals violating the constraints. After a number of generations, the

384 F. Lécué

population should be able to meet the constraints, and the evolution will try to improve
only the rest of the fitness function. The dynamic fitness function (to be maximized) is:

f ′′(c, gen) = f(c) − ωpe.
gen

maxgen
.

∑
l∈ {pr,t,

cd,m}

(ΔQ̂l

Q̂max
l (c) − Q̂min

l (c)

)2
(11)

gen is the current generation, while maxgen is the maximum number of generations.

• Operators on Genotypes: They define authorized alterations on genotypes not only
to ensure evolution of compositions’ population along generations but also to prevent
convergence to local optimum. We use: i) composition mutation i.e., random selection
of a task (i.e., a position in the genotype) in a concrete composition and replacing its ser-
vice with another one among those available, ii) the standard two-points crossover i.e.,
randomly combination of two compositions and iii) selection of compositions which is
fitness-based i.e., compositions disobeying the constraints are selected proportionally
from previous generations.

• Stopping Criterion: It enables to stop the evolution of a population. First of all
we iterate until the constraints are met (i.e., ΔQl = 0 ∀l ∈ {pr, t, cd,m}) within
a maximum number of generations. Once the latter constraints are satisfied we iterate
until the best fitness composition remains unchanged for a given number of generations.

4.2 GA for Optimizing Composition in a Nutshell

The execution of the GA consists in i) defining the initial population (as a set of compo-
sitions), and computing the fitness function (evaluation criterion) of each composition,
ii) evolving the population by applying mutation and crossover of compositions (Tasks
with only one candidate service are disregarded), iii) selecting compositions, iv) evalu-
ating compositions of the population, and v) back to step (ii) if the stopping criterion is
not satisfied. Section 5 further details the parameters.

In case no solution exists, users may relax constraints of the optimization problem.
Instead, fuzzy logic could be used to address the imprecision in specifying quality con-
straints, estimating quality values and expressing composition quality.

5 Experimental Results

We analyze the performances of our approach by i) discussing the benefits of combin-
ing QoS and functional criteria, ii) observing the evolution of the composition quality
f ′′ in (11) (equal weights are assigned to the different quality criteria) over the GA
generations by varying the number of tasks, iii) studying the behaviour of our approach
regarding the optimisation of large scale compositions, iv) evaluating performance af-
ter decoupling the GA and the (on-line) DL reasoning processes, and v) comparing the
convergence of our approach (11) with [5]. Before turning our attention to the latter five
sets of experiments, we first draw the context of experimentation.

Optimizing QoS-Aware Semantic Web Service Composition 385

5.1 Context of Experimentation

Services, Semantic Links and their Qualities. Services5 are defined by their semantic
descriptions using anALE ontology (formally defined by 1100 concepts and 390 prop-
erties, 1753 individuals, without data property), provided by a commercial partner. We
have incorporated estimated values for Qos parameters (price and response time). Com-
mon description rate and matching quality of semantic links are computed according to
an on-line DL reasoning process.

Implementation Details. The common description rate (3) is calculated by computing
the Extra Description (2), the Least Common Subsumer [15], and the size ([18] p.17) of
DL-based concepts. These DL inferences and the matching types have been achieved by
a DL reasoning process i.e., an adaptation of Fact++ [24] for considering DL difference.

The aggregation rules of Table 1 are then used for computing each quality dimen-
sion of any composition. Finally the combination of QoS with semantic calculation is
computed by means of (11), thus obtaining the final quality score for the composition.

Our GA is implemented in Java, extending a GPL library6. The optimal composi-
tions are computed by using an elitist GA where the best 2 compositions were kept
alive across generations, with a crossover probability of 0.7, a mutation probability of
0.1, a population of 200 compositions. The roulette wheel selection has been adopted
as selection mechanism. We consider a simple stopping criterion i.e., up to 400 gen-
erations. We conducted experiments on Intel(R) Core(TM)2 CPU, 2.4GHz with 2GB
RAM.

Compositions with up to 30 tasks and 35 candidates per task (352 candidate semantic
links between 2 tasks) have been considered in Sections 5.2, 5.3, 5.5, 5.6, especially for
obtaining convincing results towards their applicability in real (industrial) scenarios.
Experiment results reported in Section 5.2 provide some benefits of combining QoS
and functional criteria for the overall quality of composition, whereas those in Sections
5.3, 5.4, 5.5 and 5.6 are related to scalability.

5.2 Benefits of Combining QoS and Functional Criteria

Fig.5 reports the benefits of combining QoS and functional criteria. In more details,
we studied the impact of functional quality on the costs of data integration, which
enabling the end-to-end composition of services. The data integration process aligns
the data flow specification of a composition by manipulating and transforming the
semantic descriptions of contents of outgoing and incoming messages of annotated
services.

Our approach and [5] are compared on ten compositions ci,1≤i≤10 with Qcd(ci) =
10−1 × i and Qm(ci) = 10i−10 as functional quality to reflect gradually better quality.

5 The choice of proprietary services has been motivated by the poor quality of existing bench-
mark services in terms of number of services or expressivity (limited functional specification,
no binding, restricted RDF-based description). We plan further experimentations with OWL-S
TC 3.0 (http://www.semwebcentral.org/frs/?group_id=89) and SA-WSDL
TC1 (http://projects.semwebcentral.org/projects/sawsdl-tc/).

6 http://jgap.sourceforge.net/

http://www.semwebcentral.org/frs/?group_id=89
http://projects.semwebcentral.org/projects/sawsdl-tc/

386 F. Lécué

 10

 100

 1000

 10000

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

A
vg

. T
im

es
 (

s)
 in

 L
og

ar
ith

m
 S

ca
le

Web Service Composition

 Syntactic
 based
 service
 description

Our Approach
[CanPEV05]

Fig. 5. Costs of Data Integration (through Data Flow Specification)

On the one hand, as expected, the costs of data integration is low (actually trivial) for
both approaches, regarding the composition with the best quality (i.e., c10). Indeed the
parameters of services match exactly, hence no further specification is needed..

On the other hand, these costs decrease with the functional quality of compositions
in our approach, whereas they are steady but very high for compositions computed by
[5] (purely based on non functional quality of composition). This is due to i) the lack of
specification of functional quality (hence a hard task to build semantic data flow from
scratch), and ii) the manual approach used to link data in compositions.

Appropriate qualities of semantic links are very useful i) to discover data flow in
composition, ii) to ease the specification (semi-automated process with Assign/Copy
elements + XPath/XQuery processes a la BPEL4WS) of syntactic (and heterogeneous)
data connections (for the persons who develop these mappings), so limiting the costs of
data integration. Indeed the better the quality of semantic links the better the semantic
mapping between the outgoing and incoming (SA-WSDL for instance) messages.

5.3 Evolution of the Composition Quality

Fig.6 reports the evolution of the composition quality over the GA generations, by vary-
ing the number of tasks. This illustrates different levels of convergence to a composition

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

F
itn

es
s

F
un

ct
io

n
(%

)
(A

ve
ra

ge
 o

f 5
0

E
xe

cu
tio

ns
)

Generation

A Composition of 10 Tasks
A Composition of 20 Tasks
A Composition of 30 Tasks

Fig. 6. Evolution of the Composition Quality

Optimizing QoS-Aware Semantic Web Service Composition 387

Table 2. Overview of Computation Costs

Tasks Num. Max. Fitness (%) Generation Num. Time (ms)
10 99 120 1012
20 97 280 1650
30 95 360 3142

that meets some constraints and optimizes its different criteria by maximizing the com-
mon description and matching quality while minimizing price and response time.

Table 2 and Fig.6 present the computation costs and the number of generations re-
quired to obtain the maximal fitness value. The more tasks (and services) the more
time consuming to converge to the optimum. Obviously, the population size and the
number of generations should be extended to reach the optimum of more complex
compositions.

5.4 Towards Large Scale Based Compositions

In this experiment we suggest to study the behaviour of our approach regarding the op-
timisation of compositions with a large number of tasks (up to 500 tasks) and candidate
services (500). To this end we focus on its scalability and the impact of the number of
generations as well as the population size on the GA success.

Table 3. Large Scale Compositions

Tasks Num. Max. Fitness (%)
Generation Num./

Time (ms)
Population Size

100
85 400/200 4212
96 700/400 9182

300
47 400/200 5520
95 1500/500 19120

500
24 400/200 7023
95 3000/1000 51540

As illustrated in Table 3, increasing both the number of generations and the popula-
tion size does actually result in better fitness values for problems with a larger number
of tasks and candidate services. For example, regarding the optimisation of a compo-
sition of 500 tasks with 500 candidate services, a number of generations of 400 and a
population size of 200 do result in a low fitness value of 24% of the maximum, whereas
considering a number of generations of 3000 and a population size of 1000 achieve 95%
of the maximum. Note that better fitness values can be reached by further increasing
the sizes of generations and populations. However doubling these sizes only improves
the fitness value by 2%. This shows that each optimisation problem converges to a
limit.

388 F. Lécué

5.5 Decoupling GA Process and DL Reasoning

Since our approach is mainly depending on DL reasoning (i.e., Subsumption for qm,
Difference and lcs for qcd) and the GA-based optimization process, we suggest to de-
couple and detail the computation costs of Table 2 in Fig.7.

 0

 500

 1000

 1500

 2000

 2500

 3000

DL GA DL GA DL GAC
om

pu
ta

tio
n

C
os

t (
m

s)
(A

ve
ra

ge
 o

f 5
0

E
xe

cu
tio

ns
)

DL Difference for qcd
DL lcs Computation for qcd

DL Subsumption for qm
Pure GA Process

Task Num. = 30Task Num. = 20Task Num. = 10

Fig. 7. DL and GA Processes in our Approach

DL reasoning is the most time consuming process in optimisation of QoS-aware
semantic web service composition wherein the number of tasks and candidate services
are greater than 10 and 35. This is caused by the critical complexity of qcd computation
through DL Difference (even in ALE DL).

5.6 Convergence of GA-Based Approaches

In this experiment, we compare the convergence of our approach (11) with the main
alternative at present [5]. To this end the functional criteria of our approach are disre-
garded in order to focus only on the GA-driven aspects of the optimisation process.

According to Table 4, the advantage of our approach is twofold. Firstly we obtain
better fitness values for the optimal composition than the approach of [5]. Secondly,
our approach converges faster than the approach of [5]. In addition our function avoids
getting trapped by local optimums by i) further penalizing compositions that disobey
constraints (the factor of ωpe in (9) and (11)) and ii) suggesting a dynamic penalty, i.e.,
a penalty having a weight that increases with the number of generations.

Table 4. Comparing GA-based Approaches (Population size of 200)

Tasks
Approach

Max. Generation
Time (ms)

Num. Fitness (%) Num.

10
Our Model (11) 99 120 1012

[5] 97 156 1356

20
Our Model (11) 97 280 1650

[5] 94 425 2896

30
Our Model (11) 95 360 3142

[5] 85 596 6590

Optimizing QoS-Aware Semantic Web Service Composition 389

These results support the adoption of our model in the cases where a large number
of tasks and services are considered.

6 Related Work

Review of existing approaches to optimising web service compositions reveals that no
approach has specifically addressed optimisation of service composition using both QoS
and semantic similarities dimensions in a context of significant scale.

Indeed main approaches focus on either QoS [5,8] or on functional criteria such as
semantic similarities [6] between output and input parameters of web services for op-
timising web service composition. In contrast, we present an innovative model that ad-
dresses both types of quality criteria as a trade-off between data flow and non functional
quality for optimizing web service composition.

Solving such a multi-criteria optimization problem can be approached using IP [8,6],
GA [5], or Constraint Programming [25]. The results of [5] demonstrate that GAs are
better at handling non-linearity of aggregation rules, and provide better scaling up to
a large number of services per task. In addition they show that dynamic programming
(such as IP-based approaches) is preferable for smaller compositions. We follow [5]
and suggest the use of GAs to achieve optimization in web service composition, yet we
also extend their model by i) using semantic links to consider data flow in composition,
ii) considering not only QoS but also semantic quality (and contraints) of composition,
iii) revisiting the fitness function to avoid local optimal solution (i.e., compositions
disobeying constraints are considered).

The optimization problem can be also modelled as a knapsack problem [26], wherein
[27] performed dynamic programming to solve it. Unfortunately the previous QoS-
aware service composition approaches consider only links valued by Exact matching
types, hence no semantic quality of compositions. Towards the latter issue [6] intro-
duces a general and formal model to evaluate such a quality. From this they formulate
an optimization problem which is solved by adapting the IP-based approach of [8]. All
quality criteria are used for specifying both constraints and objective function.

7 Conclusion

We studied QoS-aware semantic web service composition in a context of significant
scale i.e., how to effectively compute optimal compositions of QoS-aware web services
by considering their semantic links. On the one hand the benefits of a significant domain
such as the Web is clear e.g., supporting a large number of services providers, consid-
ering large number of services that have same goals. On the other hand, the benefits of
combining semantic links between services and QoS are as following:

The computation of web services composition whilst optimising both the non
functional qualities and the quality of semantic fit along non-trivial data
flow, where the information required and provided by services does not match
perfectly in every dataflow, using semantic-based description of services.

By addressing non trivial data flow in composition , we aimed at limiting the costs of
(semantic heterogeneity) data integration between services by considering appropriate

390 F. Lécué

quality of semantic links. To this end we have presented an innovative and extensible
model to evaluate quality of i) web services (QoS), ii) their semantic links, and iii)
their compositions. In regards to the latter criteria the problem is formalized as an op-
timization problem with multiple constraints. Since one of our main concerns is about
optimization of large-scale web service compositions (i.e., many services can achieve a
same functionality), we suggested to follow a GA-based approach, faster than applying
IP. The experimental results have shown an acceptable computation costs of our GA-
based approach despite the time consuming process of the on-line DL reasoning. In case
of “semantic link”-less models, the benefits are mainly based on penalizing constraint
violation (of the fitness function) which makes the approach faster than [5].

In future work we will consider a finer difference operator, which is also easy-to-
compute in expressive DLs. Determining the most appropriate parameters for the GA
phase requires further experimentations.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5),
34–43 (2001)

2. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. W3c recom-
mendation, W3C (2004)

3. Baader, F., Nutt, W.: The Description Logic Handbook: Theory, Implementation, and Appli-
cations (2003)

4. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 385–398. Springer, Heidelberg (2006)

5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware service
composition based on genetic algorithms. In: GECCO, pp. 1069–1075 (2005)

6. Lécué, F., Delteil, A., Léger, A.: Optimizing causal link based web service composition. In:
ECAI, pp. 45–49 (2008)

7. Papadimtriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, Englewood Cliffs (1982)

8. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web ser-
vices composition. In: WWW, pp. 411–421 (2003)

9. Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: The owl-s coalition, owl-s 1.1.
Technical report (2004)

10. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for wsdl and
xml schema. IEEE Internet Computing 11(6), 60–67 (2007)

11. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services
capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347.
Springer, Heidelberg (2002)

12. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In: WWW, pp. 331–339 (2003)

13. Lécué, F., Delteil, A.: Making the difference in semantic web service composition. In: AAAI,
pp. 1383–1388 (2007)

14. Brandt, S., Kusters, R., Turhan, A.: Approximation and difference in description logics. In:
KR, pp. 203–214 (2002)

15. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer w.r.t. a back-
ground terminology. In: DL (2004)

Optimizing QoS-Aware Semantic Web Service Composition 391

16. Harel, D., Naamad, A.: The statemate semantics of statecharts. ACM Trans. Softw. Eng.
Methodol. 5(4), 293–333 (1996)

17. Motta, E.: Reusable Components For Knowledge Modelling Case Studies. In: Parametric
Design Problem Solving. IOS Press, Netherlands (1999)

18. Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100.
Springer, Heidelberg (2001)

19. Lécué, F., Boissier, O., Delteil, A., Léger, A.: Web service composition as a composition of
valid and robust semantic links. IJCIS 18(1) (March 2009)

20. Hwang, C.-L., Yoon., K.: Multiple criteria decision making. Lecture Notes in Economics and
Mathematical Systems (1981)

21. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: What’s in a service? Distributed and Par-
allel Databases 12(2/3), 117–133 (2002)

22. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. J. Web Sem. 1(3), 281–308 (2004)

23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., Reading (1989)

24. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: KR, pp. 636–649
(1998)

25. Ben Hassine, A., Matsubara, S., Ishida, T.: A constraint-based approach to web service
composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 130–143. Springer,
Heidelberg (2006)

26. Yu, T., Lin, K.-J.: Service selection algorithms for composing complex services with mul-
tiple qos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS,
vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

27. Arpinar, I.B., Zhang, R., Aleman-Meza, B., Maduko, A.: Ontology-driven web services com-
position platform. Inf. Syst. E-Business Management 3(2), 175–199 (2005)

Synthesizing Semantic Web Service
Compositions with jMosel and Golog

Tiziana Margaria1, Daniel Meyer1, Christian Kubczak2, Malte Isberner2,
and Bernhard Steffen2

1 Chair Service and Software Engineering, Universität Potsdam, Germany
{margaria,meyerd}@cs.uni-potsdam.de

2 Chair of Programming Systems, TU Dortmund, Germany
{christian.kubczak,malte.isberner,steffen}@cs.tu-dortmund.de

Abstract. In this paper we investigate different technologies to attack
the automatic solution of orchestration problems based on synthesis from
declarative specifications, a semantically enriched description of the ser-
vices, and a collection of services available on a testbed. In addition to
our previously presented tableaux-based synthesis technology, we con-
sider two structurally rather different approaches here: using jMosel, our
tool for Monadic Second-Order Logic on Strings and the high-level pro-
gramming language Golog, that internally makes use of planning tech-
niques. As a common case study we consider the Mediation Scenario
of the Semantic Web Service Challenge, which is a benchmark for pro-
cess orchestration. All three synthesis solutions have been embedded in
the jABC/jETI modeling framework, and used to synthesize the abstract
mediator processes as well as their concrete, running (Web) service coun-
terpart. Using the jABC as a common frame helps highlighting the es-
sential differences and similarities. It turns out, at least at the level of
complication of the considered case study, all approaches behave quite
similarly, both considering the performance as well as the modeling. We
believe that turning the jABC framework into experimentation platform
along the lines presented here, will help understanding the application
profiles of the individual synthesis solutions and technologies, answering
questing like when the overhead to achieve compositionality pays of and
where (heuristic) search is the technology of choice.

1 Introduction

Dealing with (Web) services, semantics is gaining terrain as technology for appli-
cation development and integration. However, semantics-based technology is still
highly complicated in usage and implementation, which explains its relatively
slow industrial adoption. It is the goal of the Semantic Web Service Challenge
(SWSC) to overcome this situation by studying concrete case studies, with the
goal of pinpointing the application profiles of the various approaches proposed
so far. The corresponding leading case study is the Mediation Scenario [1], a
business orchestration problem that requires adequate “translation” between
different communication protocols and data models.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 392–407, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Synthesizing Semantic Web Service Compositions with jMosel and Golog 393

Fig. 1. The Mediation Scenario of the SWS Challenge

In this scenario, a customer named Blue (Fig. 1(left)) submits business or-
ders in format and protocol compliant to the RosettaNet Pip3A4 protocol [2]
to the backend system ofMoon (Fig. 1(right)). Since Moon does not support
RosettaNet the Pip3A4 communication standard, the task of the challenge is to
automatically generate a mediation service that enables Moon’s legacy system
to process the requests submitted by Blue.

This problem has been addressed by several research groups in the past: 5
solutions, 2 of which ours, have been presented and compared in [3]. We first di-
rectly modeled the mediator’s orchestration in the jABC [4,5,6,7], our framework
for service oriented development and model-driven orchestration, and generated
and published the mediator using our jETI technology. In jABC, processes are
orchestrations, they are modeled as directed flow graphs called Service Logic
Graphs (SLG), where the nodes, which represent the services, are called Service
Independent Building Blocks (SIBs).

Second, we enhanced the capabilities of the jABC by integrating a synthesis
algorithm based on Semantic Linear Time Logic (SLTL) specifications [8]. Us-
ing this synthesis method, we were indeed able to automatically (re-)produce
an equivalent orchestration [9]. This observation got us interested in using also
other very different process/model synthesis techniques on the same problem,
in order to compare (following the original purpose of the SWS Challenge) dif-
ferent methods and techniques, based on different semantic representations of
declarative knowledge and goals.

394 T. Margaria et al.

Fig. 2. The landscape of synthesis techniques in jABC

In this paper, we apply two alternative and conceptually very different ap-
proaches to planning to the Mediation Scenario:

– an approach based on monadic second order logic on strings M2L(Str) [10],
which works by compositional automata construction in jMosel [11], and

– an approach based on Golog [12], a tool that internally uses backward chain-
ing for solving planning/synthesis tasks. This work is based on the well
known situation calculus planner by Reiter.

Fig. 2 provides a conceptual sketch covering the essence the three approaches we
considered in details so far. Our study revealed that despite the huge conceptual
difference these three approaches share quite some similarities. In particular,
they were all able to quite naturally express the original problem in sufficient
detail to automatically synthesize the desired solution to the Mediation problem
(cf. Fig. 6). However there are also similarities at a different level, which became
apparent when modeling the Golog-synthesis process itself as a process using
jABC. To this aim, we implemented the steps described so far as a set of inde-
pendent, reusable building blocks (SIBs). The resulting 7-step synthesis process
is shown in Fig. 3. It is the same process we obtained with jMosel and with
the previous (S)LTL based synthesis methods. Thus this process can be consid-
ered as a pattern for synthesis solutions, which allows one to integrate and/or
combine various synthesis and transformation functionalities like the ones sum-
marized in Fig. 2 to complex heterogeneous solutions. These solutions are then
directly executable inside the jABC, or, as we did in the previous phases of the
Challenge, they can be exported as a Web service.

After presenting our modeling framework jABC in Section 2, we show how we
can easily plug in different algorithms and knowledge representation formalisms,
namely jMosel, see Section 3 and Golog, Section 4. Subsequently we show how

Synthesizing Semantic Web Service Compositions with jMosel and Golog 395

Fig. 3. The Golog-based synthesis process modeled in jABC

easily these at first sight completely different technologies can be operated on
top of the same platform and can be used to obtain the same results, see Sect. 5.

2 Our Modeling Framework

Basic ingredient for the process mediation, e.g. for bridging the gap between
Blue and Moon, are:

– a set of business objects, including the definition of their structure, proper-
ties, and data types,

– a set of services (SIBs) operating on the business objects, including knowl-
edge about relevant properties, and

– domain knowledge, concerning semantic properties of the domain under con-
sideration (typically, information on the data and on how the data can be
manipulated by the services), and behavioral knowledge (often also called

396 T. Margaria et al.

procedural knowledge), that describes abstractly properties (restrictions,
precedences, lose constraints) of the collaboration of such services.

Behavioral knowledge is often present in a domain description, and often the
task to be performed by the orchestration is also already known in its behav-
ioral traits. From the point of view of a user of semantic techniques, all the
available knowledge should be optimally exploited by the techniques of a seman-
tic web framework, in order to ensure optimal precision and efficiency. Thus,
procedural knowledge is in our opinion much more than a way of formulating
domain specific heuristics to make process synthesis computationally feasible: in
real world applications, we need to be able to formulate constraints which must
be satisfied by processes in order to be admissible. For example we may need to
ensure

– general ordering properties (e.g., ensuring that some service is executed be-
fore another)

– abstract liveness properties (e.g., guaranteeing that a certain service is even-
tually executed)

– abstract safety properties (e.g., making sure that certain services are never
executed simultaneously).

However, we do not want to specify the whole processes in a static, fixed way. On
the contrary, we use loose coordination specifications, which leave room for vari-
ability inside the bounds of a declarative specification that includes behavioral
constraints.

In jABC, we have implemented this adopting as semantic predicates abstrac-
tion concepts from dataflow analysis [13] in a constructive way, leading to the
domain knowledge representation introduced in [8,14,15] and summarized in
Sect. 2.1.

2.1 Modeling Domain Knowledge with Taxonomies

In jABC’s modeling style, business objects are mapped to abstract semantic
concepts that we call Types, and services, actually the collection of SIBs corre-
sponding to single service operations, are mapped to semantic activities. Both
types and activities are organized in taxonomies.

A taxonomy T ax = (T,CT,→) is a directed acyclic graph (DAG) where CT
is a set of concrete entities that are grounded to instances of the real world
(as the elements of the A-box of Description Logics), and that are the sinks in
the graph, T is a set of abstract concepts, and → relates concepts and concrete
elements (T,CT) or pairs of concepts (T, T).

In a type taxonomy, as shown in Fig. 4 for the mediation problem, Tty =
(Tt, CTt, is a), where CTt is a set of semantic types that directly correspond to
individual business objects, Tt is a set of abstract semantic types that represent
groups of business objects, and edges reflect an is a relationship. In our exam-
ple, OrderIDs and Confirmations are in the group Orders. The concrete types

Synthesizing Semantic Web Service Compositions with jMosel and Golog 397

Fig. 4. The Type Taxonomy for the mediation scenario

Fig. 5. The Service Taxonomy for the mediation scenario

(the leaves of the taxonomy)are the most concrete semantic entities we want to
use in the synthesis problem - here directly the business objects used as input
and output by the services.

The activity taxonomy Ta = (A,CA, is a) is defined in the same way, as
shown Fig. 5: CA is a set of concrete semantic activities, representing individual
SIBs, and abstract activities A represent groups of SIBs which share a common
set of (non-)functional properties.

2.2 Dataflow Facts as Semantic Preconditions/Effects

We now need to formulate knowledge about how the activities operate on the
types. At a technical level, Web services have very complex relations to business
objects. At the semantic level, we abstract these complex relations into three
basic functions, well known from dataflow analysis expressing the preconditions
and effects of services, which are technically stored in the jABC (semantic)
context:

398 T. Margaria et al.

Table 1. The SWS mediation Modules

name input type (uses) output type (gen) description
Mediator Maps RosettaNet messages to the

backend

startService {true} PurOrderReq Receives a purchase order request
message

obtCustomerID PurOrderReq SearchString Obtains a customer search string
from the req. message

createOrderUCID CustomerObject CustomerID Gets the customer id out of the
customer object

buildTuple OrderID Tuple Builds a tuple from the orderID
and the POR

sendLineItem Tuple LineItem Gets a LineItem incl. orderID, ar-
ticleID and quantity

closeOrderMed SubmConfObj OrderID Closes an order on the mediator
side

confirmLIOperation OrderConfObj PurOrderCon Receives a conf. or ref. of a
LineItem and sends a conf.

Moon The backend system

searchCustomer SearchString CustomerObject Gets a customer object from the
backend database

createOrder CustomerID OrderID Creates an order

addLineItem LineItem SubmConfObj Submits a line item to the back-
end database

closeOrderMoon OrderID TimeoutOut Closes an order on the backend
side

confRefLineItem Timeout orderConfObj Sends a conf. or ref. of a prev.
subm. LineItem

– use(·) : CA → P(CT)
in order for the activity a to be executable, values of the set of type use(a)
must be present in the execution context

– gen(·) : CA → P(CT), gen(a) returns the set of types, values of which are
added to the context after invocation of the activity a

– kill(·) : CA → P(CT), kill(a) is the set of types, values of which are removed
form the context if a is invoked

Table 1 lists in the first column a selection of activities from the mediation
scenario and maps each activity to a set of input/use types (column 2) and a set
of output/gen types (column 3). In this example there are no kill types.

The jMosel approach presented in Section 3 can directly work with this repre-
sentation of the domain knowledge. In Sect. 4, we show how to translate it into
situation calculus and Golog.

2.3 Expressing Behavioral Knowledge

The loose coordination specification language we use to express procedural knowl-
edge is Semantic Linear Time Logic (SLTL) [8], a temporal (modal) logic that
includes the taxonomic specifications of types and activities.

Synthesizing Semantic Web Service Compositions with jMosel and Golog 399

Definition 1 (SLTL)

The syntax of Semantic Linear Time Logic (SLTL) is given in BNF format by:

Φ ::= tt | type(tc) | ¬Φ | (Φ ∧ Φ) | <ac> Φ | G(Φ) | (ΦUΦ)

where tc and ac represent type and activity constraints, respectively, formulated
as taxonomy expressions.

Taxonomy expressions are for this example propositional formulas that use as
propositions the concepts in the taxonomies of Figs. 4 and 5 and the use, gen,
kill predicates already introduced.

SLTL formulas are interpreted over the set of all legal orchestrations, which
are coordination sequences, i.e. alternating type correct sequences of types and
activities1, which start and end with types. The semantics of SLTL formulas can
now be intuitively defined as follows2:

– type(tc) is satisfied by every coordination sequence whose first element (a
type) satisfies the type constraint tc.

– Negation ¬ and conjunction ∧ are interpreted in the usual fashion.

– Next-time operator <> :
<ac> Φ is satisfied by coordination sequences whose second element (the first
activity) satisfies ac and whose suffix3 satisfies Φ. In particular, <tt> Φ is
satisfied by every coordination sequence whose suffix satisfies Φ.

– Generally operator G:
G(Φ) requires that Φ is satisfied for every suffix satisfies Φ.

– Until operator U:
(ΦUΨ) expresses that the property Φ holds at all type elements of the se-
quence, until a position is reached where the corresponding suffix satisfies
the property Ψ . Note that ΦUΨ guarantees that the property Ψ holds even-
tually (strong until).
The frequently occurring formula (trueUΨ) is called Eventually and is writ-
ten FΨ .

The above definition of suffix may seem complicated at first. However, thinking
in terms of path representations clarifies the situation: a sub path always starts
with a node (type) again. However, users should not worry about these details:
they may simply think in terms of pure activity compositions and should not
care about the types (which are matched correctly by the synthesis algorithm),
unless they explicitly want to specify type constraints.
1 During the description of the semantics, types and activities will be called elements

of the orchestration sequence.
2 A formal definition of the semantics can be found online.
3 According to the difference between activity and type components, a suffix of a

coordination sequence is any subsequence which arises from deleting the first 2n
elements (n any natural number).

400 T. Margaria et al.

The introduction of derived operators, like Eventually, supports a modular and
intuitive formulation of complex properties. We support in the jABC meanwhile
a rich collection of frequently occurring behavioral templates, which ease the
declarative formulation of knowledge and goals.

SLTL is a specification language supported by jMosel. In Sect. 4, we will show
how we link up to Golog in order to apply it to the mediation problem.

3 Solving the Mediation with M2L(Str) in jMosel

We first formally describe the semantics of service invocation with the associated
use, gen and kill sets. At runtime, a service accepts certain inputs and produces
certain outputs according to its WSDL description. Semantically, we describe a
service (or concrete action) as a transformation on the power set of the set of
(concrete) types in the orchestration’s context:

eff(·)(·) : CA → (P(CT) → P(CT)),

Accordingly, a service can only be invoked if all elements in use(·) are available
(preconditions), and it produces elements the context according to gen(·), and
invalidates the elements of the context specified in kill(·) (effects), thus

eff(a)(T) =
{

(T \ kill(a)) ∪ gen(a) if use(a) ⊆ T
undef otherwise .

Incidentally, this is the same abstraction used in Data Flow Analysis to describe
the operational semantics of operations, like assignments, which have precondi-
tions and (side) effects. This is the basis for constructing the structure the jMosel
synthesis uses as the domain specification, the configuration universe, which is
rather straightforward, and therefore omitted here due to lack of space.

3.1 jMosel, M2L and SLTL

The search for such a solution is done using a deterministic finite automaton
semantically equivalent to the given formula. The input symbols the automaton
is fed with are sets of atomic propositions (i.e., types) on one hand and actions
(i.e., services) on the other. Since it is not feasible to consider alternating se-
quences of types and actions, some technical fine-tuning is needed: we now regard
steps, consisting of an action (or init, which is not an action but is used for the
head of the path) and a set of atomic propositions. Thus, instead of alternating
sequences of sets of types and actions, we now consider strings over the step
alphabet Σstep = P(CT) × (CA ·∪{init}). For example, the path t0, a1, t1, a2, t2
now is written as (t0, init)(t1, a1)(t2, a2).

There exist several methods to transform an LTL formula into a Büchi au-
tomaton. However, since we are interested in finite sequences of services rather
than infinite words, a Büchi automaton is not quite what we want. One could

Synthesizing Semantic Web Service Compositions with jMosel and Golog 401

modify the existing algorithms for generating Büchi automata in the way that
NFAs or DFAs are constructed; we, however, want to describe a different ap-
proach, namely by using monadic second-order logic on strings, M2L(Str) [10],
and our toolkit for this logic, jMosel [11,16].

jMosel calculates for a given input formula Φ a deterministic finite automaton
A, with L(Φ) = L(A). A key characteristic of M2L(Str) is that it is compositional :
atomic formulae are transformed into simple basic automata; for a compound
formula, first the automata for its sub formulae are calculated, and then an
automata synthesis operation is applied. For details refer to [17].

3.2 Mediator Synthesis

After the domain has been modeled by specifying the relevant modules and the
corresponding type and action taxonomies, the mediator synthesis proceeds by
the user

– entering a set of initial types T0. In our example, we start with a purchase
order request, POR,

– providing the temporal specification formula in SLTL or one of our
dialects,

– specifying the desired kind of solution. For the case study, we selected min-
imality of the solution and the presentation in a format which is directly
executable (rather than as a sequence of alternating types and activities),
i.e. jABC’s SLGs. This results in the same solution as provided via Golog in
the next section (cf. Fig. 6.

Tab. 2 presents the corresponding SLTL formula already together with some
intuitive explanations. The formula itself, which is just a combination of 4 next-
time operators and one eventually operator would easily fit in one line.

Table 2. Explanation of the specification formula used for the jMosel synthesis

Formula element Explanation
<ConsumePip3A4POR> The synthesized sequence should start with this service.
<SaveStartTime> A local service for time measurement. Since this is local to

our requirements, the invocation of this service is required
statically by the formula.

F Find a path in the configuration universe, such that the fol-
lowing two services can be invoked (This is where the actual
synthesis action happens).

<SaveItemsNoAndPOR> Again, this is a service local to our requirements, and there-
fore statically requested.

<OMServiceV1closeOrder> In the end, we want the order to be complete and therefore
closed.

tt Operand, required for the preceding unary next operator.

402 T. Margaria et al.

4 The Situation Calculus Solution with Golog

Golog is a high-level programming language based on the situation calculus [12]
that was successfully used to solve Web service composition problems [18]. Here
we show how to match the problem structure of the mediation scenario with sit-
uation calculus, how we generate Basic Action Theories from the domain knowl-
edge representation of Sect. 2.1, how we model an abstract mediation process in
Golog, and finally how we synthesize the mediator.

4.1 Intuitive Ontology of the Situation Calculus and Golog

The situation calculus is designed for representing and reasoning about stateful
models, dynamically changing worlds, where changes to the world are due to
performing named actions. S0 is the initial state of the world, prior to any
action. Changes are effected by executing actions in a situation: s′ = do(a, s)
means that situation s′ is obtained by executing the action a in situation s.
For example, do(store(A,B), do(ship(A,B), do(construct(A), S0))) is a situation
term denoting the sequence composition construct(A)◦ship(A,B)◦store(A,B).
Intuitively, situations are action execution paths, and denote indirectly states.
Predicates and relations are true in some state and false in others, thus state
variables are introduced by means of relational fluents. For example, the fluent
location(a, b, s) expresses that in the state of the world reached by performing
the action sequence s, object a is located at location b.

Domain axiomatizations in the situation calculus are called Basic Action
Theories and have the form

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 .

where Σ are the foundational axioms for situations, Dss are the successor state
axioms for fluents, Dap is a set of action precondition axioms for situations, Duna

is a set of unique names axioms for actions, DS0 is a set of first order sentences,
uniform in S0. Basic action theories allow us to reason about action and change,
but they offer no way to express a “story” about how certain effects can be
achieved, thus no way of expressing procedural knowledge.

The high-level programming language Golog, built on top of Basic Action
Theories, allows writing high-level non-deterministic procedures which model
such a “story”. Golog, in its essential form4 provides the following language
constructs, originally inspired by Algol and its operational semantics:

Do(φ?, s, s′) Test actions
Do(δ1; δ2, s, s′) Sequential composition
Do(δ1 | δ2, s, s′) Non-deterministic choice of actions
Do((πx)δ(x), s, s′) Non-deterministic choice of action arguments
Do(δ∗, s, s′) Non-deterministic iteration.

4 Golog has been extended in various ways to include e.g. concurrency, exogenous
events, and sensing [12].

Synthesizing Semantic Web Service Compositions with jMosel and Golog 403

that “macro expand” into terms in the situation calculus. As usual, constructs
like if and while can be defined in terms of these basic constructs according
to the usual operational semantics. With these constructs, we can write Golog
procedures specifying the story, or the behavioral knowledge, of a domain and of
a solution.

Given a Golog procedure δ, Golog can prove constructively whether it is ex-
ecutable with respect to a given Basic Action Theory D: D |= ∃s.Do(δ, S0, s).
Since s is the terminating situation of the Golog program δ, the proof returns a
sequence of primitive actions starting in the initial situation S0 consistent with
the procedure.

The resulting Basic Action Theory DT allows us to determine for every situ-
ation whether a given activity(service) is executable, and what are the effects of
its execution. We now concentrate on the Golog-based process synthesis.

4.2 ‘Loose’ Golog: The :-Operator

In basic Golog, every action needs to be explicitly named in a procedure, and
the only operator that allows chaining service executions is the (immediate)
successor, corresponding to the SLTL operator Next. In order to specify loose
coordinations, that include Eventually and Until, we need operators that allow
replacement by an a priori undetermined number of steps. The underlying mo-
tivation is that those parts of the concrete processes are unspecified and any
sequence that satisfies their boundary conditions is there admissible, building
this way a (semantic) equivalence class.

When restricting ourselves to Eventually, which is sufficient for the considered
case study, this can be achieved using the :-Operator introduced in [18]. This
operator exploits planning/search to achieve the required preconditions of sub-
sequent services by inserting an appropriate sequence of actions. With ‘:’ we can
easily specify the mediation task as the Golog procedure performMediation:

proc performMediation
consumePip3A4PurchaseOrderRequest(A,B,C,D,E, F,G) ;
saveStartT ime

:
saveItemsNoAndPOR(J,K) ;
omServiceV 1closeOrderSIB(L,M,N)

endProc.

Stating that the mediation process starts with the service consumePip3A4
PurchaseOrderRequest and ends with the service omServiceV 1closeOrderSIB.
What happens in between depends on precision of modeling and, in this case,
on Golog’s search strategy for an action sequence, making the entire sequence
executable. The result of the search is a suitable linear, deterministic sequence
of actions/activities (a service composition). The services saveStartT ime and
saveItemsNoAndPOR are local services which need to be called in order for

404 T. Margaria et al.

Fig. 6. The resulting Mediator process, visualized as a jABC orchestration. Highlighted
in red is the synthesized sequence of actions.

data to be stored on disk for another process (the Mediator part 2, that we
do not address here) to be able to retrieve it. The resulting resulting Mediator
process is shown in Fig. 6.

5 Conclusion and Perspectives

We have presented two approaches to attack the automatic solution of orchestra-
tion problems based on synthesis from declarative specifications, a semantically
enriched description of the services, and a collection of services available on a
testbed. The first approach uses jMosel [11], our tool for solving Monadic Second-
Order Logic on Strings [19], and the second approach is based on Golog [12], a
programming language combining imperative features with a Prolog flavor. As
a common case study we have considered the Mediation Scenario of the Seman-
tic Web Service Challenge [1,3], with the goal to synthesize abstract mediator
processes, and to describe how the concrete, running (Web) service composition
is computed. As a result, together with the solution we had already described
in [9,20,21], we have obtained three structurally rather different synthesis solu-
tions (cf. Fig. 2), all integrated as running solutions in the jABC/jETI modeling
framework [4,5,6,7].

This could be achieved despite their algorithmic and structural differences:

– our previously exploited method, originally presented in [8], is tableaux-
based. It computes the service composition while constructing a proof tree
in a fashion reminiscent of the approach presented in [22]

– the jMosel-approach uses a Monadic second-order (M2L) logic-based, com-
positional automata construction to infer an automaton description from the
goal description in SLTL, and

– the Prolog flavored Golog approach synthesizes the mediation process via
backward chaining.

There are also some strong similarities:

– All approaches are based on a domain modeling, which essentially consists
of the specification of the available services in term of triples that specify
the input types, an effect description, and an output type. For the Golog
approach, this knowledge is specified within the Situation Calculus in terms

Synthesizing Semantic Web Service Compositions with jMosel and Golog 405

of Basic Action Theories, and in the other two approaches in the so-called
Configuration Universe.

– All approaches synthesize an operational description of the mediator from
a declarative specification of the available procedural knowledge. In Golog,
the declarative description is given in ’loose’ Golog, a variant of Golog, re-
sembling an eventuality operator (cf. [18]). The synthesis transforms these
loose specifications together with the Basic Action Theories into a concrete
runnable Golog program. In the other two approaches the loose descriptions
are given in SLTL, a logic specifically designed for temporally loose pro-
cess specification. The synthesis then results in executable action/module
sequences. As can be seen in Fig. 2, as for Golog, the tableaux-based ap-
proach directly exploits the domain model, while the M2L-based approach
’projects’ the synthesized automaton onto the Configuration universe via
simple product construction.

– From a semantical perspective, all approaches use a variant of (Kripke) Tran-
sitions Systems (KTS) [23] as their operational model, i.e. kinds of automata,
where the edges are labelled with actions/activities, and where the nodes (im-
plicitly) resemble type information/fluents. The fact that Golog is intuitively
linked here to a tree structure rather than to a graph structure is technically
of minor importance. However, here the fact transpires that Golog is intend
to construct plans (essentially paths in a tree) essentially instance-driven,
rather than to represent potentially all possible plans, as it is possible with
the other approaches considered here.

– All approaches have a computational bottleneck: for the tableaux method
it is the explosion of the proof tree, M2L-synthesis is known to be non-
elementary (the automata construction may explode due to the required
intermediate determination), and also backward chaining is classically known
to be a hard problem. It is our goal to help understanding which bottleneck
strikes when, and where to prefer which (combination of) which technologies.

This similarity/difference spectrum is ideal for an investigation of application
profiles. We are therefore currently investigating when which bottleneck strikes,
and why. Please note that there may be significant differences here between
superficially similar approaches, with drastic effects on the performance depend-
ing on the considered situation. For comparison, consider the situation in Model
Checking, where techniques like (BDD-based) symbolic model checking, bounded
model checking, assume-guarantee techniques, partial order reduction, etc., are
known to cover very different aspects of the so-called state explosion problem.
Even in this well-studied field these effects are still not fully understood.

This is the motivation for us to work on a common platform for experimenta-
tion, where the different techniques can be evaluated, compared, modified and
combined. Technological basis for this is the jABC/jETI modeling and exper-
imentation framework [4,5,6,7], which has been initiated more than 10 years
ago [14], and which has shown its power in other contexts, see e.g. our model
learning environment [24,25]. At the moment four approaches have been inte-
grated, and we plan to integrate more within the next year, in particular one

406 T. Margaria et al.

exploiting traditional automata-theoretic methods for translation LTL to Büchi
automata (cf. eg. [26]), one following the idea of Hierarchical Task Networks
(cf. eg. [27]), which exploit given knowledge about task decomposition, and also
the input/output function-focussed approach based on the Structural Synthesis
Program described in [28]. This way we do not only want to be able to fairly
compare the different scenarios in different contexts for their application pro-
files, but also to enlarge the landscape of Fig. 2 to a library of powerful synthesis
and planning components which can be combined within jABC to new complex
domain-specific planning or synthesis solutions. In order to make this possible at
a larger scale, we plan to make the experimentation platform publicly available,
allowing people not only to experiment with the integrated tools, but also to
provide their own tools for others to experiment with. We hope that this will
contribute to a better experimentation-based understanding of the various meth-
ods and techniques, and a culture of systematic application-specific construction
of synthesis solutions.

References

1. Semantic Web Service Challenge (2009), http://www.sws-challenge.org
2. RosettaNet standard (2009), http://www.rosettanet.org/
3. Petrie, C., Margaria, T., Lausen, H., Zaremba, M. (eds.): Service-oriented Media-

tion with jABC/jETI. Springer, Heidelberg (2008)
4. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-driven devel-

opment with the jABC. In: HVC - IBM Haifa Verification Conference, Haifa, Israel,
IBM, October 23-26, 2006. LNCS. Springer, Heidelberg (2006)

5. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
Concepts and design. Int. Journal on Software Tools for Technology Transfer
(STTT) 1(2), 9–30 (1997)

6. Margaria, T.: Web services-based tool-integration in the ETI platform. SoSyM,
Int. Journal on Software and System Modelling 4(2), 141–156 (2005)

7. Steffen, B., Margaria, T., Nagel, R.: Remote Integration and Coordination of Ver-
ification Tools in jETI. In: Proc. of ECBS 2005, 12th IEEE Int. Conf. on the En-
gineering of Computer Based Systems, Greenbelt (USA), April 2005, pp. 431–436.
IEEE Computer Society Press, Los Alamitos (2005)

8. Freitag, B., Steffen, B., Margaria, T., Zukowski, U.: An approach to intelligent
software library management. In: Proc. 4th Int. Conf. on Database Systems for
Advanced Applications (DASFAA 1995), National University of Singapore, Singa-
pore (1995)

9. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic Gen-
eration of the SWS-Challenge Mediator with jABC/ABC. Springer, Heidelberg
(2008)

10. Church, A.: Logic, arithmetic and automata. In: Proc. Int. Congr. Math.,Uppsala,
Almqvist and Wiksells, vol. 1963, pp. 23–35 (1963)

11. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A Stand-Alone Tool
and jABC Plugin for M2L(str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925,
pp. 293–298. Springer, Heidelberg (2006)

12. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

http://www.sws-challenge.org
http://www.rosettanet.org/

Synthesizing Semantic Web Service Compositions with jMosel and Golog 407

13. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program. 21(2), 115–139 (1993)

14. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
Concepts and design. Int. Journal on Software Tools for Technology Transfer
(STTT) 1(2), 9–30 (1997)

15. Margaria, T., Steffen, B.: LTL guided planning: Revisiting automatic tool compo-
sition in ETI. In: SEW 2007: Proceedings of the 31st IEEE Software Engineering
Workshop, Washington, DC, USA, pp. 214–226. IEEE Computer Society Press,
Los Alamitos (2007)

16. Wilhelm, C.T.E., Steffen, T.M.B.: jMosel: A stand-alone tool and jABC plugin
for M2L(Str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 293–298.
Springer, Heidelberg (2006)

17. Margaria, T.: Fully automatic verification and error detection for parameterized it-
erative sequential circuits. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 258–277. Springer, Heidelberg (1996)

18. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In:
Proceedings of the Eighth International Conference on Knowledge Representation
and Reasoning (KR2002), Toulouse, France, April 22-25, 2002, pp. 482–493 (2002)

19. Kelb, P., Margaria, T., Mendler, M., Gsottberger, C.: MOSEL: A flexible toolset for
monadic second-order logic. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217,
pp. 183–202. Springer, Heidelberg (1997)

20. Kubczak, C., Margaria, T., Kaiser, M., Lemcke, J., Knuth, B.: Abductive synthesis
of the mediator scenario with jABC and GEM. Technical Report LG-2009-01, Stan-
ford University (2009), http://logic.stanford.edu/reports/LG-2009-01.pdf

21. Lemcke, J., Kaiser, M., Kubczak, C., Margaria, T., Knuth, B.: Advances in solving
the mediator scenario with jABC and jABC/GEM. Technical Report LG-2009-01,
Stanford University (2009),
http://logic.stanford.edu/reports/LG-2009-01.pdf

22. Baier, J., McIlraith, S.: Planning with temporally extended goals using heuristic
search. In: Proc. ICAPS 2006, Cumbria, UK. AAAI, Menlo Park (2006)

23. Müller-Olm, M., Schmidt, D.A., Steffen, B.: Model-checking: A tutorial introduc-
tion. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354.
Springer, Heidelberg (1999)

24. Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and
experimentation. In: Proc. of ACM SIGSOFT FMICS 2005, pp. 62–71. ACM Press,
New York (2005)

25. Margaria, T., Raelt, H., Steen, B., Leucker, M.: The learnlib in FMICS-jETI. In:
Proc. of ICECCS 2007, 12th IEEE Int. Conf. on Engineering of Complex Computer
Systems, July 2007. IEEE Computer Soc. Press, Los Alamitos (2007)

26. Gastin, P., Oddoux, D.: Fast ltl to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 53. Springer,
Heidelberg (2001)

27. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for web
service composition using shop2. In: ISWC 2003, vol. 1(4), pp. 377–396 (2003)

28. Matskin, M., Rao, J.: Value-added web services composition using automatic pro-
gram synthesis. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B.,
Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 213–224. Springer,
Heidelberg (2002)

http://logic.stanford.edu/reports/LG-2009-01.pdf
http://logic.stanford.edu/reports/LG-2009-01.pdf

A Practical Approach for
Scalable Conjunctive Query Answering on

Acyclic EL+ Knowledge Base

Jing Mei1, Shengping Liu1, Guotong Xie1, Aditya Kalyanpur2,
Achille Fokoue2, Yuan Ni1, Hanyu Li1, and Yue Pan1

1 IBM China Research Lab, Building 19 ZGC Software Park, Beijing 100193, China
{meijing,liusp,xieguot,niyuan,lihanyu,panyue}@cn.ibm.com

2 IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
{adityakal,achille}@us.ibm.com

Abstract. Conjunctive query answering for EL++ ontologies has re-
cently drawn much attention, as the Description Logic EL++ captures
the expressivity of many large ontologies in the biomedical domain and
is the foundation for the OWL 2 EL profile. In this paper, we propose
a practical approach for conjunctive query answering in a fragment of
EL++, namely acyclic EL+, that supports role inclusions. This approach
can be implemented with low cost by leveraging any existing relational
database management system to do the ABox data completion and query
answering. We conducted a preliminary experiment to evaluate our ap-
proach using a large clinical data set and show our approach is practical.

1 Introduction

The OWL 2 EL profile is a subset of OWL 2 that captures the expressive power of
many large ontologies in the biomedical domain, such as the Gene Ontology [6],
the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) [9],
and large parts of the Galen Medical Knowledge Base ontology [13]. This profile
is based on the Description Logic language EL++ [1,2] for which the concept
subsumption and instance checking problem can be decided in polynomial time.

Meanwhile, conjunctive query answering, which originated from research in
relational databases (RDB), is becoming a crucial requirement for ontology-
based, data intensive applications. In biomedicine, there are several, very large
EL+ ontological datasets, e.g., protein data annotated with the Gene Ontology
and clinical data annotated using SNOMED CT. However, theoretical results
have proved that conjunctive query answering is undecidable in both EL+ and
EL++ [14]. To regain the decidability for addressing conjunctive queries, some
fragments of EL+ and EL++ need to be identified. One approach is to exclude
role inclusions, e.g., related work on EL [11] and its follow-up work on ELHdr

⊥
[12], while another approach is to impose restrictions on role inclusions, e.g., the
so-called regular EL++ [10]. In either of the two approaches, less attention is
paid to provide full support for role inclusions. Considering that role inclusion

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 408–423, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Practical Approach for Scalable Conjunctive Query Answering 409

does play an important role in biomedical ontologies (such as transitivity for the
part-of relationship in the Gene Ontology and the right identity axiom for direct-
substance ◦ active-ingredient � direct-substance in SNOMED CT), we prefer to
keep expressive roles in the logic and explore an alternate solution.

In this paper, we present a practical approach for scalable conjunctive query
answering on acyclic EL+ KBs. The acyclic notion generalizes the classical one
(as defined in the DL handbook [4]), by including general concept inclusions.
Note that acyclic EL+ KBs can admit the irregularity in EL+ role inclusions.
Also, acyclic EL+ is really useful in practice, because it is expressive enough for
the commonly used biomedical ontologies, e.g., Gene Ontology, SNOMED CT.

At a glance, our approach is similar to the bottom-up rule evaluation approach
which consists of: (1) doing an ABox completion to precompute all inferred
assertions; (2) answering conjunctive queries on the completed ABox. In the
first phase, we adopt the idea of “shared” individuals for existential restrictions,
referred to as canonical individuals in this paper. For example, suppose A �
∃R.B in the TBox with A(a) and A(b) in the ABox, we will generate one and
only one canonical individual u w.r.t. the existential restriction ∃R.B, and the
completed ABox will have the assertions B(u), R(a, u), and R(b, u). Thus, the
cost of inference and the size of the completed dataset is greatly reduced, due
to less fresh individuals. However, the canonical individual u is now “shared” by
both a and b. If a query asks for R(x1, y) and R(x2, y), then the bindings x1 = a
and x2 = b (with y bound to u) is not a correct answer. Therefore, in the second
phase, we propose a base path criterion to decide the soundness of an answer
on the completed ABox. Towards a practical implementation, we materialize the
base path criterion by base path precomputation and query rewriting.

Accordingly, we implemented a prototype to evaluate our approach using a
relational database (DB2). Initially, both TBox and ABox are stored in an RDB.
The ABox completion is conducted by running an RDB-based Datalog engine
with our ABox completion rules. Finally, queries are rewritten and transformed
to SQL, making them executable on top of the RDB. The experimental results
show that our approach is practical for a large ABox with millions of triples.

Our key contributions in this paper are as follows: (a) we propose a practical
approach for conjunctive query answering for acyclic EL+ that supports role
inclusions; (b) we describe a low-cost implementation for this approach on top
of a standard relational database management system; (3) we demonstrate its
effectiveness and efficiency on a large-scale TBox and ABox.

We direct readers to the Appendix1 for all proofs.

2 Preliminaries

2.1 EL+ and EL Family

In EL, concept descriptions are C ::= A|∃R.C|C1 	 C2|
 where
 is the top
concept, A is a concept name and R is a role name. A TBox T is a finite set
1 http://domino.research.ibm.com/comm/research people.nsf/pages/

jingmei.pubs.html/$FILE/iswc09 appendix.pdf

410 J. Mei et al.

of general concept inclusions (GCIs) of the form C1 � C2 where C1 and C2 are
concept descriptions. An ABox A is a set of concept assertions A(a) and role
assertions R(a1, a2) where A is a concept name, R is a role name, and a, a1, a2
are individual names. As usual in DLs, a knowledge base (KB) K is a pair 〈T ,A〉
with T a TBox and A an ABox. We use NI (resp. NC and NR) to denote the
set of named individuals (resp. concept names and role names).

EL+ [3] extends EL by also allowing in the TBox a finite set of role inclusions
of the form R1 ◦ · · · ◦ Rk � Rk+1 where each Ri is a role name and 1 � i �
k+1. Particularly important from the perspective of ontology applications, EL+

generalizes the following: role hierarchies R � S (aka. ELH); transitive roles
expressed by R◦R � R (aka. ELHR+); and so-called left-identity rules R◦S � S
as well as right-identity rules R ◦ S � R. Finally, EL++ [1] is an extension of
EL+ with the bottom concept ⊥, the nominal {a} and the concrete domain
p(f1, · · · , fn).

As follows, we will focus on EL+ and its semantics is defined as usual. More-
over, EL+ TBoxes admit a normal form [3]. Any EL+ TBox in normal form con-
sists of concept/role inclusions in one of the following forms: A � B,A1 	A2 �
B,A � ∃R.B, ∃R.A � B,R � S and R1 ◦R2 � S, where each A,B,A1, A2 is a
concept name or the top concept
, and each R,S,R1, R2 is a role name. Unless
otherwise specified, this paper assumes that TBox T is in normal form.

A polynomial-time algorithm for TBox reasoning in EL+ has been proposed
and implemented [3]. Using C1 �T C2, we denote that C1 is subsumed by C2
w.r.t. T . Given a TBox T , we redefine cycles in T (to generalize the classical
definition [4]). We say that A directly uses B in T , if A �T ∃R.B, and we call
uses the transitive closure of the relation directly uses. Then T contains a cycle iff
there exists a concept name in T that uses itself. Otherwise, T is called acyclic.

Finally, we also need to decide role subsumption in EL+. That is, given a
TBox T and a finite sequence of role names R1, · · · , Rk where k � 3, to find
the set {R | R1 ◦ · · · ◦Rk �T R}. This problem can be computed in polynomial
time in the size of T . First, the role inclusions are expanded by exhaustively
applying the following four rules: (1) if R �T S and S �T T , then R �T T ;
(2) if R1 ◦ R2 �T S and S �T T , then R1 ◦ R2 �T T ; (3) if R1 ◦ R2 �T S
and T �T R1, then T ◦ R2 �T S; (4) if R1 ◦ R2 �T S and T �T R2, then
R1 ◦ T �T S. Then, given R1, · · · , Rk where k � 3, we can recursively compute
{S|R1 ◦ · · · ◦Ri �T S} and {T |Ri+1 ◦ · · · ◦Rk �T T }, for 1 � i < k, such that
{R | S ◦ T �T R}.

2.2 Conjunctive Query Answering

Referring to [11,12], we introduce conjunctive queries and certain answers.
A conjunctive query q is an expression of the form ∃y.ϕ(x,y) where x =

{x1, · · · , xm} and y = {y1, · · · , yn} are vectors of variables, while ϕ is a con-
junction of concept atoms A(t) and role atoms R(t1, t2). Variables in x are called
distinguished variables (also called answer variables) and variables in y are non-
distinguished (also called quantified variables). A term is a variable or a named
individual, and we use Term(q) to denote the set of all terms in a query q.

A Practical Approach for Scalable Conjunctive Query Answering 411

Let I be an interpretation and q = ∃y.ϕ(x,y) a conjunctive query. A match
for I and q is a mapping π : Term(q) → ΔI such that: (1) π(a) = aI for all named
individuals a ∈ Term(q) ∩ NI; (2) π(t) ∈ AI for all concept atoms A(t) ∈ q;
(3) (π(t1), π(t2)) ∈ RI for all role atoms R(t1, t2) ∈ q. If x = {x1, · · · , xm} with
π(xi) = aIi for 1 � i � m, then π is called an (a1, · · · , am)-match for I and q. If
such a match exists, we write I � q[a1, · · · , am].

A certain answer for a conjunctive query q = ∃y.ϕ(x,y) and a knowledge base
K is a tuple [a1, · · · , am] such that, for any model J of K, J � q[a1, · · · , am].
We use cert(q,K) to denote the set of all certain answers for q w.r.t K.

3 ABox Completion

The purpose of this phase is to build a completed ABox by enriching the original
ABox with inferred assertions, so that conjunctive queries can be answered on
the completed ABox, instead of doing ABox reasoning at runtime.

3.1 ABox Completion Rules

To complete the ABox, one of the main difficulties is handling the existential
concept inclusion A � ∃R.B, which is a generative axiom in that it introduces
new individuals not occurring in the original ABox.

A naive way to do the ABox completion is to compute: (1) a mapping MC

from concepts to a subset of individuals; and (2) a mapping MR from roles to a
binary relation on individuals. Below is the list of ABox completion rules.

AR1. If A � B ∈ T , x ∈ MC(A) and x /∈ MC(B),
then MC(B) := MC(B) ∪ {x}

AR2. If A1 	A2 � B ∈ T , x ∈ MC(A1), x ∈ MC(A2) and x /∈ MC(B),
then MC(B) := MC(B) ∪ {x}

AR3. If ∃R.A � B ∈ T , (x, y) ∈ MR(R), y ∈ MC(A) and x /∈ MC(B),
then MC(B) := MC(B) ∪ {x}

AR4. If R � S ∈ T , (x, y) ∈ MR(R),
then MR(S) := MR(S) ∪ {(x, y)}

AR5. If R1 ◦R2 � S ∈ T , (x, y) ∈ MR(R1), (y, z) ∈ MR(R2),
then MR(S) := MR(S) ∪ {(x, z)}

AR6. If A � ∃R.B ∈ T , x ∈ MC(A), and there is no individual y′, s.t.
y′ ∈ MC(B) and (x, y′) ∈ MR(R), then generate a new individual y,
and MC(B) := MC(B) ∪ {y} and MR(R) := MR(R) ∪ {(x, y)}

However, there will be a large number of individuals generated. Suppose Ai �
∃R.Aj with A0(a), where Ai �= Aj and 0 � i < j � m. By applying AR6 to
the named individual a, there are 2m − 1 individuals generated. Let n be the
number of A0’s instances. The size of the final generated individuals will blow
up to n× (2m − 1).

To address this problem, an idea of “shared” individuals is adopted in this
paper. Specifically, for each existential restriction ∃R.B, we will generate a fresh
new individual (viz. canonical individual) u with respect to R and B, denoted by

412 J. Mei et al.

CI(u,R,B). To elaborate, for each existential concept inclusion A � ∃R.B and
all instances a ∈ MC(A), we ensure that u ∈ MC(B) and (a, u) ∈ MR(R). Below
is an alternate ABox completion rule AR6′ that replaces the previous AR6.

AR6′. If A � ∃R.B ∈ T , x ∈ MC(A) and CI(u,R,B),
then MC(B) := MC(B) ∪ {u} and MR(R) := MR(R) ∪ {(x, u)}

It is not hard to show that, by repeatedly applying rules AR1 − 5 and AR6′,
the rule application procedure will eventually terminate, when no more changes
to MC and MR occur. In fact, canonical individuals are those newly introduced
anonymous individuals, and we have generated all canonical individuals as the
preprocessing step for ABox completion, so that MC and MR are computed
using at most n ·m rule applications, yielding the data set bounded by O(n ·m),
where n and m are linear in the size of T and A.

Now, applying AR6′ to the above example, we will only generatem individuals
for each and every ∃R.Aj where 1 � j � m, even if there are n instances of A0.
Besides, our ABox completion can benefit a lot from canonical individuals. First,
it dramatically reduces the number of anonymous individuals to be generated.
Second, it can be pre-computed for a given TBox, so as to reduce the cost of
doing the ABox completion.

Thus, similar to the theoretical result presented in [11], our ABox completion
can be done in linear time and yield a completed ABox whose size is linear w.r.t.
both the TBox and the ABox.

3.2 ABox Completion Implementation

Our approach is implemented using an RDB system. Actually, via introducing
canonical individuals, our ABox completion rules AR1 − 5 and AR6′ can be
transformed into Datalog rules, and the completed ABox can be computed by
running an RDB-based Datalog engine via a bottom-up evaluation strategy.

First, we design a database schema s.t. the normalized TBox is stored in
6 tables, namely, atomicSub, existsSub, gciInter, gciExists, subRole and
roleChain. These tables correspond to the TBox axioms in form of: A � B,A �
∃R.B,A1 	A2 � B, ∃R.A � B,R � S and R1 ◦R2 � S, respectively. Similarly,
the ABox is stored in two tables, typeOf and roleStmt, corresponding to asser-
tions of A(x) and R(x, y), respectively. The pre-computed canonical individuals
are stored in the table canonInd.

Second, we translate the ABox completion rules AR1− 5 and AR6′ into Dat-
alog rules, in addition to two initialization rules s.t., (1) if typeOf(x, y) then
infTypeOf(x, y); (2) if roleStmt(R, x, y) then infRoleStmt(R, x, y, 0). Now,
running an RDB-based Datalog engine with the rules, and via a bottom-up
evaluation strategy, all inferred assertions will be incrementally stored in tables
infTypeOf and infRoleStmt. In particular, the last column in infRoleStmt
is used to indicate the origin of inferred role assertions (the reason for doing
that will be explained in the next section). Specifically, if R(x, y) is inferred by
AR6′, then we store it as infRoleStmt(R, x, y, 1); and if R(x, y) is inferred by
AR4 − 5, then we store it as infRoleStmt(R, x, y, 2). We remark that rules of

A Practical Approach for Scalable Conjunctive Query Answering 413

AR4 − 5 and AR6′ are allowed to fire, even if the role assertion R(x, y) that
they are attempting to infer has already been computed as (x, y) ∈ MR(R). For
instance, suppose T = {A � ∃R1.B,B � ∃R2.C,A � ∃R2.C,R1 ◦ R2 � R2}
and A = {A(a)}. After the rule execution, we have canonInd(u1, R1, B) and
canonInd(u2, R2, C), in addition to infRoleStmt(R2, a, u2, 1) because of A �
∃R2.C, and infRoleStmt(R2, a, u2, 2) because of R1 ◦R2 � R2.

Thus, the ABox completion is done as described above, and we use Aα to
denote the completed ABox, where the set of canonical individuals in Aα is
denoted by CI.

As follows, we define an interpretation Iα w.r.t. Aα s.t.

– ΔIα := NI ∪ CI
– aIα := a for all a ∈ NI
– AIα := {e ∈ ΔIα | A(e) ∈ Aα} for all A ∈ NC
– RIα := {(e1, e2) ∈ ΔIα ×ΔIα |R(e1, e2) ∈ Aα} for all R ∈ NR

It is not hard to show that Iα is a model of K, and if (a1, · · · , am) ∈ cert(q,K)
then Iα � q[a1, · · · , am], but not vice versa.

4 Query Answering

After ABox completion, queries are ready for answering. However, problems arise
due to the introduction of canonical individuals. In this section, we will illustrate
a running example, followed by our solution and optimization.

4.1 The Running Example

We use a query q = ∃y.R(x1, y) ∧ R(x2, y) and an EL+ KB K = 〈T ,A〉 as
the running example, where T = {C � ∃R2.B,B � ∃R.D,R1 ◦ R � R3, R2 ◦
R � R4, R3 � R,R4 � R} and A = {B(b), C(c), R1(a, b)}. Note that T is
irregular. The query is shown below. By the ABox completion, there are two
canonical individuals generated, i.e. u1 for ∃R2.B and u2 for ∃R.D, in addi-
tion, Aα = A ∪ {B(u1), D(u2), R(b, u2), R2(c, u1), R(u1, u2), R3(a, u2), R(a, u2),
R4(c, u2), R(c, u2)}, as sketched below. Now, matching the query q with the com-
pleted ABox Aα, we have the answer set, i.e., {(a, a), (b, b), (c, c), (a, b), (b, a),
(b, c), (c, b), (a, c), (c, a)}. As shown below, the last four ones, (b, c), (c, b), (a, c),
(c, a), are incorrect answers.

�y

�x1 �x2

�
�

��

�
�

��

q = ∃y.R(x1, y) ∧R(x2, y)

�b

�a

�u1

�c

�u2

� �

�
�
�

���

	
	

	
		
���� �

Aα

x1 x2 y answer
a a u2 correct
b b u2 correct
c c u2 correct
a b u2 correct
b a u2 correct
b c u2 incorrect
c b u2 incorrect
a c u2 incorrect
c a u2 incorrect

414 J. Mei et al.

We observe that, first, there is a reverse tree in the query. Intuitively, a role
atom R(x, y) can be regarded as an edge with the direction pointing from x to y.
Roughly, if there are multiple edges pointing to the same y, we call it a reverse
tree. For q, role atoms R(x1, y) and R(x2, y) are regarded as two edges pointing to
the same y, which makes this a reverse tree. Second, the completed data R(a, u2)
and R(c, u2) matches the reverse tree incorrectly. This is due to the canonical
individual u2 that was generated for ∃R.D and shared by b and u1, due to
B � ∃R.D. Furthermore, the “sharing” is extended to a and c, due to R1 ◦R �T
R and R2 ◦ R �T R, respectively, where R1(a, b) and R2(c, u1). As proposed
in [11,12], to guarantee sound answers, the query would be rewritten as q∗ =
∃y.R(x1, y)∧R(x2, y)∧ (CI(y) → x1 = x2) s.t., if y is matched with a canonical
individual, then x1 and x2 need to be matched with the same individual. In this
way, unsound answers like (x1/a, x2/c) are filtered. However, answers are now
incomplete, because some correct answers such as (x1/a, x2/b) are also removed.
The reason why the existing strategy of query rewriting fails in this case is
due to the increased role expressivity. A big difference between (x1/a, x2/c) and
(x1/a, x2/b) is that a and b share u2 in a native way, since R1 ◦R �T R.

Therefore, we need to distinguish variable bindings considering reverse trees in
the query. To this end, we first need to distinguish different role assertions in the
completed ABox, some of which are generated by existential concept inclusions,
and some of which are derived from role inclusions. The former is the origin of
incorrect query answering, while the latter extends the incorrectness. Recalling
our ABox completion implementation, we mark a tag in infRoleStmt, mak-
ing R(b, u2), R2(c, u1), R(u1, u2) tagged by 1 and R3(a, u2), R(a, u2), R4(c, u2),
R(c, u2) tagged by 2. Thus, we distinguish role assertions tagged by 1 from
those tagged by 2, which are “purely” derived by AR6′ and are the root cause
of the problem. We call them base triples.

Furthermore, we build so-called base paths by traversing the graph of base
triples. In our example, there are three base triples, i.e., R(b, u2), R2(c, u1),
R(u1, u2), and three base paths, i.e., bRu2, cR2u1, cR2u1Ru2. Given a base path,
the first individual is called the head, and the last individual is called the tail,
while all individuals in the base path are said to be directly located in it. If there
is a named individual reachable to the head of a base path, we refer to it as being
indirectly located in the base path. For instance, a is reachable to b, making a
indirectly located in bRu2.

These base paths are now used for filtering incorrect answers. Informally, all
terms occurring in a reverse tree of the query are required to be (in)directly
located in a single base path, so called the base path criterion. In our example,
a and b are, respectively, indirectly and directly located in bRu2, so (x1/a, x2/b)
is a correct answer. Conversely, there is no base path making both a and c
(in)directly located, so (x1/a, x2/c) is not a correct answer.

Meanwhile, we realize that it is infeasible to check base paths at runtime dur-
ing query answering. As illustrated above, there are at least 9 matches for Aα

and q in our example. To reduce the cost, we precompute and materialize all

A Practical Approach for Scalable Conjunctive Query Answering 415

possible role assertions in the same base path in the table BPath(path, tail,
node1, node2, role), where the path has the tail, and node1 is (in)directly
located, while node2 is directly located in the path via the role relationship. Be-
low is the BPath storage of our example. For example, BPath(bRu2, u2, a, u2, R)
indicates the path bRu2 has the tail u2, and a is indirectly located while u2 is
directly located via the assertion R(a, u2).

Table 1. An example of the BPath storage

path tail node1 node2 role

cR2u1 u1 c u1 R2

bRu2 u2 b u2 R
bRu2 u2 a u2 R3

bRu2 u2 a u2 R

cR2u1Ru2 u2 c u1 R2

cR2u1Ru2 u2 u1 u2 R
cR2u1Ru2 u2 c u2 R4

cR2u1Ru2 u2 c u2 R

Finally, our base path criterion is applicable for query rewriting. For q, we
rewrite it as q∗ = ∃y.R(x1, y) ∧ R(x2, y) ∧ (CI(y) → ∃p.BPath(p, y, x1, y, R) ∧
BPath(p, y, x2, y, R)). Here, the satisfiability of CI(y) means y’s match is a
canonical individual, while the satisfiability of both BPath(p, y, x1, y, R) and
BPath(p, y, x2, y, R) means the matches of x1 and x2 are (in)directly located in
a single base path p. As shown in Table 1, both BPath(bRu2, u2, a, u2, R) and
BPath(bRu2, u2, b, u2, R) are satisfied, making (x1/a, x2/b) a correct answer.

In the next three subsections, we will formally present our solution, including
how to identify reverse tress in the query, how to compute base paths in the ABox
completion, and how to rewrite the query according to our base path criterion.

4.2 Reverse Trees in Query

Before we provide a formal definition of reverse trees, we remark that little
attention is paid to multiple edges pointing to the same y, where y is bound
to a named individual. This is because only matches sharing some canonical
individuals are problematic. Moreover, EL+ models are split [11], i.e., there is
no role assertion pointing from an unnamed individual to a named one.

Formally, let q = ∃y.ϕ(x,y) be a conjunctive query. We use GTq ⊆ Term(q) to
denote the set of grounded terms in q, s.t. for each t ∈ Term(q): (1) if t ∈ NI∪x
then t ∈ GTq; (2) if R(t, t′) ∈ q and t′ ∈ GTq then t ∈ GTq.

Next, we use γq to denote the set of reverse tree roots in the query q, i.e.,
γq := {y �∈ GTq| �{R(x, y) ∈ q} > 1}, where � denotes the cardinality.

Now, for each reverse tree root y ∈ γq, we compute E
(0)
y := {R(x, y) ∈ q}

and E
(i+1)
y := E

(i)
y ∪ {R(s, t) ∈ q | t ∈ {s′|R′(s′, t′) ∈ E

(i)
y } and t �∈ GTq}. The

computation terminates, when E
(i)
y = E

(i+1)
y . E(0)

y refers to the set of multiple

416 J. Mei et al.

edges pointing to the same y. By incrementally expanding in a reverse direction,
E

(i)
y contains additional edges, all of which point to non-grounded terms, until

we reach a fixedpoint. The resultant set Ey :=
⋃

i�0 E
(i)
y , and we use Ey to

denote the set of all reverse tree edges rooted by y ∈ γq.
Finally, we use RTq to denote the set of reverse trees, where each reverse tree

is a pair (y,Ey) with y ∈ γq and there is no pair (y′, Ey′) in RTq such that
Ey ⊂ Ey′ . We call a query q free of reverse trees, if RTq is empty.

It is not hard to verify that GTq and RTq can be computed in time polynomial
in the size of q. Moreover, the size of GTq is linear in the size of q, and the size
of RTq is polynomial in the size of q.

As shown in the following theorem, for queries free of reverse trees, query
answering over the completed ABox is sound and complete, even in cyclic EL+

KBs. Thus, if the application requires only queries free of reverse trees, the rest
of this section can be skipped over.

Theorem 1. cert(q,K) = ans(q,Aα), given that q is a conjunctive query free
of reverse trees and K is an EL+ knowledge base.

To see which queries are free of reverse trees, consider the following samples.
First, q1 = ∃y1, y2.R1(x1, y1)∧R2(x2, y2) is forest-shaped (a notion well defined
in DL literature [8]), and we claim that forest-shaped queries are all free of
reverse trees. Next, neither q2 = ∃y1, y2, y3.R(y1, y2) ∧ R(y2, y3) ∧ R(y3, y1) nor
q3 = ∃y1, y2.R1(x1, y1) ∧ R2(x2, y1) ∧ R3(y1, y2) ∧ R4(y2, x3) is forest-shaped,
while both q2 and q3 are free of reverse trees. In fact, there is no multiple edge
in q2, which makes it free of a reverse tree. In q3, the multiple edges point to y1
which is a grounded term due to the answer variable x3, so there is no reverse
tree root and q3 is also free of a reverse tree.

4.3 Base Paths in ABox Completion

First, we need to identify base triples in the ABox completion. Taking advantage
of the last column in infRoleStmt,BT is used to denote the set of base triples s.t.
BT := {R(x, y)|infRoleStmt(R, x, y, 1)} \ {R(x, y)|infRoleStmt(R, x, y, 2)}. In
other words, BT consists of triples which are “purely” derived by AR6′.

Next, we traverse the graph of BT to compute base paths. Given a canonical
individual u ∈ CI, we use BP (u) to denote the set of base paths ending up with
u such that BP (u) := {u0R1u1 · · ·Rkuk|u0 ∈ NI, uk = u, ui ∈ CI,R(ui−1, ui) ∈
BT, 1 � i � k}. The following figure illustrates the intuition of our definition.

There are two planes: the NI plane contains
all triples between named individuals, and the
CI plane contains only the base triples be-
tween canonical individuals. Meanwhile, base
triples from named individuals to canonical in-
dividuals are those links from the NI plane to
the CI plane. Here is the running example.

A Practical Approach for Scalable Conjunctive Query Answering 417

Intuitively, a base path starts from a named individual (i.e. the head), followed
by a base triple jumping from the NI plane to the CI plane, and after traversal,
it ends up with a canonical individual (i.e. the tail). Therefore, all individuals in
a base path are canonical ones, except the head. Named individuals indirectly
located in a base path are those reachable to its head in the NI plane.

It is not hard to show that, disregarding cyclic EL+ KBs, the base path
computation will terminate, and using depth-first-search or breadth-first-search,
its time complexity is proportional to the number of nodes plus the number of
edges in the graph they traverse, i.e., O(|NI|+ |CI|+ |BT |). In other words, BP
can be computed in time linear in the size of Aα. Unfortunately, in the worst-
case, the size of base paths is exponential in the size of TBox and polynomial in
the size of ABox. We believe this upper bound is unlikely to occur in practice,
and Section 4.5 presents our optimization techniques to address this issue.

Finally, we precompute and materialize all possible role assertions in the same
base path in the table BPath(path, tail, node1, node2, role). For a base
path p: u0R1u1 · · ·Rkuk, we store it as BPath(p, uk, ui, uj , R), where 0 � i <
j � k and Ri+1 ◦ · · · ◦Rj �T R, as well, BPath(p, uk, a0, uj, R) where 0 < j � k
and R0 ◦R1 ◦ · · · ◦Rj �T R with R0(a0, u0) ∈ Aα.

Here, we remark two key points about the BPath storage. One is how to com-
pute the role, which denotes the super roles for the role chain from node1 to
node2. For BPath(p, uk, ui, uj, R) where 0 � i < j � k, we need to compute
the set {R | Ri+1 ◦ · · · ◦ Rj �T R}, as discussed in the Section 2 (Preliminar-
ies). Similarly, for BPath(p, uk, a0, uj, R), where 0 < j � k, we compute the set
{R | R0 ◦R1 ◦ · · · ◦Rj �T R}. Another is how to compute all named individuals
reachable to u0. Suppose a0 is reachable to u0, via a sequence of named indi-
viduals a1, · · · , an and a sequence of role names S1, · · · , Sn, where an = u0 and
Si+1(ai, ai+1) ∈ Aα for any 0 � i < n, given S1 ◦ · · · ◦ Sn ◦R1 ◦ · · · ◦ Rj �T R.
Thanks to the TBox normalization [1], a role inclusion in form of R1 ◦ · · · ◦Rk �
Rk+1 will be normalized inductively by R1◦· · ·◦Rk−1 � R′

k and R′
k◦Rk � Rk+1,

where R′
k is a newly introduced role name. In this respect, we are convinced that,

given S1 ◦ · · · ◦ Sn ◦ R1 ◦ · · · ◦ Rj �T R, there is a role name R0 (introduced
by the normalization) s.t. S1 ◦ · · · ◦ Sn �T R0 and R0 ◦ R1 ◦ · · · ◦ Rj �T R.
Thus, with u0 pinpointed, the set of named individuals reachable to u0 are
{a0 | R0(a0, u0) ∈ Aα}.

4.4 Query Rewriting

Below, we define a base path criterion, then rewrite the query according to it.

Definition 1 (Base Path Criterion). Let τ be a match for Iα and q.
We say that a reverse tree (y,Ey) ∈ STq is satisfied by τ if, τ(y) ∈ CI implies

there is a base path u0R1u1 · · ·Rkuk ∈ BP (τ(y)), and for any R(s, t) ∈ Ey,
whenever τ(t) = uj and 1 � j � k,

– τ(s) = ui and 0 � i < j, given Ri+1 ◦ · · · ◦Rj �T R, otherwise;
– τ(s) = a0 and 0 � i < n, (ai, ai+1) ∈ SIα

i+1 with an = u0, given S1 ◦ · · · ◦Sn ◦
R1 ◦ · · · ◦Rj �T R.

418 J. Mei et al.

The base path criterion is that all reverse trees of q are satisfied by the match τ
for Iα and q.

Since we have stored all base paths, the base path criterion can be directly
adopted by query rewriting. The rewritten query q∗ is defined as

q∗ := q ∧
∧

(y,Ey)∈RTq

(CI(y) → ∃p.
∧

R(s,t)∈Ey

(CI(t) → BPath(p, y, s, t, R)))

and the size of rewritten queries is bounded by O(|q|2).
By definition, an (a1, · · · , am)-match τ for Iα and q satisfies a reverse tree

(y,Ey) ∈ STq if, τ(y) ∈ CI implies there is p such that, whenever τ(t) ∈ CI, we
have BPath(τ(p), τ(y), τ(s), τ(t), R), for any R(s, t) ∈ Ey. If there exists such a
match satisfying all reverse trees, we write Iα ∪ BPath � q∗[a1, · · · , am].

Similar to [11,12], we use ans(q,Aα) to denote the set of answers that a
relational database system returns for q over Aα, while ans(q∗,Aα ∪BPath) for
q∗ over Aα with BPath. This paper contributes the following theorem.

Theorem 2. cert(q,K) = ans(q∗,Aα ∪ BPath), given that q is a conjunctive
query and K is an acyclic EL+ knowledge base.

Interestingly, if K is an EL knowledge base, then our base path criterion is
reducible to the approach proposed for EL [11]. In fact, the Definition 1 will
be simplified s.t., for any R(s, t) ∈ Ey, if τ(t) = uj then τ(s) = uj−1, where
1 � j � k. Suppose s1, · · · , sl be a sequence of terms and all R(si, t) ∈ Ey

for 1 � i � l. Now, if τ(t) = uj then τ(s1) = · · · = τ(sl) = uj−1, and in the
rewritten query, it becomes CI(t) → (s1 = s2 ∧ · · · ∧ sl−1 = sl).

4.5 Optimization

Observing the possibility of using our approach for EL, we consider remov-
ing some BPath records which contribute little to the plus part of EL+, to-
wards an optimal storage. Formally, we define the set NR+ := {R|R1 ◦ R2 �T
R3, R �T Ri, 1 � i � 3}. Our strategy is to check the BPath storage, and for
any BPath(p, z, x, y, R), if R �∈ NR+, then this BPath record can be removed.

Correspondingly, we also need to redefine the rewritten query q̄∗ as follows.

q̄∗ := q ∧
∧

(y,Ey)∈RTq

(CI(y) → ∃p.
∧

R(s,t)∈Ey,R∈NR+

(CI(t) → BPath(p, y, s, t, R))

∧
∧

({t1,··· ,tl},ζ)∈Fork
y
=

(CI(tζ) →
∧

1�i<l

ti = ti+1) ∧
∧

(I,ζ)∈Fork
y
H

(CI(tζ) →
∨

R∈I

R(tpre
ζ , tζ)))

The definitions of Forky
= and Forky

H are almost the same as those defined for
ELHdr

⊥ [12]. The main differences are pre(ζ) := {t|R(t, t′) ∈ Ey for some R �∈
NR+ and t′ ∈ ζ} and in(ζ) = {R|R(t, t′) ∈ Ey for some R �∈ NR+ and t′ ∈ ζ}.
Here, R(t, t′) ∈ Ey and R �∈ NR+ are imposed in our context.

A Practical Approach for Scalable Conjunctive Query Answering 419

To see why our optimization retains the correctness, consider the query q =
∃y1, y2, y.R1(x1, y1)∧R2(x2, y1)∧R(y1, y)∧R(y2, y) over an EL+ KB with R1 �
R2 and R ◦R � R. There is one and only one reverse tree (y,Ey) ∈ RTq, where
Ey consists of all role atoms in q, and NR+ = {R}. The non-optimized rewrit-
ten query q∗ is q ∧ (CI(y) → ∃p.BPath(p, y, y1, y, R) ∧ BPath(p, y, y2, y, R) ∧
(CI(y1) → BPath(p, y, x1, y1, R1)∧BPath(p, y, x2, y1, R2))), and the optimized
rewritten query q̄∗ is q∧(CI(y) → ∃p.BPath(p, y, y1, y, R)∧BPath(p, y, y2, y, R)
∧ (CI(y1) → x1 = x2) ∧ (CI(y1) → R1(x2, y1)). Below shows the theorem for
optimization, where BPath denotes the BPath storage after removal.

Theorem 3. cert(q,K) = ans(q̄∗,Aα ∪ BPath), given that q is a conjunctive
query and K is an acyclic EL+ knowledge base.

This section is now concluded with the theorem for complexity and data size.

Theorem 4. Conjunctive query answering on acyclic EL+ knowledge base can
be done in time polynomial in the size of the query, the TBox and the ABox,
with data of a polynomial-size blowup w.r.t. the query and the ABox while of an
exponential-size blowup w.r.t. the TBox.

5 Preliminary Experiments

We have implemented a prototype to evaluate our approach using Java SDK
1.5 and DB2 V9.3 Enterprise Edition. It performs three steps: (1) does ABox
completion with canonical individuals and stores the completed ABox data in
the RDB; (2)computes the base paths and stores them in the RDB as well;
(3) rewrites the query according to the base path criteria, transforms the query
into SQL and executes it on the completed ABox with base paths. The prelimi-
nary experiments are performed on an X-3650 server with 8G memory and two
3.0GHz Xeon CPUs.

TBox. The SNOMED CT ontology is generated by executing the perl script
provided in the SNOMED CT 2009Jan release package, on the SNOMED CT
2007Jan release content files (because our data uses the 2007Jan version). It is
formulated as an acyclic EL+ ontology that contains 308,832 concept names,
62 role names with 47,317 concept definitions and 261,514 primitive concept
definitions. It also contains 11 role subsumption axioms and one right identity
axiom: caustiveAgent ◦ hasActiveIngredient � caustiveAgent 2. After nor-
malization, the TBox includes 463,971 concept names, 576,971 axioms of form
A � B, 428,905 axioms of form A � ∃R.B, 49,454 axioms of form ∃R.A � B
and 118,124 axioms of form A1 	A2 � B.

2 Actually, the stated right identity axiom in the SNOMED CT 2009Jan Release
is directSubstance ◦ hasActiveIngredient � directSubstance. We do not use this
axioms because there is no concept B appeared in both A � ∃directSubstance.B
and B � ∃hasActiveIngredient.C in the 2007Jan Release.

420 J. Mei et al.

ABox. The ABox of SNOMED CT ontology is constructed partly from a col-
lection of 100,000 HL7 Clinical Document Architecture (CDA)[7] documents
collected from a large hospital in southern China. CDA is a widely adopted
standard to represent the electronic clinical documents, such as clinical notes
and prescriptions. These CDA documents are CDA level 3 documents with clin-
ical statements using codes from SNOMED CT 2007-Jan release.

We developed an XML-2-RDF transformer that can extract RDF triples from
the structured body part of CDA documents. For each CDA document, the
XML-2-RDF transformer outputs a single RDF document.In addition, because
the collected CDA documents do not cover the concepts and roles involved in the
right identity axiom, we generate additional instances randomly for the classes
and roles involved in the right identity axiom, and then merge them into the
ABox. In our experiment, we generate on average 30 instances per CDA docu-
ment. The transformed RDF documents plus the randomly generated instances
are partitioned into four data sets (ABoxes) according to the number of CDA
documents, i.e, 0.1K, 1K, 10K and 100K.

ABox Data completion. After loading the normalized SNOMED CT ontology
and the ABox into the RDB, we use the RDB-based datalog engine developed
as part of the IBM SHER framework to perform ABox completion. To evaluate
the benefits of canonical individual, we implemented both the intuitive approach
and the canonical-individual-based approach.

In the intuitive approach, the algorithm first evaluates the ABox datalog rules
(AR1-5) by a semi-naive approach, then iteratively does the following steps
until no more new facts are generated: (1)For the TBox axiom: A � ∃R.B, and
ABox assertion A(a), add new facts R(a, u), B(u) into the ABox if there is no
individual w satisfying both R(a,w) and B(w); (2) Incrementally evaluate the
ABox completion rules with the new facts.

In the canonical-individual-based approach, the algorithm first generates
canonical individuals for existential restrictions, then evaluates the ABox datalog
rules AR1-5,AR6′ via a semi-naive evaluation. In this way, the overall number
of generated anonymous (canonical) individuals is fixed – 76,614 in our case.

Table 2 summarizes the ABox completion results for both approaches. For
each ABox, we report the number of individuals (IND), the numbers of triples
(TRP) in the original ABox and in the completed ABox in both approaches, and
the data completion time (excluding the ABox data loading time).

Table 2. ABox data completion results

Dataset Original Intuitive Approach CI-based Approach
IND TRP IND TRP Time IND TRP Time

0.1K 16K 22K 77K 1,018K 4.3h 16K 310K 53s
1K 169K 227K 793K 10,395K 58.4h 172K 4,099K 0.3h
10K 1,614K 2,155K N/A N/A N/A 1,618K 39,923K 1.4h
100K 15,097K 22,157K N/A N/A N/A 15,102K 387,316K 13.9h

A Practical Approach for Scalable Conjunctive Query Answering 421

As can be seen from the Table 2, in the intuitive approach, the completed
ABox has a polynomial-size blowup. Also, it is very time-consuming to generate
due to many iterative calls to the datalog engine. When using canonical individ-
uals, the number of newly added individuals in the completed ABox is always
less than a constant (76,614 in our case). The size of inferred triples is about
10-20 times that of the original triples because of the deep hierarchy of the nor-
malized SNOMED CT ontology. For example, the concept “headache” has 15
super concepts in original ontology, but has 27 super concepts in the normalized
ontology. Our experiment confirms that it is necessary to introduce canonical
individual for ABox data completion in practice.

Base path generation and query performance. After performing the ABox
completion, the base path can be generated and the query can be rewritten and
executed on the completed ABox with base paths. We first compare the efficiency
of base path generation of the initial approach and the optimized approach. Then
we design three typical queries to test the query performances. These queries are
designed according to the three typical query shape: point, tree and graph.

Q1(x)= Headache(x)
Q2(x) =∃y HearingNormal(x), f indingSite(x, y), EntireLeftEar(y)
Q3(x,y)=∃z causativeAgent(x, z), causativeAgent(y, z)
In our implementation, the (rewritten) conjunctive query is represented using

the RDF SPARQL query language. The SPARQL query is further transformed
to SQL by a RDF-2-RDB mapping engine.

Table 3 summarizes the base path generation and query performance results
for each ABox. We report the count of base path records (BPSize), the time to
generate them (GenTime) and the query execution time for Q3 using the initial
approach and the optimized approach. Since Q1 and Q2 are free of reverse trees,
the base path optimization has no effect on their performances.

Table 3. Base path generation and query performance results

Dataset without optimization with optimization Q1 Q2
BPSize GenTime Q3 BPSize GenTime Q3

0.1K 172K 480s 321ms 10K 36.6s 50ms 10ms 30ms
1K 1,917K 2,237s 3.5s 199K 228s 2.0s 61ms 500ms
10K 16,764K 4.2h 22.1s 1,812K 1.1h 12.7s 83ms 1.6s
100K N/A N/A N/A 18,734K 7.8h 313s 712ms 14.6s

Our experiment is still at a preliminary stage due to the limitations of the
ontology and data. However, from the results, we can observe that: (1) the
base path optimization dramatically reduces the number of stored base paths
in this case, because only five of SNOMED CT’s 62 roles appear in the “real”
role inclusions, and further improves the performance of the rewritten query Q3
because self-joins on the base path table are involved; (2) the query answering
is scalable to a large data set because it can leverage the underlying relational
database for scalability.

422 J. Mei et al.

6 Related Work

In recent years, a rich literature on the subject of conjunctive query answering
on the EL family has emerged, including both theoretical and practical work.

Theoretically, there are undecidable problems identified, such as answering
conjunctive queries in both EL+ and EL++ [14]. Meanwhile, related work [10]
presents that CQ answering on regular EL++ is decidable. However, we observed
that the notion of regularity syntactically depends on the normal form of TBox.
In other words, it can happen that a TBox becomes (ir)regular by normalizing
it differently, even if this does not change the semantics. For example, suppose
R1 ◦ R2 ◦ R3 � R3 be a role inclusion originally asserted in the TBox. On the
one hand, this TBox can be normalized as R1 ◦ R2 � R′ and R′ ◦ R3 � R3,
which appear as regular. On the other hand, this TBox can also be normalized
as R2◦R3 � R′′ and R1◦R′′ � R3, which becomes irregular. Besides, our acyclic
EL+ TBoxes admit the irregularity. Disregarding the rich expressivity of roles,
CQ answering on EL and ELH has been proved decidable and PTIME-complete
w.r.t. both data complexity and KB complexity [14].

As far as we know, the only practical approach for conjunctive query answering
in EL has been proposed by Lutz et al. [11,12]. Our work can be regarded as an
extension of their work by supporting role inclusions. A minor difference is that,
in the ABox completion phase, we only generate one anonymous individual for
each existential restriction, whereas their approach will generate one anonymous
individual (called auxiliary object) for each subconcept of concepts used in T . A
major difference arises in the query rewriting phase, since our approach supports
role inclusions. We firstly proposed a base path criterion and designed a base path
storage schema to enable query rewriting based on this criterion. The query
rewriting strategy in their approach is a special case of ours. Actually, as shown
in the Section 4.5 for optimization, we can embed their query rewriting strategy
into ours to handle the ELH part, while keeping the base path criterion dedicated
for the “real” role inclusions in EL+.

Meanwhile, we can imagine a deterministic algorithm for query answering in
ELHR+ , which is a sub language of SHIQ [8]. Alternatively, DL-Lite [5] explores
such a way that resorts simply to query rewriting without ABox completion. To
employ either of them has to pay for an exponential blowup of the rewritten
queries. Towards a practical implementation, query rewriting in our approach
will only have a polynomial blowup, and we leverage RDB for query answering.

7 Conclusion

In this paper, we proposed a two-phase practical approach for query answering
in EL+. In phase one, we do ABox completion using the notion of canonical
individuals. For queries free of reverse trees, this phase is enough to provide sound
and complete answers, w.r.t. arbitrary EL+ KBs. In phase two, we proposed the
base path criterion and made the criterion applicable by the base path storage
and query rewriting. A combination of the two phases guarantees sound and
complete solutions to arbitrary queries on acyclic EL+ KBs.

A Practical Approach for Scalable Conjunctive Query Answering 423

As future work, we are planning to evolve the base path criterion, enabling
queries on cyclic but regular EL+ ontologies. Development of more optimizations
is also part of our ongoing work, especially reducing the blowup of base paths.
Besides, for updating concerns, we will develop an incremental ABox completion,
which is critical for the practical applications of our approach.

Acknowledgements

The authors wish to thank Carsten Lutz for useful discussions during the writing
of this paper.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence, pp. 364–369 (2005)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In: Proc. of
the Workshop on OWL: Experiences and Directions (2008)

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In: Proc. of
the Workshop on Description Logics (2006)

4. Baader, F., Nutt, W.: The Description Logic Handbook. In: Basic Description
Logics, ch. 2. Cambridge University Press, Cambridge (2003)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable Description Logics for Ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence, pp. 602–607 (2005)

6. The Gene Ontology Consortium. Gene Ontology: Tool for the Unification of Biol-
ogy. Journal of Nature Genetics 25, 25–29 (2000)

7. Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F.M., Biron, P.V.,
Shabo, A.: HL7 Clinical Document Architecture, Release 2.0. Journal of Amer-
ican Medical Informatics Association 13(1), 30–39 (2006)

8. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive Query Answering for the
Description Logic SHIQ. Journal of Artificial Intelligence Research 31, 157–204
(2008)

9. IHTSDO. Systematized Nomenclature of Medicine C Clinical Terms,
http://www.ihtsdo.org/snomed-ct/

10. Krotzsch, M., Rudolph, S., Hitzler, P.: Conjunctive Queries for a Tractable Frag-
ment of OWL 1.1. In: Proc. of Int. Semantic Web Conf. (2007)

11. Lutz, C., Toman, D., Wolter, F.: Conjunctive Query Answering in EL using a
Database System. In: Proc. of the Workshop on OWL: Experiences and Directions
(2008)

12. Lutz, C., Toman, D., Wolter, F.: Conjunctive Query Answering in EL using a
Database System. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence
(2009)

13. Rector, A., Horrocks, I.: Experience building a large, reusable Medical Ontology
using a Description Logic with Transitivity and Concept Inclusions. In: Proc. of
the Workshop on Ontological Engineering, AAAI Spring Symposium, Menlo Park
(1997)

14. Rosati, R.: On Conjunctive Query Answering in EL. In: Proc. of the Workshop on
Description Logics (2007)

http://www.ihtsdo.org/snomed-ct/

Learning Semantic Query Suggestions

Edgar Meij1, Marc Bron1, Laura Hollink2, Bouke Huurnink1, and Maarten de Rijke1

1 ISLA, University of Amsterdam, Science Park 107, 1098 XG Amsterdam
{edgar.meij,m.m.bron,bhuurnink}@uva.nl, mdr@science.uva.nl

2 Dept. of Computer Science, VU University Amsterdam,
de Boelelaan 1081a, 1081 AH Amsterdam

hollink@cs.vu.nl

Abstract. An important application of semantic web technology is recognizing
human-defined concepts in text. Query transformation is a strategy often used in
search engines to derive queries that are able to return more useful search results
than the original query and most popular search engines provide facilities that let
users complete, specify, or reformulate their queries. We study the problem of
semantic query suggestion, a special type of query transformation based on iden-
tifying semantic concepts contained in user queries. We use a feature-based ap-
proach in conjunction with supervised machine learning, augmenting term-based
features with search history-based and concept-specific features. We apply our
method to the task of linking queries from real-world query logs (the transaction
logs of the Netherlands Institute for Sound and Vision) to the DBpedia knowledge
base. We evaluate the utility of different machine learning algorithms, features,
and feature types in identifying semantic concepts using a manually developed
test bed and show significant improvements over an already high baseline. The re-
sources developed for this paper, i.e., queries, human assessments, and extracted
features, are available for download.

1 Introduction

Human-defined concepts are fundamental building blocks of the semantic web. When
used as annotations for documents or text fragments they can provide explicit anchoring
in background knowledge and enable intelligent search and browsing facilities. As such,
an important application of ontological knowledge is augmenting unstructured text with
links to relevant, human-defined concepts. For the author or reader of the text, this
augmentation may supply useful pointers, for example to the concepts themselves or
to other concepts related to the ones found. For ontology learning applications, such
links may be used to learn new concepts or relations between them [34]. Recently,
data-driven methods have been proposed to generate links between phrases appearing
in full-text documents and a set of ontological concepts known a priori. [24] propose
the use of several linguistic features in a machine learning framework to link phrases
in full-text documents to Wikipedia articles and this approach is further improved upon
by [25]. Because of the connection between Wikipedia and DBpedia, such data-driven
linking methods help us establish links between textual documents and Linked Open
Data [2, 3, 9, 33].

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 424–440, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Learning Semantic Query Suggestions 425

Another, more challenging instantiation of linking text to human-defined concepts
in a knowledge source is semantic query suggestion. Query suggestion is a strategy to
derive terms that are able to return more relevant results than the initial query. Com-
monly used approaches to query suggestion (sometimes referred to as a form of query
expansion) are highly data-driven and based mostly on term frequencies [21, Chapter
9]. Semantic query suggestion, in contrast, tries to understand (or learn) which concepts
the user used in her query or, phrased alternatively, the concepts she is interested in and
wants to find.1 Moreover, the properties of each concept, and any other resources asso-
ciated with it, could serve as additional, useful information for the user. In our current
work, we use DBpedia as our target ontology. As an example of our task, consider the
query “obama white house”. A semantic query suggestion algorithm should return sug-
gestions in the form of the (DBpedia) instances labeled “Barack Obama” and “White
House”. Identifying such semantic suggestions serves multiple purposes: it can (i) help
the user acquire contextual information, (ii) suggest related concepts or associated terms
that may be used for search, and (iii) provide valuable navigational suggestions.

In this paper we address the semantic query suggestion task and automatically link
queries to DBpedia concepts. We propose a novel method that leverages the textual rep-
resentation of each concept as well as query-based and concept-based features. Working
with user queries, which are typically quite short [31], implies that we cannot use pre-
viously established approaches that rely on textual context such as shallow parsing or
part-of-speech tagging [24]. One interesting aspect of working with user queries is that
we have history-based information available (from the session or the user) that can
potentially be used to help address the semantic query suggestion task.

Our approach proceeds as follows. First, we use language modeling for information
retrieval (IR) techniques to retrieve the most relevant concepts for the full query and for
each n-gram (i.e., contiguous sequence of n words) in the query. Second, we use su-
pervised machine learning methods to decide which of the retrieved concepts should be
kept and which should be discarded. In order to train the machine learner, we examined
close to 1000 queries from a search engine for a digital multimedia archive and manu-
ally linked over 600 of these to relevant concepts in DBpedia.2 The research questions
we address are the following.

– Can we cast semantic query suggestion as a ranking problem?
– What is the best way of handling the terms in the input query?
– Can we use features pertaining to the query terms, concepts, and history to improve

upon a basic retrieval based approach?
– Which type of the feature helps most? Which separate feature is most informative?

Our main contribution is threefold: we introduce the problem of semantic query sug-
gestion, provide a very effective approach to the problem plus an analysis of the con-
tributions of the features used, and we make available resources to enable future work
on the problem. The remainder of this paper is structured as follows. In Section 2 we

1 We use “ontology” to refer to the full spectrum of conceptualizations, ranging from glossaries
to formal ontologies [22]. We refer to an instance in DBpedia as “concept” [33].

2 The queries, human assessments, and extracted features are publicly available for download at
http://ilps.science.uva.nl/resources/iswc09_annotations

http://ilps.science.uva.nl/resources/iswc09_annotations

426 E. Meij et al.

discuss related work. Sections 3 and 4 detail the semantic query suggestion task and our
approach. Our experimental setup is described in Section 5 and our results are presented
in Section 6. We end with a concluding section.

2 Related Work

Linking terms or phrases to ontologies is related to several areas of research. These
include semantic web areas such as ontology matching and semantic annotation, but
also areas from language technology and information retrieval.

In ontology matching relations between concepts from different ontologies are found.
These relations are based on a comparison of instances, concept labels, semantic struc-
ture, or ontological features such as constraints or properties, sometimes exploiting aux-
iliary external resources such as the lexical resource WordNet or the upper ontology
DOLCE [30]. E.g., [36] develop a machine learning technique to learn the relation-
ship between the similarity of instances and the validity of mappings between concepts.
Other approaches are designed for lexical comparison of concept labels in the source
and target ontology and do not use semantic structure nor instances (e.g. [32]). This type
of matching is sometimes referred to as ‘lexical matching’ and is used in cases where
the ontologies do not have any instances or structure; e.g., in [1] lexical comparison
of labels is used to map both the source and the target ontology to a semantically rich
external source of background knowledge.

Lexical matching is very similar to our task at hand, as we do not have any semantic
structure in the queries. Since 2008, the Ontology Alignment Evaluation Initiative has
contained a task similar to ours, where participants link a largely unstructured thesaurus,
the GTAA, to DBpedia [10]. Our approach is different, however, in two ways. First, we
use the interaction history with the system in the form of user sessions to obtain a
certain amount of contextual information. Second, the fact that the source terms that we
are trying to link are natural language captured in user queries instead of standardized
concept labels makes the task intrinsically harder.

A lot of work has been done on semantic annotation: the process of relating docu-
ments to concepts from ontologies or other sources of structured knowledge, such as
Wikipedia. Many restricted forms of the problem have been addressed. The detection
of named entities in pieces of text is an important sub-problem of semantic annotation.
For example, [20] create links between named entities in text and concepts from a
light-weight ontology. [8] propose an interesting example of semantic document anal-
ysis, where named entities are related over time using Wikipedia. [11] do not restrict
themselves to named entities, but instead link all words in a document to ontological
concepts. They use latent topic models to learn links between words and concepts. Other
sub-problems of semantic annotation include sense tagging and word sense disambigua-
tion [13]. Some of the techniques developed there have fed into automatic link gener-
ation between full-text documents and Wikipedia. For example, [25] depend heav-
ily on contextual information (terms and phrases) around the source text to determine
the best Wikipedia articles to link to (like typical named entity recognition and sense
tagging methods). This work was based on earlier work by [24]. Similarly, we also

Learning Semantic Query Suggestions 427

consider a two-step approach to linking text to Wikipedia/DBpedia; first keyword ex-
traction is performedi, and next, each extracted keyword is linked to a Wikipedia article.
The authors apply part-of-speech tagging and develop several ranking procedures for
candidate Wikipedia articles. Our approach differs in that we do not limit ourselves to
exact matches with the query terms. Another distinct difference between our approach
and those mentioned above is that while they work with full-text documents, we utilize
much sparser data in the form of user queries. As such we can not easily use techniques
such as part-of-speech tagging or lean too heavily on context words for disambiguation.
As will be detailed below, our approach uses session history and n-grams in the queries
to obtain contextual information instead.

Turning to semantic query analysis (as opposed to semantic analysis of full docu-
ments), [14] perform named entity recognition in queries; they recognize a single entity
in each query and subsequently classify it into one of a small set of predefined classes
such as “movie” or “video game”. We do not impose the restriction of having a single
concept per query and, furthermore, our list of candidate concepts is much larger, i.e.,
all articles in Wikipedia. Several other approaches have been proposed that link queries
to a limited set of categories. [26] use online product search engines to link queries to
product categories; [5] link millions of queries to 17 topical categories based on a list
of manually pre-categorized queries; [16] use commonly occurring multimedia terms
to categorize audio, video, and image queries.

As to related work on query suggestions, some approaches use query logs to de-
termine which queries or which rewrites occur frequently [18]. Others perform query
analysis and try to identify the most relevant terms [6], to predict the query’s perfor-
mance a priori [40], or combine the two [7]. [6] use part-of-speech tagging and a
supervised machine learning technique to identify the “key noun phrases” in natural
language queries. Key noun phrases are phrases which convey the most information in
a query and contribute most to the resulting retrieval performance; we evaluate several
of the features proposed by these authors.

3 The Task

The semantic query suggestion task we address in this paper is the following. Given a
query that is submitted to a search engine, identify the relevant concepts that the user
entered in her query where the concepts are taken from an existing knowledge base
or ontology. We address our task in the setting of a digital archive, specifically of the
Netherlands Institute for Sound and Vision (“Sound and Vision”). Sound and Vision
maintains a large digital audiovisual collection, currently containing over a million ob-
jects and daily updated with new broadcasts. Users of the archive consist primarily of
media professionals who use an online search interface to locate audiovisual items to
be used in new programs such as documentaries and news reviews.

Sound and Vision is in the process of linking all its digital resources to a variety
of structured knowledge sources. Because of its central role in the Linked Open Data
initiative, our knowledge source of choice for semantic query suggestion is DBpedia.
Thus, in practical terms, the task we are facing is: given a query (within a session, for

428 E. Meij et al.

a given user), produce a ranked list of concepts from DBpedia that are mentioned or
meant in the query. These concepts could then be used to suggest relevant multimedia
items associated with each concept or to suggest contextual information, such as text
snippets from the Wikipedia article.

4 Approach

Our approach to suggesting DBpedia concepts for user queries consists of two stages.
In the first stage, a ranked list of possible concepts for the query is generated using
a language modeling framework (cf. Section 4.1). To create this ranking we consider
two approaches; one approach is to extract all n-grams in the query and generate a
ranking for each. The other approach is to use the entire query to create a single concept
ranking. We use various textual representations of each DBpedia concept, including
the accompanying Wikipedia article text, its label, and the text used in the hyperlinks
pointing to it. An example of the first stage of ranking concepts is provided in Table 1
for the query “obama white house”. From the example it is clear why we consider these
two approaches. Should we simply use the full query on its own (first row), we would
miss the relevant concept “Barack Obama”. However, as can be seen from the last two
rows, considering all n-grams also introduces noise.

Table 1. An example of generating n-grams for the query “obama white house” and retrieved
candidate concepts, ranked by retrieval score. Correct concepts in boldface.

N-gram (Q) Candidate concepts

obama white house White House; White House Station; President Coolidge; Sensation White
obama white Michelle Obama; Barack Obama; Democratic Pre-elections 2008; January 17
white house White House; White House Station; Sensation; President Coolidge
obama Barack Obama; Michelle Obama; Presidential Elections 2008; Hillary Clinton
white Colonel White; Edward White; White County; White Plains Road Line
house House; Royal Opera House; Sydney Opera House; Full House

In the second stage supervised machine learning is used to decide which of the can-
didate concepts in the ranked lists should be kept as viable concepts for the query in
question. In order to train these machine learning algorithms, we asked annotators to
assess queries submitted to Sound and Vision and manually link them to relevant DB-
pedia concepts. More details with respect to the test collection and the manual anno-
tations are listed in Section 5. The machine learning algorithms we consider are Naive
Bayes, Decision Trees, and Support Vector Machines [35, 37] and are introduced in
Section 4.2. As input to the machine learning algorithms we extract a set of features
related to the query n-gram, concept, and the session in which the query appears as
detailed in Section 4.3.

4.1 Ranking Concepts

We base our concept ranking framework within the language modeling paradigm, as it
is a theoretically transparent retrieval approach that is competitive in terms of retrieval

Learning Semantic Query Suggestions 429

effectiveness [15, 28, 39]. Here, a query is viewed as having been generated from an
underlying document language model, where some words are more probable to occur
than others. At retrieval time each document is scored according to the estimated like-
lihood that the words in the query were generated by a random sample of the language
model underlying the document. These word probabilities are generally estimated from
the document itself (using maximum likelihood estimation) and combined with back-
ground collection statistics to overcome zero probability and data sparsity issues; a
process known as smoothing.

For the n-gram based re-ranking, we extract all n-grams from each query Q (where
1 ≤ n ≤ |Q|) and create a ranked list of concepts for each individual n-gram, Q. For
the full-query based reranking approach, we use the same method but add the additional
constraint that n = |Q|. The problem of ranking DBpedia concepts given an n-gram
can then be formulated as follows. Each concept c should be ranked according to the
probability that it was generated by the n-gram P (c|Q), which can be rewritten using
Bayes’ rule as:

P (c|Q) =
P (Q|c)P (c)

P (Q)
.

Here, the term P (Q) is the same for all concepts and be ignored for ranking purposes.
The term P (c) indicates the prior probability of selecting a concept, which we assume
to be uniform. Assuming independence between the individual terms q ∈ Q, as is
common in the field of information retrieval [4], we obtain

P (c|Q) ∝ P (c)
∏
q∈Q

P (q|c)n(q,Q), (1)

where n(q,Q) indicates the count of term q in n-gram Q. The probability P (q|c) is
smoothed using Bayes smoothing with a Dirichlet prior [39], which is formulated as:

P (q|c) =
n(q, c) + μP (q)∑

q n(q, c) + μ
, (2)

where P (q) indicates the probability of observing q in a large background collection
and μ is a hyperparameter that controls the influence of the background corpus.

Since each DBpedia concept is linked to its Wikipedia counterpart, we can use the
textual representations of the associated wikipedia pages for retrieval. In particular, we
perform retrieval using the title of the article, the content, and the text used for the
hyperlinks pointing to it from other Wikipedia articles.

4.2 Learning to Rerank Concepts

Once we have obtained a ranked list of possible concepts for each n-gram in the query,
we turn to concept selection. In this stage we need to decide which of the candidate
concepts are most viable. We use a supervised machine learning approach, which takes
as input a set of labeled examples (query to concept mappings) and several features of
these examples (detailed below). We choose to compare a Naive Bayes (NB) classifier,

430 E. Meij et al.

Table 2. Features used, grouped by type

N-gram features

LEN (Q) = |Q| Number of terms in the phrase Q
IDF(Q) Inverse document frequency of Q
WIG(Q) Weighted information gain using top-5 retrieved concepts
QE(Q) Number of times Q appeared as whole query in query log
QP(Q) Number of times Q appeared as partial query in query log
QEQP(Q) Ratio between QE and QP
SNIL(Q) Does a sub-n-gram of Q fully match with any concept label?
SNCL(Q) Is a sub-n-gram of Q contained in any concept label?

Concept features

INLINKS(c) The number of concepts linking to c
OUTLINKS(c) The number of concepts linking from c
GEN (c) Function of depth of c in SKOS category hierarchy [25]
CAT (c) Number of associated categories
REDIRECT(c) Number of redirect pages linking to c

N-gram + concept features

TF(c, Q) =
n(Q, c)

|c| Relative phrase frequency of Q in c, normalized by length of c

TFf (c, Q) =
n(Q, c, f)

|f |
Relative phrase frequency of Q in representation f of c,
normalized by length of f

POSn(c, Q) = posn(Q)/|c| Position of nth occurrence of Q in c, normalized by length of c
SPR(c, Q) Spread (distance between the last and first occurrences of Q in c)
TF · IDF(c, Q) The importance of Q for c
RIDF(c, Q) Residual IDF (difference between expected and observed IDF)
χ2(c, Q) χ2 test of independence between Q in c and in collection Coll
QCT (c,Q) Does q contain the label of c?
TCQ(c,Q) Does label of c contain q?
TEQ(c,Q) Does label of c equal q?
SCORE(c, Q) Retrieval score of c w.r.t Q
RANK(c, Q) Retrieval rank of c w.r.t Q

History features

CCIH(c) Number of occurrences of label of c appears as query in history
CCCH(c) Number of occurrences of label of c appears in any query in history
CIHH(c) Number of times c is retrieved as result for any query in history
CCIHH(c) Number of times label of c equals title of any result for any query in history
CCCHH(c) Number of times title of any result for any query in history contains label of c
QCIHH(Q) Number of times title of any result for any query in history equals Q
QCCHH(Q) Number of times title of any result for any query in history contains Q
QCIH(Q) Number of times Q appears as query in history
QCCH(Q) Number of times Q appears in any query in history

Learning Semantic Query Suggestions 431

with a Support Vector Machine (SVM) classifier and a decision tree classifier (J48)—a
set representative of the state-of-the-art in classification. We experiment with multiple
classifiers in order to confirm that our results are generally valid, i.e., not dependent on
any machine learning algorithm.

4.3 Features Used

We employ several types of features, each associated with either the current query n-
gram, the current concept, their combination, or the current search history. Unless indi-
cated otherwise, we consider Q to be a phrase when determining the features.

N-gram Features. These features are based on information from an n-gram and are
listed in Table 2 (first group). IDF (Q) indicates the relative number of concepts in
which Q occurs, which is defined as IDF (Q) = log (|Coll|/df (Q)), where |Coll| in-
dicates the number of documents in the collection and df (Q) the number of documents
in which Q occurs [4]. WIG(Q) indicates the weighted information gain, that was pro-
posed by [40] as a predictor of the retrieval performance of Q. It is the only feature
which uses the set of all candidate concepts retrieved for this n-gram, CQ, and deter-
mines the relative probability of Q occurring in these documents as compared to the
collection. Formally:

WIG(Q) =
1

|CQ|
∑

c∈CQ
log(P (Q|c)) − log(P (Q))

logP (Q)
.

QE (Q) and QP(Q) indicate the number of times this n-gram appears in the entire
query logs as a whole or partial query respectively.

Concept Features. Table 2 (second group) lists the features related to a DBpedia con-
cept. This set of features is related to the knowledge we have of the current candidate
concept, such as the number of other concepts linking to or from it, the number of
associated categories (the count of the DBpedia property skos:subject), and the
number of redirect pages pointing to it (the DBpedia property dbpprop:redirect).

N-gram + Concept Features. This set of features considers an n-gram and a concept
(Table 2, third group). We consider the relative frequency of occurrence of the n-gram
as a phrase in the corresponding Wikipedia article, in the separate document representa-
tions (title, content, anchor texts, first sentence, and first paragraph of the Wikipedia arti-
cle), the position of the first occurrence of the n-gram, the distance between the first and
last occurrence, and various IR-based measures. Of these, RIDF [12] is the difference
between expected and observed IDF for a concept, which is defined as RIDF (c,Q) =
log (|Coll|/df (Q)) + log (1 − exp(−n(Q,Coll)/|Coll|)). We also consider whether
the label of the concept, i.e. the Wikipedia article title, matches Q and we include the
current retrieval information.

History Features. Finally, we consider features based on the previous queries that
were issued in the same session (Table 2, fourth group). These features look at either
the current candidate concept or current n-gram and see whether they occur (partially)
in the previous queries or in the retrieved candidate concepts.

432 E. Meij et al.

Below, we compare the effectiveness of the features listed above for our semantic
query suggestion task.

5 Experimental Setup

We introduce the experimental environment and the experiments that we perform to an-
swer the research questions from Section 1. We also introduce our evaluation measures
and describe our manual assessments, but start with detailing our data sets.

5.1 Data

Two main types of data are needed for our experiments: queries and DBpedia concepts.
We have access to a set of 264,503 queries issued between 18 November 2008 to 15
May 2009 to Sound and Vision. Sound and Vision logs the actions of users on the
site, generating session identifiers and time stamps. This allows a series of consecutive
queries to be linked to a single search session, where a session is identified using a
session cookie. A session is terminated once the user closes the browser. An example
is given in Table 3. All queries were Dutch language queries; however, nothing in our
semantic query suggestion approach is language dependent. As the “history” of a query,
we took all queries previously issued in the same user session.

Table 3. An example of queries issued in a (partial) session, translated to English

Session ID Query ID Query (Q)

jyq4navmztg 715681456 santa claus canada
jyq4navmztg 715681569 santa claus emigrants
jyq4navmztg 715681598 santa claus australia
jyq4navmztg 715681633 christmas sun
jyq4navmztg 715681789 christmas australia
jyq4navmztg 715681896 christmas new zealand
jyq4navmztg 715681952 christmas overseas

The DBpedia version we use is the most recent Dutch version (3.2). We down-
loaded the Wikipedia dump from which this DBpedia version was created (dump date
20080609); this dump is used for all our text-based processing steps and features.

5.2 Training Data

For training and testing purposes, four assessors were asked to manually link 998
queries to DBpedia concepts. The assessors were presented with a list of sessions and
the queries in them. Once a session had been selected, they were asked to find the
most relevant DBpedia concepts given each query and its preceding session history if
any. Our assessors were able to search through Wikipedia using the fields described in
Section 4.1. Besides indicating relevant concepts, the assessors could also indicate

Learning Semantic Query Suggestions 433

whether a query was ambiguous, contained a typographical error, or whether they were
unable to find any relevant concept. For our experiments, we removed all the assessed
queries in these “anomalous” categories and were left with a total of 629 assessed
queries in 193 sessions.3 In this sample the average query length is 2.14 terms per
query. Each query has 1.34 concepts annotated on average.

5.3 Parameters

As to retrieval, we use the entire Wikipedia document collection as background corpus
and set μ to the average length of a Wikipedia article [39], i.e., μ = 315 (cf. Eq. 2).
For classification we use the following three machine learning algorithms in our experi-
ments: J48, Naive Bayes and Support Vector Machines. The implementations are taken
from the Weka machine learning toolkit [37]. J48 is a decision tree algorithm and the
Weka implementation of C4.5 [29]. The Naive Bayes classifier uses the training data to
estimate the probability that an instance belongs to the target class, given the presence
of each feature. By assuming independence between the features these probabilities can
be combined to calculate the probability of the target class given all features [19]. SVM
uses a sequential minimal optimization algorithm for training with polynomial kernels
as described in [27]. The training instances are represented as n-dimensional vectors
and two decision hyperplanes are created that best separate the instances of the target
classes. The distance between the hyperplanes is called the margin and by maximizing
this distance the generalization error of the classifier is minimized. For all algorithms
we do not perform extensive optimization of the parameter settings and use the de-
fault weka parameters.4 Whether fine-grained parameter tuning is beneficial and, thus,
whether our choice negatively influences the experimental outcomes is a topic for future
work.

5.4 Testing and Evaluation

We define semantic query suggestion as a ranking problem. In this paper, the system
has to return five concepts for a given input query; the assessments described above
are used to determine the relevance of these five concepts. We employ several measures
which are well-known in the field of information retrieval [4], namely precision@1 (P1;
how many relevant concepts are retrieved at rank 1), r-precision (R-prec; precision@r
where r equals the size of the set of known relevant concepts for this query), recall
(which percentage of relevant concepts were retrieved?), mean reciprocal rank (MRR;
the reciprocal of the rank of the first correct concept), and the success rate @5 (SR; a
binary measure that indicates whether at least one correct concept has been returned in
the top-5).

To verify the generality of the machine learning algorithms, we perform 10-fold cross
validation [37], which reduces the possibility of errors being caused by artifacts in the
data. The reported scores are averaged over all folds and all evaluation measures are
averaged over the queries used for testing. For determining the statistical significance

3 We focus on evaluating the actual semantic query suggestions and discard queries which the
assessors deemed too anomalous to confidently link to any concept.

4 See http://weka.sourceforge.net/doc

http://weka.sourceforge.net/doc

434 E. Meij et al.

of the observed differences between the various runs we use one-way ANOVA to deter-
mine if there is a significant difference (α ≤ 0.05). We then use the Tukey-Kramer test
to determine which of the individual pairs are significantly different. We designate the
best result in each table in bold face.

6 Results

In this section we report on the experimental results which answer the research ques-
tions from Section 1. We compare three approaches to the semantic query suggestion
task:

(i) a baseline which retrieves concepts based solely on their textual representation in
the form of the associated Wikipedia article,

(ii) n-gram based reranking which extracts all n-grams from the query and uses ma-
chine learning to identify the best concepts, and

(iii) full-query based reranking which does not extract n-grams, but calculates feature
values based on the full query.

After we have described the results for each approach, we zoom in on the most infor-
mative features and the specific feature types.

6.1 Baseline

As our baseline, we take the entire query as issued by the user and employ Eq. 1 to rank
DBpedia concepts based solely on their textual representation (this techniques is similar
to using a search engine to perform a search within the Dutch Wikipedia). We consider
two forms of textual representation: “content” and “full text”. The former consists of
the textual content of a Wikipedia article corresponding to a DBpedia concept, the latter
adds to this the title of the article and the anchor texts of hypertext links in Wikipedia
that point to the article at hand.

Table 4. Results of ranking concepts based on using the entire query Q and either the content of
the Wikipedia article or the full text associated with each DBpedia concept

P1 R-prec Recall MRR SR

full text 0.5636 0.5216 0.6768 0.6400 0.7535
content 0.5510 0.5134 0.6632 0.6252 0.7363

Table 4 shows the results of the baseline. From this table we observe that including
the title and anchor texts of the incoming links results in improved retrieval performance
overall. Notice that this is a strong baseline; on average, over 65% of the relevant con-
cepts are correctly identified in the top-5 and, further, over 55% of the relevant concepts
are retrieved at rank 1. The success rate indicates that for 75% of the queries at least
one relevant concept is retrieved in the top-5.

Learning Semantic Query Suggestions 435

6.2 N-gram Based Reranking

Table 5 shows the result for the baseline (last row) and the query “challenger wubbo
ockels”. As is clear from this example, the two relevant concepts are retrieved at ranks
1 and 4. When we look at the same results for the n-grams in the query, however, one
of the relevant concepts is retrieved at the first position for each n-gram. This example
and the one in Table 1 suggest that it will be beneficial to consider all possible n-grams
in the query. In this section we report on the results of extracting n-grams from the
query, generating features for each, and subsequently applying the machine learning
algorithms to decide which of the suggested concepts to keep. The features used here
are described in Section 4.2.

Table 5. An example of baseline results for the n-grams in the query “challenger wubbo ockels”,
ranked by retrieval score. Concepts labeled as correct in boldface.

N-gram Candidate concepts

challenger Space Shuttle Challenger; Challenger; Bombardier Challenger; STS-61-A
wubbo Wubbo Ockels; Spacelab; Canon of Groningen; Superbus; André Kuipers
ockels Wubbo Ockels; Spacelab; Superbus; Canon of Groningen; André Kuipers
challenger wubbo Wubbo Ockels; STS-61-A; Space Shuttle Challenger; Spacelab; STS-9
wubbo ockels Wubbo Ockels; Spacelab; Superbus; Canon of Groningen; Andr Kuipers
challenger wubbo ockels Wubbo Ockels; STS-61-A; Spacelab; Space Shuttle Challenger

Table 6. Results for n-gram based reranking. � � and ◦ indicate that a score is significantly
better, worse or statistically indistinguishable respectively. The leftmost symbol represents the
difference with the baseline, the next with the J48 run, and the rightmost with the NB run.

Machine learner P1 R-prec Recall MRR SR

baseline 0.5636 0.5216 0.6768 0.6400 0.7535
J48 0.6510� 0.5604◦ 0.7245◦ 0.7441� 0.7958◦

NB 0.4665�◦ 0.4344�� 0.6984◦◦ 0.7100◦◦ 0.7614◦◦

SVM 0.8388��� 0.7170◦◦� 0.7852◦◦◦ 0.8500�◦� 0.8548◦◦◦

Table 6 shows the results of applying the machine learning algorithms on the ex-
tracted n-gram features. We note that J48 and SVM are able to improve upon the base-
line results from the previous section, according to all metrics. The Naive Bayes clas-
sifier performs worse than the baseline in terms of P1 and R-precision. SVM clearly
outperforms the other algorithms and is able to obtain very high scores; significantly
better than the baseline on all metrics. Interestingly, we see that the use of n-gram
based reranking has both a precision enhancing effect for J48 and SVM (the P1 and
MRR scores go up) and a recall-enhancing effect.

In Section 4.3 we identified several groups of features, relating to the n-gram, con-
cept, their combination, or the session history. We will now zoom in on the performance
of these groups. Table 7 shows the results when several of these groups are removed

436 E. Meij et al.

Table 7. Results of removing specific feature types from the training data for the SVM classifier
and n-gram based reranking. � and ◦ indicate that a score is significantly worse or statistically
indistinguishable. The leftmost symbol represents the difference with the all features run, the next
with the without history features run, and the rightmost symbol the without concept features run.

P1 R-prec Recall MRR SR

All features 0.8388 0.7170 0.7852 0.8500 0.8548
Without history 0.7867 ◦ 0.4687� 0.6272◦ 0.8009◦ 0.8041◦

Without concept 0.5826�◦ 0.3282�◦ 0.4554�◦ 0.5826◦◦ 0.5826�◦

Without history and concept 0.1929��� 0.1429��◦ 0.1679��� 0.1929��� 0.1929���

from the training data for the SVM classifier. It turns out that both the n-gram specific
and n-gram + concept specific features are needed for classification. When these groups
are removed, none of the relevant concepts are identified. From Table 7 we observe that
removing the history features results in a drop in performance, albeit a small one. When
the concept features are removed, the resulting performance drops even further and their
combined removal yields very low scores. Classification without the concept based fea-
tures results in performance that is statistically indistinguishable from the baseline.

Table 8. Results for full query-based reranking. � � and ◦ indicate that a score is significantly
better, worse or statistically indistinguishable respectively. The leftmost symbol represents the
difference with the baseline, the next with the J48 run, and the rightmost with the NB run.

Machine learner P1 R-prec Recall MRR SR

baseline 0.5636 0.5216 0.6768 0.6400 0.7535
J48 0.7055� 0.5907◦ 0.6664◦ 0.6768◦ 0.7314◦

NB 0.7110�◦ 0.6004◦◦ 0.7173◦◦ 0.7121◦◦ 0.7889◦◦

SVM 0.8908��� 0.8604��� 0.8890��� 0.8173�◦� 0.8963���

Next we turn to a comparison of n-gram based reranking and full query reranking.
Table 8 shows the results when we omit the n-grams and only the full query is used
to generate features. We again observe that SVM significantly outperforms J48, NB, as
well as the baseline. We further note that these scores are the highest obtained so far and
this approach is able to return almost 90% of all relevant concepts. This result is very
encouraging and shows that the approach taken handles semantic query suggestions
extremely well.

6.3 Feature Selection

Several methods exist with which to automatically determine the most informative fea-
tures given training instances and their class labels (in our case the class label indicates
whether the current concept is selected by the assessors). In this section we report on
using the information gain based algorithm for feature selection [38].

Learning Semantic Query Suggestions 437

Table 9. Results of calculating the information gain with respect to the class label for all features
(truncated after 7 features). The higher this score, the more informative a feature is.

N-grams Full-queries

0.119 RANK(c, Q) 0.190 RANK(c, Q)
0.107 DOCID 0.108 TEQ(c,Q)
0.052 INLINKS(c) 0.080 INLINKS(c)
0.040 TFanchor(c, Q) 0.056 DOCID
0.038 OUTLINKS(c) 0.041 OUTLINKS(c)
0.037 TF title(c, Q) 0.033 SCORE(c, Q)
0.031 TEQ(c,Q) 0.025 REDIRECT(c)

Table 9 shows the features with the highest information gain scores for both n-gram
and full-query based reranking. From this table we observe that the rank at which the
retrieval framework puts a concept with respect to an n-gram is most informative. Also
the number of in- and outlinks, and whether the n-gram matches the concept’s label
are informative. DOCID is the internal identifier of each concept and not a feature that
we explicitly implemented. However, it turns out that some DBpedia concepts have a
higher a priori probability of getting selected. Indeed, in the assessments there were a
total of 854 concepts identified, of which 505 are unique. Some of these repetitions are
caused because of a coherent information need in the user sessions; when a user rewrites
her query by adding or changing part of the query, the remaining concepts remain the
same and were annotated as such. As to n-gram based reranking, the term frequency
in the title and anchor texts are strong indicators of relevance for given phrase and
concept.

7 Conclusion and Future Work

We have introduced the task of semantic query suggestion and presented a method
that uses supervised machine learning methods to learn which concepts are used in a
query. The concepts are obtained from an ontology and may be used to provide search
or navigation suggestions to the user, or as an entry point into the Linked Open Data
cloud. Our method extracts query, document, and history specific features from manual
annotations and learns how to best rank candidate concepts given an input query.

Our results were obtained using the Dutch version of DBpedia and queries from a
log of the Netherlands Institute for Sound and Vision. Although these resources are
in Dutch, the framework we have presented is language-independent. Moreover, the
approach is also generic in that several of the employed features could be used with
ontologies other than DBpedia. However, as became clear from Table 7 and 9, DBpedia
related features such as inlinks and redirects were especially helpful. Using Support
Vector Machines and features extracted from the full input queries yields optimal re-
sults. The best performing run is able to locate almost 90% of the relevant concepts on

438 E. Meij et al.

average. Moreover, this particular run achieves a precision@1 of 89% which means that
for this percentage of queries a relevant concept is returned as the first suggestion.5

In sum, we have shown that the semantic query suggestion problem can be success-
fully cast as a ranking problem. The best way of handling query terms is not as separate
n-grams, but as a single unit—a finding also interesting from an efficiency viewpoint,
since the number of n-grams is quadratic with respect to the length of the query. All
types of feature were found to be helpful and, besides document and term features, we
found that concept features were also important in achieving our best performance.

As to future work, we will look into expanding the list of features, for example by in-
cluding more structural features such as ones pertaining to the structure of the ontology.
Another question that should be answered is how much training data is needed in order
to arrive at a reasonable level of performance. We also intend to go beyond suggest-
ing concepts and look at which part of the query should be linked. Finally, we believe
that there might be room for further improvement by using session history in other
ways. One option would be a more fine-grained notion of session changes, for example
using query overlap [17], or a wider one which considers user history over multiple
sessions. Finally, our current approach is trained to find matches between (parts of) the
user query and DBpedia concepts, comparable to finding skos:exactMatch or even
owl:equivalentClass relations in an ontology matching task. However, seman-
tic query suggestion can also be interpreted in a broader sense, where not only exact
matches but also semantically related concepts are suggested [23]. We believe that our
approach can be easily adapted to incorporate such semantically related suggestions.

Acknowledgments

We thank the anonymous reviewers for their constructive comments. This research was
carried out in the context of the Virtual Laboratory for e-Science project and supported
by the DuOMAn project carried out within the STEVIN programme which is funded by
the Dutch and Flemish Governments under project number STE-09-12 and the Nether-
lands Organisation for Scientific Research (NWO) under project numbers 017.001.190,
640.001.501, 640.002.501, 612.066.512, 612.061.814, 612.061.815, 640.004.802.

References

[1] Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching unstructured vocab-
ularies using a background ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS
(LNAI), vol. 4248, pp. 182–197. Springer, Heidelberg (2006)

[2] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: A nu-
cleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007)

5 Our high numbers can be partially explained by the fact that we have decided to focus on
the quality of the suggested concepts and as such removed “anomalous” queries from the
evaluation, i.e., queries with typos or that were too ambiguous for human assessors to be able
to assign a concept to. The influence of this selection on the end-to-end results remains a topic
for future work.

Learning Semantic Query Suggestions 439

[3] Auer, S., Lehmann, J.: What have Innsbruck and Leipzig in common? Extracting semantics
from wiki content. In: The Semantic Web: Research and Applications (2007)

[4] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

[5] Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O.: Hourly analysis of
a very large topically categorized web query log. In: SIGIR 2004 (2004)

[6] Bendersky, M., Croft, W.B.: Discovering key concepts in verbose queries. In: SIGIR 2008
(2008)

[7] Bendersky, M., Croft, W.B.: Analysis of long queries in a large scale search log. In: WSCD
2009 (2009)

[8] Bhole, A., Fortuna, B., Grobelnik, M., Mladenic, D.: Extracting named entities and relating
them over time based on wikipedia. Informatica 4(4), 463–468 (2007)

[9] Bizer, C., Cyganiak, R., Auer, S., Kobilarov, G.: DBpedia–querying Wikipedia like a
database. In: WWW 2007 (2007)

[10] Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malaisé, V., Meilicke, C., Pane,
J., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V.: Results of the OAEI 2008. In: The
Third International Workshop on Ontology Matching at ISWC (2008)

[11] Chemudugunta, C., Holloway, A., Smyth, P., Steyvers, M.: Modeling documents by com-
bining semantic concepts with unsupervised statistical learning. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 229–244. Springer, Heidelberg (2008)

[12] Church, K.W., Gale, W.A.: Inverse document frequency (IDF): A measure of deviations
from poisson. In: Proc. Third Workshop on Very Large Corpora (1995)

[13] Fellbaum, C., Palmer, M., Dang, H.T., Delfs, L., Wolf, S.: Manual and automatic semantic
annotation with wordnet. WordNet and Other Lexical Resources (2001)

[14] Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: SIGIR 2009
(2009)

[15] Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, University of
Twente (2001)

[16] Jansen, B.J., Goodrum, A., Spink, A.: Searching for multimedia: analysis of audio, video
and image web queries. World Wide Web 3(4), 249–254 (2000)

[17] Jansen, B.J., Spink, A., Blakely, C., Koshman, S.: Defining a session on web search engines.
J. Am. Soc. Inf. Sci. Technol. 58(6), 862–871 (2007)

[18] Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and
analysis of user queries on the web. Information Processing and Management 36(2),
207–227 (2000)

[19] John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: UAI
1995 (1995)

[20] Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, in-
dexing, and retrieval. J. Web Sem. 2(1), 49–79 (2004)

[21] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cam-
bridge University Press, Cambridge (2008)

[22] Mcguinness, D.L.: Ontologies come of age. In: Fensel, D., Hendler, J., Lieberman, H.,
Wahlster, W. (eds.) Spinning the Semantic Web: Bringing the World Wide Web to Its Full
Potential. MIT Press, Cambridge (2003)

[23] Meij, E., Mika, P., Zaragoza, H.: Investigating the demand side of semantic search through
query log analysis. In: SemSearch 2009 (2009)

[24] Mihalcea, R., Csomai, A.: Wikify!: Linking documents to encyclopedic knowledge. In:
CIKM 2007 (2007)

[25] Milne, D., Witten, I.H.: Learning to link with wikipedia. In:CIKM 2008 (2008)

440 E. Meij et al.

[26] Mishne, G., de Rijke, M.: A study of blog search. In: Lalmas, M., MacFarlane, A.,
Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936,
pp. 289–301. Springer, Heidelberg (2006)

[27] Platt, J.C.: Fast training of support vector machines using sequential minimal optimization.
In: Advances in kernel methods: support vector learning. MIT Press, Cambridge (1999)

[28] Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR
1998 (1998)

[29] Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

[30] Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data
Semantics 4(3730), 146–171 (2005)

[31] Spink, A., Jansen, B.J., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: Web search
changes. IEEE Computer 35(3), 107–109 (2002)

[32] Stoilos, G., Stamou, G., Kollias, S.D.: A string metric for ontology alignment. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 624–637. Springer, Heidelberg (2005)

[33] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW
2007 (2007)

[34] van Hage, W.R., de Rijke, M., Marx, M.: Information retrieval support for ontology con-
struction and use. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004.
LNCS, vol. 3298, pp. 518–533. Springer, Heidelberg (2004)

[35] Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)
[36] Wang, S., Englebienne, G., Schlobach, S.: Learning concept mappings from instance

similarity. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 339–355. Springer, Heidelberg
(2008)

[37] Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco (2005)

[38] Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization.
In: ICML 1997 (1997)

[39] Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to infor-
mation retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)

[40] Zhou, Y., Croft, B.W.: Query performance prediction in web search environments. In:
SIGIR 2007 (2007)

Investigating the Semantic Gap
through Query Log Analysis

Peter Mika1, Edgar Meij2, and Hugo Zaragoza1

1 Yahoo Research
Diagonal 177, 08018 Barcelona, Spain

{pmika,hugoz}@yahoo-inc.com
2 ISLA, University of Amsterdam

Sciencepark 107, 1098 XG Amsterdam
edgar.meij@uva.nl

Abstract. Significant efforts have focused in the past years on bringing
large amounts of metadata online and the success of these efforts can be
seen by the impressive number of web sites exposing data in RDFa or
RDF/XML. However, little is known about the extent to which this data
fits the needs of ordinary web users with everyday information needs.
In this paper we study what we perceive as the semantic gap between
the supply of data on the Semantic Web and the needs of web users
as expressed in the queries submitted to a major Web search engine.
We perform our analysis on both the level of instances and ontologies.
First, we first look at how much data is actually relevant to Web queries
and what kind of data is it. Second, we provide a generic method to
extract the attributes that Web users are searching for regarding partic-
ular classes of entities. This method allows to contrast class definitions
found in Semantic Web vocabularies with the attributes of objects that
users are interested in. Our findings are crucial to measuring the poten-
tial of semantic search, but also speak to the state of the Semantic Web
in general.

1 Introduction

Semantic search is by its broadest definition a collection of approaches that aim
at matching the Web’s content with the information need of Web users at a
semantic level. Most of the work in this area has focused on the supply-side
of semantic search, in particular elevating Web content to the semantic level
by relying on methods of information extraction [4] or working with explicit
metadata embedded inside or linked to Web resources. With respect to explicit
metadata, several studies have been done on the adoption of Semantic Web
formats in the wild, mostly based on statistics from the crawls of Semantic Web
search engines [8,7,6,14,10]. Much less effort has focused on the demand-side
of semantic search, i.e. interpreting queries at the semantic level and studying
the information needs of web users in terms of semantic categories. Conversely,
little is known as to how much the supply of metadata actually matches the

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 441–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

442 P. Mika, E. Meij, and H. Zaragoza

demand for information from ordinary web users, i.e. how large is the semantic
gap between supply and demand on the Semantic Web. This question is central
to the success of semantic search, but also to the success of the public Semantic
Web in general.

In this paper, we divide our analysis in two parts and provide methods and
tools for studying the semantic gap at both the level of instance data and vocab-
ularies1. Section 3 covers our analysis of metadata on the Semantic Web. The
question we seek to answer is to what extent data on the Semantic Web matches
the information needs of the average Web search users as evidenced by search
sessions sampled from the query log of a Web search engine. In addition, we look
at how information extracted from individual sites with significant influence on
the Web could be effective in filling in missing data. Last, we also investigate the
particular categories of queries for which there is already metadata on the Web.
These questions are pertinent because the success of semantic search hinges on
the availability of data that covers user needs.

In Section 4, we address the problem of studying the information need of
Web searchers at an ontological level, i.e., in terms of the particular attributes
of objects they are interested in. We describe a set of methods for extracting
the context words appearing in queries next to the instances of certain classes of
objects. We implement these methods in an interactive tool called the Seman-
tic Search Assist. The original purpose of this tool was to generate type-based
query suggestions when there is not enough statistical evidence for entity-based
query suggestions. However, from an ontology engineering perspective, this tool
answers the question of what attributes a class of objects would have if the
ontology for it was engineered purely based on the information needs of Web
search users. As such it allows us to reflect on the gap between the properties
defined in Semantic Web vocabularies and the attributes of objects that people
are searching for on the Web. We evaluate our tool by measuring its predictive
power on the query log itself.

Our main contribution is thus the usage-based perspective we take on ana-
lyzing metadata and vocabularies. We provide a set of methods and their imple-
mentation in tools for measuring the Semantic Web from this perspective. The
results we provide can be independently validated and we plan to publish some
of the detailed analysis in an online form. We conclude and summarize future
work in Section 5.

2 Related Work

This work lies at the intersection of two separate streams of research on analyz-
ing Semantic Web data and understanding user queries at a semantic level. In
the first area, a number of studies have been done based on the crawls of Se-
mantic Web search engines [8,7,6,14,10], although these studies have focused on
1 In the following, we will use the term vocabulary instead of the term ontology when

we want to put the emphasis on the surface forms of ontological elements. Otherwise
we will use the two terms interchangeably.

Investigating the Semantic Gap through Query Log Analysis 443

data quality based on principles such as ontology reuse and interlinking, irrespec-
tive of particular applications of the data. These studies also have not touched
upon embedded metadata (RDFa or microformat data), which are likely to have
different characteristics, especially when it comes to user-generated content.

Analyzing query logs as a source of semantics bears many resemblances to min-
ing semantics from folksonomies. Some of the related work use methods of net-
works analysis and unsupervised methods of data mining such as frequent itemset
mining and hierarchical clustering among others. [13,11,15]. Krause et al. perform
a network analysis of a ’logsonomy’ which emerges by looking at queries as tags of
clicked URLs and conclude that folksonomies and logsonomies share similar char-
acteristics [12]. Francisco et al. generate a similar network and carry out cluster-
ing to mine semantically related queries [9]. Our analysis is different in that we
are decomposing queries into entities and their context, and we use background
knowledge in the form of entity to type mappings to associate queries.

3 The Data Gap

Discussions around the growth and adoption of the Semantic Web often revolve
around the observable size of the Semantic Web, whether it’s the number and
size of datasets in the Linked Data cloud2 or the number of pages annotated with
microformats or using RDFa. As an example of this sort of analysis, Figure 1
shows the percentage of pages with certain types of microformats or RDFa data
as observed in September, 2008 and March, 2009. We can read the growth rates
from the chart, and observe, for example, that roughly 2% of webpages contained
hCard data by the end of the observed period. But we have to ask ourselves the
questions: how useful is this analysis? Just how big the Semantic Web should
be?

One possible answer is that the Semantic Web should be just big enough to
answer all the questions that we may want to ask.3 The questions that we may
want to ask to the data may depend on the particular application but considering
semantic search on the public web, one valuable source of information are the
logs collected by Web search engines. Due to the widespread, everyday use of
search engines query logs provide an excellent record of the information needs
of the collective of Web users.

Given a set of queries, the effectiveness of search still depends on the corpus
as well as the search engine. Since our goal is not to evaluate semantic search
engines, but to evaluate data, we fix the search engine in question by relying on
Yahoo Search to retrieve web pages and look at the metadata associated with
the results returned. Thus we assume that the current text search engine is a
good approximation for a semantic search engine. We believe this is a reasonable
assumption for embedded metadata (microformats, RDFa) where the metadata
2 See http://linkeddata.org
3 There is ample evidence that the Web is bigger than just enough: the three largest

search engines crawl, index and query different parts of the Web and yet come up
with qualitatively similar answers.

http://linkeddata.org

444 P. Mika, E. Meij, and H. Zaragoza

Fig. 1. Percentage of URLs with eRDF, RDFa data and certain popular microformats

is typically a structured representation of the main object presented in the page.4
We also fix the corpus in the sense that we are naturally limited to the part of
the Semantic Web that is crawled and indexed by Yahoo, which includes various
microformats and RDFa data, but doesn’t include Linked Data in general (e.g.
RDF/XML documents).

In summary, we are interested in the forms and quantities of metadata that
are returned with search results based on the behavior of the average Web user.

3.1 Methodology

For our analysis, we have taken a uniform sample of search sessions appearing in
Yahoo’s US query logs for the month of January, 2009.5 This sample contained
10699 queries, with 7081 unique queries with at least one result. (We obtain the
list of unique queries by taking each query once, no matter how often it occurred
in the query log.) The distribution of queries follows the typical ’very long tailed’
distribution observed in query logs [2]: 64% of the unique queries appear only
once in the sample.6 This is mostly a result of the fact that the same query

4 However, we do not know of any studies that would have verified this commonly
held assumption.

5 The difference between sampling sessions and sampling queries directly is negligible
for our analysis.

6 In other words, this is the percentage of queries on the list of unique queries that
appeared only once in the original sample. This is different from the ratio of unique
queries, i.e. the percentage of queries that occur only once when counting with
multiplicity.

Investigating the Semantic Gap through Query Log Analysis 445

can be written in multiple ways. Again, we rely on the search engine to return
comparable results for equivalent queries.

We executed the queries in the log using the Yahoo BOSS search API, which
has been recently extended to return embedded metadata with each search re-
sult.7 The metadata is returned either as RDF/XML or in DataRSS format,
where the RDF triples are grouped into ‘adjuncts’ based on the source of the
metadata, i.e. RDFa or one of the recognized microformats.8 DataRSS is a pro-
prietary serialization format, but one that is fully compatible with RDFa, which
means that the actual RDF triples can be extracted with any RDFa parser.

Table 1. The number of queries that return 1 to 10 results with metadata in particular
formats, plus the total impressions for the entire set of queries and the average total
impressions per query

format 1 2 3 4 5 6 7 8 9 10 TI ATI
hcard 1457 370 93 11 3 0 0 0 0 0 2535 0.36
rel-tag 1317 350 95 44 14 8 6 3 1 1 2681 0.38
adr 456 77 21 6 1 0 0 0 0 0 702 0.10
hatom 450 52 8 1 0 0 0 0 0 0 582 0.08
license 359 21 1 1 0 0 0 0 0 0 408 0.06
xfn 339 26 1 1 0 0 0 1 0 0 406 0.06
RDFa 176 2 0 0 0 0 0 0 0 0 180 0.03
Any 2127 1164 492 244 85 24 10 5 3 1 7623 1.08

Using the adjunct ids returned for each query we can count the number of
results with embedded metadata and the source of the information. The rows of
Table 1 show the results for each format (RDFa or microformat) separately and
for considering any format (Any). Each row shows the number of queries with
1 to 10 results with embedded metadata, the total impressions (TI) that is the
total number of returned URLs that contained metadata, and the average total
impressions (ATI), which is the average number of impressions per query.

As an example on how to read this table, the number 370 in the row labeled
‘hcard’ and the column labeled ‘2‘ shows that 370 queries returned two results
with hCard data. In the same row, the column TI shows that 2535 of the returned
results for all the queries contained hCard data, which makes an average of 0.36
results with hCard data per query. Note that the last row is not a total because
it’s not a simple sum of the rows above: a single page may contain multiple types
of microformats, or a combination of microformats and RDFa.

Based on the results, we observe that 59% of the queries have at least one
search result with metadata, with an average of about one search result with
metadata. (Note that taking ten search results for each query, the ATI has a
maximum value of 10.) hCard and rel-tag each appear on every third search
result page on average, while other microformats appear a lot less frequently
7 See http://developer.yahoo.com/search/boss/structureddata.html
8 Yahoo Search converts microformats to RDF during indexing.

http://developer.yahoo.com/search/boss/structureddata.html

446 P. Mika, E. Meij, and H. Zaragoza

(the numbers in the last column are decreasing quickly). An RDFa enabled
result would appear only for every 40th query at the time of the analysis (March,
2009).9

3.2 The Role of Popular Sites

It is a well-known phenomenon in Web search that the size of a web site doesn’t
necessarily correlate with its usefulness as determined by users. On the one
hand, a web site doesn’t have to be large to be popular with users: a well-known
example is Wikipedia, which contains relatively a small amount, but diverse and
high quality content, and as a result dominates search result pages beyond its
size. At the other extreme, a large part of Web pages that are crawled are never
returned by search engines. One can say that these pages are useful to search
engine users only to the extent that they are linked or otherwise findable from
pages that are being returned.

Table 2. Most popular hostnames in search results by total impression

host name 1 2 3 4 5 6 7 8 9 10 TI ATI
en.wikipedia.org 1676 1 0 0 0 0 0 0 1 0 1687 0.24
www.youtube.com 475 1 0 0 0 0 0 2 0 0 493 0.07
www.amazon.com 345 3 0 0 0 0 1 0 0 0 358 0.05
www.answers.com 294 0 0 0 0 0 0 0 0 0 294 0.04
www.geocities.com 263 2 0 0 0 0 0 0 0 0 267 0.04
www.yellowpages.com 233 0 0 0 0 0 0 0 0 0 233 0.03
blog.360.yahoo.com 228 0 0 0 0 0 0 0 0 0 228 0.03
local.yahoo.com 220 1 0 0 0 0 0 0 0 0 222 0.03
www.imdb.com 197 0 0 0 0 0 0 0 0 0 197 0.03
www.myspace.com 163 0 0 2 0 0 0 0 0 0 171 0.02

We are interested in measuring the extent to which large sites dominate search
results, and consequently the importance of the data they provide compared to
the numerous but smaller contributions of average websites. To achieve this,
we counted unique host names in search results exactly as we counted unique
formats appearing. Table 2 shows the results in the same format as the previous
table. Note that as a general rule Yahoo does not return more than two results
from the same host except when the query is a URL or site query.

These results are illuminating in the sense that they show a surprisingly large
influence of some websites. For example, if YouTube would introduce an entirely
new microformat or one would extract information from this particular Web site,
from the perspective of search users this data alone would be more significant
9 Note that we don’t count as RDFa triples in the XHTML namespace such as those

generated by <link> elements with a rel attribute of icon or stylesheet. We choose
to ignore these triples because they have no value for a semantic search engine. The
only frequent-enough property in the XHTML namespace that does have a semantic
value is xhtml:license, which we account for under rel-license.

Investigating the Semantic Gap through Query Log Analysis 447

than the total amount of XFN information on the Web contributed by millions
of hosts. We also see that the most of the importance we can attribute to RDFa
data comes from the adoption of RDFa by a single large site, myspace.com. We
expect the relative importance of large sites to diminish over time, but it seems
characteristic for the current early adoption phase of the Semantic Web.

3.3 The Influence of the Query Category

While query logs in general cover the breadth of information needs, we might be
interested in measuring the potential of semantic search for particular categories
of queries. The performance of current Web search technology in general strongly
depends on the type of query (e.g. short queries vs. long queries, navigational vs.
non-navigational) or domain of queries (e.g. person queries vs. product queries).
Thus the potential for improvement using semantic technologies is consequently
larger for certain kind of queries than others. Another reason to break down
the results might be that certain kinds of queries are more important from the
perspective of search advertising.

Given any classification of queries, the results of the analysis above can be
easily broken down by category. The categories used to classify queries will de-
pend on the type of application. For demonstration purposes, we show how the
results break down for a small number of query categories defined by ourselves
and used to categorize a set of 1000 queries.

Table 3. Average Total Impression (ATI) values for particular formats when restricting
the query set by query category

Organization Location Person Recent event
hcard 0.40 hcard 0.7 rel-tag 0.65 hcard 0.65
rel-tag 0.35 adr 0.55 hcard 0.54 en.wikipedia.org 0.48
adr 0.23 local.yahoo.com 0.33 en.wikipedia.org 0.23 rel-tag 0.43
en.wikipedia.org 0.21 geo 0.31 hcalendar 0.16 hcalendar 0.40
geo 0.10 yelp.com 0.21 hatom 0.14 answers.com 0.15
local.yahoo.com 0.09 rel-tag 0.16 youtube.com 0.12 imdb.com 0.15
yelp.com 0.08 yellowpages.com 0.15 answers.com 0.10 myspace.com 0.15
hatom 0.08 en.wikipedia.org 0.11 facebook-video 0.07 hatom 0.12
Any 1.14 Any 1.31 Any 1.52 Any 1.66

Table 3 shows the ATI values for different formats and for the top four cat-
egories that surfaced most of the metadata: queries containing organizations,
location names and person names, and recency sensitive queries, i.e. queries re-
ferring to news or events. There are again a number of noteworthy observations.
As stipulated, and as shown by the last row, each of these restrictions of the
data set resulted in returning more metadata per query than for the general
case (where the ATI measure was 1.08), i.e. there is indeed more metadata to be
exploited for particular classes of queries. We can also see significant changes in
the relative importance of particular sites and different types of metadata. For

448 P. Mika, E. Meij, and H. Zaragoza

example, Wikipedia’s importance is significantly diminished for queries contain-
ing locations, which points to the fact that Wikipedia is rather incomplete when
it comes to articles about places. Metadata in Facebook Share format10 describ-
ing videos is not relevant for queries in general, but it has a relative importance
to queries related to people (in particular, celebrities). Similarly, hCalendar did
not appear in Table 1 because its significance was below that of the last entry
(XFN). However, hCalendar data seems very significant to queries about events.

We will return to some of the limitations of this analysis in our conclusions
in Section 5. In the second part of our paper we look at a parallel problem of
measuring the semantic gap between the information needs (and corresponding
vocabulary) of web searchers and the information captured in ontologies.

4 The Vocabulary Gap

We begin by observing that in Web search query logs and in particular for queries
that contain a named entity, the class of the entity that the user is looking for
often determines the query context, i.e., the terms written before (prefix) or after
the name (suffix) of an entity, respectively. Put differently, entities of the same
class often occur in the context of similar words, representing specific information
users are interested in with respect to that particular class of entities. Table 4
shows some examples of queries with class-based contexts.

Table 4. Example queries, extracted entities, completions, and types

Query Entity Context Class
aspirin side effects aspirin +side effects Anti-inflammatory

drugs
how to take ibuprofen ibuprofen –how to take Anti-inflammatory

drugs
britney spears video britney spears +video American film

actors
britney spears shaves her head britney spears +shaves her head American film

actors

In this section, we look at how at a method to mine common attributes of
classes of objects using query logs and class-membership information as back-
ground knowledge. The original use case of this analysis was to provide search
suggestions based on the type of entity the user is looking, which is useful in
situations where no good suggestions are available for the entity itself. However,
the resulting structures are also interesting to compare to the explicit conceptu-
alizations found in Web ontologies.

We start by selecting those queries from the query logs which have a named
entity in them. Given this subset of the query logs, we assume queries can be

10 http://www.facebook.com/share_partners.php

http://www.facebook.com/share_partners.php

Investigating the Semantic Gap through Query Log Analysis 449

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 10 100 1000 10000 10000

S
uc

ce
ss

 R
at

e

Queries

Frequency
M1
M2
M3
M4

Fig. 2. Success rate for queries. The x-axis shows the queries which are averaged and
binned by frequency of occurrence. On the left we see rare queries, on the right popular
ones.

decomposed in an entity part e and a context part f and, further, that entities
can be assigned a type T . In case the query contains a pre- and suffix, we treat
it as two separate queries.

We then determine the matrix N = (nef)e,f , where nef is the number of
times we see f with e. By grouping all entities of a certain type we can, for
example, compute nTf :=

∑
e∈T nef which is the number of times we see com-

pletion f with an entity of type T . Using N , we can readily estimate probabilities
such as P (f), P (f |e), P (f |T), and P (e|f, T) which we use to implement several
intuitions regarding semantic query completion.

4.1 Extraction Methods

Imagine that a user is typing a query and we recognise what she has typed so
far as an entity with a corresponding type. The most naive approach (and the
one that is taken by most Web search engines) would be to suggest the most
frequent completions for the current entity (M0): scoreM0(f, e) = P (f |e). Given
an infinite amount of data this should suffice. However, it will probably fail for
rare entities since we will have none or very few completions for them. For this
reason we turn to to the entity type and smooth the entity distribution with the
type distribution.

M1 aggregates completions over types and looks at the most likely completion
for the current type:

scoreM1(f, T) = P (f |T). (1)

Another desirable property a completion should have, is being rare over all types.
M2 rewards such completions:

scoreM2(f, T) =
P (f |T)
P (f)

. (2)

450 P. Mika, E. Meij, and H. Zaragoza

Another intuition is that completions which are frequent as well as evenly dis-
tributed among the entities in the type should be rewarded (M3):

scoreM3(f, T) = G(f |T) =

(∏
e∈T

nef

)1/|T |

. (3)

The final method (M4) only considers the distribution of completions within
the type:

scoreM4(f, T) = H(θf |T), (4)

where H is the entropy of the multinomial θf |T = (P (e|f, T))e∈T .
To detect entities in queries, we require an ontology with a set of classes and

a set of instances for each class. Consequently, we match the largest substring
common to the query and the label of an instance.11 In our experiments, we
use DBpedia [4] considering both templates and categories as classes. Wikipedia
entries can belong to many categories (e.g. 34 for Madonna) and reference a
number of templates. We choose only one and try to select the best entity type.
This is a challenging research question in itself; trivial methods such as choosing
the most frequent or rarest type did not work well. Instead, we apply M1 on the
training data and evaluate the performance of all possible types of each entity.
We then choose the type that led to the best performance on the training set.
For entities not present in the training set we select the type with the most
entities.

4.2 Evaluation of Type-Based Context Prediction

We evaluate the success of our context extraction by measuring its predictive
power. In particular, we compare the highest scoring completions of the various
methods with the actual observed remainder of the queries in the test set. We
use 6 consecutive days of query logs which we split equally into a training and
a test set. We analyze each query and if it contains an entity we keep it. This
results in 1,681,753 queries for training and 1,644,033 for testing. For each query,
we compute the top K = 10 completions predicted by each method using post-
fixes only. The correct completion for that query is the one typed by the user.
We are interested in two evaluation measures: (i) Success Rate @ K (SR), i.e.
whether the completion is correctly predicted and (ii) Mean Reciprocal Rank @
K (MRR), i.e. the mean of the inverse of the ranks at which the completion was
found, up to K.

Table 5 shows the results over all test queries. As is clear from the low abso-
lute scores, the task of suggesting the correct completion is a difficult one. The
highest obtained MRR lies around 0.18 for M0 with queries that occur around
11 We remove any disambiguation part in the entry title. This has the adverse effect

of introducing noise, e.g. collapsing Madonna (art) and Madonna (entertainer). Dis-
ambiguating such queries is beyond the scope of the current work but could, e.g., be
achieved by leveraging a user’s history [3].

Investigating the Semantic Gap through Query Log Analysis 451

Table 5. Aggregated results over all queries

M0 M1 M2 M3 M4
MRR 0.081 0.068 0.014 0.046 0.006
SR 0.118 0.104 0.041 0.088 0.010

Table 6. Top ten prefixes and postfixes using our model M4 and Wikipedia templates
as classes

infobox_settlement infobox_musical_artist drugbox infobox_football_club
hotels lyrics buy forum
map buy what is news

map of pictures of tablets website
weather what is what is homepage

weather in video side effects of tickets
flights to download hydrochloride official website
weather hotel online badge
hotel dvd overdose fixtures

property in mp3 capsules free
cheap flights to best addiction logo

1000 times. M0 outperforms the type-based methods on almost all queries and
measures. However, as indicated by Figure 2, the type-based methods, in par-
ticular M1 and M3, perform slightly better than M0 for less frequent queries
(occurring 40 times or less and making up 12.7% of the total query volume).
For other queries, M0 outperforms all other methods although the difference
with M1 is usually small. The reason for the lower scores at the most frequently
occurring queries is that these mostly consist of entities such as “in”, “to”, and
“uk” (which are actual Wikipedia entries).

In the future, we plan to complement this evaluation with a user study as we
feel that some of the models might achieve a high prediction accuracy by over-
fitting popular entities. There are also many query contexts that are particular
to the specific entity (e.g. britney spears shaves her head) but a user is likely
to accept other reasonable suggestions based on the type (e.g. britney spears
videos) when offered a choice.

4.3 Qualitative Analysis

We have implemented the above methods in a tool that can be used to dynam-
ically query for the most common context words of an entity of a certain type.
Shown in Figure 3, the tool allows to search for all entities using a text box
that performs autocompletion. Once the user has selected an entity, the relevant
types are retrieved, and the user can chose one of the available types. Based on
the selected entity and the type, the tool shows both the entity-based and type-
based context words. The tool relies on a number of indices built from the query

452 P. Mika, E. Meij, and H. Zaragoza

Fig. 3. Interactive search tool for the most common pre- and postfixes given an entity
and a type

log using DBpedia as background knowledge. The tool could be used to perform
the analysis for any other Semantic Web ontology by rebuilding the underlying
indices.

In the following, we compare the results of context mining and the attributes
found in DBpedia itself. This analysis is necessarily manual and qualitative be-
cause we would like to accept the situation where there is a semantic equivalence.
For example, the users may be looking for ’pictures’ while the ontology may con-
tain a ’photo’ property.

Table 6 shows the most common contexts (prefixes or suffixes) for five dif-
ferent Wikipedia templates, computed using method M4. We have chosen this
particular model over our other models because it seems to give better type-
specific results: even though our M1 has higher predictive power, at the same
time it is over-fitting popular entities in the class. We have chosen these five
templates because they vary in size from 43225 entities for infobox_settlement
to 998 entities for infobox_football_club.

We show in bold the prefixes or suffixes that match an infobox property, i.e.,
where the user’s query is likely to be satisfied by infobox data (assuming that
the particular property is defined for the particular entity the user is searching
for, i.e. that the infobox has been completed for this property). It is immediately
obvious that there are very few of these. In fact, it seems the majority of these
popular information needs cannot even be possibly satisfied by factual data. We
leave it for further investigation to study whether it is the case that factual ques-
tions –which may be individually uncommon– would still make up a substantial
portion of query volume.

Investigating the Semantic Gap through Query Log Analysis 453

It is interesting to note that there are also information needs where the answer
could be relatively concise and expressed in a single sentence or paragraph. This
is often reflected in the structure of articles, i.e. the division of information into
sections. For example, articles on drugs often have sections titled ’Overdose’ and
’Side Effects’. Even if the answer to a query such as aspirin overdose can not
be answered by a single fact, the information the user is looking for may come
from a single section or even a single paragraph within the Wikipedia article.
This warrants further investigation of exploiting article structure when searching
Wikipedia.

In summary, it is clear that if infobox data would be geared toward answering
popular information needs as surfaced by our tool, the infoboxes would need to
contain different information at different levels of granularity. This suggests that
for answering these ‘head’ queries one may need to merge the methods of data
retrieval with methods of structured retrieval and unstructured retrieval. Put
differently, for using the output of our tool as an input for ontology engineering,
the list of context words extracted will need to be filtered to those represent-
ing attributes of objects, i.e. properties that can be filled with simple values.
Although this out of the scope for our current work, ontology learning in this
context would be similar to ontology learning in folksonomies [5,13,1].

5 Conclusion and Future Work

Ultimately, the success of the Semantic Web depends not only on technology,
but also how well the knowledge captured using microformats or Linked Data
satisfies the needs of ordinary users. The two main factors in this respect are the
coverage and quality of data and ontologies. In this paper, we have looked at
the issue of coverage, in particular to what extent data on the Semantic Web is
potentially useful in resolving queries and how well the vocabularies used match
the implicit vocabularies of users as expressed by their queries.

We have presented methods of analysis and discussed the results of our eval-
uation. We plan to repeat these evaluations as the evolution of the semantic gap
is just as interesting as a static picture of it. We have chosen Web search as our
target domain, but the general ideas represented by these methods are equally
applicable to vertical, enterprise or desktop search scenarios. The particular ex-
periments we have performed can be reproduced using the BOSS API, which
provides access to Web metadata crawled by Yahoo.

In terms of measuring the relevance of Semantic Web data to Web search,
we have shown how we can measure the contributions of various forms of data
by effectively replaying a large number of sessions sampled from query logs.
We posit that just like in the case of the HTML web where often relatively
small, but popular or qualitative websites serve a large number of user needs
(such as Wikipedia), the Semantic Web also looks very different when looking
at it from the perspective of user queries, instead of just to gauging the num-
ber of triples in public datasets. In fact, we find that popular sites have also a lot

454 P. Mika, E. Meij, and H. Zaragoza

to contribute to the Semantic Web from this perspective, possibly just as much
as the long tail of web sites. Last, we found useful breaking down the analy-
sis into query categories, since such breakdown significantly influences the re-
sults and may point to query types where the Semantic Web has a particular
potential.

We have also presented a number of methods and their implementation in an
online tool for mining type-based query context information, i.e. query prefixes
and postfixes that are common to a class of entities, while uncommon to other
entities outside of their class. Postulating that these context words represent
aspects of entities that search engine users are interested in, we proceeded to
investigate on the case of Wikipedia the extent to which this schema of infor-
mation needs matches the schema of available structured data. We find that at
least for the most common context words the overlap is very low as the most
common queries are not specific enough to be answered by factual data. We
suggest that our tool could be used in the future to analyze, extend or create
new ontologies based on the information needs extracted from query logs. In this
case it is left to the ontology developer to consider which context words signify
relevant attributes of objects to be included in an ontology.

The reader may note that throughout our analysis we attribute the same value
to each query and to each piece of data. There might be very good reasons to
attribute different value to different queries, for example, because the queries
can be monetized to different extents and URLs may have different visibility
in the search result page (e.g. top three positions vs. the rest). Certain data
sets or combinations of data sets may provide extraordinary value to a small
number of users. For example, a biomedical database may provide significant
value to a researcher in biomedicine. This is not reflected in our average-value
analysis. It is part of the future work to extend our analysis to weighted query
sets.

Another limitation of our analysis is that we rely on existing query methods.
One might argue that semantic search engines will allow the users to express
different forms of queries (natural language queries, SPARQL queries, etc.) and
the mere possibility to address information needs in a different form or the fact
that semantic search engines will successfully answer new types of queries will
change user behavior. Indeed, there are plenty of latent queries that users do
not enter into Web search engines because they have learned they would not
be answered. Often, these queries are turned into navigational queries, e.g. a
user interested in flights from boston to san francisco would simply type in the
name of an airline, knowing the search engine itself would not be able to return
flight information directly. While such a transition toward rich, semantic queries
may happen in the future, this change in user behavior will take some time.
Similarly, as the Semantic Web grows and sees more usage in general, data may
be more aligned with general information needs of Web users. In the meantime,
semantic search engines will have to cope with the substantial gap in both data
and vocabularies.

Investigating the Semantic Gap through Query Log Analysis 455

References

1. Angeletou, S., Sabou, M., Motta, E.: Folksonomy Enrichment and Search. In:
Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvonen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.P.B. (eds.) ESWC. LNCS, vol. 5554,
pp. 801–805. Springer, Heidelberg (2009)

2. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V.,
Silvestri, F.: The impact of caching on search engines. In: SIGIR 2007: Proceed-
ings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 183–190. ACM, New York (2007)

3. Bai, J., Nie, J.-Y.: Adapting information retrieval to query contexts. IPM 44(6),
1901–1922 (2008)

4. Bizer, C.: DBPedia: Querying Wikipedia Like a Database. In: WWW 2007 (2007)
5. Brusilovsky, P., Davis, H.C. (eds.): HYPERTEXT 2008, Proceedings of the 19th

ACM Conference on Hypertext and Hypermedia, Pittsburgh, PA, USA, June 19-
21. ACM, New York (2008)

6. d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.:
Characterizing Knowledge on the Semantic Web with Watson. In: EON (2007)

7. Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg
(2006)

8. Ding, L., Zhou, L., Finin, T., Joshi, A.: How the Semantic Web is Being Used: An
Analysis of FOAF Documents. In: HICSS 2005 (2005)

9. Francisco, A.P., Baeza-Yates, R.A., Oliveira, A.L.: Clique Analysis of Query Log
Graphs. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280,
pp. 188–199. Springer, Heidelberg (2008)

10. Hausenblas, M., Halb, W., Raimond, Y., Heath, T.: What is the Size of the Se-
mantic Web? In: I-Semantics 2008, Graz, Austria (2008)

11. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared
conceptualizations in folksonomies. J. Web Sem. 6(1), 38–53 (2008)

12. Krause, B., Jäschke, R., Hotho, A., Stumme, G.: Logsonomy - social information
retrieval with logdata. In: Brusilovsky, Davis (eds.) [5], pp. 157–166

13. Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

14. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the Open Linked
Data. The Semantic Web, 552–565 (2008)

15. Zhou, M., Bao, S., Wu, X., Yu, Y.: An Unsupervised Model for Ex-
ploring Hierarchical Semantics from Social Annotations. In: Aberer, K.,
Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 680–693. Springer, Heidelberg
(2007)

Towards Lightweight and Robust Large Scale
Emergent Knowledge Processing

Vı́t Nováček and Stefan Decker

DERI, National University of Ireland, Galway
IDA Business Park, Galway, Ireland

vit.novacek@deri.org

Abstract. We present a lightweight framework for processing uncertain
emergent knowledge that comes from multiple resources with varying
relevance. The framework is essentially RDF-compatible, but allows also
for direct representation of contextual features (e.g., provenance). We
support soft integration and robust querying of the represented content
based on well-founded notions of aggregation, similarity and ranking. A
proof-of-concept implementation is presented and evaluated within large
scale knowledge-based search in life science articles.

1 Introduction

On the Semantic Web, we often have to be able to represent and integrate
statements coming from many resources with varying relevance in a bottom-
up, emergent manner. Moreover, the statements themselves may be noisy and
uncertain (e.g., inconsistent, potentially incorrect or having an explicit certainty
degree). This is especially pertinent to a use case that has largely motivated
our work – search for expressive statements instead of mere keywords in life
science articles. More specifically, we want to allow life scientists to search for
statements like acute granulocytic leukemia : NOT is a : T-cell leukemia, or ? :
part of : immunization. The former query is supposed to confirm whether acute
granulocytic leukemia is different from T-cell leukemia by checking for similar
statements in publications. Also, the result should provide articles supporting
the query statement. The latter query is supposed to return everything that can
be a part of the immunization process, plus any related statements and links to
articles relevant to them.

Manual annotation of the publication knowledge to be exposed for such search
is practically impossible in large scale. However, one can extract the knowledge
from the article texts by ontology learning techniques [5] and link it to exist-
ing domain ontologies in order to increase the expressivity of the rather shallow
extracted content. Such an approach still poses a couple of challenges, though:
(i) The representation framework of choice should support uncertainty, as the
extracted knowledge usually comes with explicit certainty degrees [5]. (ii) The
representation should also straightforwardly support contextual features, namely
at least provenance of statements (to link them to the respective source articles).

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 456–472, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Emergent Knowledge Processing 457

(iii) Robust aggregation of the emergent statements based on relevance of respec-
tive resources is necessary, since we have to integrate noisy extracted knowledge
with presumably more accurate manually designed domain ontologies. (iv) The
processed knowledge has to be accessible by means of intuitive (i.e., nearly nat-
ural language) query answering, since we target users with no or little technical
expertise. The query evaluation should also be approximate in order to pro-
vide useful answers even for queries partially evaluated on a lot of potentially
noisy data.

Approaches like [13,11,4,7,8,15,1,12,2] provide particular solutions apt for cop-
ing with the challenges separately, however, to the best of our knowledge there is
no off-the-shelf framework tackling all of them at once on a well-founded basis.
The main contribution of this paper is two-fold. Firstly, we introduce a general
notion of similarity-based lightweight semantics, integrally addressing all the
above challenges (Section 2). Secondly, Section 3 presents a particular applica-
tion of the general framework to knowledge-based search in life science articles.
Promising results of an evaluation performed with domain experts are reported
in Section 4. We discuss related approaches and conclude the paper in Sections 5
and 6, respectively.

2 General Framework

In the following, we first informally outline the essential notions of the proposed
framework and briefly comment on their interplay. The outline is then expanded
by more rigorous and explanatory subsections 2.1 (entities and their grounding)
and 2.2 (knowledge bases, aggregation and query answering).

Central to our framework is a notion of entities that represent real and/or
conceivable objects using unique identifiers and sets of positive or negative un-
certain relations to other entities. To give an example, let us consider the d, a, c, t
identifiers representing the dog, animal, cat concepts and type relationship, res-
pectively. The dog entity can be further specified by binary relations t(d, a) and
t(d, c) with a positive and negative certainty, respectively, meaning dogs are an-
imals different from cats. To support contextual features of entity relationships
(e.g., provenance or time-stamp), the relations may generally have arbitrary
arities. A direct correspondence of sets of n-ary certainty-valued relations to n-
dimensional tensors (generalisations of the scalar, vector and matrix notions)
provides for a compact computational representation of entities. An entity E is
then represented as (e,E), i.e., its unique identifier and the respective compact
representation of uncertain relations to other entities. To ensure accessibility for
lay users, we link the somewhat abstract representation to corresponding natural
language referents via a set of grounding functions. These may map, for instance,
the dog entity to a preferred “dog” expression with a high certainty, but also
to alternative synonyms like “doggy” or “hound”, perhaps with a bit lower cer-
tainty. The other way around, a grounding would map the “mutt” word to the
dog entity in the lexical domain of animals, but to a completely different entity
in the domain of, say, humans. Thus the grounding provides a two-way bridge be-
tween the lexical (human-centric) and computational (machine-centric) aspects

458 V. Nováček and S. Decker

of the proposed lightweight semantics. The bridge is particularly important when
answering user queries—formulated as mostly natural language statements—by
means of a query answering service dealing with abstract entity representations.

Building on the compact computational representation of entities, we
introduce the aggregation and querying services in order to tackle the remain-
ing challenges specified in the introduction. Entity aggregation employs linear
combinations that naturally model merging of possibly conflicting statements
coming from sources with varying relevance. For instance, imagine a statement
that dogs eat meat, coming from a highly relevant source, and an opposite, yet
relatively irrelevant statement (vegetarian dogs actually exist, however, the re-
spective rather exceptional sources are presumably less relevant). The sum of
the corresponding representations, weighed by the relative source relevance, will
result in a claim that dogs eat meat with a positive, but slightly lower certainty
(as the knowledge from more relevant source prevails in the aggregation).

Query answering makes use of two notions of entity similarity. Let us imagine
entities of dog and cow, eating and not eating meat, respectively. Evaluation of
a query for meat-eating animals first checks for entities fitting to the context
of the query, i.e., being animals and linked by an “eat” relation to meat. Both
dog and cow entities fit the query within this coarse-grained approximation of
similarity. A finer grained notion of similarity, taking the certainty degrees into
account, can be naturally coined as dual to a distance defined on the set of
entity representations. Utilising this type of similarity results into meat-eating
dog being a much more certain answer to the query than cow, which is an
animal, but does not eat meat. In more complex cases, we also sort the query
results according to their relevance employing a generalised IR measure based
on numbers of outgoing and incoming relations among stored entities.

2.1 Entities and Their Grounding

Entities. First we have to formalise certainty degrees, for which we use R, i.e.,
real numbers. Positive and negative entity relationships are to be associated with
positive and negative certainty values, respectively. 0 is of special importance,
expressing absolute lack of certainty. We do not impose any restrictions on the
range of certainty values, however, particular implementations may restrict the
range to any set isomorphic with R. A convenient variant (used throughout
the paper) is (−1, 1), which makes the certainty values compatible either with
a recent approach to trust representation in RDF [7], or with general fuzzy and
probabilistic formalisms (after transforming negative certainties into negative
fuzzy/probabilistic statements). Openness of the certainty intervals reflects the
fact that nothing is absolutely certain in emergent settings. Implementations
may relax the assumption, though, and use a more traditional [−1, 1] interval.

Moving on to defining entities themselves, let I be a non-empty countable
set of unique entity identifiers (e.g., integer numbers or URIs) and n ∈ N0 a so
called rank of an entity. Rank expresses the maximal arity of relations associated
to an entity. An entity with an identifier c ∈ I and rank n = 0 can be written
down as a tuple (c, d), meaning that c merely exists (or does not exist) with

Emergent Knowledge Processing 459

the certainty d. In practice, more expressive entities with a rank n > 0 are
required, though. An entity E with an identifier c ∈ I and rank n > 0 can be
written down as a set of tuples in the form (c1(c, c2, . . . , cn), d), where cx ∈ I for
x ∈ {1, . . . , n}, d ∈ R. The tuple elements encode a c1 relation between c and
other entities c2, . . . , cn, and the relation’s certainty, respectively. It is required
that {(ci,1, ci,2, . . . , ci,n)|(ci,1(c, ci,2, . . . , ci,n), di) ∈ E} = In, meaning that the
relations iterate through all possible identifier combinations. However, realistic
entities are obviously associated only with a relatively small finite number of
relations with a non-zero certainty. We distinguish a special zero-entity (denoted
by O in the following text), which has all certainty degrees equal to 0, thus
representing an absolutely uncertain object. O can be used namely to represent
relations with an arity lower than n by n-ary ones (filling in the respective
superfluous arguments as shown in Example 1).

Conceiving an entity as a set of relations associated with the entity’s identi-
fier is pretty intuitive. Such a form is, nonetheless, quite awkward for treating
entities as compact objects. A more compact representation is possible using a
direct correspondence between the sets of entity relations and the mathematical
structure of tensor (multi-dimensional generalisation of the scalar, vector and
matrix notions, which are tensors of ranks 0, 1, 2, respectively). Using the tensor
notation, an entity E with an identifier e and rank n can be represented as a tu-
ple E ≡ (e,E), where e ∈ I and E ∈ T (a set of all tensors of rank n on the field
R). A tensor entity representation (e,E) corresponds to a set of relation-degree
tuples {(c1(e, c2, . . . , cn),Ec1,c2,...,cn)|(c1, c2, . . . , cn) ∈ In}, where Ec1,c2,...,cn is
the element of E with the respective indices.

Example 1. Here we illustrate the correspondence between the two entity nota-
tions (rank 2 is used to facilitate the presentation; higher ranks are direct general-
isations of this case). Assuming B standing for http://ex.org, let I = { B#null,
B#type, B#cat, B#animal, B#eatsMeat } abbreviated as I = {⊥, t, c, a, e}, res-
pectively. B#null (or ⊥) is an identifier of the zero entity O. The cat entity E of
rank 2 with an identifier c can be described by the following set of relation-degree
tuples (omitting the ones with zero degrees): {(t(c, a), 0.99), (e(c,⊥), 0.99)}. The
binary type relation says that cats are a type of animal, while the unary eatsMeat
relation says that cats eat meat (both relations have a positive certainty). The
respective tensor representation is E = (c,E), where E is the following matrix:

a ⊥
t 0.99 0
e 0 0.99

.

Note that we omit (also in the following examples) rows and columns with all
degrees equal to zero when they are not required for facilitating the presentation.

Grounding. Let L be a non-empty countable set of language expressions (e.g.,
words upon an alphabet). Entities are grounded in a language via a so called
entity grounding mapping gind : I → (L → R). gind(x) are total functions
that assign certainty values to each element from L. The functions support the

B
http://ex.org
B#null
B#type
B#cat
B#animal
B#eatsMeat
B#null

460 V. Nováček and S. Decker

synonymy and antonymy lexical phenomenons via positive and negative certainty
assignments, respectively. Going the other way around, language expressions are
mapped to entity identifiers via a so called unique entity identifier assignment
glan : L × I → I. The first argument of glan is an expression to be mapped to
an entity identifier, while the second argument is a so called lexical domain –
an entity providing a disambiguation context, catering for correct resolution of
homonymous terms. Eventually, we need to ground the dimensions of the tensor
representation (or argument positions in the relation-degree notation) to concept
identifiers. This is done using a so called dimension grounding mapping gdim :
{1, . . . , n} → I, assigning an entity identifier to each entity index dimension.

Example 2. Assuming B standing for http://ex.org, let us extend the I set
from Example 1 to I = { B#null, B#type, B#cat, B#animal, B#eatsMeat, B#
isVeggie, B#predicate, B#object, B#human, B#gld, B#sissy}. Furthermore,
let L = {null entity, type, is a, cat, animal, pussycat, eatsMeat, isVeggie,
meatEating, predicate, object, human, general lexical domain}. Let us consider
functions μ1, . . . , μ11 assigned by a sample entity grounding gind to the elements
of I (in the order given in the beginning of the example). All the functions as-
sign 0 to most elements of L, with the following exceptions: (i) μ1(x) = 0.99
for x ∈ {null entity}; (ii) μ2(x) = 0.99 for x ∈ {type, is a}; (iii) μ3(x) = 0.99
for x ∈ {cat}, μ3(x) = 0.8 for x ∈ {pussycat}; (iv) μ4(x) = 0.99 for x ∈
{animal}; (v) μ5(x) = 0.99 for x ∈ {eatsMeat, meatEating}, μ5(x) = −0.99 for
x ∈ {isVeggie}; (vi) μ6(x) = 0.99 for x ∈ {isVeggie}, μ6(x) = −0.99 for x ∈
{eatsMeat, meatEating}; (vii) μ7(x) = 0.99 for x ∈ {predicate}; (viii) μ8(x) =
0.99 for x ∈ {object}; (ix) μ9(x) = 0.99 for x ∈ {human}; (x) μ10(x) = 0.99
for x ∈ {general lexical domain}; (xi) μ11(x) = 0.99 for x ∈ {pussycat}. Re-
garding the unique identifier assignment, the only ambiguous lexical expression
is pussycat: glan(pussycat, B#human) = B#sissy, glan(pussycat, B#animal) = B#
cat. All the other lexical expressions have obvious mappings to identifiers un-
der the general lexical domain. Eventually, the dimension mapping gdim can be
defined as gdim(1) = B#predicate, gdim(2) = B#object. This roughly follows
the RDF terminology in the sense that the first and second dimension of the
tensor representation (i.e., the matrix row and column) correspond to predicate
and object identifiers, respectively.

2.2 Knowledge Bases, Aggregation and Query Answering

Knowledge base of rank n is a tuple (E , n, I, L,G). I, L are the sets of entity
identifiers and language expressions as introduced before. E is a set of entities
(e,E) such that e ∈ I and E ∈ T , where T is a set of all tensors of rank n defined
on R. G is a set of particular grounding mappings gind, glan, gdim. Furthermore, a
knowledge base must satisfy certain restrictions. Let ind : E → I, ind((e,E)) = e,
rep : E → T, rep((e,E)) = E be projections mapping entities in a knowledge base
to their identifiers and tensor representations, respectively. Then it is required
that ind(E) = ind(F) if and only if rep(E) = rep(F) for every E,F ∈ E
(consequently, E = F iff ind(E) = ind(F) or rep(E) = rep(F)). Also, the ind

B
http://ex.org
B#null
B#type
B#cat
B#animal
B#eatsMeat
B#isVeggie
B#isVeggie
B#predicate
B#object
B#human
B#gld
B#sissy
B#human
B#sissy
B#animal
B#cat
B#cat
B#predicate
B#object

Emergent Knowledge Processing 461

projection has to be a bijection. Thus, every entity has a unique identifier and
each identifier maps to an entity in a particular knowledge base.

As knowledge is often inherently context-dependent, we have to introduce an
appropriate notion of context in our representation. We do so using so called
contextual scopes, which are non-empty sets S ⊆ In for a knowledge base
(E , n, I, L,G). Briefly put, contextual scopes divide E into classes of entities as-
sociated with particular relations of non-zero certainty in direct correspondence
to the elements of S. Each non-zero entity fits into at least one contextual scope.
We refer to the minimal contextual scope fully covering a non-zero entity E by
scp : E \O → 2In

, scp(E) = {(v1, . . . , vn)|(v1, . . . , vn) ∈ In ∧ rep(E)v1,...,vn �= 0}.
It is simply a set of indices of all non-zero elements in the respective entity rep-
resentation. We define fitness of a non-zero entity E w.r.t. a general contextual
scope S as fit : E \ O × 2In → [0, 1], f it(E,S) = max(|scp(E)∩S|

|S| , |scp(E)∩S|
|scp(E)|).

Maximal fit of 1 is achieved if either all non-zero element indices of the entity
are covered by the contextual scope, or if all elements of the contextual scope
are covered by the entity’s non-zero elements. Minimal fit of 0 is achieved if no
index of any non-zero entity element appears in the contextual scope.

Example 3. In order to illustrate practical treatment of contextual scopes, let
us extend the I set from previous examples to I = { B#null, B#type, B#
cat, B#animal, B#eatsMeat, B#dog, B#feline, B#canine}, abbreviated as I =
{⊥, t, c, a, e, d, f, cn}, respectively. Let E and F be cat and dog entities, such
that

rep(E) =
a f cn ⊥

t 0.99 0.99 0 0
e 0 0 0 0.99

and rep(F) =
a f cn ⊥

t 0.99 0 0.99 0
e 0 0 0 0.99

.

Contextual scopes corresponding to felines and canines can be defined as S1 =
{(t, f)}, S2 = {(t, cn)}, respectively. Similarly, feline and canine animals cor-
respond to contextual scopes S3 = {(t, a), (t, f)}, S4 = {(t, a), (t, cn)}. Consis-
tently with common sense, fit(E,S1) = fit(F, S2) = fit(E,S3) = fit(F, S4) =
1, meaning that cats are in the context of felines and feline animals (similarly
for canine dogs). Also, fit(E,S2) = fit(F, S1) = 0 meaning that cats do not
fit in the context of canines and vice versa for dogs. However, fit(E,S4) =
fit(F, S3) = 0.5, meaning that cats share certain properties (i.e., relations) with
canine animals (i.e., being a type of animal), and vice versa for dogs.

In the following, we will need an auxiliary operator for entity trimming accord-
ing to a contextual scope. It is defined as τ : T × 2In → T, τ(E, S) = F, where
Fi1,...,in = Ei1,...,in for all (i1, . . . , in) ∈ S, otherwise Fi1,...,in = 0. The trimming
cuts all the relations not “belonging” to a contextual scope off an entity, ren-
dering their certainty zero. Apparently, τ(rep(E), S) = rep(E) iff scp(E) ⊆ S.
The operator is to be used when one needs to focus only on particular features
of entities within their computational processing (e.g., aggregation or querying).

B#null
B#type
B#cat
B#cat
B#animal
B#eatsMeat
B#dog
B#feline
B#canine

462 V. Nováček and S. Decker

Entity Aggregation. Let +, · be operations of vector addition and scalar mul-
tiplication defined on T and R (e.g., element-wise tensor addition and scalar
multiplication as a generalisation of the respective matrix operations). Then T
forms a vector space and as such can provide a natural framework for weighed
entity aggregation by means of linear combinations. An aggregation of entities
E1, . . . , Ek with rank n is a function agg : 2T → T operating on the respective
tensor representations:

agg({rep(E1), . . . , rep(Ek)}) =
∑
v∈V

∑
j∈J

rv,jτ(rep(Ej), {v}).

V = {(i1, . . . , in)|∃x.x ∈ {1, . . . , k}∧rep(Ex)i1,...,in �= 0}, J = {x|x ∈ {1, . . . , k}∧
rep(Ex)v1,...,vn �= 0}, such that (v1, . . . , vn) = v. rv,j ∈ R+

0 are weights reflecting
the relevance of the particular summation elements and τ is the entity trimming
operator defined before. The generic aggregation definition flexibly covers intu-
itively applicable aggregation mechanisms, as shown in the following example.

Example 4. Assuming the I set from the previous examples, imagine two differ-
ent dog entity representations rep(E1), rep(E2), such that

rep(E1) =
a ⊥

t 0.99 0
e 0 −0.5

and rep(E2) =
a ⊥

t 0.99 0
e 0 0.99

.

Let the entity representations come from sources with relevance weights 0.2 and
1, respectively (the source conceiving a dog as a kind of vegetarian having much
lower, although non-zero relevance). agg({rep(E1), rep(E2)}) then expands as:

r(a,t),1

a ⊥
t 0.99 0
e 0 0

+r(a,t),2

a ⊥
t 0.99 0
e 0 0

+r(e,⊥),1

a ⊥
t 0 0
e 0 −0.5

+r(e,⊥),2

a ⊥
t 0 0
e 0 0.99

.

Various mechanisms of aggregation can be achieved by setting the r(a,t),1, r(a,t),2,
r(e,⊥),1, r(e,⊥),2 weights accordingly. E.g., r(a,t),1 = r(a,t),2 = 0.5, r(e,⊥),1 =
0.2/1.2, r(e,⊥),2 = 1/1.2 keeps equal elements unchanged, however, computes
weighted mean for conflicting certainty values with the source relevances as par-
ticular weights, thus letting the statement from a more relevant source prevail.

Query Answering. We support soft anytime retrieval of entities from know-
ledge bases according to their similarity to so called primitive queries Q, with
the results sorted by their relevance. Primitive queries are simply entities with
an unknown identifier (i.e., variable). First approximation of the similarity is the
fitness fit(E, scp(Q)). Assuming a knowledge base (E , n, I, L,G), entities E ∈ E
with fit(E, scp(Q)) > 0 are plausible (possibly partial) answers for the query Q.

A more fine grained notion of similarity can be naturally defined using a met-
ric d : T 2 → R on the set T of entity representations. d can be any function
satisfying the following properties for all E,F,G ∈ T : (i) positive definiteness –
d(E,F) ≥ 0, d(E,F) = 0 if and only if E = F; (ii) symmetry – d(E,F) = d(F,E);

Emergent Knowledge Processing 463

(iii) triangle inequality – d(E,G) ≤ d(E,F) + d(F,G). Similarity is conceptu-
ally dual to distance (i.e., metric). Therefore we can define similarity of entities
E,F ∈ E as a a function sim : E2 → (0, 1], sim(E,F) = 1

1+d(rep(E),rep(F)) . The
duality of sim and d is ensured by their apparent inverse proportionality. More-
over, sim has the following intuitively expected properties: sim(E,E) = 1 and
limx→∞ sim(E,F) = 0, where x = d(rep(E), rep(F)).

Apart of similarity of candidate answers to queries, we establish the notion
of entity relevance, which can be effectively used for ranking query results. In-
formally, relevance of an entity E in our framework is given by the number and
certainty of relations that are associated to it, but also by the number and cer-
tainty of relations that reference it. Such a measure tells us how important E is
w.r.t. determining the meaning of other entities. This is directly related to the
hubs and authorities algorithm designed for ranking of web pages [9]. We only
need to generalise it to support n-ary links with arbitrarily weighed relations
and argument positions. The generalised hub measure of entities in a knowledge
base (E , n, I, L,G) is recursively defined as h : E → R+

0 such that:

h(E) =
∑

(u1,...,un)∈scp(E)

|rep(E)u1,...,un |warg(1)wrel(u1)
n∑

k=2

warg(k)a(F),

where F = ind−1(uk) is the entity referenced in the respective relation. Similarly,
the generalised authority measure is defined as a : E → R+

0 , such that:

a(E) =
∑
F∈R

∑
(u1,...,un)∈V

|rep(F)u1,...,un |warg(1)wrel(u1)h(F)
∑
x∈Y

warg(x),

where R = {G|∃G.rep(G)u1,...,un �= 0 ∧
∨n

i=1 ind(E) = ui} is a set of all entities
referencing E, V = {(v1, . . . , vn)|rep(F)v1,...,vn �= 0∧ind(E) ∈ {v1, . . . , vn}} and
Y = {y|y ∈ {u1, . . . , un} ∧ y = ind(E)}. wrel : I → R+

0 and warg : {1, . . . , n} →
R+

0 are weights of particular relations and relation argument positions (generally
including also the “zeroth” argument position, i.e., the relation identifier itself).
Using the generalised measures, we can compute the hub and authority scores for
entities E ∈ E with the iterative algorithm given in [9] (normalising the scores in
each iteration to ensure convergence). The relevance of an entityE is then defined
as rel : E → R+

0 , rel(E) = m(h(E), a(E)), where m : R2 → R is any aggregation
function such that for all x, y ∈ R+

0 , min(x, y) ≤ m(x, y) ≤ max(x, y). Examples
are min,max, or an arithmetic mean.

Having introduced all the necessary notions, we can finally specify the set of
answers to a query Q ∈ E w.r.t. a knowledge base (E , n, I, L,G) as a function
ans : E → 2E such that ans(Q) = {s1A1, . . . , skAk}. A1, . . . , Ak ∈ E and si =
sim(τ(rep(Ai), scp(Q)), rep(Q)) for i ∈ {1, . . . , k}. Note that to simplify the
notation, we assume that sA = s(a,A) = (a, sA) for a multiplication of an
entity (i.e., an identifier-tensor tuple) by a scalar value. It is required that fit(A1,
scp(Q)) ≥ · · · ≥ fit(Ak, scp(Q)) > 0. Moreover, every sequence si1Ai1 , . . . , sil

Ail

such that i1, . . . , il ∈ {1, . . . , k}, i1 ≤ · · · ≤ il and fit(Ai1 , scp(Q)) = · · · =
fit(Ail

, scp(Q)) must be lexicographically ordered according to the respective

464 V. Nováček and S. Decker

(sx, rel(Ax)) measures. Thus, ans(Q) is a set of entities from E multiplied by
their actual similarity to Q, taking only the minimal contextual scope covered by
Q—i.e., scp(Q)—into account, though. The answers also must be ordered first
regarding the fitness measure w.r.t. scp(Q), then according to their similarity to
the query (in the query’s context), and finally according to their relevance.

Example 5. In the following, we employ similarity based on particular metric
d(E,F) = 1

|V |
∑

(u1,...,un)∈V |Eu1,...,un − Fu1,...,un |, where V = scp(E) ∪ scp(F).
The metric simply sums up absolute values of differences across the representa-
tion indices referring to a non-zero value in E or in F, normalising the result by
the size of the summation range. The respective similarity 1

1+d(rep(E),rep(F)) is
essentially a very simple formalisation of the contrast model [14] (more sophis-
ticated alternatives may, e.g., put specific weights on particular elements within
the metric computation to reflect intensity and context in the sense of [14]).

Consider now the particular cat and dog entities E and F as given in Exam-
ple 3 and a query Q asking for canine animals. The set of answers ans(Q) then
equals {A1, A2}, where

rep(Q) =
a cn

t 0.99 0.99
, A1 = (d,

a cn ⊥
t 0.99 0.99 0
e 0 0 0.99

), A2 = (c,
a f ⊥

t 0.497 0.497 0
e 0 0 0.497

).

When aggregating the hub and authority values using the max function and set-
ting all weights to 1, except for the unary e relation weight set to 0, the relevance
of the cat, dog, animal, feline, canine entities is 0.5, 0.5, 0.5, 0.25, 0.25,
respectively. However, apparently we do not need relevance in this simple exam-
ple, as the fitness and similarity are enough to sort the results.

Raw sets of answers might not be particularly interesting for users in practi-
cal query-answering application scenarios. Therefore the implementations of the
proposed framework may present just the corresponding ordered list of the an-
swer entity identifiers (or their appropriate lexical labels). To provide additional
information, such results may be associated with an aggregation of the respective
fitness and similarity values, such as in the following: {dog : 1, cat : 0.5} (using
the corresponding lexical labels and min for the aggregation). Such an answer
contains all the intuitively expected information – dogs are canine animals, while
cats are animals, however, not canines. Therefore cats are present in the result,
too, but with a lower explicit relevance.

3 Particular Implementation and Deployment

We have implemented a proof-of-concept prototype of the theoretical principles
introduced so far, called EUREEKA (may be read as an acronym for Efficient,
Universal, Reasonable and Easy-to-use Emergent Knowledge Acquisition). As
mentioned in Section 1, the development and current deployment of the proto-
type has been motivated by the use case of knowledge-based search in life science
articles. In order to realise this in an economically feasible way, we have to extract

Emergent Knowledge Processing 465

the respective knowledge from the texts, represent it in an appropriate manner,
integrate it and expose it to the users in a robust and meaningful way. To address
these tasks, we have recently delivered CORAAL (cf. http://coraal.deri.ie:
8080/coraal/), which is a comprehensive life science publication search engine
deployed on the data provided by Elsevier within their Grand Challenge con-
test (cf. http://www.elseviergrandchallenge.com/). EUREEKA forms the
engine’s crucial back-end part, catering for the representation, integration and
exposure tasks, thus enabling the knowledge-based search functionalities.

For the initial knowledge extraction in CORAAL, we used a NLP-based
heuristics stemming from [10,16] in order to process chunk-parsed texts into
subject-predicate-object-score quads. The scores were derived from absolute and
document frequencies of subject/object/predicate terms aggregated with sub-
ject/object co-occurrence measures. If a relation’s score is not available for any
reason (e.g., when importing legacy knowledge from crisp resources instead of
extracting it from text), we simply set it to 1 (or −1) in the implementation.
The extracted quads encoded three major types of ontological relations between
concepts: (i) taxonomical—type or same as—relationships; (ii) concept difference
(i.e., negative type relationships); and (iii) “facet” relations derived from verb
frames in the input texts (e.g., has part, involves or occurs in). We imposed a
taxonomy on the latter, considering the head verb of the respective phrase as
a more generic relation (e.g., involves expression of was assumed to be a type
of involves). Also, several artificial relation types were introduced to specify the
semantics of some most frequent relations. Namely, (positive) type was consid-
ered transitive and anti-symmetric, and same as is set transitive and symmetric.
Similarly, part of was assumed transitive and being inverse of has part.

After the initial knowledge extraction in CORAAL, EUREEKA comes into
play in order to integrate the emergent statements, link them to precise domain
thesauri and expose them to users via intuitive approximate querying. The re-
mainder of this section outlines the most important features of the EUREEKA
implementation that enabled its efficient deployment in CORAAL.

3.1 Relational Storage of Knowledge Bases

For low-level storage, we chose to employ a relational database, since it is a
state of the art technology for scalable data management, which in addition
allows for quite straightforward implementation of our framework. Considering
a knowledge base (E , n, I, L,G), we can represent G, E as two relational tables
grounding and entities. The former serves for mapping of natural language
inputs to unique internal identifiers and vice versa, while the latter supports the
entity storage and operations according to Section 2.2.

The grounding table consists of the columns lemma, identifier, scope,
certainty of VARCHAR, INTEGER, INTEGER, FLOAT types, and of indices ls =
(lemma,scope), ic = (identifier,certainty). The sets I, L are given by
the identifier, lemma columns, respectively (we store terms in their lemma-
tised, i.e., canonical lexical form). The table indices allow for a convenient and
efficient implementation of the gind and glan mappings in G via the respective

http://coraal.deri.ie:8080/coraal/
http://coraal.deri.ie:8080/coraal/
http://www.elseviergrandchallenge.com/

466 V. Nováček and S. Decker

SELECT operations. Note that inclusion of certainty into ic allows for direct
access to, e.g., lexical expressions attached to an identifier with maximal positive
or negative certainty. This retrieves an entity’s preferred synonyms or antonyms,
respectively. To save space, we use integer entity identifiers, however, these can be
directly mapped to a respective URI scheme if required by an application. In the
current deployment of EUREEKA, the grounding table is filled in according to
the terms (and possibly their synonyms) coming from two sources: (i) EMTREE
and NCI life science thesauri (cf. http://www.embase.com/emtree/, http://
nciterms.nci.nih.gov, respectively); (ii) statements extracted from the Else-
vier life science articles. The only lexical domains we currently distinguish are
those corresponding to auxiliary relation and generic (i.e., non-relation) entities.

The entities table stores particular entities. These can be expressed as sets
of relations associated with the respective certainty, as introduced in the begin-
ning of Section 2. Such a notation can be directly transformed into a set of rows
in a relational database table. However, a direct transformation of n-ary rela-
tions may be inadequate if n is not set firmly and/or if we have to store many
relations with arities lower than n. These situations lead either to problems with
maintenance, or to wasted space in the table.

Nevertheless, we process subject-predicate-object triples, all of which have a
provenance (either an article, or a domain thesaurus), so we can explicitly rep-
resent the respective ternary relations in the entities table without wasting
any space. For the representation of possible additional relation arities (such as
location or other types of context), we associate each row in the entities table
with a unique statement identifier stid. Then we can represent, e.g., quaternary
relations in the form bindsTo(drugX,proteinY,docID,bindingSiteZ) as a ternary
relation at(stidi,bindingSiteZ,docID), assuming at grounding the fourth “loca-
tion” argument. stidi is a statement identifier of bindsTo(drugX,proteinY,docID).
This procedure can be obviously generalised to arbitrary arities.

Following the design considerations, the entities table consists of columns
stid, predicate, subject, object, provenance, certainty. All columns are
INTEGER, except for the latter one, which is FLOAT. Provenance is modelled as
a special entity linked to an article ID, title, text, etc. Besides the primary key
(stid), indices on (subject,predicate,object), (subject,object), (ob-
ject,predicate), (predicate,object) are defined. Explicit querying for pro-
venance is not necessary in our use case (we only need to retrieve provenance
as a function of particular statements), therefore we do not maintain respective
indices. An entity E ∈ E directly corresponds to rows with subject equal to
ind(E) and to rows with subject referencing the respective stid values. The
corresponding tensor entity representation rep(E) can be directly constructed
from the content of the rows as a multidimensional array of floats, with the
necessary tensor-based operations implemented on the array data structure.

Regarding the particular implementation of entity ranking, we employ warg =
1 for predicate, object and warg = 0 for all other arguments (results in rather
traditional binary hub and authority score computation). The relation weighing
function makes use of the frequency of particular relation instances (i.e., number

http://www.embase.com/emtree/
http://nciterms.nci.nih.gov
http://nciterms.nci.nih.gov

Emergent Knowledge Processing 467

of statements having the relation identifier as a predicate): wrel(r) = 1
ln(e+f(r)−L)

if f(r) ≥ L, wrel(r) = 0 otherwise, where f(r) is the absolute frequency of
r. Relations with frequency below the limit are not taken into account at all.
The heuristic weighing is designed to reduce the influence of very frequent, but
rather generic relations (e.g., type), in favour of less frequent, but potentially
significant ones (e.g., involved in). The L limit (set to 25 in the current imple-
mentation) serves for cutting accidental noise off the result. For the aggregation
of the h(E), a(E) hub and authority scores into rel(E), we use the arithmetic
mean.

3.2 Aggregating and Accessing the Emergent Knowledge

EUREEKA can smoothly merge facts extracted from different resources. This is
done via decomposition of each entity into entities containing subject-predicate-
object statements with equal provenance. The decomposed entities with same
identifiers are merged using the agg operation into single entities with respec-
tive compound provenances. agg is implemented as weighted arithmetic mean
(similarly to Example 4), with relevances 1, 0.2 for the thesauri and article pro-
venance, respectively. This ensures significantly higher relevance of the manually
designed thesauri in case of conflict with the automatically extracted knowledge.

In order to access the aggregated emergent knowledge, we implemented a
service evaluating simple conjunctive queries with negation (for the query lan-
guage specification, see http://smile.deri.ie/projects/egc/quickstart).
The query evaluation and presentation of the answers is implemented essen-
tially following Example 51. In addition to the ranking of the answer entities,
statements associated to an entity are sorted according to the relevance of their
arguments in descending order. Example queries and selected top answer state-
ments are (answer certainties in brackets): Q: ? : type : breast cancer � cysto-
sarcoma phylloides TYPE breast cancer (1); Q: rapid antigen testing : part
of : ? AND ? : type : clinical study � dicom study USE protein info (0.8),
initial study INVOLVED patients (0.9). The examples abstract from the re-
sult provenance, however, full-fledged presentation of answers to the above or
any other queries can be tried live with CORAAL at http://coraal.deri.ie:
8080/coraal/, using the Knowledge search tab or the guided query builder.

Currently the main means for accessing the EUREEKA deployment is the intu-
itive user-centric front-end in CORAAL. Applications may get RDF correspond-
ing to the results presented in CORAAL from its Exhibit presentation layer,
however, this is rather awkward. Therefore we are working on an API allowing for
import and processing of arbitrary texts and RDF data in the N3 notation
1 The translation from the query language into entity representations is quite straight-

forward – positive and negative crisp query statements form triple relations that are
associated with maximal and minimal certainty values, respectively. Statements with
variables in the “object” position are inverted, so that the query can be translated
as a single entity. The answer candidates and their fitness measures are then com-
puted on the top of (possibly nested for inverted statements) SELECT queries on the
entities table, with WHERE conditions corresponding to the query statements.

http://smile.deri.ie/projects/egc/quickstart
http://coraal.deri.ie:8080/coraal/
http://coraal.deri.ie:8080/coraal/

468 V. Nováček and S. Decker

(cf. http://www.w3.org/DesignIssues/Notation3). The processed data are
to be exported as N3 RDF, with the certainties and provenance represented ac-
cording to the W3C note at http://www.w3.org/TR/swbp-n-aryRelations/

4 Evaluation with Sample Users

In the CORAAL deployment, EUREEKA provides access to more than 15 mil-
lion statements about ca. 350, 000 unique entities that are referred to by about
620, 000 natural language terms. The knowledge base is covering ca. 11, 700
Elsevier articles mostly related to cancer research and treatment. With an as-
sistance of a three-member domain expert evaluation committee, we assessed
issues deemed to be most important by the committee regarding applicability
of the framework: (i) ease of use, real-time response; (ii) quality of answers to
queries (users want to have as many good results entailed by the articles and
thesauri as possible); (iii) appropriateness of the result ranking (users want to
find the relevant results on the top). Note that we do not discuss evaluation of
the document retrieval here, since it is related to the CORAAL search engine as
such, but not to the main contribution of this paper (presentation of the general
emergent knowledge processing framework).

Ease of use was addressed by the simple queries close to natural language,
guided query builder and faceted browsing (supported by Exhibit, cf. http://
simile-widgets.org/exhibit/), all offered within the EUREEKA front-end in
CORAAL. The response is actually not an issue – results are presented within
units of seconds in CORAAL (up to 90% of the lag owing to the HTML ren-
dering overhead, not to the query processing itself). The two remaining issues
were mapped to these tasks: (i) assessing correctness (i.e., precision) and com-
pleteness (i.e., recall) of variable instances provided within answers to significant
queries; (ii) assessing number of relevant statements as a function of their rank
in answers. The latter task was evaluated using significant entities as queries
(such results in effect provide statements assumed to be related to the query
entities based on the fitness, similarity and relevance in direct correspondence
to raw results in Example 5).The significance of queries and entities to be used
for the evaluation was determined as follows. First we picked 100 random entity
names and generated 100 random queries based on the extracted content. We let
the evaluation committee assess the significance of respective concept and state-
ment queries by 1-5 marks (best to worst). We used the following best-scoring
queries—Q1 : ? : type : breast cancer; Q2 : ? : part of : immunization; Q3 : ? :
NOT type : chronic neutrophilic leukemia; Q4 : rapid antigen testing : part of : ?
AND ? : type : clinical study; Q5 : ? : as : complementary method AND ? : NOT
type : polymerase chain reaction—and entities—E1 : myelodysplastic syndrome;
E2 : p53; E3 : BAC clones; E4 : primary cilia; E5 : colorectal cancer.

For a base-line comparison, we employed the open source edition of Open-
Link Virtuoso (cf. http://tinyurl.com/cf8ga2), a triple store with database

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TR/swbp-n-aryRelations/
http://simile-widgets.org/exhibit/
http://simile-widgets.org/exhibit/
http://tinyurl.com/cf8ga2

Emergent Knowledge Processing 469

Table 1. Summary of the results

Approach Correctness and completeness Relevance per answer ranking
P R F Pnn Rnn Fnn 1-10 11-50 51-100 101-200 201-. . .

EUREEKA 0.719 0.583 0.586 0.532 0.305 0.310 0.780 0.668 0.430 0.227 0.091
BASE 0.169 0.053 0.067 0.281 0.088 0.111 0.300 0.229 0.293 0.172 0.188

back-end supporting rule-based RDFS inference and querying2. The content fed
to EUREEKA was transformed to crisp RDFS, omitting the unsupported neg-
ative statements and provenance arguments before import to the base-line. EU-
REEKA queries were mapped to statements with unique entity identifiers as per
the grounding table and then translated to respective SPARQL equivalents to
be executed using the base-line.

The evaluation results are summed up in Table 1. P , R, F columns contain
precision, recall and F-measure (∼ 2(PR)

P+R), respectively, averaged across the re-
sults of all evaluated queries. Xnn, X ∈ {P,R, F} relate to average results of
non-negative queries only (Q1, Q2, Q4). Particular P,R values were computed
as P = cr

ar
, R = cr

ca
, where cr, ar is a number of relevant and all answer entities

returned, respectively. ca is the number of all entities relevant to the query, as en-
tailed by the documents in the CORAAL corpus (determined by the evaluation
committee by means of manual analysis of full-text search results related to the
entities occurring in the evaluated queries). The columns in the right hand part
of Table 1 contain average values sr

sz , where sr, sz is the number of relevant and
all statements in a given ranking range, respectively. The average goes across
results corresponding to E1−5 query entities. The relevance was determined by
unequivocal agreement of the evaluation committee. Results with certainty lower
than 0.5 were disregarded (i.e., a statement was considered as a false positive iff
it was deemed irrelevant and its absolute certainty value was 0.5 or more).

Regarding correctness and completeness, our approach offers almost three-
times better results in terms of F-measure than the base-line. That holds for the
negation-free queries supported by both frameworks. Obviously, the difference is
even bigger for generic queries having no base-line results in two out of five cases.
The increase in EUREEKA’s precision was directly due to its two novel features
unsupported by the base-line: (i) relevance-based aggregation of the initially
extracted input; (ii) explicitly presented certainty of the results allowing for
disregarding presumably uncertain ones. The increase in recall was caused by
the approximate query evaluation that included also some correct results from
answers with fitness lower than 1 (similar behaviour is not directly supported

2 Alternatives [13,7] capable of either arbitrary meta-knowledge, or explicit trust rep-
resentation in RDF were considered, too. However, the respective implementations
allow neither for soft aggregation of emergent entities, nor for inherent exploitation
of certainty in approximate answering of queries close to natural language. They can
only expose the certainty and/or meta-knowledge via extended SPARQL queries.
Therefore their capabilities are essentially equal to the “plain” Virtuoso RDF store
base-line regarding our use case, while Virtuoso handles the relatively large amount
of data more efficiently, presumably due to more mature data management engine.

470 V. Nováček and S. Decker

in the base-line). The relevance of EUREEKA answers is a clearly decreasing
function of the ranking. However, no similar pattern can be seen for the base-line.

The absolute EUREEKA results may still be considered rather poor
(F-measure around 0.3), but the evaluation committee unequivocally consid-
ered the ability of EUREEKA to perform purely automatically as an acceptable
trade-off for the presence of some noise in the not-entirely-complete results. In
conclusion, the evaluation with sample users confirmed that the innovative prin-
ciples of the proposed approach lead to a better applicability in the current use
case, when compared to a base-line state of the art solution.

5 Related Work

An implemented approach [4] generalising Description Logics in order to sup-
port vagueness as one form of uncertainty exists, however, it does not allow
for straightforward representation of contextual features. Moreover, logics-based
approaches are usually not able to infer many meaningful conclusions from the
rather sparse and noisy emergent inputs [3], which renders the querying in our
use case practically unachievable if based on the logical inference.

The works [13,7] propose generic framework for representing contextual fea-
tures like certainty or provenance in RDF. These features are considered rather
as “annotations” of RDF triples and thus can be merely queried for. It is im-
possible to use the certainty as a first class citizen for robust entity integration
and/or query answering, unless one builds an ad hoc application tackling that
on the top of either [13], or [7]. Similarity-based query post-processing with im-
precision support is tackled by [8], however, the suggested iSPARQL framework
handles uncertainty merely concerning query result filtering, disregarding a pri-
ori imprecise knowledge. This makes it rather inapplicable both to partial query
evaluation and processing of the emergent uncertain knowledge before the ac-
tual querying. The work [11] extends the crisp RDF semantics by fuzzy degrees,
but supports neither robust querying nor integration capabilities, nor context
representation. Integration of RDF ontologies based on graph theory is tackled
in [15], but incorporation of certainty degrees and contextual features into the
presented method is non-trivial, since [15] is based on crisp binary relations.

Papers [1,12] research techniques for ranking ontology concepts and any-
time RDF query answering, respectively. The former approach is applicable for
relevance-based sorting of query results, while the latter is apt for general robust,
approximate and scalable query answering. However, both [1,12] lack explicit
support for uncertainty and contextual features.

All the approaches discussed so far also neglect as clearly defined and universal
interface between the lexical and computational aspects of semantics as proposed
in our approach. The Textrunner framework [2] provides an expressive search
service based on natural language, which is very similar to the deployment of our
framework in CORAAL. However, the framework provides neither for extracted
knowledge integration, nor for complex (i.e., conjunctive or negative) querying,
lacking an appropriate underlying computational semantics model.

Emergent Knowledge Processing 471

Conceptual spaces [6], a geometrical formalisation of meaning, shares some
similarities with our approach, namely uncertainty-aware, non-logical nature of
representation, and multi-dimensionality of concept features. However, exploita-
tion of emergent relational statements is not particularly straightforward within
the framework, since it is tailored primarily to non-symbolic connectionist input.
Moreover, there is neither a standardised implementation, nor a universal and
intuitively applicable querying mechanism available for conceptual spaces.

6 Conclusions and Future Work

We have introduced a framework that addresses all the challenges specified in
Section 1 on a well-founded basis. The framework has been implemented in the
form of a respective EUREEKA prototype. We applied and evaluated the pro-
totype within a practical use case of knowledge-based life science publication
search. Our approach is novel and promising regarding practical emergent kno-
wledge processing, which has been proven not only by the results presented here,
but also by our successful participation in the Elsevier Grand Challenge contest
(cf. http://www.elseviergrandchallenge.com/).

In the near future, we are going to extend the user-centric query language
by contexts and release the extended EUREEKA implementation as an open
source module. In longer term, we have to investigate import of more complex
ontologies into EUREEKA – so far we have covered only rather simple RDFS
semantics of life science thesauri. Last but not least, we intend to provide means
for distributed implementation of the principles introduced here in order to scale
the framework up to arbitrarily large data.

Acknowledgments. We have been supported by the ‘Ĺıon II’ project funded
by SFI under Grant No. SFI/08/CE/I1380. Deployment of EUREEKA within
CORAAL would not be possible without the great work of Tudor Groza and
much appreciated senior support of Siegfried Handschuh. Finally, we are very
grateful to our evaluators and testers: Doug Foxvog, Peter Gréll, MD, Miloš
Holánek, MD, Matthias Samwald, Holger Stenzhorn and Jǐŕı Vyskočil, MD.

References

1. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 1–15. Springer, Heidelberg
(2006)

2. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation ex-
traction. In: Proceedings of ACL 2008: HLT, pp. 28–36. ACL (2008)

3. Bechhofer, S., et al.: Tackling the ontology acquisition bottleneck: An experiment
in ontology re-engineering (April 2003), http://tinyurl.com/96w7ms

4. Bobillo, F., Straccia, U.: FuzzyDL: An expressive fuzzy description logic reasoner.
In: Proceedings of FUZZ 2008 (2008)

http://www.elseviergrandchallenge.com/
http://tinyurl.com/96w7ms

472 V. Nováček and S. Decker

5. Buitelaar, P., Cimiano, P.: Ontology Learning and Population. IOS Press,
Amsterdam (2008)

6. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press,
Cambridge (2000)

7. Hartig, O.: Querying Trust in RDF Data with tSPARQL. In: Aroyo, L.,
Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R.,
Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 5–20.
Springer, Heidelberg (2009)

8. Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of isparql: A virtual triple
approach for similarity-based semantic web tasks. In: ISWC/ASWC (2007)

9. Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the
ACM 46(5) (1999)

10. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings
of ECAI 2000. IOS Press, Amsterdam (2000)

11. Mazzieri, M.: A fuzzy RDF semantics to represent trust metadata. In: Proceedings
of SWAP 2004 (2004)

12. Oren, E., Guéret, C., Schlobach, S.: Anytime query answering in RDF through
evolutionary algorithms. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 98–113. Springer, Heidelberg (2008)

13. Schueler, B., Sizov, S., Staab, S., Tran, D.T.: Querying for meta knowledge. In:
Proceedings of WWW 2008. ACM Press, New York (2008)

14. Tversky, A.: Features of similarity. Psychological Review 84(2), 327–352 (1977)
15. Udrea, O., Deng, Y., Ruckhaus, E., Subrahmanian, V.S.: A graph theoretical foun-

dation for integrating RDF ontologies. In: Proceedings of AAAI 2005 (2005)
16. Voelker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In:

Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189.
Springer, Heidelberg (2007)

On Detecting High-Level Changes in RDF/S KBs

Vicky Papavassiliou1,2, Giorgos Flouris1, Irini Fundulaki1, Dimitris Kotzinos1,3,
and Vassilis Christophides1,2

1FORTH-ICS, Greece
2 University of Crete, Greece

3 TEI of Serres, Greece
{papavas,fgeo,fundul,kotzino,christop}@ics.forth.gr

Abstract. An increasing number of scientific communities rely on Semantic
Web ontologies to share and interpret data within and across research domains.
These common knowledge representation resources are usually developed and
maintained manually and essentially co-evolve along with experimental evidence
produced by scientists worldwide. Detecting automatically the differences be-
tween (two) versions of the same ontology in order to store or visualize their
deltas is a challenging task for e-science. In this paper, we focus on languages
allowing the formulation of concise and intuitive deltas, which are expressive
enough to describe unambiguously any possible change and that can be effec-
tively and efficiently detected. We propose a specific language that provably ex-
hibits those characteristics and provide a change detection algorithm which is
sound and complete with respect to the proposed language. Finally, we provide a
promising experimental evaluation of our framework using real ontologies from
the cultural and bioinformatics domains.

1 Introduction

An increasing number of scientific communities rely on Semantic Web ontologies to
share and interpret data within and across research domains (e.g., Bioinformatics or
Cultural Informatics1). These community ontologies are usually developed and main-
tained manually while essentially co-evolve along with experimental evidence produced
by scientists worldwide. Managing the differences (deltas) of ontology versions has
been proved to be an effective and efficient method in order to synchronize them [5]
or to explain the evolution history of a given ontology [13]. In this paper, we are in-
terested in automatically detecting both schema and data changes occurring between
asynchronously produced ontology versions.

Unless they are assisted by collaborative ontology development tools [8,9], ontology
editors are rarely able or willing to systematically record the changes performed to
obtain an ontology version. In particular, when there is no central authority responsible
for ontology curation, manually created deltas are often absent, incomplete, or even
erroneous [22]. Existing ontology diff tools, such as PromptDiff [14], SemVersion [23]
and others [24] aim to satisfy this need. These tools are essentially based on a language

1 www.geneontology.org, cidoc.ics.forth.gr

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 473–488, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

474 V. Papavassiliou et al.

of changes, which describes the semantics of the different change operations that the
underlying algorithm understands and detects.

In its simplest form, a language of changes consists of only two low-level opera-
tions, Add(x) and Delete(x), which determine individual constructs (e.g., triples) that
were added or deleted [23,24]. In [10,14,15,17,19,22], high-level change operations are
employed, which describe more complex updates, as for instance the insertion of an en-
tire subsumption hierarchy. A high-level language is preferable than a low-level one, as
it is more intuitive, concise, closer to the intentions of the ontology editors and captures
more accurately the semantics of a change [10,21].

However, detecting high-level change operations introduces a number of issues. As
the detectable changes get more complicated, so does the detection algorithm; compli-
cated changes involve complicated detection procedures which may be inefficient, or
based on matchers [6] and other heuristic-based techniques [10] that make it difficult
to provide any formal guarantees on the detection properties. Another problem stems
from the fact that it is impossible to define a complete list of high-level changes [10],
so there is no agreed “standard” set of operations that one could be based on. Moreover,
it is difficult to specify a language of changes that will be both high-level and able to
handle all types of modifications (even fine-grained ones) upon an ontology.

The main contributions of our work are:

– the introduction of a framework for defining changes and of a formal language of
changes for RDF/S ontologies [2,12] which considers operations in both data and
schema and satisfies several desirable properties;

– the design of an efficient change detection algorithm which is sound and complete
with respect to the proposed language;

– the experimental evaluation of our framework using real ontologies from the cul-
tural (CIDOC [4]) and biological (GO [7]) domains.

The paper is organized as follows: Section 2 presents a motivating example that will
be used for visualization purposes throughout the paper. In Section 3, we introduce the
basic notions of RDF [12] and RDFS [2] as well as our language of high-level changes
and show that the language and the proposed detection algorithm satisfy several desir-
able properties. Section 4 describes changes which require heuristics and matchers in
order to be detected, thus extending our basic framework to include operations that are
interesting in practice. Section 5 presents our experimental findings on real ontologies
and section 6 discusses related work. We conclude in Section 7.

2 Motivating Example

In Figure 1 an example inspired from the CIDOC Conceptual Reference Model [4] is
depicted; CIDOC is a core ontology intended to facilitate the integration, mediation and
interchange of heterogeneous cultural heritage information. Table 1 shows the added
and deleted triples (the low-level delta) as well as the high-level change operations
that our approach will detect in this example. The table makes clear that even though
the low-level delta contains all the changes that have been performed, it is not really
useful as it captures the syntactical manipulations that led to the change, rather than

On Detecting High-Level Changes in RDF/S KBs 475

Fig. 1. Motivating Example

Table 1. Detected Low-level and High-level Changes (From Figure 1)

Added Triples (Low-Level Delta) Deleted Triples (Low-Level Delta) Detected Changes (High-Level Delta)

(participants, domain, Event) (participants, domain, Onset) Generalize Domain(participants, Onset, Event)

(Birth, subClassOf, Event) (Birth, subClassOf, Onset) Pull up Class(Birth, Onset, Event)

– (Period, type, class)
Delete Class(Period, ∅, {Event}, ∅, ∅, ∅, ∅)

– (Event, subClassOf, Period)

(Stuff, subClassOf, Persistent) (Stuff, subClassOf, Existing)

Rename Class(Existing, Persistent)(started on, domain, Persistent) (started on, domain, Existing)

(Persistent, type, class) (Existing, type, class)

the intentions of the editor. Our work is motivated by the belief that the “aggregation”
of several low-level changes into more coarse-grained, concise and intuitive high-level
changes (third column of Table 1) would lead to more useful deltas.

For instance, consider the change in the domain of property participants from
Onset to Event (Figure 1). The low-level delta reports two “changes”, namely the
deletion and the insertion of a domain for the property whereas the reported high-level
operation Generalize Domain combines them into one, capturing also the fact that the
old domain is a subclass of the new domain (by exploiting semantical information in
the two versions). A similar case appears in the change of the position of Birth in the
subsumption hierarchy which our framework reports as Pull Up Class and in the dele-
tion of class Period where the deletion of all edges originating from, or ending in, the
deleted class are combined in a single operation. Regarding the latter, only a subclass
relation is deleted (Event), whereas other relations, such as superclasses, supertypes,
subtypes, comments and labels are absent (denoted by empty sets in Table 1). In total,
only 4 high-level changes will be reported as opposed to 12 low-level ones.

Apart from being more concise, the reported high-level changes are also more intu-
itive. For example, the Generalize Domain operation provides the additional informa-
tion that the new domain is a superclass of the old. This may be useful for the evaluation
and understanding of the change performed. For example, if we know only that a do-
main changed we cannot presume anything about the validity of the existing data, but
if we know that the domain changed to a superclass we can assume, according to the
RDF/S specification, that validity is not violated [10].

started_on

Period

Event

Onset

Actor

Existing

Stuff Birth

participants

(a) V1

participants

started_on

Event

Onset

Actor

Persistent

Stuff

Birth

subClassOf property

(b) V2

476 V. Papavassiliou et al.

Another interesting example is the Rename Class operation, which is reported in-
stead of the deletion of class Existing and the subsequent addition of Persistent.
Unlike the changes discussed so far, the detection of Rename (as well as other opera-
tions, such as Merge and Split) requires the use of a matcher that would identify the two
concepts (Existing and Persistent) to be the same entity using heuristics.

Note also that all the triples of the low-level delta (in Table 1) are associated with
one, and only one, high-level change. This allows the partition of low-level changes
into well-defined high-level changes, in a unique way. This property guarantees that the
detection algorithm will be able to handle all possible low-level deltas in a deterministic
manner, i.e., that any set of low-level changes between two versions would be associated
with one, and only one, set of high-level changes. The latter requirement calls for a
careful definition of the change operations and is not directly related to the detection
algorithm per se. Thus, we claim that the detection algorithm should be based on the
defined language of changes, instead of the other way around.

Defining a language with the above properties is a challenging task, because it re-
quires establishing a tradeoff between partly conflicting requirements. On the one hand,
coarse-grained operations are necessary in order to achieve concise and intuitive deltas.
On the other, fine-grained operations are necessary in order to capture subtle differences
between a pair of versions. The existence of both fine-grained and coarse-grained oper-
ations in the language may allow the association of the same set of low-level changes
with several different sets of high-level ones, thus jeopardizing determinism. In the next
section, we will describe a language and a detection algorithm that avoids these prob-
lems and provably satisfies the above properties, while being efficient.

3 Change Detection Framework, Language and Algorithm

3.1 Formal Definitions

The representation of knowledge in RDF [12] is based on triples of the form (subject,
predicate, object). Assuming two disjoint and infinite sets U, L, denoting the URIs and
literals respectively, T = U × U × (U ∪ L) is the set of all triples. An RDF Graph
V is defined as a set of triples, i.e., V ⊆ T . RDFS [2] introduces some built-in classes
(class, property) which are used to determine the type of each resource. Following the
approach of [20], we assume that each resource is associated with one type determined
by the triples that the resource participates in. The typing mechanism allows us to con-
centrate on nodes of RDF Graphs, rather than triples, which is closer to ontology cura-
tors’ perception and useful for defining intuitive high-level changes. RDFS [2] provides
also inference semantics, which is of two types, namely structural inference (provided
mainly by the transitivity of subsumption relations) and type inference (provided by the
typing system, e.g., if p is a property, the triple (p, type, property) can be inferred). The
RDF Graph containing all triples that are either explicit or can be inferred from explicit
triples in an RDF Graph V (using both types of inference), is called the closure of V
and is denoted by Cl(V). An RDF/S Knowledge Base (RDF/S KB) V is an RDF Graph
which is closed with respect to type inference, i.e., it contains all the triples that can be
inferred from V using type inference.

On Detecting High-Level Changes in RDF/S KBs 477

For a pair of RDF/S KBs (V1, V2 ⊆ T), we define their low-level delta in a manner
similar to symmetric difference:

Definition 1. Let V1, V2 be two RDF/S KBs. The low-level delta between V1, V2, de-
noted by Δ(V1, V2) (or simply Δ) is a pair of sets of triples defined as: Δ(V1, V2) =
〈V2 \ V1, V1 \ V2〉. For brevity, we will use the notation Δ1, Δ2 for V2 \ V1, V1 \ V2
respectively (Δ1 ⊆ T , Δ2 ⊆ T).

Note thatΔ1 corresponds to the triples added in V1 to get V2, andΔ2 corresponds to the
triples deleted from V1 to get V2. The low-level delta alone may not be enough to fully
capture the intuition behind a change: sometimes we need to consider conceptual infor-
mation that remained unchanged (see, e.g., the change of the domain of participants in
Figure 1 and the subsequent analysis in Section 2). Therefore, the definition of the de-
tection semantics should consist of the triple(s) that must exist in the low-level delta, as
well as of a set of conditions that must hold (in V1 and/or V2) in order for the detection
to take place:

Definition 2. A change c is defined as a triple 〈δ1, δ2, φ〉, where:

– δ1 ⊆ T : required added triples. Corresponds to the triples that should be in V2 but
not in V1 (i.e., in Δ1), in order for c to be detected.

– δ2 ⊆ T : required deleted triples. Corresponds to the triples that should be in V1
but not in V2 (i.e., in Δ2), in order for c to be detected.

– φ: required conditions. Corresponds to the conditions that should be true in order
for c to be detected. A condition is a logical formula consisting of atoms of the form
t ∈ V or t /∈ V , where t ∈ T and V is of the form Vi or Cl(Vi) for i ∈ {1, 2}.

For simplicity, we will denote by δ1(c) (δ2(c)) the required added (deleted) triples of
a change c, and by φ(c) the required conditions of c. Tables 2, 3 show the definition
of some high-level changes. The complete list of defined changes can be found at [16].
We restrict our attention to changes for which δ1 ∪ δ2 �= ∅ and δ1 ∩ δ2 = ∅. The first
condition guarantees that at least something must be in Δ1 or Δ2 for a change to be
detected. The second condition guarantees that no change would require the addition
and deletion of the same triple to happen at the same time.

As discussed in Section 2, both fine-grained and coarse-grained high-level changes
are necessary in order to support determinism, conciseness and intuitiveness. For this
reason, we follow a common approach in the literature [10,17,21] and classify high-
level changes into basic and composite. Basic changes are fine-grained and describe a
change in one node or edge of the RDF/S KB taking into account RDF/S semantics. On
the other hand, composite changes are coarse-grained and closer to the user’s intuition,
as they describe, in a concise way, changes affecting several nodes and/or edges of the
RDF/S KB. The introduction of the two levels should be done carefully, as it may cause
problems with determinism. For instance, in the motivating example (Figure 1 and Ta-
ble 1), the deleted triple (participants, domain, Onset) could be associated with the
basic change Delete Domain(participants,Onset), as well as with the composite change
Generalize Domain(participants,Onset,Event) (see also Tables 2, 3). This double asso-
ciation would jeopardize determinism, because the same low-level delta would corre-
spond to two different high-level deltas. To avoid this problem, we define two different

478 V. Papavassiliou et al.

Table 2. Formal Definition of some Basic Changes

Change Delete Superclass(x,y) Add Property Instance(x1, x2,y) Delete Domain(x,y)
Intuition IsA between x, y is deleted Add property instance (x1, y, x2) Domain y of property x is deleted
δ1 ∅ {(x1, y, x2)} ∅
δ2 {(x, subClassOf, y)} ∅ {(x, domain, y)}
φ (x, type, class) ∈ Cl(V1) (y, type, property) ∈ Cl(V2) (x, type, property) ∈ Cl(V1)

Table 3. Formal Definition of some Composite Changes

Change Generalize Domain(x,y,z) Change Domain(x,y,z) Reclassify Individual Higher(x,Y,Z)
Intuition Domain of property x changes from

y to a superclass z
Domain of property x changes from
y to a non-subclass/superclass z

Individual x is reclassified from
class(es) Y to superclass(es) Z

δ1 {(x, domain, z)} {(x, domain, z)} {(x, type, z)|z ∈ Z}
δ2 {(x, domain, y)} {(x, domain, y)} {(x, type, y)|y ∈ Y }
φ (x, type, property) ∈ Cl(V1)∧

(x, type, property) ∈ Cl(V2)∧
(y, subClassOf, z) ∈ Cl(V1)∧
(y, subClassOf, z) ∈ Cl(V2)

(x, type, property) ∈ Cl(V1)∧
(x, type, property) ∈ Cl(V2)∧
((y, subClassOf, z) /∈ Cl(V1)∨
(y, subClassOf, z) /∈ Cl(V2))∧
((z, subClassOf, y) /∈ Cl(V1)∨
(z, subClassOf, y) /∈ Cl(V2))

(x, type, resource)∈ Cl(V1)∧
(x, type, resource)∈ Cl(V2)∧
∀y ∈ Y,∀z ∈ Z :
(y, subClassOf, z)∈ Cl(V1)∧
(y, subClassOf, z) ∈ Cl(V2)

notions, detectability and initial detectability, and postulate that the detection of com-
posite changes takes precedence over the detection of basic ones.

Definition 3. Consider two RDF/S KBs V1, V2, their respectiveΔ(V1, V2) and a change
c. Then, c is initially detectable iff δi(c) ⊆ Δi, i ∈ {1, 2}, and φ(c) is true.
If c is a composite change, then c is detectable iff it is initially detectable.
If c is a basic change, then c is detectable iff it is initially detectable and there is no
initially detectable composite change (say c′) for which δi(c) ⊆ δi(c′), i ∈ {1, 2} and
φ(c′) � φ(c).

In our running example, Change Domain(participants,Onset,Event) is not initially de-
tectable (thus, not detectable) because its conditions are not true (specifically, the part:
(Onset, subClassOf, Event) /∈ Cl(V1)∨ (Onset, subClassOf, Event) /∈ Cl(V2)). On
the other hand, Generalize Domain(participants,Onset,Event) is initially detectable;
given that it is a composite change, it is also detectable. Finally, the basic change
Delete Domain(participants,Onset,Event) is initially detectable, but not detectable (be-
cause Generalize Domain(participants,Onset,Event) is initially detectable).

So far, we were only concerned with detection semantics of changes. However,
changes can also be applied upon RDF/S KBs, where the application and detection se-
mantics of a set of changes should be consistent. To be more precise, given two RDF/S
KBs V1, V2, the application (upon V1) of the delta computed between them should give
V2, irrespective of the order of application of the changes [24]. Therefore, we also need
to define the application semantics of changes:

Definition 4. Consider an RDF/S KB V and a change c. The application of c upon V ,
denoted by V • c is defined as: V • c = (V ∪ δ1(c)) \ δ2(c).
As an example, the application of Generalize Domain(participants,Onset,Event) would
lead to the addition of the triple (participants, domain, Event) and the deletion of
(participants, domain, Onset).

On Detecting High-Level Changes in RDF/S KBs 479

3.2 Formal Results on the Proposed Language of Changes

Our framework was used to define L, a specific language of changes (some of which
are shown in Tables 2, 3) that satisfies several interesting properties. For a full definition
of L and the proofs of the described properties, see [16].

First of all, L should conform to the property of Completeness by capturing any pos-
sible change, so that the detection algorithm can always process the input and return a
delta. Moreover, the language should satisfy the property of Non-ambiguity by associ-
ating each low-level change with one, and only one, high-level change, and each set of
low-level changes with one, and only one, set of high-level ones. These two properties
are needed in order to guarantee that L supports a deterministic detection process.

Theorem 1. Consider two RDF/S KBs V1, V2, their respective Δ(V1, V2) = 〈Δ1, Δ2〉
and the set C = {c ∈ L|c : detectable}. Then, for any i ∈ {1, 2} and t ∈ Δi, there is
some c ∈ C such that t ∈ δi(c).

This theorem proves that L satisfies the property of Completeness. In order to prove that
it also satisfies the property of Non-ambiguity, we must first show that each low-level
change is associated with at most one detectable high-level change.

Theorem 2. Consider two RDF/S KBs V1, V2, their respective Δ(V1, V2) = 〈Δ1, Δ2〉
and two changes c1, c2 ∈ L. Then one of the following is true:

1. δi(c1) ∩ δi(c2) = ∅ for i ∈ {1, 2}
2. δi(c1) � Δi or δi(c2) � Δi for some i ∈ {1, 2}
3. φ(cj) is not true for some j ∈ {1, 2}
4. cj is a basic change, ck is a composite change and δ1(cj) ⊆ δ1(ck), δ2(cj) ⊆

δ2(ck) and φ(ck) � φ(cj) for some j, k ∈ {1, 2}, j �= k

This theorem shows that the changes in L have been chosen in such a way that a change
is either not detectable, or irrelevant to other detectable changes. In particular, if condi-
tion 1 is true then the required added and deleted triples of c1 are disjoint from the ones
of c2. Hence, c1, c2 cannot be associated with the same low-level change. If conditions
2 or 3 are true then at least one of c1, c2 is not detectable (by Definition 3), so, again,
a low-level change cannot be associated with both changes. Finally, if condition 4 is
true, then change ck is composite and more “general” than the basic change cj . There-
fore, by Definition 3 again, even if both of them are initially detectable, only ck will be
detectable. The usability of this theorem is to set the conditions that should hold for a
change in order to allow us to add it to L without jeopardizing determinism.

Given this analysis, the following theorem is straightforward and proves that any two
changes in L are non-ambiguous, ergo L satisfies the property of Non-ambiguity:

Theorem 3. Consider two RDF/S KBs V1, V2, their respective Δ(V1, V2) = 〈Δ1, Δ2〉
and the set C = {c ∈ L|c : detectable}. Then, for any two changes c1, c2 ∈ C, it holds
that δi(c1) ∩ δi(c2) = ∅ for i ∈ {1, 2}.

Theorems 1 and 3 guarantee a deterministic detection process. To see this, take any
V1, V2, i.e., any Δ, and any triple t ∈ Δ: by Theorem 1, t is associated with at least one

480 V. Papavassiliou et al.

detectable high-level change; moreover, by theorem 3, all detectable high-level changes
have disjoint sets of required added (and deleted) triples; thus, t is associated with
exactly one detectable high-level change. This means that any set of low-level changes
can be fully partitioned into disjoint subsets, each subset being associated with a single
detectable high-level change.

In the rest of this subsection, we will consider the application of changes and show
that the detection and application semantics are such that, given V1, V2, the application
of the set of detectable changes between them upon V1 would give V2. Before showing
that, we must generalize Definition 4 to apply for sets of changes; given that elements
in a set are unordered, before doing this generalization, we must first guarantee that the
order of application does not matter.

Definition 5. Two changes c1, c2 are called conflicting iff (δ1(c1)∩δ2(c2))∪(δ1(c2)∩
δ2(c1)) �= ∅. A set C of changes is called conflicting iff C contains at least one pair of
conflicting changes.

By definition, c1, c2 are conflicting iff the detection of c1 requires the addition (or dele-
tion) of a triple whose deletion (or addition) is required by c2. For example,
Delete Domain(participants,Event) is conflicting with Change Domain(participants,
Onset,Event), because the detection of the former requires the deletion of (participants,
domain, Event) whereas the latter requires the same triple to be added. It is easy to see
that when applying a conflicting set of changes upon a version, the order matters (e.g., in
the above example, depending on the order, Event would, or would not, be the domain
of participants); however, for non-conflicting sets of changes, the order is irrelevant:

Theorem 4. Consider an RDF/S KB V and a non-conflicting set of changes C =
{c1, . . . , cn}. Then, for any permutation π over the set of indices {1, . . . , n} it holds
that: (. . . ((V • c1) • c2) • . . .) • cn = (. . . ((V • cπ(1)) • cπ(2)) • . . .) • cπ(n).

Definition 6. Consider an RDF/S KB V and a non-conflicting set of changes C =
{c1, . . . , cn}. The application of C upon V , denoted by V • C, is defined as: V • C =
(. . . ((V • c1) • c2) • . . .) • cn.

Theorem 5. Consider two RDF/S KBs V1, V2 and the set C = {c ∈ L|c : detectable}.
Then C is non-conflicting and V1 • C = V2.

Definition 6 is the generalization of Definition 4 for non-conflicting sets. Given that we
cannot define the application of sets of changes for conflicting sets, the result that C is
non-conflicting is a critical part of Theorem 5. Theorem 5 shows that we can apply the
detected delta upon one version in order to get the other.

An interesting corollary of Theorem 4 is that changes are composable, i.e., they can
be applied either simultaneously or sequentially:

Theorem 6. Consider an RDF/S KB V and two sets of changes C1, C2 such that C1,
C2, C1 ∪C2 are non-conflicting. Then: (V •C1)•C2 = (V •C2)•C1 = V •(C1∪C2).

Another useful property of L is Reversibility, i.e., for each change c, there is some
change whose application cancels the effects of c. Thus, by keeping only the newest
version of an RDF/S KB and the changes that led to it, previous versions can be restored.

On Detecting High-Level Changes in RDF/S KBs 481

Table 4. Look-up Table (Excerpt)

Low-Level Change Considered Low-Level Change(s) Searched For Potential High-Level Change

(x, domain, z) ∈ Δ2 – Delete Domain(x,z)

(x, domain, z) ∈ Δ2 (x, domain, y) ∈ Δ1 Change Domain(x,y,z)

(x, domain, z) ∈ Δ2 (x, domain, y) ∈ Δ1 Generalize Domain(x,y,z)

Definition 7. A change c1 is called the reverse of c2 iff δ1(c1)=δ2(c2) and δ2(c1)=δ1(c2).

Theorem 7. Consider two changes c1, c2 such that c2 is the reverse of c1. Then, c1 is
the reverse of c2 and c1, c2 are conflicting.

Theorem 8. Every change in L has a unique reverse.

Theorem 8 shows that the reverse of a change always exists and is unique; we will
denote by c−1 the reverse of c ∈ L. For example, the reverse of Change Domain (par-
ticipants,Onset,Event) is Change Domain(participants,Event,Onset).

Theorem 9. Consider two RDF/S KBs V1, V2 and the setsC = {c ∈ L|c : detectable},
C−1 = {c−1|c ∈ C}. Then, C−1 is non-conflicting and V2 • C−1 = V1.

Theorem 9 shows how a set of changes can be canceled by applying its reverse upon
the result. This allows for both “undoing” an unwanted change, and reproducing older
versions of an RDF/S KB.

3.3 Change Detection Algorithm

An essential part of our approach is the detection algorithm for L (Algorithm 1), which
should be efficient, scalable and should correctly return the detectable changes. The
first step of the algorithm is to pick a low-level change (i.e., a triple in Δ1 or Δ2),
say (participants, domain, Onset) ∈ Δ2 (cf. Figure 1 and Table 1). Regardless of the
particular input (V1, V2), there are certain high-level changes whose detection cannot be
triggered by a given low-level change. For example, the deletion of triple (participants,
domain, Onset) cannot be related to the detection of Delete Superclass, as no low-level
change of this form appears in the required deleted triples of Delete Superclass (see Ta-
ble 2). On the other hand, it can potentially trigger the detection of a Delete Domain or
a Change Domain operation if the latter is coupled with some other low-level change
in Δ specifying the addition of a new domain for participants (Table 3).

This kind of reasoning allows us to build a look-up table (excerpt shown in Table 4),
which is used by findPotentialChanges(t,Δ) (line 3) to return the set of high-level
changes potC, whose detection could, potentially, be triggered by the selected low-level
change (t). findPotentialChanges works as follows: if the selected t is in the left
column of Table 4, then we check whether the low-level changes in the middle column
appear in Δ; if so, then t could trigger the detection of the high-level change in the right
column, so this high-level change is put in potC. In our example, potC will contain
Delete Domain(participants,Onset), Change Domain(participants,Onset,Event) and
Generalize Domain(participants,Onset, Event).

482 V. Papavassiliou et al.

Algorithm 1. Change Detection Algorithm
1: changes = ∅
2: for all low-level changes t do
3: potC := findPotentialChanges(t,Δ)
4: for all c ∈ potC do
5: if φ(c) = true then
6: changes := changes ∪ {c}
7: Δ1 := (Δ1 \ δ1(c)), Δ2 := (Δ2 \ δ2(c))
8: break
9: end if

10: end for
11: end for
12: return changes

Method findPotentialChanges performs a first “filtering”, guaranteeing that the
only (per Theorem 3) detectable high-level change associated with the low-level change
under question is one of the changes in potC. To find it, we check the required con-
ditions of each member of potC, and, once we find one whose conditions are true,
we add it to the list of detectable changes (line 6). In our running example, General-
ize Domain(participants,Onset,Event) will be detected. Note that in order for the cor-
rect detection to take place, composite changes should be considered first in the for loop
of line 4. Therefore, even though the conditions of the basic change Delete Domain(
participants,Onset) are also true, the algorithm will never reach that point (due to the
“break” command in line 8). This is according to our definition that a basic change is
detectable only if there is no composite change that is also detectable and more gen-
eral. Note also that the elimination of the associated low-level changes from Δ (line 7)
would not cause problems thanks to Non-ambiguity (done for performance purposes).
The presented algorithm is sound and complete with respect to L:

Theorem 10. A change c ∈ L will be returned by Algorithm 1 iff c is detectable.

Now suppose that the size of Δ is N . The look-up table used by findPotential-
Changes has a constant size, so it takes O(1) time to search it. For each matching
low-level change (left column in Table 4), a full search of the Δ is made for finding out
the required low-level changes (middle column) by using a hash table, so it takes O(N)
time (worst-case). This determines the potential changes to be put in potC, per the right
column of Table 4. Since the table is of constant size, the size of potC will be O(1) as
well; therefore, computing potC takes O(N) in total.

For each change in potC, we need to determine whether its conditions are true.
The time required for this depends on the change considered. For some changes (e.g.,
Delete Domain), it takes O(1) number of checks; for others, the cost is either O(M)
(e.g., Delete Class) or O(M2) (e.g., Reclassify Individual Higher), where M is the
number of triples in δ1 and δ2 of the respective high-level change. Note that each indi-
vidual check can be done in O(1), a result which can be achieved using sophisticated
labeling algorithms, as described in [3].

On Detecting High-Level Changes in RDF/S KBs 483

To calculate the complexity of the algorithm, we will consider the worst-case sce-
nario. The for loop (line 2) iterates over the low-level changes. Let us consider the i-th
iteration: for the selected change, we need O(N) time for findPotentialChanges,
plus O(1) iterations of O(M2

i) cost (lines 4-10), where Mi is the total size of δ1
and δ2 for the high-level change considered. Then, the total cost (for the entire al-
gorithm) is: O(

∑
i=1,...,N (N + M2

i)). However, note that:
∑

i=1,...,N (N + M2
i) =

N2 +
∑

i=1,...,N M2
i ≤ N2 + (

∑
i=1,...,N Mi)2. The sum in the last equation cannot

exceed the size of Δ by more than a constant factor (i.e., it is O(N)). Therefore, the
complexity of the algorithm is O(N2). As a final note, recall that the cost of computing
Δ(V1, V2) is linear with respect to the larger of V1, V2. Thus:

Theorem 11. The complexity of Algorithm 1 for input V1, V2 isO(max{N1, N2, N
2}),

where Ni is the size (in triples) of Vi (i = 1, 2) and N is the size of Δ(V1, V2).

In practice, our algorithm will rarely exhibit the quadratic worst-case complexity de-
scribed in Theorem 11. There are several reasons for that. First of all, the complexity
of searching through Δ (in findPotentialChanges) was calculated to be O(N); for
most changes, this will be O(1) on average, due to the use of hash tables. Secondly,
evaluating the conditions (line 5) varies from constant to quadratic over Mi, depending
on the type of changes in potC. Furthermore, even though Mi may, in the worst case,
be comparable to N , this will rarely be the case; therefore, even operations that exhibit
quadratic complexity over Mi, will rarely exhibit quadratic complexity over N . The
above arguments appear more emphatically for basic changes, as the cost of evaluating
the conditions of any basic change is O(1). The above observations will be verified by
the results of our experiments (Section 5).

4 Operations Based on Heuristics

The detection semantics of the changes described so far used no heuristics or other
approximation techniques, and were based on the implicit assumption that no termino-
logical changes occurred between the RDF/S KBs. However, as described in Section 2,
this is not always true. In Figure 1 for example, a matcher could identify that classes
Existing and Persistent correspond to the same entity, so a Rename Class operation
should be detected (rather than the addition of a class and the deletion of another). Oper-
ations like Rename Class are different from the changes discussed so far, because they
can only be detected using matchers [6], which employ various sophisticated, heuristic-
based techniques for identifying elements with different names that correspond to the
same real world entity.

For evaluation purposes, we implemented a simple matcher that associates elements
based on the similarity of their “neighborhoods”, i.e., the sets of nodes and links that
are pointing from/to the elements under question. If the similarity exceeds a certain
threshold, then a matching is reported. In particular, if an element in V1 is matched with
an element in V2, we detect a Rename operation, whereas if it is matched with a set of
elements in V2, we detect a Split operation; on the other hand, if a set of elements in V1
are matched with an element in V2, a Merge operation is detected.

484 V. Papavassiliou et al.

Another case where matchers are necessary appears when an object is associated
with a different comment in V1, V2, which could be either because the old comment
was deleted and a new one was added, or because the old comment was edited. In
this case, we use the Levenshtein string distance metric [11] which compares the sim-
ilarity of the respective comments and determines whether a pair of Delete Comment-
Add Comment, or a single Change Comment, should be returned (similarly for labels).

It should be noted that once the matchings are calculated and the corresponding de-
tected operations are reported as above, we continue with the normal, non-approximate
change detection process (as described in Section 3). This means in practice that the
detection of heuristic changes takes precedence over composite ones, in the same way
that the detection of composite changes takes precedence over basic changes. For exam-
ple, in Figure 1, we would not report a Change Domain(started on,Existing,Persistent),
because Existing and Persistent are identified as the same class.

The focus of this paper is not on developing a sophisticated matcher, but on change
detection. Our design was modular, so that any custom-made or off-the-shelf matcher
could be used to calculate the required matchings; moreover, the user may choose to
circumvent the matching process altogether. Thus, the matching process can be viewed
as an optional, pre-processing phase to the actual change detection algorithm, and is an
extension of our basic framework.

5 Experimental Evaluation

The evaluation of our approach was based on experiments performed on two well-
established ontologies from the cultural (CIDOC [4]) and biological (GO [7]) domains.
It aims at showing the intuitiveness and conciseness of the changes contained in L
(Figure 2 and Table 5) as well as verifying that the performance of the implemented
algorithm conforms to the average-case analysis of Section 3.3 (Table 6).

CIDOC consists of nearly 80 classes and 250 properties, but has no instances. For our
experiments, we used versions v3.2.1 (dated 02.2002), v3.3.2 (dated 10.2002), v3.4.9
(dated 12.2003), v4.2 (dated 06.2005) and v5.0.1 (dated 04.2009), which are encoded
in RDF and are available in [4]. The detected changes apply mostly on properties, and
many involve the heuristic change Rename (see Figure 2). For the detection of the
heuristic changes a special-purpose matcher was developed, that exploited CIDOC’s

1,21%

53,13%

1,21%

10,95%

0,08%

6,03%

1,02%

24,14%

2,23% 1.21% = Group classes

53.13% = Add/Delete class

1.21% = Move class

10.95% = Change label

0.08% = Merge

6.03% = Pull down class

1.02% = Change superclasses

24.14% = Change comment

2.23% = Pull up class

(a) GO: v25.11.08 - v26.05.09

7%

4%

44%

9%5%

3%

9%

1%

18%

7% = Add/Delete class

4% = Change comment

44% = Add/Delete property

9% = Generalize/Specialize domain

5% = Change domain/range

3% = Rename class

9% = Generalize/Specialize range

1% = Pull down/ Change superclasses

18% = Rename property

(b) CIDOC: v3.2.1 - v5.0.1

Fig. 2. Overview of Composite and Heuristic Changes

On Detecting High-Level Changes in RDF/S KBs 485

naming policy which attaches a unique, change preserving ID in the names; this way,
the precision and recall of the matchings for CIDOC was 100%. CIDOC versions are
accompanied by release notes describing in natural language the differences with the
previous version; our algorithm uncovered certain typos, omissions and other mistakes
in these notes, which were verified by one of CIDOC’s editors. This highlights the need
for automated change detection algorithms, as even the most careful manual recording
process may be inaccurate.

The Gene Ontology (GO) [7] describes gene products, and is one of the largest and
most representative data sets for ontology evolution due to its size and update rate. GO
is composed of circa 28000 classes (all instances of one meta-class), and 1350 prop-
erty instances of obsolete which is, sometimes, used by the GO editors to mark classes
as obsolete instead of deleting them. Although GO is encoded in RDF/XML format,
the subsumption relationships are represented by user-defined properties instead of the
standard subClassOf property, so we used versions of GO released by the UniProt Con-
sortium [1], which use RDFS semantics. GO is updated on a daily basis, but UniProt re-
leases a new version every month and only the latest version is available for download2.
During the time of our experiments we were able to retrieve 5 versions of GO (dated
25.11.08, 16.12.08, 24.03.09, 05.05.09 and 26.05.09). The detected heuristic changes
(Merge) were very few (0.08% of the total) as shown in Figure 2; the string matcher, on
the other hand, detected several Change Comment and Change Label operations. The
rest of the changes were mostly additions and deletions of classes, as well as changes
in the hierarchy. The detected basic changes (not pictured) included, among others, ad-
ditions of property instances. Even though we weren’t able to find any recent official
documentation regarding the changes on GO, the changes reported by certain studies
(e.g., [25]) show that the detected operations capture the intuition of the editors.

Table 5. Evaluation Results

Versions V 1 V 2 Δ Basic Basic + Composite + Heuristic

CIDOC

v3.2.1 - v3.3.2 952 1081 870 834 202+120+39 = 361

v3.3.2 - v3.4.9 1081 1110 287 285 13+15+34 = 62

v3.4.9 - v4.2 1110 1254 571 538 287+6+10 = 303

v4.2 - v5.0.1 1254 1318 339 327 44+51+52=147

GO

v25.11.08 - v16.12.08 183430 184704 2979 2260 326+296+307 = 929

v16.12.08 - v24.03.09 184704 188268 7312 5053 745+706+440 = 1891

v24.03.09 - v05.05.09 188268 190097 3108 2322 359+362+97 = 818

v05.05.09 - v26.05.09 190097 191417 2663 1983 265+312+147 = 724

Table 5 shows the number of detected changes between different pairs of CIDOC
and GO versions. The columns report the compared versions and their sizes, the size
of Δ and the number of detected basic (only) and high-level (in general, i.e., basic,
composite and heuristic) changes. The number of detected basic changes is comparable

2 ftp://ftp.uniprot.org/pub/databases/uniprot datafiles by format/rdf/

486 V. Papavassiliou et al.

to the size ofΔ, showing that deltas consisting entirely of basic changes are not concise.
On the other hand, the size of the delta is significantly reduced (44%-78% for CIDOC,
59%-74% for GO) when composite and heuristic changes are also considered.

Table 6 reports the running time of the detection algorithm, measured on a Linux
machine equipped with a Pentium 4 processor running at 3.4GHz and 1.5GB of main
memory. The times for the detection of basic changes were, in general, linear to the in-
put verifying our average-case analysis in Section 3. With respect to composite changes,
the execution time reveals some interesting anomalies. For example, comparing the re-
sults for versions v3.3.2-v3.4.9 and v3.4.9-v4.2 (for CIDOC) we see a reduction in the
running time, despite the increase of the input size (cf. Table 5). This is due to the very
small number of detected composite changes for the second input (see Table 5). Also,
when comparing the results of v16.12.08-v24.03.09 to v25.11.08-v16.12.08 (GO) we
see that the running time increases in a sub-linear fashion with respect to the input.
This can be explained by considering the types of detected composite changes, which
reveals that for versions v16.12.08-v24.03.09 the changes whose complexity for evalu-
ating the conditions is quadratic are 4.5% of the total, whereas for v25.11.08-v16.12.08
such changes constitute 15% of the total. The slow execution times related to heuristic
changes is due to the overhead caused by the employed matcher.

Table 6. Running Time

Versions Δ Basic Changes Composite Changes Heuristic Changes

CIDOC

v3.2.1 - v3.3.2 95.91 ms 13.53 ms 3.35 ms 26.19 ms

v3.3.2 - v3.4.9 91.45 ms 3.94 ms 1.01 ms 5.54 ms

v3.4.9 - v4.2 95.75 ms 8.05 ms 0.26 ms 9.68 ms

v4.2 - v5.0.1 120.58 ms 5.50 ms 2.12 ms 861.77 ms

GO

v25.11.08 - v16.12.08 35.214 s 133.79 ms 28.60 ms 45.195 s

v16.12.08 - v24.03.09 36.610 s 249.66 ms 39.65 ms 345.419 s

v24.03.09 - v05.05.09 36.684 s 146.20 ms 23.99 ms 38.006 s

v05.05.09 - v26.05.09 36.712 s 131.22 ms 24.45 ms 40.067 s

6 Related Work

Change detection algorithms in the literature report either low-level deltas ([23,24]), or
high-level ones, which, like in our paper, are usually distinguished in basic and com-
posite ([15,17,22]). In [10,14,15,18,19,21] authors describe several operations and the
intuition behind them. However, a formal definition of the semantics of such operations
([10,14,15,19]), or of the corresponding detection process ([15]), is usually missing;
thus, they cannot guarantee any useful formal properties.

Authors in [10,14] describe a fixed-point algorithm for detecting changes, which is
implemented in PromptDiff, an extension of Protégé [8]. The algorithm incorporates
heuristic-based matchers in order to detect the changes that occurred between two ver-
sions. Therefore, the entire detection process is heuristic-based, thereby introducing

On Detecting High-Level Changes in RDF/S KBs 487

an uncertainty in the results: the evaluation reported by the authors showed that their
algorithm had a recall of 96% and a precision of 93%. In our case, such metrics are
not relevant, as our detection process does not use heuristics and any false positives or
negatives will be artifacts of the matching process, not of the detection algorithm itself.

In [18] the Change Definition Language (CDL) is proposed as a means to define
a language of high-level changes. In CDL, a change is defined and detected using
temporal queries over a version log that contains recordings of the applied low-level
changes. The version log is updated when a change occurs which overrules the use of
this approach in non-curated or distributed environments. In our work, version logs
are not necessary for the detection, as the low-level delta can be produced also a
posteriori. Note also that, in [18] changes that require heuristics for their detection
(such as Rename) are completely ignored. This reduces the usefulness of the proposed
language.

In our framework, changes that require heuristics are considered separately. This
way, we can support operations that require heuristics, while maintaining determin-
ism for the operations that don’t need them. In addition, we have the option to ignore
such changes, which may be useful for applications that require perfect precision and
recall.

7 Conclusion and Future Work

The need for dynamic ontologies makes the automatic identification of deltas between
versions increasingly important for several reasons (storing and communication effi-
ciency, visualization of differences etc). Unfortunately, it is often difficult or impossible
for curators or editors to accurately record such deltas without the use of automated
tools; this was also evidenced by the mistakes found in the release notes of CIDOC.

In this paper, we addressed the problem of automatically identifying deltas. We pro-
posed a formal framework and used it for defining a language of high-level changes
for both schema and data, L, and an algorithm that correctly detects changes from L.
We proved that L satisfies several intuitive properties (Completeness, Non-ambiguity,
Reversibility). Note that the existence of other languages satisfying these properties is
not ruled out. However, if the intuitiveness of the changes is not taken into account, the
languages will end up being artificial and without practical use in real-world scenarios.
Thus, the intuitiveness of the changes that L contains was a critical factor in our design
and experimental evidence on the usefulness of L was provided. The detection algo-
rithm itself was shown to be quite efficient, namely of quadratic worst-case complexity
(even though, in practice, it seems to exhibit linear average-case complexity). The ap-
proach can be extended to more expressive ontology languages but the details depend
on the semantics of the language and must be determined. As future work, we plan to
extend L by considering complex changes, which aggregate several composite changes
together. Moreover, we plan to conduct empirical studies involving real users.

Acknowledgements

This work was partially supported by the EU project KP-Lab (FP6-2004-IST-4).

488 V. Papavassiliou et al.

References
1. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E.,

Huang, H., et al.: The Universal Protein Resource (UniProt). Nucleic Acids Research (2005)
2. Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema (2004),

http://www.w3.org/TR/2004/REC-rdf-schema-20040210
3. Christophides, V., Karvounarakis, G., Plexousakis, D., Scholl, M., Tourtounis, S.: Optimizing

taxonomic semantic web queries using labeling schemes. Web Semantics: Science, Services
and Agents on the WWW (2004)

4. CIDOC-CRM,
http://cidoc.ics.forth.gr/official_release_cidoc.html

5. Cloran, R., Irwin, B.: Transmitting rdf graph deltas for a cheaper semantic web. In: Proc. of
SATNAC (2005)

6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
7. Hill, D.P., Smith, B., McAndrews-Hill, M.S., Blake, J.A.: Gene ontology annotations: What

they mean and where they come from. BMC Bioinformatics (2008)
8. Protege Project (2002), http://protege.stanford.edu
9. Hozo, http://www.hozo.jp/

10. Klein, M.: Change Management for Distributed Ontologies. PhD thesis, Vrije Univ. (2004)
11. Levenshtein V I.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.

Soviet Physics-Doklady 10 (1966)
12. McBride, B., Manola, F., Miller, E.: Rdf primer (2004),

http://www.w3.org/TR/rdf-primer
13. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A Framework for Ontology Evolution in Col-

laborative Environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 544–558.
Springer, Heidelberg (2006)

14. Noy, N.F., Musen, M.A.: PromptDiff: A Fixed-Point Algorithm for Comparing Ontology
Versions. In: Proc. of AAAI (2002)

15. Palma, A., Haase, P., Wang, Y., dAquin, M.: D1.3.1 propagation models and strategies. Tech-
nical report, NeOn Deliverable D1.3.1 (2007)

16. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: Formalizing
high-level change detection for rdf/s kbs. Technical Report TR-398, FORTH-ICS (2009)

17. Plessers, P., De Troyer, O.: Ontology Change Detection Using a Version Log. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 578–592.
Springer, Heidelberg (2005)

18. Plessers, P., De Troyer, O., Casteleyn, S.: Understanding Ontology Evolution: A Change
Detection Approach. Web Semantics: Science, Services and Agents on the WWW (2007)

19. Rogozan, D., Paquette, G.: Managing Ontology Changes on the Semantic Web. In: Proc. of
IEEE/WIC/ACM on Web Intelligence (2005)

20. Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and minimization of
rdf/s query patterns. In: Proc. of ISWC (2005)

21. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, Univ. of Karlsruhe
(2004)

22. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evolution
Management. In: Proc. of EKAW. Ontologies and the Semantic Web (2002)

23. Volkel, M., Winkler, W., Sure, Y., Ryszard Kruk, S., Synak, M.: Semversion: A versioning
system for rdf and ontologies. In: Proc. of ESWC (2005)

24. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the Foundations of Computing Deltas Be-
tween RDF Models. In: Proc. of ISWC+ ASWC (2007)

25. Zhdanova, A.V.: Community-Driven Ontology Evolution: Gene Ontology Case Study. In:
Proc. of BIS (2008)

http://www.w3.org/TR/2004/REC-rdf-schema-20040210
http://cidoc.ics.forth.gr/official_release_cidoc.html
http://protege.stanford.edu
http://www.hozo.jp/
http://www.w3.org/TR/rdf-primer

Efficient Query Answering for OWL 2

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory, Oxford, UK
{hector.perez-urbina,ian.horrocks,boris.motik}@comlab.ox.ac.uk

Abstract. The QL profile of OWL 2 has been designed so that it is pos-
sible to use database technology for query answering via query rewriting.
We present a comparison of our resolution based rewriting algorithm with
the standard algorithm proposed by Calvanese et al., implementing both
and conducting an empirical evaluation using ontologies and queries de-
rived from realistic applications. The results indicate that our algorithm
produces significantly smaller rewritings in most cases, which could be
important for practicality in realistic applications.

1 Introduction

Ontologies can be used as conceptual schemas to provide an intuitive and unified
view over one or more data repositories, allowing queries to be independent of the
structure and location of the data. The use of ontologies as conceptual schemas
for data repositories has been extensively studied in a variety of contexts, such
as information integration [4]. The use of data repositories to store instance
data is becoming increasingly important, for instance in the semantic Web, due
to the scalability requirements of many applications and the widespread use of
ontologies.

In OWL 2—a new version of the OWL ontology language that is currently
a W3C candidate recommendation—scalability requirements are addressed by
profiles—subsets of the language that enjoy desirable computational properties.
The OWL 2 QL profile was designed to allow query answering via query rewrit-
ing: a query over an OWL 2 QL ontology and a set of instance data stored in
a data repository can be answered by rewriting the query w.r.t. the ontology
and then answering the rewritten query in the data repository. In this paper we
focus on the case where the data is stored in a relational database and accessed
using SQL queries, but the same technique could be applied to data stored in a
triple store and accessed via SPARQL queries.

OWL 2 QL is based on DL-LiteR—one of a family of description logics devel-
oped by Calvanese et al. [3]. The DL-LiteR rewriting algorithm of Calvanese et
al., which we will refer to as CGLLR, transforms a conjunctive query Q and a
DL-LiteR ontology O into a union of conjunctive queries QO such that the an-
swers to Q and any set of instance data A can be obtained by evaluating QO over
A only. This technique has been implemented in reasoners such as QuOnto1 and

1 http://www.dis.uniroma1.it/~quonto/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 489–504, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.dis.uniroma1.it/~quonto/

490 H. Pérez-Urbina, I. Horrocks, and B. Motik

Owlgres2. Unfortunately, as shown by Calvanese et al., the size of QO is worst-
case exponential w.r.t. the size of Q and O [3], and as we show in Section 4,
realistic ontologies and queries can result in QO being extremely large (e.g.,
containing tens of thousands of conjunctive queries). Thus, on the one hand,
QO may be costly to compute, and, on the other hand, evaluation by RDBMSs
may be costly or even unfeasible. Trying to produce small rewritings is therefore
of critical importance to the practical application of query rewriting in general,
and of OWL 2 QL in particular.

Motivated by the prospect of applying deductive database techniques to im-
prove the scalability of reasoners, in our previous work [9] we considered the
problem of query rewriting for various logics of the DL-Lite and EL families,
the latter being the basis for the OWL 2 EL profile. Our algorithm takes as
input a conjunctive query Q and an ontology O, and uses a resolution-based
technique to produce a rewritten query QO. Although QO will, in general, be
a (possibly recursive) datalog query, and thus necessitate the use of a deductive
database system, the algorithm exhibits “pay-as-you-go” behavior for various
logics. In particular, if O is a DL-LiteR ontology, then QO is a union of con-
junctive queries. Our algorithm can therefore be seen as a generalization and
extension of CGLLR.

In this paper we describe a simplified version of our algorithm that we will re-
fer to as RQR (Resolution-based Query Rewriting). Like CGLLR, RQR rewrites
a query w.r.t. a DL-LiteR ontology to produce a union of conjunctive queries.
RQR differs from CGLLR mainly in the way it handles existential restrictions in
an ontology. First, RQR uses functional terms to keep track of successors whose
existence is implied by such restrictions, while CGLLR relies on a so-called re-
duction step. Second, RQR directly handles qualified existential restrictions (i.e.,
those where the restriction class is not owl:Thing), whereas CGLLR requires the
elimination of such restrictions using an encoding that introduces new “auxil-
iary” properties. We describe both algorithms in Section 3 and further discuss
their differences in Section 3.3.

Both the reduction step and the introduction of auxiliary properties can in-
crease the size of the rewriting. Therefore, we conjectured that RQR will of-
ten produce smaller rewritings than CGLLR. In order to test the practicality
of query rewriting and the efficiency of the different rewriting techniques, we
have implemented RQR in a query rewriting system that we call REQUIEM3

(REsolution-based QUery rewrIting for Expressive Models), and compared its
behavior with that of our implementation of CGLLR that we refer to as C. The
comparison uses a benchmark suite containing realistic DL-LiteR ontologies and
test queries as well as some artificial ontologies and queries designed to highlight
the differences between the two algorithms. The benchmark suite also included
versions of the ontologies in which qualified existential restrictions have been ex-
plicitly encoded using auxiliary properties, as this allowed us to compare the two

2 http://pellet.owldl.com/owlgres/
3 http://www.comlab.ox.ac.uk/projects/requiem/

http://pellet.owldl.com/owlgres/
http://www.comlab.ox.ac.uk/projects/requiem/

Efficient Query Answering for OWL 2 491

implementations in cases where RQR’s native handling of qualified existential
restrictions is not advantageous.

Both algorithms are amenable to optimizations that can reduce the size of the
rewritings. One obvious optimization would be to use query subsumption checks
to eliminate redundant conjunctive queries from the rewriting; we discuss this
and other optimization techniques in Section 3.4. In order to compare optimized
versions of the two algorithms we additionally implemented REQUIEM-SC and
C-SC, both of which first compute the rewriting as in the original version, and
then apply the above-mentioned query subsumption optimization to the result.

Our evaluation showed that, even for ontologies in which qualified existen-
tial restrictions were already encoded, REQUIEM produced significantly smaller
rewritings than C in most cases. In one case, for instance, C exceeded the maxi-
mum allowed run time (600 seconds) after producing more than 42,000 conjunc-
tive queries; in contrast, REQUIEM completed the rewriting in less than half
a second having produced only 624 queries. Moreover, the rewritings produced
by REQUIEM were often similar or identical to those produced by REQUIEM-
SC, something that was less often the case for C and C-SC; using RQR should,
therefore, reduce the need for (potentially costly) query subsumption checking.

2 Ontology-Based Data Access via Query Rewriting

We next describe how to answer queries over an OWL 2 QL ontology and a
database via query rewriting, illustrating the process by means of an example.

Suppose we have a relational database DB0 containing a table Professor
with attributes name, department, and telephone; and a table Student with
attributes name, major, address, and tutor. We can use a suitable ontology as
a conceptual schema that describes the structure of the data. For example, we
might use the following ontology O0 to describe DB0:4

Teacher � ∃teaches (1)
Professor � Teacher (2)

∃hasTutor− � Professor (3)

Axiom (1) states that teachers teach at least someone, axiom (2) states that
professors are teachers, and axiom (3) states that the range of the property
hasTutor is Professor.

Given suitable mappings from the classes and properties in the ontology to
data in the database, queries posed in terms of the ontology can be answered
using the database. This has several advantages: on the one hand, queries can
be posed in terms of the conceptual structure of the data rather than its ar-
rangement in the database, and on the other hand, the database provides data
persistence and scalability.

Mappings from the ontology to the database are typically defined using ex-
pressions of the form D �→ QD, where D is a class or property occurring in
4 We use the description logic syntax for the sake of compactness.

492 H. Pérez-Urbina, I. Horrocks, and B. Motik

the ontology and QD is an SQL query over the database; QD could, however,
equally well be a SPARQL query that accesses data in an RDF triple store. In
our example, the mapping M0 between O0 and DB0 is defined as follows:

Professor �→ SELECT Name FROM Professor

hasTutor �→ SELECT Name, Tutor FROM Student

Queries posed over the ontology are answered in two steps: first, the ontology
is used to rewrite the query into a union of conjunctive queries; and second,
the mappings are used to transform the rewritten query into an SQL query and
evaluate it using an RDBMS. For example, consider the query

Q0(x) ← teaches(x, y) (4)

posed over O0. The rewriting QO0 of query (4) w.r.t. O0 contains (4) and the
following queries:

Q0(x) ← Teacher(x) (5)
Q0(x) ← Professor(x) (6)
Q0(x) ← hasTutor(y, x) (7)

Transforming QO0 into an SQL query sql(QO0) basically amounts to using M0
to replace each class or property D occurring in a query contained in QO0 with
the corresponding SQL query QD, and forming the union of the resulting queries.
Note that M0 does not contain a mapping for every class and property of O0.
The answer to any query containing an atom for which there is no mapping will
necessarily be empty, and we can therefore discard such queries. Consequently,
queries (4) and (5) can be discarded in our example. As a result, we obtain the
following rewritten SQL query:

sql(QO0) = SELECT Name FROM Professor UNION

SELECT Tutor FROM Student

This query can now be directly evaluated in the RDBMS to compute the answers
to the original query Q0(x).

In the rest of the paper we focus on the problem of computing the rewriting
QO of a given query Q w.r.t. an OWL 2 QL ontology O.

3 Query Rewriting Algorithms

In this section we describe the RQR and CGLLR query rewriting algorithms,
discuss the differences between them, and present various optimizations that can
help us reduce the size of the rewritings.

Before presenting the algorithms, we introduce some notation and defini-
tions. We use the well-known notions of constants, variables, function sym-
bols, terms, and atoms of first-order logic. A Horn clause C is an expression

Efficient Query Answering for OWL 2 493

of the form D0 ← D1 ∧ ... ∧Dn, where each Di is an atom. The atom D0 is
called the head, and the set {D1, ..., Dn} is called the body. We require that
all the variables occurring in the head of C occur at least in one of its body
atoms. For instance, the expression teaches(x, f(x)) ← Professor(x) is a Horn
clause. The depth of a term t is defined as depth(t) = 0 if t is a constant
or a variable, and depth(f(s)) = 1 + depth(s) if t is a functional term f(s).
The notion of depth is extended to an atom R(t1, . . . , tn) in the natural way:
depth(R(t1, . . . , tn)) = max(depth(ti)) for 1 ≤ i ≤ n. An atom D occurring in
a Horn clause C is said to be the deepest in C if depth(D) ≥ depth(Di) for
every atom Di of C. For instance, the atom teaches(x, f(x)) is the deepest in
the previously mentioned example clause.

A conjunctive query (CQ) Q posed over an ontology O is a Horn clause whose
head predicate does not occur in O, and whose body predicates are class and
property names occurring in O. For instance, (4) is a CQ over the ontology O0.
A union of conjunctive queries (UCQ) over O is a set of conjunctive queries
over O with the same head up to variable renaming [1]. For instance, the query
QO0 composed of queries (4)–(7) is a UCQ over the ontology O0. A tuple of
constants �a is a certain answer to a UCQ Q over O and a set of instance
data A iff O ∪ A∪Q |= QP (�a), where QP is the head predicate of Q, and Q
is considered to be a set of universally quantified implications with the usual
first-order semantics. The set of all answers to Q over O and A is denoted by
ans(Q,O ∪ A). Given a conjunctive query Q and an ontology O, a query QO is
said to be a rewriting of Q w.r.t. O if ans(Q,O ∪ A) = ans(QO,A) for every A.

Both algorithms compute the rewriting QO of a given query Q w.r.t.
a DL-LiteR ontology O. DL-LiteR is the basis for OWL 2 QL. Extending the
algorithms to handle the additional features of OWL 2 QL (e.g., datatypes, neg-
ative inclusions) is straightforward; we omit the details for the sake of simplicity.

3.1 CGLLR

The algorithm computes QO by using the axioms of O as rewrite rules and
applying them to the body atoms of Q. The algorithm is shown in Algorithm 1.
The partial function ref takes as input an axiom α and an atom D, and returns
an atom ref(D,α) as follows.

– If D = A(x), then we have that (i) if α = B � A, then ref(D,α) = B(x);
(ii) if α = ∃P � A, then ref(D,α) = P (x,); and (iii) if α = ∃P− � A, then
ref(D,α) = P (, x).

– If D = P (x,), then we have that (i) if α = A � ∃P , then ref(D,α) = A(x);
(ii) if α = ∃S � ∃P , then ref(D,α) = S(x,); and (iii) if α = ∃S− � ∃P ,
then ref(D,α) = S(, x).

– IfD = P (, x), then we have that (i) if α = A � ∃P−, then ref(D,α) = A(x);
(ii) if α = ∃S � ∃P−, then ref(D,α) = S(x,); and (iii) if α = ∃S− � ∃P−,
then ref(D,α) = S(, x).

– If D = P (x, y), then we have that (i) if either α = S � P or α = S− � P−,
then ref(D,α) = S(x, y); and (ii) if either α = S � P− or α = S− � P , then
ref(D,α) = S(y, x).

494 H. Pérez-Urbina, I. Horrocks, and B. Motik

Input: Conjunctive query Q, DL-LiteR ontology O
QO = {Q};
repeat

foreach query Q′ ∈ QO do
(reformulation) foreach atom D in Q′ do

foreach axiom α ∈ O do
if α is applicable to D then

QO = QO ∪ {Q′[D/ref(D, α)]};
end

end

end
(reduction) forall atoms D1, D2 in Q′ do

if D1 and D2 unify then
σ = MGU(D1, D2);
QO = QO ∪ {λ(Q′σ))};

end

end

end

until no query unique up to variable renaming can be added to QO ;
return QO;

Algorithm 1. The CGLLR algorithm

Input: Conjunctive query Q, DL-LiteR ontology O
R = Ξ(O) ∪ {Q};
repeat

(saturation) forall clauses C1, C2 in R do
R = R ∪ resolve(C1, C2);

end

until no query unique up to variable renaming can be added to R ;
QO = {C | C ∈ unfold(ff(R)), and C has the same head predicate as Q};
return QO;

Algorithm 2. Our resolution-based algorithm

If ref(D,α) is defined for α and D, we say that α is applicable to D. The
expression Q[D/D′] denotes the CQ obtained from Q by replacing the body
atom D with a new atom D′. The function MGU takes as input two atoms and
returns their most general unifier [1]. The function λ takes as input a CQ Q and
returns a new CQ obtained by replacing each variable that occurs only once in
Q with the symbol “ ”.

Starting with the original query Q, CGLLR continues to produce queries
until no new queries can be produced. In the reformulation step the algorithm
rewrites the body atoms of a given query Q′ by using applicable ontology axioms
as rewriting rules, generating a new query for every atom reformulation. Then,
in the reduction step the algorithm produces a new query λ(Q′σ) for each pair
of body atoms of Q′ that unify.

Efficient Query Answering for OWL 2 495

3.2 RQR

The algorithm first transforms Q and O into clauses and then computes QO by
using a resolution-based calculus to derive new clauses from the initial set. The
procedure is presented in Algorithm 2, where we show only those parts of the
original algorithm that are relevant to DL-LiteR. The expression Ξ(O) denotes
the set of clauses obtained from O according to Table 1. The function resolve
takes two clauses C1 and C2, and it returns a set containing every clause CR

that can be obtained by combining the atoms of C1 and C2 according to the
inference templates shown in Table 2. A template of the form P1 P2

R denotes
that, if C1 is a clause of the form of P1 and C2 is a clause of the form of P2, then
resolve(C1, C2) contains all clauses of the form of R that can be constructed from
C1 and C2; otherwise, resolve(C1, C2) = ∅. The function ff takes a set of clauses
N and returns the subset of the function-free clauses in N . The function unfold
takes a set of clauses N , and returns the set obtained by unfolding every clause
in N ; for example, if we have that N = {QP (x) ← A(x), A(x) ← B(x)}, then
unfold(N) = N ∪ {QP (x) ← B(x)}, where QP (x) ← B(x) is the result of un-
folding A(x) ← B(x) into QP (x) ← A(x). A formal description of the unfolding
step can be found in [9].

RQR computes QO in three steps: first, in the clausification step, the algo-
rithm transforms Q and O into a set of clauses Ξ(O) ∪ {Q}; second, in the
saturation step, the algorithm continues to produce clauses until no new clauses
can be produced; third, in the unfolding and pruning step, clauses that are not
function free are discarded, the remaining clauses are unfolded, and then clauses
that do not have the same head predicate as Q are also discarded.

3.3 Differences

The algorithms mainly differ in the way they handle existential restrictions.
This difference is twofold: first, while RQR deals with axioms containing ex-
istential quantifiers on the right-hand side by introducing functional terms,
CGLLR does so by restricting the applicability of such axioms and relying
on the reduction step; second, unlike RQR, CGLLR does not handle quali-
fied existential restrictions natively—that is, there is no rewriting rule for ax-
ioms of the form A � ∃R.B; instead, the algorithm requires a preliminary step
in which each such axiom occurring in O is replaced with a set of axioms
{A � ∃P1, ∃P−

1 � B,P1 � R}, where P1 is a new atomic property not occurring
in O. We explore these differences and their impact on the size of the rewritings
by means of an example.

Consider an OWL 2 QL ontology O1 that consists of the following axiom

Professor � ∃teaches.Student, (8)

which states that a professor teaches at least some student, and the query

Q1(x) ← teaches(x, y) ∧ Student(y). (9)

496 H. Pérez-Urbina, I. Horrocks, and B. Motik

Table 1. Translating O into a set of clauses Ξ(O)

DL-LiteR clause DL-LiteR axiom
B(x) ← A(x) A � B
P (x, f(x)) ← A(x) A � ∃P
P (x, f(x)) ← A(x) A � ∃P.B
B(f(x)) ← A(x)
P (f(x), x) ← A(x) A � ∃P−

P (f(x), x) ← A(x) A � ∃P−.B
B(f(x)) ← A(x)
A(x) ← P (x, y) ∃P � A
A(x) ← P (y, x) ∃P− � A
S(x, y) ← P (x, y) P � S, P− � S−

S(x, y) ← P (y, x) P � S−, P− � S

Note 1. Each axiom of the form A � ∃R.B is uniquely associated with a function
symbol f .

Table 2. Inference templates for the function resolve

C(x) ← B(x) B(f(x)) ← A(x)
C(f(x)) ← A(x)

B(x) ← P (x, y) P (x, f(x)) ← A(x)
B(x) ← A(x)

B(x) ← P (x, y) P (f(x), x) ← A(x)
B(f(x)) ← A(x)

B(x) ← P (y, x) P (x, f(x)) ← A(x)
B(f(x)) ← A(x)

B(x) ← P (y, x) P (f(x), x) ← A(x)
B(x) ← A(x)

S(x, y) ← P (x, y) P (x, f(x)) ← A(x)
S(x, f(x)) ← A(x)

S(x, y) ← P (x, y) P (f(x), x) ← A(x)
S(f(x), x) ← A(x)

S(x, y) ← P (y, x) P (x, f(x)) ← A(x)
S(f(x), x) ← A(x)

S(x, y) ← P (y, x) P (f(x), x) ← A(x)
S(x, f(x)) ← A(x)

QP (�u) ← B(t) ∧
∧

Di(�ti) B(f(x)) ← A(x)
QP (�u)σ ← A(x)σ ∧

∧
Di(�ti)σ

where σ = MGU(B(t),B(f(x)), and B(t) is deepest in its clause.

QP (�u) ← P (s, t) ∧
∧

Di(�ti) P (x, f(x)) ← A(x)
QP (�u)σ ← A(x)σ ∧

∧
Di(�ti)σ

where σ = MGU(P (s, t), P (x, f(x)), and P (s, t) is deepest in its clause.

QP (�u) ← P (s, t) ∧
∧

Di(�ti) P (f(x), x) ← A(x)
QP (�u)σ ← A(x)σ ∧

∧
Di(�ti)σ

where σ = MGU(P (s, t), P (f(x), x), and P (s, t) is deepest in its clause.

Efficient Query Answering for OWL 2 497

We first analyze the execution of CGLLR. Note that CGLLR cannot handle
axiom (8) natively, and it must first be replaced with the following axioms:

Professor � ∃Raux (10)

∃R−
aux � Student (11)

Raux � teaches (12)

In the first iteration, axiom (12) is applicable to the atom teaches(x, y) in (9).
Similarly, axiom (11) is applicable to Student(y) in (9). Therefore, we obtain the
following queries in the reformulation step:

Q1(x) ← Raux(x, y) ∧ Student(y) (13)
Q1(x) ← teaches(x, y) ∧Raux(, y) (14)

In this iteration no query can be obtained in the reduction step. In the next itera-
tion, axiom (10) is not applicable to the atom Raux(x, y) in (13) because y occurs
in (13) in more than one place. Axiom (10) cannot be applied to (13) because
CGLLR does not keep track of information about role successors; furthermore,
if we naively allowed existential quantification axioms to be applied, the result-
ing calculus would become unsound. To illustrate this point, suppose that (10)
were applicable to Raux(x, y) in (13), and ref(Raux(x, y), (10)) = Professor(x);
we would then obtain the query

Q1(x) ← Professor(x) ∧ Student(y). (15)

Note that the relation between x and y is lost—that is, the fact that the individ-
ual represented by y must be a teaches-successor of the individual represented
by x is not captured by query (15).

Although the applicability of (10) is restricted, axiom (11) is applicable to
Student(y) in (13). Similarly, axiom (12) is applicable to teaches(x, y) in (14).
Both reformulations produce the query

Q1(x) ← Raux(x, y) ∧Raux(, y). (16)

In the next iteration, no axiom is applicable to any body atom of (16), so no
query is added in the reformulation step. In the reduction step, however, the
algorithm produces

Q1(x) ← Raux(x,) (17)

by unifying the body atoms of (16). In the following iteration, axiom (10) is
applicable to the only body atom of (17), producing

Q1(x) ← Professor(x). (18)

Note that without the reduction step, the algorithm would not have produced
query (18). It can be easily verified that no more new queries can be produced;
thus, CGLLR returns {(9), (13), (14), (16), (17), (18)}.

498 H. Pérez-Urbina, I. Horrocks, and B. Motik

We now analyze the execution of RQR. According to Table 1, axiom (8) is
translated into the following clauses:

teaches(x, f(x)) ← Professor(x) (19)
Student(f(x)) ← Professor(x) (20)

In the saturation step the algorithm produces

resolve((9), (19)) = Q1(x) ← Professor(x) ∧ Student(f(x)) (21)
resolve((9), (20)) = Q1(x) ← teaches(x, f(x)) ∧ Professor(x) (22)

resolve((19), (22)) = Q1(x) ← Professor(x) (23)

Note the difference between queries (15) and (21). Since the function symbol f
is uniquely associated with clause (19), unlike query (15), query (21) captures
the fact that the individual represented by f(x) must be a teaches-successor of
the individual represented by x. It can easily be verified that no other clause is
produced in the first step. Clearly, ff(R) = {(9), (23)}. In this case, there is no
unfolding to be done, so RQR returns {(9), (23)}.

As shown in the above example, the introduction of auxiliary properties can
lead to an increase in the size of the rewritings. The reduction step alone, how-
ever, can also lead to larger rewritings. This situation arises especially in the case
where part of the data of the database describes a graph. As a simple example,
consider an OWL 2 QL ontology O2 that consists of the axiom

Student � ∃hasTutor, (24)

which states that a student has at least one tutor, and the query

Q2(x) ←hasTutor(x, y) ∧ hasTutor(z, y) ∧ hasTutor(z, w) ∧ hasTutor(x,w).
(25)

When using CGLLR, axiom (24) is not applicable to query (25), so no query is
produced in the reformulation step. However, every pair of body atoms in query
(25) unify, and it is easy to see that for each query of this form with m body
atoms, CGLLR produces

(
m
2

)
new queries in the reduction step. Eventually, the

reduction step produces the query

Q2(x) ← hasTutor(x,). (26)

Axiom (24) is now applicable to query (26), and the following query is produced
in the reformulation step:

Q2(x) ← Student(x) (27)

Note, however, that several queries needed to be produced in the reduction step
in order to produce query (27) in the reformulation step.

An important remark is in order. For every query Q′ produced from a query Q
in the reduction step, there is a substitution σ such that Qσ ⊆ Q′, in which case

Efficient Query Answering for OWL 2 499

we say that Q subsumes Q′. It is well known that every query that is subsumed
by another can be discarded after the rewriting has been computed without af-
fecting completeness [5]; however, identifying such queries is not straightforward
since CGLLR does not keep track of which queries were produced in the reduc-
tion step. In our example, query (25) subsumes query (26) by the substitution
σ = {z �→ x,w �→ y}; therefore, query (26) can be safely discarded from the final
rewriting. In this case, however, note that query (26) subsumes query (25) as
well; therefore, it is sensible to eliminate query (25) instead since it is larger.
Since both queries subsume each other, we say that they are equivalent. More-
over, since query (26) is the minimal equivalent subquery of query (25), we say
that query (26) is a condensation of query (25) [2]. The potential generation of
condensations by the reduction step plays an important role in the optimization
of the rewritings. We discuss this aspect further in the following section.

The use of functional terms makes RQR more goal-oriented, in the sense that
it does not need to derive the “irrelevant” queries produced by the reduction step
of CGLLR in order to be complete. Moreover, RQR handles qualified existential
restrictions natively, whereas CGLLR needs to encode them away by introducing
new properties and axioms.

3.4 Optimizations

As discussed in the introduction, both algorithms are amenable to optimization.
One obvious optimization technique is to check subsumption between pairs of
conjunctive queries and eliminate any query that is subsumed by another. Such
a procedure can be simply (albeit not necessarily optimally) applied a posteriori
to the rewritings produced by RQR and CGLLR.

It is important to note that using the query subsumption optimization with
RQR and CGLLR does not necessarily result in exactly the same rewritings. This
is due to the fact that the CGLLR reduction step may produce condensations.
We illustrate this point with an example. Consider an OWL 2 QL ontology O3
that consists of the following axiom

∃teaches− � Student, (28)

which states that someone that is taught is a student, and the query

Q3(x) ← teaches(x, y) ∧ Student(y). (29)

CGLLR produces a set containing (29) and the following queries:

Q3(x) ← teaches(x, y) ∧ teaches(, y) (30)
Q3(x) ← teaches(x,) (31)

Note that query (31) was produced in the reduction step from (30) and it is a
condensation of (30). In the query subsumption check we have that query (31)
subsumes query (29), so the latter is discarded. Note, however, that query (31)
subsumes query (30) and vice versa. Therefore, since it is sensible to discard the

500 H. Pérez-Urbina, I. Horrocks, and B. Motik

larger query, the condensation (31) is kept and query (30) is discarded instead.
It is easy to see that in the end we obtain {(31)}.

When using RQR, axiom (28) is translated into the following clause:

Student(x) ← teaches(y, x) (32)

The algorithm then produces a set containing (29) and the following clause:

Q3(x) ← teaches(x, y) ∧ teaches(z, y) (33)

Since (33) subsumes (29), it is easy to see that after the query subsumption check
we obtain {(33)}. As can be seen, (31) is slightly smaller than (33); it is also a
condensation of (33). In our empirical evaluation (see Section 4), the optimized
versions of RQR and CGLLR produced the same rewritings modulo the con-
densations produced by CGLLR. Modifying RQR to replace queries with their
condensations before the query subsumption check would be straightforward.

Finally, we briefly describe two other well-known optimizations: forward and
backward subsumption [2]. Both optimizations compare each new clause C pro-
duced in the saturation step with the set of previously generated clauses. In
forward subsumption, C is discarded if the set of clauses already contains a
clause C′ that subsumes C; in backward subsumption, C′ is removed from the
set of clauses if it is subsumed by C.

Since RQR is based on a resolution calculus, both forward and backward sub-
sumption can be straightforwardly applied without affecting completeness [2].
In the case of CGLLR, however, forward subsumption cannot be (straightfor-
wardly) applied: every query produced in the reduction step is subsumed by
another previously produced query; forward subsumption would thus effectively
eliminate the reduction step, and so compromise completeness. For example, for-
ward subsumption would remove query (26) in the above example, preventing
the generation of query (27). It is not clear whether backward subsumption can
be applied to CGLLR without affecting completeness.

4 Evaluation

In this section we present an empirical evaluation of our implementations of
the RQR and CGLLR algorithms. RQR is implemented in a rewriting system
that we call REQUIEM, while our CGLLR implementation is called C. We also
implemented optimized versions of the two algorithms that try to reduce the size
of the rewriting using an a posteriori query subsumption check—these are called
REQUIEM-SC and C-SC, respectively. Note that C-SC eliminates queries that
contain auxiliary properties (introduced by the encoding of qualified existential
restrictions) before performing the query subsumption check. Both REQUIEM
and C are available at REQUIEM’s Web site.

The main goal of the evaluation is to compare the algorithms w.r.t. the size of
the rewritings they produce. Simply counting the number of conjunctive queries

Efficient Query Answering for OWL 2 501

in each rewriting might not provide a fair comparison as the queries themselves
could differ in size; we therefore additionally measured the total number of sym-
bols needed to represent the complete rewriting in the standard datalog notation.
We also measured the time taken for each rewriting procedure. In view of our rel-
atively näıve implementations, however, this may not provide a very meaningful
measure of the likely cost of the rewriting process. We therefore also measured
the number of inferences performed by each algorithm, where by an inference
we mean the derivation of a query. Note that the number of inferences is not
necessarily the same as the number of queries in the final rewriting since an
algorithm may derive the same query more than once.

Tests were performed on a PC running Windows XP with a 2.59 GHz Intel
processor and 1.87 GB of RAM. We used Java 1.6.0 Update 7 with a maxi-
mum heap size of 256 MB. Tests were halted if execution time exceeded 600
seconds.

4.1 Test Ontologies and Queries

The test set mainly consists of DL-LiteR ontologies that were developed in the
context of real applications, along with test queries that are based on canonical
examples of queries used in the corresponding application.

V is an ontology capturing information about European history, and developed
in the EU-funded VICODI project.5 S is an ontology capturing information about
European Union financial institutions, and developed for ontology-based data
access [10]. U is a DL-LiteR version of LUBM6—a benchmark ontology developed
at Lehigh University for testing the performance of ontology management and
reasoning systems—that describes the organizational structure of universities. A
is an ontology capturing information about abilities, disabilities, and devices, and
developed to allow ontology-based data access for the South African National
Accessibility Portal [7].

We additionally included two synthetic ontologies in our tests in order to pro-
vide a controlled scenario to help us understand the impact of the reduction step.
P1 and P5 model information about graphs: nodes are represented by individu-
als, and vertices are assertions of the form edge(a, b). The ontology P5 contains
classes representing paths of length 1–5, while P1 contains a class representing
paths of length 1 only.

Finally, for every ontology containing qualified existential restrictions, we cre-
ated an ontology where the relevant axioms have been replaced by applying the
encoding required in CGLLR. We included these ontologies in order to measure
the impact of the encoding and the saturation step separately. These ontologies
are identified with the name of the original ontology and the suffix X. In our
discussion, we refer to these ontologies as the AUX ontologies and we refer to
the others as the original ontologies. All the ontologies and queries are available
at REQUIEM’s Web site.

5 http://www.vicodi.org/
6 http://swat.cse.lehigh.edu/projects/lubm/

http://www.vicodi.org/
http://swat.cse.lehigh.edu/projects/lubm/

502 H. Pérez-Urbina, I. Horrocks, and B. Motik

Fig. 1. Results

The number of classes, properties, and axioms are as follows:

V S U A P1 P5 UX AX P5X

classes 194 18 34 74 2 6 35 74 6
properties 10 12 26 5 1 1 31 31 5
axioms 222 51 127 137 2 10 137 189 18

4.2 Results

Figure 1 shows the results of the empirical evaluation. For each ontology and
query, the column “Queries” shows the number of conjunctive queries in the
rewriting, the column “Symbols” shows the number of symbols needed to repre-
sent the rewriting in datalog notation, the column “Inferences” shows the num-
ber of inferences that were performed by each implementation to compute the

Efficient Query Answering for OWL 2 503

rewritings (note that the number of inferences for REQUIEM and REQUIEM-
SC, and for C and C-SC, is always the same), and the column “Time” shows
the number of milliseconds taken to compute the rewritings.

Comparing REQUIEM to C w.r.t. the original ontologies, it can be seen that
REQUIEM produced smaller rewritings than C in 25 out of 30 cases and equal
sized rewritings in the remaining 5 cases. Moreover, REQUIEM was often faster
and performed fewer inference steps, particularly in non-trivial cases (i.e., where
both implementations took more than 1,000ms). The differences in the size of
the rewritings are often significant: in the fifth queries over U, S, and P5, for
example, the rewritings produced by C contain between two and four times
as many queries (and contain correspondingly larger numbers of symbols). In
the fifth query over A, C had already produced more than 42,000 queries when
it exceeded the 600 second time limit; in contrast, REQUIEM completed the
rewriting in less than 350ms and produced only 624 queries.

When we compare REQUIEM to REQUIEM-SC, we can see that they pro-
duced the same rewritings in 19 out of 30 cases. In some cases, however, the
rewriting produced by REQUIEM was much larger: in the fifth query over S, for
example, REQUIEM’s rewriting contained 2,880 queries compared to only 8 for
REQUIEM-SC. As we might expect given the larger rewritings produced by C,
it produced the same rewritings as C-SC in only 6 out of 30 cases. The differ-
ences in size were also generally larger: in the fifth query over S, for example, C’s
rewriting contained 11,487 queries compared to only 8 for C-SC. The large size
of the rewritings produced by C also mean that performing query subsumption
tests over these rewritings can be costly. In the fifth query over S, for example,
C-SC takes nearly three times as long as C.

Comparing REQUIEM-SC to C-SC, we can see that REQUIEM-SC produced
the same rewritings as C-SC in 21 out of 30 cases, larger rewritings in 8 cases, and
a smaller rewriting in the remaining case (due to the fact that C-SC exceeded
the maximum time of 600 seconds). The differences in size are minimal, and the
number of queries in the rewritings is always the same (with the exception of
the case where C-SC exceeded the time limit). Note that the smaller rewritings
produced by C-SC are due to its generation of condensations (see Section 3).

If we turn our attention to the AUX ontologies, we can see that REQUIEM
still produced smaller rewritings than C in 12 out of 15 cases, although the
differences were less marked. Moreover, REQUIEM still performed less inferences
than C in 9 out of 15 cases. In contrast to the results with the original ontologies,
REQUIEM was slower than C in 10 out of 15 cases; the differences, however,
were generally small.

Our analysis suggests that REQUIEM will produce significantly smaller
rewritings than C and will be significantly faster, particularly in cases where the
queries are relatively complex and/or the ontologies contain a relatively large
number of qualified existential restrictions. The size of the rewritings produced
in some cases also means that a query subsumption check may be prohibitively
costly in practice with CGLLR, even when queries containing auxiliary prop-
erties are removed before performing the check. Moreover, the results for the

504 H. Pérez-Urbina, I. Horrocks, and B. Motik

AUX ontologies suggest that the reduction step alone has a negative impact on
the size of the rewritings—that is, the introduction of auxiliary properties does
contribute to producing large rewritings, but it is not the only cause.

5 Future Work

We plan to implement an ontology-based data access system using REQUIEM
enhanced with various optimizations (i.e., forward/backward subsumption, query
subsumption, and query condensation); we expect such a system to perform well
both w.r.t. the size of the rewritings and the time needed to compute them. The
practicality of such a system is, however, still open, as our results suggest that
there are cases where the rewritings may be too large to evaluate. In such cases,
we believe that a further optimization that uses the mappings to prune irrele-
vant queries (as described in Section 2) might produce rewritings of manageable
proportions. We plan to test our system with actual data in order to discover if
this is indeed the case. Finally, we plan to extend the system to support all of
OWL 2 QL, which mainly involves adding support for datatypes.

References

1. Baader, F., Snyder, W.: Unification Theory. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, ch. 8, vol. I, pp. 445–532. Elsevier Science,
Amsterdam (2001)

2. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. 1, pp. 19–100.
North Holland, Amsterdam (2001)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. of Automated Reasoning (2007)

4. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Description
Logic Framework for Information Integration. Principles of Knowledge Represen-
tation and Reasoning, 2–13 (1998)

5. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving.
Academic Press, Inc., Orlando (1997)

6. Kazakov, Y.: Saturation-Based Decision Procedures for Extensions of the Guarded
Fragment. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (2006)

7. Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G.: Enhancing web portals with
ontology-based data access: The case study of south africa’s accessibility portal for
people with disabilities. In: OWLED (2008)

8. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Karlsruhe (TH), Karlsruhe, Germany (2006)

9. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable Query Answering
and Rewriting under Description Logic Constraints. J. of Applied Logic
(to appear, 2009), http://web.comlab.ox.ac.uk/people/publications/date/

Hector.Perez-Urbina.html
10. Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data

access: A plug-in for protégé. In: Proc. of the Workshop on Information Integration
Methods, Architectures, and Systems (IIMAS 2008), pp. 286–289. IEEE Computer
Society Press, Los Alamitos (2008)

http://web.comlab.ox.ac.uk/people/publications/date/Hector.Perez-Urbina.html
http://web.comlab.ox.ac.uk/people/publications/date/Hector.Perez-Urbina.html

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 505–520, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Multi Visualization and Dynamic Query for Effective
Exploration of Semantic Data

Daniela Petrelli1, Suvodeep Mazumdar2, Aba-Sah Dadzie2, and Fabio Ciravegna2

1 Department of Information Studies
2 Department of Computer Science, University of Sheffield

Regent Court - 211 Portobello Street, S1 4DP, Sheffield, UK
{d.petrelli,s.mazumdar,a.dadzie,f.ciravegna}@shef.ac.uk

Abstract. Semantic formalisms represent content in a uniform way according
to ontologies. This enables manipulation and reasoning via automated means
(e.g. Semantic Web services), but limits the user’s ability to explore the seman-
tic data from a point of view that originates from knowledge representation
motivations. We show how, for user consumption, a visualization of semantic
data according to some easily graspable dimensions (e.g. space and time) pro-
vides effective sense-making of data. In this paper, we look holistically at the
interaction between users and semantic data, and propose multiple visualization
strategies and dynamic filters to support the exploration of semantic-rich data.
We discuss a user evaluation and how interaction challenges could be overcome
to create an effective user-centred framework for the visualization and manipu-
lation of semantic data. The approach has been implemented and evaluated on a
real company archive.

Keywords: Semantic Web, semantic multimedia data, graphical visualization,
user interaction.

1 Introduction

Organisational memory, the ability of an organisation to record, retain and make use
of information from the past to bear upon present activities [27], is a key issue for
large organisations. The possibility of observing and reflecting on the past is particu-
larly valuable in highly complex domains as it can inform and sustain decision-
making. Civil aerospace engineering is one example: the life cycle of a gas turbine
(commonly referred to as a ‘jet engine’) can last for 40-50 years from initial concep-
tion until the last engine is removed from service. During this long product lifetime a
vast amount of heterogeneous data is created, i.e., text reports, numeric data, images,
CAD (Computer Aided Design) drawings etc. [21]. Several everyday tasks require
engineers to engage in sense-making activities, i.e., “a motivated, continuous effort to
understand connections (which can be among people, places, and events) in order to
anticipate their trajectories and act effectively” [16]. For example, issue identification
and resolution for jet engines (a task performed when a generalised issue is suspected
in a product, e.g. frequent excessive wear and tear of a set of components) can require
access to information contained in tens of resources, including textual repositories

506 D. Petrelli et al.

(each containing several dozen of thousands of texts, spreadsheets, etc.), image repo-
sitories (same cardinality), raw data (a jet engine produces about 1G of vibration data
per hour of flight) and some very large databases. Engineers must go through the
different repositories searching and sieving for relevant information and any piece of
evidence that can confirm or disprove their current hypothesis, or browse for patterns
and trends that can spark an intuition. In a word, they use dispersed and diverse data
and information to build up knowledge about a specific phenomenon. The task can
last for several months [8].

Currently the work of evidence gathering and meaning structuring is done manually
with the support of keyword search on textual documents and querying of unconnected
distributed databases. Keyword based querying in this domain is rather ineffective due
to low precision/recall [17]. Moreover the long time required to read each document
and manually abstracting the data to identify trends and their possible causes implies
only a limited number of hypotheses can be explored.

Semantic Web (SW) technologies can be used to semanticise such resources [8].
Semantic information enables to (i) formalise the unstructured information in texts,
images and raw data, (ii) reconcile information contained in different information
sources via a central ontology or a series of interconnected ontologies [3] and (iii)
enable information integration across resources and formats. Semantic information is
being generated over large scale using technologies for a) ontology-based knowledge
capture using forms [3] and b) for information extraction from text that can be ported
to new corpora by trained final users.

In this paper we explore the issue of browsing, querying and visualizing semantic
information in such semantic repositories in a way that allows users to dynamically
explore the data during a complex task such as issue identification and resolution. The
solution provided is based on (i) the visual contextualisation of semantic information
according to some easily graspable dimensions (e.g. space, time and topology) and (ii)
the browsing of the displayed information by querying the knowledge base via dy-
namic filters that modify the visualization in order to focus on possible trends and
patterns. This approach enables exploration of information and data currently highly
challenging with existing technologies (especially commercial keyword-based sys-
tems) that could save thousands of hours a year of valuable resources to a company.

The paper is organized as follows: Section 2 overviews related work. Section 3
discusses the framework, section 4 the design rational, and section 5 provides some
details on the implementation. Section 6 presents the user evaluation and our findings.
An outline of the future work concludes the paper.

2 Related Work

Visualization is required whenever humans need to discover and reason about com-
plex combinations of high volumes of data (e.g., [5]). Information visualization and
visual data mining is not limited to the display, but aims at supporting human percep-
tual abilities during the data exploration process [15]. A vast literature exists on the
topic. Cluster visualization has been used in such diverse fields as intelligence (i.e. to
show correlation between people [36]) and image collection access (i.e. to show
similarity in images [10]). Alternative visualizations have been used to make easy to

 Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data 507

identify patterns in homogeneous data (e.g. in geospatial data [1]); multiple visualiza-
tions, instead, map the strength of relationships between elements [4]. In text retriev-
al, much research has investigated the visualization of search results (see [12] and
[13] for an overview), the visualization of the whole document collection (e.g., Tree-
maps [35]) or a large text corpus (e.g. Jigsaw [26]). Information exploration, an open-
ended process that is iterative and multi-tactical [18, 33] is currently gaining interest
and stimulating new user interactions beyond traditional text search [34, 24].

The issue of visualization of Semantic Web (SW) data has been recognized since
the publication of the seminal book [11]. A tension exists: “the Semantic Web empha-
sises formal, machine readable […] approaches. It focuses on the formal and even the
meaning achieved through rigorously defined forms. In contrast, information visuali-
zation emphasizes the semantics and the meaning that can be conveyed by visual-
spatial models to the users.” [6]. Much research effort in semantic-based visualization
has been spent on finding ways of visualizing complex graphs that derive from the
interlinking of semantic data, the relation between different concepts [28], the differ-
ent granularities [31], and (dis)connections [19]. The result is a large number of on-
tology-based visualization systems (some are reviewed in [9]).

More recent research has tried to make use of the special features of RDF to pro-
vide end-users with intuitive ways of accessing semantic data. BrowseRDF [20] uses
the faceted browsing paradigm: facets are generated automatically from the data it-
self; the user can constrain one or more of the faceted provided to filter the data set.

Similarly, mSpace [23] sequences lists of facets, the item selected in a list con-
strains the following step. Users can combine facets in different ways: this allows an
intuitive composition of complex filters for the purpose of exploration.

In IVEA [30, 31] the user creates their own view over a text collection by dragging
and dropping ontology concepts onto a scatter plot panel. The filters provide a multi-
dimensional view of the document collection as a matrix with colour coded values.

Exhibit, as part of the SIMILE Project1, provides an interactive, web-based visuali-
zation widget developed to demonstrate the application of SW technologies to hetero-
geneous metadata. It interlinks geographical mapping and a timeline to display
information about the USA (past) presidents, e.g., place of birth, term(s) in power, etc.

3 A User-Interaction Framework for Semantic Data Exploration

In a SW framework, information in text, images, tables and other forms of data can all
be captured and mapped to ontology concepts, instances or relations and be
represented as triples. SW technologies can pull together heterogeneous material in a
single unified form and create a single organizational memory out of many different
and scattered archives. However, SW-based organizational memory can be huge
when derived from very large collections, encompassing dozens of repositories con-
taining tens of thousands of documents which in turn produce millions or billions of
triples. A real problem in knowledge discovery occurs when making use of such ex-
tremely large data set as no human could be expected to hold all the information in
their mind. Specific tools that help users explore the knowledge and draw hypotheses

1 The SIMILE Project: http://simile.mit.edu; Exhibit: http://simile.mit.edu/wiki/Exhibit

508 D. Petrelli et al.

from it are essential for effective use of SW-based organizational memory. This re-
quires the following fundamental steps:

1. The RDF repository has to be planned to support effective human interaction:
Triples may not hold any context if it has not been captured, e.g. it is impossi-
ble to plot triples by time if the date is not there; A single ontology should map
heterogeneous material into a single representation.

2. The visualization has to be intuitive to properly contextualize semantic data
and the interaction tools have to be easy-to-use to support exploration and
knowledge discovery, e.g. space and time contextualize semantic data in an in-
tuitive, factual way.

3. Tools to facilitate data annotation should be smoothly integrated in the interac-
tion flow to guarantee a sustained improvement of the quality of the repository
along its use, especially when data is generated using automated means (e.g.
by applying information extraction on legacy data).

In this paper we focus on the second point and propose the use of multiple visualiza-
tions as a way to help users explore, discover and reason; find confirmation of their
intuition; and drill down to the data level when needed.

As discussed in the next section, the dimensions of visualization should come from
the ontology and the values for each dimension from the semantic repository. Dimen-
sions should be then mapped onto a structure that is appropriate for the final user. For
example the dimension ‘date’ can be structured as a linear timeline (as done in this
work) or as a calendar, e.g., to visualize publications. Both visualizations map the
same semantic data but serve two very different user purposes.

Some dimensions are generic and likely to be valid across a wide range of applica-
tions. This is the case of time and space. Other dimensions are valid across a subset of
domains, for example this paper uses topology, useful in engineering where a ma-
chine of some sort is the core of the domain ontology. Finally the user may define
their own perspective, e.g., time and a continuous attribute could be plotted to facili-
tate the monitoring, for example, of financial markets.

4 Knowledge Visualization and Manipulation

For data and information visualization, Shneiderman advocated tools that provide the
user with a progressive focus: “overview first, zoom and filter, then details-on-
demand” [25]. The overview is to gain a sense of the whole data set; zoom and filters
are used to focus the attention on (potentially) interesting patterns; details on demand
to drill down to the level of single data and carefully inspect the content.

This section discusses our proposal for a concrete visualization of semantic data.
This visualization complements ontology-based visualization, as it reduces the cogni-
tive effort needed to understand the semantic data.

We adopted a user-centred iterative design approach [8]. The design rationale dis-
cussed in the next section emerged after workshops and observations with users
aimed at collecting requirements, and a number of participatory design sessions with
engineers in which layout and interaction were refined to maximise their usefulness.
In opposition to the generic trend of using a single visualization to display semantic

 Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data 509

data and its connection, we contextualize data in multiple, complementary and inhe-
rently different visualizations where each “view” offers a perspective over the data:
the user dynamically filters the data and moves from one view to another while fol-
lowing a personal investigation trial.

Fig. 1. The triple-store displayed on a world map - dots, flags and notes add meaning. The
numbers in the map indicate the number of cases found per location. The filters used are iden-
tical to those in Figure 2.

Figure 1 shows the GeoPlot of 34,750 triples extracted from 4,958 event reports
that are part of Rolls-Royce’s organisational memory2. The extracted triples are dis-
played on a world map showing the distribution of events; the size of the dots codifies
the number of events. Flags and comments can be added to keep track of personal
intuition during the sense-making process.

Fundamental for effective exploration is the dynamic update of the display when
the user manipulates the filters, called dynamic querying [2]. The filters (Fig. 2, left)
allow the user to quickly set the parameters of interest and immediately see the effect
on the display (Fig. 2, centre). The filters’ interactive features depend on the data
type: a slider to set a range for numeric data; a text field to enter codes; a single
selection list items and group of check boxes for multiple selection. The result of the
filtering is dynamically plotted: in Figure 2 the blue (darker) crosses match the query

2 These are just a fraction of the triples that we generated from Rolls-Royce organisational

memory. They were extracted by semi-automated information extraction and machine learn-
ing as part of a general effort to semanticise their legacy data. The final data set holds several
hundreds of thousands of documents and covers several different types: one-page reports sent
from all airports in the world covered by the Rolls-Royce service agreements, extended re-
ports of workshop inspections, technical updates, workshop photos, tables, etc.

510 D. Petrelli et al.

(multiple filtering), while
Filters on one visualization
maintain consistency. The
dimensions, but the Time
be dynamically changed u
(Figure 2, right) onto the pl

Fig. 2. The dynamic query fil
is time, the Y axis is the num
documents.

Fig. 3. The TopologicalPlot: e
to zoom-in a more detailed v
Numbers is blue show the tot
same as in Figure 2.

the gray (lighter) ones are triples outside the result
n are applied to all the others simultaneously in order
geographical and the topological visualization needs t

eLine is uni-dimensional and therefore the Y axis
using drag-and-drop with any concept from the ontolo
lot.

lters (left) set the values for the TimeLine (centre). The X-A
mber of airframe cycles; the top right the number of match

ach component in gray in the Engine Map (left) can be clicked
view of the information associated to its subcomponents (rig
tal count of issues identified per component. The filters are

set.
r to
two
can
ogy

Axis
hing

d on
ght).
e the

 Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data 511

A third visualization uses topological information, in our case a TopologicalPlot,
as intuitive dimension to plot triples. Figure 3 left shows an engine overview: gray
areas correspond to high-level ontology concepts. Hovering on an area shows a sum-
mary of the documents mapped to this engine part; clicking on the area opens a de-
tailed map of that part where the documents are plotted, Figure 3 right, respect to finer
grained concepts, the engine components. Their position is as faithful as the ontology
allows, that is to say, the finer the grain of the ontology concept the more precise the
position of the cross on the graph.

The three visualizations, TimeLine, GeoPlot and TopologicalPlot show the same
data with respect to different dimensions that complement one another. The structure
itself can be semantically enriched therefore adding new knowledge to the visualiza-
tion that is not present in the data, i.e. providing semantic services attached to the
world map. The visualization could be enriched father by coding properties the user
wishes to monitor in a more salient and graphical way, e.g., suppose the user is inter-
ested in instances of the concept ‘wear’, an event often associated with sand friction,
then these events could be highlighted in red and a GeoPlot can easily show their
pattern in deserts regions.

5 Implementation

The starting point is an existing semantic repository (triple store) and its related on-
tology; interactive filters are automatically generated on the basis of the data found in
the ontology. Data tables are created where each row is a document in the dataset, and
each column is a concept annotated within the document. In Figure 4, the attributes
hasFormattedEventDate, hasLocation, hasComponent are extracted to build Time-
Line, GeoPlot and TopologicalPlot respectively.

<rdf:Description

rdf:about="http://kmi.open.ac.uk/projects/xmedia/RR1.owl#Event_Report.BKK.Event_Report_237">
<rdf:type rdf:resource="http://kmi.open.ac.uk/projects/xmedia/RR1.owl#Event_Report"/>
<j.0:has_file_location>BKK/Event_Report_237</j.0:has_file_location>
<j.0:hasFormattedEventDate>26-Jul-1922</j.0:hasFormattedEventDate>
<j.0:hasEventDate>26-Jul-22</j.0:hasEventDate>
<j.0:hasAssociatedDate>28-Aug-22</j.0:hasAssociatedDate>
<j.0:hasTSN>14613</j.0:hasTSN>
<j.0:hasEngine_Serial_Number>ESN12345</j.0:hasEngine_Serial_Number>
<j.0:hasLocation>BKK</j.0:hasLocation>
<j.0:hasRegime>GROUND</j.0:hasRegime>
<j.0:hasCSN>5362</j.0:hasCSN>
<j.0:hasComponent>Fuel Metering Unit</j.0:hasComponent>
</rdf:Description>

Fig. 4. An example of the annotations of a document in RDF format. (Values shown are realis-
tic but fictitious and do not correspond to a real instance of an Event Report.)

While only some of the ontology concepts and relations become visualization
structures, all of them become filters. The data table is read and each column is con-
verted into a graphical widget, which one depends on its value range. A core set of
filters, with different interaction affordances, is used to capture different aspects of

512 D. Petrelli et al.

the data set: sliders are used to define ranges of continuous data; text input is used to
capture meaningful strings, e.g. engine serial number; check boxes and menus for
selections in a closed set, e.g., hasTSN and hasCSN are mapped onto a slider; hasEn-
gine_Serial_Number uses a text field; hasRegime uses a group of check box.

Different toolkits have been used to build the visualization modules. Prefuse [14],
an interactive visualization toolkit with sophisticated visual features is used for the
TimeLine. The X-Axis represents time, and the Y-Axis a continuous numeric value
such as CSN ([flight] cycles since new). The user can dynamically change the Y-Axis
concept using drag-and-drop from the ontology. This enables all the ontology con-
cepts to be plotted against the timeline. A visibility filter controls the display of each
visual item: the ones in the filtered set are highlighted, the others are greyed out.

The GeoPlot visualization is generated using the JXMapKit API that plots geo-
graphic coordinates on a world map downloaded from OpenStreetMaps.com. The
geographic locations are airports, identified by their IATA (International Air Trans-
port Association) codes, as extracted from the dataset. The IATA codes are used to
automatically find the airport details such as geo-coordinates (used in the plot), airport
name, city and country. The size and colour of the waypoints are calculated on the
number of visual items associated with the airport.

The Topological Plot is composed of two interactive maps manually created using
drawings from an engine user manual. For the top level, selected regions are anno-
tated with high-level ontology concepts corresponding to the engine parts, each show-
ing the number of visual items associated with the concept. A detailed view of the
part is displayed on click; this drawing too has been manually annotated with finer
grained concepts from the ontology that corresponds to engine components. Although
the maps have been manually created it is easy to imagine a situation in which the
CAD drawings of an engine has semantics associated and therefore the generation of
the maps is automatic.

6 User Evaluation

The usability of the visualization and manipulation was carried out. Results are used
to adjust and re-design the system before it is deployed for a monitored field trial at
Rolls-Royce plc as an additional support to actual investigations. While the trial al-
lowed us to measure the impact this technology has on real practice and observe its
use in a naturalistic setting, the user evaluation reported here focuses on assessing its
usability, that is to say to find out what works and what instead could be perfected.
This ‘evolutionary’ approach to user evaluation, from lab to the field, has proved to
be robust for the development of new technology for professional use [22].

6.1 Setup and Procedure

The user evaluation was set up to assess the usability of the visualization and dynamic
querying of semantic data. 12 participants took part in the evaluation and were re-
cruited by acquaintance, they were 4 women and 8 man, their age ranged from 25 and
45, they were PhD students and researchers; 3 participants were aware of information
visualization tools but none had used any. As the time of professional engineers is a

 Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data 513

limited resource and the focus of this evaluation was the usability we considered the
sample acceptable for the goal at hand. Participants carried out a number of small
tasks to determine if:

1. The visualization mechanisms supported knowledge discovery: patterns were to
be found in the data that could represent phenomena of interest;

2. The dynamic queries were intuitive to use: participants were required to manipu-
late different types of filters, slider, checkbox, text;

3. The overall visualization and dynamic queries strategy were usable.

The test was done individually. At arrival participants were introduced to the project
and the purpose of the user evaluation. They were talked through the main features of
the visualization and manipulation by an evaluator. Then participants familiarized
themselves with the system using 7 simple, 1-step tasks covering the three visualiza-
tions and the filters. An indication of which visualization(s) was the most appropriate
and how to use it (them) was given for each task. During the training participants
could ask for explanation or support from the experimenter. Participants were then
requested to carry out another 8 tasks on their own: each of these tasks asked the user
to perform 2 or 3-steps, for a total of 18 steps. These tasks were slightly more compli-
cated than the training to stimulate more articulated interactions and were designed to
test different aspects of the system. Flexibility is a key point for user acceptance and
we wanted to find out if our solution accommodated personal attitudes. Task distribu-
tion per visualization is reported in Table 1, T-TimeLine, G-GeoPlot, E-
TopologicalPlot, and ALL the visualizations; C-F is for commenting and flagging in
the GeoPlot.

The tasks were designed for users with no expertise on jet engines and did not re-
quire participants to understand the content of the documents that could be displayed
on click. As users were not experts they were not required to identify trends directly,
however the tasks used simulated the ones that an engineer will perform in order to
identify trends. They generally required to identify (geographical, time or topological)
areas where the count of events was either clearly above average or had specific cha-
racteristics. Most tasks were cumulative (i.e. they built on the results of the previous
tasks) so to simulate a multi-step investigation.

Examples of cumulative tasks are3:

a) How many documents refer to the registration number
9V-SQD with number of airframe cycles >6500?

b) Consider only what happened in SIN (Singapore), how many
events occurred there?

c) Which component seems to have the highest number of cases
associated with the flight regime CLIMB?

These tasks required the use of the different tools and strategies while performing
each query:

a) The registration number requires entering text in a form field, setting an
airframe cycle number requires manipulating a slide.

3 Tasks are simplified here for the sake of clarity of exposition. Task b) was to be performed on

the results of a); c) was to be performed on information retrieved in b).

514 D. Petrelli et al.

b) Requires to interpret the previously retrieved data by focussing on a spe-
cific area of the GeoPlot

c) Requires now to move to the topological display and to drill down to the
level of components. Flight regime is a checkbox.

The tasks enabled to measure all the available interactive features in a limited test
time of 30-40 minutes. During the test the screen activity was recorded for further
data analysis.

At the end of the evaluation participants were requested to fill in a user satisfaction
questionnaire composed of 16 closed and open questions. Close questions were on a
5-points scale and addressed the system overall, its learnability, the task flow, the
result display, the system’s speed and reliability. Open questions asked about the most
positive and negative aspects of the system. No questions focussed on comparison of
visualizations as all three have been seen in use during the user requirements phase:
timelines in presentations to summaries observed phenomena; geographical informa-
tion was reported as one of the first inquiry done; and maps of the engine covered in
post-it and annotations hung in meeting rooms. We are therefore confident on the
usefulness of all three.

6.2 Analysis and Results

The results are analysed with respect to: efficiency, effectiveness, and user satisfac-
tion (as in the ISO definition of usability [32]). Minor issues of interface inconsisten-
cy across the three visualizations were also identified, e.g. display of the number of
results in the set displayed in different positions in the three panels. Both objective,
numeric data, and subjective data, participant’s opinion, have been analysed. Qualita-
tive analysis, i.e. observation of participants’ interaction, has been used to explain
qualitative results, i.e. statistic on numeric values.

Efficiency has been calculated on the time participants needed to finish a task (that
could include few different steps). Performance in both training and test varied greatly
from task to task and from participant to participant, and from a min of 18 sec. to a
max of 420 sec. Table 1 shows this variability by task, Table 2 by participants. The
average time to complete a test task (including the time to think how to solve the task)
was 87 sec. The average time for a simple 1-step training task was 67 sec. while the
average time spent for complete 1-step during the test was 46 sec. showing an in-
crease in efficiency after only an average of about 8 minutes training. The good effi-
ciency is reflected on participants’ opinion collected in the questionnaire: 82% rated
the system speed very high.

On average, interactions with the GeoPlot lasted longer than other visualizations:
T= 147 sec.; G=200 sec., E=138 sec. (cumulative values for participant, task only);
however this is not statistically significant (one-way repeated measures ANOVA on
time on T, G and E). Observation of the interaction shows that some users had diffi-
culties in manipulating the GeoPlot: when zooming-in they were too fast and found
themselves, for example, in Africa instead of Europe. Then, instead of zooming-out
they preferred panning, an action that requires more time.

Table 2 shows the average time per participant. Variability among participants
emerges during task with a polarization in two groups. Observations of the interaction

 Multi Visualization and Dyn

behaviour showed different
once and then exploring th
step, i.e. setting the value o
Multi filter selection was no
main requirements of any d
positive result showing user

Effectiveness is calculated
correct answer identified in
The effectiveness rises to 8
All wrong answers were ‘n
the slide or selected the wr
changes in the interface ar
not expect to see any spel
domain would not mistake
some participants instead o
in dense GeoPlot display.

Overall the approach em
a triple store, as the mistake
confirmed by the fact that
condition, i.e. visualization

User Satisfaction. Overall
easy (64%), satisfying (64
While this result shows a v
mulating judgement), it als

Table 1. Time on task in se
was designed to test some fe
proach. The letters in parenth
types of tools that the user wa
to perform the task in an app
the users used at least the e
carry out each task.

namic Query for Effective Exploration of Semantic Data

t strategies with faster participants setting all the filter
he visualization and the slower participants going step
of one filter then look at the result than set a second fil
ot requested during training. Flexibility of use is one of
data exploration environment; therefore we consider th
r could adopt personal strategies despite time difference

on the accuracy of the answer provided as every task ha
n advance. In 74% of tasks the exact answer was provid
2% when the simpler tasks of the training set are includ

near miss’, i.e. participants incorrectly selected a value
rong value for a filter due to very similar spelling. Mi
re needed to avoid unintended mistakes. Moreover we
ling problems in field use as users knowledgeable in
e terms. Effectiveness was also affected by data dens
of zooming-in to gain a clearer view selected the wrong

merges as effective in supporting the user browsing throu
es were due to interface issues that are easily fixable; thi
t the errors were scattered and not linked to any spec
or user.

participants’ opinion was positive; the system was jud
4%), stimulating (82%), fast (82%), and reliable (91
very high level of engagement and trust (mainly in the
so points out to usability problems due in part to (i) so

conds. Each task
eatures of the ap-
heses describe the
as expected to use
ropriate way. All
expected tools to

Table 2. Average time per task for e
participant

515

rs at
p by
lter.
f the
his a
es.

ad a
ded.
ded.
e on
inor
e do

the
sity:
g set

ugh
is is
cific

dged
%).
sti-

ome

each

516 D. Petrelli et al.

sub-optimal interaction strategy participants adopted to perform the tasks and (ii)
interface limitations, that will be discussed below. Discussion with users showed that
the latter accounted for the largest majority of the difficulty the user found (affecting
the judgement on ease of use and their satisfaction). The dissatisfaction was not re-
lated to the general idea and users commented that – if the issues were fixed – their
judgement would have changed.

Both issues above can be easily addressed: the first with a more extended training
(which will be in any case given to the engineers); the second by re-designing the
weak points in the interface.

Three questions addressed learnability: participants judged it easy to learn (82%),
easy to explore (75%) and straightforward to use (63%). This last value was, again
influenced by the same difficulties in manipulating some graphical elements. The task
flow was considered easy to start (73%) and carry on (90%) while the manipulation of
the results was problematic for some of the participants. 35% found the manipulation
easy or very easy, 45% were neutral and 20% considered it difficult. Again, there is a
dichotomy in judgement between the recognized value of the tool and the practical
difficulties in manipulating it. Observations of the interaction and the comments left
in the questionnaire “most negative aspects” explain this fact: as the values on the
interface come from the RDF data, the values on the slide were not continuous nor the
progression smooth. This was quite confusing for some participants who tried hard to
set the slide to an inexistent value, e.g. the first value for ‘airframe hours’ (Figure 2) is
4350 but the slide starts from 0 so there is no change in the display until the user
scrolls to 4350, that is halfway through the slide. This point can be fixed in the rede-
sign by creating a tagged-slide that highlights the valid values (from the RDF) on a
standard continuous slide.

The judgement on the browsing of the results was split: 45% judged it easy, 45%
were neutral and 10% find it difficult. Observing the interactions we noticed that
participants who lamented difficulties had problems in selecting the right graphical
element: In the GeoPlot dots representing two different airports could overlap making
it difficult to select one airport over the other. When the overlap occurs the correct
interaction is to zoom-in but some participants did not use it despite having been
demonstrated the feature before the test. Another point of difficulty occurred when
documents were very dense, as for some engine components. I this case the zoom-in
(enlarging the picture) is not effective in discriminating instances as the action does
not add further details. A further level in the ontology would allow mapping to a more
detailed drawing of the component and therefore a finer localization of the triple on
the engine spatial representation. Alternatively instances can be listed: selecting an
element highlights its position on the map and double clicking would open it.

Two open questions asked for the most negative and more positive aspects of the
system. Besides the already mentioned problems with the slide, listed as negative,
participants did not like to scroll up and down the filters (the list can indeed be very
long if filters like the airport location is left open) and found some of the filters name
cryptic. This last comment does not hold for professional engineers, as they are famil-
iar with the data.

Appreciated across the whole sample was the tidy design of the interface, its intui-
tiveness and the instantaneous reaction and change of display after a new filter has
been set, all features listed in the open question “most positive aspects”. In addition

 Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data 517

participants commented positively the fact that the filter manipulation changes the
three visualizations simultaneously therefore supporting an active engagement in the
data exploration activity by simply swapping view.

6.3 Discussion

The user evaluation showed that the approach is efficient and effective and the inte-
raction largely intuitive even with very limited training. Users found the approach
stimulating and were able to identify trends in the data via interactive querying. The
methodology used showed this in an indirect way: as participants were not experts in
the domain, the tasks simulated the querying path that an expert would follow in order
to identify trends. The simulated exploration paths have been observed and discussed
with users, therefore the successful completion of the tasks would provide material to
an expert for the identification of trends.

Some limited aspects of the interface needs some degree of re-design as the simple
action of taking the data out of the RDF repository and into the user interface may
produce a less-than optimal interaction, i.e. slides don’t have a smooth progression
but more of a ‘jumpy’ interaction style. Data-generated interactive filters and dense
data display need careful considerations and specific interaction-design strategies
particularly when scaled up to hundreds of thousands of triples displayed. Indeed
what appeared to be critical is the combination of very dense semantic data onto small
space and the tendency of participant to not zoom-into the detail to clarify the vision.

A research question concerns efficiency and effectiveness with respect to the tech-
nology currently available to our final users. We believe that the approach has the
potential to save thousands of hours a year of search time (efficient) and to provide a
way to more widely explore different hypotheses and therefore to discover more
trends and patterns (more effective). We derive this by reflecting other evaluations
where users performed similar tasks using other types of technologies, both semantic
and more traditional. Performing the same tasks using traditional keyword-based
searches would have required several weeks of searching and manually collating
information4. Also, our approach is more effective because as side effect of efficiency
users are enabled to explore different hypotheses and therefore to discover more
trends and patterns. Such extensive exploration is currently largely impossible due to
the scarce efficiency of the current methodologies (exploring more hypothesis means
more time dedicated to the analysis, an often impossible task under the time pressure
that some knowledge management tasks are worked under). Moreover traditional
methods carry imprecision due to tiredness, which affects the quality of results on
very long task.

Performing the same tasks with a semantic search-based system (e.g. [17]), would
have required some days of work to extract different pieces of evidence and to group
them manually around trends5. Questions like “which component reported most
issues” would have required several dozens of queries.

4 This estimate is based on discussion with real users and direct observation of working

practices.
5 This estimate is based on observation of search behaviour of users during the evaluation of

the semantic search system.

518 D. Petrelli et al.

7 Conclusions and Future Work

In this paper we proposed to complement the ontology-based, graph-based perspec-
tive with views that contextualise the concepts into vertical dimensions, like time,
space and topology. The list of dimensions that could be used for this purpose is not
exhaustive and others than those we used could be identified (mostly domain-
specific). The different visualizations are created starting from the RDF data and, like
a kaleidoscope, show different views on the same data set. Direct manipulation com-
plements the display and engages users in the exploration: dynamic queries generated
from the data are used to instantaneously change the visualizations.

Our aim was to provide a largely automatic way to visualize semantic data and
support users in dynamic exploration and manipulation. We used the case of an exist-
ing organisational memory and complex knowledge management tasks observed in
real work situations, i.e., issue identification and resolution in aerospace engineering.
The user evaluation has demonstrated that this automatic mapping of multiple, con-
text sensitive visualizations to ontology-based information stores provides an efficient
way to display the result of complex queries that can combine several attributes.
Moreover users can explore the result and effectively detect patterns and trends. The
combination of powerful multiple, contextual visualizations and a highly dynamic
interaction allows the exploration of semantic data to be carried out at scale. We have
shown how our visualization approach improves in terms of efficiency and effective-
ness with respect to technologies that are currently available to our users, i.e. key-
word-based search and semantic search. To our knowledge this is the first study to
show that using multiple visualizations is effective for document sense making in a
complex organisational memory.

In our experience large organizations are willing to invest in semantic technologies
for knowledge management, if they see a clear benefit and it is sustainable. The set of
4,958 documents used in this study correspond to a small chunk of the archives we
are currently considering in the context of Rolls-Royce plc, but was instrumental to
show the clear benefit of this innovative technology over the current practice. At the
time of writing we are working in partnership with the company to extract informa-
tion from large and heterogeneous archives and create a new semantic data set to
support a field trial in the context of real practice. In the perspective of sustainability,
we have already developed a technology to provide ontology-based knowledge cap-
ture using forms [3] and we are studying information extraction methodologies that
can be ported to new corpora by a trained final users. In light of the experience above,
the approach and tools proposed in this paper are deemed extremely useful as they
allow engineers to rapidly make sense of the information and data.

The next prototype will incorporate the changes in the user interface pointed out in
this study and will be applied to a larger and heterogeneous data set with the perspec-
tive on incrementally increase the size of the repository when new semantic data will
be made available. Tests done on much larger document repositories show no particu-
lar strain on the technique adopted. A field trial at Rolls-Royce premises in Derby,
UK, with the new prototype and new data is planned for the autumn and will last for a
few months.

 Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data 519

Acknowledgments. The work reported in this paper is part of the X-Media (www.x-
media-project.org) project sponsored by the European Commission as part of the
Information Society Technologies (IST) programme ISTFP6-026978. We are grateful
to Mr. Ravish Bhagdev for providing the triples and the participants who took part
in the evaluation. We are indebted to Mr. Andy Harrison, and Mr. Colin Cadas,
Rolls-Royce plc., for their continuous support and fruitful discussions. Finally we
thank the anonymous VC for their useful comments and their encouragement.

References

1. Aditya, T., Kraak, M.: A Search Interface for an SDI: Implementation and Evaluation of
Metadata Visualization Strategies. Transactions in GIS 11(3), 413–435 (2007)

2. Ahlberg, C., Williamson, C., Shneiderman, B.: Dynamic Queries for Information Explora-
tion: An Implementation and Evaluation. In: CHI 1992, pp. 619–626 (1992)

3. Bhagdev, R., Chakravarthy, A., Chapman, S., Ciravegna, F., Lanfranchi, V.: Creating and
Using Organisational Semantic Webs in Large Networked Organisations. In: Sheth, A.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 723–736. Springer, Heidelberg (2008)

4. Brodbeck, D., Girardin, L.: Using multiple coordinated views to analyze geo-referenced
high-dimensional datasets. In: Proceedings of InfoViz (2003)

5. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using
Vision To Think. Morgan Kaufmann Publishers Inc., San Francisco (1999)

6. Chen, C.: Information Visualization Versus the Semantic Web. In: Geroimenko, V.,
Chen, C. (eds.). Springer, Heidelberg (2003)

7. Dadzie, A.-S., Bhagdev, R., Chakravarthy, A., Chapman, S., Iria, J., Lanfranchi, V.,
Magalhães, J., Petrelli, D., Ciravegna, F.: Applying Semantic Web Technologies to Know-
ledge Sharing in Aerospace Engineering in Journal of Intelligent Manufacturing (June
2008) doi: 10.1007/s10845-008-0141-1

8. Dadzie, A.-S., Lanfranchi, V., Petrelli, D.: Seeing is Believing: Linking Data With Know-
ledge. Information Visualization Human-centered Information Visualization (September
2009)

9. Deligiannidis, L., Kochut, K., Sheth, A.: RDF Data Exploration and Visualization. In:
CISM 2007 (2007)

10. Fan, J., Gao, Y., Luo, H., Keim, D., Li, Z.: A Novel Approach to Enable Semantic and
Visual Image Summarization for Exploratory Image Search. In: Proc. of MIR (2008)

11. Geroimenko, V., Chen, C. (eds.): Visualizing the Semantic Web. Springer, Heidelberg
(2003)

12. Hearst, M.: Search User Interfaces. Cambridge University Press, Cambridge (2009)
13. Hearst, M.: User Interfaces and Visualization. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.)

Modern Information Retrieval. Addison-Wesley, Reading (1999)
14. Heer, J., Card, S., Landay, J.: Prefuse: A toolkit for interactive information visualization.

In: Proc. CHI 2005, pp. 421–430 (2005)
15. Keim, D.: Information Visualization and Visual Data Mining. IEEE transactions on Visua-

lization and Computer Graphics 8(1) (January-March 2002)
16. Klein, G., Moon, B., Hoffman, R.: Making Sense of Sensemaking 1: Alternative Perspec-

tives. IEEE Intelligent Systems (July/August 2006)
17. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid Search: Ef-

fectively Combining Keywords and Semantic Searches. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568.
Springer, Heidelberg (2008)

520 D. Petrelli et al.

18. Marchionini, G.: Exploratory Search: From finding to understanding. CAMC 49(4) (2006)
19. Mutton, P., Golbeck, J.: Visualization of Semantic Metadata and Ontologies. In: 7th Inter-

national Conference on Information Visualization. IEEE Computer Society, Los Alamitos
(2003)

20. Oren, E., Delbry, R., Decker, S.: Extending Faceted Navigation for RDF Data. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006)

21. Petrelli, D., Lanfranchi, V., Moore, P., Ciravegna, F., Cadas, C.: Oh My, Where Is the End
of the Context? Dealing with Information in a Highly Complex Environment. 1st IIiX
(2006)

22. Petrelli, D.: On the Role of User-Centred Evaluations in the Advancement of Interactive
Information Retrieval. In Information Processing and Management 44(1), 22–38 (2008)

23. Schraefel, M.C., Wilson, M., Russell, A., Smith, D.: mSpace: Improving Information
Access to Multimedia Domains with MultiModal Exploratory Search. CACM 49(4),
47–49 (2006)

24. Schraefel, M.C.: Building Knowledge: What’s beyond Keyword Search? IEEE Comput-
er 42(3), 52–59 (2009)

25. Shneiderman, B.: The eyes have it: A task by data type taxonomy of information visualiza-
tion. In: Bederson, B., Shneiderman, B. (eds.) The craft of information visualization.
Morgan Kaufman, San Francisco (2003)

26. Stasko, G., Liu, Z.: Jigsaw: Supporting investigative analysis through interactive visualiza-
tion. Information Visualization 7(2), 118–132 (2008)

27. Stern, E.W.: Organizational memory: Review of concepts and recommendations for man-
agement. International Journal of Information Management, 17–32 (1995)

28. Stuckenschmidt, H., et al.: Exploring Large Document Repositories with RDF Technolo-
gy: The DOPE Project, May/June. IEEE Computer Society, Los Alamitos (2004)

29. Thai, V.T., Handschuh, S., Decker, S.: IVEA: An Information Visualization Tool for Per-
sonalized Exploratory Document Collection Analysis. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 139–153.
Springer, Heidelberg (2008)

30. Thai, V.T., Handschuh, S., Decker, S.: Tight Coupling of Personal Interests with Multi-
dimensional Visualization for Exploration and Analysis of Text Collections. In: 12th Inter-
national Conference Information Visualization IEEE, pp. 121–126 (2008)

31. Tu, K.W., Xiong, M., Zhang, L., Zhu, H.P., Zhang, J., Yu, Y.: Towards Imaging
Large-Scale Ontologies for Quick Understanding and Analysis. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 702–715.
Springer, Heidelberg (2005)

32. Van Welie, M., van der Veer, G.C., Eliens, A.: Breaking down Usability. In: Proc.
INTERACT 1999, pp. 613–620 (1999)

33. White, R., Marchionini, G., Muresan, G.: Evaluating exploratory search systems. Informa-
tion Processing Management 44(2), 433–436 (2008)

34. Wilson, M., Schraefel, M.C.: Improving Exploratory Search Interfaces: Adding Values or
Information Overload?

35. Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and Quantum Treemaps: Mak-
ing Effective Use of 2D Space to Display Hierarchies. ACM Transactions on Graphics
(TOG) 21(4), 833–854 (2002)

36. Perer, A., Shneiderman, B.: Integrating statistics and visualization: case studies of gaining
clarity during exploratory data analysis. In: CHI 2008 (2008)

A Conflict-Based Operator for Mapping Revision
Theory and Implementation

Guilin Qi1,2, Qiu Ji1, and Peter Haase1

1 Institute AIFB, University of Karlsruhe, Germany
{gqi,qiji,pha}@aifb.uni-karlsruhe.de

2 School of Computer Science and Engineering
Southeast University�, Nanjing 210096

Abstract. Ontology matching is one of the key research topics in the
field of the Semantic Web. There are many matching systems that gener-
ate mappings between different ontologies either automatically or semi-
automatically. However, the mappings generated by these systems may
be inconsistent with the ontologies. Several approaches have been pro-
posed to deal with the inconsistencies between mappings and ontologies.
This problem is often called a mapping revision problem, as the ontolo-
gies are assumed to be correct, whereas the mappings are repaired when
resolving the inconsistencies. In this paper, we first propose a conflict-
based mapping revision operator and show that it can be characterized
by two logical postulates adapted from some existing postulates for be-
lief base revision. We then provide an algorithm for iterative mapping
revision by using an ontology revision operator and show that this algo-
rithm defines a conflict-based mapping revision operator. Three concrete
ontology revision operators are given to instantiate the iterative algo-
rithm, which result in three different mapping revision algorithms. We
implement these algorithms and provide some preliminary but interest-
ing evaluation results.

1 Introduction

Next generation semantic applications are employed by a large number of on-
tologies, some of them constantly evolving. As the complexity of semantic appli-
cations increases, more and more knowledge is embedded in ontologies, typically
drawn from a wide variety of sources. This new generation of applications thus
likely relies on a set of distributed ontologies, typically connected by mappings.
One of the major challenges in managing these distributed and dynamic on-
tologies is to handle potential inconsistencies introduced by integrating multiple
distributed ontologies.

For inconsistency handling in single, centralized ontologies, several approaches
are known (see the survey in [7]). Recently, there are some works done on han-
dling inconsistency in distributed ontologies connected by mappings, where a
mapping between two ontologies is a set of correspondences between entities
in the ontologies. In a distributed system consisting of two ontologies and a
� New affiliation since September 2009.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 521–536, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

522 G. Qi, Q. Ji, and P. Haase

mapping between them, correspondences in the mapping can have different in-
terpretations. For example, in Distributed Description Logics (DDL) [3], a cor-
respondence in a mapping is translated into two bridge rules that describe the
“flow of information” from one ontology to another one. In [13], the authors deal
with the problem of mapping revision in DDL by removing some bridge rules
which are responsible for the inconsistency. The idea of their approach is similar
to that of the approaches for debugging and repairing terminologies in a single
ontology. Mappings can also be interpreted as sets of axioms in a description
logic. A heuristic method for mapping revision is given in [12]. However, this
method can only deal with inconsistency caused by disjointness axioms which
state that two concepts are disjoint. Later on, Meilicke et al. proposed another
algorithm to resolve the inconsistent mappings in [15]. The idea of their algo-
rithm is similar to the linear base revision operator given in [16]. However, both
methods given in [12] and [15] lack a rationality analysis w.r.t. logical properties.

In this paper, we first propose a conflict-based mapping revision operator
based on the notion of a “conflict set”, which is a subset of the mapping that is
in conflict with ontologies in a distributed system. We then adapt two postulates
from belief revision theory [8] and show that our mapping revision operator can
be characterized by them (see Section 3). After that, in Section 4, we provide
an iterative algorithm for mapping revision by using a revision operator in de-
scription logics and show that this algorithm results in a conflict-based mapping
revision operator. We define a revision operator and show that the iterative al-
gorithm based on it produces the same results as the algorithm given in [15].
This specific iterative algorithm has a polynomial time complexity if the satis-
fiability check of an ontology can be done in polynomial time in the size of the
ontology. However, this algorithm may still be inefficient for large ontologies and
mappings, because it requires a large number of satisfiability checks. Therefore,
we provide an algorithm to implement an alternative revision operator based
on the relevance-based selection function given in [11] which can be optimized
by a module extraction technique given in [22]. Neither of the above proposed
revision operators removes minimal number of correspondences to resolve in-
consistencies. To better fulfil the principle of minimal change, we consider the
revision operator given in [19] which utilizes a heuristics based on a scoring func-
tion which returns the number of minimal incoherence-preserving sub-ontologies
(MIPS) that an axiom belongs to. Instantiating our iterative algorithm with
this existing revision operator results in a new conflict-based mapping revision
operator. Finally, we implement these algorithms and provide evaluation results
for comparing their efficiency and effectiveness in Section 5.

Relationship with belief revision. This work is related to belief revision which
has been widely discussed in the literature [5,10]. Our conflict-based mapping
revision operator is inspired by the internal revision operator given in [8], and
the postulate used to characterize our mapping revision operator is adapted
from a postulate for internal revision operator given in [8]. The problem of
mapping revision is not exactly the same as the problem of belief base revision
because the mapping to be revised is dependent on ontologies in the distributed

A Conflict-Based Operator for Mapping Revision 523

system and each correspondence in the mapping carries a confidence value which
can be used to guide the revision. Our iterative algorithm is inspired by the
iterative revision algorithm given in [18] and is tailored to produce a conflict-
based revision operator.

2 Preliminaries

We assume that the reader is familiar with Description Logics (DL) and refer
to Chapter 2 of the DL handbook [1] for a good introduction. Our method is
independent of a specific DL language, and thus can be applied to any DL.

A DL-based ontology (or knowledge base) O = (T ,R) consists of a set T of
concept axioms (TBox) and a set R of role axioms (RBox). In this paper, we treat
O as a set of axioms. Concept axioms (or terminology axioms) have the form
C � D, where C and D are (possibly complex) concept descriptions built from
a set of concept names and some constructors, and role axioms are expressions
of the form R�S, where R and S are (possibly complex) role descriptions built
from a set of role names and some constructors.

An interpretation I = (�I , ·I) consists of a non-empty domain set �I and an
interpretation function ·I , which maps from concepts and roles to subsets of the
domain and binary relations on the domain, respectively. Given an interpretation
I, we say that I satisfies a concept axiom C � D (resp., a role inclusion axiom
R � S) if CI⊆DI (resp., RI ⊆ SI). An interpretation I is called a model of
an ontology O, iff it satisfies each axiom in O. A concept C in an ontology O is
unsatisfiable if for each model I of O, CI = ∅. An ontology O is incoherent if
there exists an unsatisfiable concept in O.

Given two ontologies O1 and O2, describing the same or largely overlapping
domains of interest, we can define correspondences between their elements.

Definition 1. [4] Let O1 and O2 be two ontologies, Q be a function that de-
fines sets of mappable elements Q(O1) and Q(O2). A correspondence is a 4-tuple
〈e, e′, r, α〉 such that e ∈ Q(O1) and e′ ∈ Q(O2), r is a semantic relation, and
α is a confidence value from a suitable structure 〈D,≤〉, such as a lattice. A
mapping M is a set of correspondences.

In Definition 1, there is no restriction on function Q, semantic relation r and
domain D. In the mapping revision scenario, we often consider correspondences
between concepts and restrict r to be one of the semantic relations from the
set {≡,�,�}, and let D = [0, 1]. A mapping is a set of correspondences whose
elements are mappable. The following definition is adapted from the definition
of a distributed system given in [23].

Definition 2. A distributed system is a triple D = 〈O1, O2,M〉, where O1 and
O2 are ontologies and M is a mapping between them. We call O1 the source
ontology and O2 the target ontology.

Example 1. Take the two ontologies CRS and EKAW in the domain of conference
management systems as an example. They contain the following axioms:

524 G. Qi, Q. Ji, and P. Haase

crs : article � crs : document, crs : program � ¬crs : document,
ekaw : Paper � ekaw : Document, ekaw : Workshop Paper � ekaw : Paper
ekaw : Conference Paper � ekaw : Paper, ekaw : PC Member � ekaw : Possible Reviewer,

The correspondences in the mapping M between O1 and O2 which is obtained
by the ontology matching system HMatch are listed as follows:

m1 : 〈crs : article, ekaw : Conference Paper, �, 0.65〉
m2 : 〈ekaw : Workshop Paper, crs : article, �, 0.65〉
m3 : 〈ekaw : Document, crs : program, �, 0.80〉
m4 : 〈crs : program, ekaw : Document, �, 0.80〉
m5 : 〈crs : document, ekaw : Document, �, 0.93〉

Definition 3. [13] Let D = 〈O1, O2,M〉 be a distributed system. The union
O1 ∪M O2 of O1 and O2 connected by M is defined as O1 ∪M O2 = O1 ∪ O2 ∪
{t(m) : m ∈ M} with t being a translation function that converts a correspon-
dence into an axiom in the following way: t(〈C,C′, r, α〉) = CrC′.

That is, we first translate all the correspondences in the mapping M into
DL axioms, then the union of the two ontologies connected by the mapping
is the set-union of the two ontologies and the translated axioms. Given D =
〈O1, O2,M〉, we use Union(D) to denote O1 ∪M O2. Take a correspondence in
Example 1 as an example, we have t(〈crs:article, ekaw:Conference Paper,�, 0.65〉)
= crs:article � ekaw:Conference Paper.

Definition 4. [12] Given a mapping M between two ontologies O1 and O2, M
is consistent with O1 and O2 iff there exists no concept C in Oi with i ∈ {1, 2}
such that C is satisfiable in Oi but unsatisfiable in O1 ∪M O2. Otherwise, M
is inconsistent. A distributed system D = 〈O1, O2,M〉 is inconsistent if M is
inconsistent with O1 and O2.

An inconsistent mapping is a mapping such that there is a concept that is satis-
fiable in a mapped ontology but unsatisfiable in the union of the two ontologies
together with the mapping. In Example 1, since ekaw:Workshop Paper is satisfi-
able in both O1 and O2 but unsatisfiable in O1 ∪M O2, M is inconsistent. Note
that O1 ∪O2 must be coherent if both O1 and O2 are coherent because they use
different name spaces.

Definition 5. A mapping revision operator ◦ is a function ◦〈O1, O2,M〉 =
〈O1, O2,M′〉 such that M′ ⊆ M, where O1 and O2 are two ontologies and
M is a mapping between them.

Our definition of a mapping revision operator is similar to the definition of
a revision function given in [14]. When repairing the mapping in a distributed
system, we assume that ontologies are more reliable than the mapping and there-
fore only remove correspondences in the mapping to restore consistency. This
makes the problem of mapping repair akin to the problem of belief revision.
Thus we call the problem of repairing mappings mapping revision. However,
this definition is very general and allows mapping revision operators that re-
sult in unintuitive results. That is, we can define two naive revision operators

A Conflict-Based Operator for Mapping Revision 525

◦Full〈O1, O2,M〉 = 〈O1, O2, ∅〉 and ◦Null〈O1, O2,M〉 = 〈O1, O2,M〉. In belief
revision, the rationality of a revision operator is often evaluated by logical pos-
tulates. In this work, we will define a mapping revision operator and show that
it can be characterized by an important logical postulate.

3 A Conflict-Based Mapping Revision Operator

In this section, we propose a method for mapping revision based on the idea of
kernel contractions defined by Hansson in [9]. We adapt the notion of a minimal
conflict set of a distributed system given in [13] as follows.

Definition 6. Let 〈O1, O2,M〉 be a distributed system. A subset C of M is a con-
flict set for a concept A in Oi (i = 1, 2) if A is satisfiable in Oi but unsatisfiable
in O1 ∪C O2. C is a minimal conflict set (MCS) for A in Oi if C is a conflict set
for A and there exists no C′ ⊂ C which is also a conflict set for A in Oi.

A minimal conflict set for a concept in one of the ontologies is a minimal subset
of the mapping that, together with the ontologies, is responsible for the unsat-
isfiability of the concept in the distributed system. It is similar to the notion of
a kernel in [9]. Note that if Oi (i = 1, 2) is incoherent, then it is meaningless to
define the notion of a MCS for an unsatisfiable concept. We use MCSO1,O2(M)
to denote the set of all the minimal conflict sets for all unsatisfiable concepts
in O1 ∪C O2. It corresponds to the notion of a kernel set in [9]. In Example 1,
MCSCRS,EKAW (M) = {{t(m1), t(m3)}, {t(m2), t(m3)}, {t(m3), t(m5)}, {t(m1),
t(m2), t(m3)}, {t(m2), t(m3), t(m5)}}.

Hansson’s kernel contraction removes formulas in a knowledge base through
an incision function, which is a function that selects formulas to be discarded.
However, we cannot apply the notion of an incision function to mapping revision
directly because the mapping to be revised is dependent on the ontologies in the
distributed system. Therefore, the problem of mapping revision is not exactly
the same as the problem of belief revision where the two knowledge bases may
come from different sources. Furthermore, each correspondence in the mapping
carries a confidence value which can be used to guide the revision. We use D and
M to denote the set of all the distributed systems and the set of all the subsets
of mappings in all distributed systems.

Definition 7. An incision function σ: D → M is a function such that for any
distributed system D = 〈O1, O2,M〉, we have

(i) σ(D) ⊆
⋃

(MCSO1,O2(M));
(ii) if C �= ∅ and C ∈ MCSO1,O2(M), then C ∩ σ(D) �= ∅;
(iii) if m = 〈C,C′, r, α〉 ∈ σ(D), then there exists C ∈ MCSO1,O2(M) such that

m ∈ C and α = min{αi : 〈Ci, C
′
i, ri, αi〉 ∈ C}.

The first two conditions say that an incision function selects from each kernel
set at least one element. The third condition says that if a correspondence is
selected by an incision function, then there must exist a MCS C such that its

526 G. Qi, Q. Ji, and P. Haase

confidence value is the minimal confidence value of correspondences in C. Go-
ing back to Example 1, the incision function σ may select m1, m2 and m3 to
resolve inconsistency.

We define our mapping revision operator based on an incision function.

Definition 8. A mapping revision operator ◦ is called a conflict-based mapping
revision operator if there exists an incision function σ such that:

◦〈O1, O2,M〉 = 〈O1, O2,M\ σ(MCSO1,O2(M))〉.

That is, we remove those correspondences in M that are selected by the inci-
sion function to restore consistency. We provide the representation theorem for
conflict-based mapping revision. Before that, we need to define the notion of an
inconsistency degree of a distributed system for a concept. Given a distributed
system D = 〈O1, O2,M〉, a concept A in Oi (i = 1, 2) is unsatisfiable in D if A
is unsatisfiable in O1 ∪M O2.

Definition 9. Given D = 〈O1, O2,M〉, the β-cut (resp. strict β-cut) set of D,
denoted as D≥β (resp. D>β), is defined as D≥β = 〈O1, O2, {〈C,C′, r, α〉 ∈ M :
α ≥ β}〉 (resp. D>β = 〈O1, O2, {〈C,C′, r, α〉 ∈ M : α > β}〉).

The β-cut set of D is a distributed system consisting of O1, O2 and correspon-
dences in the mapping whose confidence values are greater than or equal to β.
It is adapted from the notion of cut set in possibilistic DL in [20]. In Example 1,
D>0.65 = 〈O1, O2, {t(m3), t(m4), t(m5)}〉.

Definition 10. Given D = 〈O1, O2,M〉, the inconsistency degree of D for a
concept A in Oi (i = 1, 2), denoted by Inc(D)A, is defined as Inc(D)A =
max{α : A is unsatisfiable in D≥α}. The inconsistency degree of D, denoted
as Inc(D), is defined as Inc(D) = max{α : there exists an unsatisfiable concept
in D≥α}.

It is easy to check that Inc(D) = max{α : D≥α is inconsistent}. In Example 1,
D≥0.93 is consistent but D≥0.8 is inconsistent since ekaw:Workshop Paper is un-
satisfiable. Thus, Inc(D) = 0.8.

We give a postulate for mapping revision by generalizing the postulate (Rele-
vance) for the internal partial meet revision operator given in [8]. It says that if
a correspondence is removed from the mapping after revision, then it must be in
a conflict set of the mapping for a concept and the confidence degree attached
to it is minimal among all the confidence degrees in the conflict set.

Postulate (Relevance). Suppose ◦〈O1, O2,M〉 = 〈O1, O2,M′〉, if m = 〈C,C′,
r, α〉 ∈ M and m �∈ M′, then there exists a concept A in Oi (i = 1, 2) and a
subset S of M such that A is satisfiable in 〈O1, O2,S〉 but is unsatisfiable in
〈O1, O2,S ∪ {m}〉 and Inc(〈O1, O2,S ∪ {m}〉)A = α.

Relevance is an important postulate for minimal change. However, it does not
constrain the number of correspondences to be removed. Therefore, it does not
entail minimal change.

A Conflict-Based Operator for Mapping Revision 527

Algorithm 1. An iterative algorithm for mapping revision
Data: A distributed system D = 〈O1, O2,M〉 and a revision operator �
Result: A repaired distributed system D� = 〈O1, O2,M�〉
begin1

if either O1 or O2 is incoherent then2
return D3

Rearrange the weights in M such that β1>β2>...>βl > 0;4
Si := {t(〈C, C′, r, α〉) : 〈C, C′, r, α〉∈M, α = βi}, i = 1, ..., l;5
while M in D is inconsistent do6

if βk = Inc(D) then7
St := Sk \ (Sk � (Union(D)>βk

));8
M := M\ {〈C, C′, r, α〉 : t(〈C, C′, r, α〉) ∈ St, α = βk};9

return D10
end11

We also need another postulate called Consistency.

Postulate (Consistency). For any D = 〈O1, O2,M〉 where Oi are coherent,
◦〈O1, O2,M〉 is a consistent distributed system.

The following theorem shows that our conflict-based mapping revision op-
erator can be characterized by the postulates (Relevance) and (Consistency).

Theorem 1. The operator ◦ is a conflict-based mapping revision operator if and
only if it satisfies (Relevance) and (Consistency).

To show the if direction of the theorem, we can construct σ(D) = M \ M′ for
D = 〈O1, O2,M〉 and ◦(D) = 〈O1, O2,M′〉, then show that σ is an incision func-
tion. Unlike revision operators given in [8], our conflict-based mapping revision
operator is characterized by only two postulates. This is because the definition
of a conflict already gives some constraints on how we can repair a mapping.
According to Definition 5, ontologies in the distributed systems are not changed
and revised mapping must be a subset of the original one. These two conditions
correspond to (Success) and (Inclusion) for revision operators given in [8].

4 An Algorithm for Mapping Revision

In this section, we give an algorithm for mapping revision based on an ontology
revision operator and then present some concrete ontology revision operators.

4.1 Algorithm

We describe the idea of our algorithm (Algorithm 1) as follows. Given a dis-
tributed system D = 〈O1, O2,M〉, if either O1 or O2 is incoherent, then we
take D as the result of revision. That is, no change is needed. Suppose M =
{〈Ci, C

′
i, ri, αi〉 : i = 1, ..., n} where n is the number of correspondences in M. Let

us rearrange the weights of axioms (i.e., αi) in M such that β1>β2>...>βl > 0,
where βi (i = 1, ..., l) are all the distinct weights appearing in M. For each i ∈
{1, ..., l}, Si consists of translated axioms of correspondences in M which have
the confidence value βi. Suppose Inc(D) = βk. We revise Sk by Union(D>βk

).

528 G. Qi, Q. Ji, and P. Haase

Suppose St is the set of axioms in Sk that are removed after revision of Sk by
Union(D>βk

) using the operator !. We then remove the correspondences in M
that have confidence values βk and are mapped to axioms in St by the translation
function t. We iterate the revision process until the mapping becomes consistent.

In Algorithm 1, we need to compute the inconsistency degree of a distributed
system. This can be easily done by adapting the algorithm for computing the
inconsistency degree in [20] so we do not bother to provide it here.

We have not specified a revision operator in Algorithm 1. However, we require
that the revision operator ! used in the algorithm satisfy the following properties
which are similar to the postulates Inclusion, Success and Core-retainment for
kernel revision operator given in [9]:

– Inclusion: O ! O′ ⊆ O ∪O′;
– Success: O′ ⊆ O ! O′;
– Core-retainment: if φ ∈ O and φ �∈ O ! O′, then there exist a concept A in
O ∪ O′ and a subset Os of O, such that A is satisfiable in Os ∪ O′ but is
unsatisfiable in Os ∪O′ ∪ {φ}.

It is clear that Algorithm 1 generates a mapping revision operator. We show
that this operator is a conflict-based mapping revision operator.

Theorem 2. Suppose ! satisfies Inclusion, Success and Core-retainment, and
◦ is a mapping revision operator such that, for any distributed system D, ◦(D) is
the result of Algorithm 1 with ! as an input parameter, then ◦ is a conflict-based
mapping revision operator.

4.2 Concrete Revision Operators

We first give a simple revision operator which is adapted from the linear base
revision operator given in [16]. By SORT we denote a procedure that for each
ontology O = {φ1, ..., φn}, randomly ranks its elements as an ordered sequence
(φ1, ..., φn). Let O and O′ be two ontologies, and let SORT(O) = {φ1, ..., φn}, the
random linear base revision operator, denoted as ◦linear , is defined inductively
as follows O ◦linear O

′ = O′ ∪ S1 ∪ ... ∪ Sn, where Si is defined by Si = {φi} if
{φi}∪O′∪

⋃i−1
j=1 Sj is coherent, ∅ otherwise, for i ≥ 1. It is easy to check that this

revision operator satisfies conditions Inclusion, Success and Core-retainment. We
show that the algorithm given in [15] is a special case of our iterative algorithm
where the operator ◦linear is chosen.

Proposition 1. For any distributed system D = 〈O1, O2,M〉 where O1 and
O2 are coherent, suppose D◦linear

is the result of revision by Algorithm 1, then
D◦linear

can be obtained by the algorithm given in [15] as well.

As shown in [15], their algorithm only needs at most n satisfiability check, where
n is the number of correspondences. Therefore, our iterative algorithm based on
the revision operator ◦linear has a polynomial time complexity if the satisfiability
check can be done in polynomial time in the size of union of ontologies and the
mapping. However, this algorithm requires to rank correspondences with the
same confidence value and there is no good principle to guide this ranking.

A Conflict-Based Operator for Mapping Revision 529

Table 1. Relevance-based mapping revision algorithm

REL REVISION(O, O′) CONF(C, O, O′)
Input: Two ontologies O and O′ Input: Two ontologies O and O′, and an

unsatisfiable concept C of O ∪ O′

Output: A revised ontology O � O′ Output: A hitting set hs in O for C w.r.t. O′

(1) Global : J ← ∅; (1) hs ← ∅ ;
(2) HS ← ∅; (2) while((O \ hs) ∪ O′ |= C � ⊥){
(3) for(C ∈ AllUnsatConcepts(O ∪ O′)){ (3) J ← SINGLE CONFLICT(C, O \ hs, O′);
(4) k ← 1; (4) J ← J ∪ {J}
(5) Ot ← hs ← ∅; (5) hs = hs ∪ {φ} for some φ ∈ J;
(6) while(sk(O ∪ O′, C) �= ∅){ (6) }
(7) Ot ← Ot ∪ sk(O ∪ O′, C); (7) return hs;
(8) if(hs �= ∅){
(9) if((O \ hs) ∪ O′ �|= C � ⊥)
(10) break;
(11) hs ← CONF(C, Ot ∩ (O \ hs), Ot ∩ O′);
(12) HS ← HS ∪ hs;
(13) }else if(Ot |= C � ⊥){
(14) hs ← CONF(C, Ot ∩ O, Ot ∩ O′);
(15) HS ← HS ∪ hs;
(16) }
(17) k ← k + 1;
(18) } (end while)
(19) } (end for)
(20) return (O \ HS) ∪ O′;

Furthermore, if the size of the union of ontologies and the mapping is big, then
the algorithm may still be inefficient because it will need a large number of
satisfiability checks over the union.

In the following, we present an algorithm REL REVISION (see Table 1) to
implement another concrete revision operator based on the relevance-based se-
lection function. The motivation behind the algorithm is that when choosing be-
tween two correspondences to remove, we always remove the one which is more
relevant to an unsatisfiable concept and thus is more likely to be problematic.

Given two axioms φ and ψ, φ is directly relevant to ψ iff there is an overlap
between the signature of φ and the signature of ψ, where the signature of an
axiom is the set of all concept names, role names and individual names appearing
in it. Based on the notion of direct relevance, we can extend it to relevance
relation between an axiom and an ontology. An axiom φ is relevant to an ontology
O iff there exists an axiom ψ in O such that φ and ψ are directly relevant. We
introduce a selection function defined in [11].

Definition 11. [11] Let O be an ontology, φ be an axiom and k be an integer. The
relevance-based selection function, written srel, is defined inductively as follows:
srel(O, φ, 0) = ∅
srel(O, φ, 1) = {ψ ∈ O : φ is directly relevant to ψ}
srel(O, φ, k) = {ψ ∈ O : ψ is directly relevant to srel(O, φ, k − 1)}, where k > 1.

We call srel(O, φ, k) the k-relevant subset of O w.r.t. φ. For convenience, we
define sk(O, φ) = srel(O, φ, k) \ srel(O, φ, k − 1) for k ≥ 1.

Our algorithm REL REVISION is based on Reiter’s Hitting Set Tree (HST) al-
gorithm [21]. Given a universal set U , and a set K = {s1, ..., sn} of subsets of

530 G. Qi, Q. Ji, and P. Haase

U which are conflict sets, i.e. subsets of the system components responsible for
the error, a hitting set T for K is a subset of U such that si ∩ T �= ∅ for all
1 ≤ i ≤ n. To adapt HST algorithm to deal with revision of ontologies in DLs,
we define the notion of a minimal conflict set of an ontology O for a concept C
w.r.t. another ontology O′. A subset Os of O is called a minimal conflict set of
O for C w.r.t. O′, if (1) C is unsatisfiable in Os ∪ O′ and (2) for any Ot ⊂ Os,
C is satisfiable in Ot ∪O′. A more general definition of a minimal conflict set is
given in [2], where it is called a minimal axiom set.

In REL REVISION, we handle unsatisfiable concepts in the union of the mapped
ontologies and the ontology translated from the mapping one by one until we
resolve the inconsistency. For each unsatisfiable concept to be handled, we first
select axioms that are relevant to it iteratively by the relevance-based selec-
tion function until the concept is unsatisfiable in these axioms. sk(O,C) is
the abbreviation of sk(O,C � ⊥). We find a hitting set for the selected sub-
ontologies by calling the procedure CONF and update the existing incomplete
hitting set HS. We then add to the selected sub-ontologies those axioms that
are directly relevant to them and further expand the hitting set tree by call-
ing to procedure CONF. We continue this process until the inconsistency is
resolved. The procedure SINGLE CONFLICT computes a minimal conflict set
of O for C w.r.t. O′. This kind of procedure can be found in the literature,
such as GETMUPS in [19]. It is possible that some axioms that are involved
in a conflict set are not selected by the selection function. Therefore, when
sk(O ∪ O′, C) = ∅, we still have (O \ HS) ∪ O′ |= C � ⊥, then we set
sk(O∪O′, C) = (O∪O′)\srel(O∪O′, C � ⊥, k−1). Note that our algorithm may
not remove minimal number of correspondences to resolve inconsistency because
we only expand one branch of the hitting set tree in a depth-first manner. This is
compensated by higher efficiency. Furthermore, although our algorithm does not
remove minimal number of correspondences, the removals of correspondences are
guided by a relevance-based selection function to improve the quality of removal.
It is easy to see that the revision operator obtained by REL REVISION satisfies
conditions Inclusion, Success and Core-retainment.

In REL REVISION, to resolve an unsatisfiable concept C in O∪O′, we need to
compute some minimal conflict sets of O for C w.r.t. O′. The time complexity
of REL REVISION depends on the DL under consideration. In the worst case,
i.e., all the minimal conflict sets of all the unsatisfiable concepts are disjoint, our
algorithm needs to compute all the minimal conflict sets for all the unsatisfiable
concepts, which is a hard task [17]. For instance, the number of all the mini-
mal conflict sets for an unsatisfiable concept is exponential in the worst case for
lightweight ontology language EL+ [2]. However, the average case complexity
will be considerably lower: For many real ontologies, the number of all minimal
conflict sets for an unsatisfiable concept is much less than the size of the ontol-
ogy. Our algorithm usually does not compute all the minimal conflict sets for
an unsatisfiable concept. Another complexity of our algorithm comes from the
computation of a minimal conflict set, which is as hard as satisfiability checking
of the underlying DL. Despite the high complexity of our algorithm, fortunately,

A Conflict-Based Operator for Mapping Revision 531

there is an optimization technique to improve its efficiency. That is, for each un-
satisfiable concept to be handled, we extract a so-called syntactic locality-based
module [6] from O ∪O′ which contains all the minimal conflict sets of O for C
w.r.t. O′. The module extraction step can be added between line 6 and line 7
in REL REVISION. The correctness of our modified algorithm is ensured by the
fact that the locality-based module contains all the minimal sub-ontologies of an
ontology that are responsible for unsatisfiability of a concept shown in in [22].

Example 2. To illustrate our iterative algorithm (i.e. Algorithm 1) based on
REL REVISION, we follow Example 1. First of all, we need to reorder all distinct
confidence values in a descending order β1 = 0.93 > β2 = 0.8 > β3 = 0.65
and the corresponding layers of correspondence axioms are S1 = {t(m5)}, S2 =
{t(m3), t(m4)} and S3 = {t(m1), t(m2)} respectively. Then, we go into line 6
since M is inconsistent. We obtain the inconsistency degree of D as 0.8. So
k = 2. As we know that β2 = 0.8, we use Union(D>0.8) to revise S2 and the
revision result is (S2 \{t(m3)})∪Union(D>0.8) according to REL REVISION (see
“Illustration of REL REVISION” below). Therefore, we remove m3 from M (see
line 9). Then we go to another iteration of the while loop. Since the modified M
becomes consistent when m3 is removed from it, the whole process of Algorithm 1
can be terminated and the result is D� = 〈O1, O2,M\ {m3}〉.
Illustration of REL REVISION: The input is O = S2 and O′ = Union(D>0.8).
Suppose the first found unsatisfiable concept is article. We keep on selecting
the k-relevant axioms in O ∪ O′ w.r.t. the concept article until Ot = O ∪ O′

(i.e. article becomes unsatisfiable in Ot). Then we go to line 14 and get the
minimal conflict set {t(m3)} of O w.r.t. O′ and a hitting set hs = {t(m3)} (see
“Illustration of CONF” below). So HS = {t(m3)}. After this, we go to another
iteration of the while loop. Since all the axioms in O have been selected, we can
terminate the process and return (S2 \ {t(m3)}) ∪ Union(D>0.8).

Illustration of CONF: The input is C = article, O = S2 and O′=Union(D>0.8)
for CONF. First of all, we compute a MCS J = {t(m3)} in line 3. Since only
one axiom in J , we get hs = {t(m3)} in line 5. We return {t(m3)} and update
J = {t(m3)}.

Neither of the above proposed revision operators removes minimal number
of correspondences to resolve inconsistencies. To better fulfil minimal change,
we consider the revision operator given in Algorithm 1 in [19] which utilizes a
heuristics based on a scoring function which computes the number of minimal
incoherence-preserving sub-ontologies (MIPS) that an axiom belongs to. It is
not difficult to check that this revision operator satisfies conditions Inclusion,
Success and Core-retainment. A MIPS of ontology O w.r.t. another ontology
O′ is a minimal sub-ontology of O that is incoherent with O′. Instantiating our
iterative algorithm with this operator results in a new conflict-based mapping
revision operator. The disadvantage of this revision operator is that it needs to
all the MIPSs obtained from all the minimal conflict sets of O for any concept
w.r.t. O′ by using a modified hitting set tree algorithm, thus its computational
complexity is at least harder than those of previous revision operators.

532 G. Qi, Q. Ji, and P. Haase

5 Experimental Evaluation

In this section, we present the evaluation results of our algorithms by compar-
ing them with existing algorithms. Our algorithms were implemented with the
KAON2 API1, using KAON2 as a black box reasoner. To fairly compare with the
mapping repair algorithms in [13] and [15], we re-implemented them using the
KAON2 API. More precisely, the following algorithms have been evaluated:

– Weight-based-One: Compute one minimal conflict subset each time and
remove an element in it with lowest weights (see [13]).

– Linear: Our iterative algorithm based on the random linear base revision
operator (it is equivalent to the algorithm given in [15]).

– Weight-based-All: Compute all minimal conflict subsets for an unsatisfiable
concept and then resolve the unsatisfiability based on weights (see Algorithm
3 in [19]).

– Relevance-based: Our iterative algorithm based on the revision operator
REL REVISION defined in Table 1.

– Score-based: Our iterative algorithm based on the revision operator defined
by Algorithm 1 in [19].

All of the experiments were performed on a Linux server with an Intel(R) CPU
Xeon(TM) 3.2GHz running Sun’s Java 1.5.0 with allotted 2GB heap space. Our
system2 including the implementation of the five algorithms can be downloaded,
together with all the data sets and results.

5.1 Data Sets

We use the ontology matching data sets available in OAEI’083 (Ontology Align-
ment Evaluation Initiative), which provides a platform for evaluating ontology
matching systems. For our experiments, the following individual ontologies in
the domain of scientific conferences are used: confOf with 197 axioms, ekaw with
248 axioms and cmt with 246 axioms. The pairwise mappings have been gen-
erated by the matching systems participating in OAEI.4 For simplicity, we use,
for example, confOf-ekaw-DSSim to indicate a distributed system consisting of
individual ontologies confOf and ekaw and a mapping between them which is
generated by system DSSim.

5.2 Evaluation Results

We evaluated our algorithms with respect to the following measures: efficiency,
scalability and correctness.

Efficiency and Scalability. To measure efficiency and scalability of the algorithms,
we considered revision time, which includes the time used to check whether a
1 http://kaon2.semanticweb.org/
2 http://radon.ontoware.org/downloads/mapping-revision-09.zip
3 http://oaei.ontologymatching.org/2008/
4 In addition, we use FOAM (http://ontoware.org/projects/map/) to generate map-

pings by applying only some simple string-based algorithms.

http://kaon2.semanticweb.org/
http://radon.ontoware.org/downloads/mapping-revision-09.zip
http://oaei.ontologymatching.org/2008/
http://ontoware.org/projects/map/

A Conflict-Based Operator for Mapping Revision 533

0

10

20

30

40

50

60

confOf-ekaw-DDSim cmt-ekaw-FOAM

Data Sets

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Weight-based-One Linear Weight-based-All
Relevance-based Score-based

0

600

1200

1800

2400

3000

3600

4200

100 100 100 100 200 400 100

1000 2000 3000 4000 5000

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Weight-based-One Linear Weight-based-All
Relevance-based Score-based

New_Corre-
pondences

New_Axioms

Fig. 1. The revision time of the algorithms

mapping is inconsistent and the time used to resolve inconsistencies. If a module
extraction algorithm was applied, the time used to extract modules was also in-
cluded. To test the efficiency of an algorithm, we continuously ran it for 30 times
and took the average revision time. We have done the experiment based on the
distributed systems D1 :confOf-ekaw-DSSim and D2 :cmt-ekaw-FOAM.

The left part of Figure 1 shows the average revision time over all runs for
each algorithm. From this part we can see that for D1 and D2 which contain rel-
atively small size of ontologies (i.e. no more than 250 axioms for each individual
ontology) with mappings consisting of few correspondences (e.g. 19 and 55 cor-
respondences for the mappings in D1 and D2 separately), Linear outperforms all
the others. The second observation is that our Relevance-based outperforms all
the others except Linear. It is because we expand only one branch of the hitting
set tree in a depth-first manner and we apply the module extraction to optimize
expanding the hitting set tree. Score-based has the worst performance for D1
but performs better for D2. This is because all correspondences in the mapping
of D1 have the same weights so Score-based needs to compute all the minimal
conflict sets for all unsatisfiable concepts in D1, whilst the correspondences in
the mapping of D2 can be stratified by their weights so we only need to compute
some minimal conflict sets. Another observation is that Weight-based-All does
not perform well for D2 since it needs to compute all the minimal conflict sets
for an unsatisfiable concept in each iteration.

In the right part, we show the scalability of the algorithms using the extended
data sets based on D3 :cmt-ekaw-Lily. This experiment is used to show that Lin-
ear may perform worse than some other algorithms if there are many axioms and
correspondences that are not involved in the conflict sets. Here #New Axioms
means the number of axioms which are newly added to each individual on-
tology. #New Correspondences indicates the number of newly added correspon-
dences. Take the first column in the right part of Figure 1 as an example, we
added 1000 dummy axioms to cmt and ekaw respectively and 100 dummy cor-
respondences between the newly introduced concepts. Similarly we constructed
other data sets by adding more axioms and correspondences. According to the
right part of Figure 1, when adding more axioms and correspondences to D3,
Weight-based-one and Linear perform worse and worse. In contrast, the other three
algorithms are optimized by applying the module extraction technique and thus
gain the advantage over Weight-based-one and Linear in the scalability test.

534 G. Qi, Q. Ji, and P. Haase

Table 2. Correctness of the algorithms

Distributed Algorithm Repair precision Repair recall
Systems Max(Pri) Avg(Pri) Min(Pri) Max(Rri) Avg(Rri) Min(Rri)

Weight-based-One 1.00 0.73 0.55 0.89 0.71 0.56
confOf− Linear 1.00 0.75 0.50 0.78 0.67 0.56
ekaw− Weight-based-All 1.00 0.81 0.56 0.78 0.71 0.56
DSSim Relevance-based 0.89 0.72 0.50 0.89 0.72 0.56

Score-based 0.86 0.86 0.86 0.67 0.67 0.67
Weight-based-One 1.00 0.96 0.94 0.66 0.62 0.60

cmt− Linear 1.00 0.97 0.93 0.56 0.56 0.56
ekaw− Weight-based-All 1.00 1.00 1.00 0.70 0.66 0.64
FOAM Relevance-based 1.00 0.98 0.93 0.58 0.56 0.56

Score-based 1.00 1.00 1.00 0.56 0.56 0.56

Correctness. In order to measure the correctness of the algorithms, we adopted
the definitions of repair precision Pr and repair recall Rr in [13]. Assume M
is a mapping between two ontologies and G is the reference mapping which
is created manually by domain experts. Then M− = M − G indicates those
correspondences in M which are not correct. The repair precision and repair
recall are defined as follows:

Repair precision : Pr = removed correspondences in M−

all removed correspondences

Repair recall : Rr = removed correspondences in M−

|M−|

This experiment is again based on D1 and D2, and we continuously ran each
algorithm 30 times. For each run i (i=1,...,30), we compute the repair precision
Pri and recall Rri. Table 2 shows the maximal, minimal and average repair
precision and recall from all runs for each algorithm.

According to Table 2, we can see that Score-based has the highest repair pre-
cision and lowest repair recall in most cases. This shows that this algorithm best
fulfils the principle of minimal change. On the other hand, since Score-based
removes less correspondences, it may fail to remove some erroneous correspon-
dences. We also noticed that Weight-based-All performs slightly better than all
the others except Score-based w.r.t. both average repair precision and the aver-
age repair recall. For example, Weight-based-All reaches higher average precision
(i.e. 0.81) and recall (i.e. 0.71) for D1 and the highest average repair precision
(i.e. 1) and recall (i.e. 0.66) for D2. This shows that this algorithm removes more
correspondences which are incorrect comparing with the results from other al-
gorithms in most cases.

6 Conclusion and Discussion

In this paper, we discussed the problem of repairing inconsistent mappings in the
distributed systems. We first defined a conflict-based mapping revision operator
and provided a representation theorem for it. We then presented an iterative al-
gorithm for mapping revision in a distributed system based on a revision operator
in DLs and showed that this algorithm results in a conflict-based mapping revi-
sion operator. We showed that the algorithm given in [15], which we call Linear,
can be encoded as a special iterative algorithm. We also provided an algorithm

A Conflict-Based Operator for Mapping Revision 535

to implement an alternative revision operator based on the relevance-based se-
lection function given in [11] which can be optimized by a module extraction
technique and considered a revision operator based on a scoring function in
[19]. All three specific iterative algorithms have been implemented. We com-
pared these algorithms with two other existing algorithms for mapping revision
in [13] and [19]. Although our experimental results are preliminary and do not
tend to be conclusive, we can still make some interesting observations:

– For most of the tests, our iterative algorithms (where Linear is equivalent
to the algorithm given in [15]) performed well compared with two existing
mapping revision algorithms. It is interesting to see that Linear performed
quite well for all the real life data, although it performed much worse than
other iterative algorithms for the scalability test.

– The iterative algorithm Score-based showed its advantage over other algo-
rithms w.r.t. minimal change and it produced the most stable results. How-
ever, it did not perform so well for the efficiency test.

– Our iterative algorithm Relevance-based was in a good position for the cor-
rectness test. It outperformed other algorithms except Linear w.r.t efficiency
and had good performance on scalability test. Thus it is a good choice to
revise inconsistent mappings in those distributed systems with large scale
mappings and ontologies.

– Weight-based-One performed worst for the scalability test and it does not
perform well for other tests, so we suggest that it can be replaced by Linear.

– We also noticed Weight-based-All had good performance for the correctness
test, although it did not perform so well for the efficiency test. So it is a
good alternative to the iterative algorithms.

In the future work, we could further optimize our iterative algorithms Relevance-
based and Score-based. For example, since the module extraction algorithm used
to optimize our algorithms is independent on the super-concept of a subsumption
entailment and thus may result in a large module, we will consider a goal-directed
module extraction method that can produce a smaller module than the syntactic
locality-based module. For Relevance-based, we used the relevance-based selec-
tion function in this paper because it can be applied to any DL and is the basis
of some other selection functions. This selection function may select too many
axioms in each iteration. Other selection functions will be considered.

Acknowledgments

Research reported in this paper was partially supported by the EU in the IST
project NeOn (IST-2006-027595, http://www.neon-project.org/). We would
like to thank the anonymous reviewers as well as Richard Booth and Renata
Wassermann for their helpful comments.

References
1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:

The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York (2003)

http://www.neon-project.org/

536 G. Qi, Q. Ji, and P. Haase

2. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Proc. of KI, pp. 52–67 (2007)

3. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics 1, 153–184 (2003)

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
5. Gardenfors, P.: Knowledge in Flux-Modeling the Dynamic of Epistemic States.

The MIT Press, Cambridge (1988)
6. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting

modules from ontologies. In: Proc. of WWW, pp. 717–726 (2007)
7. Haase, P., Qi, G.: An analysis of approaches to resolving inconsistencies in DL-

based ontologies. In: Proc. of IWOD, pp. 97–109 (2007)
8. Ove Hansson, S.: Reversing the levi identity. Journal of Philosophical Logic 22(6),

637–669 (1993)
9. Ove Hansson, S.: Kernel contraction. Journal Symbolic Logic 59(3), 845–859 (1994)

10. Ove Hansson, S.: A Textbook of Belief Dynamics: Theory Change and Database
Updating. Kluwer Academic Publishers, Dordrecht (1999)

11. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies.
In: Proc. of IJCAI, pp. 454–459 (2005)

12. Meilicke, C., Stuckenschmidt, H.: Applying logical constraints to ontology match-
ing. In: Proc. of KI, pp. 99–113 (2007)

13. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In:
Proc. of AAAI, pp. 1408–1413 (2007)

14. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning support for mapping
revision. Journal of Logic and Computation (2008)

15. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging
mappings between lightweight ontologies. In: Gangemi, A., Euzenat, J. (eds.)
EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)

16. Nebel, B.: Base revision operations and schemes: Semantics, representation and
complexity. In: Proc. of ECAI, pp. 341–345 (1994)

17. Peñaloza, R., Sertkaya, B.: Axiom pinpointing is hard. In: Proc. of DL (2009)
18. Qi, G.: A semantic approach for iterated revision in possibilistic logic. In: Proc. of

AAAI, pp. 523–528 (2008)
19. Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A kernel revision operator

for terminologies — algorithms and evaluation. In: Sheth, A.P., Staab, S., Dean,
M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008.
LNCS, vol. 5318, pp. 419–434. Springer, Heidelberg (2008)

20. Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in
possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724,
pp. 828–839. Springer, Heidelberg (2007)

21. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

22. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach
to finding all justifications for OWL DL entailments. In: Domingue, J., Anutariya,
C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg (2008)

23. Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their
relations with alignment composition. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 16–29. Springer, Heidelberg (2006)

Functions over RDF Language Elements

Bernhard Schandl

University of Vienna
Department of Distributed and Multimedia Systems

bernhard.schandl@univie.ac.at

Abstract. RDF data are usually accessed using one of two methods:
either, graphs are rendered in forms perceivable by human users (e.g.,
in tabular or in graphical form), which are difficult to handle for large
data sets. Alternatively, query languages like SPARQL provide means
to express information needs in structured form; hence they are tar-
geted towards developers and experts. Inspired by the concept of spread-
sheet tools, where users can perform relatively complex calculations by
splitting formulas and values across multiple cells, we have investigated
mechanisms that allow us to access RDF graphs in a more intuitive and
manageable, yet formally grounded manner. In this paper, we make three
contributions towards this direction. First, we present RDFunctions, an
algebra that consists of mappings between sets of RDF language ele-
ments (URIs, blank nodes, and literals) under consideration of the triples
contained in a background graph. Second, we define a syntax for express-
ing RDFunctions, which can be edited, parsed and evaluated. Third, we
discuss Tripcel, an implementation of RDFunctions using a spreadsheet
metaphor. Using this tool, users can easily edit and execute function
expressions and perform analysis tasks on the data stored in an RDF
graph.

1 Introduction

RDF is a highly generic model for data representation. Its fundamental infor-
mation unit is the triple, which denotes a specific kind of relationship between
two entities (resources), or between an entity and a literal value. As such, it
can be used to represent arbitrary kinds of data, as shown by the Linked Data
community project1 and various applications, e.g., in the life sciences field [24]
or the Semantic Desktop [25].

RDF data sets are currently accessed and used by applying one of the follow-
ing two metaphors: either, users directly navigate and browse them using tools
that display the graph in a human-perceivable manner (e.g., in tabular form
of varying complexity [4,14]), or using graphical rendering (e.g., in the form of
graphs2 or using rendering template languages [7]). Such tools provide the user
with direct, intuitive access to any resource or triple found in the graph, but

1 Linked Data: http://linkeddata.org
2 RDF-Gravity: http://semweb.salzburgresearch.at/apps/rdf-gravity

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 537–552, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://linkeddata.org
http://semweb.salzburgresearch.at/apps/rdf-gravity

538 B. Schandl

cannot be reasonably applied to very large graphs. On the other hand, if RDF
data are used within applications (i.e., graphs are not directly exposed to the
end user), APIs provided by Semantic Web frameworks or query languages (of
which SPARQL [23] is the most prominent one) are used. These allow develop-
ers to express information needs in a formalized and structured form. However,
SPARQL queries can become complex to write and to evaluate [21]; addition-
ally, SPARQL currently lacks certain features that are needed in several use
cases (e.g., sub-queries and aggregates).

We are searching for metaphors to interact with Semantic Web data in a
way that is intuitive for users, can be quickly authored and evaluated, but still
is highly expressive and grounded in a formal model. We were inspired by the
concept of spreadsheets [18], where data (usually, numbers and text) and calcu-
lations (formulas) are arranged in a grid structure of cells, and can be directly
inspected and edited by the user. Formulas may refer to the contents of other
cells by their coordinates, and evaluation results are displayed immediately after
cells have been changed. Although the spreadsheet concept is not free of errors
[22] it is a powerful tool and suitable for many application scenarios.

In this paper, we present our approach to merge the spreadsheet concept with
the RDF data model. As its formal foundation we present RDFunctions, an al-
gebra that consists of mappings between RDF language elements (URIs, blank
nodes, and literals). These functions are evaluated not only using parameter val-
ues, but also under consideration of the triples stored in an additional background
graph. Thus, RDFunctions can be used to perform data analysis and computa-
tion tasks over RDF data sources. In addition to this formal model, we define
a concrete syntax for RDFunction expressions that can be edited by users, and
parsed and evaluated by a corresponding engine. Finally, we introduce Tripcel,
a spreadsheet application that implements the concepts described before, and
present an evaluation of its applicability.

2 RDFunctions

As the conceptual basis of our approach we define RDFunctions, an algebra
consisting of mappings between sets of RDF resources. An RDFunction takes a
set of RDF elements (i.e., URIs, blank nodes, and literals) as input, and returns
another set of RDF elements as result, whereas the evaluation of a function may
consider the triples contained in a background graph.

A background graph G is an RDF graph as defined in [19] and hence consists of
a set of triples < s, p, o > which are constructed of elements of the set U∪B∪L;
i.e., URIs, blank nodes, and literals. Following [19] we denote with universe(G)
the set of elements that occur in the triples of G, and denote by UG, BG, and
LG the sets of URIs, blank nodes, and literals that are elements of this universe,
i.e., universe(G) = UG ∪BG ∪ LG.

An RDFunction f(·) is a mapping f : P(U∪B∪L) �→ P(U∪B∪L); i.e., it takes
a set of RDF elements as input and returns a set of RDF elements as output.
These elements must not necessarily be contained in the associated background

Functions over RDF Language Elements 539

graph. However, an RDFunction can be defined under consideration of the back-
ground graph G; in this case we denote the function using an index fG(·).

The design of this generic function signature is inspired by the fact that when
querying data one is not necessarily interested in triples, but in resources or
literals (things) that fulfill certain criteria: e.g., one might look for resources that
fulfil certain criteria, or for literal values of certain properties. Hence we chose
to put the RDF language elements (URIs, blank nodes, and literals) instead of
triples into the focus of attention.

While an arbitrary number of concrete functions can be defined that fulfil
this generic signature, we define in the following a core set of functions that are
useful in a broad range of use cases.

Background Graph Access Functions. We define functions that return
groups of elements contained in the background graph; resources(), bnodes(),
literals(), and properties(), as follows:

resourcesG(·) := { r | ∀s, p, o, r : (< r, p, o > ∈ G ∨ < s, p, r > ∈ G)
∧ r ∈ UG ∪BG} (1)

bnodesG(·) := BG (2)

literalsG(·) := LG (3)

propertiesG(·) := { p | ∀s, p, o : < s, p, o > ∈ G} (4)

As we can see from these definitions, all background graph access functions
discard the input parameter set, i.e., their results are depending only on the
triples contained in the background graph.

Construction Functions. In contrast to background graph access functions,
the following group of functions construct RDF elements independent of whether
they are contained in the background graph or not, hence the index ·G is not
used in their definitions. For the three different forms of literals (plain, typed,
and language-tagged) different construction functions are defined3.

resourceuri(·) := <uri> (5)

bnode(·) := [] (6)

literallexicalform(·) := "lexicalform" (7)

literallexicalform, uri(·) := "lexicalform"̂ ˆuri (8)

literallexicalform, lang(·) := "lexicalform"@lang (9)

Unlike the background graph access functions described before, construction
functions ignore the contents of the background graph G, as well as the provided
input parameter.
3 We use the triple notation [13] to serialize RDF elements.

540 B. Schandl

Property Functions. The function propertyp returns all values (objects) for
property p of the resources given as function parameters (I), based on the triples
in the background graph G.

propertyp
G(I) := { o | ∀s, p, o : < s, p, o > ∈ G, s ∈ I} (10)

One concrete example of such a function is propertyrdfs:label, which would return
all labels of the resources given as parameters. Similarly, we define an inverse
property function invpropertyp that returns all subjects that have any of the re-
sources given as function parameters as property values (objects) for property p:

invpropertyp
G(I) := { s | ∀s, p, o : < s, p, o > ∈ G, o ∈ I} (11)

Examples. We illustrate applications of the functions we have defined so far
by a number of concrete example. The function

invpropertyrdf:typeG (I)

returns all resources contained in the background graph whose rdf:type is one of
the resources contained in the input set I. Since RDFunctions can be arbitrarily
nested, we can use

propertyrdfs:labelG (resourcesG(·))
to retrieve all rdfs:labels from all resources in the background graph (in this
case, no input parameters are needed). The function

propertyfoaf:nameG (invpropertyfoaf:knowsG (I))

returns the foaf:name values of all resources that foaf:know any of the resources
contained in the input set I. Finally, the function

propertydc:creatorG (invpropertyrdf:typeG (resourceswrc:Publication(·)))

returns the dc:creators of all resources that are typed as swrc:Publication.

Triple Functions. Property functions match a specific property to the pred-
icate position of all triples in the background graph. These functions cover the
cases where the property URI is known. To retrieve RDF elements that occur
in conjunction with given input resources within a common triple in the back-
ground graph whereas the triple’s predicate is not known, we define the following
functions:

objects4subjectsG(I) := { o | ∀s, p, o : < s, p, o > ∈ G, s ∈ I, s ∈ UG ∪BG}
(12)

subjects4objectsG(I) := { s | ∀s, p, o : < s, p, o > ∈ G, o ∈ I} (13)

predicates4subjectsG(I) := { p | ∀s, p, o : < s, p, o > ∈ G, s ∈ I, s ∈ UG ∪BG}
(14)

Functions over RDF Language Elements 541

predicates4objectsG(I) := { p | ∀s, p, o : < s, p, o > ∈ G, o ∈ I} (15)

Since literals are not allowed in the subject position of RDF triples, the functions
objects4subjectsG(·) and predicates4subjectsG(·) consider only those elements
of the input set I that are URIs or bnodes, while literals are discarded.

Aggregate Functions. An aggregate function returns a single value, which is
computed from a set of input values. In the context of RDF, certain aggregate
functions can be applied to all types of graph elements (e.g., count()), while
others can be applied only to typed literal values, e.g., avg(), min(), or sum().
RDFunctions can be easily extended by aggregate functions; for the sake of
brevity we give here as an example only the definition of the count() function
that returns the input set’s cardinality as typed RDF literal, where | I | is the
cardinality of I:

count(I) := literal|I|,xsd:integer(·) (16)

Filter Functions. SPARQL provides a mechanism to test the values of RDF
elements through the FILTER element (cf. [23], Section 11). The RDFunction
framework provides the function filter() to incorporate SPARQL filter ex-
pressions; however the semantics of filter expression evaluation is different in
RDFunctions. In contrast to SPARQL, RDFunctions are evaluated not over a
graph pattern, but over the set of input elements I (i.e., URIs, blank nodes,
and literals). Hence a filter evaluation cannot distinguish between bindings of
different variables, as it is the case in graph patterns. Thus, when evaluating
the filter expression, all variables are bound to the same element (taken from
the input set I), which effectively implies that an RDFunctions filter function
may contain only one variable. This restriction is indicated by the index of the
SPARQL FILTER function in the definition of the filter function (17), which binds
all expression variables to a single element e; this binding is indicated by the
notion ?∗ = e in (17). All input elements for which the filter evaluates to false
are discarded, and all other elements are added to the function’s result set:

filterexpression(I) := {e | e ∈ I ∧ FILTER?∗=e(expression) �= false} (17)

Example. As an example that combines aggregate functions and filter
functions, the following function returns the number of resources that have a
foaf:birthday before September 18, 1979 as follows:

count(invpropertyfoaf:birthdayG (

filter?x < "1979-09-18T00:00:00"̂ ˆxsd:dateTime(literalsG(·)))) (18)

Discussion. RDFunctions are mappings between sets of RDF elements (URIs,
bnodes, and literals) that consider the triples contained in a background graph
for evaluation. RDFunctions are designed to be nested in order to formulate more

542 B. Schandl

complex mappings. Since they are evaluated against a background graph they
can also be considered as query algebra over triples contained therein, and we
have shown by a number of examples that they can be used to express complex
information needs. Considered as a query language, RDFunctions differs from
SPARQL because of the different underlying data model: SPARQL queries are
evaluated against an RDF graph and return either a set of variable bindings
(for SELECT queries) or an RDF graph (for CONSTRUCT and DESCRIBE queries).
RDFunctions, on the other hand, are evaluated against a set of RDF language
elements, and also return a set of RDF language elements. Consequently, several
SPARQL features (e.g., joins or multi-variable FILTER expressions) cannot be
represented in RDFunctions. On the other hand, RDFunctions provide several
features that can currently only be found in proprietary SPARQL extensions;
e.g., aggregate functions, arbitrary expression nesting, or sub-queries. Addition-
ally, RDFunctions are easily extensible, since each function that can be reduced
to a mapping between RDF elements can be integrated into the algebra.

The efficiency of expression processing (i.e., query execution) heavily depends
on the order in which the elements of a formula are nested. For instance, in
expression (18) literal elements are filtered according to their value before the
RDF property is evaluated. This expression could be rewritten so that the se-
lection based on the foaf:birthday property is conducted before the literal
values are tested against the filter, which might lead to a more efficient eval-
uation depending on the structure of the background graph. However such an
optimization depends on the actual implementation as well as knowledge about
the underlying background graph and is out of the scope of this formal definition.

3 Tripcel: Applying RDFunctions in Spreadsheets

The spreadsheet concept is a powerful, widely-used metaphor for the analysis
and processing of data. In essence, a spreadsheet is a collection of cells that are
arranged in a 2-dimensional grid, the sheet. Each cell within a sheet may contain
a value or a formula. Formulas are evaluated to return a single result value, which
can be reused by other cells as input for evaluation. Cells are usually referred to
using a coordinate system where columns are identified by letters, and rows are
identified by numbers. The coordinate of a cell is obtained by concatenating its
column and row identifiers (e.g., C17 refers to the cell in column 3, row 17).

Spreadsheets are popular because of a number of reasons. First, they allow
users to break down complex calculations into smaller units that are easier to
understand. This decomposition is driven by the user, not the machine: it is
up to the user to decide whether they prefer to write a single complex formula
into one cell, or to split the formula into smaller parts and distribute them
across multiple cells. Second, spreadsheets combine formal calculations with user-
friendly presentation, since cells can be arranged and formatted according to the
user’s needs and taste. Finally, spreadsheets provide the possibility to explore
and compare different scenarios in a simple manner: a user may change one single
value in the sheet, and all other cells are immediately updated.

Functions over RDF Language Elements 543

Based on the idea of spreadsheets, we propose Tripcel, a spreadsheet variant
that considers not only cells and the values and formulas stored therein, but
enriches them with the RDFunctions framework and with background informa-
tion in the form of an RDF graph. In Tripcel each cell contains an RDFunctions
expression, and as described in Section 2 the result of the evaluation of this
formula depends not only on the results of other cells, but also on the informa-
tion stored in the background graph. As a significant difference to traditional
spreadsheets, Tripcel cells may evaluate to more than one result value; in fact
cells may evaluate to sets of RDF language elements.

Tripcel strictly separates the contents of the spreadsheet (i.e., formulas and ex-
pressions) from the contents of the background graph. This means that the same
Tripcel spreadsheet can be evaluated over different background graphs without
any modification. The connection between the formulas in the spreadsheet and
the triples in the background graph is established through the functions that
consider the background graph G in their evaluation. All functions defined in
Section 2 with an index ·G in their name are such functions.

3.1 The Tripcel Formula Syntax

In Section 2 an abstract algebra for functions over RDF language elements has
been presented. For concrete applications it is however required to express ad
serialize function expressions using a concrete syntax. To represent abstract func-
tion formulas we have developed an expression syntax under consideration of the
following requirements:

– Readability. In spreadsheet-based applications, expressions and formulas are
usually directly edited by the user. Hence it is necessary that the syntax
of expressions is easily readable, understandable, and editable. This implies
that all identifiers (like function names) carry meaningful names, and that
the number of special language elements (symbols) is reduced to a minimum.

– Accordance. It is difficult for users to remember elements of different lan-
guages, which convey similar or equal semantics in different syntaxes. In our
context, relevant languages include other spreadsheet expression languages,
RDF query languages, as well as common mathematic symbols. Hence, iden-
tifiers and special symbols in the Tripcel expression language should be re-
used from these languages wherever possible.

– Expressivity. The language should cover all elements of the RDFunctions
algebra, as specified in Section 2; this includes RDF elements (URIs, bnodes,
literals) as well as functions. Additionally, the syntax must provide means
to specify cell references as function parameters.

– Unambiguousness. The language should be easy to parse, and it should be
possible to decide which model element a token belongs to.

The syntax for cell formulas is defined using EBNF and is reproduced in Figure 1.
It defines five types of expressions; literals, literal references, resources, functions,
and cell references. For each type, an example is given in Figure 2. A literal
expression textually represents an RDF literal. Every cell resource that does

544 B. Schandl

1 expression = literal | literalref | resource | function |

2 cellreference ;

3 literal = lexicalform ;

4 literalref = ’"’ lexicalform ;

5 resource = ’<’ { ’<’ uri ’>’ | curie } ’>’ ;

6 function = ’=’ functionname [’[’ functionmodifier ’]’]

7 ’(’ functionparameter ’)’ ;

8 functionname = propertyfunctionname | externalfunctionname ;

9 functionmodifier = expression ;

10 functionparameter = expression ;

11 propertyfunctionname = propertyfunction { ’/’ propertyfunction } ;

12 propertyfunction = propertyname | invpropertyname ;

13 propertyname = curie ;

14 invpropertyname = ’~’ curie ;

15 cellreference = ’=’ singlecellreference | enumcellreference |

16 areacellreference ;

17 singlecellreference = { ’A’..’Z’ } { ’0’..’9’ } ;

18 enumcellreference = singlecellreference { ’,’ singlecellreference } ;

19 rangecellreference = singlecellreference ’..’ singlecellreference ;

20 externalfunctionname = alpha ;

Fig. 1. Tripcel formula syntax in EBNF. For the sake of brevity we omit the production
rules for the symbols lexicalform (lexical form of literals), uri (URIs [3]), curie

(compact URIs [5]), and alpha (alphabetic characters).

Type EBNF Rule Example

Literal literal ISWC 2009

Literal Reference literalref "ISWC 2009

Resource resource <dogfood:conference/iswc/2009>
<<http://www.semanticweb.org>>

Function function =filter[isLITERAL(?)](...)
=filter[?>"M"](...)

Cell Reference cellreference =B4
=A3,B6,F8
=A5..C8

Fig. 2. Examples of Tripcel expressions

not adhere to one of the special syntactic constructs described in the following
is interpreted as literal. The entire content of the cell is used as the literal
value, and the literal datatype is guessed by analyzing the textual representation
(e.g., a representation consisting only of numeric characters is interpreted as
xsd:integer literal). If the literal datatype cannot be guessed, xsd:string is
used as default.

Functions over RDF Language Elements 545

A literal reference is a cell expression that starts with a quotation mark (").
In contrast to a literal expression, which is directly translated into a literal value,
literal references are interpreted with respect to the background graph: the inter-
pretation of a literal reference is the set of RDF resources that have any property
whose (literal) value is equal to the string representation of the literal reference.
Hence, Tripcel literal references correspond to the subjects4objectsG(·) function
defined in Section 2, where the input set I contains exactly one literal.

A resource can be explicitly instantiated by a cell expression that starts with
an opening angle bracket (<), followed by a CURIE [5] that identifies the re-
source4 and a closing angle bracket (>); alternatively, full URIs can be used by
enclosing them into double angle brackets (<< and >>)5. The interpretation of
a resource expression is a set that contains exactly one resource, which is iden-
tified by the specified URI (this corresponds to the resourceuri(·) construction
function).

Function expressions refer to other Tripcel functions (cf. Section 2). They
consist of the function name, the function modifier expression, and the function
parameter expression. The function name is a string that refers to the RDFunc-
tion to be used, while the function modifier and the function parameters can
be any kind of cell expression, including functions; hence, nested and recursive
expressions can be constructed. Function modifiers influence the behaviour of
the respective function; for instance, the filter function interprets a provided
modifier string as SPARQL FILTER expression and evaluates its input according
to (17).

Because of their importance, a special syntax has been defined for property
functions, which are identified by the property’s abbreviated URI; an inverse prop-
erty function is identified by a preceding tilde character. For example, the ex-
pression =rdfs:label(...)corresponds to the RDFunction propertyrdfs:labelG (·),
while =~foaf:knows(...) corresponds to invpropertyfoaf:knowsG (·). Property
functions can be concatenated using a slash character, whereas they are traversed
from right to left: the expression =foaf:name/~foaf:knows(...) corresponds to
propertyfoaf:nameG (invpropertyfoaf:knowsG (·)). This abbreviated syntax allows users
to intuitively define property chains, which are often needed in analysis tasks.

Finally, cell references are used to link formulas across different cells. By using
a cell reference, the results of the referenced cell(s) are inserted at the point of
reference. Currently Tripcel supports three kinds of cell references; single, enu-
merated, and range. Single cell references are substituted by the referenced cell’s
result set; for enumerated and range cell references the union of all referenced

4 We assume that in the context of the Tripcel sheet suitable URI prefixes are defined
for all URIs under consideration. For a discussion on potential problems that may
arise when URI prefixes are used in user interfaces we refer to [26].

5 We are aware of the fact that the usage of CURIEs in combination with angle brack-
ets does not correspond to typical RDF serialization formats. However we have cho-
sen this syntax because we want to provide a possibility to enter CURIEs since they
are easier to remember, but at the same time need a mechanism to unambiguously
identify them as URIs.

546 B. Schandl

cells’ results is returned. For instance, the enumerated cell reference formula
=B3,B6,C6 will evaluate the formulas in the three specified cells and construct
the union of all resulting RDF elements.

3.2 Implementation

We have implemented a prototypical spreadsheet application that uses the RD-
Functions model and the Tripcel syntax, which have been presented in the pre-
vious sections6. This tool allows users to load background graphs; to edit, load,
and safe Tripcel sheets; and to inspect the evaluation results of each cell in more
detail.

The Tripcel application is divided into four layers, reflecting the conceptual
components described so far. The basis of the Tripcel application is the back-
ground graph layer, which is implemented using the Jena Semantic Web frame-
work7. All details of RDF storage are hidden by this framework, hence it is in
principle possible to connect Tripcel to any RDF data source (e.g., in-memory,
database-backed, or remote). However, Tripcel operates on both the Jena Model
API and its SPARQL implementation ARQ8 since several Tripcel functions can-
not be efficiently implemented using pure SPARQL; consequently only such data
sources can be connected that support both access methods.

On top of the background graph layer the RDFunctions layer is situated. This
layer implements the semantics of RDFunctions as described in Section 2 in a
flexible manner: functions are realized as Java classes that implement a specific
interface, thus it is possible to extend this layer by new RDFunctions without
modifications to existing code. The RDFunctions layer is responsible for the
evaluation of Tripcel formulas; the RDF-specific parts of this layer are likewise
implemented using Jena.

One level above, the spreadsheet layer implements the logic of Tripcel spread-
sheets. Its responsibility is to manage the contents of cells and their interde-
pendencies. It receives formulas (entered by the user) from the GUI layer (see
below), passes them to the RDFunctions layer for evaluation, and buffers the
returned evaluation results. It also maintains a cell dependency graph and, upon
a cell change, propagates notifications to all depending cells.

Finally, the GUI layer provides a graphical representation of a Tripcel sheet
(see Figure 3). It renders cells in a grid, provides an editing interface for formulas,
and displays evaluation results. As Tripcel cells, in contrast to classical spread-
sheets, may contain multiple values, the GUI additionally provides a separate
detail window where all elements contained in the selected cell are displayed.

The Tripcel application provides interaction mechanisms similar to well-known
spreadsheet applications. Normally cells are filled with their evaluation results.
If the evaluation of a cell’s formula results in more than one element, the num-
ber of results (e.g., “(7 elements)”) is displayed. When the user clicks on a cell,
6 The prototype can be downloaded from
http://www.ifs.univie.ac.at/schandl/2009/06/tripcel

7 Jena Semantic Web Framework: http://jena.sourceforge.net
8 ARQ: http://jena.sourceforge.net/ARQ

http://www.ifs.univie.ac.at/schandl/2009/06/tripcel
http://jena.sourceforge.net
http://jena.sourceforge.net/ARQ

Functions over RDF Language Elements 547

Fig. 3. Tripcel Screenshot: Spreadsheet Window (left) and Detail Window (right)

an editor line is provided where the user can inspect and modify the cell for-
mula. When the user presses enter or selects a different cell, the edited formula
is re-evaluated, and changes are propagated to all depending cells.

4 Evaluation

Qualitative Analysis. To estimate the usability and potential impact of our
approach, we have performed a qualitative analysis on an initial group of 5 test
persons, most of which are experts in the fields of Semantic Web, RDF, and
query languages9. This analysis consisted of a think-aloud evaluation, followed
by a structured questionnaire. In the course of the think-aloud evaluation, all
candidates were asked to perform a tutorial of approx. 20 minutes length, during
which they would learn the most important features of Tripcel and to get familiar
with Tripcel formulas, their syntax, and the results.

During the think-aloud evaluation, the users individually performed the tasks
described in a written tutorial, while they were observed by an interviewer.
They were asked to immediately tell any thoughts they had during the task
completion, regardless of whether they had to do with usability aspects, the
entire Tripcel concept as such, or pure implementation issues and bugs. The
goal of the think-aloud sessions was to estimate which associations and thoughts
were triggered by Tripcel, and in which aspects the system could be improved.
Most issues that were revealed during these sessions regarded the user interface
(e.g., visual feedback or the application’s general look and feel), missing features
(which were structurally collected during the questionnaire, see below), or the
syntax and semantics of formula expressions.

After the think-aloud session, each participant was asked to fill a questionnaire
that was meant to reflect their impression on the concept and the tool, and

9 The material that was used during the evaluation can be downloaded from
http://www.ifs.univie.ac.at/schandl/2009/06/tripcel

http://www.ifs.univie.ac.at/schandl/2009/06/tripcel

548 B. Schandl

to identify potential for improvements in a structured manner. The first part
of the questionnaire consisted of questions that were to be answered on a 5-
level Likert scale (1 = strongly disagree, 5 = strongly agree) and contained
questions addressing Tripcel’s general applicability and usability. The second
part consisted of open questions addressing the user’s impression on specific
features as well as potential application fields. Finally, participants were asked
to assess their familiarity with Semantic Web technologies and spreadsheets.

Participants rated the usefulness of the tool to get an overview on data with an
average of 3.0 (σ = 1.0) for unknown data, and 3.6 (σ = 1.5) for known data. The
syntax of Tripcel formula expressions was considered to be understandable (3.2,
σ = 1.3) and even better memorizable (4.0, σ = 1.0). Participants agreed that
RDF skills are required to use the tool; its usability for users without RDF skills
was denied (1.8, σ = 1.3). However, for users with RDF skills the usability of the
tool was rated very high (4.8, σ = 0.4). The participants considered themselves
to be experts in Semantic Web technologies (RDF: 4.0, σ = 1.4; SPARQL: 3.8,
σ = 1.3).

In a series of qualitative questions the participants were asked to judge the fea-
tures of the application. Amongst the positively rated features were GUI aspects
like the familiar interaction metaphors and their resemblance to spreadsheet ap-
plications, and the fast execution times of formula evaluation. The participants
also liked the possibilities and expressivity of the formula language, especially the
ability to formulate property paths and aggregate functions. Finally, the ability
to apply the same formula sheet to different background graphs was appreciated.

The participants outlined several missing features, including the ability to
load multiple RDF documents into one background graph, or to quickly switch
between multiple background graphs. The ability to visualize the background
graph or cell contents in the form of graphs or charts (as known from spread-
sheet tools) was required by several participants. On the GUI level, features like
auto-completion and syntax highlighting were mentioned, which would increase
the application’s usability and reduce the error rate. We are currently in the
process of reviewing the detailed requirements for new features, which will be
implemented subsequently.

Quantitative Analysis. As described in Section 3.2, Tripcel has been imple-
mented on top of the Jena Semantic Web framework, and Tripcel functions are
implemented using the Jena Model API or the ARQ SPARQL engine, depend-
ing on the function type. Consequently, the execution times of such calls and
queries are not under the control of our implementation, and additionally de-
pends on the size of the background graph. Here we refer to previous works on
performance evaluation of different triple stores (e.g., [10,6]).

An essential feature of spreadsheets is the possibility to break down complex
calculations into smaller units. By resolving a sheet’s dependency graph, for-
mulas that are distributed across multiple cells could be merged and optimized
before they are translated into queries and executed against the background
graph. However the user of a spreadsheet tool expects to be able to inspect in-
termediate results, which ultimately implies that each formula contained in a cell

Functions over RDF Language Elements 549

must be evaluated independently from other formulas. In our Tripcel implemen-
tation we follow the approach to buffer evaluation results in-memory for each
cell as long as the cell formula (and the formula of any antecedent cell) is not
modified. While this approach potentially requires more memory, it significantly
reduces the time needed for formula evaluation.

5 Related Work

As mentioned before, SPARQL lacks a number of features that are needed in
different application scenarios. These deficiencies have been acknowledged by
previous works, which led to a number of proposed extensions. A number of
these extensions are addressing similar issues as the RDFunctions framework
does: Virtuoso SPARQL Extensions10 or Jena ARQ11 both provide aggregates
and so-called pointer operators that reduce the number of variables needed in
triple patterns. However we choose not rely on proprietary language extensions
for our implementation. Currently, a number of proposed feature extensions for
the next version of the SPARQL language are under review by the W3C SPARQL
Working Group.

A number of languages have been proposed that allow to query for more com-
plex triple patterns than it is currently possible using SPARQL. Many of these
approaches provide mechanisms to navigate between nodes in an RDF graph,
as can be done with the RDFunctions framework. This includes nSPARQL and
rSPARQL [2], which provide means to express navigational expressions over RDF
graphs, which can be evaluated under consideration of RDFS semantics. RD-
Functions currently implements a subset of the features provided by nSPARQL
for the sake of simplification. SPARQ2L [1], SPARQLeR [15], and ARQ extend
SPARQL with functions for the analysis of path structures in an RDF graph,
while the RDF path language of the SILK framework [27] and XsRQL [12] are
independent languages. The ability to hierarchical nest property functions re-
lates our work also to the family of RDF path query languages like Versa [20] or
RPath [17], which could as well serve as the foundation for Tripcel.

Topic Map Query Language12, although not designed for the RDF model,
follows a similar conceptual model. All these approaches provide valuable input
for further enhancement and extension of RDFunctions; however we want to
ensure that the syntax for RDFunction expressions remains easily to remember.

Another approach comparable to Tripcel are Semantic Web Pipes [16] (which
are inspired by Yahoo Pipes13, an utility for meshing RSS feeds), where RDF
data sources can be aggregated and manipulated through linked processing units.
Our framework differs from Semantic Web Pipes in that we consider sets of RDF
language elements as input and output of functions, rather than RDF graphs.

10 Virtuoso SPARQL Extensions:
http://docs.openlinksw.com/virtuoso/rdfsparql.html#sparqlextensions

11 ARQ Extensions: http://jena.sourceforge.net/ARQ/documentation.html
12 Topic Map Query Language (TMQL): http://www.isotopicmaps.org/tmql
13 Yahoo Pipes: http://pipes.yahoo.com/pipes/

http://docs.openlinksw.com/virtuoso/rdfsparql.html#sparqlextensions
http://jena.sourceforge.net/ARQ/documentation.html
http://www.isotopicmaps.org/tmql
http://pipes.yahoo.com/pipes/

550 B. Schandl

The interrelationships between spreadsheets and semantic technologies have
been studied in a number of works. Tools that are able to extract RDF data from
spreadsheets include ConvertToRDF [9], which maps table column headings to
ontological concepts, and RDF123 [11], which provides a special language to
express the conversion parameters. Other approaches involve the use of GRDDL
[8]; examples for this as described e.g., in the GRDDL Primer14. Vice versa, since
SPARQL SELECT query results are tables they can be directly integrated into
spreadsheets, as shown e.g., in [26]. However to the best of our knowledge there
exists no approach so far that directly integrates processing of RDF language
elements into the spreadsheet concept.

6 Conclusions and Further Research Directions

In this paper we have presented the concept of RDFunctions, which are map-
pings between sets of RDF elements under the consideration of background in-
formation expressed in an RDF graph. We have defined an extensible conceptual
model for RDFunctions, as well as a number of basic functions for processing
RDF language elements. These functions have been implemented in the form of
Tripcel, a spreadsheet-based tool that allows users to use RDFunctions in order
to analyse the contents of RDF graphs. To represent RDFunction expressions we
have designed and implemented a formula language which is oriented towards
the syntax of popular spreadsheet software. Our approach was evaluated in the
course of a study among expert users, who judged Tripcel as being a useful tool
for analyzing RDF data, and gave directions for further work.

In the future, we plan to improve the user interface of our implementation
and extend it with features that improve usability (e.g., syntax and reference
highlighting, auto completion, formula authoring assistants, and more efficient
projection of three-dimensional results into the two-dimensional user interface)
or that extend functionality (e.g., cell formatting, more advanced aggregate
functions, etc.). We aim to extend the range of possible applications of Trip-
cel by integrating mechanisms that allow the software to connect to multiple
remote data sources, which opens the door to evaluate spreadsheets against the
Web of Data. Finally, we plan to integrate Tripcel with classical spreadsheet
tools in order to facilitate data interoperability. In the first step, we will imple-
ment copy+paste functionality; in a second step we plan to implement direct
data integration and live synchronization between Tripcel and other spreadsheet
software.

Acknowledgements. Parts of this work have been funded by FIT-IT grants
812513 and 815133 from the Austrian Federal Ministry of Transport, Inno-
vation, and Technology. The author thanks Leo Sauermann for initial inspi-
ration, as well as the participants of the evaluation for their patience and
support.

14 GRDDL Primer: http://www.w3.org/TR/grddl-primer

http://www.w3.org/TR/grddl-primer

Functions over RDF Language Elements 551

References

1. Anyanwu, K., Maduko, A., Sheth, A.: SPARQ2L: Towards Support for Subgraph
Extraction Queries in RDF Databases. In: WWW 2007: Proceedings of the 16th
International Conference on World Wide Web, pp. 797–806. ACM Press, New York
(2007)

2. Arenas, M., Gutierrez, C., Pérez, J.: An Extension of SPARQL for RDFS. In:
Christophides, V., Collard, M., Gutierrez, C. (eds.) SWDB-ODBIS 2007. LNCS,
vol. 5005, pp. 1–20. Springer, Heidelberg (2007)

3. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax (RFC 3986). Network Working Group (January 2005)

4. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D.: Tabulator: Exploring and Analyzing Linked Data on
the Semantic Web. In: Proceedings of the 3rd International Semantic Web User
Interaction Workshop (2006)

5. Birbeck, M., McCarron, S.: CURIE Syntax 1.0 — A Syntax for Expressing Com-
pact URIs. World Wide Web Consortium (2009), http://www.w3.org/TR/curie/,
http://www.w3.org/TR/curie/

6. Bizer, C., Schultz, A.: Benchmarking the Performance of Storage Systems that
Expose SPARQL Endpoints. In: Proceedings of the 4th International Workshop
on Scalable Semantic Web Knowledge Base Systems, SSWS 2008 (2008)

7. Champin, P.-A.: Tal4RDF: Lightweight Presentation for the Semantic Web. In:
Proceedings of the 5th Workshop on Scripting and Development for the Semantic
Web, SFSW 2009 (2009)

8. Connolly, D.: Gleaning Resource Descriptions from Dialects of Languages
(GRDDL) (W3C) Recommendation World Wide Web Consortium (September 11,
2007)

9. Golbeck, J., Grove, M., Parsia, B., Kalyanpur, A., Hendler, J.: New Tools for the
Semantic Web. In: Knowledge Engineering and Knowledge Management: Ontolo-
gies and the Semantic Web (2002)

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-
3), 158–182 (2005)

11. Han, L., Finin, T.W., Parr, C.S., Sachs, J., Joshi, A.: RDF123: From Spreadsheets
to RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer,
Heidelberg (2008)

12. Katz, H.: XsRQL: an XQuery-style Query Language for RDF (RDF Data Ac-
cess Working Group Submission) (2004), http://www.fatdog.com/xsrql.html (re-
trieved 09-June-2009)

13. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax (W3C Recommendation) World Wide Web Consortium (February
10, 2004)

14. Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked Data. In: Proceedings
of the Linked Data on the Web Workshop, LDOW 2008 (2008)

15. Kochut, K.J., Janik, M.: SPARQLeR: Extended SPARQL for Semantic Association
Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 145–159. Springer, Heidelberg (2007)

http://www.w3.org/TR/curie/
http://www.w3.org/TR/curie/
http://www.fatdog.com/xsrql.html

552 B. Schandl

16. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid
Prototyping of Semantic Mash-ups through Semantic Web Pipes. In: WWW 2009:
Proceedings of the 18th international conference on World wide web, pp. 581–590.
ACM, New York (2009)

17. Matsuyama, K., Kraus, M., Kitagawa, K., Saito, N.: A Path-Based RDF Query
Language for CC/PP and UAProf. In: IEEE International Conference on Pervasive
Computing and Communications Workshops,l p. 3 (2004)

18. Mattessich, R.: Budgeting Models and System Simulation. The Accounting Re-
view 36(3), 384–397 (1961)

19. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67.
Springer, Heidelberg (2007)

20. Ogbuji, C.: Versa: Path-Based RDF Query Language. XML.com (2005),
http://www.xml.com/pub/a/2005/07/20/versa.html

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006)

22. Powell, S.G., Baker, K.R., Lawson, B.: A Critical Review of the Literature on
Spreadsheet Errors. Decision Support Systems 46(1), 128–138 (2008)

23. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (W3C Rec-
ommendation), World Wide Web Consortium, (January 15, 2008)

24. Ruttenberg, A., Rees, J.A., Samwald, M., Marshall, M.S.: Life Sciences on the
Semantic Web: the Neurocommons and Beyond. Briefings in Bioinformatics 10(2),
193–204 (2009)

25. Sauermann, L., Bernardi, A., Dengel, A.: Overview and Outlook on the Semantic
Desktop. In: Decker, S., Park, J., Quan, D., Sauermann, L. (eds.) Proceedings of the
1st Semantic Desktop Workshop,CEUR Workshop Proceedings, Galway, Ireland,
November 2005, vol. 175 (2005)

26. Schandl, B.: Representing Linked Data as Virtual File Systems. In: Proceedings of
the 2nd International Workshop on Linked Data on the Web (LDOW), Madrid,
Spain (2009)

27. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk – A Link Discovery Framework
for the Web of Data. In: Proceedings of the 2nd International Workshop on Linked
Data on the Web (LDOW), Madrid, Spain (2009)

http://www.xml.com/pub/a/2005/07/20/versa.html

Policy-Aware Content Reuse on the Web

Oshani Seneviratne, Lalana Kagal, and Tim Berners-Lee

MIT CSAIL, Cambridge
Massachusetts, USA

{oshani,lkagal,timbl}@csail.mit.edu

Abstract. The Web allows users to share their work very effectively
leading to the rapid re-use and remixing of content on the Web includ-
ing text, images, and videos. Scientific research data, social networks,
blogs, photo sharing sites and other such applications known collectively
as the Social Web have lots of increasingly complex information. Such in-
formation from several Web pages can be very easily aggregated, mashed
up and presented in other Web pages. Content generation of this nature
inevitably leads to many copyright and license violations, motivating
research into effective methods to detect and prevent such violations.

This is supported by an experiment on Creative Commons (CC) at-
tribution license violations from samples of Web pages that had at least
one embedded Flickr image, which revealed that the attribution license
violation rate of Flickr images on the Web is around 70-90%. Our pri-
mary objective is to enable users to do the right thing and comply with
CC licenses associated with Web media, instead of preventing them from
doing the wrong thing or detecting violations of these licenses. As a so-
lution, we have implemented two applications: (1) Attribution License
Violations Validator, which can be used to validate users’ derived work
against attribution licenses of reused media and, (2) Semantic Clipboard,
which provides license awareness of Web media and enables users to copy
them along with the appropriate license metadata.

1 Introduction

Content reuse, often called ‘mash-ups’, have existed for as long as content has
existed. Musicians routinely use other songs and tunes in their compositions.
Collage art is considered to be creative, and even original, although it is com-
posed from many different sources. Scientists routinely utilize data from different
sources to conduct their experiments. However, mash-ups are a peculiarly digital
phenomenon of the Web age. They are entirely a product made possible by the
portable, mixable and immediate nature of digital technology. A potential legal
problem arises when more than one legally encumbered content or data stream
is bound together with others in the form of a mash-up. The users of the original
content should remain within the bounds of the permitted use of the components
comprising the mash-up. They can choose to ignore these permissions, or follow
them. Either way, this creates a burden on them. Ignoring the license terms puts
them in peril of breaking the law, and following them slows the creative process.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 553–568, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

554 O. Seneviratne, L. Kagal, and T. Berners-Lee

Licenses or policies in general are pervasive in Web applications. They play
a crucial role in enhancing security, privacy and usability of the services offered
on the Web [3]. In this paper we limit the ‘policy awareness’ to scenarios that
involve content reuse. We expect the policies in this context to comprise of
licenses that can be expressed semantically, that are widely deployed on a range
of media, and that have a large community base. CC licenses fit this description
perfectly, as they provide a very clear and a widely accepted rights expression
language implemented using Semantic Web technologies [11]. These licenses are
both machine readable and human readable, and clearly indicate to a person,
who wishes to reuse content, exactly how it should be used by expressing the
accepted use, permissions, and restrictions of the content.

Popular search engines, including Google, Yahoo, and even sites such as Flickr,
blip.tv, OWL Music Search and SpinXpress, have advanced search options to
find CC licensed content on the Web [5,32,9,2,20,26]. However, even with these
human-friendly licenses and the tools to support license discovery, license vio-
lations occur due to many reasons; Users may be ignorant as to what each of
the licenses mean, or forget or be too lazy to check the license terms, or give
an incorrect license which violates the original content creator’s intention, or
intentionally ignore the CC-license given to an original work in their own in-
terests. Therefore, it is important that we have tools and techniques to make
users aware of policies that they must follow while making the process of being
license-compliant as painless as possible for the user, and make it difficult for
someone to become license in-compliant either deliberately or by mistake.

In essence, the work described in this paper supports the principles of informa-
tion accountability [29], policy-awareness and after-the-fact violations detection
instead of relying on strict up-front enforcement. This paper is organized as fol-
lows: Section 2 gives the background and an overview of the technologies used.
Section 3 outlines an experiment conducted to assess the level of CC attribution
license violations on the Web using Flickr images. This experiment provided the
motivation to develop tools for policy aware content reuse as described later in
the paper in Section 4. Section 5 discusses the related work in this area and
Section 6 discusses some future work on the tools we have developed. Finally,
we conclude the paper with a summary of the contributions in Section 7.

2 Background

To be useful, metadata needs to have three important characteristics: it has to
be easy to produce, be easily embeddable within the data they describe, and
be easily readable [18]. The easiest way to produce metadata is to have it be
produced automatically. Any metadata that has to be produced manually by
the user usually doesn’t get produced at all. The easiest way to ensure that the
link between metadata and the data it describes is not broken is by embedding
the former inside the latter. This way, the two travel together inseparably as a
package. Finally, metadata has to be accessible easily, readable both manually as

Policy-Aware Content Reuse on the Web 555

well as programmatically. At best, the metadata should be readable by crawlers
of various search engines. Since metadata and data are traveling together, if pop-
ular search engines such as Google and Yahoo can read the metadata, by default
the data become available to anyone who searches for it. RDF [23] satisfies all
these criteria, has lot of community support, has been adopted widely and is a
W3C recommendation.

2.1 Inline Provenance Using Metadata

The Extensible Metadata Platform (XMP) [31] is a technology that allows one
to transfer metadata along with the content by embedding the metadata in
machine readable RDF using a pre-defined set of classes and properties. This
technology is widely deployed to embed licenses in free-floating multimedia con-
tent such as images, audio and video on the Web. Another format which is
nearly universal when it comes to images is the Exchangeable Image File for-
mat (EXIF) [7]. The International Press Telecommunications Council (IPTC)
photo metadata standard [14] is another well known standard. The metadata
tags defined in these standards cover a broad spectrum of properties includ-
ing date & time information, camera settings, thumbnail for previews and more
importantly, the description of the photos including the copyright information.
However both EXIF and IPTC formats do not store metadata in RDF. Also,
one major drawback of inline metadata formats such as XMP, EXIF and IPTC
is that it is embedded in a binary file, completely opaque to nearly all users,
whereas metadata expressed in RDFa [24] will require colocation of metadata
with human visible HTML. In addition to that, these metadata formats can only
handle limited number of properties and lack the rich expressivity required for
many content reuse policies.

2.2 Policies for Rights Enforcement on the Web

Policies governing the reuse of digital content on the Web can take several forms.
It can be upfront enforcement mechanisms such as Digital Rights Management
(DRM) approaches, or rights expression mechanisms such as Creative Commons
licenses where users are given the freedom to reuse content, subject to several
restrictions and conditions.

When it comes to DRM, distribution and usage of copyrighted content is of-
ten controlled by up-front policy enforcement. These systems usually restrict
access to the content, or prevent the content from being used within certain
applications. The core concept in DRM is the use of digital licenses, which grant
certain rights to the user. These rights are mainly usage rules that are defined
by a range of criteria, such as frequency of access, expiration date, restriction
to transfer to another playback device, etc. An example of a DRM enforcement
would be a DRM enabled playback device not playing a DRM controlled me-
dia transferred from another playback device, or not playing the media after the
rental period has ended. The use of DRM to express and enforce rights on content

556 O. Seneviratne, L. Kagal, and T. Berners-Lee

on the Web raises several concerns. First, consumer privacy and anonymity are
compromised. Second, the authentication process in the DRM system usually
requires the user to reveal her identity to access the protected content, leading
to profiling of user preferences and monitoring of user activity at large [8]. Third,
the usability of the content is questionable since the user is limited to using
proprietary applications to view or play the digital content, producing vendor
lock-in. Similarly, ‘copyright notices’ or ‘end-user license agreements’ describe the
conditions of usage of copyrighted material. A user of that particular material
should abide by the license that covers the usage, and if any of the conditions
of usage described in that license are violated, then the original content creator
has the right to take legal action against the violator.

In contrast, CC has been striving to provide a simple, uniform, and under-
standable set of licenses that content creators can issue their content under to
enable reuse with much less restrictions. Often, people tend to post their con-
tent with the understanding that it will be quoted, copied, and reused. Further,
they may wish that their work only be used with attribution, used only for non-
commercial use, distributed with a similar license or will be allowed in other free
culture media. To allow these use restrictions CC has composed four distinct
license types: BY (attribution), NC (non-commercial), ND (no-derivatives) and
SA (share-alike) that can be used in combinations that best reflect the content
creator’s rights. In order to generate the license in XHTML easily, CC offers a
license chooser that is hosted at http://creativecommons.org/license. With
some user input about the work that is being licensed, the license chooser gen-
erates a snippet of XHTML that contains the RDFa [24] to be included when
the content is published on the Web. Content creators have the flexibility to
express their licensing requirements using the Creative Commons Rights Ex-
pression Language (ccREL)1 [11] and are not forced into choosing a pre-defined
license for their works. Also, they are free to extend licenses to meet their own
requirements. ccREL allows a publisher of a work to give additional permissions
beyond those specified in the CC license with the use of the cc:morePermissions
property to reference commercial licensing brokers or any other license deed, and
dc:source to reference parent works.

3 Motivation

Unless a particular piece of content on the Web has some strict access control
policies, most users do not feel the need to check for the license it is under and
be license compliant. To verify this hypothesis we conducted an experiment to
assess the level of license violations on the Web. Specifically, the goal of the
experiment was to obtain an estimation for the level of CC attribution license
violations on the Web using Flickr images2.
1 ccREL is the standard recommended by the Creative Commons for machine readable

expressions of the meaning of a particular license.
2 As of April 2009, Flickr has over 100 million Creative Commons Licensed images.

Thus it provided a large sample base for our experiment.

http://creativecommons.org/license

Policy-Aware Content Reuse on the Web 557

3.1 Experiment Setup

The sampling method used for the experiment was simple random sampling on
clusters of Web pages gathered during a particular time frame. To ensure a fair
sample we used the Technorati blog indexer3 without hand-picking Web pages
to compose the sample to check for attribution license violations. We limited the
number of Web pages to around 70, and the number of images to less than 500,
so that we could do a manual inspection to see if there are any false positives,
false negatives and/or any other errors. This also enabled us to check if the
different samples contained the same Web pages. We found that the correlation
among the samples was minimal.

Sample Collection using the Technorati API: The Technorati blog in-
dexer crawls and indexes blog-style Web pages and keeps track of what pages
link to them, what pages they link to, how popular they are, how popular the
pages that link to them are, and so on. Technorati data are time dependent, and
therefore the Technorati Authority Rank, a measurement that determines the
top n results from any query to the Technorati API, is based on the most recent
activity of a particular Web page4. The Technorati Cosmos querying functions
allow the retrieval of results for blogs linking to a given base URI based on
the authority rank. Therefore to generate the samples, we used the Technorati
Cosmos functions by retrieving results for Web pages linking to Flickr server
farm URIs that have this particular format: http://farm<farm-id>.static.
flickr.com/<server-id>/<id>_<secret>.(jpg|gif|png)5. Since the Flickr
site has several server farms, each time the experiment was run, the base URIs
were randomly generated by altering the Flickr server farm-ids. In addition to
that, we made sure that the samples were independent of each other and the
correlation among the samples were low by running the experiment three times
with two weeks between each trial. This is because the Authority Rank given
to a Web page by Technorati, and hence the results returned from the Cosmos
query functions dynamically changes as new content gets created.

Criteria for Checking Attribution: Flickr is still using the older CC 2.0 rec-
ommendation. Therefore, Flickr users do not have that much flexibility in spec-
ifying their own attributionURL or the attributionName as specified in ccREL.
However, it is considered good practice to give attribution by linking to the
Flickr user profile or by giving the Flickr user name (which could be interpreted
as the attributionURL and the attributionName respectively), or at least, point

3 Implemented using the Technorati API detailed at
http://technorati.com/developers/api

4 We expected that the use of the Technorati Authority Rank would introduce a bias
in our sample. This is because the top Web pages from the Technorati blog indexer
are probably well visited, hence more pressure on the Web page owners to fix errors
in attribution. However, the results proved otherwise.

5 According to http://www.flickr.com/services/api/misc.urls.html, all Flickr
images have that particular URI pattern.

http://farm<farm-id>.static.flickr.com/<server-id>/<id>_<secret>.(jpg|gif|png)
http://farm<farm-id>.static.flickr.com/<server-id>/<id>_<secret>.(jpg|gif|png)
http://technorati.com/developers/api
http://www.flickr.com/services/api/misc.urls.html

558 O. Seneviratne, L. Kagal, and T. Berners-Lee

to the original source of the image [12]. Therefore, the criteria for checking at-
tribution consist of looking for the attributionURL or the attributionName or
any source citations within a reasonable level of scoping from where the image
is embedded in the Document Object Model (DOM) of the corresponding Web
page.

3.2 Results

The results from the 3 trials are given in Fig 1. These results have misattribution
and non-attribution rates ranging from 78% to 94% signaling that there is a
strong need to promote license or policy awareness among reusers of content.
The entire result set includes the total number of Web pages tested, number of
images in all of those Web pages, number of properly attributed images, number
of misattributed or non-attributed images, and the number of instances that
led to an error due to parsing errors resulting from bad HTML. Using these
values, the percentages of misattribution and non-attribution for each sample
were calculated.

Fig. 1. Left: Screenshots of the results from the experiment (Refer to
http://dig.csail.mit.edu/2008/WSRI-Exchange/results for more information). Right:
Attribution violations rate and Precision obtained after correcting for self-attribution.

3.3 Issues and Limitations of the Experiment

As in any experiment, there are several issues and limitations in this experiment.

Results include cases where the users have not attributed themselves:
For example, consider the case where a user uploads her photos on Flickr, and
uses those photos in one of her own Web pages without attributing herself. As
the copyright holder of the work, she can do pretty much whatever she wants
with those, even though the CC BY license deed states: “If You Distribute you
must keep intact all copyright notices for the Work and provide (i) the name
of the Original Author...” [4]. However if she fails to include the license notice
and the attribution to herself, she may be setting a precedent for the violation
of her own rights in the long run. From the point of view of the experiment,
it was difficult to infer the page owner from the data presented in the page.

Policy-Aware Content Reuse on the Web 559

Even if that was possible, it is hard to make a correlation between the Flickr
photo owner and the page owner. However, we manually inspected the samples
to see whether the misattributed images were actually from the user or not, and
flagged the ones which are definitely from the original user as false positives in
the results set to obtain the precision rate. After this correction, we found the
precision rate of the experiment to be between 55% to 40%.

Low adoption of ccREL and Attribution Scoping: We found out that a
majority of the Web pages examined in this experiment have not used ccREL
in marking up attribution. Therefore, we used a heuristic to check for the exis-
tence of attribution in the pages used in the trials. This heuristic includes the
attributionName constructed from the Flickr user name, or the attributionURL
constructed from the Flickr user profile URI, or the original source document’s
URI. We expected to find the attribution information in the parent of the DOM
element or in one of the neighboring DOM elements. This can be visually corre-
lated to finding the attribution information immediately after the content that
is being reused. However, since there is no strict definition from CC as to how
attribution should be scoped, someone could also attribute the original content
creator somewhere else in the document. However, considering that it is possi-
ble the user intended to include more than one image from the same original
content creator, and by mistake failed to attribute some images, while correctly
attributing all the others, we only checked attribution information within the
neighboring DOM elements, and not at the document level.

Blog Aggregators such as Tumble-logs cutting down the text and fa-
voring short form, mixed media posts over long editorial posts: Use of
such blog aggregators (for example tumblr.com) is another problem in getting
an accurate assessment of attribution license violations. For example, in a blog
post where a photo was reused, the original owner of the photograph may have
been duly attributed. But when the tumble-log pulls in the feed from that post
in the original Web page and presents the aggregated content, the attribution
details may be left out. This problem is difficult to circumvent because there is
no standard that specifies how aggregation should take license and attribution
details into consideration.

4 Tools to Enable Policy Awareness

As a proof of concept we developed two tools that can be used to enable policy
awareness when reusing images on the Web. Even though both tools are currently
limited to image reuse, it can be easily extended to support other types of media.

4.1 Attribution License Violations Validator for Flickr Images

When someone aggregates content from many different sources, it is inevitable
that some attribution details may be accidentally forgotten. The Attribution
License Violations Validator is designed to check whether the user has properly

tumblr.com

560 O. Seneviratne, L. Kagal, and T. Berners-Lee

cited the source by giving the due attribution to the original content creator. In
order to make sure that no CC license terms of the user are violated, the author
can run the CC License Violations Validator and see if some sources have been
left out or whether some have been misattributed.

Fig. 2. Left: The Design of the Validator. Right: Output from the Validator showing
the image that was not attributed properly, who the image belongs to and what license
it is under.

Design and Implementation: The tool has four major components as shown
in the left half of Fig 2. Once the user gives the URI where the composite work
can be found, the site crawler will search for all the links embedded in the given
Web page and extract any embedded Flickr photos. From each of these Flickr
photo URIs, it is possible to glean the Flickr photo id. Using this photo id, all the
information related to the photo is obtained by calling several methods in the
Flickr API. This information includes the original creator’s Flickr user account
id, name, and CC license information pertaining to the photo, etc. Based on
the license information of the Flickr photo, the tool checks for the attribution
information that can be either the attributionName, attributionURL, source URI
or any combination of those within a reasonable scoping in the containing DOM
element in which the image was embedded. The ‘reasonable scoping’ in this case,
is taken to be within the parent or the sibling nodes of the element that has the
embedded image. If such information is missing, the user is presented with the
details of the original content creator’s name, the image along with its URI, and
the license it is under, enabling the user to compose the XHTML required to
properly attribute the sources used.

Challenges and Limitations: The license violations detection can only work
if the image URI is actually linked from the Flickr site. Therefore if a user wants
to cheat, she can easily do so by changing the image URI by uploading it to
another Web space. Another complication is that a Flickr user can upload and
assign CC licenses regardless of that user having the actual rights to do so. In

Policy-Aware Content Reuse on the Web 561

other words, if someone uploads a copyrighted photo from Getty Images and
assigns a CC license on Flickr, and an innocent user downloads and uses this
photo, then that user will be violating the copyright law inadvertently. Therefore,
we need to have some capability to track provenance of image data, and be able
to identify whether a particular image has been used elsewhere in a manner that
violates the original license terms. One of the major assumptions we have made
in developing this tool is that attribution is specified within the parent node or
the sibling nodes of the containing image element. Otherwise we classify it an
instance of non-attribution. This assumption works in practice and appears to
be the most logical thing to do. However, since there is no standard agreement
as to what the correct scoping for attribution is, this assumption can lead to a
wrong validation result. The solution to this problem is two-fold. (1) CC should
give a guideline as to what the correct scoping of attribution should be relative
to the content that is attributed. (2) Flickr (or any other such service) should
expose the license metadata as RDF, instead of providing an API to query with.
Exposing license metadata as RDF is preferred as it enables data interoperability
and relieves the tool authors from having to write data wrappers for each service.

4.2 Semantic Clipboard

The Semantic Clipboard is a Firefox Web browser based tool integrated as part of
the Tabulator, a linked data browser that can be installed as a Firefox extension
[28]. The primary goal of this tool is to let users reuse content with minimal
effort.

Design and Implementation: The design of the Semantic Clipboard is given
in Fig 3. The tool uses the ‘RDFa Extractor’ to glean the Creative Commons
license information expressed in RDFa from the HTML page the user browses.
The ‘UI Enhancer’ implements several menu options in the Firefox browser to se-
lect licensed images with the proper intention. The available options are given in
Fig 3. For example, if a user want to see images that can be used for ‘Commercial
Purposes’, she can select the corresponding menu item. Then the images that do
not have the CC-NC clause (Creative Commons Non Commercial use) will be
highlighted with an overlay on the image. The ‘Attribution XHTML Construc-
tor’ is called when the user issues a copy instruction on a particular image by
right-clicking on the image and selecting the context menu option ‘Copy Image
with License’ as shown in the right half of Fig 3. Based on the license informa-
tion for that particular image, the attribution XHTML snippet is constructed as
specified by Creative Commons, and copied to the system clipboard. Currently
two data flavors are supported: ASCII text and HTML. Therefore if the target
application accepts HTML such as in a rich text editor, the source text (with
the angle brackets) will not be displayed.

Challenges and Limitations: One of the hazards of combining multiple data
sources is that incompatible licenses can get mixed up creating a license that
basically freezes the creative process. Take for example a Non-Commercial (NC)

562 O. Seneviratne, L. Kagal, and T. Berners-Lee

Fig. 3. Left: Semantic Clipboard Architecture. Right: Semantic Clipboard User
Interface.

license that gets mixed with a Share-Alike (SA) license. An SA license requires
that the resulting product be shared under exactly the same conditions as the
component product under SA. The resulting license in our scenario becomes
NC-SA. But while the result satisfies the first license by also being NC, it fails
the second license by not being only SA. We cannot simply ignore the NC clause
and give the resulting work only the SA license because somebody else might
use the resulting derivative work which does not have the NC clause for some
commercial use violating the rights of the original creator who composed the NC
component. The Semantic Clipboard does not handle such license conflicts.

5 Related Work

Reuse detection is important in domains such as plagiarism detection and even
in biological sequence mining. Significant research has been carried out to de-
tect reuse of text. This includes information retrieval techniques as mentioned
in [17,25], where the document is treated as a sequence of symbols and sub-
string based fingerprints are extracted from the document to determine repetitive
patterns.

The CC License Syntax Validation Service [13] can be used to parse docu-
ments for embedded licenses in RDFa. After parsing the document, this service
gives a list of licensed objects and each of their license authorship, version, juris-
diction, whether the license has been superseded or deprecated and whether the

Policy-Aware Content Reuse on the Web 563

work is allowed in free cultural works, etc. However, it does not give the infor-
mation as to whom the attribution should be given when reusing these license
objects, like in the attribution license violations validator we have developed.
In addition to that, CC has put much focus on coming up with ways to enable
tool builders to use the CC licenses very effectively. For example, the live box on
the License Deed Page as shown in Fig 4 suggests how to attribute a particular
work. This is created when a CC license hyperlink that has the attributionName
and the attributionURL properties to the License Deed Page is dereferenced.
There are also several license aware Mozilla Firefox extensions developed by the
CC. MozCC [19] is one such tool. It provides a specialized interface for display-
ing CC licenses, where the user receives visual cues when a page with RDFa
metadata is encountered. This includes the display of specific CC branded icons
in the browser status bar when the metadata indicates the presence of a CC
license. However, this software does not offer the capability to copy the license
attribution XHTML as in the Semantic Clipboard that we have developed.

Fig. 4. CC Deed Page Displaying the Attribution XHTML

The Semantic Clipboard was actually inspired from the work done on ‘XHTML
Documents with Inline, Policy-Aware Provenance’ [15] by Harvey Jones. Jones
developed a document format that can represent information about the sources
of its content, a method of excerpting from these documents that allows programs
to trace the excerpt back to the source, a CC reasoning engine which calculates
the appropriate license for the composite document, and a bookmarklet that uses
all these components to recommend permissible licenses. But this tool requires
all the source documents to be annotated with a special document fragment
ontology, and the Paste Operation is limited to inserting copied XHTML in the
top level of the document only, i.e. it does not allow copying inside existing doc-
ument fragments. The Semantic Clipboard addresses these issues by eliminating
the reliance of an external document fragment ontology and utilizing the operat-
ing system’s clipboard to paste the image with the associated license metadata
in XHTML. The only requirement for the Semantic Clipboard to work is that
the license information about the work must be expressed in RDFa in the source
documents.

There are several tools that can be used to automatically embed the license
metadata from Flickr. Applications such as ThinkFree, a Web based commercial
office suite [27], and the open source counterpart of it, the “Flickr image reuse for
OpenOffice.org” [10] are examples of such applications. These applications allow
the user to directly pick an image from the Flickr Web site and automatically
inject the license metadata with it into a document in the corresponding office

564 O. Seneviratne, L. Kagal, and T. Berners-Lee

suite. A severe limitation of this approach is that they only support Flickr images.
The Semantic Clipboard can be used to copy any image to any target document
along with the license as long as the license metadata is expressed in RDFa.

Attributor [1], a commercial application, claims to continuously monitor the
Web for its customers’ photos, videos, documents and let them know when their
content has been used elsewhere on the Web. It then offers to send notices
to the offending Web sites notifying link requests, offers for license, requests
for removal or shares of the advertisement revenue from the offending pages.
Another commercial application called PicScout [21] claims that it is currently
responsible for detecting over 90% of all online image infringement detections.
They also claim to provide the subscribers of their service with a view into where
and how their images are being used online. The problem with these services is
that they penalize the infringers, rather than encouraging them to do the right
thing upfront [16]. In addition to that, since their implementations are based
on bots that crawl the Web in search of infringements, these services take up
valuable Internet bandwidth [30]. Also, these services are not free, which bars
many content creators who wish to use such services to find license violations of
their content from using the service.

6 Future Work

Currently, the images that are copied with their metadata to the Semantic Clip-
board are overwritten when some new content is copied to the clipboard. In other
words, the tool only supports copying of one image at a time. But it would be use-
ful to have a persistent data storage to register images or any other Web media
along with their license metadata, index them, make persistent across browser
sessions, and use the copied content whenever the user needs it in a license-
compliant manner. One other main drawback of the Semantic Clipboard is that
it is Firefox browser-dependent. Developing an Opera Widget, a Chrome Ex-
tension, a Safari Plugin, an Internet Explorer Content Extension or completely
making this tool browser independent seems to be a viable future direction of
the project.

Also, the tools we have developed only works if every image found on the
page has it’s own license. Possible extensions would be to have higher level of
granularity to determine the license of an image when it does not have a license
of it’s own, but is contained within a page that has a license or is a member of
a set of images (e.g. a photo album) that has a license. The Protocol for Web
Description Resources (POWDER) [22], a mechanism that allows the provision of
descriptions for groups of online resources, seems like a viable method to making
the license descriptions about the resources explicit. Tool builders can then rely
on the POWDER descriptions to help users to make appropriate content reuse
decisions.

It would be interesting to measure how user behavior changes with the in-
troduction of tools such as the License Violations Validator and the Semantic
Clipboard. A measurement of the change in the level of license awareness would

Policy-Aware Content Reuse on the Web 565

be an important metric in determining the success of these tools. Therefore, we
plan to perform a controlled user study in the future.

We have only explored one domain of content, specifically image reuse on the
Web. However, there are billions of videos uploaded on YouTube, and potentially
countless number of documents on the Web, which have various types of licenses
applied. While organizations such as Mobile Picture Association of America
(MPAA), Recording Industry Association of America (RIAA) and other such
organizations are working towards preserving the rights of the works of their
artists on YouTube, other video and audio sharing sites and peer-to-peer file
sharing networks, there are no viable alternatives for ordinary users who intend
to protect their rights using CC. Thus a solution of this nature which detects
CC license violations based on the metadata of other types of free-floating Web
media will be very useful.

The requirement for attribution is a form of social compensation for reusing
one’s work. While mentioning one’s name, homepage or the WebID when at-
tributing draws attention to an individual, other forms of ‘attention mechanisms’
can also be implemented. For example, a content creator can obligate the users of
her works to give monetary compensation or require that they include certain ad
links in the attribution XHTML or give attribution in an entirely arbitrary man-
ner. These extra license conditions can be specified using the cc:morePermissions
property. Tools can be built to interpret these conditions and give credit to the
original creator as requested.

We envision that the same principle used for checking attribution license vi-
olations could be used for checking other types of license violations. Detecting
whether an image has been used for any commercial use would be of much in-
terest to content creators, especially if the second use of the image decreases the
monetary value of the original image. The CC deed for Non Commercial (NC)
use specifies that a license including the NC term may be used by anyone for
any purpose that is not “primarily intended for or directed towards commercial
advantage or private monetary compensation”. However, this definition can be
vague in certain circumstances. Take, for example, the case where someone uses a
CC-BY-NC licensed image in her personal blog properly attributing the original
content creator. The blog is presumably for non commercial use, and since she
has given proper attribution, it appears that no license violation has occurred.
However there might be advertisements in the page that are generated as a direct
result of the embedded image. Our user might or might not actually generate
revenue out of these advertisements. But if she does, it could be interpreted as
a ‘private monetary compensation’. Hence we believe that the perception as to
what constitutes a ‘Commercial Use’ is very subjective.

CC recently conducted an online user survey to gather general opinions as to
what people perceive a ‘Commercial Use’ is [6]. An important finding from this
survey is that 37% of the users who make money from their works do so indirectly
through advertisements on their Web pages. Therefore, it seems that there aren’t
any clear cut definitions of a ‘Non Commercial Use’ yet to find out violations
and gather experimental results. But, if the definition of non commercial use

566 O. Seneviratne, L. Kagal, and T. Berners-Lee

becomes clearer and much more objective, a validator can be implemented to
check for such violations as well. It would also be interesting to check for share-
alike license violations. These violations happen when a conflicting license is
given when the content is reused. The solution, therefore, is to check the RDFa
in both the original page and in the page where the image was embedded to see
if the latter is the same as the original CC license.

7 Conclusion

As our license violations experiment indicated, there is a strong lack of awareness
of licensing terms among content reusers. This raises the question as to whether
machine readable licenses are actually working. Perhaps more effort is needed
to bring these technologies to the masses, and more tools are needed to bridge
the gap between the license-aware and the license-unaware. There should also
be methods to find out license violations when users are not cooperative.

An important research question that stems from this work is the method
of provenance preservation of content on the Web. We have trivially assumed
URIs to be the provenance preservation mechanism when developing the tools
described. However, it would be an interesting challenge to track provenance
based on the content itself, without having to rely on a unique identifier such as
a URI. This would enable us to find out license violators, in addition to validating
one’s own work for any violations. Also, programmatically determining whether
a particular reuse of material is allowable or not is subjective, especially since
some of the laws and standards have been quite ambiguous in defining these
terms.

In general, social constraints are functions of any part of the blossoming Social
Web we are experiencing today. As we are living in an era of increasing user
generated content, these constraints can be used to communicate the acceptable
uses of such content. We need tools, techniques and standards that strike an
appropriate balance between the rights of the originator and the power of reuse.
The rights of the originator can be preserved by expressing what constitutes
appropriate uses and restrictions using a rights expression language. These rights
will be both machine and human readable. Reuse can be simplified by providing
the necessary tools that leverage these machine readable rights to make the users
more aware of the license options available and ensure that the user be license
or policy compliant. Such techniques can be incorporated in existing content
publishing platforms or validators or even Web servers to make the process
seamless. This paper has demonstrated several tools that enable the development
of such policy-aware systems, and we hope that these will stimulate research in
this area in the future.

Acknowledgements

Parts of this work was done while the first author was undergoing the ‘Net-
works for Web Science Research Exchange’ program under the guidance of Nigel

Policy-Aware Content Reuse on the Web 567

Shadbolt at University of Southampton, UK. Special thanks for his advice all
throughout the project. In addition, the authors wish to thank their colleagues,
Danny Weitzner, Hal Abelson, Gerry Sussman, and other members at DIG for
their contribution to the ideas expressed in this paper.

This work was supported by NSF Cybertrust award CT-M: 0831442, IARPA
award FA8750-07-2-0031, and UK Engineering and Physical Sciences Research
Council (EPSRC) grant EP/F013604/.

References

1. Attributor - Subscription based web monitoring platform for content reuse
detection, http://www.attributor.com

2. blip.tv - Hosting, distribution and advertising platform for creators of web shows
3. Bonatti, P.A., Duma, C., Fuchs, N., Nejdl, W., Olmedilla, D., Peer, J., Shahmehri,

N.: Semantic web policies - a discussion of requirements and research issues. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 712–724. Springer,
Heidelberg (2006)

4. Creative Commons BY 3.0 Unported Legal Code,
http://creativecommons.org/licenses/by/3.0/legalcode

5. Creative Commons Customized Search in Google,
http://creativecommons.org/press-releases/entry/5692

6. Creative Commons Noncommercial study interim report,http://mirrors.
creativecommons.org/nc-study/NC-Use-Study-Interim-Report-20090501.pdf

7. Exchangeable Image File Format,
http://www.exif.org/specifications.html

8. Feigenbaum, J., Freedman, M.J., Sander, T., Shostack, A.: Privacy engineering
for digital rights management systems. In: Sander, T. (ed.) DRM 2001. LNCS,
vol. 2320, pp. 76–105. Springer, Heidelberg (2002)

9. Flickr API, http://www.flickr.com/services/api
10. Flickr image reuse for openoffice.org, http://wiki.creativecommons.org/

Flickr-Image-Re-Use-for-OpenOffice.org
11. Abelson, H., Adida, B., Linksvayer, M., Yergler, N.: ccREL: The Creative Com-

mons Rights Expression Language. Creative Commons Wiki (2008)
12. How to attribute Flickr images,

http://www.squidoo.com/cc-flickr/#module12311035
13. Dworak, H.: Creative Commons License Validation Service,

http://validator.creativecommons.org
14. International Press Telecommunications Council Photo Metadata Format,

http://www.iptc.org/IPTC4XMP
15. Jones, H.C.: Xhtml documents with inline, policy-aware provenance. Master’s the-

sis, Massachusetts Institute of Technology (May 2007)
16. Doctor, K.: Blog Entry on Attributor Fair Syndication Consortium Com-

pletes Newspaper Trifecta, http://www.contentbridges.com/2009/04/

attributor-ad-push-on-piracy-completes-newspaper-trifecta.html

17. Kim, J.W., Candan, K.S., Tatemura, J.: Efficient overlap and content reuse de-
tection in blogs and online news articles. In: 18th International World Wide Web
Conference WWW 2009 (April 2009)

18. Kishor, P., Seneviratne, O.: Public policy: Mashing-up technology and law. In:
Mashing-up Culture: The Rise of User-generated Content, COUNTER workshop,
Uppsala University (May 2009)

http://www.attributor.com
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/press-releases/entry/5692
http://mirrors.creativecommons.org/nc-study/NC-Use-Study-Interim-Report-20090501.pdf
http://mirrors.creativecommons.org/nc-study/NC-Use-Study-Interim-Report-20090501.pdf
http://www.exif.org/specifications.html
http://www.flickr.com/services/api
http://wiki.creativecommons.org/Flickr-Image-Re-Use-for-OpenOffice.org
http://wiki.creativecommons.org/Flickr-Image-Re-Use-for-OpenOffice.org
http://www.squidoo.com/cc-flickr/#module12311035
http://validator.creativecommons.org
http://www.iptc.org/IPTC4XMP
http://www.contentbridges.com/2009/04/attributor-ad-push-on-piracy-completes-newspaper-trifecta.html
http://www.contentbridges.com/2009/04/attributor-ad-push-on-piracy-completes-newspaper-trifecta.html

568 O. Seneviratne, L. Kagal, and T. Berners-Lee

19. MozCC - Firefox extension to discover Creative Commons licenses,
http://wiki.creativecommons.org/MozCC

20. OWL Music Search, http://www.owlmusicsearch.com
21. picScout - Image tracker for stock photography agencies and professional photog-

raphers, http://www.picscout.com
22. Protocol for Web Description Resources (POWDER),

http://www.w3.org/2007/powder

23. RDF, Resource Description Framework,
http://www.w3.org/TR/rdf-syntax-grammar

24. RDFa, Resource Description Framework in Attributes,
http://www.w3.org/2006/07/SWD/RDFa/syntax

25. Shivakumar, N., Garcia-Molina, H.: Scam: A copy detection mechanism for digital
documents. In: Second Annual Conference on the Theory and Practice of Digital
Libraries (1995)

26. SpinXpress - Collaborative media production platform, http://spinxpress.com
27. Think Free - Java based web office suite,

http://www.thinkfree.com

28. Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Prud’ommeaux, E., Schraefel,
M.C.: Tabulator Redux: Browing and Writing Linked Data. In: Linked Data on
the Web Workshop at WWW (2008)

29. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman,
G.J.: Information accountability. Communications of the ACM (June 2008)

30. Faulkner, W.: Tales From The IT Side: PicScout, Getty Images and Goodbye
iStockPhoto..!,
http://williamfaulkner.co.uk/wordpress/2007/09/

picscout-getty-images-and-goodbye-istockphoto

31. XMP - Extensible Metadata Platform,
http://www.adobe.com/products/xmp/index.html

32. Yahoo Creative Commons Search,
http://search.yahoo.com/cc

http://wiki.creativecommons.org/MozCC
http://www.owlmusicsearch.com
http://www.picscout.com
http://www.w3.org/2007/powder
http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/2006/07/SWD/RDFa/syntax
http://spinxpress.com
http://www.thinkfree.com
http://williamfaulkner.co.uk/wordpress/2007/09/picscout-getty-images-and-goodbye-istockphoto
http://williamfaulkner.co.uk/wordpress/2007/09/picscout-getty-images-and-goodbye-istockphoto
http://www.adobe.com/products/xmp/index.html
http://search.yahoo.com/cc

Exploiting Partial Information in Taxonomy
Construction

Rob Shearer and Ian Horrocks

Oxford University Computing Laboratory, Oxford, UK

Abstract. One of the core services provided by OWL reasoners is classification:
the discovery of all subclass relationships between class names occurring in an
ontology. Discovering these relations can be computationally expensive, partic-
ularly if individual subsumption tests are costly or if the number of class names
is large. We present a classification algorithm which exploits partial information
about subclass relationships to reduce both the number of individual tests and the
cost of working with large ontologies. We also describe techniques for extract-
ing such partial information from existing reasoners. Empirical results from a
prototypical implementation demonstrate substantial performance improvements
compared to existing algorithms and implementations.

1 Introduction

Among the most important relationships between the class names occurring in an ontol-
ogy is subclassing: a class B is a subclass of a class A if and only if every member of B
must also be a member of A. One of the core services provided by reasoners for ontol-
ogy languages is classification, the discovery of all such subclass relationships. In fact,
classification is the primary (and often the only) reasoning service exposed by ontology
engineering tools. The Protégé-OWL editor, for example, includes a “Reasoning” but-
ton which performs classification. The resulting hierarchy of subclass relationships is
used to organize classes within all aspects of Protégé’s interface, and the subclass rela-
tionships which arise as implicit consequences of an ontology are the primary mecha-
nism authors use to check that the axioms they write are consistent with their intuitions
about the structure of the domain. Finally, other reasoning services, such as explanation
and query answering, typically exploit a cached version of the classification results;
classification is thus usually the first task performed by a reasoner.

For some less expressive ontology languages, such as the OWL 2 EL profile,1

it may be possible to derive all subclass relationships in a single computation
[Baader et al., 2005]. For OWL (2) DL, however, it is in general necessary to “deduce”
the set of all such relationships by performing a number of subsumption tests; each
such test checks whether or not there is a subclass relationship between two particular
ontology classes.

In this paper, we present a novel algorithm which can greatly reduce the number of
subsumption tests needed to classify a set of ontology classes. Our algorithm is also
able to exploit partial information about subclass relationships—for example, the set of

1 http://www.w3.org/TR/owl2-profiles/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 569–584, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.w3.org/TR/owl2-profiles/

570 R. Shearer and I. Horrocks

subclass relationships which are explicitly stated in the ontology—to further reduce the
number of tests; our approach thus generalizes a wide range of commonly-implemented
optimizations. We further describe how a great deal of such partial information can
be gathered from the data generated by reasoning systems when performing individ-
ual subsumption or consistency tests. Finally, we present an empirical evaluation that
demonstrates the significant advantages of our techniques over the approaches imple-
mented in existing reasoners, such as Pellet and FaCT++.

2 Overview

For a set of n classes, there are a total of n2 possible subclass relationships, thus a
naı̈ve representation of classification results can require large amounts of storage. Most
systems exploit the transitivity of subclassing and store only the “most specific” super-
classes and “most general” subclasses of each class; we call such a compressed repre-
sentation a taxonomy. A taxonomy lends itself to representation as a graph or tree, often
called a class hierarchy.

It is clear that a set of n class names can be classified by simply performing all n2

individual subsumption tests, but for the tree-shaped class hierarchies typically found
in realistic ontologies much better results can be achieved using algorithms that con-
struct the taxonomy incrementally. Class names are inserted into the taxonomy one by
one, and the correct location for each is found by traversing the partially-constructed
hierarchy, performing subsumption tests as each node of the graph is visited.

This kind of algorithm suffers from two main difficulties. First, individual subsump-
tion tests can be computationally expensive—for some complex ontologies, even state-
of-the-art reasoners may take a long time to perform a single test. Second, even when
subsumption tests themselves are cheap, an ontology containing a very large number of
class names will obviously result in a very large taxonomy, and repeatedly traversing
this structure can be costly. This latter problem is particularly acute for the relatively
flat (i.e., broad and shallow) tree-shaped hierarchies often found in large biomedical on-
tologies. In general, subsumption tests must be performed between every pair of class
names with the same direct superclass(es), thus broad hierarchies require many such
tests. These two difficulties clearly interact: large numbers of class names require large
numbers of subsumption tests, each of which can be expensive.

The first difficulty is usually addressed by using an optimized construction that
tries to minimize the number of subsumption tests performed in order to construct the
taxonomy. Most implemented systems use an “enhanced traversal” algorithm due to
Ellis [1991] and to Baader et al. [1994] which adds class names to the taxonomy one at
a time using a two-phase strategy. In the first phase, the most specific superclasses of a
class C are found using a top-down breadth-first search of the partially-constructed tax-
onomy. In this phase, subtrees of non-superclasses of C are not traversed, which signif-
icantly reduces the number of tests performed. The second phase finds the most general
subclasses of C using a bottom-up search in a similar way. The algorithm exploits the
structure of the ontology to identify “obvious” superclasses (so-called told-subsumers)
of each class, and uses this information in a heuristic that chooses the order in which

Exploiting Partial Information in Taxonomy Construction 571

classes are added, the goal being to construct the taxonomy top-down; it also exploits
information from the top-down search in order to prune the bottom-up search.2

The second difficulty can be addressed by optimizations that try to identify a subset
of the class names for which complete information about the subclass relationships can
be deduced without performing any individual subsumption tests. This can be achieved,
e.g., by identifying completely-defined classes [Tsarkov et al., 2007]—those between
which only structurally-obvious subclass relationships hold. Having constructed part of
the taxonomy using such a technique, the remaining class names can be added using
the standard enhanced traversal algorithm.

In Section 3 we present a new classification algorithm that generalizes and refines the
above techniques. Our approach is based on maintaining, and incrementally extending,
two sorts of information: a set of pairs of classes A and B such that we know that A
is a subclass of B (the known subsumptions), and a set of pairs of classes such that we
know that A is not a subclass of B (the known non-subsumptions). The key insight is
that information from these two sets can often be combined to derive new information.
For example, if we know that A is a subclass of B, and that A is not a subclass of C,
then we can conclude that B is not a subclass of C. In section 3.1 we show how to
derive the largest possible set of such inferences.

Our classification algorithm is straightforward: at each stage we pick a pair of classes
A and B which does not appear in either the set of known subsumptions or the set of
known non-subsumptions, perform a subsumption test between the two, and use the re-
sult of the test to further extend the sets of known subsumptions and non-subsumptions.
Each such test adds at least one pair to one of the sets (i.e. A and B themselves). Even-
tually, every possible pair of classes is present in one set or the other, and the set of
known subsumptions thus contains all subsumptions between class names.

An important advantage of our algorithm is that the initial sets of known
(non-)subsumptions may be empty, may include partial information about all classes,
and/or may include complete information about some classes; in all cases the informa-
tion is maximally exploited. Such information can be derived from a variety of sources,
ranging from syntactic analysis of the ontology to existing classification results for a
subset of class names from the ontology (e.g. independent modules or classified sub- or
super-sets of the ontology) to data derived in the course of reasoning.

In Section 4 we show how the models constructed by (hyper)tableau-based reasoners
in the course of subsumption and satisfiability testing can be used as sources of partial
information about subclass relationships. For example, if a reasoner produces a model
containing an individual which is a member of both the class A and the complement
(negation) of the class B, then A is clearly not a subclass of B; more sophisticated anal-
ysis based on the dependency tracking structures typically maintained by tableau rea-
soners also allows detection of subclass relationships. The models generated by tableau
reasoners are typically very rich sources for this type of information; in fact, for ontolo-
gies which do not result in nondeterminism, including all OWL 2 EL ontologies, the
model constructed by a hypertableau-based reasoner when checking the satisfiability of

2 Other optimizations can be used to decrease the cost of individual subsumption tests
(see, e.g., [Tsarkov et al., 2007]), but these techniques are largely orthogonal to classification
optimizations.

572 R. Shearer and I. Horrocks

a class A will contain sufficient information to determine if A is (not) a subclass of B
for all class names B occurring in the ontology.

Our approach to partial-information derivation provides an efficient generalization
of the told-subsumer and completely-defined optimizations, both of which derive
partial information from structural analysis of the ontology. When the known (non-)
subsumption information is incomplete, our algorithm incrementally computes addi-
tional (non-)subsumption relationships, and maximally exploits the resulting infor-
mation to refine the sets of known and possible subsumers; this can be seen as a
generalization of the search-pruning optimizations introduced by Baader et al..

We have used a prototypical implementation of our new algorithm to compare its
behavior with that of the classification algorithms implemented in state-of-the-art OWL
reasoners. The comparison shows that our algorithm can dramatically reduce the num-
ber of subsumption tests performed when classifying an ontology. Moreover, in contrast
to the completely-defined optimization, the behavior of our algorithm degrades grace-
fully as the gap between the sets of initially-known and possible subsumption relation-
ships increases.

3 Deducing a Quasi-Ordering

We first introduce some notation and definitions that will be useful in what follows.
Given a set of elements U = {a, b, c, ...}, let R be a binary relation over U , i.e., a

subset of U × U . We say that there is a path from a to b in R if there exist elements
c0, ..., cn ∈ U such that c0 = a, cn = b, and 〈ci, ci+1〉 ∈ R for all 0 ≤ i < n.
The transitive closure of R is the relation R+ such that 〈a, b〉 ∈ R+ iff there is a path
from a to b in R. The transitive-reflexive closure R∗ of R is the transitive closure of the
reflexive extension of R, i.e. R+ ∪ {〈a, a〉 | a ∈ U}.

A binary relation is a quasi-ordering if it is both reflexive and transitive. Clearly, the
subsumption relation on a set of classes is a quasi-ordering. Note, however, that it is not
a partial-ordering, because it is not antisymmetric: C � D and D � C does not imply
that C = D.

The restriction of a relationR to a subsetD ofU is the relationR[D]=R ∩(D ×D).
All restrictions of a reflexive relation are reflexive, and all restrictions of a transitive re-
lation are transitive; thus, a restriction of a quasi-ordering is itself a quasi-ordering.
Further, if R ⊆ S for relations R and S, then R[D] ⊆ S[D] for all D ⊆ U .

Given a universe U , a quasi-ordering R over U and a finite set of elements D ⊆
U , we consider the problem of computing the restriction R[D] via tests of the form
〈a, b〉 ∈? R. If U is the set of (arbitrary) class expressions which can be represented
in ontology language L, R is the subsumption relation over U , and D is the set of
class names occurring in an ontology O written in language L, then computingR[D] is
equivalent to classifying O, and the relevant tests are subsumption tests.

We assume that we begin with partial information about R: we are provided with a
set K = {〈a0, b0〉, ..., 〈am, bm〉} where 〈ai, bi〉 ∈ R for 0 ≤ i ≤ m, and also with a
set Kneg = {〈c0, d0〉, ..., 〈cn, dn〉} where 〈ci, di〉 �∈ R for 0 ≤ i ≤ n. We call the set
K the known portion of R. In this paper we do not operate on the set Kneg directly;
our presentation instead refers to its complement U × U \Kneg , which we denote by

Exploiting Partial Information in Taxonomy Construction 573

a

b

c

d

only if

only if

(a) Simple cases

u′

u v

v′

only if

(b) General case

Fig. 1. Eliminating possible edges: if the solid edges are known to be in quasi-ordering R, then
the gray edges can be in R only if the indicated dashed edges are in R

P and call the possible portion of R. It is thus the case that K ⊆ R ⊆ P . If no partial
information is available, then K = ∅ and P = U × U .

We can use the result of each test 〈a, b〉 ∈? R to further refine the bounds on R by
either adding 〈a, b〉 to K or removing it from P ; eventuallyK[D] = R[D] = P [D]. We
next show, however, that the bounds on R can sometimes be refined without performing
additional tests by combining information from K and P .

3.1 Maximizing Partial Information

The key to minimizing the number of explicit tests required to discover R[D] is maxi-
mizing the information gained from K and P . To do so, we exploit the knowledge that
R is a quasi-ordering. In this case, K ⊆ R obviously implies that K∗ ⊆ R, so we can
use K∗ to obtain a tighter lower bound on R. Less obvious is the fact that we can also
obtain a tighter upper bound on R by identifying tuples in P which are not consistent
with K and the transitivity of R.

For example, consider the case shown in Figure 1(a). If we know that b is a successor
of a in R (i.e., 〈a, b〉 ∈ K), then an element c can be a successor of b only if it is also
a successor of a (if 〈a, c〉 �∈ P then 〈b, c〉 �∈ R). Further, a can be a successor of an
element d only if b is also a successor of d.

Both of these examples are special cases of the structure shown in Figure 1(b): if u
is a successor of u′ and v′ is a successor of v, then an edge from u to v would form a
path all the way from u′ to v′, requiring v′ to be a successor of u′. Since R is reflexive
we can choose u′ = u or v = v′ to see that v can be a successor of u only if v is a
successor of u′ and v′ is also a successor of u. We use this to formalize a subset P !K

of P , and show that P !K is the tightest possible upper bound on R.

Definition 1. Let K and P denote two relations such that K∗ ⊆ P . We define the
reduction P !K of P due to K as follows:

 P !K = P ∩ {〈u, v〉 | ∀u′, v′ : {〈u′, u〉, 〈v, v′〉} ⊆ K∗ → 〈u′, v′〉 ∈ P}

574 R. Shearer and I. Horrocks

Lemma 1. Let K and P denote two relations such that K∗ ⊆ P . (i) For all quasi-
orders R such that K ⊆ R ⊆ P , it is the case that R ⊆ P !K . (ii) Let S be a proper
subrelation of P !K . Then there exists a quasi-ordering R such that K ⊆ R ⊆ P and
R �⊆ S; i.e. P !K is minimal.

Proof. (i) Let 〈u, v〉 be a tuple in R. For every u′, v′ such that {〈u′, u〉, 〈v, v′〉} ⊆ K∗,
K∗ ⊆ R implies that {〈u′, u〉, 〈v, v′〉} ⊆ R. Because R is transitive and 〈u, v〉 ∈ R,
it must also be the case that 〈u′, v′〉 ∈ R and thus that 〈u′, v′〉 ∈ P . Consequently,
〈u, v〉 ∈ P !K , so R ⊆ P !K .

(ii) Choose elements a and b such that 〈a, b〉 ∈ P !K but 〈a, b〉 �∈ S. Let R be the
transitive-reflexive closure of the relation K ∪ {〈a, b〉}. Clearly K ⊆ R and R �⊆ S.
Let 〈u, v〉 be any tuple in R. There are three cases:

1. 〈u, v〉 = 〈a, b〉. Then 〈u, v〉 ∈ P since 〈a, b〉 ∈ P !K and P !K ∈ P .
2. 〈u, v〉 ∈ K+. Then 〈u, v〉 ∈ P since K∗ ⊆ P .
3. 〈u, a〉 ∈ K∗ and 〈b, v〉 ∈ K+. Then 〈u, v〉 ∈ P since 〈a, b〉 ∈ P !K .

For any tuple 〈u, v〉 ∈ R, it is the case that 〈u, v〉 ∈ P , thus K ⊆ R ⊆ P and R �⊆ S.
	"

Note that P !K itself is not necessarily transitive: given three elements a, b, and c and
the relation P = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈a, b〉, 〈b, c〉}, it is the case that P !∅ = P . Of
course no transitive subrelation R of P contains both 〈a, b〉 and 〈b, c〉.

3.2 Taxonomy Construction and Searching

As described in Section 3.1, given relations K and P such that K ⊆ R ⊆ P for
some unknown quasi-ordering R, a tuple 〈a, b〉 is an element of R if 〈a, b〉 ∈ K∗, and
〈a, b〉 is not an element of R if 〈a, b〉 �∈ P !K ; the only “unknown” elements of R
are the tuples in P !K \ K∗. Further, if 〈a, b〉 ∈ P !K \ K∗, then a test of the form
〈a, b〉 ∈? R provides additional information which can be used to extend K or restrict
P . This suggests the following simple procedure for deducing the restriction R[D] of a
quasi-ordering R to domain D:

COMPUTE-ORDERING(K,P,D)
1 while K∗[D] �= P !K [D]
2 do choose some a, b ∈ D such that 〈a, b〉 ∈ P !K \K∗

3 if 〈a, b〉 ∈? R then add 〈a, b〉 to K
4 else remove 〈a, b〉 from P
5 return K[D]

Completely recomputing K∗ and P !K in each iteration of the above loop is clearly
inefficient. Practical implementations would instead maintain both relations and update
them as P and K change. Techniques for updating the transitive-reflexive closure of a
relation are well-known; we provide below a naı̈ve algorithm that, given P !K , K ′ ⊇
K and P ′ ⊆ P , computes an updated relation P ′!K′ .

The algorithm exploits the technique for eliminating edges that was described in
Section 3.1 and Figure 1(b): it removes a tuple 〈u, v〉 from the set of possible tuples

Exploiting Partial Information in Taxonomy Construction 575

 P !K when adding it to the set of known tuples K ′ would imply, due to the transitivity
of R, that some other tuple would be at the same time both known (i.e., in K ′) and
not possible (i.e., not in P ′!K′). This is done incrementally by considering tuples that
have either become known (i.e., are in K ′ \ K) or been shown to be impossible (i.e.,
are in P !K \ P ′).

First, P !K is copied to P ′!K′ . Then, in lines 2–4, each tuple 〈u′, v′〉 that has been
shown to be impossible is considered and, if there are tuples 〈u′, u〉 and 〈v, v′〉 in K ′,
then 〈u, v〉 is clearly not possible either (it would imply that 〈u′, v′〉 is not only possible
but known) and so is removed from P !K . Next, in lines 5–13, each tuple 〈x, y〉 that has
become known is considered. There are two possible cases: one where x, y correspond
to u′, u in Figure 1(b), and one where they correspond to v, v′. Lines 6–9 deal with
the first case: if there are tuples 〈u, v〉 in P !K and 〈v, v′〉 in K ′, but 〈u′, v′〉 is not in
P ′, then 〈u, v〉 is clearly not possible (it would imply that 〈u′, v′〉 is not only possible
but known) and so is removed from P !K . Lines 10–13 deal similarly with the second
case: if there are tuples 〈u, v〉 in P !K and 〈u′, u〉 in K ′, but 〈u′, v′〉 is not in P ′, then
〈u, v〉 is removed from P !K .

PRUNE-POSSIBLES(P !K ,K, P ′,K ′)
1 P ′!K′ ← P !K

2 for each 〈u′, v′〉 ∈ P !K \ P ′

3 do for each u, v such that 〈u′, u〉 ∈ K ′ and 〈v, v′〉 ∈ K ′

4 do remove 〈u, v〉 from P ′!K′

5 for each 〈x, y〉 ∈ K ′ \K
6 do let u′ ← x and u ← y
7 for each v such that 〈u, v〉 ∈ P !K

8 do if there exists v′ such that 〈v, v′〉 ∈ K ′ and 〈u′, v′〉 �∈ P ′

9 then remove 〈u, v〉 from P ′!K′

10 let v ← x and v′ ← y
11 do for each u such that 〈u, v〉 ∈ P !K

12 do if there exists u′ such that 〈u′, u〉 ∈ K ′ and 〈u′, v′〉 �∈ P ′

13 then remove 〈u, v〉 from P ′!K′

14 return P ′!K′

In the case where no information about the quasi-ordering R[D] is available other than
K and P , the COMPUTE-ORDERING procedure performs well. In many cases, how-
ever, some general properties of R[D] can be assumed. In the case where R represents
subsumption relationships between class expressions, for example, R[D] is typically
much smaller than D×D (i.e., relatively few pairs of class names are in a subsumption
relationship). In such cases, it is beneficial to use heuristics that exploit the (assumed)
properties of R[D] when choosing a and b in line 2 of the above procedure.

We summarize below a variant of COMPUTE-ORDERING which performs well when
the restriction to be computed is treelike in structure and little information about the or-
dering is available in advance. This procedure is designed to perform individual tests in
an order similar to the enhanced traversal algorithm; however, it minimizes the number
of individual tests performed by maximally exploiting partial information.

576 R. Shearer and I. Horrocks

The algorithm chooses an element of a ∈ D for which complete information about
R[D] is not yet known. It identifies the subset V ↑ ⊆ D of elements b for which
〈a, b〉 ∈ R, and the subset V ↓ ⊆ D of elements b for which 〈b, a〉 ∈ R, updating
K and P accordingly. In order to compute these sets efficiently, we make use of the
subroutines SUCCESSORS and PREDECESSORS, which perform the actual tests. The
SUCCESSORS and PREDECESSORS functions are derived from the enhanced traversal
algorithm: they perform a breadth-first search of the transitive reduction K of the
known subsumptions K—the smallest relation whose transitive closure is K∗. In order
to avoid the cost of repeated traversals of K , we restrict the searches to, respectively,
the possible successors and predecessors of a. We omit the details of these search rou-
tines for the sake of brevity.

COMPUTE-ORDERING-2(K,P,D)
1 while K∗[D] �= P !K [D]
2 do choose some a, x ∈ D s.t. 〈a, x〉 ∈ P !K \K∗ or 〈x, a〉 ∈ P !K \K∗

3 let B be the possible successors of a, i.e. D ∩ {b | 〈a, b〉 ∈ P !K \K∗}
4 if B �= ∅ then V ↑ ← SUCCESSORS(a,K [B])
5 add 〈a, b〉 to K for every element b of V ↑

6 remove 〈a, b〉 from P for every element b of B \ V ↑

7 let B be the possible predecessors of a, i.e. D ∩ {b | 〈b, a〉 ∈ P !K\K∗}
8 if B �= ∅ then V ↓ ← PREDECESSORS(a,K [B])
9 add 〈b, a〉 to K for every element b of V ↓

10 remove 〈b, a〉 from P for every element b of B \ V ↓

11 return K[D]

3.3 Example

Consider the process of using COMPUTE-ORDERING-2 to discover the subsumption
relation {〈a, a〉, 〈b, a〉, 〈b, b〉, 〈c, a〉, 〈c, c〉, 〈d, a〉, 〈d, b〉, 〈d, d〉} with no initial partial in-
formation available. We initializeK to {〈a, a〉〈b, b〉, 〈c, c〉, 〈d, d〉} andP to {a, b, c, d}×
{a, b, c, d}; this situation is shown in the left diagram of Figure 2. Each element appears
in a tuple occurring in K∗ \ P !K , so on the first execution of line 2 of COMPUTE-
ORDERING-2 we are free to choose any element; assume that we choose d. Then SUC-
CESSORS performs the tests d�? a, d�? b, and d�? c (discovering that a and b are
the only successors of d), we add 〈a, d〉 and 〈b, d〉 to K , and we remove 〈c, d〉 from P .
PREDECESSORS performs the tests a�? d, b�? d, and c�? d (discovering that d has no
predecessors), and we remove each of 〈a, d〉, 〈b, d〉, and 〈c, d〉 from P . Further, because
d � a but d �� c, we can conclude that a �� c; similar reasoning shows that b �� d; P !K

is thus restricted to the set {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈c, a〉, 〈c, b〉, 〈c, c〉, 〈d, a〉, 〈d, b〉,
〈d, d〉}. The states of K∗ and P !K at this point are shown in the left-center diagram
of Figure 2.

In the next iteration through the COMPUTE-ORDERING-2 loop we cannot choose d
since it does not occur in any tuple of K∗\ P !K ; assume that we instead choose b. The
only possible successor of b is a, so SUCCESSORS searches this one-element subgraph
by performing the single test b�? a (which returns TRUE), and we add 〈b, a〉 to K . The
element d is already known to be a predecessor of b, so PREDECESSORS searches the

Exploiting Partial Information in Taxonomy Construction 577

a b

c d

a b

c d

a b

c d

a b

c d

classify d

(6 tests)

classify b

(3 tests)

classify c

(1 test)

Fig. 2. As classification proceeds, known edges (denoted by solid black arrows) are discovered,
and possible edges (denoted by dotted gray arrows) are eliminated

subgraphK [{a, c}] by performing the tests a�? b and c�? b, finding no predecessors,
and the two corresponding tuples are removed from P . The states of K∗ and P !K are
shown in the right-center diagram of Figure 2.

After two iterations, the set K∗\ P !K contains only the pair 〈c, a〉; if we choose c in
the next iteration then SUCCESSORS tests c�? a, we add 〈c, a〉 to K , and K∗ = P !K .
The final subsumption relation is given by K∗ and is shown in the right-hand diagram
of Figure 2.

COMPUTE-ORDERING-2 thus classifies this ontology using 10 subsumption tests in-
stead of the 16 required by a naı̈ve brute-force approach. Note, however, that the results
of the seven tests a�? c, a�? d, b�? a, b�? d, c�? a, c�? b, and d�? b are sufficient
to extend K and restrict P such that K∗ = P !K , providing a full classification for
this ontology. Identifying such a minimal set of tests is, however, extremely difficult
without prior knowledge of the final taxonomy.

4 Extracting Subsumption Information from Models

We next turn our attention to the specific case of identifying all subsumption relation-
ships between the class names occurring in an ontology O. Instead of treating a reason-
ing service as an oracle that answers boolean queries of the form “is A subsumed by B
w.r.t. O?” (which we will write O |=? A�B), we consider how information generated
internally by common reasoning algorithms can be exploited to discover information
about the subsumption quasi-ordering.

4.1 Identifying Non-subsumptions

Most modern reasoners for Description Logics, including HermiT, Pellet, and FaCT++,
transpose subsumption queries into satisfiability problems; in particular, to determine
if O |= A�⊥, these reasoners test whether the class A is satisfiable w.r.t. O. They
do this by trying to construct (an abstraction of) a Tarski-style model of O in which
the extension of A is nonempty. We begin by providing an abbreviated formalization of
such models (see Baader et al. [2003] for more details):

Definition 2. Given sets of class names NC , property names NR and individual names
NI , an interpretation I = (ΔI , ·I) consists of a nonempty set ΔI and an interpretation
function ·I which maps every element of NC to a subset of ΔI , every element of NR to

578 R. Shearer and I. Horrocks

a subset of ΔI ×ΔI and every element of NI to an element of ΔI . An interpretation
I is a model of an axiom A � B if AI ⊆ BI (similar definitions hold for other kinds
of statement); it is a model of an ontology O if it models every statement in O.

Let A andB be classes. A model I of O is a witness for the satisfiability ofAw.r.t. O
if AI is nonempty; it is a witness for the non-subsumptionA �� B w.r.t. O if AI �⊆ BI ,
i.e., if there exists i ∈ ΔI s.t. i ∈ AI and i �∈ BI .

The algorithms in question typically represent the model being constructed as an ABox,
i.e., as a set of assertions of the form x :C and 〈x, y〉 :R for individuals x, y, classes
C, and properties R [Baader et al., 2003]. An ABox including the assertion x :C rep-
resents a model in which xI ∈ CI . To construct a witness for the satisfiability of a
class A, the ABox is initialised with an assertion x :A and the construction proceeds in
a goal-directed manner by adding further assertions only as necessary in order to ensure
that the ABox represents a model of O.

Assuming that the construction is successful, the resulting ABox/model provides a
rich source of information. For example, for any class B such that x :(¬B) is in the
ABox, it is the case that xI �∈ BI ; thus the model is a witness for the non-subsumption
O |= A ��B for all such classes B. In many cases, the non-presence of x :B in the
ABox is sufficient to conclude the relevant non-subsumption; in fact, when using a
hypertableau algorithm, this is always the case. When using a tableau algorithm, the
non-subsumption conclusion can be drawn if B is a so-called primitive concept, i.e.,
if the unfoldable part of the TBox includes an axiom B � C for some concept C;
in this case, adding x :(¬B) to the ABox trivially results in a witness for the non-
subsumption (this is closely related to the widely employed model merging optimiza-
tion [Tsarkov et al., 2007]).

The goal-directed nature of the ABox construction means that the models constructed
are typically quite small. As a result, these models tend to be extremely rich in non-
subsumption information: in a typical witness for the satisfiability of A, i.e., a model I
of O with i ∈ AI , there will be relatively few other class names B such that i ∈ BI ,
and thus I will identify the vast majority of class names in K as non-subsumers of A.
For this reason, it is almost always more efficient to record the set PA = {B | i ∈
AI and i ∈ BI for some i} of “possible subsumers” of A.

4.2 Identifying Subsumptions

While single models allow us to detect non-subsumptions, additional information about
the space of possible models is required in order to identify subsumption relationships.
Sound and complete tableau reasoning algorithms systematically explore the space of
all “canonical” models (typically tree- or forest-shaped models), on the basis that, if
any model exists, then one of these canonical models also exists. In particular, when
O includes disjunctions or other sources of nondeterminism, it may be necessary to
choose between several possible ways of modeling such statements, and to backtrack
and try other possible choices if the construction fails.

For such algorithms, it is usually easy to show that, if the ABox was initialized with
x :A, the construction did not involve any nondeterministic choices, and the resulting
ABox includes the assertion x :B, then it is the case that in any model I of K, i ∈ AI

Exploiting Partial Information in Taxonomy Construction 579

implies i ∈ BI , i.e., that K |= A�B. Moreover, as we have already seen in Section 4.1,
such an ABox is (at least in the hypertableau case) a witness to the non-subsumption
K |= A ��B for all class namesB such that x :B is not in the ABox. Thus, when testing
the satisfiability of a class A, it may be possible to derive complete information about
the subsumers of A.

The hypertableau-based HermiT reasoner is designed to reduce nondeterminism, and
avoids it completely when dealing with Horn-SHIQ (and OWL 2 EL) ontologies; for
such ontologies it is thus able to derive complete information about the subsumers of
a class A using a single satisfiability test. This allows HermiT to derive all relevant
subsumption relationships in a Horn-SHIQ ontology as a side effect of performing
satisfiability tests on each of the class names [Motik et al., 2007].

This idea can be extended so as to also derive useful information from nondeter-
ministic constructions by exploiting the dependency labeling typically used to enable
“dependency-directed backtracking”—an optimization which reduces the effects of
nondeterminism in reasoning [Horrocks, 1997]. In the resulting ABoxes, each assertion
is labelled with the set of choice points on which it depends. An empty label indicates
that the relevant assertion will always be present in the ABox, regardless of any choices
made during the construction process. Thus, if the ABox is initialized with x :A, an
empty-labelled assertion x :B in the resulting ABox can be treated in the same way as
if the construction had been completely deterministic. Performing a satisfiability test on
A may, therefore, allow some subsumers of A to be identified even when nondetermin-
istic choices are made during reasoning. In practice, almost all of the actual subsumers
of A can usually be identified in this way.

It is easy to see that this idea is closely related to, and largely generalizes, the told
subsumer and completely-defined optimizations. For a completely defined class name
A, a satisfiability test on A will be deterministic (and typically rather trivial), and so
will provide complete information about the subsumers of A. Similarly, if B is a told
subsumer of A, then an ABox initialized with x :A will always produce x :B, and
almost always deterministically. (It is theoretically possible that x :B will be added
first due to some nondeterministic axiom in the ontology).

5 Related Work

Computing a quasi- (or partial-) ordering for a set of n incomparable elements clearly
requires n2 individual tests—naı̈vely comparing all pairs is thus “optimal” by the sim-
plest standard. The literature therefore focuses on a slightly more sophisticated metric
which considers both the number of elements in the ordering as well as the width of
the ordering—the maximum size of a set of mutually incomparable elements.
Faigle and Turán [1985] have shown that the number of comparisons needed to
deduce an ordering of n elements with width w is at most O(wn log(n/w)) and
Daskalakis et al. provide an algorithm which approaches this bound by executing
O(n(w + logn)) comparisons [2007]. Taxonomies, however, tend to resemble trees
in structure, and the width of a subsumption ordering of n elements is generally close
to n/2. Further, the algorithms of Faigle and Turán as well as Daskalakis et al. rely
on data structures which require O(nw) storage space even in the best case, and thus
exhibit quadratic performance when constructing a taxonomy.

580 R. Shearer and I. Horrocks

A taxonomy-construction strategy which performs well for tree-like relations is de-
scribed by Ellis [1991]: elements are inserted into the taxonomy one at a time by finding,
for each element, its subsumers using a breadth-first search of all previously-inserted
elements top-down, and then its subsumees using a breadth-first search bottom-up.
Baader et al. further refine this technique to avoid redundant subsumption tests dur-
ing each search phase: during the top search phrase, a test K |=? A�B is performed
only if K |= A�C for all subsumers C of B [1994]. This can be seen as a special case
of our P !K pruning of possible subsumers, with the restriction that it only applies to
subsumption tests performed in a prescribed order.

The traversal algorithms described by Ellis and by Baader et al. perform subsump-
tion tests between every pair of siblings in the final taxonomy. Such algorithms are
thus very inefficient for taxonomies containing nodes with large numbers of children;
completely flat taxonomies result in a quadratic number of subsumption tests.
Haarslev and Möller propose a way to avoid the inefficiencies of these traversals by
clustering a group of siblings A1, ..., An by adding the class expression

�
1≤i≤n Ai to

the taxonomy [2001]. Our approach can easily incorporate this technique by includ-
ing partial or complete information about such new class expressions in K and P . In
practice, however, the partial information extracted from tableau models almost always
includes non-subsumptions between siblings in such flat hierarchies, so these refine-
ments are unnecessary.

Baader et al. also describe techniques for identifying subsumers without the need for
multiple subsumption tests by analyzing the syntax of class definitions in an ontology:
if an ontology contains an axiom of the form A � B 	 C where A and B are class
names, then B is a “told subsumer” of A, as are all the told subsumers of B. The var-
ious simplification and absorption techniques described by Horrocks [1997] increase
the applicability of such analysis. Haarslev et al. further extend this analysis to detect
non-subsumption: an axiom of the form A � ¬B 	 C implies that A and B are dis-
joint, thus neither class name subsumes the other (unless both are unsatisfiable) [2001].
Tsarkov et al. describe a technique for precisely determining the subsumption relation-
ships between “completely defined classes”—class names whose definitions contain
only conjunctions of other completely defined classes [2007]. All these optimizations
can be seen as special cases of (non-)subsumption information being derived from (pos-
sibly incomplete) calculi as described in Section 4.

6 Empirical Evaluation

In order to determine if our new algorithm is likely to improve classification perfor-
mance in practice we conducted two experiments using large ontologies derived from
life-science applications.

First, we compared the performance of our new algorithm with the enhanced traver-
sal algorithm. In order to analyze how much improvement is due to the information
extracted directly from models and how much is due to our new approach to taxonomy
construction, we extend the enhanced traversal algorithm such that it first performs a
satisfiability test on every class name and constructs a cache of information derived
from the resulting models using the techniques described in Section 4. During the sub-
sequent taxonomy construction, subsumption tests are performed only if the relevant

Exploiting Partial Information in Taxonomy Construction 581

Table 1. Algorithm Comparison

Relation Size ET New
Known Possible Tests Seconds Tests Seconds
335 476 335 476 0 190 0 17
335 476 2 244 050 152 362 246 24 796 22
335 476 4 147 689 303 045 257 49 308 31
335 476 6 046 804 455 054 292 73 945 33
335 476 7 940 847 606 205 305 98 613 34
251 880 335 476 80 878 634 19 773 28
251 880 2 244 050 439 002 740 50 143 32
251 880 4 147 689 794 513 809 79 038 40
251 880 6 046 804 1 151 134 836 107 416 46
251 880 7 940 847 1 506 752 919 136 190 50
168 052 335 476 143 913 1079 62 153 62
168 052 2 244 050 673 768 1267 146 823 91
168 052 4 147 689 1 201 904 1320 226 670 93
168 052 6 046 804 1 729 553 1414 304 784 98
168 052 7 940 847 - - 381 330 130

subsumption relationship cannot be determined by consulting the cache. Note that this
caching technique strictly subsumes the “told subsumer” and “primitive component”
optimizations described by Baader et al..

We implemented both algorithms within the HermiT reasoner [Motik et al., 2007]
and performed testing using an OWL version of the well-known US National Can-
cer Institute thesaurus (NCI), a large but simple ontology containing 27,653 classes.3

The models constructed by HermiT during satisfiability testing of these classes pro-
vide complete information about the subsumption ordering for this ontology, so both
algorithms are able to classify it without performing any additional tests. To study how
the algorithms compare when less-than-complete information is available, we limited
the amount of information extracted from HermiT’s models, reducing the number of
known subsumptions and increasing the number of possible subsumptions to varying
degrees. The number of full subsumption tests required for classification as well as
the total running times (including both classification and satisfiability testing) for each
implementation are given in Table 1.

As the table shows, our simple implementation of the enhanced traversal algorithm
(ET) is substantially slower than the new algorithm even when complete information is
available; this is the result of the “insertion sort” behavior of ET described in Section 5.

When complete information is not available, our algorithm consistently reduces the
number of subsumption tests needed to fully classify the ontology by an order of
magnitude.

In a second experiment, we compared the implementation of our new algorithm in
HermiT with the widely-used Description Logic classifiers FaCT++ and Pellet. Both of

3 The latest version of the NCI ontology contains over 34,000 classes; the older version used
here was, however, sufficient for our purposes.

582 R. Shearer and I. Horrocks

Table 2. System Comparison

FaCT++ Pellet HermiT
Ontology Classes Tests Seconds Tests Seconds Tests Seconds

NCI 27 653 4 506 097 2.3 - 16.1 27 653 22
NCI∃ 27 654 8 658 610 4.4 - 16.7 27 654 21.0
NCI� 27 655 8 687 327 5.1 10 659 876 95.4 48 389 37.0
NCI∃∀ 27 656 18 198 060 473.9 10 746 921 1098.3 27 656 20.8

GO 19 529 26 322 937 8.6 - 6.0 19 529 9.2
GO∃ 19 530 26 904 495 12.7 - 6.9 19 530 9.7
GO� 19 531 26 926 653 15.5 21 280 377 170.0 32 614 15.2

GALEN 2749 313 627 11.1 131 125 8.4 2749 3.3
GALEN∃ 2750 327 756 473.5 170 244 9.7 2750 3.5
GALEN� 2751 329 394 450.5 175 859 9.8 4657 40.5

these systems are quite mature and implement a wide range of optimizations to both
taxonomy construction and subsumption reasoning; we were thus able to compare our
new algorithm with existing state-of-the-art implementations.

In this case, in addition to NCI we used the Gene Ontology (GO), and the well-
known GALEN ontology of medical terminology4. Both NCI and GO have been specif-
ically constructed to fall within the language fragment which existing reasoners are able
to classify quickly; GALEN, in contrast, necessitates substantially more difficult sub-
sumption testing but contains an order of magnitude fewer class names. In order to
estimate how the different algorithms would behave with more expressive ontologies,
for each ontology O we constructed two extensions: O∃, which adds the single axiom

 � ∃R.A for a fresh property name R and fresh class name A, and O! which adds
the axiom
 � A"B for fresh class names A and B. For NCI we constructed a further
extension NCI∃∀ by adding the axioms
 � ∃R.A and C � ∀R.B for each of the
17 most general class names C occurring in the ontology. Each of these extensions in-
creases the complexity of individual subsumption tests and reduces the effectiveness of
optimizations that try to avoid performing some or all of the tests that would otherwise
be needed during classification.

The number of class names occurring in each ontology as well as the number of tests
performed (including all class satisfiability and subsumption tests) and the total time
taken by each reasoner to fully classify each ontology are shown in Table 2. The Pel-
let system makes use of a special-purpose reasoning procedure for ontologies that fall
within the EL fragment [Baader et al., 2005]; for such ontologies we do not, therefore,
list the number of subsumption tests performed by Pellet.

As Table 2 shows, HermiT’s new classification algorithm dramatically reduces the
number of subsumption tests performed when classifying these ontologies. This does
not, however, always result in faster performance. This is largely due to optimiza-
tions used by the other reasoners which greatly reduce the cost of subsumption testing

4 All test data is available from
http://www.comlab.ox.ac.uk/rob.shearer/2009/
iswc-classification-ontologies.tgz

http://www.comlab.ox.ac.uk/rob.shearer/2009/iswc-classification-ontologies.tgz
http://www.comlab.ox.ac.uk/rob.shearer/2009/iswc-classification-ontologies.tgz

Exploiting Partial Information in Taxonomy Construction 583

for simple ontologies: the overwhelming majority of subsumption tests performed by
FaCT++, for example, can be answered using the pseudo-model merging technique de-
scribed by Horrocks [1997].

Most of these optimizations could equally well be used in HermiT, but in the exist-
ing implementation each subsumption test performed by HermiT is far more costly. The
number of subsumption tests performed by HermiT is, however, far smaller than for the
other reasoners, and its performance also degrades far more gracefully as the complex-
ity of an ontology increases: adding a single GCI or disjunction to an ontology can
prevent the application of special-case optimizations in Pellet and FaCT++, greatly in-
creasing the cost of subsumption testing and, due to the very large number of tests being
performed, vastly increasing the time required for classification. The NCI∃∀ ontology,
for example, eliminates any benefit from the pseudo-model merging optimization (since
no two pseudo-models can be trivially merged), and this causes the classification time
to increase by roughly two orders of magnitude for both Pellet and FaCT++. In contrast,
HermiT’s classification time is unaffected. The relatively poor performance of HermiT
on the GALEN! ontology is due to the fact that the underlying satisfiability testing pro-
cedure is particularly costly when there are large numbers of branching points, even if
no backtracking is actually required.

7 Discussion and Future Work

We have described a new algorithm for taxonomy construction that effectively exploits
partial information derived from structural analysis and/or reasoning procedures, and
we have shown that, when compared to the widely-used enhanced traversal algorithm,
it can dramatically reduce both the number of individual comparisons and the total
processing time for realistic data sets. For simple ontologies, our prototype implemen-
tation makes the HermiT reasoner competitive with state-of-the-art reasoners which
implement special-purpose optimizations of the subsumption testing procedure for such
cases; on more expressive ontologies our new system substantially outperforms existing
systems.

Future work will include extending HermiT to incorporate some of the subsumption
testing optimizations used in other systems, in particular reducing the overhead cost
of individual subsumption tests. We believe that this will greatly improve HermiT’s
performance on simple ontologies; as we have seen, it is already highly competitive on
more complex ontologies.

The procedure we describe in Section 4 extracts subsumption relationships involv-
ing only the class used to initialize a model. This is because the dependency labeling
implemented in tableau reasoners is currently designed only to allow the application
of dependency-directed backtracking, and discards a great deal of dependency infor-
mation. We intend to explore more sophisticated dependency labeling strategies which
allow the extraction of additional subsumption information.

We also want to investigate meaningful complexity bounds for taxonomy searching
and construction tasks. As we have seen, a completely naı̈ve search routine is optimal if
only the number of elements is considered. We will attempt to obtain tighter bounds for
certain classes of relation: relations with linear taxonomy graphs, for example, can be

584 R. Shearer and I. Horrocks

deduced with only n logn comparisons. Bounds based on more sophisticated metrics
may also be possible; e.g., bounds based on the size of the subsumption relation instead
of the number of elements.

Finally, preliminary testing demonstrates that when significant partial information
is available, the COMPUTE-ORDERING-2 procedure, based on the breadth-first search
of the enhanced traversal algorithm, offers little advantage over COMPUTE-ORDERING,
which performs tests in an arbitrary order; in many cases the performance of COMPUTE-
ORDERING-2 is actually worse. Investigating other heuristics for choosing the order in
which to perform tests will also be part of our future work.

References

[Baader et al., 1994] Baader, F., Hollunder, B., Nebel, B., Pro Tlich, H.-J., Franconi, E.: An
empirical analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge
Base Management 4, 270–281 (1994)

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider,
P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge (2003)

[Baader et al., 2005] Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 364–369 (2005)

[Daskalakis et al., 2007] Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sort-
ing and selection in posets. CoRR, abs/0707.1532 (2007)

[Ellis, 1991] Ellis, G.: Compiled hierarchical retrieval. In: 6th Annual Conceptual Graphs Work-
shop, pp. 285–310 (1991)

[Faigle and Turán, 1985] Faigle, U., Turán, G.: Sorting and recognition problems for ordered
sets. In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 109–118. Springer, Heidelberg
(1984)

[Haarslev and Möller, 2001] Haarslev, V., Möller, R.: High performance reasoning with very
large knowledge bases: A practical case study. In: Nebel, B. (ed.) Proceedings of Seventeenth
International JointŁConference on Artificial Intelligence, IJCAI 2001, pp. 161–166 (2001)

[Haarslev et al., 2001] Haarslev, V., Möller, R., Turhan, A.-Y.: Exploiting pseudo models for
tBox and aBox reasoning in expressive description logics. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 61–75. Springer, Heidelberg
(2001)

[Horrocks, 1997] Horrocks, I.: Optimising Tableaux Decision Procedures for Description Log-
ics. PhD thesis, University of Manchester (1997)

[Motik et al., 2007] Motik, B., Shearer, R., Horrocks, I.: Optimized Reasoning in Description
Logics Using Hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 67–83. Springer, Heidelberg (2007)

[Tsarkov et al., 2007] Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimising terminologi-
cal reasoning for expressive description logics. J. of Automated Reasoning (2007)

Actively Learning Ontology Matching via User
Interaction�

Feng Shi1, Juanzi Li1, Jie Tang1, Guotong Xie2, and Hanyu Li2

1 Department of Computer Science and Technology
Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing, 100084, China
{shifeng,ljz,tangjie}@keg.cs.tsinghua.edu.cn

2 IBM China Research Laboratory, Beijing 100094, China
{xieguot,lihanyu}@cn.ibm.com

Abstract. Ontology matching plays a key role for semantic interoperability.
Many methods have been proposed for automatically finding the alignment be-
tween heterogeneous ontologies. However, in many real-world applications, find-
ing the alignment in a completely automatic way is highly infeasible. Ideally,
an ontology matching system would have an interactive interface to allow users
to provide feedbacks to guide the automatic algorithm. Fundamentally, we need
answer the following questions: How can a system perform an efficiently inter-
active process with the user? How many interactions are sufficient for finding a
more accurate matching? To address these questions, we propose an active learn-
ing framework for ontology matching, which tries to find the most informative
candidate matches to query the user. The user’s feedbacks are used to: 1) correct
the mistake matching and 2) propagate the supervise information to help the en-
tire matching process. Three measures are proposed to estimate the confidence
of each matching candidate. A correct propagation algorithm is further proposed
to maximize the spread of the user’s “guidance”. Experimental results on several
public data sets show that the proposed approach can significantly improve the
matching accuracy (+8.0% better than the baseline methods).

1 Introduction

The growing need of information sharing poses many challenges for semantic inte-
gration. Ontology matching, aiming to obtain semantic correspondences between two
ontologies, is the key to realize ontology interoperability [10]. Recently, with the suc-
cess of many online social networks, such as Facebook, MySpace, and Twitter, a large
amount of user-defined ontologies are created and published on the Social Web, which
makes it much more challenging for the ontology matching problem. At the same time,
the Social Web also provides some opportunities (e.g., rich user interactions) to solve
the matching problem.

� The work is supported by the Natural Science Foundation of China (No. 60703059), Chinese
National Key Foundation Research (No. 2007CB310803), National High-tech R&D Program
(No. 2009AA01Z138), and Chinese Young Faculty Research Fund (No. 20070003093).

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 585–600, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

586 F. Shi et al.

Fig. 1. Example of the candidate match selection. Ideally, we hope to query candidate match 1,
instead of match 2. With the user correction, we can propagate the user correction to guide the
matching process of other elements, as illustrated in the top-right.

Much efforts has been made for ontology matching. Methods such as Edit Distance
[13], KNN [3] and Bayesian similarity [26], have been proposed to calculate the similar-
ity between elements (e.g., concepts). However, most of existing works aim to find the
ontology matching in a completely automatic way, although the complete automation
is infeasible in many real cases [24]. One promising solution is to involve user interac-
tions into the matching process to improve the quality of matching results [24]. How-
ever, regarding the large size of ontologies, random user interactions are really limited
for helping ontology matching. Now, the question is: is there any way to minimize the
amount of user interactions, while maximize the effect (accuracy improvement) of in-
teractive efforts? Or a more specific question: given a fixed number of user interactions,
can a system “actively” query the user so as to maximize spread of the interactions?

It is non-trivial to address the problem. A simple way is to let the user select can-
didate matches or to select matches with a low confidence (similarity) to query. Such
queries can benefit the queried matches, however, it may not be helpful to the other non-
queried candidate matches. Our goal is not only to correct the possibly wrong matches
through the user interactions, but also to maximize the correction via spread (propaga-
tion) of the interactions. Thus, how to design an algorithm to actively select candidate
matches to query is a challenging issue.

Motivating Example. We use an example to demonstrate the motivation of the work.
Figure 1 shows an example of the candidate match selection. The source and target

Actively Learning Ontology Matching via User Interaction 587

ontologies are both about academic staff. If we select the candidate match 1 (“Academic
Staff”, “Faculty”) to query, with the user correction, we can further infer and correct
another potential error match (“Academic Staff”, “Staff”). Moreover, the sub matches
of (“Lecturer”, “Assistant Professor”) and (“Senior Lecturer”, “Associate Professor”)
would also gain a higher confidence. While if we just select the candidate match 2
(“Academic Staff”, “Staff”), it is very possible to be no improvement.

Our Solution. In this paper, we propose a novel problem of ontology matching with
active user interaction. In particular, we propose an active learning framework for on-
tology matching, which tries to find the most informative candidate matches to query,
and propagate the user correction according to the ontology structure to improve the
matching accuracy. We present a simple but effective algorithm to select the thresh-
old with user feedbacks. Three measures to evaluate the confidence of each match. A
correct propagation algorithm is proposed to spread the user corrections. Experimental
results demonstrate that the proposed approach can significantly improve (+8.0%) the
matching performance with only a few queries (< 10).

The rest of this paper is organized as follows. Section 2 formalizes the problem.
Section 3 describes our active learning framework for ontology matching. Section 4
explains the method of threshold selection, three measures for error matches detection,
and the correct propagation algorithm. Section 5 presents the experimental results. Fi-
nally, we discuss related work in Section 6 and conclude in Section 7.

2 Problem Formulation

In this section, we first give the definition of ontology and then formalize the problem
of ontology matching with active user interaction.

An ontology usually provides a set of vocabularies to describe the information of
interest. The major components of an ontology are concepts, relations, instances and
axioms [26].

In this paper, our ontology matching mainly focuses on concepts and relations. Ac-
cording to the relations between concepts, an ontology can be viewed as a directed
graph, in which vertexes represent concepts and edges represent relations.

Given a source ontology OS , a target ontology OD, and an element (a concept or a
relation) ei in OS , the procedure to find the semantically equivalent element ej in OD

to ei is called ontology matching, denoted as M . Formally, for each element (ei in OS),
the ontology matching M can be represented [26] as:

M(ei, OS , OD) = {ej} (1)

Furthermore, M could be generalized to elements set matching, that is for a set of
elements {ei} in OS , the ontology matching is defined as:

M({ei}, OS , OD) = {ej} (2)

If {ei} contains all the elements of OS , the matching can be predigested as

M(OS , OD) = {ej} (3)

588 F. Shi et al.

3 An Active Learning Framework for Ontology Matching

We propose an active learning framework for ontology matching. Algorithm 1 gives an
overview of the active learning framework. Assume that OS is the source ontology,OD

is the target ontology. M is a traditional method of ontology matching, L is the set of
confirmed matches submitted by users, and N is the iteration number, which is also the
number of candidate matches to query.

Algorithm 1. The Active Learning Framework for Ontology Matching

Input:

– the source ontology OS , the target ontology OD ,
– A traditional method of ontology matching M ,
– the confirmed match set L,
– number of matches need to be confirmed N

Initialization:

– apply M to map OS to OD , and get the match result R
– initialize L with Ø

Loop for N iterations:

– let < (eS, eD), ? > = SelectQueryMatch();
– query users to confirm the match < (eS, eD), ? >
– add < (eS, eD), l > to L
– improve the matching result R with < (eS, eD), l >

The basic process of the framework is as follows: first, it applies the traditional
method of ontology matching M to map OS to OD, and gets the match result R,
where multi-method results of different types are usually more useful for the next step.
Second, it selects an informative candidate match < (eS , eD), ? > to query users for
confirmation with the result of the first step and the structure information of the two
ontologies OS and OD. After the user confirmation, it adds the match < (eS , eD), l >
to the confirmed match set L, and improves the match result R with the confirmed
matches. Then it repeats the second step for N iterations, or until it gets a result good
enough.

Algorithm 1 is merely a shell, serving as a framework to many possible instanti-
ations. What separates a successful instantiation from a poor one is the follow two
problems:

1. First, how to select the most informative candidate match to query.
2. Second, how to improve the matching result with the confirmed matches.

In the next section, we will give the solutions to these two problems.

Actively Learning Ontology Matching via User Interaction 589

4 Match Selection and Correct Propagation

This part introduces our solution to the two core problems of ontology matching with
active learning: the candidate match selection and the matching result improvement.
We first present a simple but effective algorithm to select the threshold for ontology
matching with user feedback, and then give several measures to detect informative can-
didate matches to query. In the end of this section, we describe our correct propagation
algorithm to improve the matching result with the user confirmed matches.

4.1 Threshold Selection with User Feedback

Most methods of ontology matching find matches through calculating the similarities
between elements of source and target ontologies. The similarity can be string simi-
larity, structure similarity, semantic similarity and so on [26]. No matter what kind of
similarity is chosen, it needs a threshold to estimate which matches are correct. So it is
very important to select a suitable threshold. However, the threshold selection is very
difficult, especially when there is no any supervised information.

Through analysis we find the relationship of thresholds and matching results in most
cases, as shown in Figure 2 (precisions, recalls and F1-Measures whose definitions are
introduced in section 5).

From Figure 2, we can find that the precision curve is an increasing one, while the
recall curve is a decreasing one, and the magnitude of change is getting smaller as
the threshold getting bigger. So the F1-Measure curve has a maximum value on some
threshold, which is our aim.

V
al

u
e

Threshold

precision

F1-Measure

Recall

1.0

1.0

0

Fig. 2. Relationship of thresholds and matching performance (precision, recall and f1-Measure)

Algorithm 2 shows our algorithm of threshold selection. The input of the algorithm
consists of the similarity set S, which contains all the matches and their similarity de-
gree, an update step st for the threshold’s updating, and an attenuation factor λ for st,
and an initial threshold θ0. First, the similarity set S needs to be normalized, and all the
similarity degrees should be normalized into [0, 1], and then let the threshold θ be the
initial value θ0. Second, it finds the match (eS , eD) whose similarity degree is the clos-
est to θ, and let a user check whether the match is correct. If it is correct, the threshold θ

590 F. Shi et al.

increases by st, otherwise θ decreases by st. The second step is an iterative process, and
st updates according to the correctness of the selected match each iteration. If the cor-
rectness of the selected match is different from last one, the update step st will multiply
the attenuation factor λ. Because the attenuation factor is a decimal in range (0, 1), so
after sufficient iterations, the update step st will be small enough so that the threshold
θ will stabilize at some value, which is our final threshold.

The algorithm cannot always achieve a good result, but if the value of F1-Measure
with the threshold increases first and then decreases, which is typically the case, our
algorithm can usually achieve a good value. Moreover, when the data is huge, our al-
gorithm usually can get the result after a few iterations. That is to say the number of
iteration will not increase much as the data becomes huge.

Algorithm 2. Threshold Selection

1. Input: The similarity set: S, an initial threshold: θ0, an update step: st, an
attenuation factor: λ.

2. Output: The threshold of the matching result: θ.
3. Normalize the similarity set S
4. Let θ be θ0

5. While st is big enough
6. let (eS, eD) = min{|similarity(eS, eD) − θ|}
7. ask users to comfirm the match (eS, eD)
8. if (eS, eD) is correct
9. if last match is not correct

10. st = st ∗ λ
11. end if
12. θ = θ − st
13. else
14. if last match is correct
15. st = st ∗ λ
16. end if
17. θ = θ + st
18. end if
19. end while

4.2 Candidate Match Selection

One of the key points of ontology matching with active learning is to select informative
matches to query. The most informative match means the match that can maximize
the improvement of the matching performance. If the correctness of a match is found
different from the matching result after the user confirmation, we call this match an
error match. An error match is considered to be informative, because the result can be
improved as long as the error is corrected. If the size of the data is small, or the original
match result is already very good, this kind of improvement will be limited. If the data
size is not small, or the original result is not good, we can also use the information of

Actively Learning Ontology Matching via User Interaction 591

the error match to find other errors to significantly improve the matching result, which
will be introduced in the next subsection.

The probability that a match is an error match is measured with error rate, and we
propose three measures to estimate the error rate of a match as follows. Finally we
combine these three measures to find the error matches.

Confidence. The first measure we define is called confidence. Assume eS and eD are
elements of the source ontologyOS and the target ontologyOD respectively. f is a sim-
ilarity computing function of some ontology matching methodM , and θ is its threshold.
The confidence of M on a match (eS , eD) can be defined as follows:

Confidence(f(eS, eD)) = |θ − f(eS, eD)| (4)

The confidence can measure how sure the method M is about the correctness of the
match. So the match with least confidence is most possible to be an error match, which
is called least confidence selection.

If there are k ontology matching methods of different types: {M1,M2, ...,Mk}, we
can extend the least confidence selection as follows:

Q = min{
∑

fi∈{M1,M2,...,Mk}
wi ∗ |θi − fi(eS , eD)|} (5)

In the formula, fi is one of the similarity computing functions of different ontology
matching methods {M1,M2, ...,Mk}, θi and wi are its threshold and weight respec-
tively.Q is the match selecting function. It means that the similarity of a match is closer
to the threshold, it is more possible to be an error match.

Similarity Distance. The second measure is named similarity distance. Assume eS

is an element from the source ontology OS , and method M maps the element eS to
eD and e

′

D, which are two elements from the target ontology OD . If the difference of
f(eS, eD) and f(eS, e

′

D) is very small, there is very likely to be error matches in these
two matches. Finally, we select the match that has the minimum difference. Formally,
similarity distance is defined as:

SD(eS , eD) = min{|f(eS, eD) − f(e
′

S, e
′

D)|}; (eS = e
′

S or eD = e
′

D) (6)

The similarity distance is very efficient in a one-to-one matching, in which most meth-
ods only select the best one from the similar matches.

Contention Point. We define another measure, named, contention point, to find mis-
takes from the contention of different methods. This measure is defined based on the
results of the matching results of some other algorithms such as edit distance or vector-
space based similarity. The contention point is defined as:

ContentionPoint = {< (es, eD), ? >∈ U |∃i, j st. Ri(eS , eD) �= Rj(eS , eD)} (7)

For a match (es, eD), some of the k methods {M1,M2, ...,Mk} consider it as matched,
while the others consider not. Thus there must be mistakes among these methods, that

592 F. Shi et al.

is to say it is likely to be an error match. The contentious degree of a contention point
can be further defined as:

Q = min
(eS ,eD)∈ContentionPoint

{ max
fi∈{M1,M2,...,Mk}

Confidence(fi(eS , eD))

− max
fj∈{M1,M2,...,Mk}

Confidence(fj(eS , eD))};

fi(eS , eD) �= fj(eS , eD)

(8)

Intuitively, a contention one indicates that for the given match some methods consider
it correct and some others consider not. That is to say that the matching algorithms have
a maximal disagreement with the similarity confidences. In this case, the final matching
result is very likely to be an error match.

4.3 Correct Propagation

When the size of the ontology is huge, correcting the selected error match only is far
from sufficient. It is desirable that an algorithm can propagate the supervised informa-
tion to help to correct the other potential error matches between the two ontologies.

Based on this consideration, we propose a correct propagation algorithm, which
aims at detecting related error matches to the selected one. Thus when selecting a match
to query, we need consider not only the error rate but also the effect of the error match
on others, where the effect on others is called propagation rate.

Firstly, we introduce the concept of similarity propagation graph, which comes from
the algorithm of similarity flooding [18]. A similarity propagation graph is an auxil-
iary data structure derived from ontologies OS and OD. The construction of propaga-
tion(PG) abides the principle as follows:

((a, b), p, (a1, b1)) ∈ PG(OS , OD) ⇐⇒ (a, p, a1) ∈ OS and (b, p, b1) ∈ OD (9)

Each node in the propagation graph is an element fromOS ×OD. Such nodes are called
map pairs. The intuition behind arcs that connect map pairs is the following. For map
pairs (a, b) and (a1, b1), if a is similar to b, then probably a1 is somewhat similar to b1.
Figure 3 gives an example of the propagation graph.

For every edge in the propagation graph, it adds an additional edge going in the
opposite direction against the original one. The weights placed on the edges of the
propagation graph indicate how well the similarity of a given map pair propagates to its
neighbors and back. These so-called propagation coefficients range from 0 to 1 inclu-
sively and can be computed in many different ways.

Our algorithm of correct propagation is also based on the propagation graph, but we
both consider the negative and active effects of the propagation arcs. According to the
character of the propagation graph, for a map pair (a, b) and (a1, b1), if a is not matched
with b, then probably a1 is not matched with b1. With the measurement of error rate,
error matches are easier to be detected, and we can correct more error matches related
to the confirmed match according to the propagation graph, which is called correct
propagation.

Actively Learning Ontology Matching via User Interaction 593

Fig. 3. Example of the similarity propagation graph

Before introducing the propagation, we consider the match selection again. To cor-
rect more error matches, we should not only consider the error rate, but also the prop-
agation rate which measures the influence ability of a match. It mainly includes two
factors: first, the number of matches that a match can influence. The bigger of the num-
ber, the range that the match can influence is wider, accordingly it is possible to correct
more error matches. Second, the similarity differences between the match and its re-
lated matches. If the similarity difference is big, it is very possible to be error match
among the match and its related ones.

Now, our match selection is according to the calculation of both error rate and prop-
agation rate. When the correction (or confirmation) of the selected matches is pro-
vided by users, we conduct the correct propagation to update all the matches. Taking
Figure 3 as an example, assume that we select the match (a2, b1) to query, and it is
proved to be an error match. If the match (a2, b1) is confirmed to be an error by the
user, then the similarities of the matches (a, b) and (a1, b2) which are related to the
match (a2, b1) would be decreased. On the contrary, if the match (a2, b1) is confirmed
to be correct, then the similarities of (a, b) and (a1, b2) should be increased. The update
(decrease or increase) should be related to the similarities of the selected match, the
error rates of related matches, and the weight of the arcs. Therefore, we can define the
following update rules:

sim(ai, bi) = sim(ai, bi) + α ∗w((x, y), (ai, bi))
∗(1 − sim(x, y)) ∗ (1 − er(ai, bi));

(x, p, ai) ∈ OS , (y, p, bi) ∈ OD

(10)

sim(ai, bi) = sim(ai, bi) − α ∗ w((x, y), (ai, bi)) ∗ sim(x, y) ∗ er(ai, bi);
(x, p, ai) ∈ OS , (y, p, bi) ∈ OD

(11)

In the formula, the match (x, y) is the selected error match, and sim(x, y) is its sim-
ilarity degree. The match (ai, bi) is one of the matches related to the match (x, y),
and w((x, y), (ai, bi)) is the weight of their relation, and er(ai, bi) stands for the error

594 F. Shi et al.

rate of the match (ai, bi), and α is an effect factor which is used to control the rate of
the propagation. If the match (x, y) is correct (by the user), the update function uses
Formula 10, else it uses Formula 11.

The correct propagation runs in an iterative process. In each iteration, it selects the
match for user feedback with the error rate and the propagation rate, and then let users
to confirm the selected match. After the confirmation, it updates the similarity degree,
error rate and the propagation rate of related matches. Then it repeats this process until
convergence (e.g., no any change) or the number of query times reaches a predefined
threshold.

5 Experiments

We present details of the experiments in this section.

5.1 Experiment Setup, Data, and Evaluation Methodology

We implement all the algorithms using Java 2 JDK version 1.6.0 environment. All ex-
periments are performed on a PC with AMD Athlon 4000+ dual core CPU (2.10GHz)
and 2GB RAM Windows XP Professional edition OS.

Data sets. For our experiments of the first two groups, we use the OAEI 2008 30x
benchmark [2]. There are four data sets in the group of benchmark 30x, in which each
size is no more than 100 concepts and relations. The traditional matching results on
these data sets is very high, hence it is very suitable for the first two experiments. For
the experiment of the correct propagation, we use part of the OAEI 2005 Directory
benchmark [1], which consists of aligning web sites directory (like open directory or
Yahoo’s) with more than two thousand elementary tests. The reason we select this data
set lies in its available ground truth and its low matching accuracy by the traditional
methods [16].

Platform. We conduct all the experiments on the ontology matching platform RiMOM
[26], which is a dynamic multi-strategy ontology alignment framework. With RiMOM,
we participated into the campaigns of the Ontology Alignment Evaluation Initiative
(OAEI) from 2006 to 2008, and our system is among the top three performers on the
benchmark data sets.

Performance Metrics. We use precision, recall, F1-Measure to measure the perfor-
mance of the matching result. They are defined next.

Precision: It is the percentage of the correct discovered matches in all discovered
matches.

Recall: It is the percentage of the correct discovered matches in all correct matches.
F1-Measure: F1-Measure considers the overall result of precision and recall.

F1 −Measure = 2(Precison ∗Recall)/(Precision+Recall) (12)

Actively Learning Ontology Matching via User Interaction 595

5.2 Threshold Selection

We first analyze the performance of our approach for threshold selection. Figure 4
shows the results on the OAEI 2008 benchmark 301 [2], and the matching method
is a combination of KNN [3], Edit Distance [13] and the method using the thesaurus
WordNet [4].

0 9

0.95

1

0 9

0.95

1

0.75

0.8

0.85

0.9

Va
lu
e

0.75

0.8

0.85

0.9

Va
lu
e Precision

Recall

0.6

0.65

0.7

0.05 0.15 0.25 0.35 0.45 0.55

0.6

0.65

0.7

0 5 10 15

F1 Measure

Threshold Times of threshold update

Fig. 4. Performance of threshold selection on OAEI 2008 benchmark 301

The left one in Figure 4 shows the relationship between thresholds and performances
of matching results (precision, recall and F1-Measure), and we can see it is consistent
with our point introduced in section 4 except a few dithering points. The right one in
Figure 4 present the result of our approach.

5.3 Measurements of Error Match Selection

In this subsection, we evaluate the effectiveness of the different strategies for error
match selection: confidence, similarity distance and contention point.

Figure 5 is an experiment on the OAEI 2008 benchmark 304. From the precision
figure (left), we note that the measurement combined least confidence and similarity
distance performs much better than others. But after about 10 matches confirmed, it
is hard to keep improving the matching accuracy. The reason is that the size of the
ontology is small, and the original matching accuracy is already high.

Figure 6 is another experiment on the OAEI 2008 benchmark 301. The results are
very similar to Figure 5. From the recall figure (right) we note that it improves the recall
slightly. While the recall figure (right) of Figure 5 has no improvement. The reason why
the recall has little improvement is that the thresholds chosen for the original matching
results are very low, and almost all the matches with similarity lower than the threshold
are not correct ones. Our approach can only correct the errors. Thus a draft conclusion
is that if there are no error matches below the threshold, the approach cannot improve
the recall value.

Figure 7 is an experimental result on the OAEI 2008 benchmark 302, which is
the best result of all the four benchmarks. From the figure we note that the measure-
ment combined with least confidence, similarity distance and contention point improves
fastest, but these measurements themselves improve slightly. This confirms us that com-
bining these three measurements is useful for ontology matching.

596 F. Shi et al.

0.94

0.95

0.96
io
n

0.92

0.96

1

al
l

0.91

0.92

0.93

Pr
ec
is

0.84

0.88Re
ca

0.9

1 5 10

Number of queried matches

0.8

1 5 10

Number of queried matches

0 945

0.95

0.955

ur
e

0 93

0.935

0.94

0.945

F1
M
ea
su No Correct

Confidence

SD

0.925

0.93

1 5 10

Number of queried matches

Confidence+SD

Fig. 5. Performance of matching after correcting error matches on OAEI 2008 benchmark 304

0.955

0.96

0.965

si
on 0.81

0.815

0.82

al
l

0.945

0.95

Pr
ec
is

0.8

0.805Re
ca

0.94

1 5 10

Number of queried matches

0.795

1 5 10

Number of queried matches

0.88

0.885

re

0 865

0.87

0.875

F1
M
ea
su No Correct

Confidence

SD

0.86

0.865

1 5 10

Number of queried matches

Confidence+SD

Number of queried matches

Fig. 6. Performance of matching after correcting error matches on OAEI 2008 benchmark 301

Actively Learning Ontology Matching via User Interaction 597

0 98

1

1.02

0.755

0.76

0.765

e

No Correct

0.92

0.94

0.96

0.98

Pr
ec
is
io
n

0.735

0.74

0.745

0.75

1
M
ea
su
re Confidence

SD

Contention

0.86

0.88

0.9

0 5 10 15 20

0.72

0.725

0.73

0 5 10 15 20

F

Confidence+SD

Confidence+SD+Contention

Number of queried matches Number of queried matches

Fig. 7. Performance of matching after correcting error matches on OAEI 2008 benchmark 302

5.4 Correct Propagation

Figure 8 is an experiment on the approach of correct propagation with the OAEI 2005
Directory benchmark [1]. From the precision figure (left) we note that the result of cor-
rect propagation is much better than the approach of just correcting error matches. This
implies that after propagation, more error matches are corrected with the selected one.
Sometimes, the selected match is not an error match, so the approach of correcting er-
ror matches has no improvement, but the approach of correct propagation has. From
the F1-Measure figure (below), it is not surprising that the approach of correct propa-
gation grows faster than the others. Moreover, we find that the curve is steeper at the
beginning. The reason is that the first few matches have bigger propagation rate, which
means it can help to find more error matches.

0.44 0.35

0 39

0.4

0.41

0.42

0.43

ci
si
on 0.335

0.34

0.345

ec
al
l

0.35

0.36

0.37

0.38

0.39

Pr
ec

0.315

0.32

0.325

0.33Re

0 2.50% 5% 7.50% 10% 12.50%

Percentage of queried matches

0 2.50% 5% 7.50% 10% 12.50%

Percentage of queried matches

0.41

0.42

0.43

0.44

0.45

ur
e No Correct

0 36

0.37

0.38

0.39

0.4

F1
M
ea
su

No Propagation

K Step Correct

0.35

0.36

0.00% 5.00% 10.00% 15.00%

Percentage of queried matches

p
Propagation

Fig. 8. Performance of matching after correct propagation on OAEI 2005 Directory

598 F. Shi et al.

5.5 Summary

We summarize the experimental results as follows.

– First, in most cases our method of threshold selection can efficiently find a good
threshold after a few queries.

– Second, all the three measures for match selection can help find the error matches,
which are helpful to improve the matching result.

– Third, our approach of correct propagation can further improve the matching result.
The improvement is more significant at the beginning than later. This also satisfies
the limit of user feedback, that is also the reason we can improve the matching
result greatly via only a few queries.

6 Related Work

6.1 Ontology Matching

Many works have addressed ontology matching in the context of ontology design and
integration [6][17][19][21]. Some of them use the names, labels or comments of ele-
ments in the ontologies to suggest the semantic correspondences. [7] gives a detailed
compare of various string-based matching techniques, including edit-distance [13] and
token-based functions, e.g., Jaccard similarity [25] and TF/IDF [22]. Many works do
not deal with explicit notions of similarity. They use a variety of heuristics to match
ontology elements [17][19].

Some other works consider the structure information of ontologies. [15] uses the
cardinalities of properties to match concepts. The method of similarity flooding is also
an example using structure information [18]. Another type of method utilizes the back-
ground knowledge to improve the performance of ontology matching. For example, [4]
proposes a similarity calculation method by using thesaurus WordNet. [12] presents
a novel approximate method to discover the matches between concepts in directory
ontology hierarchies. It utilizes information from Google search engine to define the
approximate matches between concepts. [5] makes semantic mappings more amenable
to matching through revising the mediated schema. Other methods based on instances
of ontologies [28] or reasoning [27] also achieve good results.

6.2 Active Learning

Active learning can be viewed as a natural development from the earlier work on opti-
mum experimental design [11]. This method is widely used in the domain of machine
learning. [23] introduces an active-learning based approach to entity resolution that
requests user feedback to help train classifiers. Selective supervision [14] combines
decision theory with active learning. It uses a value of information approach for select-
ing unclassified cases for labeling. Co-Testing [20] is an active learning technique for
multi-view learning tasks.

There are many works addressing ontology matching with user interaction, like
GLUE [8], APFELi [9], [28], etc. Nevertheless, the annotation step is time-consuming

Actively Learning Ontology Matching via User Interaction 599

and expensive, and users are usually not patient enough to label thousands of concept
pairs for the relevance feedback. So our approach takes the concept of active learning
to alleviate the burden of confirming large amounts of candidate matches, and the mea-
surements we propose are based on the features of ontology. Our approach of correct
propagation uses the propagation graph as the approach of similarity flooding [18]. The
difference is that we propagate the similarity partly and purposely, and do not do it up
and down. Our approach is more focused and more efficient than similarity flooding.

7 Conclusion and Future Work

In this paper we propose an active learning framework for ontology matching. But the
framework is just a shell, and what separates a successful instantiation from a poor one
is the selection of matches to query and the approach to improve the traditional match-
ing result with the confirmed matches by users. We present a series of measurements
to detect the error match. Furthermore we propose an approach named correct propaga-
tion to improve the matching result with the confirmed error matches. We also present
a simple but effective method of selecting the threshold with user feedback, which is
also helpful for the error match selection. Experimental results clearly demonstrate the
effectiveness of the approaches.

As the future work, one interesting direction is to explore other types of user feed-
backs. In our experiments, we take the standard boolean answer as the user feedback.
However, in some cases users cannot give a simple correct or not answer for the queried
match, especially when the ontologies are defined for some special domain. One solu-
tion is to select matches that the users are familiar with for confirmation, or translate
the match into a question that the users can easily answer. Another interesting topic is
how to reduce the negative effect of user mistakes.

References

1. Oaei directory download site (2005),
http://oaei.ontologymatching.org/2005/

2. Ontology alignment evaluation initiative, http://oaei.ontologymatching.org/
3. Baily, T., Jain, A.K.: A note on distance-weighted k-nearest neighbor rules. IEEE Transaction

System Man Cybern 8(4), 311–313 (1978)
4. Budanitsky, A., Hirst, G.: Evaluating wordnet based measures of lexical semantic related-

ness. Computational Linguistics 32(1), 13–47 (2006)
5. Chai, X., Sayyadian, M., Doan, A., Rosenthal, A., Seligman, L.: Analyzing and revising

mediated schemas to improve their matchability. In: Proceedings of the VLDB Conference
2008 (2008)

6. Chalupsky, H.: Ontomorph: A translation system for symbolic knowledge. In: Principles of
Knowledge Representation and Reasoning, pp. 471–482 (2000)

7. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names
and records. In: Proceedings of the IJCAI 2003 Workshop on Information Integration on the
Web, pp. 73–78 (2003)

8. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning
approach. Springer, Heidelberg (2003)

http://oaei.ontologymatching.org/2005/
http://oaei.ontologymatching.org/

600 F. Shi et al.

9. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with APFEL. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 186–200. Springer, Heidelberg (2005)

10. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
11. Fedorov, V.: Theory of Optimal Experiments. Academic Press, London (1972)
12. Gligorov, R., Aleksovski, Z., Kate, W., Harmelen, F.: Using google distance to weight ap-

proximate ontology matches. In: Proceedings of the 16th International World Wide Web
Conference (WWW), pp. 767–776 (2007)

13. Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University Press, Cam-
bridge (1997)

14. Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: Guiding supervised learning
with decision-theoretic active learning. In: Proceedings of the IJCAI Conference 2007,
pp. 877–882 (2007)

15. Lee, M., Yang, L., Hsu, W., Yang, X.: Xclust: Clustering xml schemas for effective integra-
tion. In: Proceedings of the 11th International Conference on Information and Knowledge
Management (CIKM), pp. 292–299 (2002)

16. Li, Y., Zhong, Q., Li, J., Tang, J.: Result of ontology alignment with rimom at oaei07. OM,
1 (2007)

17. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: The chimaera ontology environment.
In: Proceedings of the 17th National Conference on Articial Intelligence (AAAI),
pp. 1123–1124 (2000)

18. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In: Proceedings of 18th International Con-
ference of Data Engineering (ICDE), pp. 117–128 (2002)

19. Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic integration of knowledge sources. In:
Proceedings of the 2nd International Conference On Information FUSION (1999)

20. Muslea, I.: Active learning with multiple views. PhD thesis, Department of Computer Sci-
ence, University of Southern California (2002)

21. Noy, N., Musen, M.: Prompt: Algorithm and tool for automated ontology merging and
alignment. In: Proceedings of the National Conference on Articial Intelligence (AAAI),
pp. 450–455 (2000)

22. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. In: Informa-
tion Processing and Management, pp. 513–523 (1988)

23. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In: Proceed-
ings of the 8th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 269–278 (2002)

24. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: On the Move to Mean-
ingful Internet Systems, OTM (2008)

25. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining (2005)
26. Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using bayesian decision for ontology

mapping. Web Semantics 4(4), 243–262 (2006)
27. Udrea, O., Getoor, L., Miller, R.J.: Leveraging data and structure in ontology integration. In:

Proceedings of the 26th International Conference on Management of Data (SIGMOD 2007),
pp. 449–460 (2007)

28. Wang, S., Englebienne, G., Schlobach, S.: Learning concept mappings from instance similar-
ity. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan,
K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 339–355. Springer, Heidelberg (2008)

Optimizing Web Service Composition While
Enforcing Regulations

Shirin Sohrabi and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada
{shirin,sheila}@cs.toronto.edu

Abstract. To direct automated Web service composition, it is com-
pelling to provide a template, workflow or scaffolding that dictates the
ways in which services can be composed. In this paper we present an
approach to Web service composition that builds on work using AI plan-
ning, and more specifically Hierarchical Task Networks (HTNs), for Web
service composition. A significant advantage of our approach is that it
provides much of the how-to knowledge of a choreography while enabling
customization and optimization of integrated Web service selection and
composition based upon the needs of the specific problem, the preferences
of the customer, and the available services. Many customers must also be
concerned with enforcement of regulations, perhaps in the form of corpo-
rate policies and/or government regulations. Regulations are tradition-
ally enforced at design time by verifying that a workflow or composition
adheres to regulations. Our approach supports customization, optimiza-
tion and regulation enforcement all at composition construction time. To
maximize efficiency, we have developed novel search heuristics together
with a branch and bound search algorithm that enable the generation
of high quality compositions with the performance of state-of-the-art
planning systems.

1 Introduction

Increasingly, corporations are providing services within and between organiza-
tions by publishing programs on corporate intranets or on the World Wide Web.
Many of these programs represent component software that can be composed
together either manually or automatically to provide value-added service. To
direct automated Web Service Composition (WSC), it is compelling to provide
some sort of template, workflow or scaffolding that dictates the ways in which
services can be composed while leaving enough flexibility for different possible
realizations of the programs within the template. A template-based composition
is compelling for many applications in domains including e-science (e.g., [1]),
e-government (e.g., [2]), and Grid computing (e.g., [3]).

A WSC template is designed with respect to a particular task to be performed.
It provides high-level guidance on how to perform a task, but leaves many of
the details to run-time synthesis. For many WSC problems, the task can be
realized by a diversity of different services, offering comparable, but not identi-
cal services. Also unknown at the outset is the data that serves as choice points

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 601–617, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

602 S. Sohrabi and S.A. McIlraith

in a WSC – the availability of goods, their properties and pricing, etc. A compo-
sition template streamlines the generation of a problem, and customer-specific
WSC, while enabling the individual customer to customize the composition with
respect to their preferences and constraints and/or those of the corporation they
work for, the laws of the countries in which they are doing business, etc.

A composition template can be represented in a variety of different ways. One
way to represent a template is to use a workflow or a flowchart. This can be ex-
pressed pictorially as a schematic or alternatively in a form akin to a procedural
programming language. The Algol-inspired Golog agent programming language
provides one such procedural language (e.g., [4]). Indeed, the first template-based
approach to WSC exploited Golog to provide a so-called generic procedure that
provided a template specification of the composition [5,6]. The Golog procedures
were combined with individual user constraints (e.g., “I want to fly with a star
alliance carrier”) at run time, resulting in dynamic binding of Web services.
However, the user constraints considered were hard constraints, i.e., realizations
that did not satisfy those constraints were eliminated. In [7], we extended this
framework to be able to deal with soft user constraints (i.e., preferences). The
proposed preference language handled a wide variety of user constraints. It en-
abled the synthesis of a composition of services, where the selection of services
and service groundings (e.g., in the case of travel, the selection of the specific
flight) was customized to individual users at run time. Unfortunately, the imple-
mentation of the system, GologPref was not optimized.

Another type of composition template that can be used is based on Hier-
archical Task Networks (HTNs) [8]. Like Golog, HTNs provide useful control
knowledge — advice on how to perform a composition. However, this how-to
knowledge is specified as a task network. The task network provides a way of
hierarchically abstracting the composition into a set of tasks that need to be
performed and that decompose in various ways into leaf nodes realized by pro-
grams. Sirin et al. [9] used SHOP2, a highly-optimized HTN planner for the task
of WSC. The HTN induces a family of compositions and the if-then-else ordering
of SHOP2 provided a means of reflecting a preference for achieving a task one
way over another. However this limited form of preference was hard-coded into
the SHOP2 domain description (i.e., the method description) and could not be
customized by an individual user without recoding the HTN. In [10], an HTN-
DL formalization was proposed in which they combined reasoning about Web
service ontologies using a DL reasoner with HTN planning. Like their prede-
cessor, they exploited SHOP2 domain ordering to reflect preferences, but these
were again not easily customizable to an individual user. They further provided
a means of preferring services according to their class descriptions, but did not
optimize the selection of service groundings.

Most recently, Lin et al. [11] proposed an algorithm for HTN planning with
preferences described in the Planning Domain Definition Language PDDL3 [12]
that did allow for preferences over service groundings. They implemented a pro-
totype of the algorithm in a planner, scup, tailored to the task of WSC. A merit
of this work over previous HTN work is that it is not restricted to SHOP2 syntax

Optimizing Web Service Composition While Enforcing Regulations 603

and as such provides the nondeterminism (flexibility) necessary for preference-
based planning. Unfortunately, the ability of the planner to deal with preferences
was somewhat limited. In particular, it appears to be unable to handle conflicting
user preferences. The authors indicate that conflicting preferences are removed
(rather than resolved) during a pre-processing step prior to run time.

In this paper, we build on our previous work on GologPref, our previous work
on HTN planning with rich user preferences, and on the previous work of others
on HTN WSC to propose another template-based WSC system, based on HTN
planning, HTNWSC-P. Our work advances the state of the art by providing
an HTN-based WSC system that:

1. synthesizes compositions that adhere to policies and regulations expressed
as a subset of linear temporal logic (LTL);

2. exploits a preference language that is truly tailored to WSC with HTNs and
that can express preferences over how a task is to be decomposed, as well as
preferences over service and data selection;

3. imports and exploits OWL-S profiles for Web service selection;
4. synthesizes a composition that simultaneously optimizes, at run time, the

selection of services based on functional and non-functional properties and
their groundings, while enforcing stated regulations; and that

5. provides an implementation that combines HTN templates, the optimization
of rich user preferences, and adherence to LTL regulations within one sys-
tem, that reflects and exploits state-of-the-art techniques for planning with
preferences. In particular, we exploit our own recent work on HTN planning
with preferences [13] as the computational foundation for HTNWSC-P.

Elaborating on the first point, many customers must be concerned with enforce-
ment of regulations, perhaps in the form of corporate policies and/or government
regulations. Software that is developed for use by a particular corporation or ju-
risdiction will have the enforcement of such regulations built in. For Web services
that are published for use by the masses this is not the case, and the onus is
often on the customer to ensure that regulations are enforced when a work-
flow is constructed from multiple service providers. For inter-jurisdictional or
international business, different regulations may apply to different aspects of the
composition. In this paper we provide a mechanism for generating compositions
from templates that adhere to such regulations.

Figure 1 provides a high-level depiction of our WSC framework. We assume
that Web services are described in OWL-S, a leading ontology for describing
Web services [14]. We also assume that the composition template (e.g., for trip
planning, commodity purchasing, etc.) is described in OWL-S, though it need
not be. The user’s task (e.g., the specifics of the trip) are specializations of the
composition template. We provide a translation from OWL-S to HTN that not
only translates OWL-S process models, but also translates service profiles (see
Section 2). A user’s task, is translated to an initial task network in the HTN
framework. User preferences and regulations are also important elements of the
structure and could be described within an OWL ontology, though likely not in a

604 S. Sohrabi and S.A. McIlraith

.

.

Web Service 1

Web Service 2

Web Service K

.

HTN Domain Description

OWL−S Ontology

HTNWSC−P

User Preferences

OWL−S to HTN

User Task

Regulations

HTN Plan

WSC

Fig. 1. The overall structure of our composition framework

way that preserves their semantics given their description in LTL. We do not ad-
dress this issue in the paper. Our HTN WSC planner, HTNWSC-P, then takes
user preferences specified in PDDL3 syntax (see Section 3) along with a user’s
task specified as an initial task network and computes a preferred plan, prun-
ing plans that do not meet the imposed regulations specified by LTL formulae.
The final HTN plan is then converted to a composition of Web services. In the
sections that follow, we elaborate on individual components of our framework.

2 Preliminaries

In this section, we first overview OWL-S [14], a Web ontology for Web services.
Next, we describe HTN planning [8] and show how OWL-S can be translated
into HTN. The translation is similar to [9], but has some key differences that
make service selection based on the non-functional properties possible.

2.1 OWL-S

OWL-S [14] is a Web ontology [15] for Web services with a view to supporting
automated discovery, enactment and composition of Web services. The OWL-
S ontology has three major components: service profile, process model, service
grounding. The service profile is used to advertise the service by describing its
functional properties (i.e., input, output, precondition, and effects) and non-
functional properties (e.g., service trust, reliability, subject, cost, etc.). The pro-
cess model describes how the service works, similar to workflow. Finally, service
grounding explains how to interact with the service.

OWL-S defines three classes of processes: atomic, composite and simple pro-
cesses. Each process has input, output, precondition and effects. Atomic pro-
cesses have no subprocesses and can be executed in a single step. Simple
processes provide an abstract view for an existing process. However, unlike
atomic processes a simple process is not associated with a grounding. A com-
posite process is composed of other processes via control constructs such as
Sequence, Split, Any-Order, Choice, If-Then-Else, Repeat-While, Repeat-Until,
and Iterate.

Optimizing Web Service Composition While Enforcing Regulations 605

Web service composition systems generally translate OWL-S process mod-
els into internal representations such as HTN, PDDL, or Golog that are more
amenable to AI planning [7,9,10,11]. Our approach to WSC also translates OWL-
S description into an HTN planning problem. In the next section, we briefly
describe HTN planning and then describe this translation.

2.2 HTN Planning

Hierarchical Task Network (HTN) planning [8] is a popular and widely used
planning paradigm that has been shown to be promising for the task of Web
service composition (e.g., [9,11]). In HTN planning, the planner is provided with
a set of tasks to be performed, together with a set of so-called methods that tell
how to decompose tasks into subtasks. Given an initial task network, a plan is
formulated by repeatedly decomposing tasks into smaller and smaller subtasks
until a primitive decomposition of the initial task network is found. Most of the
basic definitions that follow originate in [8].

Definition 1 (HTN Planning Problem). An HTN planning problem is a
3-tuple P = (s0, w0, D) where s0 is the initial state, w0 is a task network called
the initial task network, and D is the HTN planning domain which consists of a
set of operators and methods.

A domain is a pair D = (O, M) where O is a set of operators and M is a set of
methods. An operator is a primitive action, described by a triple o =(name(o),
pre(o), eff(o)), corresponding to the operator’s name, preconditions and effects.

A task consists of a task symbol and a list of arguments. A task is primi-
tive if its task symbol is an operator name and its parameters match, otherwise
it is nonprimitive. A method, m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m)) corresponding to the method’s name, a nonprimitive task and the
method’s task network, comprising subtasks and constraints. Method m is rel-
evant for a task t if there is a substitution σ such that σ(t) =task(m). Several
methods can be relevant to a particular nonprimitive task t, leading to different
decompositions of t. An operator o may also accomplish a ground primitive task
t if their names match.

Definition 2 (Task Network). A task network is a pair w=(U, C) where U
is a set of task nodes and C is a set of constraints. The constraints normally
considered are of type precedence constraint, before-constraint, after-constraint
or between-constraint.

Definition 3 (Plan). π = o1o2 . . . ok is a plan for HTN planning program P if
there is a primitive decomposition, w, of w0 of which π is an instance.

2.3 From OWL-S to HTN

In this section, we describe how to translate an OWL-S description into an
HTN planning domain and problem. We first describe how to encode an OWL-S

606 S. Sohrabi and S.A. McIlraith

process model as elements of HTN planning (i.e., operators and methods). Then
we describe how to encode the service profile. Encoding the service profile as a
component of HTN planning will enable users to specify preferences over how
to select services based on their non-functional properties (i.e., those specified
in the service profile).

Our translation is similar to that in [9]. In particular, we encode each atomic
process as an HTN operator just as in [9]. We also encode each composite and
simple process as an HTN method. Where our translation differs is that we as-
sociate each method with a unique name. Having a name for a method allows
preferences to refer to methods by their name. This is particularly important in
preferences that describe how to decompose a particular task. Since a task can
be realized by more than one method, being able to distinguish each method
by its name allows the user to express preferences over which methods they
prefer, or in other words, how they prefer the task to be realized. In the next
section, we will give examples of such preferences. Below we show how to trans-
late the Sequence construct. The translations for the rest of the constructs is
similar.

Translate-Sequence(Q)
Input: a OWL-S definition of a composite process Q in the form Q1;Q2;...;Qk with
Sequence control construct.
Output: an HTN method M.
Procedure:
(1) let v = the list of input parameters defined for Q
(2) let Pre = conjunct of all preconditions of Q
(3) for all i : 1 ≤ i ≤ k : let ni be a task node for Qi

(4) let C= {before(n1, P re), (ni, ni+1)|1 ≤ i < k}
(5) Return M = (Nm, Q(v), {n1, n2, ..., nk}, C), where Nm is a unique method name.

In addition, for every process and subprocesses in the process model that is
associated with a service (i.e., is executable on the Web), we compile its service
profile as extra properties of their corresponding HTN element. Hence, if an
atomic/composite process is associated with a service, its corresponding HTN
operator/method will be associated with that service profile. We capture this
extra property using a predicate isAssociatedWith.

For example, let us assume that the Air Canada service can be described by
an atomic process AP and service profile SP. In addition, assume that the ser-
vice profile SP hasName AirCanada, has-url www.aircanada.com, has-Language
English, has-trust high, has-reliability high. Then we will encode the atomic pro-
cess AP into an HTN operator with the same name as described above. Next, we
would capture the service profile of the service Air Canada associated with the
atomic process AP by the binary predicate isAssociatedWith(AP, SP). Note AP
is the name of the encoded HTN operator. In the case of composite process we
would have the name of the corresponding HTN method. The profile information
of the service profile SP would now be described by predicates has-language(SP,
English), has-trust(SP, High), and has-reliability(SP, High).

Optimizing Web Service Composition While Enforcing Regulations 607

3 WSC with Preferences

In this section, we describe the syntax of the preference language we use for
specifying user preferences. The preference language is an extension of the Plan-
ning Domain Definition Language, PDDL3 [12] that we proposed in [13]. The
preference language supports specification of preferences over how tasks are de-
composed analogous to how the process model is realized. It also allows users to
specify preferences over the non-functional properties of services as well as their
preferred parameterizations of tasks analogous to processes. The semantics of
the preference language is defined using the situation calculus [4]. We will not
discuss the semantics here and direct readers to [13].

Illustrative Example (Travel Example). To help illustrate our preference
language, consider the problem of arranging travel for a conference. The problem
can be viewed as having a top-level composite process bookTravelforConference
that is composed of several other composite processes via the Choice construct.
One of the composite processes among them can be viewed as a composite pro-
cess that is constructed via an Any-Order construct into registering for a con-
ference, arranging transportation, accommodations, local transportation, and
getting insurance for the trip. Each of these processes can be constructed via
the Choice construct to consider several different Web services that offer flights,
hotels, cars, trains, buses, insurance, etc.

3.1 Specifying Preferences in Our PDDL3 Extension

The Planning Domain Definition Language (PDDL) is a standard input language
for many planning systems. PDDL3 extends PDDL2.2 to support the specifica-
tion of preferences and hard constraints over state properties of a trajectory. In
[13], we extended PDDL3 to support preferences that are over how to decompose
tasks as well as expressing preferred parameterization of a task (i.e., constraints
over action properties). In the context of WSC and OWL-S, following the trans-
lation from OWL-S to HTN, how to decompose a tasks is analogous on how to
realize a service using its process model. This is particularly important when the
process model is constructed using the Choice construct and users may prefer
one choice over another. Each preference formula is given a name and a metric
value (i.e., penalty if the preference formula is not satisfied). The quality of a
plan is defined using a metric function. A lower metric value indicates higher
satisfaction of the preferences, and vice versa.

PDDL3 supports specification of preferences that are temporally extended
in a subset of Linear Temporal Logic (LTL). always, sometime, at-most-once,
sometime-after, sometime-before are among the constructs allowed in PDDL3.

We extended PDDL3 to give users the ability to express preferences over
how to decompose tasks as well as expressing preferences over the preferred pa-
rameterization of a task. We added three new constructs to PDDL3: occ(a),
initiate(x) and terminate(x), where a is a primitive task (i.e., an operator or
an atomic process), and x is either a task (i.e., a composite process’ name and its

608 S. Sohrabi and S.A. McIlraith

input parameters) or a method name (i.e., the unique method name assigned for
each method during the translation). occ(a) states that the primitive task a oc-
curs in the present state. On the other hand, initiate(t) and terminate(t) state,
respectively, that the task t is initiated or terminated in the current state. Sim-
ilarly, initiate(n) (resp. terminate(n)) states that the application of method
named n is initiated (resp. terminated) in the current state. Below are some ex-
amples from our travel domain given a particular origin Origin and destination
Dest1 that use the above extension.

(preference p1 (sometime-after (terminate arrange-trans)(initiate arrange-acc)))
(preference p2 (sometime-after (terminate arrange-acc)(initiate get-insurance)))
(preference p3 (always (not (occ (pay MasterCard)))))
(preference p4 (sometime (initiate (book-flight SA Eco Direct WindowSeat))))
(preference p5

(imply (different Origin Dest) (sometime (initiate by-flight-trans))))
(preference p6 (imply (and (hasBookedFlight ?Y)(hasAirline ?Y ?X)(member ?X SA))

(sometime (occ (pay ?Y CIBC)))))
(preference p7 (imply (hasBookedCar ?Z) (sometime (occ (pay ?Z AE)))))

p1 states that the task associated with the arrange-trans process is terminated
before the task associated with the arrange-acc process begins (for example: fin-
ish arranging your transportation before booking a hotel). Similarly, p2 states
that the task associated with the arrange-acc process is terminated before the
task associated with the get-insurance process begins. The p3 preference states
that the user never pays by Mastercard. Note here that payment with Master-
Card is thought of as an atomic process. The p4 preference states that at some
point the user books a direct economy window-seated flight with a Star Alliance
(SA) carrier. Here, booking a flight is believed to be a composite process. The
p5 preference states that if Origin and Dest are different, the user prefers that
at some point a method named by-flight-trans is chosen for decomposition of a
task (i.e., the arrange transportation process). The p6 preference states that if
a flight is booked with a Star Alliance (SA) carrier, pay using the user’s CIBC
credit card. Finally p7 preference states that if a car is booked, the user prefers
to pay with their American Express (AE) credit card.

The metric function defines the quality of a plan, generally depending on the
preferences that have been achieved by the plan. PDDL3 defines an is-violated
function, that takes as input a preference name and returns the number of times
the corresponding preference is violated. It is also possible to define whether
we want to maximize or minimize the metric, and how we want to weight its
different components. For example, the PDDL3 metric function:

(:metric minimize (+ (* 40 (is-violated p1)) (* 20 (is-violated p2))))

specifies that it is twice as important to satisfy preference p1 as to satisfy pref-
erence p2. Note that it is always possible to transform a metric that requires
maximization into one that requires minimization, henceforth, we will assume
that the metric is always being minimized.
1 For simplicity, many parameters have been suppressed. Variables start with ?

Optimizing Web Service Composition While Enforcing Regulations 609

Further note that inconsistent preferences are handled automatically using
the PDDL metric function as discussed above. The metric function is a weighted
sum of individual preference formulae. This function is then minimized by our
planning approach. In doing so, it makes an appropriate trade off between in-
consistent preferences so that it can optimize the metric function.

3.2 Service Selection Preferences

Service selection or discovery is a key component of WSC. However, the only
other approaches, to our knowledge, that treat this as a preference optimization
task integrated with actual composition are [10] and our previous Golog work [7].
In [10], they rely on extending an OWL-S ontology to include abstract processes
that refer to service profiles. These descriptions also need to be represented as
assertions in an OWL ontology, and an OWL-DL reasoner needs to undertake
the task of matching and ranking services based on their service selection pref-
erences. Unfortunately, combining OWL-DL reasoning with planning can create
significant performance challenges since one needs to call the OWL-DL reasoner
many times during the planning phase, leading to very expensive computations.

Our approach is different. Following discussion in Section 2, during the trans-
lation phase we compile each service profile as an extra property of its corre-
sponding HTN element. Note that not all processes will be associated to a service
since a process can correspond to an internal subprocess of the service. We only
associate profiles with Web-accessible processes. We capture the profile property
using a binary predicate isAssociatedWith(process, service-profile). The service-
profile serves as an index for the profile information and is encoded as additional
predicates (e.g., has-trust(service-profile, trust), has-reliability(service-profile, re-
liability), etc). Below are some service selection preferences for our travel domain.

(preference p8 (always
(imply (and (initiate ?X)(isAssociatedWith ?X ?Y))(has-trust ?Y High)))

(preference p9 (sometime
(and (initiate ?Z)(isAssociatedWith ?Z ?Y)(has-name ?Y AirCanada))))

(preference p10 (never
(and (initiate ?Z)(isAssociatedWith ?Z ?Y)(has-reliability ?Y Low))))

p8 states that the user prefers selecting services that have high trust values.
p9 states that a user prefers to invoke the AirCanada service. Lastly, p10 states
that the user prefers to never select low reliability services.

4 Regulation-Based Composition

Policies and regulations are an important aspect of semantic Web services. A
number of researchers have proposed approaches to both regulation represen-
tation and regulation enforcement as part of semantic Web service tasks (e.g.,
[16]). Kolovski et al. [17] proposed a formal semantics for the WS-policy [18]
language by providing a mapping to a Web ontology language OWL [15] and
describing how an OWL-DL reasoner could be used to enforce policies. They

610 S. Sohrabi and S.A. McIlraith

provided two translations of WS-Policy to OWL-DL by treating policies as in-
stances and classes in the DL framework. Chun et al. [19] considered policies
imposed on both service selection and on the entire composition, expressed us-
ing RuleML [20]. In their work, policies take the form of condition-action pairs
providing an action-centric approach to policy enforcement.

Regulations are traditionally enforced at design time by verifying that a work-
flow or composition adheres to the regulations. In our approach, we enforce
regulations during composition construction. In particular, during the planning
phase we consider only those partial plans that adhere to the regulations while
pruning those that do not. In the next section, we provide an algorithm that
specifies exactly how this pruning occurs within the HTN algorithm.

In this paper, we focus on regulations that are more geared towards the
verification community, particularly those that can be specified as safety con-
straints. During our regulation enforcement phase, we ensure that the computed
composition preserves certain properties of the world. These types of regulations
can be specified potentially by state conditions that must hold during the com-
position. Hence, rather than having action-centric rules in the form of RuleML or
rule-based languages, we are interested in assertions that must be enforced dur-
ing the composition. Classically this form of verification has been represented in
Linear Temporal Logic (LTL) [21] or some combination of first-order logic with
temporal logic (e.g., [22]). Here, we are not concerned with the representation
of regulations within an ontology but rather with how we enforce them within
our framework. Hence, for the purpose of this paper we represent regulations in
a subset of LTL considering for the most part the never and always constructs.
Below are some example regulations that corporations might impose on their
employees when traveling: (1) Always book flights with US-carriers. (2) Never
book business or first-class flights. (3) Get pre-approval for travel outside the
US. (4) Always pay for flights and hotels with your corporate credit card. As an
example, the first regulation above can be written in LTL as follows2:

� [((hasBookedFlight ?Y) ∧ (hasAirline ?Y ?X)) ⇒ (USCarrier ?X)]

5 Computing Preferred WSC Adhering to Regulations

In this section we address the problem of how to compute a preferred Web
service composition while enforcing regulations. Having the HTN encoding of
the problem in hand, we turn to planning techniques to help guide construction
of the composition. In particular, we exploit our developed heuristics for HTN
planning and augment our algorithm [13] to enforce regulations.

Our algorithm is outlined in Figure 2. Our HTNWSC planner performs best-
first, incremental search (i.e., always improves on the quality of the plans
returned). It takes as input a planning problem (s0, w0, D), a metric function
MetricFn, a heuristic function HeuristicFn, and regulations Regulations.

2 � is a symbol for always.

Optimizing Web Service Composition While Enforcing Regulations 611

1: function HTNWSC(s0, w0,D, MetricFn,HeuristicFn, Regulations)
2: frontier ← 〈s0, w0, ∅〉 � initialize frontier
3: bestMetric ← worst case upper bound
4: while frontier is not empty do
5: current ← Extract best element from frontier
6: 〈s, w, partialP 〉 ← current
7: if SatisfiesRegulations(s) then � pruning to enforce regulations
8: lbound ← MetricBoundFn(s)
9: if lbound < bestMetric then � pruning suboptimal partial plans

10: if w = ∅ and current ’s metric < bestMetric then
11: Output plan partialP
12: bestMetric ← MetricFn(s)
13: succ ← successors of current
14: frontier ← merge succ into frontier

Fig. 2. A sketch of our HTNWSC algorithm

frontier contains the nodes in the search frontier. Each of these nodes is of
the form 〈s, w, partialP 〉, where s is a plan state, w is a task network, and
partialP is a partial plan. frontier is initialized with a single node 〈s0, w0, ∅〉,
where ∅ represents the empty plan. Its elements are always sorted according to
the function HeuristicFn. bestMetric is a variable that stores the metric value
of the best plan found so far initialized to a high value representing a worst
case upper bound. In each iteration of the while loop, the algorithm extracts
the best element from the frontier and places it in current . If the state violates
the regulations (i.e., SatisfiesRegulations(s) returns false), this node will be
pruned from the search space. LTL regulations are enforced by progression of
the formula as the plan is constructed (e.g., [23]). The LTL formulation is more
expressive than HTN-type constraints and thus the enforcement is different that
e.g., Redux [24]. Using the function MetricBoundFn a lowerbound estimation
of the metric value is computed. If lbound is greater than or equal to bestMetric
this node would again be pruned. If current corresponds to a plan, bestMetric is
updated, and the plan is returned. All successors to current are computed using
the Partial-order Forward Decomposition procedure (PFD) [8], and merged into
the frontier . The algorithm terminates when frontier is empty.

Although templates specified in HTN greatly reduce the search space, a task
can be decomposed by a fairly large number of methods corresponding to a
large number of services that can carry out the same task. Hence, we use the
heuristics proposed in [13] to guide the search towards finding a high-quality
composition quickly. We will use four heuristic functions as follows: Optimistic
Metric Function (OM), Pessimistic Metric Function (PM), Lookahead Metric
Function (LA), and Depth (D). The OM function estimates optimistically the
metric value resulting from the current task network w. Recall that in PDDL3
the metric function defines the quality of a plan. The PM function is the dual
of OM . LA function estimate the metric of the best successor to the current
node. It first solves the current node up to a certain depth, then it computes

612 S. Sohrabi and S.A. McIlraith

a single primitive decomposition for each of the resulting nodes. In the end,
it returns the best metric value among all the fully decomposed nodes. D is
another heuristic to guide the search. This heuristic encourages the planner to
find a decomposition soon. The HeuristicFn function we use in our algorithm
is a prioritized sequence of the above heuristics. However, as shown in [13] the
best combination is to use D, LA, OM , and PM , in that order, when comparing
two nodes. Hence, if the depths are equal, we use the other heuristics in sequence
to break ties. We will use this prioritized sequence in our evaluations.

The search space for a WSC is reduced by imposing the template, impos-
ing the regulations, and by further sound pruning that results from the incre-
mental search. In particular, the OM function provides sound pruning if the
metric function is non-decreasing in the number of satisfied preferences, non-
decreasing in plan length, and independent of other state properties. A metric
is non-decreasing in plan length if one cannot make a plan better by increasing
its length only (without satisfying additional preferences).

Using inadmissible heuristics does not guarantee generation of an optimal
plan. However, we have shown in [13] that in the case the search is exhausted,
the last plan returned is guaranteed to be optimal. In our algorithm we are
pruning those states that violate the regulations, so optimality is with respect
to the subset of plans that adhere to the regulations.

Proposition 1. If the algorithm performs sound pruning, then the last plan
returned, if any, is optimal.

6 Implementation and Evaluation

We implemented our Web service composition engine using templates specified in
HTN, user preferences specified in PDDL3 syntax, regulations specified as LTL
formulae, and the user’s initial task specified as HTN’s initial task network. Our
implementation, HTNWSC-P, builds on our earlier work HTNPlan-P [13]
that itself is a modification of the LISP version of SHOP2 [25]. It implements
the algorithm and heuristic described above. We used a 15 minute time out and
a limit of 1 GB per process in all our experiments.

HTNWSC-P builds on the effective search techniques for HTNPlan-P,
which was shown to generate better quality plans faster that the leading plan-
ners from the IPC-5 planning competition. We do not repeat these experimental
results here. However, as such, we had three main objectives in performing our
experimental evaluation. We wanted to evaluate the performance of our imple-
mentation as we increased the number of preferences and the number of ser-
vices. We also wanted to compare our work with other WSC preference-based
planners that use HTNs. Unfortunately, we were unable to achieve our third
objective, since we could not obtain a copy of scup[11], the only other HTN
preference-based planner (for WSC) we know of (See Section 7 for a qualitative
comparison).

Optimizing Web Service Composition While Enforcing Regulations 613

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7

M
et

ric

Problem No.

HTNWSC-P
Worst Metric

Optimal Metric

Fig. 3. Evaluating the quality of the last plan as
the number of preferences increases. A low metric
value means higher quality plan. Worst Metric is a
metric value if none of the preferences are satisfied.

Prb Ser FirstPlan LastPlan
Time(s) Time(s)
1 10 0.22 580.00
2 30 0.23 610.00
3 50 0.21 636.00
4 70 0.22 640.00
5 110 0.23 643.00
6 130 0.24 656.00
7 150 0.24 660.00
8 170 0.26 668.00
9 190 0.24 671.00
10 210 0.25 673.00

Fig. 4. Time comparison be-
tween the first and last plan re-
turned as we increase the number
of services in the problem

We used the Travel domain described in this paper as our benchmark. (Note
that HTNPlan-P was additionally evaluated with IPC-5 planning domains.)
The problem sets we used were designed to help us achieve our first and second
objectives. We achieved this by adding more preferences some of which could
potentially be conflicting with each other, and by increasing the number of ser-
vices, achieved by increasing the branching factor and grounding options of the
domain. To this end, we automatically generated 7 problems where the number
of services were kept constant and the number of preferences were increased. We
similarly generated 10 problems with increasing number of services, keeping the
number of preferences constant. The preferences were rich, temporally extended
preferences over task groundings and task decompositions. Note that we used a
constant number of policies in each problem.

Figure 3 shows the last metric value returned by HTNWSC-P for the 7
problems with increasing number of preferences and constant number of services.
It also shows the Worst and Optimal Metric value for these problems. Worst
Metric is the metric value of the problem if none of the preferences are satisfied
while Optimal Metric is the best possible metric value achievable. The result
shows that HTNWSC-P finds a very close to optimal solution within the time
limit. Furthermore, similar to our work in [13], we observe a rapid improvement
during the first seconds of search, followed by a marginal one after that.

Next, we evaluated the performance of HTNWSC-P by increasing the num-
ber of available services. This results in having more methods and operators in
the HTN description, hence, the number of possible ways to decompose a single
task increases. This causes the number of nodes in the frontier to blow up ac-
cording to the algorithm described in Section 5, and the planner to run out of
stack. There are two common ways HTN planners solve this problem. Combining
the advantages of both, we propose a middle-ground solution to the problem.

One way to avoid the problem is to have a limit on the size of the frontier as in
[11]. However, this approach only works if the size is relatively small. Moreover,

614 S. Sohrabi and S.A. McIlraith

many possible decompositions and high-quality solutions could potentially be
removed from the search space. Another approach is to use the if-then-else non-
determinism semantics taken for example by SHOP2. In this semantics, if there
are several methods m1 to mk that can be used to decompose a task t, method m1
should be used if it is applicable, else method m2, else method m3, and so forth.
Hence, the order in which the methods are written in the domain description
can influence the quality of the results. This simple ordering is considered a
form of user preferences in [25]. Hence, users must write different versions of a
domain description to specify their preferences. However, this form of preferences
is very limited and is analogous to writing different templates for different users
as opposed to customizing one fixed template to meet users’ differing needs.

In this experiment, we employed a combination of the above two approaches,
modifying our algorithm to place a limit on the number of applicable methods for
a task. Our search considered all tasks by considering all of their corresponding
nodes in the frontier but we limited the number of applicable methods for each
task. Note that with this approach we might also potentially prune good-quality
plans but the likelihood of this is small compared to limiting the size of the
frontier. Nevertheless, our optimality result does not hold for this experiment.
Our results are summarized in Figure 4.

Figure 4 shows the time to find the first and the last plan within the time-out.
The experiments are run on the 10 problem sets with constant preferences and
increasing service numbers. Note that the metric value of all the first and last
plans is equal since all 10 problems use the same sets of preferences. The result
shows that as the number of services increases, the time to solve the problem
increases only slightly.

Finally, recall that our implementation is incremental, performing search in
a series, each one returning a better-quality plan. To see how effective this ap-
proach is, we calculated the percent metric improvement (PMI), i.e., the percent
difference between the metric of the first and the last plan returned by our plan-
ner (relative to the first plan). The average PMI for the problems used in our
experiments is 23%.

7 Summary and Related Work

A number of researchers have advocated using AI planning techniques to ad-
dress the task of Web service composition including planners that are based on
model checking (e.g., [26]) and planners that use a regression-based approach
[27]. Previous work has also considered using a template or workflow to ease the
task of composition including the work using Golog [5,6,13] and HTNs [9,10,11].
Work by Calvanese, de Giacomo and colleagues on the so-called Roman model
is another example of a template-like approach in that they provide a desired
behaviour to be synthesized (e.g., [28]) by a set of services. This desired be-
haviour plays a similar role to that of a template however the synthesis itself
is performed using techniques from finite state controller synthesis. Following
in this tradition, we also take a template-based approach to WSC. Our tem-
plates are specified using HTN domain descriptions and can be customized by

Optimizing Web Service Composition While Enforcing Regulations 615

the specification of rich user preferences and by the specification of hard regu-
lations. Users specify their preferences in our PDDL3 extension that supports
conditional, temporally extended, service selection preferences as well as prefer-
ences over how to parameterize and how to decompose a task. Regulations are
specified at LTL formulae. We provide translation from OWL-S to HTN that
not only translates OWL-S process models, but also translates service profiles
into our HTN framework. Our composition engine, HTNWSC-P, then takes
user preferences and computes a preferred composition while pruning those that
do not meet the imposed regulations. Our algorithm is based on our previous
work on HTN preference-based planning that has been demonstrated to outper-
form leading planners. Experimental evaluation shows that our approach can be
scaled as we increase the number of preferences and the number of services.

Most of the related work with respect to specifying and imposing regulations
has already been discussed in Section 5. There has also been work on compliance
checking using a constraint-based approach that is similar in spirit to regulation
enforcement (e.g., [29]). Also, recent work [30] has considered integrity con-
straints, and proposed various ways to solve the ramification problem. Solving
the ramification problem is not a focus of this paper.

The most notable and closest work to ours that uses both HTNs and prefer-
ences developed for IPC-5 is [11]. Unfortunately, the scup prototype planner is
not available for experimental comparison. There are several differences among
our works. In particular, they translate user preferences into HTN constraints
and preprocess the preferences to check if additional tasks need to be added.
They also have an interesting approach to the problem by combining HTN plan-
ning with DL, and by using a DL reasoner. However, their preferences are spec-
ified in PDDL3, while our preferences can be expressed in the PDDL3 extension
that uses HTN-specific preference constructs. Moreover, they do not translate
service profiles; hence, they are unable to specify preferences over service se-
lections. Additionally, they do not consider handling regulations, a hallmark of
our work. Further, their algorithm cannot handle conflicting user preferences at
run-time, and so conflicts need to be detected as a pre-processing step.

Acknowledgements. We thank our colleague Jorge Baier for helpful discussion.
We gratefully acknowledge funding from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Ontario Ministry of Innovations
Early Researcher Award (ERA).

References

1. Cheung, W.K.W., Gil, Y.: Privacy enforcement through workflow systems in e-
science and beyond. In: Proceedings of the ISWC 2007 Workshop on Privacy En-
forcement and Accountability with Semantics (PEAS) (2007)

2. Chun, S.A., Atluri, V., Adam, N.R.: Policy-based Web service composition. In:
Proceedings of the 14th International Workshop on Research Issues on Data En-
gineering: Web Services for E-Commerce and E-Government ApplicationsRIDE,
pp. 85–92. IEEE Computer Society, Los Alamitos (2004)

616 S. Sohrabi and S.A. McIlraith

3. Gil, Y., Deelman, E., Blythe, J., Kesselman, C., Tangmunarunkit, H.: Artifi-
cial intelligence and grids: Workflow planning and beyond. IEEE Intelligent Sys-
tems 19(1), 26–33 (2004)

4. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

5. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems.
Special Issue on the Semantic Web 16(2), 46–53 (2001)

6. McIlraith, S., Son, T.: Adapting Golog for composition of semantic Web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning (KR), pp. 482–493 (2002)

7. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via
generic procedures and customizing user preferences. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 597–611. Springer, Heidelberg (2006)

8. Ghallab, M., Nau, D., Traverso, P.: Hierarchical Task Network Planning. In: Au-
tomated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)

9. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web service
composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2005)

10. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic Web
services. In: AAAI 2005 Fall Symposium on Agents and the Semantic Web (2005)

11. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 629–643. Springer, Heidelberg (2008)

12. Gerevini, A., Long, D.: Plan constraints and preferences for PDDL3. Technical Re-
port 2005-08-07, Department of Electronics for Automation, University of Brescia,
Brescia, Italy (2005)

13. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In:
Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence(IJCAI), pp. 1790–1797 (2009)

14. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to Web services with
OWL-S. World Wide Web Journal 10(3), 243–277 (2007)

15. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a Web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

16. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
Web languages for policy representation and reasoning: A comparison of KAoS,
Rei, and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

17. Kolovski, V., Parsia, B., Katz, Y., Hendler, J.A.: Representing Web service policies
in OWL-DL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 461–475. Springer, Heidelberg (2005)

18. WS-Policy: Web service policy framework (WS-policy),
http://www.w3.org/Submission/WS-Policy/

19. Chun, S.A., Atluri, V., Adam, N.R.: Using semantics for policy-based Web service
composition. Distrib. Parallel Databases 18(1), 37–64 (2005)

20. RuleML: Rule markup language (RuleML), http://ruleml.org/
21. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer

science: formal models and semantics B, pp. 995–1072 (1990)

http://www.w3.org/Submission/WS-Policy/
http://ruleml.org/

Optimizing Web Service Composition While Enforcing Regulations 617

22. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Proceedings of the 15th International Symposium
on Protocol Specification, Testing and Verification (PSTV), pp. 3–18 (1995)

23. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. AI Magazine 16, 123–191 (2000)

24. Petrie, C.J.: The Redux Server. In: Proc. Intl. Conf. on Intelligent and Cooperative
Information Systems (ICICIS), pp. 134–143 (1993)

25. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman,
F.: SHOP2: An HTN planning system. Journal of Artificial Intelligence Research
(JAIR) 20, 379–404 (2003)

26. Traverso, P., Pistore, M.: Automatic composition of semantic Web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

27. McDermott, D.V.: Estimated-regression planning for interactions with Web ser-
vices. In: Proceedings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS), pp. 204–211 (2002)

28. Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the Roman Model. IEEE Data Eng. Bull. 31(3),
18–22 (2008)

29. Hoffmann, J., Weber, I., Governatori, G.: On compliance checking for clausal con-
straints in annotated process models. In: Journal Information Systems Frontiers
(2009)

30. Hoffmann, J., Bertoli, P., Helmert, M., Pistore, M.: Message-based Web service
composition, integrity constraints, and planning under uncertainty: A new connec-
tion. Journal of Artificial Intelligence Research (JAIR) 35, 49–117 (2009)

A Weighted Approach to Partial Matching for
Mobile Reasoning

Luke Albert Steller, Shonali Krishnaswamy, and Mohamed Methat Gaber

Faculty of Information Technology, Monash University, Melbourne, Australia
{Luke.Steller,Shonali.Krishnaswamy,Mohamed.Gaber}@infotech.monash.edu

Abstract. Due to significant improvements in the capabilities of small
devices such as PDAs and smart phones, these devices can not only con-
sume but also provide Web Services. The dynamic nature of mobile envi-
ronment means that users need accurate and fast approaches for service
discovery. In order achieve high accuracy semantic languages can be used
in conjunction with logic reasoners. Since powerful broker nodes are not
always available (due to lack of long range connectivity), create a bottle-
neck (since mobile devices are all trying to access the same server) and
single point of failure (in the case that a central server fails), on-board
mobile reasoning must be supported. However, reasoners are notoriously
resource intensive and do not scale to small devices. Therefore, in this
paper we provide an efficient mobile reasoner which relaxes the current
strict and complete matching approaches to support anytime reasoning.
Our approach matches the most important request conditions (deemed
by the user) first and provides a degree of match and confidence result
to the user. We provide a prototype implementation and performance
evaluation of our work.

1 Introduction

The number of mobile subscribers is reaching the 3 billion mark, world wide [20].
This provides significant opportunities for new mobile applications which meet
mobile user demands for improved access to information in their environment.
The real usefulness of these small devices is in their interaction [23], that is,
information sharing. [24] advocates the usefulness of service oriented architec-
tures and accurate service discovery for mobile services, because of the need to
support user mobility in dynamic environments. In addition, advances in device
capability mean that mobile devices can act not only as service consumers but
also as service providers or will do so in the near future [19,16]. Most current
service discovery architectures perform matching on a high-end broker server.
However, “for dynamic ad-hoc mobile environments, assuming the existence of
devices that are stable and powerful enough to play the role of the central ser-
vice registries [or brokers] is inappropriate” [16]. In addition, with the growth
of increasing services, it is seen that such a centralised approach could become
a bottle neck for the whole system [22]. Cost is also a significant factor which
determines whether users are likely to use a mobile service. There are clear evi-
dence in studies that the benefits must exceed the cost [9]. It is also noteworthy,

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 618–633, 2009.
� Springer-Verlag Berlin Heidelberg 2009

A Weighted Approach to Partial Matching for Mobile Reasoning 619

that in terms of monitoring costs as well as cost energy efficiency, communication
from mobile devices to a remote location has been established as more expensive
than performing computation on the mobile device.

Employing a partially or completely decentralised approach in which the
matching occurs on the mobile device itself overcomes all of these problems. On-
board reasoning would remove a central point of failure, deployment is cheap and
scalable because adding more users does not involve any additional network pro-
vision and elevates privacy concerns. The ontologies used in the reasoning process
could be collected by devices as the user walks past other devices, short-range
download points (such as a Kiosk or shopping centre entrances) or downloaded
previously (eg at home or work) from the Internet. However, mobile service
discovery and matching must meet two important user requirements. Matching
must be accurate / useful [9] and fast [14].

Accuracy can be achieved by adopting semantic web ontology languages
(OWL) and using logic based reasoners to infer relationships to model require-
ments and using logic reasoners to infer new information from these ontologies.
Most current semantic reasoners utilise description logic (DL) which provides the
most expressive, decidable OWL logic. However, these logic reasoners are noto-
riously slow and resource intensive [25]. As such current reasoners cannot be
ported to resource constrained mobile devices such as smart phones and PDAs,
in their current form, especially since mobile users generally require a result
within 10-15 seconds [14]. Current reasoners give only a true or false result, or
no result at all, if the inference task is not completed in full. [4] advocates the
need to relax these traditional notions of absolute accuracy and completeness
for increased performance without reduced expressiveness. Therefore, in this pa-
per, we provide such an approach, a prototype and an evaluation, which has the
following features:

1. match the most important request conditions first (as deemed by the user
explicitly or implicitly by preferences);

2. handle heterogeneous inaccurate data by continuing to reason after a term
failed (if there is sufficient time);

3. handle time/resource pressures by supporting early stopping of the reasoner
and providing a current degree of inference to the user.

The remainder of the paper is structured as follows. In section 2 we describe
related work. In section 3 we discuss the current approach to reasoning using
Tableaux. In section 4, we provides an adaptive reasoning approach to meet
the three goals above. In section 5 we discuss our implementation and provide
evaluations of our work. Finally in section 6 we conclude the paper.

2 Related Work

While current service discovery architectures such as Jini [1] do not make use
of semantic languages, there is a growing emergence of OWL-S semantic match-
makers such as CMU Matchmaker [15] which requires a centralised high-end

620 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

node to perform reasoning. Architectures such as DIANE [11] and Gaia [13] pro-
vide semantically driven context middleware. EASY [12] takes context and QoS
into consideration and performs indexed classification of the ontology hierarchy
offline such that subsequent lookup is much faster. However all of these archi-
tectures require the existence of a high-end central node, due to their reliance
on current reasoners.

Gu et al. [6] an RDF reasoner which runs on mobile devices on J2ME with
acceptable performance, but it only supports a subset of semantic technologies
and forward chaining rule inference. Kleeman et. al. [10] have developed KRHy-
per, a first order logic (FOL) reasoner for deployment on resource constrained
devices. However, performance is comparable with RacerPro. [5] compares on-
tology terms by Google distance, but this requires Internet access to Google. [7]
disregards non-horn clauses, to provide a faster but less accurate result by re-
ducing expressiveness. These works do not implement logical level optimisations
to enable mobile reasoning, other than by reducing the language expressively.

The work provided in [18] approximates class membership inference and iter-
atively matches all inference conditions. The reasoner can be stopped maturely,
and a true result is given if the current approximation / iteration holds. [21] pro-
vides conjunctive query answering and instance retrieval. The main limitation
of these approaches is that they rely on the Tableaux algorithm. It is evident in
[2] that DL Tableaux checks conditions in depth first order. Current approaches
do not take level of importance of each condition into consideration and do not
provide degree of match / confidence metrics. Therefore, we provide an approach
to address this need. In the next section we describe current Tableaux reasoning
then introduce our novel architecture in section 4.

3 Tableaux Reasoning

The power of semantics means that in addition to explicit definitions and as-
sertions, implicit knowledge can be made explicit using inference. The most
expressive OWL language which retains decidability [3] is known as OWL-DL
which is based on description logic (DL) [2]. OWL-DL inference proves include
Pellet1, FaCT++2, RacerPro3 and KAON24. Most of these reasoners use the
Tableaux algorithm which has “dominated recent DL research” [2].

DL comprises a TBox T containing terminological class concept definitions
and an ABox A comprising assertion definitions. The ABox assertions are called
nodes or individuals x which are defined by their membership to a class concept
C and by its relations R to other objects to form a graph. These two definitions
are given in equation 1.

C(x) or R(x1, x2) (1)

1 http://clarkparsia.com/pellet
2 http://owl.man.ac.uk/factplusplus
3 http://www.racer-systems.com
4 http://kaon2.semanticweb.org

A Weighted Approach to Partial Matching for Mobile Reasoning 621

Tableaux [8] is an unsatisfiability algorithm which attempts to prove an inference
by refuting it. For instance, in order to prove an inference of the form C(x), its
negation is added the ABox A such that A0 = A∪¬C(x). The inference is proven
if any attempt to extend the asserted negation into a complete interpretation
will lead to a logical contradiction (a concept and its negation are present for the
same individual). Alternatively, if a sound and non-contradictory interpretation
is found, then this represents a counter example that disproves the conjectured
inference.

Tableaux minimises the amount of space used by utilising a Tableaux ex-
pansion tree T . This tree imposes an ordering on the application of expansion
rules. Disjunctive concepts give rise to expansion and every possible expansion
is searched in turn until a fully expanded and clash free tree is found, or all
possibilities have been shown to lead to a contradiction. When A contains the
disjunction (C1"C2)(x), disjunction transformation rule replaces A with A′ = A
∪{C1(x)},A′′ = A∪{C2(x)}. As such (C1 "C2)(x) represents a branching point
node n in the expansion tree T which contains new ABox states, and the con-
cepts C1(x) and C2(x) each represent possible future branching point nodes n. In
this paper, we distinguish between branching point nodes n ∈ T and individuals
x ∈ A, by referring to n as a node and x as an individual.

Tableaux also labels each concept in an individual and each role in an edge
with a dependency set, indicating the branching points on which it depends. A
concept C ∈ L(x) depends on branching point n if C was added to L(x) at the
branching point n or if C depends on another concept D (or role R), and D (or
R) depends on the branching point n. A role R = L(〈x, y〉) depends on concept
D when 〈x, y〉 was labelled R by the application of an expansion rule that used
D. When a clash occurs, the reasoner state is restored to the most recent branch
point where exploring another branch might alleviate the cause of the clash.

It is evident in [2] that DL Tableaux employs depth first expansion, which
we illustrate in algorithm 1. Initially, this algorithm is started using the call
TabT reeT raverse(f,H,A, T) where f is the top branch node in the expansion
tree, H is the assertion ¬C(x) for the inference check C(x), A is the ABox,
which is initialised with all the explicit assertions and relations in the semantic
graph (knowledge base) and T is the expansion tree. The algorithm attempts to
expand the tree and apply Tableaux transformation rules in order to generate
a clash to prove all alternatives of the the tree, which are all of the conditions
of the inference. If it returns true then the inference is proven. The algorithm
utilises ApplyT ransRules(A) which applies the normal Tableaux DL transfor-
mation rules as defined in [2], on ABox A until a clash is detected (return true)
or there are no more rules to apply (return false). The backjumping function-
ality is provided in algorithm 2. We note that we define a branch point node n
identifier as branchID(n) and we define a concept C or role R dependency set
using depBranchIDs(C). Let currBranchNode(A) contain the currently active
branch point node in the expansion tree for the ABox A.

An example of an dependency directed, expansion tree is shown in figure 1.
This figure represents the inference check C(x) where C is a conjunction of the

622 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

Algorithm 1. TabTreeTraverse(n,W,A, T)
1: Inputs: BranchNode n, Assertion W , ABox A, ExpansionTree T where W is of

the form C(x)
2: Outputs: Boolean clashFound
3: Let clash be a clashing concept if one exists
4: clash ← ApplyTransRules(A) \∗ runs the standard Tableaux rules ∗\
5: if clash �= null then
6: return true
7: end if
8: Let clashFound ← false
9: Let branchID(n) denote the branch point node identifier for n

10: if W = (D1 � D2 � ... � Dm)(x) \∗ has children ∗\ then
11: for all Dj ∈ W do
12: Let c be a new BranchNode in the expansion tree T for A, T ← T ∪ {c}
13: branchID(c) ← branchID(c) + 1
14: currBranchNode(A) ← c
15: L(x) ← L(x) ∪ {Dj(x)} where x is an individual in A
16: clashFound ← TabTreeTraverse(c, Di(x), A, T)
17: remove c from T
18: if clashFound = false then
19: return false\∗ failed to prove inference for disjunct c ∗\
20: else
21: restoreTo(n) \∗ backjump to n ∗\
22: end if
23: end for
24: end if
25: return clashFound

Algorithm 2. RestoreTo(u, A)
1: Inputs: int u and ABox where u is the branch node identifier to restore A to.
2: Outputs: ABox A
3: for all xi ∈ A where xi is an individual \∗ all individuals in ABox A ∗\ do
4: for all Aj ∈ L(xi) where Aj is a class concept do
5: Let t be the minimum value in depBranchIDs(Aj) where depBranchIDs(Aj)

contains the branch dependency identifiers branchID for class concept Aj

6: if t > u \∗ Aj added after u ∗\ then
7: remove Aj from L(xi)
8: end if
9: end for

10: end for
11: return A

form C ≡ ((C1	C2)	C3). Also assume {C1, C2, C3} ⊆ L(x) where x ⊆ A. Since
Tableaux proves inference by refutation C is transformed into a disjunction of
the form ¬C ≡ ((¬C1 " ¬C2) " ¬C3). In figure 1a, a clash is detected caused
by C1 which is part of the disjunction (¬C1 " ¬C2), added to L(x) at branch

A Weighted Approach to Partial Matching for Mobile Reasoning 623

node 2. Therefore, the Tableaux is restored to its earlier state, by a backjump to
branch 2. Then in 1b, the second element ¬C2 of (¬C1 "¬C2) is applied, giving
rise to another clash. The reasoner backjumps to expansion tree node 1 (1c),
after which the second disjunct ¬C3 of ((¬C1 " ¬C2) " ¬C3) is applied giving
rise to a third clash. All branch nodes clashed, so the inference C(x) is proven.
Note that grey nodes indicate those which have already been evaluated in a
previous iteration. In this example, only one individual x was used for briefness,
however in practise the expansion tree may apply disjuncts to several different
individuals.

1

2

3

1

2

3

1

2

→ Clash

Backjump: 2

Backjump: 1

L(x) U 1{ }C¬
2{ }C¬L(x) U

L(x) U 3{ }C¬

a b c

L(x)1 1{ }C C¬ ⊆∪ → Clash2 2{ }C C¬ ⊆∪ L(x) → Clash3 3{ }C C¬ ⊆∪ L(x)

L(x) U 1 2 3{(())}C C C¬ ¬ ¬ L(x) U 1 2 3{(())}C C C¬ ¬ ¬ L(x) U 1 2 3{(())}C C C¬ ¬ ¬

1 2{()}C C¬ ¬L(x) U
1 2{()}C C¬ ¬L(x) U

Fig. 1. Standard Tableaux Expansion Search Tree

Current Tableaux has the following shortcomings:

1. Only a true/false answer is provided. A weighted degree of match and a level
of confidence in this match based on how much of the inference was checked,
should be provided;

2. The order of condition and subcondition evaluation is depth-first. These
should be applied in weighted order of importance to the user, so that the
highest possible degree of match can be found in the time available;

3. Tableaux returns false as soon as any condition or subcondition in the in-
ference check fails. Since pervasive environments inherently contain dynamic
heterogeneous data the reasoner should continue to check subsequent infer-
ence conditions, even if some fail (time/resource permitting).

Our approach, which addresses these shortcomings, is introduced in the next
section.

4 Weighted Adaptive Reasoning

We propose an approach to Tableaux inference proof, which supports a reduction
in result accuracy if greater efficiency is required. Our approach associates a
level of importance with each branch leaf and evaluates these branches first.
The reasoner will continue even if some conditions fail, and may be stopped at
any point in the reasoning process and a degree of match result is provided to
the user.

624 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

4.1 Weighted Expansion Tree Traversal

Certain inference conditions may have a different level of importance to the
user. Therefore, we associate weights with each condition and sub-condition.
These weights may be entered explicitly by the user at the time that the user
specifies the request as a rating from 1 to 10, high/medium/low priority, or
mandatory/non-mandatory. These values are converted to relative weights (see
below). Alternatively, weights may be gathered implicitly using historical user
preference data. For instance, if for half his or her requests, the user has invoked
services which are close in proximity, this characteristic may be inserted to future
requests with a weight of 0.5. In summary, weights may be assigned by different
means, however, the assignment process is not the principle focus on this paper,
therefore, we do not discuss this in further detail.

Let rw denote a relative weight value for each a condition or sub-condition de-
rived from each conjunct or subconjunct in the class concept C, for the inference
check C(x). Since Tableaux proves the inference using negation, C is converted
into a disjunction where ¬C ≡ (¬D1 " (¬D2 "¬D3)" ...¬Dm), 1 ≤ j ≤ m. Each
disjunct and sub-disjunct are organised as pairs containing the disjunct ¬Dj

and relative weight rw(Dj) pairs and stored in descending rw(Di) order in a
queue, such that Q = {〈¬D1, rw(¬D1)〉, 〈¬D2, rw(¬D2)〉, 〈¬D3, rw(¬D3)〉, ...,
〈¬Dm, rw(¬Dm)〉}, as shown in algorithm 3 where ¬C is passed as input from
the inference C(x).

Weights are said to be relative, because the sum of the rw(Dj) values for all
children nodes much equal the rw(pe) of the parent node. Let pe denote a node,
and let C denote a set of child nodes for pe such that C = {c1, c2, ..., ct | (1 ≤
s ≤ t)}. rw values must be defined such that rw(pe) =

∑
cs∈C rw(cs) where

〈pe, rw(pe)〉. Relative weights ensure that a disjunct D1 in P = (D1 " D2),
cannot be applied before its parent disjunction P is itself applied.

Algorithm 3. CreateQueue(A)
1: Inputs: ClassConcept A
2: Outputs: Queue Q
3: if A = (D1 � ... � Dm) then
4: for all Dj ∈ D do
5: Q ← Q∪ {〈Dj , rw(Dj)〉}
6: end for
7: end if

Algorithm 4 presents a general illustration of our adaptive reasoning search
tree expansion process, which replaces depth first with condition relative weight
order. This algorithm is invoked by the callAdapTreeT raverse(Q, x,A, T) where
Q is the pre-initialised queue as specified above, of disjuncts and sub-disjuncts
which have been expressed in ¬C for the inference check C(x), and their relative
weights. x is the individual in the inference check C(x). A is the ABox, which
contains the explicit assertions and relations in the semantic graph (knowledge

A Weighted Approach to Partial Matching for Mobile Reasoning 625

base) and T is the expansion tree. Unlike Algorithm 1, AdapTreeTraverse (algo-
rithm 4) is not a recursive algorithm, rather it iterates through all the concepts
in the queue Q, as specified above, in descending relative weight order. It at-
tempts to expand the tree and apply Tableaux transformation rules to generate
clashes to prove each condition. The algorithm continues until all conditions are
checked, or the algorithm is stopped prematurely when KeepMatching() results
a false.

Algorithm 4 uses the functions defined as follows. Let currBranchNode(A)
be a holder containing the currently active branch point node in the expansion
tree for ABox A. Let ApplyT ransRules(A) denote a function which applies the
normal Tableaux DL transformation expansion rules on ABox A until a clash is
detected (return true) or there are no more rules to apply (return false). Func-
tions GetDegMatch() and GetConf() return the degree of match and the confi-
dence values (see section 4.3), which also make use of the clashingConcept(W)
and checkedConcept(W) return value.

The function, KeepMatching() is used to determine whether the reasoner
should stop execution prematurely, based on constraints. There may be several
constraint parameters P , such that P = {p1, p2, ..., pn | (1 ≤ i ≤ n)} and
threshold values T for parameters, such that T = {t1, t2, ..., tn | (1 ≤ i ≤ n)}.
Each pi corresponds to a threshold value ti. A pi represents a ratio (0 ≤ pi ≤ 1),
such as memory used over total memory, current confidence over total total
possible confidence, time elapsed over total time available (user specified), and
battery life remaining over total battery life. Each ti is specified by application
defaults or explicit user requirements, such that 0 ≤ ti ≤ 1. KeepMatching()
returns false iff any ti ≥ pi. In the current implementation of the algorithm
(see section 5), we utilise time as our only resources parameter, such that p1 =
timeElapsed/totalT ime, where totalAvailT ime is user specified, eg “I want a
result in 10 seconds”.

Figure 2 illustrates an example utilising our adaptive reasoning approach,
for the inference check C(x) where ¬C ≡ ((¬C1 " ¬C2) " ¬C3) is given the
relative weights, such that {〈¬C, 1.0〉, 〈(¬C1 " ¬C2), 0.7〉, 〈¬C1, 0.5〉, 〈¬C3, 0.3〉,
〈¬C1, 0.2〉}. Assume also that {C1, C2, C3} ⊆ L(x) where x ∈ A. The nodes are
executed in relative weight rw order (weights and node identifiers are displayed
on the nodes in figure 2). Notice that in contrast to depth-first Tableaux (see
figure 1), concept ¬C3 is applied in step b, before the concept ¬C2 from (¬C1 "
¬C2) is applied in step c. This is because ¬C3 had a relative weight of 0.3,
which was higher than 0.2 for ¬C2. The grey nodes denote those nodes which
have already been expanded in a previous step and do not need to be re-applied.
In this example, only one individual x was used for briefness, however in practise
the expansion tree may apply disjuncts to several different individuals.

4.2 Branch Identifiers and State Management

The, relative weight values control execution, as opposed to the traditional depth
or breath-first ordering. Therefore, it is likely that there may be multiple un-
finished expansion branches. As shown in section 3, in depth-first reasoning,

626 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

Algorithm 4. AdapTreeTraverse(Q, x,A, T)
1: Inputs: Queue Q, Individual x, ABox A, ExpansionTree T .
2: Outputs: 〈Decimal degMatch, Decimal conf〉
3: \∗ Q is in descending order by rw(nj) where Q = {〈D1, rw(D1)〉, 〈D2, rw(D2)〉,

..., 〈Dm, rw(Dm)〉 | (1 ≤ j ≤ m)} and D is a class concept ∗\
4: for all Dj ∈ Q do
5: if KeepMatching() = false then
6: return 〈GetDegMatch(Q),GetConf(Q)〉
7: end if
8: Let h be a new BranchNode in the expansion tree T for A such that T ← T ∪{h}

9: currBranchNode(A) ← h
10: L(x) ← L(x) ∪ {Dj} \∗ where x is an individual in A ∗\
11: checkedConcept(Dj) ← true\∗ for confidence ∗\
12: Let clash be a clashing concept, if one exists
13: clash ← ApplyTransRules(A) \∗ runs the standard Tableaux rules ∗\
14: if clash �= null then
15: clashingConcept(clash) ← true\∗ for degree of match & confidence ∗\
16: end if
17: end for
18: return 〈GetDegMatch(Q),GetConf(Q)〉

2-0
rw:1.0

3-0
rw:0.7

4-0
rw:0.5

L(x) U

1 2{()}C C¬ ¬L(x) U

L(x) U 1{ }C¬

2-0
rw:1.0

3-1
rw:0.3L(x) U 3{ }C¬

2-0
rw:1.0

3-0
rw:0.7

4-1
rw:0.2

1 2{()}C C¬ ¬L(x) U

2{ }C¬L(x) U
Change to: 3-1 Change to: 4-1

1 2 3{(())}C C C¬ ¬ ¬

a b c

→ ClashL(x)1 1{ }C C¬ ⊆∪ → Clash3 3{ }C C¬ ⊆∪ L(x) → Clash2 2{ }C C¬ ⊆∪ L(x)

L(x) U 1 2 3{(())}C C C¬ ¬ ¬ L(x) U 1 2 3{(())}C C C¬ ¬ ¬

Fig. 2. Tableaux Adaptive Expansion Search Tree

a branch is continually expanded using transformation rules such that A′ =
A ∪ {...}. This depth first expansion occurs until either a clash is found or
there are no more branches to apply. Where a clash is found the ABox An is
restored to an earlier branch node ni state Ai, and the current state An is
discarded. This means that all ABox assertions added after branchID(ni) are
removed. However, under our adaptive reasoning strategy, the expansion tree
is expanded in branch node weight order, rather than depth first. This implies
that there may be several unfinished open branches at one time, for instance

A Weighted Approach to Partial Matching for Mobile Reasoning 627

in figure 2, branch point 3-0 from step a, is preserved for step c, while a new
branch is opened in step b. This was because concept C3 was considered more
important than C2.

Support for this functionality requires modifications to:

– Branch point node identifiers branchID
– State of node labels L(x) and L(〈x, y〉) where x and y are individuals

In terms of branch point node identifiers, a branchID(n) must be unique. How-
ever, since a traditional branchID(n) is only a depth count, it is no longer unique
if multiple branches are present in the tree T . Therefore, we specify new branch
identifiers adapBranchID(n), of the form given in expression 2, to take breath
into account. Let adapBranchID(n) denote the branch identifier for a node n
in a tree formation where depth(n) denotes the distance from the top most ob-
ject in the tree down to node n and breath(n) is a count which increases for
every node in the tree which has the same depth(n), such that {2 ≤ depth(n),
0 ≤ breath(n). Note that adapBranchID 0-0 and 1-0 are reserved for explicit as-
sertions and pre-processing. Let adapDepBranchIDs(n) contain a dependency
list of adapBranchID(n) for the node n. adapDepBranchIDs(n) contains the
branch identifier for node n and for all of its parents in the expansion tree T , such
that adapDepBranchIDs(n) = adapBranchID(n)∪

{⋃
p∈P adapBranchID(p)

}
,

where P contains all parent nodes of n in T .

adapBranchID(n) = depth(n) � breath(n) (2)

In terms of type label state management standard Tableaux does not support
multiple unfinished open branches. The state of type labels L(x) and L(〈x, y〉)
where x and y are individuals in ABox A is determined by parent branch point
nodes. Class concepts and role assertions are progressively added to type labels
by tree branch expansions and by other transformation rules as they occur, and
removed when a backjump (restore) occurs. However, in order to support mul-
tiple open branches, previously applied branch nodes much be retained. Type
labels support multiple states, and their contents (state) at any one time must re-
flect the current branch point node without requiring re-application of all parent
node expansions and transformations, when moving back to a previously par-
tially expanded branch. Therefore, we redefine type labels, such that concepts C
and role assertions R(x, y) added to type labels L(x) and L(〈x, y〉), respectively,
are indexed by branch identifier.

In this section we refer to both L(x) and L(〈x, y〉), simply as L, such that
L = {〈adapBranchID(α1), α1〉, ..., 〈adapBranchID(αp), αp〉 | (1 ≤ k ≤ p)}.
Let V (w) be a subset of the elements αk (concepts and relations) in L, where
w is the currently active branch node in the expansion tree (see algorithm 4)
and where w has a set of branch node dependencies and all the elements in
V (w) must have a branch identifier which is in this set of dependencies. This
is defined in algorithm 5, such that V (w) = {α1, ..., αv | (1 ≤ u ≤ v)} where
adapBranchID(αu) ∈ adapDepBranchIDs(w). Therefore, V (w) can be consid-
ered as the state of L when the currently active expansion node is w, to support

628 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

swapping between simultaneous unfinished branches. For example, if L = {〈2-
1, α1〉, 〈2-3, α2〉, 〈3-1, α3〉, 〈4-0, α4〉} and adapDepBranchIDs(w) = {2-1, 3-1}
where w = currBranchNode(A), then GetTypeLabel returns {α1, α3}

Algorithm 5. GetTypeLabel(L, ABox A)
1: Inputs: TypeLabel L, ABox A
2: Outputs: Set V
3: Let w = currBranchNode(A) \∗ currently active branch point node for A ∗\
4: for all βi ∈ L where βi = 〈adapBranchID(αi), αi〉 do
5: if adapBranchID(αi) ∈ adapDepBranchIDs(w) then
6: V ← V ∪ {αi}
7: end if
8: end for
9: return V

4.3 Degree of Match and Match Confidence

In our adaptive reasoning strategy we provide a degree of inference match and
a level of confidence in this result. Degree of match is the known, weighted
degree to which a particular inference C(x), holds. It is a normalised value based
on those conditions actually checked in the processing time available, where 1
denotes a complete match and 0 denotes no match. A degree of match is the
sum of all relative weight rw values for all the concepts C where a clash was
detected. Let Q denote a set containing all conditions and sub-conditions to be
checked, as defined in defined in section 4.1, Q = {〈D1, rw(D1)〉, 〈D2, rw(D2)〉,
..., 〈Dp, rw(Dp)〉 | (1 ≤ k ≤ p)} as defined in section 4.1 where rw(Dk) is the
relative weights for each condition specified in ¬C for the inference check C(x).
Let getDegMatch(T), given in formula 3, return the known degree of match for
a particular inference. Let clashingConcept(W) contain true if the concept W
caused a clash, set by algorithm 4.

GetDegMatch(Q) =
∑

ej∈Q
rw(Dk) iff clashingConcept(Dk) = true

where ej = 〈Dk, rw(Dk)〉
(3)

Confidence is the normalised ratio providing a measure indicating the proportion
of the total reasoning process, which has been completed. Confidence is the ratio
of worst-case weighted number of conditions to execute over the number actually
executed. Let GetConf(Q) denote the confidence value, given in formula 4. Let
checkedConcept(W) return true if the class concept W was actually applied by
the algorithm 4.

GetConf(Q) =

∑
ej∈Q rw(Dk) iff checkedConcept(Dk) = true∑

ej∈Q rw(Dk)

where ej = 〈Dk, rw(Dk)〉
(4)

A Weighted Approach to Partial Matching for Mobile Reasoning 629

In this section we provided our adaptive reasoning approach. Both our adaptive
algorithm (see algorithm 4) and standard Tableaux (see algorithm 1) have a
worst case complexity of O(n) where n is the total number of branch point
nodes which can be expanded in the tree T . However, if the level of confidence
required is reduced, the adaptive reasoning strategy has a best case complexity
of O(1) while Tableaux has a best case complexity of O(m) where m is the
average number of nodes in a branch in the expansion tree T .

In the next section we discuss the implementation of our adaptive reasoning
approach and provide an evaluation to illustrate the effect on performance and
result accuracy.

5 Implementation and Evaluation

In this section we discuss the implementation of our adaptive reasoning strategy
provide a performance evaluation using a case study.

5.1 Case Study

To demonstrate our adaptive reasoning we approach we developed a case study
in which Bob is searching for particular attributes in a foreign city centre, such
as a movie cinema, printing service, Internet cafe etc. The case study comprises
several request queries as follows (relative weight in brackets):

1. RetailOutlet (0.33), MovieCinema (0.3), Internet (0.23), Cafe (0.14)
2. RetailOutlet (0.40), MovieCinema (0.32), Internet (0.2), Cafe (0.04), Colour

Fax WiFi Printer (0.04)
3. Internet (0.5), Colour Fax WiFi Printer (0.3), Cafe (0.2)

Our scenario also has 8 different service advertisements which we label A, B,
C, D, E, F, G, H, where A matches all requests, B-G only partially match each
request, while H does not match any attribute in any request. The ontologies
containing these service offerings comprise 204 classes and 241 individuals.

5.2 Implementation

We have implemented our adaptive strategies as an extension to the Pellet5

1.5 reasoner which supports OWL-DL with SHOIN expressiveness [2]. Pellet
is open source, allowing us to provide a proof of concept. We selected Pellet
over FaCT++ because it is written in Java, making it easily portable to small
devices such as PDAs and mobile phones, while FaCT++6 is written in C++. All
our evaluations were conducted on a HP iPAQ hx2700 PDA, with Intel PXA270
624Mhz processor, 64MB RAM, running Windows Mobile 5.0 with Mysaifu Java
J2SE Virtual Machine (JVM)7, allocated 15MB of memory. Note, that in the
next section, results for both standard reasoning and adaptive reasoning utilise
optimisations from previous work which enable mobile reasoning [17].
5 http://clarkparsia.com/pellet
6 http://owl.man.ac.uk/factplusplus
7 http://www2s.biglobe.ne.jp/ dat/java/project/jvm/index en.html

630 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

5.3 Evaluation

Figure 3 shows the degree of match obtained by comparing request 1 with ser-
vice advertisements A-H (see section 5.1), for standard reasoning and adaptive
reasoning. Both standard and adaptive reasoning stop on failure (stop as soon as
any request condition fails to match). Standard reasoning provides a meaningless
false result when stopped prematurely, while our adaptive reasoning strategy
provides a degree of match result for those request conditions, which were suc-
cessfully matched in the available time. This demonstrates a far better reporting
of inference results to the user. The “Check All” results, figure 3, demonstrate
our support for heterogeneous data (continue matching when some conditions
fail). Figure 4 demonstrates that our adaptive reasoning strategy matches the
most important conditions first, for the services A-H, as well as supporting pre-
mature stopping and a degree of match result to the user. For most service
advertisements, most of the degree of match result is obtained in the first 10
seconds of processing.

Figure 5 compares request 2 and 3 against service advertisement A, showing
similar results. For instance in 5(left), a degree of match of almost 80% was
reached in the first 10s of operation, while the remaining 20% required 40 seconds
to establish. Figure 5(right) shows that when condition weights are similar, the
correspondence between degree of match and processing time is more uniform.
When standard reasoning was used, no result was provided until the reasoning
was completed in full, requiring 40 seconds. Figure 6 further highlights the way
in which our adaptive reasoning strategy matches the most important attributes
first to provide a higher degree or match more quickly, in order to make the best
use of processing time available. This figure compares adaptive reasoning against
the result which would be obtained if standard Tableaux reasoners provided a
degree of match. Where request 2 is matched with service A (left), after 10
seconds the adaptive reasoner found a degree of match of almost 80% while
the standard reasoner had successfully matched conditions with weights that
added up to under 20%. This is because standard reasoners match attributes in
depth-first, arbitrary order. Therefore, it is often the case that attributes which
contribute greatly to the degree of match, are checked late in the process. Also
note while a cumulative result is shown for standard reasoners for illustrative
purposes only, standard reasoners cannot be stopped early.

The strategies presented in this paper are shown to effectively meet the fol-
lowing challenges:

1. match the most important request conditions first
2. handle heterogeneous inaccurate data by continuing to reason after a term

failed (if sufficient time).
3. handle time/resource pressures by supporting early stopping of the reasoner

and providing a current degree of inference to the user.

In this section we have clearly demonstrated that our adaptive reasoning ap-
proach provides a significant advantage over current reasoning strategies for
mobile users. Our approach effectively provides flexible reasoning to meet the
resource and time challenges which characterise mobile environments.

A Weighted Approach to Partial Matching for Mobile Reasoning 631

1

2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 M

at
ch

Degree of Match Comparison

Standard Reasoning

Adaptive Reasoning:
Stop On Failure

Adaptive Reasoning:
Check All

Result:
No Match

Tests 1-8: Degree of Match for Request: 1 to Service Advertisement: A, B, C, D, E, F, G, H, respectively

1

Fig. 3. Comparison of degree of match for standard (stop after any request condi-
tion fails) and adaptive reasoning (check all conditions), where Request 1 is compared
against 8 different potential services A-H see section 5.1

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 M

at
ch

Adaptive Reasoning: Stop After Timeout Comparison

Stop After 10s

Stop After 20s

Stop After 30s

Tests 1-8: Degree of Match for Request:1 to Service Advertisement: A, B, C, D, E, F, G, H, respectively

Fig. 4. Comparison of degree of match for adaptive reasoning after a timeout of 10,
20 and 30 seconds, where Request 1 is compared against 8 different potential services:
A-H see section 5.1

Request: 2 match Service: A

Did
Not

Com-
plete

Did
Not

Com-
plete

Did
Not

Com-
plete

Request: 3 match Service: A

Did
Not

Com-
plete

Did
Not

Com-
plete

Did
Not

Com-
plete

0.2
0.4
0.6
0.8

1

0

Adaptive
Reasoning

Standard
Reasoning

Stop Reasoning After x Second Timeout
20s 30s10s 40s 20s 30s10s 40s

Degree of Match After Timeout Comparison

Fig. 5. Comparison of degree of match for adaptive reasoning after a timeout of 10,
20, 30 and 40 seconds, for requests 2 (left) and 3 (right), matched against service
advertisement A

632 L.A. Steller, S. Krishnaswamy, and M.M. Gaber

Request: 2 match Service: A? Request: 3 match Service: A?
Adaptive
Reasoning
Standard
Reasoning

5s 10s 15s 20s 25s 30s 35s 40s 5s 10s 15s 20s 25s 30s 35s

Cumulative Degree of Match

1
0.8
0.6
0.4
0.2

0

Fig. 6. Illustration of the cumulative degree of match for adaptive reasoning and
standard reasoning, where requests 2 (left) and 3 (right) are matched against service
advertisement A

6 Conclusion

We have presented a novel adaptive reasoning strategy which supports partial
matching, premature stopping and provides a degree of inference match, based on
those request conditions already checked. Our evaluations demonstrate that our
strategies effectively meet these goals, by matching the most important request
conditions first, to achieve the highest possible degree of match result within
the time available. This is a significantly more effective approach than current
approximate reasoning techniques which match request conditions arbitrarily
and completely before providing any results.

References

1. Arnold, K., O’Sullivan, B., Scheifler, R.W., Waldo, J., Woolrath, A.: The Jini
Specification. Addison-Wesley, Reading (1999)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

3. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description logics
(1997)

4. Fensel, D., van Harmelen, F.: Unifying reasoning and search to web scale. Internet
Computing, IEEE 11(2), 96 (2007)

5. Gligorov, R., ten Kate, W., Aleksovski, Z., van Harmelen, F.: Using google distance
to weight approximate ontology matches. In: 16th international Conference on
World Wide Web. ACM, New York (2007)

6. Gu, T., Kwok, Z., Koh, K.K., Pung, H.K.: A mobile framework supporting ontology
processing and reasoning. In: 2nd Workshop on Requirements and Solutions for
Pervasive Software Infrastructure (RSPS) in conjunction with the 9th International
Conference on Ubiquitous Computing (Ubicomp 2007), Austria (2007)

7. Hitzler, P., Vrandecic, D.: Resolution-Based Approximate Reasoning for OWL DL.
In: Semantic Web - ISWC. Springer, Heidelberg (2005)

8. Horrocks, I., Sattler, U.: A tableaux decision procedure for shoiq. In: 19th Inter-
national Conference on Artificial Intelligence, IJCAI 2005 (2005)

A Weighted Approach to Partial Matching for Mobile Reasoning 633

9. Kargin, B., Basoglu, N.: Factors affecting the adoption of mobile services. In:
Portland International Center for Management of Engineering and Technology,
pp. 2993–3001. IEEE, Los Alamitos (2007)

10. Kleemann, T.: Towards mobile reasoning. In: International Workshop on Descrip-
tion Logics (DL 2006), Windermere, Lake District, UK (2006)

11. Kuster, U., Konig-Ries, B., Klein, M.: Discovery and mediation using diane service
descriptions. In: Second Semantic Web Service Challenge 2006 Workshop, Budva,
Montenegro (2006)

12. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V.: Easy: Efficient seman-
tic service discovery in pervasive computing environments with qos and context
support. Journal Of System and Software 81(5) (2008)

13. Ranganathan, A., Campbell, R.H.: A middleware for context-aware agents in ubiq-
uitous computing environments. In: ACM/IFIP/USENIX International Middle-
ware Conference, Rio de Janeiro, Brazil, p. 143–161 (2003)

14. Roto, V., Oulasvirta, A.: Need for non-visual feedback with long response times
in mobile hci. In: International World Wide Web Conference Committee (IW3C2),
Chiba, Japan (2005)

15. Srinivasan, N., Paolucci, M., Sycara, K.: Semantic web service discovery in the
owl-s ide. In: 39th International Conference on System Sciences, IEEE, Hawaii
(2005)

16. Srirama, S.N., Jarke, M., Parinz, W.: Mobile web service provisioning. In: Advanced
International Conference on Telecommunications and International Conference on
Internet and Web Applications and Services, AICT/ICIW (2006)

17. Steller, L., Krishnaswamy, S., Gaber, M.M.: Enabling scalable semantic reasoning
for mobile services. International Journal of Semantic Web Information Systems -
Special Issue on Scalability and Performance of Semantic Systems (2009)

18. Stuckenschmidt, H., Kolb, M.: Partial matchmaking for complex product and ser-
vice descriptions. Multikonferenz Wirtschaftsinformatik (2008)

19. Tergujeff, R., Haajanen, J., Leppanen, J., Toivonen, S.: Mobile soa: Service orien-
tation on lightweight mobile devices. In: International Conference on Web Services
(ICWS), pp. 1224–1225. IEEE, Salt Lake City (2007)

20. Veijalainen, J.: Mobile ontologies: Concept, development, usage, and business po-
tential. International Journal on Semantic Web & Information Systems 4(1), 20–34
(2008)

21. Wache, H., Groot, P., Stuckenschmidt, H.: Scalable instance retrieval for the se-
mantic web by approximation. In: WISE 2005. Springer, Heidelberg (2005)

22. Wang, Z., Hu, Y.: An approach for semantic web service discovery based on p2p
network. In: 4th International Conference on Wireless Communications, Network-
ing and Mobile Computing (WiCOM 2008), pp. 1–4. IEEE, Los Alamitos (2008)

23. Weiser, M.: The computer of the 21st century. Scentific American 3(265), 66–75
(1991)

24. Xiaosu, C., Jian, L.: Build mobile services on service oriented structure. In: Inter-
national Conference on Wireless Communications, Networking and Mobile Com-
puting, vol. 2, pp. 1472–1476. IEEE, Los Alamitos (2005)

25. Zacharias, V., Abecker, A., Vrandecic, D., Borgi, I., Braun, S., Schmidt, A.: Mind
the web. In: ASWC 2007 and ISWC 2007, vol. 291. IEEE, Los Alamitos (2007)

Scalable Distributed Reasoning
Using MapReduce

Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen

Department of Computer Science,
Vrije Universiteit Amsterdam,

The Netherlands

Abstract. We address the problem of scalable distributed reasoning,
proposing a technique for materialising the closure of an RDF graph
based on MapReduce. We have implemented our approach on top of
Hadoop and deployed it on a compute cluster of up to 64 commodity
machines. We show that a naive implementation on top of MapReduce
is straightforward but performs badly and we present several non-trivial
optimisations. Our algorithm is scalable and allows us to compute the
RDFS closure of 865M triples from the Web (producing 30B triples) in
less than two hours, faster than any other published approach.

1 Introduction

In this paper, we address the problem of scalable distributed reasoning. Most
existing reasoning approaches are centralised, exploiting recent hardware im-
provements and dedicated data structures to reason over large-scale data [8, 11,
17]. However, centralised approaches typically scale in only one dimension: they
become faster with more powerful hardware.

Therefore, we are interested in parallel, distributed solutions that partition
the problem across many compute nodes. Parallel implementations can scale in
two dimensions, namely hardware performance of each node and the number
of nodes in the system. Some techniques have been proposed for distributed
reasoning, but, as far as we are aware, they do not scale to orders of 108 triples.

We present a technique for materialising the closure of an RDF graph in
a distributed manner, on a cluster of commodity machines. Our approach is
based on MapReduce [3] and it efficiently computes the closure under the RDFS
semantics [6]. We have also extended it considering the OWL Horst semantics [9]
but the implementation is not yet competitive and it is should be considered as
future work. This paper can be seen as a response to the challenge posed in
[12] to exploit the MapReduce framework for efficient large-scale Semantic Web
reasoning.

This paper is structured as follows: we start, in Section 2, with a discus-
sion of the current state-of-the-art, and position ourselves in relation to these
approaches. We summarise the basics of MapReduce with some examples in
Section 3. In Section 4 we provide an initial implementation of forward-chaining

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 634–649, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Scalable Distributed Reasoning Using MapReduce 635

RDFS materialisation with MapReduce. We call this implementation “naive”
because it directly translates known distributed reasoning approaches into
MapReduce. This implementation is easy to understand but performs poorly
because of load-balancing problems and because of the need for fixpoint iter-
ation. Therefore, in Section 5, an improved implementation is presented using
several intermediate MapReduce functions. Finally, we evaluate our approach in
Section 6, showing runtime and scalability over various datasets of increasing
size, and speedup over increasing amounts of compute nodes.

2 Related Work

Hogan et al. [7] compute the closure of an RDF graph using two passes over the
data on a single machine. They implement only a fragment of the OWL Horst
semantics, to allow efficient materialisation, and to prevent “ontology hijacking”.
Our approach borrows from their ideas, but by using well-defined MapReduce
functions our approach allows straightforward distribution over many nodes,
leading to improved results.

Mika and Tummarello [12] use MapReduce to answer SPARQL queries over
large RDF graphs, and mention closure computation, but do not provide any
details or results. In comparison, we provide algorithm details, make the code
available open-source, and report on experiments of up to 865M triples.

MacCartney et al. [13] show that graph-partitioning techniques improve
reasoning over first-order logic knowledge bases, but do not apply this in a dis-
tributed or large-scale context. Soma and Prasanna [15] present a technique for
parallel OWL inferencing through data partitioning. Experimental results show
good speedup but on relatively small datasets (1M triples) and runtime is not
reported.In contrast, our approach needs no explicit partitioning phase and we
show that it is scalable over increasing dataset size.

In previous work [14] we have presented a technique based on data-partitioning
in a self-organising P2P network. A load-balanced auto-partitioning approach
was used without upfront partitioning cost. Conventional reasoners are locally
executed and the data is intelligently exchanged between the nodes. The basic
principle is substantially different from the work here presented and experimental
results were only reported for relatively small datasets of up to 15M triples.

Several techniques have been proposed based on deterministic rendezvous-
peers on top of distributed hashtables [1, 2, 4, 10]. However, these approaches
suffer of load-balancing problems due to the data distributions [14].

3 What Is the MapReduce Framework?

MapReduce is a framework for parallel and distributed processing of batch
jobs [3] on a large number of compute nodes. Each job consists of two phases:
a map and a reduce. The mapping phase partitions the input data by associ-
ating each element with a key. The reduce phase processes each partition in-
dependently. All data is processed based on key/value pairs: the map function

636 J. Urbani et al.

Algorithm 1. Counting term occurrences in RDF NTriples files

map(key, value):
// key: line number
// value: triple
emit(value.subject, blank); // emit a blank value, since
emit(value.predicate, blank); // only amount of terms matters
emit(value.object, blank);

reduce(key, iterator values):
// key: triple term (URI or literal)
// values: list of irrelevant values for each term
int count=0;
for (value in values)
count++; // count number of values, equalling occurrences

emit(key, count);

A p C
A q B
D r D
E r D
F r C

Map

...
Reduce<C,...>

Map

<A,...><p,...> ...<C
,...
>

Reduce
<F,...>

INPUT OUTPUT
<C,2>

<F,1
><r,...>

C 2
p 1
r 3
q 1
D 3
F 1
...

Fig. 1. MapReduce processing

processes a key/value pair and produces a set of new key/value pairs; the reduce
merges all intermediate values with the same key into final results.

We illustrate the use of MapReduce through an example application that
counts the occurrences of each term in a collection of triples. As shown in Al-
gorithm 1, the map function partitions these triples based on each term. Thus,
it emits intermediate key/value pairs, using the triple terms (s,p,o) as keys and
blank, irrelevant, value. The framework will group all intermediate pairs with the
same key, and invoke the reduce function with the corresponding list of values,
summing these the number of values into an aggregate term count (one value
was emitted for each term occurrence).

This job could be executed as shown in Figure 1. The input data is split
in several blocks. Each computation node operates on one or more blocks, and
performs the map function on that block. All intermediate values with the same
key are sent to one node, where the reduce is applied.

This simple example illustrates some important elements of the MapReduce
programming model:
– since the map operates on single pieces of data without dependencies, parti-

tions can be created arbitrarily and can be scheduled in parallel across many
nodes. In this example, the input triples can be split across nodes arbitrarily,
since the computations on these triples (emitting the key/value pairs), are
independent of each other.

Scalable Distributed Reasoning Using MapReduce 637

Table 1. RDFS rules [6]

1: s p o (if o is a literal) ⇒ :n rdf:type rdfs:Literal
2: p rdfs:domain x & s p o ⇒ s rdf:type x
3: p rdfs:range x & s p o ⇒ o rdf:type x

4a: s p o ⇒ s rdf:type rdfs:Resource
4b: s p o ⇒ o rdf:type rdfs:Resource
5: p rdfs:subPropertyOf q & q rdfs:subPropertyOf r ⇒ p rdfs:subPropertyOf r
6: p rdf:type rdf:Property ⇒ p rdfs:subPropertyOf p
7: s p o & p rdfs:subPropertyOf q ⇒ s q o
8: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf rdfs:Resource
9: s rdf:type x & x rdfs:subClassOf y ⇒ s rdf:type y

10: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf s
11: x rdfs:subClassOf y & y rdfs:subClassof z ⇒ x rdfs:subClassOf z
12: p rdf:type rdfs:ContainerMembershipProperty ⇒ p rdfs:subPropertyOf rdfs:member
13: o rdf:type rdfs:Datatype ⇒ o rdfs:subClassOf rdfs:Literal

– the reduce operates on an iterator of values because the set of values is
typically far too large to fit in memory. This means that the reducer can only
partially use correlations between these items while processing: it receives
them as a stream instead of a set. In this example, operating on the stream
is trivial, since the reducer simply increments the counter for each item.

– the reduce operates on all pieces of data that share some key, assigned in a
map. A skewed partitioning (i.e. skewed key distribution) will lead to imbal-
ances in the load of the compute nodes. If term x is relatively popular the
node performing the reduce for term x will be slower than others. To use
MapReduce efficiently, we must find balanced partitions of the data.

4 Naive RDFS Reasoning with MapReduce

The closure of an RDF input graph under the RDFS semantics [6] can be com-
puted by applying all RDFS rules iteratively on the input until no new data
is derived (fixpoint). The RDFS rules, shown in Table 1, have one or two an-
tecedents. For brevity, we ignore the former (rules 1, 4a, 4b, 6, 8, 10, 12 and 13)
since these can be evaluated at any point in time without a join. Rules with two
antecedents are more challenging to implement since they require a join over two
parts of the data.

4.1 Encoding an Example RDFS Rule in MapReduce

Applying the RDFS rules means performing a join over some terms in the input
triples. Let us consider for example rule 9 from Table 1, which derives rdf:type
based on the sub-class hierarchy. We can implement this join with a map and
reduce function, as shown in Figure 2 and Algorithm 2:

In the map, we process each triple and output a key/value pair, using as value
the original triple, and as key the triple’s term (s,p,o) on which the join should

638 J. Urbani et al.

a rdf:typeC1
b rdf:typeC1
a rdf:typeC2

C1 rdfs:subClassOf: C3

Reduce
<C1, :type C1">

INPUT OUTPUT

Map

Map

Map

Map Reduce

a rdf:typeC3
b rdf:typeC3

<C1, :type C1">

<C2, :type C2">

<C1, :subClassOf C3">

{

Fig. 2. Encoding RDFS rule 9 in MapReduce

Algorithm 2. Naive sub-class reasoning (RDFS rule 9)

map(key, value):
// key: linenumber (irrelevant)
// value: triple
switch triple.predicate
case "rdf:type":
emit(triple.object, triple); // group (s rdf:type x) on x

case "rdfs:subClassOf":
emit(triple.subject, triple); // group (x rdfs:subClassOf y) on x

reduce(key, iterator values):
// key: triple term, eg x
// values: triples, eg (s type x), (x subClassOf y)
superclasses=empty;
types=empty;

// we iterate over triples
// if we find subClass statement, we remember the super-classes
// if we find a type statement, we remember the type
for (triple in values):
switch triple.predicate
case "rdfs:subClassOf":
superclasses.add(triple.object) // store y

case "rdf:type":
types.add(triple.subject) // store s

for (s in types):
for (y in classes):
emit(null, triple(s, "rdf:type", y));

be performed. To perform the sub-class join, triples with rdf:type should be
grouped on their object (eg. “x”), while triples with rdfs:subClassOf should
be grouped on their subject (also “x”). When all emitted tuples are grouped for
the reduce phase, these two will group on “x” and the reducer will be able to
perform the join.

4.2 Complete RDFS Reasoning: The Need for Fixpoint Iteration

If we perform this map once (over all input data), and then the reduce once,
we will not find all corresponding conclusions. For example, to compute the
transitive closure of a chain of n rdfs:subClassOf-inclusions, we would need to
iterate the above map/reduce steps n times.

Scalable Distributed Reasoning Using MapReduce 639

Obviously, the above map and reduce functions encode only rule 9 of the
RDFS rules. We would need to add other, similar, map and reduce functions to
implement each of the other rules. These other rules are interrelated: one rule
can derive triples that can serve as input for another rule. For example, rule 2
derives rdf:type information from rdfs:domain statements. After applying that
rule, we would need to re-apply our earlier rule 9 to derive possible superclasses.

Thus, to produce the complete RDFS closure of the input data using this
technique we need to add more map/reduce functions, chain these functions to
each other, and iterate these until we reach some fixpoint.

5 Efficient RDFS Reasoning with MapReduce

The previously presented implementation is straightforward, but is inefficient
because it produces duplicate triples (several rules generate the same conclu-
sions) and because it requires fixpoint iteration. We encoded, as example, only
rule 9 and we launched a simulation over the Falcon dataset, which contains 35
million triples. After 40 minutes the program had not yet terminated, but had
already generated more than 50 billion triples. Considering that the unique de-
rived triples from Falcon are no more than 1 billion, the ratio of unique derived
triples to duplicates is at least 1:50. Though the amount of duplicate triples
depends on the specific data set, a valid approach should be able to efficiently
deal with real world example like Falcon.

In the following subsections, we introduce three optimisations to greatly
decrease the number of jobs and time required for closure computation:

5.1 Loading Schema Triples in Memory

Typically, schema triples are far less numerous than instance triples [7]; As also
shown in Table 2, our experimental data1 indeed exhibit a low ratio between
schema and instance triples. In combination with the fact that RDFS rules with
two antecedents include at least one schema triple, we can infer that joins are
made between a large set of instance triples and a small set of schema triples. For
example, in rule 9 of Table 1 the set of rdf:type triples is typically far larger
than the set of rdfs:subClassOf triples. As our first optimisation, we can load
the small set of rdfs:subClassOf triples in memory and launch a MapReduce
job that streams the instance triples and performs joins with the in-memory
schema triples.

5.2 Data Grouping to Avoid Duplicates

The join with the schema triples can be physically executed either during the
map or during the reduce phase of the job. After initial experiments, we have
concluded that it is faster to perform the join in the reduce, since doing so in
the map results in producing large numbers of duplicate triples.
1 from the Billion Triple challenge 2008, http://www.cs.vu.nl/~pmika/swc/btc.html

http://www.cs.vu.nl/~pmika/swc/btc.html

640 J. Urbani et al.

Table 2. Schema triples (amount and fraction of total triples) in datasets

schema type amount fraction
domain, range (p rdfs:domain D, p rdfs:range R) 30.000 0.004%
sub-property (a rdfs:subPropertyOf b) 70.000 0.009%
sub-class (a rdfs:subClassOf b) 2.000.000 0.2%

Let us illustrate our case with an example based on rule 2 (rdfs:domain).
Assume an input with ten different triples that share the same subject and
predicate but have a different object. If the predicate has a domain associated
with it and we execute the join in the mappers, the framework will output a
copy of the new triple for each of the ten triples in the input. These triples can
be correctly filtered out by the reducer, but they will cause significant overhead
since they will need to be stored locally and be transfered over the network.

We can avoid the generation of duplicates if we first group the triples by
subject and then we execute the join over the single group. We can do it by
designing a mapper that outputs an intermediate tuple that has as key the
triple’s subject and as value the predicate. In this way the triples will be grouped
together and we will execute the join only once, avoiding generating duplicates.

In general, we set as key those parts of the input triples that are also used
in the derived triple. The parts depend on the applied rule. In the example above,
the only part of the input that is also used in the output is the subject. Since
the key is used to partition the data, for a given rule, all triples that produce
some new triple will be sent to the same reducer. It is then trivial to output that
triple only once in the reducer. As value, we emit those elements of the triple
that will be matched against the schema.

5.3 Ordering the Application of the RDFS Rules

We analyse the RDFS ruleset with regard to input and output of each rule, to
understand which rule may be triggered by which other rule. By ordering the
execution of rules we can limit the number of iterations needed for full closure.
As explained before, we ignore some of the rules with a single antecedent (1, 4,
6, 8, 10) without loss of generality: these can be implemented at any point in
time without a join, using a single pass over the data. We first categorise the
rules based on their output:

– rules 5 and 12 produce schema triples with rdfs:subPropertyOf as predicate,
– rules 11 and 13 produce schema triples with rdfs:subClassOf as predicate,
– rules 2, 3,and 9 produce instance triples with rdf:type as predicate,
– rule 7 may produce arbitrary triples.

We also categorise the rules based on the predicates in their antecedents:

– rules 5 and 10 operate only on triples with sub-class or sub-property triples,
– rules 9, 12 and 13 operate on triples with type, sub-class, and sub-property,
– rule 2, 3 and 7 can operate on arbitrary triples.

Scalable Distributed Reasoning Using MapReduce 641

Rule 13
(type Datatype)

Rule 9
(subclass inheritance)

Rule 2
(property domain)

Rule 7
(subprop. inheritance)

Rule 5
(subprop. transitivity)

Rule 11
(subclass. transitivity)

Rule 3
(property range)

Rule 12
(type

ContainerMember)

JOB 1

JOB 2

JOB 4

Fig. 3. Relation between the various RDFS rules

Figure 3 displays the relation between the RDFS rules, connecting rules based on
their input and output (antecedents and consequents). An ideal execution should
proceed from the bottom of the picture to the top: first apply the transitivity
rules (rule 5 and 11), then apply rule 7, then rule 2 and 3, then rule 9 and finally
rules 12 and 13.

It may seem that rule 12 and 13 could produce triples that would serve as
input to rules 5 and 11; however, looking carefully we see that this is not the
case: Rule 12 outputs (?s rdfs:subPropertyOf rdfs:member), rule 13 out-
puts (?s rdfs:subClassOf rdfs:Literal). For rules 5 and 11 to fire on these,
rdfs:member and rdfs:Literal must have been be defined as sub-classes or sub-
properties of something else. However, in RDFS none of these is a sub-class or
sub-property of anything. They could of course be super-classed by arbitrary
users on the Web. However, such “unauthorised” statements are dangerous be-
cause they can cause ontology hijacking and therefore we ignore them following
the advice of [7]. Hence, the output of rules 12 and 13 cannot serve as input to
rules 5 and 11. Similarly, rules 2 and 3 cannot fire.

Furthermore, rule 9 cannot fire after rule 13, since this would require using lit-
erals as subjects, which we ignore as being non-standard RDF. The only rules that
could fire after rule 12 are rules 5 and 7. For complete RDFS inferencing, we would
need to evaluate these rules for each container-membership property found in the
data, but as we will show, in typical datasets these properties occur very rarely.

As our third optimisation, we conclude that instead of having to iterate over
all RDFS rules until fixpoint, it is sufficient to process them only once, in the
order indicated in Figure 3.

642 J. Urbani et al.

Dictionary
encoding

1.Sub-
Property

2.Domain/
Range

3.Duplicate
removal 4.Subclass

Schema
triples

Instance
triples

IN
PU
T

O
U
TPU

T

HDFSMapReduce
job File based

MapReduce

Fig. 4. Data flow. The solid lines refer to data split partitioned using MapReduce while
the dashed lines refer to shared data.

5.4 The Complete Picture

In this section, we present an updated algorithm implementing the above opti-
misations. The complete algorithm consists of five sequential MapReduce jobs,
as shown in Figure 4. First, we perform dictionary encoding and extract the
schema triples to a shared distributed file system. Then, we launch the RDFS
reasoner that consists in a sequence of four MapReduce jobs.

The first job applies the rules that involve the sub-property relations. The
second applies the rules concerning domain and range. The third cleans up the
duplicated statements produced in the first step and the last applies the rules
that use the sub-class relations. In the following subsections, each of these jobs
is explained in detail.

Distributed Dictionary Encoding in MapReduce. To reduce the physical
size of the input data, we perform a dictionary encoding, in which each triple
term is rewritten into a unique and small identifier. We have developed a novel
technique for distributed dictionary encoding using MapReduce, rewriting each
term into an 8-byte identifier; the encoding scales linearly with the input data.
Due to space limitations, we refer the reader to [16]. Encoding all 865M triples
takes about 1 hour on 32 nodes. Note that schema triples are extracted here.

First Job: Apply Rules on Sub-Properties. The first job applies rules 5
and 7, which concern sub-properties, as shown in Algorithm 3. Since the schema
triples are loaded in memory, these rules can be applied simultaneously.

To avoid generation of duplicates, we follow the principle of setting as the
tuple’s key the triple’s parts that are used in the derivation. This is possible
because all inferences are drawn on an instance triple and a schema triple and
we load all schema triples in memory. That means that for rule 5 we output as
key the triple’s subject while for rule 7 we output a key consisting of subject
and object. We add an initial flag to keep the groups separated since later we
have to apply a different logic that depends on the rule. In case we apply rule 5,
we output the triple’s object as value, otherwise we output the predicate.

Scalable Distributed Reasoning Using MapReduce 643

Algorithm 3. RDFS sub-property reasoning

map(key, value):
// key: null
// value: triple
if (subproperties.contains(value.predicate)) // for rule 7
key = "1" + value.subject + "-" + value.object
emit(key, value.predicate)

if (subproperties.contains(value.object) &&
value.predicate == "rdfs:subPropertyOf") // for rule 5

key = "2" + value.subject
emit(key, value.object)

reduce(key, iterator values):
// key: flag + some triples terms (depends on the flag)
// values: triples to be matched with the schema
values = values.unique // filter duplicate values

switch (key[0])
case 1: // we are doing rule 7: subproperty inheritance
for (predicate in values)

// iterate over the predicates emitted in the map and collect superproperties
superproperties.add(subproperties.recursive_get(value))

for (superproperty in superproperties)
// iterate over superproperties and emit instance triples
emit(null, triple(key.subject, superproperty, key.object)

case 2: // we are doing rule 5: subproperty transitivity
for (predicate in values)
// iterate over the predicates emitted in the map, and collect superproperties
superproperties.add(subproperties.recursive_get(value))

for (superproperty in superproperties)
// emit transitive subproperties
emit(null, triple(key.subject, "rdfs:subPropertyOf", superproperty))

The reducer reads the flag of the group’s key and applies to corresponding
rule. In both cases, it first filters out duplicates in the values. Then it recursively
matches the tuple’s values against the schema and saves the output in a set.
Once the reducer has finished with this operation, it outputs the new triples
using the information in the key and in the derivation output set.

This algorithm will not derive a triple more than once, but duplicates may
still occur between the derived triples and the input triples. Thus, at a later
stage, we will perform a separate duplicate removal job.

Second Job: Apply Rules on Domain and Range. The second job applies
rules 2 and 3, as shown in Algorithm 4. Again, we use a similar technique to
avoid generating duplicates. In this case, we emit as key the triple’s subject and
as value the predicate. We also add a flag so that the reducers know if they
have to match it against the domain or against the range schema. Tuples about
domain and range will be grouped together if they share the same subject since
the two rules might derive the same triple.

Third Job: Delete Duplicate Triples. The third job is simpler and eliminates
duplicates between the previous two jobs and the input data. Due to space
limitations, we refer the reader to [16].

644 J. Urbani et al.

Algorithm 4. RDFS domain and range reasoning

map(key, value):
// key: null
// value: triple
if (domains.contains(value.predicate)) then // for rule 2
key = value.subject
emit(key, value.predicate + "d")

if (ranges.contains(value.predicate)) then // for rule 3
key = value.object
emit(key, value.predicate +’’r’’)

reduce(key, iterator values):
// key: subject of the input triples
// values: predicates to be matched with the schema
values = values.unique // filter duplicate values
for (predicate in values)
switch (predicate.flag)
case "r": // rule 3: find the range for this predicate
types.add(ranges.get(predicate))

case "d": // rule 2: find the domain for this predicate
types.add(domains.get(predicate))

for (type in types)
emit(null, triple(key, "rdf:type", type))

Algorithm 5. RDFS sub-class reasoning

map(key, value):
// key: source of the triple (irrelevant)
// value: triple
if (value.predicate = "rdf:type")
key = "0" + value.predicate
emit(key, value.object)

if (value.predicate = "rdfs:subClassOf")
key = "1" + value.predicate
emit(key, value.object)

reduce(key, iterator values):
//key: flag + triple.subject
//iterator: list of classes
values = values.unique // filter duplicate values

for (class in values)
superclasses.add(subclasses.get_recursively(class))

switch (key[0])
case 0: // we’re doing rdf:type
for (class in superclasses)
if !values.contains(class)
emit(null, triple(key.subject, "rdf:type", class))

case 1: // we’re doing subClassOf
for (class in superclasses)
if !values.contains(class)
emit(null, triple(key.subject, "rdfs:subClassOf", class))

Fourth Job: Apply Rules on Sub-Classes. The last job applies rules 9, 11,
12, and 13, which are concerned with sub-class relations. The procedure, shown
in Algorithm 5, is similar to the previous job with the following difference: during
the map phase we do not filter the triples but forward everything to the reducers
instead. In doing so, we are able to also eliminate the duplicates against the input.

Scalable Distributed Reasoning Using MapReduce 645

6 Experimental Results

We use the Hadoop2 framework, an open-source Java implementation of MapRe-
duce. Hadoop is designed to efficiently run and monitor MapReduce applications
on clusters of commodity machines. It uses a distributed file system and manages
execution details such as data transfer, job scheduling, and error management.

Our experiments were performed on the DAS-3 distributed supercomputer3

using up to 64 compute nodes with 4 cores and 4GB of main memory each, using
Gigabit Ethernet as an interconnect. We have experimented on real-world data
from the Billion Triple Challenge 20084. An overview of these datasets is shown
in Table 3, where dataset all refers to all the challenge datasets combined except
for Webscope, whose access is limited under a license. All the code used for our
experiments is publicly available5.

6.1 Results for RDFS Reasoning

We evaluate our system in terms of time required to calculate the full closure. We
report the average and the relative deviation σ (the standard deviation divided
by the average) of three runs. The results, along with the number of output
triples, are presented in Table 3. Figure 6 shows the time needed for each rea-
soning phase. Our RDFS implementation shows very high performance: for the
combined dataset of 865M triples, it produced 30B triples in less than one hour.
This amounts to a total throughput of 8.77 million triples/sec. for the output
and 252.000 triples/sec. for the input. These results do not include dictionary
encoding, which took, as mentioned, one hour for all datasets combined. In-
cluding this time, the throughput becomes 4.27 million triples/sec. and 123.000
triples/sec. respectively, which to the best of our knowledge, still outperforms
any results reported both in the literature [11] and on the Web6.

Besides absolute performance, an important metric in parallel algorithms
is how performance scales with additional compute nodes. Table 4 shows the

Table 3. Closure computation using datasets of increasing size on 32 nodes

dataset input output time σ

Wordnet 1.9M 4.9M 3’39” 9.1%
Falcon 32.5M 863.7M 4’19” 3.8%
Swoogle 78.8M 1.50B 7’15” 8.2%
DBpedia 150.1M 172.0M 5’20” 8.6%
others 601.5M
all 864.8M 30.0B 56’57” 1.2%

2 http://hadoop.apache.org
3 http://www.cs.vu.nl/das3
4 http://www.cs.vu.nl/~pmika/swc/btc.html
5 https://code.launchpad.net/~jrbn/+junk/reasoning-hadoop
6 E.g. at esw.w3.org/topic/LargeTripleStores

http://hadoop.apache.org
http://www.cs.vu.nl/das3
http://www.cs.vu.nl/~pmika/swc/btc.html
https://code.launchpad.net/~jrbn/+junk/reasoning-hadoop
esw.w3.org/topic/LargeTripleStores

646 J. Urbani et al.

Table 4. Speedup with increasing number of nodes

(a) Falcon

nodes runtime (s) speedup efficiency
1 3120 1 1
2 1704 1.83 0.92
4 873 3.57 0.89
8 510 6.12 0.76

16 323 9.65 0.60
32 229 13.61 0.43
64 216 14.45 0.23

(b) DBpedia

nodes runtime (s) speedup efficiency
1 1639 1 1
2 772 2.12 1.06
4 420 3.9 0.98
8 285 5.76 0.72

16 203 8.07 0.5
32 189 8.69 0.27
64 156 10.53 0.16

speedup gained with increasing number of nodes and the resulting efficiency, on
the Falcon and DBpedia datasets. Similar results hold for the other datasets.
To the best of our knowledge, the only published speedup results for distributed
reasoning on a dataset of this size can be found in [14]; for both datasets, and
all numbers of nodes, our implementation outperforms this approach.

The speedup results are also shown in Figure 5. They show that our high
throughput rates are already obtained when utilising only 16 compute nodes.
We attribute the decreasing efficiency on larger numbers of nodes to the fixed
Hadoop overhead for starting jobs on nodes: on 64 nodes, our computation per
node is not big enough to compensate platform overhead.

Figure 6 shows the division of runtime over the computation phase from
Figure 4, and confirms the widely-held intuition that subclass-reasoning is the
most expensive part of RDFS inference on real-world datasets.

We have verified the correctness of our implementation on the (small) Wordnet
dataset. We have not stored the output of our algorithm: 30B triples (each of
them occupying 25 bytes using our dictionary encoding) produce 750GB of data.
Mapping these triples back to the original terms would require approx. 500 bytes
per triple, amounting to some 15TB of disk space.

In a distributed setting load balancing is an important issue. The Hadoop
framework dynamically schedules tasks to optimize the node workload. Fur-
thermore, our algorithms are designed to prevent load balancing problems by
intelligently grouping triples (see sections 5.1 and 5.2). During experimentation,
we did not encounter any load balancing issues.

6.2 Results for OWL Reasoning

We have also encoded the OWL Horst rules [9] to investigate whether our ap-
proach can be extended for efficient OWL reasoning. The OWL Horst rules are
more complex than the RDFS rules, and we need to launch more jobs to compute
the full closure. Due to space restrictions, we refer to [16], for the algorithms and
the implementation.

On the LUBM(50) benchmark dataset [5], containing 7M triples, we com-
pute the OWL Horst closure on 32 nodes in about 3 hours, resulting in about
13M triples. In comparison, the RDFS closure on the same dataset is computed

Scalable Distributed Reasoning Using MapReduce 647

0

5

10

15

20

25

30

35

40

45

50

55

 0 10 20 30 40 50 60 70

ru
nt

im
e

(m
in

)

nr. of compute nodes

(a) Falcon

0

5

10

15

20

25

30

 0 10 20 30 40 50 60 70

ru
nt

im
e

(m
in

)

nr. of compute nodes

(b) DBpedia

Fig. 5. Speedup with increasing number of nodes

sub−class
filter duplicates
domain/range
subproperty

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

Wordnet DBpedia Falcon Swoogle all

ru
nt

im
e

(s
)

dataset

Fig. 6. Detailed reasoning time (per phase) for various datasets (32 nodes)

in about 10 minutes, resulting in about 8.6M triples. On a real-world dataset
(Falcon, 35M triples) we stopped OWL Horst inference after 12 hours, at which
point more than 130 MapReduce jobs had been launched, and some 3.8B triples
had been derived. Clearly, our implementation on OWL Horst has room for
optimisation; on RDFS, our optimisations drastically reduced computation time.

6.3 Discussion

Some datasets produce very large amounts of output. For example, the closure of
the Swoogle and Falcon datasets is around 20× the original data. We attribute
these differences to the content and quality of these datasets: data on the Web
contains cycles, override definitions of standard vocabularies, etc. Instead of ap-
plying the standard RDFS and OWL rules, Hogan et al. [7] propose to only con-
sider “authoritative” statements to prevent this data explosion during reasoning.

648 J. Urbani et al.

In this paper, we did not focus on data quality. To avoid the observed inference
explosion, the approach from [7] can be added to our algorithms.

As explained, the presented algorithm performs incomplete RDFS reasoning.
We ignore RDF axiomatic triples because this is widely accepted practice and in
line with most of the existing reasoners. We omit the rules with one antecedent
since parallelizing their application is trivial and they are commonly ignored by
reasoners as being uninteresting. If standard compliance is sought, these rules
can be implemented with a single map over the final data, which very easy
to parallelise and should not take more than some minutes. Similarly, we have
ignored the rule concerning container-membership properties since these occur
very rarely: in all 865M triples, there are only 10 container-membership proper-
ties, of which one is in the example.org namespace and two override standard
RDFS. If needed, membership properties can be implemented in the same way
as the subproperty-phase (albeit on much less data), which takes approximately
3 minutes to execute on the complete dataset, as seen in Figure 6.

7 Conclusion

MapReduce is a widely used programming model for data processing on large
clusters, and it is used in different contexts to process large collections of data.
Our purpose was to exploit the advantages of this programming model for Se-
mantic Web reasoning; a non-trivial task given the high data correlation. We
have shown a scalable implementation of RDFS reasoning based on MapReduce
which can infer 30 billion triples from a real-world dataset in less than two
hours, yielding an input and output throughput of 123.000 triples/second and
4.27 million triples/second respectively. To the best of our knowledge, our system
outperforms any other published approach. To achieve this, we have presented
some non-trivial optimisations for encoding the RDFS ruleset in MapReduce. We
have evaluated the scalability of our implementation on a cluster of 64 compute
nodes using several real-world datasets.

A remaining challenge is to apply the same techniques successfully to OWL-
Horst reasoning. Our first experiments have shown this to be more challenging.

We would like to thank Christian Rossow for reviewing our work. This work
was supported by the LarKC project (EU FP7-215535).

References

[1] Battré, D., Heine, F., Höing, A., Kao, O.: On triple dissemination, forward-
chaining, and load balancing in DHT based RDF stores. In: Moro, G.,
Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005
and DBISP2P 2006. LNCS, vol. 4125, pp. 343–354. Springer, Heidelberg (2007)

[2] Cai, M., Frank, M.: RDFPeers: A scalable distributed RDF repository based on a
structured peer-to-peer network. In: WWW Conference (2004)

[3] Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clus-
ters. In: Proceedings of the USENIX Symposium on Operating Systems Design &
Implementation (OSDI), pp. 137–147 (2004)

Scalable Distributed Reasoning Using MapReduce 649

[4] Fang, Q., Zhao, Y., Yang, G.-W., Zheng, W.-M.: Scalable distributed ontology
reasoning using DHT-based partitioning. In: Domingue, J., Anutariya, C. (eds.)
ASWC 2008. LNCS, vol. 5367, pp. 91–105. Springer, Heidelberg (2008)

[5] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Journal of Web Semantics 3, 158–182 (2005)

[6] Hayes, P. (ed.): RDF Semantics. W3C Recommendation (2004)
[7] Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the

web. Int. J. on Semantic Web and Information Systems 5(2) (2009)
[8] Hogan, A., Harth, A., Polleres, A.: Saor: Authoritative reasoning for the web.

In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 76–90.
Springer, Heidelberg (2008)

[9] ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics 3(2–3), 79–115 (2005)

[10] Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS reasoning and query answering
on top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516.
Springer, Heidelberg (2008)

[11] Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – a pragmatic semantic repos-
itory for OWL. In: Web Information Systems Engineering (WISE) Workshops,
pp. 182–192 (2005)

[12] Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intelligent Sys-
tems 23(5), 82–87 (2008)

[13] MacCartney, B., McIlraith, S.A., Amir, E., Uribe, T.: Practical partition-based
theorem proving for large knowledge bases. In: IJCAI (2003)

[14] Oren, E., Kotoulas, S., et al.: Marvin: A platform for large-scale analysis of Se-
mantic Web data. In: Int. Web Science conference (2009)

[15] Soma, R., Prasanna, V.: Parallel inferencing for OWL knowledge bases. In: Int.
Conf. on Parallel Processing, pp. 75–82 (2008)

[16] Urbani, J.: Scalable Distributed RDFS/OWL Reasoning using MapReduce. Mas-
ter’s thesis, Vrije Universiteit Amsterdam (2009),
http://www.few.vu.nl/~jui200/thesis.pdf

[17] Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A scalable
OWL ontology storage and inference system. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 429–443. Springer,
Heidelberg (2006)

http://www.few.vu.nl/~jui200/thesis.pdf

Discovering and Maintaining Links
on the Web of Data

Julius Volz1, Christian Bizer2, Martin Gaedke1, and Georgi Kobilarov2

1 Chemnitz University of Technology
Distributed and Self-Organizing Systems Group

Straße der Nationen 62, 09107 Chemnitz, Germany
volz@hrz.tu-chemnitz.de,
gaedke@cs.tu-chemnitz.de
2 Freie Universität Berlin
Web-based Systems Group

Garystr. 21, 14195 Berlin, Germany
chris@bizer.de,

georgi.kobilarov@fu-berlin.de

Abstract. The Web of Data is built upon two simple ideas: Employ the
RDF data model to publish structured data on the Web and to create
explicit data links between entities within different data sources. This pa-
per presents the Silk – Linking Framework, a toolkit for discovering and
maintaining data links between Web data sources. Silk consists of three
components: 1. A link discovery engine, which computes links between
data sources based on a declarative specification of the conditions that
entities must fulfill in order to be interlinked; 2. A tool for evaluating the
generated data links in order to fine-tune the linking specification; 3. A
protocol for maintaining data links between continuously changing data
sources. The protocol allows data sources to exchange both linksets as
well as detailed change information and enables continuous link recom-
putation. The interplay of all the components is demonstrated within a
life science use case.

Keywords: Linked data, web of data, link discovery, link maintenance,
record linkage, duplicate detection.

1 Introduction

The central idea of Linked Data is to extend the Web with a data commons
by creating typed links between data from different data sources [1,2]. Techni-
cally, the term Linked Data refers to a set of best practices for publishing and
connecting structured data on the Web in a way that data is machine-readable,
its meaning is explicitly defined, it is linked to other external datasets, and can
in turn be linked to from external datasets. The data links that connect data
sources take the form of RDF triples, where the subject of the triple is a URI
reference in the namespace of one dataset, while the object is a URI reference
in the other [2,3].

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 650–665, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Discovering and Maintaining Links on the Web of Data 651

The most visible example of adoption and application of Linked Data has
been the Linking Open Data (LOD) project1, a grassroots community effort to
bootstrap the Web of Data by interlinking open-license datasets. Out of the 6.7
billion RDF triples that are served as of July 2009 by participants of the project,
approximately 148 million are RDF links between datasets2.

As Linked Data sources often provide information about large numbers of
entities, it is common practice to use automated or semi-automated methods
to generate RDF links. In various domains, there are generally accepted nam-
ing schemata, such as ISBN and ISSN numbers, ISIN identifiers, EAN and
EPC product codes. If both datasets already support one of these identification
schemata, the implicit relationship between entities in the datasets can easily
be made explicit as RDF links. This approach has been used to generate links
between various data sources in the LOD cloud. If no shared naming schema
exists, RDF links are often generated by computing the similarity of entities
within both datasets using a combination of different property-level similarity
metrics.

While there are more and more tools available for publishing Linked Data on
the Web [3], there is still a lack of tools that support data publishers in setting
RDF links to other data sources, as well as tools that help data publishers to
maintain RDF links over time as data sources change. The Silk – Linking Frame-
work contributes to filling this gap. Silk consists of three components: 1. A link
discovery engine, which computes links between data sources based on shared
identifiers and/or object similarity; 2. A tool for evaluating the generated RDF
links in order to fine-tune the linking specification; 3. A protocol for maintaining
RDF links between continuously changing data sources.

Using the declarative Silk - Link Specification Language (Silk-LSL), data pub-
lishers can specify which types of RDF links should be discovered between data
sources as well as which conditions data items must fulfill in order to be inter-
linked. These link conditions can apply different similarity metrics to multiple
properties of an entity or related entities which are addressed using a path-based
selector language. The resulting similarity scores can be weighted and combined
using various similarity aggregation functions. Silk accesses data sources via the
SPARQL protocol and can thus be used to discover links between local or remote
data sources.

The main features of the Silk link discovery engine are:

• It supports the generation of owl:sameAs links as well as other types of RDF
links.

• It provides a flexible, declarative language for specifying link conditions.
• It can be employed in distributed environments without having to replicate

datasets locally.

1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

2 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/
DataSets/LinkStatistics

652 J. Volz et al.

• It can be used in situations where terms from different vocabularies are
mixed and where no consistent RDFS or OWL schemata exist.

• It implements various caching, indexing and entity preselection methods to
increase performance and reduce network load.

Datasets change and are extended over time. In order to keep links between two
data sources current and to avoid dead links, new RDF links should be con-
tinuously generated as entities are added to the target dataset and invalidated
RDF links should be removed. For this task, we propose the Web of Data – Link
Maintenance Protocol (WOD-LMP). The protocol automates the communica-
tion between two cooperating Web data sources: The link source and the link
target, where the link source is a Web data source that publishes RDF links
pointing at data published by the target data source. The protocol supports:

• Notifying the target data source that the link source has published a set of
links pointing at the target source. This allows the target to track incoming
links and decide whether it wants to set back-links.

• The link source to request a list of changes from the target source. Based
on the changes, the link source can recompute existing links and generate
additional links pointing at new resources.

• The link source to monitor resources in the target dataset by subscribing to
be informed about changes that occur to these resources.

This paper is structured as follows: Section 2 gives an overview of the Silk –
Link Specification Language along a concrete usage example. In Section 3, we
present the Silk user interface to evaluate generated links. We describe the Web
of Data – Link Maintenance Protocol in Section 4 and give an overview of the
implementation of the Silk framework in Section 5. Section 6 reviews related
work.

2 Link Specification Language

The Silk – Link Specification Language (Silk-LSL) is used to express heuristics
for deciding whether a semantic relationship exists between two entities. The
language is also used to specify the access parameters for the involved data
sources, and to configure the caching, indexing and preselection features of the
framework. Link conditions can use different aggregation functions to combine
similarity scores. These aggregation functions as well as the implemented sim-
ilarity metrics and value transformation functions were chosen by abstracting
from the link heuristics that were used to establish links between data sources
in the LOD cloud.

Figure 1 contains a complete Silk-LSL link specification. In this particular
use case, we want to discover owl:sameAs links between the URIs that are used
by DBpedia [4], a data source publishing information extracted from Wikipedia,
and by the Linked Data version of DrugBank [5], a pharmaceutical database, to
identify medical drugs. In line 22 of the link specification, we thus configure the
<LinkType> to be owl:sameAs.

Discovering and Maintaining Links on the Web of Data 653

01 <Silk>
02 <DataSource id="dbpedia">
03 <EndpointURI>http://dbpedia.org/sparql</EndpointURI>
04 <Graph>http://dbpedia.org</Graph>
05 <DoCache>1</DoCache>
06 <PageSize>1000</PageSize>
07 </DataSource>
08 <DataSource id="drugbank">
09 <EndpointURI>http://www4.wiwiss.fu-berlin.de/drugbank/sparql</EndpointURI>
10 </DataSource>
11 <Metric id="jaroSets">
12 <Param name="item1" />
13 <Param name="item2" />
14 <AVG>
15 <Compare metric="jaroWinklerSimilarity">
16 <Param name="str1" path="?item1" />
17 <Param name="str2" path="?item2" />
18 </Compare>
19 </AVG>
20 </Metric>
21 <Interlink id="drugs">
22 <LinkType>owl:sameAs</LinkType>
23 <SourceDataset dataSource="dbpedia" var="a">
24 <RestrictTo>
25 ?a rdf:type dbpedia:Drug
26 </RestrictTo>
27 </SourceDataset>
28 <TargetDataset dataSource="drugbank" var="b">
29 <RestrictTo>
30 ?b rdf:type drugbank:drugs
31 </RestrictTo>
32 </TargetDataset>
33 <LinkCondition>
34 <AVG>
35 <MAX weight="1">
36 <Compare metric="maxSimilarityInSets">
37 <Param name="set1" path="?a/rdfs:label" />
38 <Param name="set2" path="?b/rdfs:label" />
39 <Param name="submetric" value="jaroSets" />
40 </Compare>
41 <Compare metric="maxSimilarityInSets" optional="1">
42 <Param name="set1" path="?a/rdfs:label" />
43 <Param name="set2" path="?b/drugbank:synonym" />
44 <Param name="submetric" value="jaroSets" />
45 </Compare>
46 <Compare metric="maxSimilarityInSets" optional="1">
47 <Param name="set1" path="?a/rdfs:label" />
48 <Param name="set2" path="?b/drugbank:genericName" />
49 <Param name="submetric" value="jaroSets" />
50 </Compare>
51 </MAX>
52 <MAX optional="1" weight="5">
53 <Compare metric="stringEquality" optional="1">
54 <Param name="str1">
55 <Transform function="concat">
56 <Param name="str1" path="?a/dbpedia:atcprefix" />
57 <Param name="str2" path="?a/dbpedia:atcsuffix" />
58 </Transform>
59 </Param>
60 <Param name="str2" path="?b/drugbank:atcCode" />
61 </Compare>
62 <Compare metric="stringEquality" optional="1">
63 <Param name="str1" path="?a/dbpedia:casNumberLink" />
64 <Param name="str2" path="?b/drugbank:casRegistryNumber" />
65 </Compare>
66 <Compare metric="stringEquality" optional="1">
67 <Param name="str1" path="?a/dbpedia:pubchem" />
68 <Param name="str2" path="?b/drugbank:pubchemCompoundId" />
69 </Compare>
70 </MAX>
71 <Compare metric="numSimilarity" optional="1" weight="2">
72 <Param name="num1" path="?a/dbpedia:molecularweight" />
73 <Param name="num2" path="?b/drugbank:molecularWeightAverage" />
74 </Compare>
75 </AVG>
76 </LinkCondition>
77 <Thresholds accept="0.9" verify="0.7" />
78 <Limit max="1" method="metric_value" />
79 <Output acceptedLinks="drug_accepted_links.n3"
80 verifyLinks="drug_verify_links.n3" format="n3" mode="truncate" />
81 </Interlink>
82 </Silk>

Fig. 1. Example: Interlinking drugs in DBpedia and DrugBank

654 J. Volz et al.

2.1 Data Access

For accessing the source and target data sources, we first specify access parame-
ters for the DBpedia and DrugBank SPARQL endpoints using the <DataSource>
directive. The only mandatory data source parameter is the SPARQL endpoint
URI. Besides this, it is possible to define other data source access options, such
as the graph name and to enable in-memory caching of SPARQL query results.
In order to restrict the query load on remote SPARQL endpoints, it is possible
to set a delay between subsequent queries using the <Pause> parameter, spec-
ifying the delay time in milliseconds. For working against SPARQL endpoints
that restrict result sets to a certain size, Silk uses a paging mechanism. The
maximal result size is configured using the <PageSize> parameter. The paging
mechanism is implemented using SPARQL LIMIT and OFFSET queries. Lines 2 to
7 in Figure 1 show how the access parameters for the DBpedia data source are
set to select only resources from the named graph http://dbpedia.org, enable
caching and limit the page size to 1,000 results per query.

The configured data sources are later referenced in the <SourceDataset> and
<TargetDataset> clauses of the link specification. Since we only want to match
drugs, we restrict the sets of examined resources to instances of the classes
dbpedia:Drug and drugbank:drugs in the respective datasets by supplying
SPARQL conditions within the <RestrictTo> directives in lines 25 and 30.
These statements may contain any valid SPARQL expressions that would usu-
ally be found in the WHERE clause of a SPARQL query.

2.2 Link Conditions

The <LinkCondition> section is the heart of a Silk link specification and defines
how similarity metrics are combined in order to calculate a total similarity value
for a pair of entities. For comparing property values or sets of entities, Silk
provides a number of built-in similarity metrics. Table 1 gives an overview of
these metrics. The implemented metrics include string, numeric, date, URI, and
set comparison methods as well as a taxonomic matcher that calculates the
semantic distance between two concepts within a concept hierarchy using the
distance metric proposed by Zhong et al. in [8]. Each metric in Silk evaluates
to a similarity value between 0 or 1, with higher values indicating a greater
similarity.

These similarity metrics may be combined using the following aggregation
functions:

• AVG – weighted average
• MAX – choose the highest value
• MIN – choose the lowest value
• EUCLID – Euclidian distance metric
• PRODUCT – weighted product

http://dbpedia.org

Discovering and Maintaining Links on the Web of Data 655

Table 1. Available similarity metrics in Silk

jaroSimilarity String similarity based on Jaro distance metric[6]
jaroWinklerSimilarity String similarity based on Jaro-Winkler metric[7]
qGramSimilarity String similarity based on q-grams
stringEquality Returns 1 when strings are equal, 0 otherwise
numSimilarity Percentual numeric similarity
dateSimilarity Similarity between two date values
uriEquality Returns 1 if two URIs are equal, 0 otherwise
taxonomicSimilarity Metric based on the taxonomic distance of two concepts
maxSimilarityInSet Returns the highest encountered similarity of comparing

a single item to all items in a set
setSimilarity Similarity between two sets of items

To take into account the varying importance of different properties, the met-
rics grouped inside the AVG, EUCLID and PRODUCT operators may be weighted
individually, with higher weighted metrics having a greater influence on the ag-
gregated result.

In the <LinkCondition> section of the example (lines 33 to 76), we compute
similarity values for the the labels, PubChem IDs3, CAS registry numbers4, ATC
codes5 and molecular weights between datasets and calculate a weighted average
of these values.

Most metrics are configured to be optional since the presence of the re-
spective RDF property values they refer to is not always guaranteed. In cases
where alternating properties refer to an equivalent feature (such as rdfs:label,
drugbank:synonym and drugbank:genericName), we choose to perform com-
parisons for both properties and select the best evaluation by using the <MAX>
aggregation operator. The <MAX> operator is also used to choose the maximum
value of the comparisons between any of the exact drug identifiers. Weighting of
results is used within the metrics comparing these exact values (line 52), with
the metric weight raised to 5, as well as within the molecular weight comparison
using a weighting factor of 2.

Lines 11 to 20 demonstrate how a user-defined metric is specified. User-defined
metrics may be used like built-in metrics. In the example, the defined jaroSets
metric is used as a submetric for the maxSimilarityInSets evaluations in lines
36-50 for the pairwise comparison of elements of the compared sets. In this case,
the user-defined metric is mainly a wrapper around a jaroWinklerSimilarity
call to achieve type-compatibility with the set comparison interface.

Property values are often represented differently across datasets and thus need
to be normalized before being compared. For handling this task, it is possible to
apply data transformation functions to parameter values before passing them to a
similarity metric. The available transformation functions are shown in Table 2. In

3 http://pubchem.ncbi.nlm.nih.gov/
4 http://www.cas.org/expertise/cascontent/registry/regsys.html
5 http://www.who.int/classifications/atcddd/en/

http://pubchem.ncbi.nlm.nih.gov/
http://www.cas.org/expertise/cascontent/registry/regsys.html
http://www.who.int/classifications/atcddd/en/

656 J. Volz et al.

Table 2. Available transformation functions in Silk

removeBlanks Remove whitespace from string
removeSpecialChars Remove special characters from string
lowerCase Convert a string to lower case
upperCase Convert a string to upper case
concat Concatenate two strings
stem Apply word stemming to a string
alphaReduce Strip all non-alphabetic characters from a string
numReduce Strip all non-numeric characters from a string
replace Replace all occurrences of a string with a replacement
regexReplace Replace all occurences of a regex with a replacement
stripURIPrefix Strip the URI prefix from a string
translateWithDictionary Translate string using a provided CSV dictionary file

the drug linking example, a drug’s ATC code in the DBpedia dataset is split into
a prefix and a suffix part, while it is stored in a single property on the DrugBank
side. Hence, we use the concat transformation function to concatenate the code’s
prefix and suffix parts on the DBpedia side before comparing it to the single-
property code in DrugBank (lines 55 to 58).

After specifying the link condition, we finally specify within the <Thresholds>
clause that resource pairs with a similarity score above 0.9 are to be interlinked,
whereas pairs between 0.7 and 0.9 should be written to a separate output file
in order to be reviewed by an expert. The <Limit> clause is used to limit the
number of outgoing links from a particular entity within the source dataset. If
several candidate links exist, only the highest evaluated one is chosen and written
to the output files as specified by the <Output> directive. In this example, we
permit only one outgoing owl:sameAs link from each resource.

Discovered links can be outputted either as simple RDF triples and/or in
reified form together with their creation date, confidence score and the URI
identifying the employed interlinking heuristic.

2.3 Silk Selector Language

Especially for discovering semantic relationships other than entity equality, a
flexible way for selecting sets of resources or literals in the RDF graph around
a particular resource is needed. Silk addresses this requirement by offering a
simple RDF path selector language for providing parameter values to similarity
metrics and transformation functions. A Silk selector language path starts with
a variable referring to an RDF resource and may then use several path operators
to navigate the graph surrounding this resource. To simply access a particular
property of a resource, the forward operator (/) may be used. For example, the
path ”?drug/rdfs:label” would select the set of label values associated with a
drug referred to by the ?drug variable.

Discovering and Maintaining Links on the Web of Data 657

Sometimes, we need to navigate backwards along a property edge. For exam-
ple, drugs in DrugBank contain a drugbank:target property pointing to the
drug’s target molecule. However, there exists no explicit reverse property like
drugbank:drug in the drug target’s resource. So if a path begins with a drug
target and we need to select all of the drugs that apply to it, we may use the
backward operator (\) to navigate property edges in reverse. Navigating back-
wards along the property drugbank:target would select the applicable drugs.

The filter operator ([]) can be used to restrict selected resources to match a
certain predicate. To select only drugs amongst the ones applicable to a target
molecule which have been marked as approved, we could for instance use the RDF
path ”?target\drugbank:target[drugbank:drugType drugType:approved]”.
The filter operator also supports numeric comparisons. For example, to select
drugs with a molecular weight above 200, the path ”?target\drugbank:target
[drugbank:molecularWeightAverage > 200]” can be used.

2.4 Pre-matching

To compare all pairs of entities of a source dataset S and a target dataset T would
result in an unsatisfactory runtime complexity of O(|S| · |T |). Even after using
SPARQL restrictions to select suitable subsets of each dataset, the required time
and network load to perform all pair comparisons might prove to be impractical
in many cases. To avoid this problem, we need a way to quickly find a limited
set of target entities that are likely to match a given source entity. Silk provides
this by offering rough index pre-matching.

When using pre-matching, all target resources are indexed by the values of one
or more specified properties (most commonly, their labels) before any detailed
comparisons are performed. During the subsequent resource comparison phase,
the previously generated index is used to look up potential matches for a given
source resource. This lookup uses the BM256 weighting scheme for the ranking of
search results and additionally supports spelling corrections of individual words
of a query. Only a limited number of target resources found in this lookup is
then considered as candidates for a detailed comparison.

An example of such a pre-matching specification that could be applied to our
drug linking example is presented in Figure 2. This directive instructs Silk to in-
dex the drugs in the target dataset by their rdfs:label and drugbank:synonym
property values. When performing comparisons, the rdfs:label of a source re-
source is used as a search term into the generated indexes and only the first ten
target hits found in each index are considered as link candidates for detailed
comparisons.

If we neglect a slight index insertion and search time dependency on the target
dataset size, we now achieve a runtime complexity of O(|S| + |T |), making it
feasible to interlink even large datasets under practical time constraints. Note
however that this pre-matching may come at the cost of missing some links
during discovery, since it is not guaranteed that a pre-matching lookup will
always find all matching target resources.
6 http://xapian.org/docs/bm25.html

http://xapian.org/docs/bm25.html

658 J. Volz et al.

<PreMatchingDefinition sourcePath="?a/rdfs:label" hitLimit="10">

<Index targetPath="?b/rdfs:label" />

<Index targetPath="?b/drugbank:synonym" />

</PreMatchingDefinition>

Fig. 2. Pre-matching

3 Evaluating Links

In real-world settings, data is often not as clean and complete as we would wish it
to be. For instance, two data sources might both support the same identification
schema, like EAN, ISBN or ISIN numbers, but due to a large number of missing
values, it is nevertheless necessary to use similarity computations in addition to
identifier matching to generate links. Such data quality problems are usually not
known in advance but discovered when a data publisher tries to compute links
pointing to a target data source. Therefore, finding a good linking heuristic is
usually an iterative process. In order to support users with this task, Silk provides
a Web interface for evaluating the correctness and completeness of generated
links. Based on this evaluation, users can fine-tune their linking specification,
for example by changing weights or applying different metrics or aggregation
functions.

3.1 Resource Comparison

The resource comparison component of the Silk web interface allows the user to
quickly evaluate links according to the currently loaded linking specification. A
screenshot of this interface is shown in Figure 3.

The user first enters a set of RDF links into the box at the top of the screen.
Silk then recomputes these links and displays the resulting similarity scores for
each link in an overview table. For further examination, a drill-down view of a
specific pair comparison can be shown by clicking on one of the table rows. This
drill-down shows in a tree-like fashion the exact parameterizations and evalua-
tions of all submetrics and aggregations employed. This information allows the
user to spot parts of the similarity evaluation which did not behave as expected.

An example drill-down of a comparison between the DrugBank and DBpedia
resources describing the drug Lorazepam is shown in Figure 4. As evident from
the illustration, the two drug entries are matched successfully with a high total
similarity score although several subcomparisons return infavorable results. For
example, the comparison of the DBpedia resource’s label with the synonyms
on the DrugBank side finds only a similarity of 0.867. However, since perfectly
matching labels exist on both sides, the <MAX> operator grouping these name-
related property comparisons evaluates to a total similarity value of 1. Similarly,
due to a dataset error, the section aggregating exact numeric drug identifiers
contains a similarity value of 0 for the CAS registry numbers. This erroneously
low value is corrected by the availability of other exactly matching identifiers in
a <MAX> aggregation.

Discovering and Maintaining Links on the Web of Data 659

Fig. 3. Comparing resource pairs with the Silk web interface

Fig. 4. Detailed drill-down into a resource pair comparison

660 J. Volz et al.

Fig. 5. Evaluating linksets with the Silk web interface

3.2 Evaluation against a Reference Linkset

A methodology that proved useful for optimizing link specifications is to man-
ually create a small reference linkset and then optimize the Silk linking specifi-
cation to produce these reference links, before Silk is run against the complete
target data source. Once such a reference linkset is available, the Silk web in-
terface provides a linkset evaluation component which allows the comparison of
generated linksets to the reference set. This component is shown in Figure 5.

Silk displays which links are missing from the generated set as well as which
resource pairs were interlinked erroneously. To give an overall indication about
the linkset quality, Silk also computes statistical measures pertaining to com-
pleteness and correctness of the generated links. A Precision value indicates the
correctness of generated links, while a Recall value measures the completeness
of discovered links. Finally, the F1-measure calculates the weighted harmonic
mean of both, providing an overall-quality measure of the linkset.

3.3 Improving the DBpedia/DrugBank Link Specification

We compared 3,134 drugs in DBpedia with 4,772 drugs in DrugBank. As a
result of applying the linking specification shown in Figure 1, Silk discovered
1,227 confident links above the threshold of 0.9 and found 32 more links above
the threshold of 0.7. To evaluate the quality of the retrieved links, we created a
reference linkset pertaining to 50 drugs selected randomly from DrugBank and
found 38 manually researched links to DBpedia. We then ran Silk a second time

Discovering and Maintaining Links on the Web of Data 661

to find only links from these 50 selected DrugBank resources to DBpedia and
compared both the generated and the reference linkset.

The evaluation revealed 4 missing links and one incorrectly discovered link.
This corresponded to a Precision of 0.97, a Recall of 0.89 and an F1-measure of
0.93. To better understand why certain links are missing and why one link was
incorrect, we then compared their source and target resources via the resource
comparison web interface. One link was missed because of radically differing
molecular weights in both datasets. Three other missing links were not discov-
ered due to the fact that their CAS registry numbers did not match while at the
same time no other exact identifiers were present. Finally, one link was discov-
ered incorrectly since the resource labels were very similar and no other relevant
property values were present in the datasets. In a subsequent tuning of the link
specification, we mitigated the effect of a single mismatching exact identifier by
lowering the weight for the surrounding aggregation to 3 and setting a default
value of 0.85 for the IDs in the same <MAX> aggregation in case the correspond-
ing RDF properties were not available. This lowered the negative effect of a
single incorrect identifier while preserving a high rating in this <MAX> aggrega-
tion whenever a matching value is found. After this improvement, only 2 links
were missing, which means that we now reached a Recall value of 0.95 and an
F1-measure of 0.96.

4 Web of Data – Link Maintenance Protocol

Changes or additions in either of the interlinked datasets can invalidate existing
links or imply the need to generate new ones. With the Web of Data – Link
Maintenance Protocol (WOD-LMP), we propose a solution to this problem.

The WOD-LMP protocol automates the communication between two cooper-
ating Web data sources. It assumes two basic roles: Link source and link target,
where the link source is a Web data source that publishes RDF links pointing
at data published by the target data source. The protocol covers the following
three use cases:

4.1 Link Transfer to Target

In the simplest use case, a link source wants to send a set of RDF links to the
target data source so that the target may keep track of incoming links and can
decide whether it wants to set back-links. Afterwards, the source wants to keep
the target informed about subsequent updates (i.e. additions and deletions) to
the transferred links. To achieve the transfer of the initial set of links and of
subsequently generated ones, a Link Notification message is sent to the target
data source. This notification includes the generated links along with the URL
of the WOD-LMP protocol endpoint at the source side. Single deletion of links
by the source is communicated to the target in a Link Deletion Notification
message, which in turn contains the link triples to be deleted.

662 J. Volz et al.

4.2 Request of Target Change List

In this use case, the source data source asks the target to supply a list of all
changes that have occurred to RDF resources in a target dataset within a spe-
cific time period. The source may then use the provided change information for
periodic link recomputation. The protocol also provides requesting only addi-
tions, updates or deletions of resources. WOD-LMP uses incremental sequence
numbers to identify resource changes. The changes are requested by the remote
data source by sending a Get Changes message, which contains both the desired
change sequence number range as well as the desired change type filter options.
The target replies to this with a Change Notification, which lists the requested
changes together with their corresponding sequence numbers and change types.
If no upper sequence number is supplied, the target sends all changes to the
latest change.

This case of selective link recomputation requires periodic polling of the re-
mote data source by the source but has the advantage of working without main-
taining a persistent relationship between the linked data sources.

4.3 Subscription of Target Changes

The protocol also supports fine-grained link recomputation by monitoring the
resources in the target dataset that were used to compute links. As illustrated
in Figure 6, the source informs the target dataset via a Link Notification mes-
sage about a group of generated links and for each transferred link, supplies the
URIs of the resources in the target dataset that were used to compute the link.
The target saves this information and monitors the resources. If one of them
changes or is deleted, the target notifies the source about these changes by send-
ing a Change Notification message. The source may then use this information
to recompute affected links and possibly delete invalidated ones. In this case, it
notifies the target about deleted links with a Link Deletion Notification, which
cancels the subscription of resources relevant to these links.

Fig. 6. Subscribing to resource changes in the target data source

Discovering and Maintaining Links on the Web of Data 663

The implementation of the WOD-LMP protocol is based on SOAP. The com-
plete specification of the protocol is available athttp://www4.wiwiss.fu-berlin.
de/bizer/silk/wodlmp/

The WOD-LMP protocol is used to maintain the links between DBpedia and
DrugBank. Links generated on the DrugBank side are sent and integrated into
DBpedia, while DBpedia notifies the DrugBank Silk instance about changes to
subscribed resources. This synchronization will become especially important as
DBpedia will start to utilize the Wikipedia live update stream to continuously
extract data from changed Wikipedia pages. Thus, DBpedia resources will be
continuously updated to match Wikipedia, while at the same time the DrugBank
Silk instance will be able to maintain and recompute links to DBpedia.

5 Implementation

Silk is written in Python and is run from the command line. When generating
linksets, Silk is started as a batch process. It runs as a daemon when serving
the web interface or WOD-LMP protocol endpoints. The framework may be
downloaded from Google Code7 under the terms of the BSD license. For calcu-
lating string similarities, a library from Febrl8, the Freely Extensible Biomedical
Record Linkage Toolkit, is used, while Silk’s pre-matching features are achieved
using the search engine library Xapian9. The web interface was realized with the
Werkzeug10 toolkit, while the link maintenance protocol endpoints use the free
soaplib11 library for the exchange of SOAP messages.

6 Related Work

There is a large body of related work on record linkage [7] and duplicate detection
[9] within the database community as well as on ontology matching [10] in the
knowledge representation community. Silk builds on this work by implementing
similarity metrics and aggregation functions that proved successful within other
scenarios. What distinguishes Silk from this work is its focus on the Linked Data
scenario where different types of semantic links should be discovered between
Web data sources that often mix terms from different vocabularies and where
no consistent RDFS or OWL schemata spanning the data sources exist.

Related work that also focuses on Linked Data includes Raimond et al. [11]
who propose a link discovery algorithm that takes into account both the simi-
larities of web resources and of their neighbors. The algorithm is implemented
within the GNAT tool and has been evaluated for interlinking music-related
datasets. In [12], Hassanzadeh et al. describe a framework for the discovery of

7 http://silk.googlecode.com
8 http://sourceforge.net/projects/febrl
9 http://xapian.org

10 http://werkzeug.pocoo.org
11 http://trac.optio.webfactional.com/

http://www4.wiwiss.fu-berlin.de/bizer/silk/wodlmp/
http://www4.wiwiss.fu-berlin.de/bizer/silk/wodlmp/
http://silk.googlecode.com
http://sourceforge.net/projects/febrl
http://xapian.org
http://werkzeug.pocoo.org
http://trac.optio.webfactional.com/

664 J. Volz et al.

semantic links over relational data which also introduces a declarative language
for specifying link conditions. Their framework is meant to be used together with
relational database to RDF wrappers like D2R Server or Virtuoso RDF Views.
Differences between LinQL and Silk-LSL are the underlying data model and
Silk’s ability to more flexibly combine metrics through aggregation functions. A
framework that deals with instance coreferencing as part of the larger process
of fusing Web data is the KnoFuss Architecture proposed in [13]. In contrast to
Silk, KnoFuss assumes that instance data is represented according to consistent
OWL ontologies.

Furthermore, approaches to track changes and updates in Linked Data sources
include PingtheSemanticWeb12, a central registry for Web of Data documents
which offers XML-RPC and REST APIs to notify the service about new or
changed documents. A further approach to making change information available
is proposed by Auer et al. and implemented in Triplify[14]. Similar to the second
WOD-LMP use case, change information is requested on a peer-to-peer basis
instead of being aggregated into a central registry, such as PingtheSemanticWeb.
This approach is also implemented by DSNotify[15], which runs as an add-on
to a local data source and uses indexes to track resource changes. DSNotify
supports the active notification of subscribers as well as providing change data
on demand. It further uses heuristics to determine the cause of a resource change
and whether a deleted link target has become available under a different URI.

7 Conclusion

We presented the Silk framework, a flexible tool for discovering links between en-
tities within different Web data sources. The Silk-LSL link specification language
was introduced and its applicability was demonstrated within a life science use
case. We then proposed the WOD-LMP protocol for synchronizing and main-
taining links between continuously changing Linked Data sources.

Future work on Silk will focus on the following areas: We will implement
further similarity metrics to support a broader range of linking use cases. To as-
sist users in writing Silk-LSL specifications, machine learning techniques could
be employed to adjust weightings or optimize the structure of the matching
specification. Finally, we will evaluate the suitability of Silk for detecting dupli-
cate entities within local datasets instead of using it to discover links between
disparate RDF data sources.

The value of the Web of Data rises and falls with the amount and the quality
of links between data sources. We hope that Silk and other similar tools will
help to strengthen the linkage between data sources and therefore contribute to
the overall utility of the network.

The complete Silk – LSL language specification, WoD Link Maintenance Pro-
tocol specification and further Silk usage examples are found on the Silk project
website at http://www4.wiwiss.fu-berlin.de/bizer/silk/

12 http://pingthesemanticweb.com

http://www4.wiwiss.fu-berlin.de/bizer/silk/
http://pingthesemanticweb.com

Discovering and Maintaining Links on the Web of Data 665

References

1. Berners-Lee, T.: Linked Data - Design Issues,
http://www.w3.org/DesignIssues/LinkedData.html

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Journal on
Semantic Web and Information Systems (in press, 2009)

3. Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web,
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

4. Bizer, C., et al.: DBpedia - A Crystallization Point for the Web of Data.
Journal of Web Semantics: Sci. Serv. Agents World Wide Web (2009),
doi:10.1016/j.websem.2009.07.002

5. Jentzsch, A., et al.: Enabling Tailored Therapeutics with Linked Data. In: Pro-
ceedings of the 2nd Workshop about Linked Data on the Web (2009)

6. Jaro, M.: Advances in Record-linkage Methodology as Applied to the 1985 Census
of Tampa, Florida. Journal of the American Statistical Society 84(406), 414–420
(1989)

7. Winkler, W.: Overview of Record Linkage and Current Research Directions. Bureau
of the Census - Research Report Series (2006)

8. Zhong, J., et al.: Conceptual Graph Matching for Semantic Search. The 2002 In-
ternational Conference on Computational Science (2002)

9. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A
Survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

10. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
11. Raimond, Y., Sutton, C., Sandler, M.: Automatic Interlinking of Music Datasets

on the Semantic Web. In: Proceedings of the 1st Workshop about Linked Data on
the Web (2008)

12. Hassanzadeh, O., et al.: Semantic Link Discovery Over Relational Data. In: Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Management
(2009)

13. Nikolov, A., et al.: Integration of Semantically Annotated Data by the KnoFuss
Architecture. In: 16th International Conference on Knowledge Engineering and
Knowledge Management, pp. 265–274 (2008)

14. Auer, S., et al.: Triplify – Light-Weight Linked Data Publication from Relational
Databases. In: Proceedings of the 18th International World Wide Web Conference
(2009)

15. Haslhofer, B., Popitsch, N.: DSNotify – Detecting and Fixing Broken Links in
Linked Data Sets. In: Proceedings of 8th International Workshop on Web Semantics
(2009)

http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

Concept and Role Forgetting in ALC Ontologies�

Kewen Wang1, Zhe Wang1, Rodney Topor1, Jeff Z. Pan2, and Grigoris Antoniou3

1 Griffith University, Australia
{k.wang,jack.wang,r.topor}@griffith.edu.au

2 University of Aberdeen, UK
jeff.z.pan@abdn.ac.uk
3 University of Crete, Greece
antoniou@ics.forth.gr

Abstract. Forgetting is an important tool for reducing ontologies by eliminat-
ing some concepts and roles while preserving sound and complete reasoning.
Attempts have previously been made to address the problem of forgetting in rel-
atively simple description logics (DLs) such as DL-Lite and extended EL . The
ontologies used in these attempts were mostly restricted to TBoxes rather than
general knowledge bases (KBs). However, the issue of forgetting for general KBs
in more expressive description logics, such as ALC and OWL DL, is largely un-
explored. In particular, the problem of characterizing and computing forgetting
for such logics is still open.

In this paper, we first define semantic forgetting about concepts and roles in
ALC ontologies and state several important properties of forgetting in this set-
ting. We then define the result of forgetting for concept descriptions in ALC ,
state the properties of forgetting for concept descriptions, and present algorithms
for computing the result of forgetting for concept descriptions. Unlike the case of
DL-Lite, the result of forgetting for an ALC ontology does not exist in general,
even for the special case of concept forgetting. This makes the problem of how
to compute forgetting in ALC more challenging. We address this problem by
defining a series of approximations to the result of forgetting for ALC ontologies
and studying their properties and their application to reasoning tasks. We use the
algorithms for computing forgetting for concept descriptions to compute these
approximations. Our algorithms for computing approximations can be embedded
into an ontology editor to enhance its ability to manage and reason in (large)
ontologies.

1 Introduction

The amount of semantically annotated data available on the Web is growing rapidly.
Often, the formal model used for representing such information is an ontology in some
description logic. As more ontologies are used for annotating data on the Web, and
as the populated ontologies become larger and more comprehensive, it becomes in-
creasingly important for the Semantic Web [4] to be able to construct and manage
such ontologies. Examples of large ontologies currently in use include the Systematised

� This work was partially supported by the Australia Research Council (ARC) Discovery Project
0666107.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 666–681, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Concept and Role Forgetting in ALC Ontologies 667

Nomenclature of Medicine Clinical Terms (SNOMED CT) containing 380K concepts,
GALEN, the Foundational Model of Anatomy (FMA), the National Cancer Institute
(NCI) Thesaurus containing over 60K axioms, and the OBO Foundry containing about
80 biomedical ontologies.

While it is expensive to construct large ontologies, it is even more expensive to host,
manage and use a large, comprehensive ontology when a smaller ontology would suf-
fice. Therefore, tools to reduce large ontologies to smaller ontologies that meet the
needs of specific applications aid and encourage the use of existing ontologies. How-
ever, as the tool evaluation study in [5] shows, existing tools, such as Protégé [28],
NeOn [29] and TopBraid [30], are far from satisfactory for this purpose.

Ontology engineers thus face the task of reducing existing, large ontologies to
smaller, better focussed ontologies by hiding or forgetting irrelevant concepts and roles
while preserving required reasoning capabilities. Such ontology reductions can be ap-
plied to ontology extraction, ontology summary, ontology integration, and ontology
evolution.

We consider two typical scenarios, in ontology extraction and ontology summary,
respectively.

Ontology Extraction. To avoid building new ontologies from scratch, it is preferable to
reuse existing ontologies whenever possible. But often, only part of an existing ontology
is required. For exxample, if we had an ontology of medical terms, such as SNOMED,
but were only interested in infectious diseases, it would be desirable to forget all other
terms in the ontology before starting to reason about infectious diseases.
Ontology summary: As argued in [1,18], a key problem faced by ontology engineers
is the task of constructing a summary of an existing ontology so that other users can
decide whether or not to use it. This task involves first identifying the key concepts
(and roles) in the ontology and then hiding or forgetting all other concepts (and roles).
For example, an astronomical ontology of the solar system might have planets as key
concepts and asteroids and comets as less important concepts.

However, an ontology is often represented as a logical theory, and the removal of
one term may influence other terms in the ontology. Thus, more advanced methods for
dealing with large ontologies and reusing existing ontologies are desired.

Forgetting (or uniform interpolation) has previously been studied for propositional
and first-order logic and logic programming[15,16,6], where it has proved a useful tech-
nique for reducing the size of a logical theory while preserving sound and complete
reasoning in the resulting smaller theory.

However, description logic (DL) [3] is a different, important. knowledge representa-
tion framework, which is the basis for ontology languages such as OWL, that are widely
used in the Semantic Web. In this context, an ontology is a knowledge base (KB) in a
particular description logic, where a knowledge base consists of a terminology box
(TBox) and an assertion box (ABox).

Although most description logics are equivalent to fragments of first-order logic
(FOL), the forgetting for first-order logic introduced in [16] is not directly applicable
to description logics for at least two reasons. First, the correspondence between DLs
and FOL is useless in investigating forgetting for DLs because the result of forgetting
in a theory of the first-order logic (FOL) may only be expressible in second-order logic.

668 K. Wang et al.

Second, it is preferable to perform forgetting in description logics directly rather than
transforming an ontology into a first-order theory, forgetting and then transforming back
to an ontology.

Attempts have previously been made to address the problem of forgetting in rela-
tively simple description logics (DLs) such as DL-Lite [21,14] and extended EL [12].
The ontologies used in these attempts were mostly restricted to KBs with empty
ABoxes. Forgetting also generalizes previous work on conservative extensions [9,7,17]
and the modularity defined in [8,10,13]. A definition of forgetting for TBoxes in the
more expressive DL ALC was given in [7].

However, the issue of forgetting for general KBs, with nonempty ABoxes, in more
expressive DLs, such as ALC and OWL DL, is largely unexplored. In particular, the
problem of characterizing and computing forgetting for such logics is still open.

In this paper we first give a semantic definition of forgetting for ontologies in the
description logic ALC and state several important properties of forgetting. We choose
ALC to study in this paper because it allows all boolean operations and most expressive
DLs are based on it. Others have argued [19] that practical ontologies such as SNOMED
would benefit from a more expressive DL. We then define the result of forgetting for
concept descriptions in ALC , state the properties of forgetting for concept descriptions,
and present algorithms for computing the result of forgetting for concept descriptions.
(Forgetting for concept descriptions in ALC has previously been investigated under the
name of uniform interpoloation in [20].) Unlike the case of DL-Lite, the result of forget-
ting for an ALC ontology does not exist in general, even for the special case of concept
forgetting. This makes the problem of how to compute forgetting in ALC more chal-
lenging. We address this problem by defining a series of approximations to the result
of forgetting for ALC ontologies and studying their properties and their application to
reasoning tasks. We use the algorithms for computing forgetting for concept descrip-
tions to compute these approximations. Our algorithms for computing approximations
can be embedded into an ontology editor to enhance its ability to manage and reason in
(large) ontologies.

Our work significantly extends previous work in at least two ways: (1) We make the
first attempt to study forgetting for an expressive description logic, instead of DL-Lite
and variants of EL . (2) Ontologies in this paper are KBs with nonepty ABoxes, rather
than TBoxes only in previous work. In addition, our definitions and results hold for
forgetting about both concepts and roles.

Due to space limitation, proofs are omitted in this paper but can be
found at http://www.cit.gu.edu.au/˜kewen/Papers/alc_forget_
long.pdf

2 Description Logic ALC
In this section, we briefly recall some preliminaries of ALC , the basic description logic
which contains all boolean operators. Further details of ALC and other DLs can be
found in [3].

First, we introduce the syntax of concept descriptions for ALC . To this end, we
assume that NC is a set of concept names (or concept), NR is a set of role names (or
roles) and NI is a set of individuals.

http://www.cit.gu.edu.au/~kewen/Papers/alc_forget_long.pdf
http://www.cit.gu.edu.au/~kewen/Papers/alc_forget_long.pdf

Concept and Role Forgetting in ALC Ontologies 669

Elementary concept descriptions consist of both concept names and role names. So a
concept name is also called atomic concept while a role name is also called atomic role.
Complex concept descriptions are built inductively as follows: A (atomic concept);

(universal concept); ⊥ (empty concept); ¬C (negation); C 	D (conjunction); C " D
(disjunction); ∀R.C (universal quantification) and ∃R.C (existential quantification).
Here, A is an (atomic) concept, C and D are concept descriptions, and R is a role.

An interpretation I of ALC is a pair (ΔI , ·I) whereΔI is a non-empty set called the
domain and ·I is an interpretation function which associates each (atomic) concept A
with a subset AI of ΔI and each atomic role R with a binary relation RI ⊆ ΔI ×ΔI .
The function ·I can be naturally extended to complex descriptions:

I = ΔI ⊥I = ∅
(¬C)I = ΔI − CI (C 	D)I = CI ∩DI

(C "D)I = CI ∪DI

(∀R.C)I = {a ∈ ΔI : ∀b.(a, b) ∈ RI implies b ∈ CI}
(∃R.C)I = {a ∈ ΔI : ∃b.(a, b) ∈ RI and b ∈ CI}

An ALC assertion box (or ABox) is a finite set of assertions. An assertion is a concept
assertion of the form C(a) or a role assertion of the form R(a, b), where a and b are
individuals, C is a concept name, R is a role name.

An interpretation I satisfies a concept assertion C(a) if aI ∈ CI , a role assertion
R(a, b) if (aI , bI) ∈ RI . If an assertion α is satisfied by I, it is denoted I |= α. An
interpretation I is a model of an ABox A, written I |= A, if it satisfies all assertions
in A.

A inclusion axiom (simply inclusion, or axiom) is of the formC � D (C is subsumed
by D), where C and D are concept descriptions. The inclusionC ≡ D (C is equivalent
to D) is an abbreviation of two inclusions C � D and D � C. A terminology box, or
TBox, is a finite set of inclusions. An interpretation I satisfies an inclusion C � D if
CI ⊆ DI . I is a model of a TBox T , denoted I |= T , if I satisfies every inclusion of
T . T |= C � D if for any I, I |= T implies I |= C � D.

Formally, a knowledge base (KB) is a pair (T ,A) of a TBox T and an ABox A. An
interpretation I is a model of K if I is a model of both T and A, denoted I |= K. If α
is an inclusion or an assertion, K |= α if every model of K is also a model of α. Two
KBs K and K′ are equivalent, written K ≡ K′, if they have the same models. “≡” can
be similarly defined for ABoxes and TBoxes.

The signature of a concept descriptionC, written sig(C), is the set of all concept and
role names in C. Similarly, we can define sig(A) for an ABox A, sig(T) for a TBox T ,
and sig(K) for a KB K.

3 Forgetting in ALC Ontologies

In this section, we will first give a semantic definition of what it means to forget about a
set of variables in an ALC KB, and then state and discuss several important properties
of forgetting that justify the definition chosen. This is the first study of forgetting both
concepts and roles for arbitrary knowledge bases in ALC .

As explained earlier, given an ontology K on signature S and V ⊂ S, in ontology en-
gineering it is often desirable to obtain a new ontology K′ on S −V such that reasoning

670 K. Wang et al.

tasks on S − V are still preserved in K′. As a result, K′ is weaker than K in general.
This intuition is formalized in the following definition.

Definition 3.1 (KB-forgetting). Let K be a KB in ALC and V be a set of variables. A
KB K′ over the signature sig(K) − V is a result of forgetting about V in K if

(KF1) K |= K′;
(KF2) for each concept inclusion C � D in ALC not containing any variables in V ,

K |= C � D implies K′ |= C � D;
(KF3) for each membership assertion C(a) or R(a, b) in ALC not containing any

variables in V , K |= C(a) (resp., K |= R(a, b)) implies K′ |= C(a) (resp., K′ |=
R(a, b));

Condition (KF3) extends previous definitions [7] to allow for nonempty ABoxes in
KBs.

To illustrate the above definition of semantic forgetting and how forgetting can
be used in ontology extraction, consider the following example of designing an
ALC ontology about flu.

Example 3.1. Suppose we have searched the Web and found an ontology about human
diseases (such a practical ontology could be very large):

Disease � ∀attacks .Human ,
Human ≡ Male " Female ,
Human 	 Infected � ∃shows .Symptom,
Disease ≡ Infectious " Noninfectious ,
Influenza " HIV " TB � Infectious .

We want to construct a (smaller) ontology only about flu by reusing the above ontol-
ogy. This is done by forgetting about the undesired concepts {Disease,Noninfectious ,
HIV ,TB}. As a result, the following ontology is obtained:

Influenza � Infectious ,
Infectious � ∀attacks .Human ,
Human ≡ Male " Female ,
Human 	 Infected � ∃shows .Symptom,

The next example shows that the result of forgetting in an ALC ontology may not exist
in some cases.

Example 3.2. Let K = (T ,A) be an ALC KB where T = {A � B, B � C, C �
∀R.C, C � D }, and A = {B(a), R(a, b) }.

Take K1 = (T1,A1) where T1 = {A � C, C � ∀R.C, C � D } and A1 =
{C(a), R(a, b) }. Then K1 is a result of forgetting about concept B in K.

However, there does not exist a result of forgetting about {B,C} in K. To understand
this, we note that the result of forgetting about {B,C} in K should include the following
inclusions:

A � D, A � ∀R.D, A � ∀R.∀R.D, . . . , and
D(a), (∀R.D)(a), (∀R.∀R.D)(a), . . . , and
R(a, b), D(b), (∀R.D)(b), (∀R.∀R.D)(b), . . .

Concept and Role Forgetting in ALC Ontologies 671

In fact, there is no finite ALC KB which is equivalent to the above infinite set of
inclusions.

If the result of forgetting about V in K is expressible as an ALC KB, we say V is
forgettable from K.

In the rest of this section, we state and discuss some important consequences of this
definition of forgetting for KBs in ALC . These properties provide evidence that the
defintion is appropriate.

Proposition 3.1. Let K be a KB in ALC and V a set of variables. If both K′ and K′′ in
ALC are results of forgetting about V in K, then K′ ≡ K′′.

This proposition says that the result of forgetting in ALC is unique up to KB equiva-
lence. Given this result, we write forget(K,V) to denote any result of forgetting about
V in K in ALC . In particular, forget(K,V) = K′ means that K′ is a result of forgetting
about V in K.

In fact, forgetting in TBoxes is independent of ABoxes as the next result shows.

Proposition 3.2. Let T be an ALC TBox and V a set of variables. Then, for
any ALC ABox A, T ′ is the TBox of forget((T ,A),V) iff T ′ is the TBox of
forget((T , ∅),V).

For simplicity, we write forget(T ,V) for forget((T , ∅),V) and call it the result of
TBox-forgetting about V in T .

The following result, which generalizes Proposition 3.1, shows that forgetting pre-
serves implication and equivalence relations between KBs.

Proposition 3.3. Let K1,K2 be two KBs in ALC and V a set of variables. Then

– K1 |= K2 implies forget(K1,V) |= forget(K2,V);
– K1 ≡ K2 implies forget(K1,V) ≡ forget(K2,V).

However, the converse of Proposition 3.3 is not true in general. Consider K and K1 in
Example 3.2, it is obvious that forget(K, {B}) ≡ forget(K1, {B}). However, K and
K1 are not equivalent.

Consistency and query answering are two major reasoning tasks in description log-
ics. It is a key requirement for a reasonable definition of forgetting to preserve these
two reasoning forms.

Proposition 3.4. Let K be a KB in ALC and V a set of variables. Then

1. K is consistent iff forget(K,V) is consistent;
2. for any inclusion or assertion α not containing variables in V , K |= α iff

forget(K,V) |= α.

The next result shows that the forgetting operation can be divided into steps, with a part
of the signature forgotten in each step.

Proposition 3.5. Let K be a KB in ALC and V1,V2 two sets of variables. Then we have

forget(K,V1 ∪ V2) ≡ forget(forget(K,V1),V2).

To compute the result of forgetting about V in K, it is equivalent to forget the variables
in V one by one, i.e., forgetting can be computed incrementally.

672 K. Wang et al.

4 Forgetting in ALC Concept Descriptions

Forgetting in a concept description has been investigated under the name of uniform
interpolation in [20]. In this section, we reformulate the definition of the forgetting
about concept and role names in ALC concept descriptions (briefly, c-forgetting) and
introduce some results that will be used in the next section. From the view point of
ontology management, the issue of forgetting in concept descriptions is less important
than that for KBs and TBoxes. However, we will show later that c-forgetting can be
used to provide an approximation algorithm for KB-forgetting in ALC , as well as its
theoretical importance.

Intuitively, the result C′ of forgetting about a set of variables from a concept de-
scription C should be weaker than C but as close to C as possible. For example, after
the concept Male is forgotten from a concept description for “Male Australian stu-
dent” Australians 	 Students 	 Male , then we should obtain a concept description
Australians 	 Students for “Australian student”. More specifically, C′ should be a
concept description that defines a minimal concept description among all concept de-
scriptions that subsume C and are syntactically irrelevant to V (i.e., variables in V do
not appear in the concept description).

Definition 4.1 (c-forgetting). Let C be a concept description in ALC and V a set
of variables. A concept description C′ on the signature sig(C) − V is a result of c-
forgetting about V in C if the following conditions are satisfied:

(CF1) |= C � C′.
(CF2) For every ALC concept description C′′ with sig(C′′) ∩ V = ∅, |= C � C′′

implies |= C′ � C′′.

The above (CF1) and (CF2) correspond to the conditions (2) and (3) of Theorem 8 in
[20]. A fundamental property of c-forgetting in ALC concept descriptions is that the
result of c-forgetting is unique under concept description equivalence.

Proposition 4.1. Let C be a concept description in ALC and V a set of variables. If
two concept descriptions C′ and C′′ in ALC are results of c-forgetting about V in C,
then |= C′ ≡ C′′.

As all results of c-forgetting are equivalent, we write forget(C,V) to denote an arbitrary
result of c-forgetting about V in C.

Example 4.1. Suppose the concept “Research Student” is defined by C = Student 	
(Master"PhD)	∃supervised .Professor where “Master”, “PhD” and “Professor” are
all concepts; “supervised” is a role and supervised(x, y) means that x is supervised by
y. If the concept description C is used only for students, we may wish to forget about
Student: forget(C,Student) = (Master " PhD) 	 ∃supervised .Professor . If we do
not require that a supervisor for a research student must be a professor, then the filter
“Professor” can be forgotten: forget(C,Professor) = Student 	 (Master " PhD) 	
∃supervised .
.

A concept description C is satisfiable if CI �= ∅ for some interpretation I on sig(C). C
is unsatisfiable if |= C ≡ ⊥. By Definition 4.1, c-forgetting also preserves satisfiability
of concept descriptions.

Concept and Role Forgetting in ALC Ontologies 673

Proposition 4.2. Let C be a concept description in ALC , and V be a set of variables.
Then C is satisfiable iff forget(C,V) is satisfiable.

Similar to forgetting in KB, the c-forgetting operation can be divided into steps.

Proposition 4.3. Let C be a concept description in ALC and V1,V2 two sets of vari-
ables. Then we have

|= forget(C,V1 ∪ V2) ≡ forget(forget(C,V1),V2).

Given the above result, when we want to forget about a set of variables, they can be
forgotten one by one. Also, the ordering of c-forgetting operation is irrelevant to the
result.

Corollary 4.1. Let C be a concept description in ALC and let V = {V1, . . . , Vn} be a
set of variables. Then, for any permutation (i1, i2, . . . , in) of {1, 2, . . . , n},

|= forget(forget(forget(C, Vi1), Vi2), . . .), Vin) ≡
forget(forget(forget(C, V1), V2), . . .), Vn).

The following result, which is not obvious, shows that c-forgetting distributes over
union ".

Proposition 4.4. Let C1, . . . , Cn be concept descriptions in ALC . For any set V of
variables, we have

|= forget(C1 " · · · " Cn,V) ≡ forget(C1,V) " · · · " forget(Cn,V).

However, c-forgetting for ALC does not distribute over intersection 	. For example, if
the concept description C = A 	 ¬A, then forget(C,A) = ⊥, since |= C ≡ ⊥. But
forget(A,A) 	 forget(¬A,A) ≡
.

An important reason for this is that c-forgetting does not distribute over negation.
Actually, we have

|= ¬forget(C,V) � ¬C � forget(¬C,V).

These subsumptions may be strict, e.g., if C is A	B and V is {A}, then ¬forget(C,V)
is ¬B, but forget(¬C,V) is
.

The next result shows that c-forgetting distributes over quantifiers. Since c-forgetting
does not distribute over negation, the two statements in the following proposition do
not necessarily imply each other. The proof uses tableau reasoning for ALC and is
surprisingly complex.

Proposition 4.5. Let C be a concept description in ALC , R be a role name and V be
a set of variables. Then

– forget(∀R.C,V) =
 for R ∈ V , and forget(∀R.C,V) = ∀R.forget(C,V) for
R �∈ V;

– forget(∃R.C,V) =
 for R ∈ V , and forget(∃R.C,V) = ∃R.forget(C,V). for
R �∈ V;

674 K. Wang et al.

These results suggest a way of computing c-forgetting about set V of variables in a
complex ALC concept description C. That is, to forget about each variable V in V one
after another, and to distribute the c-forgetting computation to subconcepts of C.

In what follows, we introduce an algorithm for computing the result of c-forgetting
through rewriting of concept descriptions (syntactic concept transformations) [20]. This
algorithm consists of two stages: (1)C is first transformed into an equivalent disjunctive
normal form (DNF), which is a disjunction of conjunctions of simple concept descrip-
tions; (2) the result of c-forgetting about V in each such simple concept description is
obtained by removing some parts of the conjunct.

Before we introduce disjunctive normal form (DNF), some notation and definitions
are in order. We call an (atomic) concept A or its negation ¬A a literal concept or
simply a literal. A pseudo-literal with role R is a concept description of the form ∃R.F
or ∀R.F , where R is a role name and F is an arbitrary concept. A generalized literal is
either a literal or a pseudo-literal.

Definition 4.2. A concept description D is in disjunctive normal form (DNF) if D = ⊥
or D =
 or D is a disjunction of conjunctions of generalized literals D = D1 " · · · "
Dn, where each Di �≡ ⊥ (1 ≤ i ≤ n) is a conjunction

�
L of literals, or of the form

�
L 	

�

R∈R

[
∀R.UR 	

�

k

∃R.(E(k)
R 	 UR)

]
where R is the set of role names that occur in Di, and each UR and each E(k)

R 	 UR is
a concept description in DNF.

We note that, to guarantee the correctness of the algorithm, the above DNF for ALC is
more complex than we have in classical logic and DL-Lite. See Example 4.2 for an
example of a concept description in DNF.

Each concept description in ALC can be transformed into an equivalent one in DNF
by the following two steps: (1) first transform the given concept description into a dis-
junction of conjunctions of pseudo-literals using De Morgan’s laws, distributive laws
and necessary simplifications, and then (2) for each conjunction in the resulting concept
description, perform the following three transformations in order:

C � ∀R.
 	 C, for C = ∃R.C1 	 · · · 	 ∃R.Cm,m > 0
∀R.C1 	 ∃R.C2 � ∀R.C1 	 ∃R.(C1 	 C2)

∀R.C1 	 · · · 	 ∀R.Cn � ∀R.(C1 	 · · · 	 Cn).

The first transformation above is to transform a concept description containing only
existential quantifier into the normal form. For example, if C is concept name, ∃R.C,
which is not in normal form, can be transformed into the normal form ∀R.
 	 ∃R.C.
While the second is to assemble several quantifications with the same role name into a
single one, the third is crucial for guaranteeing the correctness of our algorithm.

Once an ALC concept description D is in the normal form, the result of c-forgetting
about a set V of variables in D can be obtained from D by simple symbolic manipula-
tions (ref. Algorithm 1).

According to Algorithm 1, an input concept description must first be transformed
into the normal form before the steps for forgetting are applied. For instance, if we

Concept and Role Forgetting in ALC Ontologies 675

Algorithm 1. (Compute c-forgetting)
Input: An ALC concept description C and a set V of variables in C.
Output: forget(C,V).
Method:
Step 1. Transform C into its DNF D. If D is � or ⊥, return D; otherwise, let D = D1�· · ·�Dn

as in Definition 4.2.
Step 2. For each conjunct E in each Di, perform the following transformations:

– if E is a literal of the form A or ¬A with A ∈ V , replace E with �;
– if E is a pseudo-literal in the form of ∀R.F or ∃R.F with R ∈ V , replace E with �;
– if E is a pseudo-literal in the form of ∀R.F or ∃R.F where R �∈ V , replace F with

forget(F,V), and replace each resulting ∀R.(�� F) with �.

Step 3. Return the resulting concept description as forget(C,V).

Fig. 1. Forgetting in concept descriptions

want to forget A in the concept description D = A 	 ¬A 	 B, D is transformed into
the normal form, which is ⊥, and then obtain forget(D,A) = ⊥. We note that B is not
a result of forgetting about A in D.

Example 4.2. Given a concept D = (A " ∃R.¬B) 	 ∀R.(B " C), we want to forget
about concept name B in D. In Step 1 of Algorithm 1, D is firstly transformed into its
DNF D′ = [A	∀R.(B"C)]" [∀R.(B "C)	∃R.(¬B 	C)]. Note that ∃R.(¬B	C)
is transformed from ∃R.[¬B 	 (B " C)]. Then in Step 2, each occurrence of B in D′

is replaced by
, and ∀R.(
 " F) is replaced with
. We obtain forget(D, {B}) =
A " ∃R.C. To forget about role R in D, Algorithm 1 replaces each pseudo-literals in
D′ of the form ∀R.F or ∃R.F with
, and returns forget(D, {R}) =
.

Obviously, the major cost of Algorithm 1 is from transforming the given concept de-
scription into its DNF. For this reason, the algorithm is exponential time in the worst
case. However, if the concept description C is in DNF, Algorithm 1 takes only linear
time (w.r.t. the size of C) to compute the result of c-forgetting about V in C. And the
result of c-forgetting is always in DNF.

Theorem 4.1. Let V be a set of concept and role names and C a concept description
in ALC . Then Algorithm 1 always returns forget(C,V).

The proof of this theorem uses the tableau for ALC .

5 Approximate Forgetting in ALC Ontologies

As we showed in Section 3, the result of forgetting for an ALC KB might not exist.
However, if our goal is to determine whether a given set Σ of inclusions and assertions
are logical consequences of the result of forgetting for a KB K, we show in this section
how to determine this without computing the result of forgetting at all. Instead, given an

676 K. Wang et al.

upper bound on the size of the inclusions and assertions in Σ, we show how to compute
a finite KB K′ such that K′ |= Σ if and only if K |= Σ. Here, we assume Σ does
not contain any of the variables that are being forgotten. The finite KB K′ is called
an approximation to the result of forgetting for K. In fact, we show how to compute
a sequence of approximations that can determine whether inclusions and assertions
of increasingly large size are logical consequences of the result of forgetting. These
approximations are computed using Algorithm 1 for c-forgetting. We can thus obtain the
benefits of forgetting, by computing a smaller KB, and performing reasoning, without
having to actually compute the (non-existent) result of forgetting.

As a special case, we first introduce an approximation to TBox-forgetting. Exam-
ple 3.2 shows that, for some TBox T , forget(T ,V) may not be expressible as a finite
ALC TBox. Thus, it is natural to consider a sequence of (finite) TBoxes that approx-
imate the result of forgetting in T in the sense that the sequence is non-decreasing in
terms of logical implication and the limit of the sequence is the result of forgetting. Such
a consequence is constructed by using results developed for c-forgetting in Section 4.

We note that, for an inclusion C � D in T , forget(C,V) � forget(D,V) may not be
a logical consequence of T and thus may not be in forget(T ,V). However, if we trans-
form T into an equivalent singleton TBox {
 � CT }, where CT =

�
C�D∈T (¬C "

D), then inclusion α0 of the form
 � forget(CT ,V) is a logical consequence of
T . In general, the singleton TBox {α0} is not necessarily equivalent to forget(T ,V).
However, it can be a starting point of a sequence whose limit is forget(T ,V). Note
that T is also equivalent to {
 � CT 	 ∀R.CT } for an arbitrary role name R in T .
Hence, inclusion α1 of the form
 � forget(CT 	∀R.CT ,V) is a logical consequence
of T , and it can be shown that TBox {α1} is logically stronger then {α0}. That is,
forget(T ,V) |= {α1} |= {α0}. Let α2 be
 � forget(CT 	 ∀R.CT 	 ∀R.∀R.CT ,V),
then we have forget(T ,V) |= {α2} |= {α1} |= {α0}. In this way, we can construct a
sequence of TBoxes with increasing logical strength, whose limit is forget(T ,V).

For n ≥ 0, define

C
(n)
T =

n�

k=0

�

R1,...,Rk∈R
∀R1 · · · ∀Rk.CT

where CT =
�

C�D∈T (¬C "D) and R is the set of role names in K.
We now define a sequence of TBoxes, which essentially provides an approximation

to the result of TBox-forgetting.

Definition 5.1. Let T be an ALC TBox and V be a set of variables. For each n ≥ 0,
the TBox

forgetn(T ,V) = {
 � forget(C(n)
T ,V) }

is called the n-forgetting about V in T .

Note that the above n-forgetting for TBoxes is defined in terms of forgetting in concept
descriptions (c-forgetting).

Example 5.1. Consider the TBox T in Example 3.2, we have CT = (¬A " B) 	
(¬B " C) 	 (¬C " ∀R.C) 	 (¬C "D), and C(0)

T = CT , C(1)
T = CT 	 ∀R.CT , . . . ,

C
(n)
T = CT 	 ∀R.C(n−1)

T (n ≥ 2).

Concept and Role Forgetting in ALC Ontologies 677

Let V = {B,C}. For each n ≥ 0, the forgetn(T ,V) can be computed as follows.
forget0(T ,V) = {
 � ¬A "D }, which is equivalent to {A � D }.
forget1(T ,V) = {
 � ¬A " (D 	 ∀R.D) }, which is {A � D, A � ∀R.D }.
· · · · · ·
forgetn(T ,V) = {A � D, A � ∀R.D, . . . , A � ∀R.∀R · · · ∀R︸ ︷︷ ︸

n Rs

.D }.

We call (
�n

i=1 Ci)(a) the conjunction of assertions C1(a), . . . , Cn(a) while
(
⊔n

i=1 Ci)(a) is called the disjunction of these assertions.
Before we can perform forgetting on a given ABox, we need to preprocess it and

thus transform it into a normal form. To this end, we give the following definition.

Definition 5.2. An ABox A in ALC is complete if for any individual name a in A and
assertion C(a) with A |= C(a), we have |= C′ � C, where C′(a) is the conjunction of
all the concept assertions about a in A.

For example, ABox A = {∀R.A(a), R(a, b)} is incomplete, because A |= A(b)
whereas no assertion C(b) exists in A such that |= C � A. After adding assertions
A(b), ∃R.A(a) and
(a) into A, the resulting ABox is complete.

In complete ABoxes, concept assertion entailment can be reduced to concept sub-
sumption, and is independent of role assertions.

However, there exist incomplete ABoxes that are not equivalent any (finite) complete
ABox. For example, the ABox {R(a, b), R′(b, a)} has infinitely many logical conse-
quences of the form (∃R.∃R′.C "¬C)(a) where C is an arbitrary concept description.
This kind of situations are caused by certain cycles in ABoxes. We say an ABox is
acyclic if there exists no cycle of the form R1(a, a1), R2(a1, a2), . . . , Ri(ai, a) in A
in the ABox. Many practical ABoxes are acyclic or can be transformed to equivalent
acyclic ABoxes.

Note all the role assertions in an acyclic ABox form tree-shape relations between
individuals. We call an individual without any predecessor a root individual, and that
without any successor a leaf individual.

Algorithm 2 is developed to transform a given acyclic ALC ABox into an equivalent
complete ABox. The correctness of the algorithm shows that any acyclic ABox can be
transformed to an equivalent complete ABox in ALC .

Note that Algorithm 2 always terminates.

Lemma 5.1. Given an acyclic ALC ABox A, Algorithm 2 always returns a complete
ABox A′ that is equivalent to A.

With the notion of complete ABox, we can extend n-forgetting in TBoxes and define
n-forgetting for an ALC KB as follows.

For the remainder of this section, we assume that the ABox of every KB K is acyclic.

Definition 5.3. Let K = (T ,A) be an ALC KB and V a set of variables. For each
n ≥ 0, the KB forgetn(K,V) = (T ′,A′) is called the result of n-forgetting about V in

K, where T ′ = forgetn(T ,V) = {
 � forget(C(n)
T ,V) } and A′ is obtained from A

through the following steps:

678 K. Wang et al.

Algorithm 2. (Complete an acyclic ABox)
Input: An acyclic ALC ABox A.
Output: An equivalent complete ALC ABox A′.
Method:
Step 1. Starting from root individuals, for each individual a and each role assertion R(a, b) in A,
let C(a) be the conjunction of all the concept assertions about a in A.
Transform C into its DNF C =

⊔n
i=1 Di as in Definition 4.2. Let ∀R.Ui be the universal quan-

tified conjunct of R in Di. Add (
⊔n

i=1 Ui)(b) to A.
Step 2. For each individual a in A, add �(a) to A.
Step 3. Starting from leaf individuals, for each individual b and each role assertion R(a, b) in A,
add assertion (∃R.E)(a) to A, where E(b) is the conjunction of all the concept assertions about
b in A.
Step 4. Return the resulting ABox.

Fig. 2. Transform an acyclic ABox into a complete ABox

1. For each individual name a in A, add C(n)
T (a) to A.

2. Apply Algorithm 2 to obtain a complete ABox, still denoted A.
3. For each individual name a in A, replaceC(a) with (forget(C,V))(a), where C(a)

is the conjunction of all the concept assertions about a in A.
4. Remove each R(a, b) from A where R ∈ V .

The basic idea behind Definition 5.3 is to transform the given KB into a new KB such
that forgetting can be done in its ABox and TBox, separately, in terms of c-forgetting
for individual assertions and inclusions.

Example 5.2. Consider the KB K = (T ,A) in Example 3.2 and let V = {B,C}.
For each n ≥ 0, let An be the ABox of forgetn(K,V). We will elaborate the com-

putation of A0 as follows: Note that A is acyclic. First C(0)
T (a) and C

(0)
T (b) are added

into A, where C(n)
T is the same as in Example 5.1. After applying Algorithm 2 to A,

the resulting ABox is equivalent to

{ (B 	 C 	 ∀R.C 	D)(a), R(a, b), ((¬A "B) 	 C 	 ∀R.C 	D)(b),
∃R.((¬A "B) 	C 	 ∀R.C 	D)(a) }

By applying c-forgetting to the conjunctions of concept assertions about, respectively,
a and b, we obtain A0 = {D(a), R(a, b), D(b) }.

Similarly, we can compute A1, . . . ,An as:

A1 = {D(a), (∀R.D)(a), R(a, b), D(b), (∀R.D)(b) }.
· · · · · ·

An = {D(a), (∀R.D)(a), . . . , (∀R.∀R · · · ∀R︸ ︷︷ ︸
n Rs

.D)(a), R(a, b),

D(b), (∀R.D)(b), . . . , (∀R.∀R · · · ∀R︸ ︷︷ ︸
n Rs

.D)(b) }.

Concept and Role Forgetting in ALC Ontologies 679

The following result shows that n-forgetting preserves logical consequences of the
original KB.

Given a concept description C, let |C| be the number of all different subconcepts of
C. For a TBox T , define |T | =

∑
C�D∈T (|C|+ |D|). Similarly, for an ABox A, define

|A| =
∑

C(a)∈A |C|. Then for a KB K = (T ,A), |K| = |T | + |A|.

Proposition 5.1. Let K be an ALC KB and V be a set of variables. Then forgetn(K,V)
satisfies the following conditions:

1. K |= forgetn(K,V).
2. Let C and D be two concept descriptions containing no variable in V . If n ≥

2|C|+|D|+|K|, then K |= C � D iff forgetn(K,V) |= C � D.
3. Let C be a concept description containing no variable in V , and a an individual

name in K. If n ≥ 2|C|+|K|, then K |= C(a) iff forgetn(K,V) |= C(a).
4. Let R be a role name not in V , and a, b two individual names in K. Then K |=

R(a, b) iff forgetn(K,V) |= R(a, b).

Recall from the definition of KB-forgetting that, with respect to inclusions and asser-
tions not containing variables in V , K is logically equivalent to forget(K,V). Proposi-
tion 5.1 tells us that if we know which inclusions and assertions not containing variables
in V we wish to reason about in advance, then we can derive a value for n, compute
forgetn(K,V), and use the fact that, with respect to these inclusions and assertions,
forgetn(K,V) is logically equivalent to K and hence to forget(K,V). In this way, we
can use forgetn(K,V) as a practical approximation to forget(K,V).

The above proposition shows that, for any n ≥ 0, each forgetn(K,V) is logically
weaker than forget(K,V). Also, as the number n is sufficiently large, forgetn(K,V)
preserves more and more consequences of K. Therefore, the sequence of KBs
{forgetn(K,V)}n≥0 is non-decreasing w.r.t. semantic consequence as the next propo-
sition shows.

Proposition 5.2. Let K be an ALC KB and V a set of variables. Then, for any n ≥ 0,
we have forgetn+1(K,V) |= forgetn(K,V).

Based on the above two results, we can show the main theorem of this section as fol-
lows, which states that the limit of the sequence of n-forgettings captures the result of
forgetting.

Theorem 5.1. Let K be an ALC KB and V a set of variables. Then

forget(K,V) =
∞⋃

n=0

forgetn(K,V).

So, by Theorem 5.1, we can compute forget(K,V), if it exists, using algorithms intro-
duced in the paper.

Corollary 5.1. Let K be an ALC KB and V be a set of variables. V is forgettable from
K if and only if there exists N ≥ 0 such that forgetn(K,V) ≡ forgetN (K,V) for all
n ≥ N . In this case, forget(K,V) = forgetN (K,V).

680 K. Wang et al.

As we can see from Example 3.2, the sizes of consequences (assertions and inclusions)
of K not containing variables in V do not have an upper bound. If it does not exist,
we can always choose n large enough to “approximate” forget(K,V). However, two
issues are still unclear to us: First, the computation of forgetn+1(K,V) is not based
on forgetn(K,V). Next, it would be interesting to find a way to measure how close
forgetn(K,V) is from forget(K,V).

6 Conclusion

We have presented a theory and methods for forgetting for knowledge bases in the ex-
pressive description logic ALC . This is the first work that deals with the combination or
concepts and roles, nonempty ABoxes, and ALC . Because the result of forgetting may
not exist for ALC knowledge bases, we define a sequence of finite knowledge bases
that approximate the result of forgetting and serve as a basis for query answering over
the ontology with forgotten concepts and roles. We provide algorithms for computing
these approximations, using algorithms for forgetting for concept descriptions, and note
their correctness. Proofs of our results may be found in an online report.

Many interesting problems remain unsolved. It would be useful to clarify the deci-
sion problem of whether the result of forgetting for an ALC knowledge base exists. It
would be useful to extend the results of this paper to even more expressive description
logics. It would be interesting to find lower bounds on the complexity of forgetting
for description logics. It would be useful to find an incremental algorithm for comput-
ing approximations. It would be useful implement our algorithms and incorporate them
into ontology editors such as Protégé [28]. See http://www.cit.gu.edu.au/
˜kewen/DLForget for our progress on this task.

References

1. Alani, H., Harris, S., O’Neil, B.: Winnowing ontologies based on application use. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 185–199. Springer,
Heidelberg (2006)

2. Antoniou, G., Harmelen, F.: A Semantic Web Primer, 2nd edn. MIT Press, Cambridge (2008)
3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description

Logic Handbook. Cambridge University Press, Cambridge (2002)
4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 29–37

(May 2001)
5. Dzbor, M., Motta, E., Buil, C., Gomez, J.M., Görlitz, O., Lewen, H.: Developing ontologies

in owl: an observational study. In: Proc. Workshop on OWL: Experiences and Directions
(2006)

6. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artificial Intelli-
gence 172(14), 1644–1672 (2008)

7. Ghilardi, S., Lutz, C., Wolter, F.: Did i damage my ontology? a case for conservative exten-
sions in description logics. In: Proc. KR 2006, pp. 187–197 (2006)

8. Grau, B., Kazakov, Y., Horrocks, I., Sattler, U.: A logical framework for modular integration
of ontologies. In: Proc. IJCAI 2007, pp. 298–303 (2007)

9. Grau, B., Parsia, B., Sirin, E.: Combining OWL ontologies using e-connections. Journal of
Web Semantics 4(1), 40–59 (2006)

http://www.cit.gu.edu.au/~kewen/DLForget
http://www.cit.gu.edu.au/~kewen/DLForget

Concept and Role Forgetting in ALC Ontologies 681

10. Cuenca Grau, B., Kazakov, Y., Horrocks, I., Sattler, U.: Just the right amount: Extracting
modules from ontologies. In: Proc. WWW 2007, pp. 717–726 (2007)

11. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description logic termi-
nologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 259–274. Springer, Heidelberg (2008)

12. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-scale de-
scription logic terminologies. In: Proc. IJCAI 2009 (2009)

13. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Modularity in DL-Lite. In: Proc. DL 2007
(2007)

14. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite
ontologies? In: Proc. KR 2008, pp. 285–295 (2008)

15. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable indepen-
dence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

16. Lin, F., Reiter, R.: Forget it. In: Proc. AAAI Fall Symposium on Relevance, pp. 154–159
(1994)

17. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics.
In: Proc. IJCAI 2007, pp. 453–458 (2007)

18. Peroni, S., Motta, E., d’Aquin, M.: Identifying key concepts in an ontology, through
the integration of cognitive principles with statistical and topological measures. In:
Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 242–256. Springer,
Heidelberg (2008)

19. Rector, A., Brandt, S.: Why do it the hard way? The Case for an Expressive Description
Logic for SNOMED. In: Proc.of the 3rd Int Conf. on Knowledge Representation in Medicine
(KR-MED 2008), p. 16 (2008)

20. ten Cate, B., Conradie, W., Marx, M., Venema, Y.: Definitorially complete description logics.
In: Proc. KR 2006, pp. 79–89 (2006)

21. Wang, Z., Wang, K., Topor, R., Pan, J.Z.: Forgetting concepts in DL-Lite. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 245–257. Springer, Heidelberg (2008)

22. Wang, Z., Wang, K., Topor, R.: Forgetting for Knowledge Bases in DL-Litebool. In: Proc.
ARCOE 2009 (IJCAI 2009 Workshop) (2009)

23. http://www.fmrc.org.au/snomed/
24. http://www.openclinical.org/prj_galen.html
25. http://fma.biostr.washington.edu/
26. http://ncit.nci.nih.gov/
27. http://www.obofoundry.org/
28. http://protege.stanford.edu
29. http://www.neon-toolkit.org
30. http://www.topquadrant.com/products/TB_Composer.html

http://www.fmrc.org.au/snomed/
http://www.openclinical.org/prj_galen.html
http://fma.biostr.washington.edu/
http://ncit.nci.nih.gov/
http://www.obofoundry.org/
http://protege.stanford.edu
http://www.neon-toolkit.org
http://www.topquadrant.com/products/TB_Composer.html

Parallel Materialization of the Finite RDFS
Closure for Hundreds of Millions of Triples

Jesse Weaver and James A. Hendler

Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
{weavej3,hendler}@cs.rpi.edu

Abstract. In this paper, we consider the problem of materializing the
complete finite RDFS closure in a scalable manner; this includes those
parts of the RDFS closure that are often ignored such as literal general-
ization and container membership properties. We point out characteris-
tics of RDFS that allow us to derive an embarrassingly parallel algorithm
for producing said closure, and we evaluate our C/MPI implementation
of the algorithm on a cluster with 128 cores using different-size subsets
of the LUBM 10,000-university data set. We show that the time to pro-
duce inferences scales linearly with the number of processes, evaluating
this behavior on up to hundreds of millions of triples. We also show
the number of inferences produced for different subsets of LUBM10k.
To the best of our knowledge, our work is the first to provide RDFS
inferencing on such large data sets in such low times. Finally, we discuss
future work in terms of promising applications of this approach includ-
ing OWL2RL rules, MapReduce implementations, and massive scaling on
supercomputers.

1 Introduction

At present, the semantic web consists of ever-increasing Resource Description
Framework1 (RDF) data. In RDF, the fundamental unit of information is a
triple; a triple describes a relationship between two things. Some triples in con-
junction with each other can give rise to new knowledge. Consider rule rdfs2
from [1]:

(?a rdfs:domain ?x) ∧ (?u ?a ?y) → (?u rdf:type ?x)

Deriving such inferences in the semantic web poses several challenges. First,
data on the web is distributed making it difficult to ensure that the appropri-
ate triples (e.g., rdfs:domain) are discovered together to derive the appropriate
inferences (e.g., rdf:type). Second, the semantic web continues to grow creating
vast amounts of information. Computation capable of scaling to large data sets
is necessary. Third, the amount of time required to derive inferences should be
reasonable (which depends on a use case).

1 http://www.w3.org/RDF/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 682–697, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.w3.org/RDF/

Parallel Materialization of the Finite RDFS Closure 683

These three issues of dependency, scalability, and time must be addressed
to make inferencing on the semantic web practical and useful. We look at how
to resolve these issues for computing the finite RDF Schema (RDFS) closure
of large data sets. We find that the RDFS rules have certain properties which
allow us to solve the issue of dependency rather easily. Scalability and time are
addressed by forming an embarrassingly parallel2 algorithm for such rules that
allows for strong scaling.

We consider the problem of materializing the complete finite RDFS closure
in a scalable manner. We define the finite RDFS closure as follows.

Definition 1. We define the finite axiomatic triples—denoted Trdfs—as the
RDF and RDFS axiomatic triples [1] minus any triples that describe resources
of the form rdf: #.

Definition 2. We define the finite RDFS rules as the set of rules concerning
literal generalization (lg, gl) and the RDF and RDFS entailment rules (rdf1-2,
rdfs1-13)[1], and also the following rule which we call cmp:

(?n rdf:type rdfs:Resource) ∧ ?n is of the form rdf: # −→
(?n rdf:type rdfs:ContainerMembershipProperty)

Definition 3. The finite RDFS closure is defined the same way as the RDFS
closure [1] with the following exceptions: (1) the finite axiomatic triples are used
instead of all of the RDF and RDFS axiomatic triples; and (2) rule cmp is
included in the last step of rule applications.

To our knowledge, only a few systems exist that produce the complete RDFS
closure, none of which scale to large data sets. We address this problem by
defining a partitioning scheme and showing that the finite RDFS rules can be
applied to such a partitioning to produce the finite RDFS closure. In addition to
deriving an embarrassingly parallel algorithm, we discuss other challenges such
as parallel file I/O for RDF data and handling blank nodes. We present and
evaluate an implementation of the algorithm written in C using the Message
Passing Interface3 (MPI) on a cluster of large memory Opteron machines for
large subsets of the LUBM 10,000-university data set, scaling up to 128 processes.
We also give an evaluation for the amount of duplicate inferences in the output,
and promising applications are discussed as future work.

2 Related Work

The work most related to ours is MaRVIN [3,4] and the parallel Web Ontology
Language4 (OWL) inferencing work by [5,6].
2 An embarrassingly parallel computation is “the ‘ideal’ computation from a parallel

computing standpoint—a computation that can be divided into a number of com-
pletely independent parts, each of which can be executed by a separate processor.”
[2]

3 http://www.mpi-forum.org/
4 http://www.w3.org/2004/OWL/

http://www.mpi-forum.org/
http://www.w3.org/2004/OWL/

684 J. Weaver and J.A. Hendler

MaRVIN provides sound, anytime, and eventually complete RDFS reason-
ing using a “divide-conquer-swap” strategy. Every process uses a reasoner and
processes a fraction of the data to locally produce any possible inferences. A
scoring mechanism is used to determine which triples are most useful for further
inferencing, and these triples are exchanged between processes in an attempt
to mix up the triples and find more inferences. Their evaluation in [4] shows
presumably nearly complete reasoning on 14.9 million SwetoDBLP5 triples in
roughly 23 minutes.

[6] presents an approach to rule-based reasoning for OWL ontologies with
so-called “OWL Horst” (perhaps better known as pD*) semantics [7]. Before
parallel inferencing occurs, a fair amount of preprocessing is required. OWL
ontologies are compiled into rules and a partitioning is determined ahead of
time. Four partitioning approaches are presented, three of which are classified
as data partitioning and one of which is classified as rule partitioning. Data
partitioning gives each process a fraction of the data and all of the rules, while in
rule partitioning, each process receives all of the data and a fraction of the rules.
While it is uncertain what execution times were actually achieved, they indicate
that they were able to achieve a speedup of 18 for 16 processes on the Lehigh
University Benchmark6 (LUBM) [8] 10-university data set (approximately one
million triples). Other data sets evaluated, however, did not see as much speedup.

These two projects have not shown scaling to the extent that we demonstrate
for our system, and they also handle only limited subsets of existing reason-
ing standards or perform approximation. We show scaling that has not been
previously demonstrated in other systems (to the best of our knowledge) for
complete finite RDFS reasoning. Furthermore, our inferencing times are smaller
than those reported for the two previously mentioned works.

Also, BigOWLIM7 reports reasoning times on large data sets, but it is uncer-
tain how to compare the performance of BigOWLIM with our system. BigOWLIM
is a semantic web repository that reportedly can perform some level of reasoning
on 8 billion statements. Loading, inferencing, and query evaluation of the LUBM
benchmark on LUBM8k took 15.2 hours. Our work focuses on inferencing as a
large computation without concerns of storage or indexing, so the two systems
are not quite comparable.

Less related works include reasoning over distributed hash tables [9,10]; po-
tentially parallel evolutionary query answering [11]; composition of approximate,
anytime reasoning algorithms executed in parallel mentioned at the end of [12];
proposals of parallel computation techniques for ontology reasoning [13]; and
approaches for exploiting vertical parallelism in tableaux-based description logic
reasoning [14].

The SOAR work [15,16,17] uses assumptions and observations similar to some
of those used in this paper. While SOAR focuses on a scalable, disk-based,
reasoning system using some RDFS and OWL-based rules on a single machine,

5 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
6 http://swat.cse.lehigh.edu/projects/lubm/
7 http://ontotext.com/owlim/benchmarking/lubm.html

http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
http://swat.cse.lehigh.edu/projects/lubm/
http://ontotext.com/owlim/benchmarking/lubm.html

Parallel Materialization of the Finite RDFS Closure 685

our system differs greatly from SOAR in that it is not disk-based, it is parallel,
and it provides complete (finite) RDFS reasoning.

3 Our Approach to Parallel RDFS Reasoning

Our approach takes advantage of modern parallel computation techniques to
compute the finite RDFS closure of large data sets. Previous work has used
approximation to achieve higher scalability while other work focuses on mini-
mizing dependencies in partitioning the work load. The former has the disadvan-
tage of sacrificing soundness and/or completeness while the latter often requires
time-intensive sequential computation to prepare the data for parallel reasoning.
We focus on finding properties of RDFS reasoning that allow for natural par-
allelization in all parts of the computation. Therefore, we maintain soundness
and completeness without requiring any cumbersome preparation of the data.
We discuss challenges and their solutions in the following subsections.

3.1 Workload Partitioning

Workload partitioning involves breaking down the problem in such a way that it
can be executed in parallel. Ideally, each process should take the same amount of
time for the entire computation. In [6], the distinction between data partitioning
and rule partitioning is made. For RDFS reasoning, we consider it self-evident
that data partitioning is the appropriate approach considering that RDFS rea-
soning has fewer than 20 rules while data sets could scale into billions of triples
and beyond.

Before continuing, we define a few terms used throughout this paper:

Definition 4. An ontological triple is a triple used in describing an ontology
and from which significant inferences can be derived. For RDFS, these are triples
with predicate rdfs:domain, rdfs:range, rdfs:subClassOf, or rdfs:subPropertyOf
and also triples with predicate rdf:type with object rdfs:Datatype, rdfs:Class, or
rdfs:ContainerMembershipProperty.

For clarification, we emphasize that not all triples with predicate rdf:type are on-
tological triples in the context of RDFS. Only rdf:type-triples for which the object
is rdfs:Datatype, rdfs:Class, or rdfs:ContainerMembershipProperty are considered
ontological.

Definition 5. An assertional triple is any triple that is not an ontological
triple.

Considering the finite RDFS rules, a particular property becomes apparent. We
find that each rule has at most one triple pattern in its body that can match an
assertional triple. For example, consider rule rdfs3 :

(?a rdfs:range ?x) ∧ (?u ?a ?v) → (?v rdf:type ?x)

686 J. Weaver and J.A. Hendler

The first triple pattern of the rule body will not match assertional triples but
only ontological triples. The second triple pattern, however, could match any
triple.

Definition 6. An M1 rule is a rule whose body has at most one triple pattern
which can match an assertional triple.

Proposition 1. By inspection, the finite RDFS rules are all M1.

Proposition 1 gives way to our partitioning scheme. By allowing each process to
have all ontological triples but only a fraction of the assertional triples, we can
distribute the data in such a way that the workload can be executed in parallel.
We consider this approach to be reasonable since ontologies tend to be fixed data
sets that are relatively very small compared to the potentially ever-increasing
assertional data.

Definition 7. An abox partitioning is a data partitioning scheme in which
each process/partition gets all ontological triples and a fraction of the assertional
triples.

Theorem 1. A single application of M1 rules to the partitions in an abox par-
titioning produces the same inferences as in a single partition with all triples.
More formally, define a single application of a rule r to a set of triples G, denoted
r(G), as the triples resulting from satisfying the antecedent of r without adding
such triples back into G. Then, given an M1 rule rm and an abox partitioning
(G1, G2, . . . , Gn) of a set of triples G, rm(G) =

⋃n
i=1 rm(Gi).

Proof. Since an M1 rule needs at most one assertional triple to be satisfied, it can
be satisfied on the partition that has such a triple in the same way it is satisfied
on a single partition with all triples since all partitions have all ontological triples.

	"
Therefore, our approach is to give each process a partition of an abox partition-
ing, and that process will apply all finite RDFS rules until no more inferences can
be found. This is shown in Algorithm 1. Line 1 is to be interpreted as parallelism
in which i denotes the rank of the process. Line 4 iterates over the finite RDFS
rules in the appropriate order to satisfy data dependencies between consequents
and antecedents of rules such that only a single pass over the rules is required.

It remains to be shown that this algorithm correctly produces the RDFS
closure. Although M1 rules produce all the appropriate inferences when applied
once, it must be shown that placing the inferences in the partition from which
they were derived sufficiently maintains the abox partitioning so that subsequent
applications of the rules will also produce the correct inferences.

Lemma 1. If an M1 rule sufficiently maintains an abox partitioning after adding
its inferences back to the partition from which they were derived, then the M1
rule can be applied multiple times and produce sound and complete inferences.

Proof. The proof is intuitive. Since M1 rules produce sound and complete infer-
ences in a single application to an abox partitioning, if the result after adding the

Parallel Materialization of the Finite RDFS Closure 687

Algorithm 1. Parallel RDFS Inferencing Algorithm
Input: A set of assertional triples TA, a set of ontological triples TO, and a

number of processes p . Trdfs is the set of finite axiomatic triples.
Output: All triples together with all inferences from the computation of finite

RDFS closure.
// outer loop denotes parallelism where i is rank of process

for i = 0 to p − 1 do1

TAi = { t | t ∈ TA ∧ t /∈ TAj ,∀j �= i }2

// TAi contains roughly |TA|/p triples from TA

// that are given only to process i
Ti = TAi ∪ TO ∪ Trdfs3

foreach rule ∈ finite RDFS rules do4

repeat5

apply rule to Ti to get inferences6

add inferences to Ti7

until no new inferences8

end9

end10

return
⋃p−1

i=0 Ti11

inferences is an abox partitioning, the M1 rules can be applied again to produce
sound and complete inferences. 	"

Definition 8. Say that a rule that fits the description in Lemma 1 is abox
partitioning safe (APS).

Proving that a rule (or set of rules) is APS consists of proving it is M1 and that it
sufficiently maintains the abox partitioning. (We return to the issue of sufficiency
later in the paper.) We define several classes of M1 rules that sufficiently maintain
an abox partitioning, and thus, such rules are APS. Before doing so, we make
the following assumption.

Axiom 1. Other than those mentioned in the axiomatic triples or those pro-
duced from the entailment rules, the resources in the RDF and RDFS vocabu-
lary have no superclasses, subclasses, superproperties, subproperties, domains, or
ranges.

This axiom allows us to disregard odd cases that might occur if such triples
were included (like if rdfs:Class has a superclass). Such triples could modify the
semantics of RDFS, and so we simply disallow them. We now go on to prove that
the finite RDFS rules are APS using sketch proofs to be concise and excluding
proofs of propositions that are straightforward.

Definition 9. Say that a rule is abox partitioning easy (APE) if it is M1
and produces only assertional triples.

Theorem 2. APE rules are APS.

688 J. Weaver and J.A. Hendler

Proof. Adding the produced assertional triples from APE rules to any partition
results in an abox partitioning since the ontological triples are unaffected, so all
partitions still have all ontological triples. �

Proposition 2. By inspection, rules lg, gl, rdf1, rdf2, rdfs1, rdfs4a, rdfs4b, and
rdfs7 are APE.

Definition 10. Say that a rule is abox partitioning ontological (APO) if
the triple patterns in its body can match only ontological triples. (Note that this
implies they are M1.)

Theorem 3. APO rules are APS.

Proof. Since all partitions have all ontological triples, such rules will produce all
of their inferences on all partitions. If an APO rule produces ontological triples,
they will be produced on all partitions, and thus all partitions still have all
ontological triples. 	"

Proposition 3. By inspection, rules rdfs5, rdfs8, rdfs10, rdfs11, rdfs12, and
rdfs13 are APO.

Definition 11. Say that a rule is abox partitioning friendly (APF) if it
is M1 and it produces ontological triples only when the body is satisfied by only
ontological and/or axiomatic triples.

Theorem 4. APF rules are APS.

Proof. Since all partitions have all ontological triples and axiomatic triples (every
partition adds the axiomatic triples at the beginning), when APF rules produce
ontological triples, they are produced on all partitions, and thus, all partitions
still have all ontological triples. 	"

Proposition 4. By inspection, rules rdfs2, rdfs3, and rdfs9 are APF.

Definition 12. Say that a rule is abox partitioning trivial (APT) if it is
M1 and the ontological triples it produces do not contribute to the inferencing of
new triples that would not otherwise be inferred by other rules.

Theorem 5. APT rules are APS.

Proof. This is where “sufficiently maintains an abox partitioning” from Lemma
1 is important. APT rules do not necessarily ensure that all partitions will have
all ontological triples. Instead, they ensure that the ontological triples that they
produce are insignificant for further inferencing. Therefore, even though such
triples may have the form of ontological triples, they fail to meet the part of the
definition of ontological triple which states that significant inferences are derived
from them. Therefore, we can disregard the ontological triples produced by APT
rules, including them only for completeness. 	"

Proposition 5. Rule rdfs6 is APT.

Parallel Materialization of the Finite RDFS Closure 689

Proof. We include a brief proof for this proposition since it is a little less
intuitive than the other propositions. rdfs6 produces triples of the form (?u
rdfs:subPropertyOf ?u). Such triples can help to satisfy rules rdf1, rdfs2, rdfs3,
rdfs4a, rdfs4b, rdfs5, and rdfs7. The first five rules are intuitive and are not elab-
orated upon here. Using triples produced by rdfs6, rules rdfs5 and rdfs7 merely
produce triples that already exist. 	"

Definition 13. Say that a rule is abox partitioning dynamic (APD) if it is
M1 and it produces parts of the ontology (ontological triples) only if the partition
needs them to produce inferences that otherwise would not be produced.

Theorem 6. APD rules are APS.

Proof. The concern is that APD rules may create some ontological triples on
some partitions and not on others. By definition, though, if the other partitions
need these ontological triples to produce sound and complete inferences, then
they would have been produced on that partition also by the APD rules. There-
fore, all partitions can be considered to have all ontological triples produced by
APD rules in the sense that all partitions have the APD rules and would produce
the triples if needed. 	"

Proposition 6. Rule cmp is APD.

Proof. If a rdf: # resource is mentioned in the triples of a partition, then the
triple (rdf: # rdf:type rdfs:Resource) will eventually be produced. (If used as a
property, by way of rdf1 and rdfs4a; if used as a subject, by way of rdfs4a; and
if used as an object, by way of rdfs4b.) Then, cmp is satisfied by that triple, and
the appropriate ontological triples for rdf: # are produced. 	"

Corollary 1. By Theorems 1-6 and Propositions 1-6, all of the finite RDFS
rules are APS. Therefore, the finite RDFS closure can be computed in parallel
using abox partitioning.

3.2 Parallel File I/O for RDF Data

As mentioned, we desire that our approach require no preprocessing of the data;
everything should be performed in parallel. Therefore, we must determine a way
to read and write RDF data in parallel. Most parallel I/O approaches use a
“chunking” method in which each process gets a fairly even number of bytes
from the data file. However, in RDF, the fundamental unit of data is the triple,
not the byte. RDF syntaxes are string-based and therefore cannot be divided
into mere bytes assuring that each process will get a set of complete triples.
Some RDF syntaxes such as RDF/XML [18] make this particularly difficult. If
an RDF/XML file is divided into portions of bytes, it becomes extremely difficult
to determine which triples are complete and which triples are incomplete in that
portion. We take advantage of the simple RDF syntax N-triples8.
8 http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples

690 J. Weaver and J.A. Hendler

In N-triples syntax, every triple occupies a single line. When a process reads
its portion of bytes, it can determine where the first complete triple begins by
locating the first end-line character, and it can determine where the last complete
triple ends by locating the last end-line character. Each process i sends the triple
fragment at the beginning of its bytes to process i−1 (process 0 exempted), and
each process uses this fragment to complete the last (partial) triple. In this
way, each process has a set of complete triples, and we assume that reading
a fairly equal number of bytes will generally result in a fairly even number of
triples.

This method of reading triple sets from an N-triples file on disk is used to
partition the assertional triples as described in line 2 of Algorithm 1. Thus, we
require no preprocessing of data, although we do require that it is in N-triples
format.

3.3 Distributed Blank Nodes

After partitioning the assertional triples, each process essentially has its own
RDF graph. Thus, some meaning is lost if blank nodes are distributed. In the
original graph, we know that two blank nodes are the same because they have
the same label within the same graph. Now, however, we have partitioned the
graph into smaller graphs, and there is no guarantee that two blank nodes with
the same label in different graphs are actually the same node. (Note that since
we require data in N-triples format, all blank nodes have labels.) To resolve this
problem, each blank node is replaced by a special URI with scheme “b” and
with URI body equal to the blank node identifier. This is done while read-
ing the data to ensure that we will always be able to refer to blank nodes
uniquely. For example, blank node :bnode123 would become <b:bnode123>.
Then, as the results are written to file, the special URIs are turned back into
blank nodes.

This handles the case of already-existing blank nodes, but it becomes more
difficult when applying rules lg, rdf2, and rdfs1 in which blank nodes are uniquely
allocated to literals. We use a similar approach as with the already-existing blank
nodes. We turn the literals into URIs by encoding the literal into an appropriate
blank node identifier and then using that identifier as the URI body of a special
URI with scheme “l.” We use a simple encoding that we call a z-encoding.

Definition 14. A z-encoding of a literal is generated as follows. The literal
is first represented in N-triples syntax (including unicode escapes). Then, each
character in the string that is not 0-9, A-Z, or a-y is replaced by “zHH” where
HH is the hexadecimal representation of the character.

Using the special l-scheme URIs with z-encoded labels ensures that each process
produces the same blank node identifier for each blank node allocated to a literal,
and the blank nodes are referred to in a consistent way across processes. These
URIs are also converted into blank nodes during output.

Parallel Materialization of the Finite RDFS Closure 691

4 Implementation

Our implementation is written in C using Redland9 for in-memory RDF stor-
age and query processing. We use Redland’s tree storage structure for efficient
loading and querying of RDF data. We implement each finite RDFS rule as a
SPARQL Protocol and RDF Query Language10 (SPARQL) query followed by a
function call. The SPARQL query serves to find all potential matches for the rule
and the function serves to further restrict the results if needed (e.g., the well-
formed requirement in rdf2) and produce the appropriate triples. Most rules
are implemented as a simple CONSTRUCT query followed by a function that
simply adds the resulting triples. For example, rdfs3 ’s query (prefix declarations
omitted) is:

CONSTRUCT { ?v rdf:type ?x } { ?a rdfs:range ?x . ?u ?a ?v }

This rule is simply executed and the results added to the process’ triples. A more
complicated case would be rule lg:

CONSTRUCT { ?u ?a ?l } { ?u ?a ?l . FILTER(isLITERAL(?l)) }

In this case, the query is used to find all triples with literal objects, but an
additional function is needed to actually allocate a blank node to ?l.

We use MPI for parallel I/O and interprocess communication (only necessary
when reading assertional triples). However, unlike the set-union operator on line
11 of Algorithm 1, we simply write the results of each partition/process to a
file without eliminating any duplicate triples between partitions. Ensuring that
only one process has any given triple (i.e., removing duplicates) would take away
from the embarrassingly parallel nature of the algorithm, and so to emphasize
the scalability of the algorithm, we do not remove duplicates. Writing to different
files allows for better parallel I/O performance since processes will not have to
compete for file locks, and all the files will be “self-describing” in the sense that
they each have the ontology. The downside, however, is that the overall resulting
data set will be larger than necessary, so we present an evaluation in the following
section for how much duplication of inferences actually occurs.

The overall process involves initialization of the environment, loading onto-
logical triples from an N-triples file, loading assertional triples from a different
N-triples file, performing inferencing, writing results to separate files (one per
process), and finalizing the environment.

5 Evaluation

For a data set, we generated the LUBM 10,000-university data set (LUBM10k)
which, when the generated OWL files are translated directly to N-triples files,

9 http://librdf.org/
10 http://www.w3.org/TR/rdf-sparql-query/

http://librdf.org/
http://www.w3.org/TR/rdf-sparql-query/

692 J. Weaver and J.A. Hendler

contains 1,382,072,494 triples. We broke LUBM10k down into subsets by contin-
ually halving the data set, generating data sets that we denote as LUBM10k/2,
LUBM10k/4, ..., LUBM10k/1024. LUBM10k/1024 is the smallest data set for
which we perform an evaluation, and it contains 1,349,680 triples. LUBM10k/4
is the largest data set for which we perform an evaluation, and it contains
345,518,123 triples.

We perform our evaluation on the Opteron blade cluster at Rensselaer Poly-
technic Institute’s (RPI) Computational Center for Nanotechnology Innova-
tions11 (CCNI) using only the large memory machines. Each machine is an IBM
LS21 blade server running RedHat Workstation 4 Update 5 with two dual-core
2.6 GHz AMD Opteron processors with gigabit ethernet and infiniband inter-
connects and system memory of 16 GB. We read and write files to/from the
large General Parallel File System12 (GPFS) which has a block size of 1024 KB,
scatter block allocation policy, and 256 KB RAID device segment size using a
RAID5 storage system.

We ran each job with an estimated time limit of 30 minutes which—due to
the nature of the job queuing system—lessened the waiting time for execution.
After 30 minutes, the scheduler terminates the job if it is not finished. We found
this to be reasonable since in our experience, if it took longer than 30 minutes,
it was usually because memory usage was at maximum capacity and the time to
finish (if possible) would far exceed 30 minutes due to swapping. When the job
is run, it has full control over its nodes. Four processes are on one machine since
each machine has four cores, and this causes contention for memory between
processes. The main source of contention, though, is among our processes and
among external processes in the CCNI that may create a high demand of service
on the disk, thus slowing disk I/O. We attempted to perform our evaluation
at times when the CCNI was least used to try and reduce competition for disk
service. Timings (wall clock, not just CPU) were measured using RDTSC (ReaD
Time Stamp Counter).

5.1 Performance

Since the algorithm is embarrassingly parallel, it is no surprise to see in Figure 1
that the time to inference halves as the number of processes doubles. Similarly,
as the size of the data set doubles, the time to inference doubles.13 On 128
processes, LUBM10k/1024 takes 1.10 seconds, and LUBM10k/4 takes 291.46
seconds.

Figure 2 shows that the overall time of the computation is generally linear,
but as the smallest data set is run on a larger number of processes, the speedup

11 http://www.rpi.edu/research/ccni/
12 http://www-03.ibm.com/systems/clusters/software/gpfs/index.html
13 While LUBM data is well-structured and evenly distributed, data that is more

uneven (high skew) would likely exhibit similar linear scalability, especially as the
number of processes increases. Further performance evaluation using different data
sets is part of future work.

http://www.rpi.edu/research/ccni/
http://www-03.ibm.com/systems/clusters/software/gpfs/index.html

Parallel Materialization of the Finite RDFS Closure 693

Fig. 1. Time for inferencing only, averaged across processes, for different-size data sets
and varying number of processes

Fig. 2. Overall time averaged across processes, for different-size data sets and varying
number of processes

Fig. 3. Breakdown of times for computing finite RDFS closure on LUBM10k/1024 for
varying number of processes

694 J. Weaver and J.A. Hendler

decreases. This behavior is likely caused by the small amount of work per process
when a larger number of processes are employed. Figure 3 shows this more
clearly for LUBM10k/1024 on varying numbers of processes. Time to infer tends
to dominate the computation time and decreases as the number of processes
increases. The time to initialize is generally very small, but increases with the
number of processes. For 128 processes, it took roughly the same amount of time
to infer as it did to initialize the environment. Therefore, as the amount of work
per process gets smaller, the overall time reaches the overhead cost of computing
in parallel.

5.2 Inferences Produced

As mentioned in Section 5, our implementation does not eliminate duplicate
triples in different partitions; instead, for performance, we simply have each
process write all of its triples to separate files. Therefore, we present an evaluation
on how many duplicate inferences are produced by this approach as we scale
across number of processes and data set size. When run with one process, no
duplicates are created, and so we use the number of inferences from one process
as our standard for comparison. However, only the three smallest data sets could
be run on one process, so we provide evaluation only for those three data sets. For
evaluation purposes, we count the axiomatic triples as inferences since they are
added during the inferencing process, and the axiomatic triples are duplicated
on all partitions.

Table 1. Information about data sets and inferences produced. Note that inferences
are unique only for a single process.

Data sets # Assertions
Inferences for Varying Number of Processes

1 2 4 8 16 32 64 128
10k/1024 1,349,680 1,200,186 1,205,309 1,215,685 1,235,831 1,274,320 1,339,677 1,446,088 1,621,892
10k/512 2,699,360 2,397,066 2,402,267 2,412,473 2,433,087 2,473,273 2,549,186 2,678,194 2,888,254
10k/256 5,398,720 4,785,083 4,790,285 4,800,510 4,821,327 4,861,330 4,940,744 5,091,493 5,348,844
10k/128 10,797,441 9,572,280 9,582,529 9,603,158 9,644,372 9,725,863 9,885,081 10,184,984
10k/64 21,594,882 19,169,424 19,210,312 19,291,708 19,453,885 19,774,980
10k/32 43,189,765 38,337,401 38,420,096 38,583,284 38,906,839
10k/16 86,379,530 76,671,931 76,835,141 77,163,076
10k/8 172,759,061 153,348,394 153,676,871
10k/4 345,518,123 306,700,784

Table 1 shows the number of inferences produced for different data sets and
number of processes. Note that only the numbers of inferences for one process are
unique inferences only (no duplicates). In Figure 4, the percentage of duplicate
inferences grows super-linearly at first (across processes) but soon begins to
taper off. As the data set doubles in size, the percentage of duplicates seems
to halve; this indicates that duplicates result from fairly static information that
somehow ends up in all partitions. This would include ontological data, axiomatic
triples, and inferences that proliferate fairly easily. The rules that created the
most duplicate inferences are those that most users would probably choose to

Parallel Materialization of the Finite RDFS Closure 695

Fig. 4. The percentage of inferences duplicated for the three smallest data sets for
varying number of processes

exclude such as rdfs4a/b (everything is a rdfs:Resource) and rdfs1 (all literals are
rdfs:Literals). The exception, though, is rdfs9 which infers rdf:type triples from
subclass hierarchy. Interestingly, the only rule for which there were any inferences
and no duplicate inferences was rdfs7, inferring statements from subproperty
hierarchy.

6 Future Work

We see two general directions for future work: scalability and expressivity.
Scalability can be improved by using more efficient in-memory representations

of RDF data and by scaling to more processes. In the former case, we hope to
employ BitMat [19], a very compact in-memory representation of RDF that also
allows for efficient, basic graph pattern querying. In the latter case, we would like
to move our code to a more scalable environment like the Blue Gene/L (BG/L)
at RPI’s CCNI. Our system could also be extended to use a pipelining approach
allowing us to scale to data sets which are limited only by disk space. We could
simply read in as much of the assertional triples as will fit in a single process,
perform inferencing, write results, and then request more assertional triples from
disk.

Expressivity can be improved by simply adding more rules that fit the M1
classes described thus far and also by discovering more classes of rules that are
APS. In the former case, we have already identified a handful of OWL2RL14 rules
that can be supported in this paradigm (e.g., symmetric properties, equivalent
classes, has-value restrictions, etc.), although a multiple-pass approach may be
needed instead of the single pass approach in Algorithm 1. We plan to add sup-
port for these features in the near future. In the latter case, we are investigating
with other colleagues how to handle joins among triple patterns in such a cluster
environment so that we can handle non-M1 rules.
14 http://www.w3.org/TR/2009/WD-owl2-profiles-20090421/#OWL_2_RL

http://www.w3.org/TR/2009/WD-owl2-profiles-20090421/#OWL_2_RL

696 J. Weaver and J.A. Hendler

We also believe that this approach my be useful in a MapReduce implementa-
tion of an RDFS reasoner. In the map phase, ontological triples could be mapped
to all reducers and assertional triples to only one reducer each; then, in the
reduce phase, the rules can be applied to all the triples mapped to that parti-
tion. Of course, considerations may have to be made to ensure that the partitions
are not overloaded with too many triples.

7 Conclusion

We have defined a partitioning scheme—abox partitioning—and five classes of
rules which can be used to perform complete parallel inferencing on abox par-
titions. We showed that all of the finite RDFS rules are abox partitioning safe
and derived an embarrassingly parallel algorithm for producing the finite RDFS
closure. We implemented a C/MPI version of the algorithm and performed an
evaluation on a cluster of large memory Opteron machines that showed linear
scaling for the inferencing time. We also showed that although some inferences
are duplicated, the percentage is generally small for larger data sets. Our results
exceed the results reported by related work in that we scale to 128 processes,
producing a closure of roughly 650 million triples from an initial data set of
roughly 345 million triples in only 8 minutes and 25 seconds, for which the
actual inferencing time was only 4 minutes and 51 seconds. To our knowledge,
no other system exists that can produce the (finite) RDFS closure on such large
data sets in so little time.

Acknowledgements. We thank Medha Atre and Gregory Todd Williams for
their insightful comments in reviewing this paper.

References

1. Hayes, P.: RDF Semantics (2004),
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

2. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Us-
ing Networked Workstations and Parallel Computers, 2nd edn. Prentice-Hall, En-
glewood Cliffs (2005)

3. Anadiotis, G., Kotoulas, S., Oren, E., Siebes, R., van Harmelen, F., Drost, N.,
Kemp, R., Maassen, J., Seinstra, F.J., Bal, H.E.: MaRVIN: a distributed platform
for massive RDF inference (2008), http://www.larkc.eu/marvin/btc2008.pdf

4. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
MaRVIN: A platform for large-scale analysis of Semantic Web data. In: Proceeding
of the WebSci 2009: Society On-Line (March 2009)

5. Soma, R., Prasanna, V.K.: A Data Partitioning Approach for Parallelizing Rule
Based Inferencing for Materialized OWL Knowledge Bases. Technical report, Uni-
versity of Southern California (2008)

6. Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge Bases. In:
ICPP 2008: Proceedings of the 2008 37th International Conference on Parallel
Processing, Washington DC, USA, pp. 75–82. IEEE Computer Society Press, Los
Alamitos (2008)

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.larkc.eu/marvin/btc2008.pdf

Parallel Materialization of the Finite RDFS Closure 697

7. ter Horst, H.J.: Combining RDF and part of OWL with rules: Semantics, decid-
ability, complexity. In: International Semantic Web Conference, pp. 668–684 (2005)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),
158–182 (2005)

9. Fang, Q., Zhao, Y., Yang, G., Zheng, W.: Scalable Distributed Ontology Reasoning
Using DHT-Based Partitioning. In: Domingue, J., Anutariya, C. (eds.) ASWC
2008. LNCS, vol. 5367, pp. 91–105. Springer, Heidelberg (2008)

10. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query An-
swering on Top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 499–516. Springer, Heidelberg (2008)

11. Oren, E., Gueret, C., Schlobach, S.: Anytime Query Answering in RDF through
Evolutionary Algorithms. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 98–113. Springer, Heidelberg (2008)

12. Rudolph, S., Tserendorj, T., Hitzler, P.: What is Approximate Reasoning? In:
Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 150–164. Springer,
Heidelberg (2008)

13. Bock, J.: Parallel Computation Techniques for Ontology Reasoning. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 901–906. Springer, Heidelberg (2008)

14. Liebig, T., Muller, F.: Parallelizing Tableaux-Based Description Logic Reasoning.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS,
vol. 4806, pp. 1135–1144. Springer, Heidelberg (2007)

15. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning on a
Billion Triples. In: Proceedings of Billion Triple Semantic Web Challenge (2008)

16. Hogan, A., Harth, A., Polleres, A.: SAOR: Authoritative Reasoning for the Web.
In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 76–90.
Springer, Heidelberg (2008)

17. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the
Web. International Journal on Semantic Web and Information Systems (2009)

18. Beckett, D.: RDF/XML Syntax Specification, Revised (2004),
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

19. Atre, M., Srinivasan, J., Hendler, J.A.: BitMat: A Main Memory RDF Triple Store.
Technical report, Rensselaer Polytechnic Institute (January 2009)

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

Live Social Semantics

Harith Alani1, Martin Szomszor1, Ciro Cattuto2, Wouter Van den Broeck2,
Gianluca Correndo1, and Alain Barrat3,2

1 Intelligence, Agents, Multimedia
School of Electronics and Computer Science

University of Southampton, Southampton, UK
{h.alani,mns2,gc3}@ecs.soton.ac.uk

2 Complex Networks and Systems Group
Institute for Scientific Interchange (ISI) Foundation, Turin, Italy

ciro.cattuto@isi.it, wouter.vandenbroeck@isi.it
3 Centre de Physique Théorique (CNRS UMR 6207), Marseille, France

alain.barrat@cpt.univ-mrs.fr

Abstract. Social interactions are one of the key factors to the success of
conferences and similar community gatherings. This paper describes a novel ap-
plication that integrates data from the semantic web, online social networks, and a
real-world contact sensing platform. This application was successfully deployed
at ESWC09, and actively used by 139 people. Personal profiles of the partici-
pants were automatically generated using several Web 2.0 systems and seman-
tic academic data sources, and integrated in real-time with face-to-face contact
networks derived from wearable sensors. Integration of all these heterogeneous
data layers made it possible to offer various services to conference attendees to
enhance their social experience such as visualisation of contact data, and a site to
explore and connect with other participants. This paper describes the architecture
of the application, the services we provided, and the results we achieved in this
deployment.

1 Introduction

Most conference attendees would agree that networking is a crucial component of their
conference activities. Conferences, and similar events, are indeed often judged not only
by their popularity or scientific qualities, but also by the social experiences they pro-
vide. Consequently, conference organisers are keen to enhance the social experience by
offering activities or technologies that encourage and support social interactions.

We strove to significantly further the state of the art by developing a Semantic Web
application that integrates (a) the available wealth of linked semantic data, (b) the rich
social data from existing major social networking systems, and (c) a physical-presence
awareness infrastructure based on active radio-frequency identification (RFID). The
resulting prototypical application was deployed at the 2009 European Semantic Web
Conference (ESWC09).

Making Use of Linked Data. The amount and variety of semantic data available on the
web is continuously growing. The Linked Data initiative has been instrumental in this.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 698–714, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Live Social Semantics 699

Data from various conferences (e.g. ESWC, ISWC, WWW) has been consistently col-
lected and published in recent years [12], and can be retrieved from sites such as data.
semanticweb.org. This data has been merged with data from several publication
databases (e.g. CiteSeer, DBLP) by the RKBExplorer system [5]. From this data we
inferred Communities of practice (COP), which offer a first insight into the scientific
networks of the participants. We used this to provide awareness of the presence of their
COP members at the conference, and of any talks they might be giving there.

Mining folksonomies. The tags that people use on various Web 2.0 sites tend to repre-
sent their personal interests [10]. Avid users are often active across several such sites,
each of which solicits different aspects of a user’s interests. If these are brought to-
gether, a far richer understanding of a user’s interests can be obtained and subsequently
used for superior personalisation, recommendation or awareness services [17]. Users
often carry some of their tagging selections and patterns across different folksonomies
[18]. Retrieving interests of conference attendees from multiple social sites, interests
that might transcend the academic or scientific domain, could lead to more interesting
matchmaking services. To this end, we generated Profiles of Interests (POI) for partici-
pants to allow people to explore each others’ interests.

Meshing online and real-life social networks. Social relationship data from online
social networks could provide a useful substrate for constructing social services. How-
ever, since such networks generally capture only part of the actual social network,
meshing this data with knowledge of real-life social activities would greatly improve
this potential. To this end, we deployed a novel active-RFID based sensor platform [1]
that is capable of detecting real-life social interactions in terms of sustained face-to-face
proximity events. This not only enabled us to provide participants with various novel
services, such as logs and summaries of their social interactions, but also to integrate
this with information from people’s social profiles of interest, scientific communities
of practice, and their online social contacts. This meshing not only leads to superior
services, but can also facilitate the extension of both networks, online as well as of-
fline [14].

The following Section sheds some light on related work. A full description of the
Live Social Semantics application is given in section 3. Section 4 covers various aspects
of the results of the application deployment at ESWC. Discussion and future work are
given in Section 5, followed by conclusions in Section 6.

2 Related Work

The interplay of networking and social contact at a conference gathering was initially
investigated in the context of opportunistic networking for mobile devices [9] by
using wearable Bluetooth-enabled devices. Subsequent work focused on sensing organ-
isational aspects [4] by using Bluetooth-enabled mobile phones, and on characterising
some statistical properties of human mobility and contact [20,15]. All of these early ex-
periments involved a small number of participant, and could not assess face-to-face hu-
man contact in a large-scale setting, as they mostly relied on Bluetooth communication.

data.semanticweb.org
data.semanticweb.org

700 H. Alani et al.

Recently, the SocioPatterns project1 investigated patterns of human contact at large-
scale social gatherings by deploying a distributed RFID platform that is scalable and
attains reliable detection of face-to-face interactions as a proxy of social contact [1].
The application presented here leveraged that platform to mine real-time social
contacts.

IBM used RFIDs to track attendees of a conference in Las Vegas in 2007. The devices
were used to track session and meal attendance [20]. The information they collected
were limited to the name, title and company of attendees. No social or semantics data
were collected nor used. Fire Eagle2 by Yahoo! is a service that detects the geographical
location of users (e.g. based on wifi points), and allows them to share it with their
online friends. To the best of our knowledge, our application is the first where real-
world face-to-face contacts are mashed up in real time with semantic data from on-line
social networking systems.

The novelty of the user profiling work reported here is in the amalgamation of multi-
ple Web 2.0 user-tagging histories to build up personal semantically-enriched models of
interest. This process involves dealing with several problems, such as filtering of tags,
disambiguating them, associating tags with semantics, and identifying interests.

The free nature of tagging generates various vocabulary problems: tags can be too
personalised; made of compound words; mix plural and singular terms; they can be
meaningless; they can be synonymous, etc. [11,6,7]. This total lack of control obstructs
its analysis [10]. In our work, we follow the approach of cleaning existing tags using
a number of term filtering processes, similar in spirit to those used in [8]. Our filtering
process is fully described in [3,18] and produces a cleaned tag cloud for each user.

Tag ambiguity is a well recognised problem, yet still under researched. Clustering
of tags was investigated for tag disambiguation [2], where similar tags were grouped
together to facilitate distinguishing between their different meanings when searching.
Similar clustering techniques were investigated to automatically identify emergent com-
munities that correspond to a tag’s different interpretations [21]. While such techniques
have demonstrated that the underlying folksonomy structure does contain information
that can enable automatic disambiguation, they are too computationally expensive and
lack any semantic grounding. The latter has been investigated in [16] where clusters of
related tags are grounded to Semantic Web concepts.

The Meaning Of A Tag (MOAT) framework is a system in which users can manually
select appropriate semantic web URIs for their tags from existing ontologies [13]. In
contrast, the work reported in this paper explores a strategy for the automatic selection
of URIs to maintain the essential simplicity of tagging, an approach also followed in
[19] where DBPedia3 concept URIs are automatically suggested for Delicious4 tags.
We make use of our own tagging and disambiguation ontologies since the ones pro-
vided by MOAT do not maintain tag ordering - an important feature when automatically
determining tag semantics.

1 http://www.sociopatterns.org
2 http://fireeagle.yahoo.net/
3 http://dbpedia.org/
4 http://delicious.com/

http://www.sociopatterns.org
http://fireeagle.yahoo.net/
http://dbpedia.org/
http://delicious.com/

Live Social Semantics 701

3 Live Social Semantics Application

At ESWC09, the semantic web, the social web, and the physical world were brought to-
gether to create a rich and integrated network of information. Acquiring and integrating
these heterogeneous, but overlapping, data sources enabled us to provide a new experi-
ence and services to conference attendees. The main goal was to encourage conference
participants to network, to find people with similar interests, to locate their current
friends, and to make new ones.

The Live Social Semantics application was deployed for 4 days (1-4 June 2009)
during the European Semantic Web Conference (ESWC), which was located in Crete.
More than 300 people attended the conference, out of which 187 accepted to participate
in using our application. Each participant was issued with a uniquely numbered RFID
badge. Users were asked to enter their RFID ID number on a website dedicated to
this social application. On this website, users were also able to provide their Delicious,
Flickr, and lastFM5 account names, as well as activating a Facebook application that
collected their social contacts. Out of the 187 who collected an RFID badges, 139 of
them also created accounts in our application site (see Section 4).

3.1 General Architecture

Data from various Web 2.0 sources were imported using APIs or screen scraping, and
subsequently converted RDF. The aim was to provide a service endpoint that supports
the collection and reasoning over the data. Figure 1 provides a global picture of the Live
Social Semantics framework. The vertical axis partitions the diagram according to two
spaces: the virtual world (i.e. data about individuals held in the web), and the real world
(i.e. RFID contact data). Data in the virtual world is sourced from social networking
sites, to obtain social tagging data and contact networks, as well as the Semantic Web
(SW), to obtain information about publications, projects, and the individuals COP (via
RKBExplorer and semanticweb.org). All data is sourced directly from linked data sites,
or converted to a linked data representation via the Extractor Daemon, and stored in
a triple store (center, right of diagram). The Profile Builder (center, top of diagram)
processes an individual’s tagging activities and links them to DBpedia6 URIs using
the TAGora Sense Repository (sec. 3.4). Similarly, their favourite music artists from
LastFM are linked to DBpedia URIs using DBTune.7 In turn, the Profile Builder auto-
matically suggests to users a list of interests that they can edit, and elect to expose to
other participants. DBPedia was our choice lingua franca for representing participant’s
interests.

Data from the real world, i.e. that representing the social interactions of the confer-
ence participants, is collected and processed by a local server that communicates via
RDF / HTTP with the triples store. A custom Contact ontology8 was used to represent
social interactions between individuals, recording the total contact time on a daily basis.

5 http://last.fm/
6 http://dbpedia.org
7 http://dbtune.org/
8 http://tagora.ecs.soton.ac.uk/schemas/LiveSocialSemantics

http://last.fm/
http://dbpedia.org
http://dbtune.org/
http://tagora.ecs.soton.ac.uk/schemas/LiveSocialSemantics

702 H. Alani et al.

Delicious

Flickr

LastFM

Facebook

semanticweb.org

rkbexplorer.com

dbpedia.org

dbtune.org

TAGora Sense
Repository

JXT Triple Store

Extractor
Daemon

Connect API

W
eb

-b
as

ed
 S

ys
te

m
s

Re
al

 W
or

ld

Visualization Web Interface Linked Data

Local
Server

RFID
Readers

Real-World
Contact Data

Social
Semantics

Communities of Practice

Social Tagging
Social Networks

Contacts

mbid -> dbpedia uri
tag -> dbpedia uri

Profile BuilderPublications

Ag
gr

eg
at

or

RD
F

ca
ch

e
RFID
Badges

Fig. 1. Live Social Semantics Architecture

3.2 Semantically Interlinked Personal Data

To provide a practical framework that supports the integration of personal data, we
employed a technique we refer to as Distinct Separated Identity Management (DSIM).
DSIM provides each participant with a foaf:Person URI, that can be linked with other
Semantic Web URIs that expose different metadata about the individual, whether that be
an external linked data source such as data.semanticweb.org, or internally created data
such as the contact data derived from RFID badges. This means that individuals contact
data is stored in a separate graph to that of their Facebook friends, Delicious tags, COP,
etc. The advantage of this approach is that it closely approximates a distributed linked
data scenario (i.e queries must be expanded and run over multiple SPARQL endpoints,
contact networks must be flattened), as well as allowing different processes to update
the data model asynchronously. This asynchronous nature proved particularly useful
when managing the real-time contact data since it enabled separate systems to simply
push/pull data whenever needed, whether that be the local RFID server updating the
central Triple Store with participants contact data, or the inclusion of Social Semantics
(i.e. social networking contacts and profiles) in the visualisation client.

3.3 Real-Time Social Contacts

In order to mine the real-world interactions of conference attendees, we deployed the
hardware and software infrastructure developed by the SocioPatterns project [1]. The
name badges of those attendees who volunteered to become users of the application
were equipped with active RFID badges.9 The RFID badges engage in multi-channel

9 Each RFID is equipped with a common button-size battery cell that can last for one week on
average.

Live Social Semantics 703

bi-directional radio communication, and by exchanging low-power signals which are
shielded by the human body, they can reliably assess the continued face-to-face prox-
imity of two individuals.

We assume continued face-to-face proximity, within a distance of approximately 1
meter, to be a good proxy for a social interaction between individuals. Contacts are not
recorded if people are facing the same direction (e.g. listening to a speaker), unless they
turn and face each other for around 10 seconds or more. This kind of resolution is a
result of the particular distributed sensing technology we use here, which pushes the
state of the art of RFID platforms.

The real-world proximity relations are relayed from RFID badges to RFID readers
installed in the conference venue. The readers encapsulate the RFID packets into UDP
packets and forward them over a local Ethernet network to a central server. There, the
UDP packets from RFID badges are aggregated and fed to a post-processing server
that builds and maintains a real-time graph representation of the proximity relations
among the tagged attendees. This instantaneous contact graph is represented as a time-
dependent adjacency matrix At

ij , such that At
ij = 1 if individuals i and j are in contact

at discrete time t, and At
ij = 0 otherwise. The adjacency matrix was updated every 5

seconds.
The post-processing server also maintains a weighted graph representation of their

cumulative proximity relations of the tagged attendees over time. The (normalized)
adjacency matrix of the cumulative graph during the time interval [t1, tn] is defined as
Cij(t1, tn) = (1/n)

∑n
k=0 A

tk

ij . The matrix element Cij(t1, tn) ∈ [0, 1] is the fraction
of application time that individuals i and j spent together. Periodically, the cumulated
proximity graph is thresholded, and those relations for which Cij > C0 are represented
as a set of RDF triples describing the cumulated real-world proximity of attendees, and
periodically uploaded to the triple store via RDF / HTTP.

The real-world proximity relations of the instantaneous proximity graph are mashed
up by the server with the web-based attendee relations that it periodically pulls from the
triple store. This allows the visualisation clients to display real-world relations in the
context of their on-line counterparts.

Moreover, the post-processing server uses the real-world and web-based relations to
compute simple recommendation schemes. For example, if two attendees are in contact
at a given time, the server provides access to those attendees who may not be present
at the same time, but are nevertheless connected to the two users in one of the web-
based social networks covered in the application. The visualisation clients (specifically,
the user-centerer views) can then use this information to enhance the presented infor-
mation and support browsing of the social network. More precisely, when creating a
personalised view for attendee u0, the system considers the set V of attendees who are
currently in contact with u0, or who have been (significantly) in contact with u0, i.e.,

V(u0) = {v ∈ U |Au0,v �= 0 ∨ Cu0,v > C0} ,

where U is the set of all attendees. Subsequently, the system considers the neighbors
of attendees V along the web-based social networks obtained from the triple store, and
builds a new set of attendees W such that members of W are connected (along web-
based systems) to both a member of V and to the focused attendee u0, closing triangles

704 H. Alani et al.

that have one edge grounded in (current or cumulated) physical proximity, and two
edges grounded in on-line relationships. The instantaneous contact graph, the cumu-
lated contact graph, and the web-based graphs are then restricted to the set u0 ∪V ∪W
and sent to the visualisation clients, that lay them out for the final user.

Proximity data from RFID devices were taken in the conference area only, covering
conference sessions and coffee breaks, but excluding breakfasts, lunches, and evenings.

3.4 Profiles of Interest

In previous work [17], we devised an architecture to automatically generate a list of
DBpedia URIs to represent interests a person might have by processing their social
tagging activity. Under the assumption that the tags used most often by an individual
correspond to the topics, places, events and people they are interested in, we sought
to provide a novel dimension to the social interaction at the conference by providing
people with a basis to expose their interests, both professional and personal, and see
those of others at the conference. Central to this idea is that these profiles can be built
automatically, only requiring a short verification phase from the user.

Within the Live Social Semantics architecture, any social tagging information from
Delicious and Flickr is collected and converted to an RDF representation (according to
the TAGora tagging ontology10) by the Extractor Daemon (Figure 1). For each URI that
represents a user’s tag (for example a Delicious tag ontologymapping), a property is
created that links it to the Global Tag in the TAGora Sense Repository (TSR).11 When
queried with a tag, the TSR will attempt to find DBpedia.org URIs and Wordnet Synsets
that correspond to the possible meanings of the tag. This linked data resource provides
information about the possible senses of a tag with mappings to DBpedia resources.
Figure 2 contains example URIs that show how the FOAF file produced by our system
for Martin (http://tagora/eswc2009/foaf/4) is linked to the interest Semantic
integration via the delicious tag ontologymapping.

Profile Building Algorithm. To build a Profile of Interests (POI), we first check to see
if the user has a LastFM account. Using DBTune, a linked data site providing metadata
about music, we can map the MusicBrainz12 ID associated to their top artists in LastFM
to a resource in DBpedia. The top 5 artists with a DBpedia mapping are added to the
user’s POI. The second phase of the profile generation procedure is to map the user’s
tags to DBpedia resources that represent their topics of interest. This is achieved with
the following steps:

1. Disambiguate Tags. When tags are associated to multiple senses (i.e. more than
1 DBpedia resource), we compare the similarity (using a cosine measure) of the
user’s cooccurrence vector for that tag (i.e. all other tags that occur in the same
post, and their frequencies) against the term frequencies associated with the pos-
sible DBpedia senses. If one of the similarity scores is above a threshold value,

10 http://tagora.ecs.soton.ac.uk/schemas/tagging
11 http://tagora.ecs.soton.ac.uk/
12 http://musicbrainz.org/

http://tagora.ecs.soton.ac.uk/schemas/tagging
http://tagora.ecs.soton.ac.uk/
http://musicbrainz.org/

Live Social Semantics 705

tagora:martinszomszor/tag/ontologymapping tagora:tag/ontologymapping

dbpedia:resource/Semantic_integration

tagora:eswc2009/foaf/4

tagora:delicious/martinszomszor

tagging:UserTag

foaf:interestowl:sameAs

tagging:usesTag

tagging:hasGlobalTag

disam:hasPossibleSense

TAGora Sense Repository

"Martin Szomzor"
foaf:name

foaf:Person
tagging:Tagger

foaf:Person

dbpedia:Resource

tagging:GlobalTag

tagora = http://tagora.ecs.soton.ac.uk/
tagging = http://tagora.ecs.soton.ac.uk/schemas/tagging
disam = http://tagora.ecs.soton.ac.uk/schemas/disambiguation

Fig. 2. Linking participants to their interests. The boxes in the diagram represent linked data URIs
that provide metadata about various aspects of a participant’s social networking data. They link
participants to each other through the contact data exposed in various social networking sites, as
well as associating them with interests that have been mined from their tagging activity.

(0.3 in this case), we conclude that this is the correct sense for that tag. If more than
one (or zero) senses score above the threshold, we do not associate a meaning to
the tag. By iterating through all tags associated to a user (i.e. through Delicious or
Flickr), we are able to build a candidate resource list C.

2. Calculate Interest Weights. For each DPpedia resource r ∈ C, we calculate a
weight w = fr ∗ ur, where fr is the total frequency of all tags disambiguated to
sense r, and ur is a a time decay factor. This factor ur = &days(r)/90'. Hence tags
used within the last 3 months are given their total frequency, tags used between 3
and 6 months ago are given 1/2 their frequency, 6 - 9 months a third, etc.

3. Create Interest List. If more than 50 candidate resources have been found, we rank
them by weight and suggest the top 50. Since users are required to edit and verify
this list, we believe it important to keep the number of suggestions to a reasonable
amount.

Such semantic POIs could be used to find users with similar interests.

3.5 Visualisation

Two kinds of real-time visualisations were provided. The first, the spatial view, was
publicly displayed on large screens in the main lobby area. The second, the user focus
view, was accessible by means of a web browser on the conference LAN, and is linked to
from each user’s account page on the application site. Both are dynamic visualisations
driven by regular updates received through a TCP socket connection with the local
post-processing server.

Spatial view. This view provides an overview of the real-time contact graph. It repre-
sents the RFID-badge wearing participants within range of the RFID readers, as well
as ongoing social contacts (see section 3.3). Each participant is represented by a la-
belled yellow disc or, when available, by the Facebook profile picture. The contacts are
represented by yellow edges, whose thickness and opacity reflects the weight of the con-
tact. The edges are decorated, where applicable, with small Facebook, Flickr, Delicious,

706 H. Alani et al.

Fig. 3. Screenshot of the spatial view grabbed during a session

lastFM or COP icons, marking the occurrence of that relationship in the respective
network. This approach constitutes a projection of said networks onto the real-time
contact network.

The SocioPatterns project is primarily concerned with the real-time detection of the
contact topology. The precise localisation of the participants in the physical space is
of lesser concern. However, a coarse-grained localisation of the participants with re-
spect to the RFID readers is possible. This enabled us to not only represent the contact
topology, but also give an indication of which area the participants are in. To this end,
the RFID readers were represented by labelled grey shapes, equiangularly laid out on a
circumcentric oval, and the participants’ shapes are positioned near or in between the
readers’ marks they are close to. This approach adds spatial structure to the contact
graph representation.

User-focus view. This view displays the social neighbourhood of the focussed upon
participant. It represents all participants with whom this user has ongoing contact or
had significant (cumulative) contact with so far. All physical interactions between these
participants are shown as edges, the current ones in yellow, the historical in grey.

This view furthermore attempts to close relevant triangles, by which we mean that
all participants that are in some way linked to both the focus participant and any of the
initially included participants (i.e. those with whom the focus participant has or had
contact), are also included, as well as the concerned links, decorated with the relevant
icons like in the spatial view. The objective was to provide the users, after focussing
upon themselves, with an overview of that subsection of their social neighbourhood
that is relevant for their networking activities at that moment.

3.6 Privacy

Permission was sought from all participants for collecting and using their data. A form
was prepared which explained what the data is, how it was going to be used, and for how

Live Social Semantics 707

Fig. 4. User-focus visualisation in which HAlani has the focus. He has ongoing contacts with
MMattsen and an anonymous user with badge id 1103, as indicated by the yellow edges. These
two users are also in contact, and they are Flickr friends as indicated by the yellow edge and the
Flickr icon that decorates it. There has been significant contact between HAlani and CCattuto, as
indicated by the thick grey line. They are also Facebook friends and share a COP. Both WVan-
denBr and MSzomszor were included in order to close relevant triangles. The cyan coloured
edges indicate that the users are (only) linked in one or more of the social or COP networks.

long. Users were shown how the RFID badges are used, and the geographical limits of
where their face-to-face contacts can be detected (conference building). When creating
an account on the application site, each user was given the option of destroying their
data after the end of the event.

As explained in Section 3.1, a POI was generated for each user who declared an
account in any of the tagging systems we supported (Delicious, Flickr, and lastFM). To
ensure that the users are happy with those interests to be viewed by others, each user
was asked to verify and edit their list of interests. These profiles only become visible to
other users once their owners activate them.

As an extra security, all data from the RFID devices were encrypted to ensure that
could only be processed by our systems. All the data gathered by this application were
stored in private triplestores, only accessible to the developers of this application.

4 Results

In this section we will report on various results of the application launch at ESWC09;
numbers of participants and their shared networking accounts, interest profile genera-
tion, RFID usage, and privacy outcomes.

4.1 Participation

Out of the 305 conference attendees, 187 of them took part in Live Social Semantics.
Out of these 187 users, 139 of them managed to create an account on the application

708 H. Alani et al.

Table 1. Number of social networking accounts entered by users into the application site

Account Facebook Delicious lastFM Flickr Total
Quantity 78 59 57 52 246

site, Hence about 26% of the users who collected an RFID badge did not submit any
information about themselves (e.g. name, email, social network accounts). Face-to-face
contacts of such users were captured, but were not associated with any personal profiles.

4.2 Social Networking Accounts

The application site allowed users to declare their accounts on Delicious, Flickr, lastFM,
and Facebook. Table 1 shows how many social networking accounts were entered into
our system by all our 139 registered participants.

Table 2 shows that about 35% of our registered users did not declare any social
networking accounts (49 users). It also shows that over 61% of our 139 users had more
than one social networking account.

Table 2. Number of users who entered 0,1,2,3 or 4 social networking accounts into the Live
Social Semantics site

Number of Social Networking Accounts 0 1 2 3 4 Total
Number of Users 49 36 28 13 13 139

After the conference, we emailed all 49 users who did register on our site, but did
not enter any social networking accounts. Aim was to understand the reasons behind
that. Table 3 lists the 22 responses we received so far. Out of those 22 participants, 9
(41%) of them simply did not have any social networking accounts, and only 1 of these
9 indicated that s/he have an almost empty Facebook account. Four participants (18%)
indicated that they use other networking accounts, (LinkedIn was named twice). Only
2 (9%) of the 22 replies we received cited privacy reasons for not sharing their social
networking accounts. Six replies (27%) picked answer d, and four of them blamed the
slow internet connection at the conference venue. One participant (5%) picked e for
being ”too busy’ during the conference’.

Table 3. Reasons why some users didn’t enter any social network accounts to our application site

Option Reason No. Users %
a don’t have those accounts (or rarely use them) 9 41%
b use different networking sites 4 18%
c don’t like to share them 2 9%
d didn’t get a chance to share them (eg no computer, slow internet) 6 27%
e other 1 5%

Total 22 100%

Live Social Semantics 709

Table 4. Statistics of the profile generation, editing, and saving

Global Delicious Flickr
Concepts Generated 1210 922 288
Concepts Removed 247 156 91
Concepts Added 19
Concepts Saved 982 766 197

4.3 Social Profiles-of-Interest Results

Out of the 90 people who entered at least one social networking account (Table 2), 59
of them entered at least one account from Delicious, Flickr, or lastFM (remaining 31
only entered Facebook accounts, which we do not use when generating POIs). Although
our profile building framework had the potential to utilise all three of these accounts,
the linked data site DBTune was offline for the duration of the conference, and hence,
we were unable to associate a user’s favourite lastFM artists to a DBPedia concept. 41
individuals viewed and saved their POI, of which 31 had a non-empty profile generated.
Empty profiles were generated for a number of users who registered that had a very
small or empty tag-cloud. Table 4 summarises the results in terms of the number of
concepts automatically generated, the number that were removed manually by users,
the number that were added manually, and the size of the final profile they saved.

A total of 1210 DBPedia concepts were proposed (an average of 39 per person across
the 31 non-empty profiles), out of which 247 were deleted. While it would be useful to
know exactly why users deleted a concept, whether it be simply inaccurate (i.e. incorrect
disambiguation), it didn’t reflect an actual interest (i.e. a very general concept), or it
was something they wished to keep private, we considered it too much of a burden
to ask users this question when editing their profiles. The total number of concepts
deleted was 20% of those suggested. Although a facility was included on the website
for users to add their own interests, few did - only 19 new concepts were added. When
comparing the results from Delicious and Flickr, we see that 17% of concepts proposed
from Delicious Tags were deleted, and 32% respectively for Flickr tags. This suggests
that the accuracy of topics harvested from Delicious tags was more accurate than those
from Flickr. Inspection of the concepts removed shows that Flickr was likely to suggest
concepts referring to years and names.

4.4 RFID Results

Data from RFID badges were taken for a continuous interval of about 80 hours, fully
covering the three days of the ESWC09 main track. During that interval, one snapshot
of the instantaneous contact graph was recorded every 5 seconds, for a total of 57, 240
snapshots covering the approximate location and the proximity relations of 174 RFID
devices13.

The first column of Table 5 reports the fraction of possible pair-wise contacts that
involve face-to-face proximity for a time interval longer than a given threshold. As

13 Out of the 187 RFIDs we gave out, 13 were used during workshops only.

710 H. Alani et al.

Table 5. Properties of the cumulative contact graph, as a function of the contact duration thresh-
old. The edge fraction is the percentage of possible edges that are present. The average degree is
the average number of contacts to distinct attendees. Clustering is the average node clustering of
the graph. The number of connected components and their average size is also reported, together
with the fraction of isolated nodes.

threshold edge fraction avg. degree clustering # conn. comp. avg. comp. size isolated nodes
1 min 17.1% 14.9 0.36 1 173.0 0.5%
2 min 11.4% 10.2 0.34 2 84.5 2.9%
5 min 5.5% 5.4 0.20 1 153.0 12.1%

15 min 1.7% 2.6 0.21 7 14.6 41.4%
30 min 0.5% 1.4 0.08 18 3.1 68.4%
60 min 0.1% 1.3 0.17 6 2.3 92.0%

Table 6. Number of individuals met by the 5 most social attendees at the conference, as a function
of the contact duration threshold

threshold #1 #2 #2 #4 #5
1 min 61 59 40 35 27
2 min 49 44 24 21 18
5 min 22 17 15 11 10

15 min 7 7 5 4 4
30 min 2 2 2 2 2
60 min 2 2 1 1 1

expected, the cumulative contact graph is dominated by contacts of short duration, and
the introduction of a threshold on contact significance makes the graph more and more
sparse as the threshold increases. Table 5 also reports standard network metrics for the
cumulative contact graphs over the entire conference duration, for different values of
the contact duration threshold. It is apparent that the heterogeneity of the contact graph
makes it impossible to choose a single threshold for the significance of social contacts.

Table 6 reports the number of distinct attendees met by the 5 most social attendees
of the conference, for different values of the contact duration threshold. As the RFID
contact data were taken during the conferences sessions and coffee breaks (and not
during lunchtime, for example), only few contacts of long duration were observed.

4.5 Privacy Results

Naturally, privacy is always a concern in such contexts, where personal data is being
collected and processed in various ways. As explain in section 3.6, we took various
measures to secure the data and protect privacy, even though most of the data we were
gathering was actually in the public domain (e.g. shared tags).

Some participants asked for the data to be kept without any anonymisation, to be
stored for reuse in coming events, and even to be published so they can link to their
profiles and contacts logs from their websites and blogs. On the other hand, some par-
ticipants were only prepared to take part if the data is anonymised. Table 7 shows the

Live Social Semantics 711

Table 7. Numbers of participants who chose for their anonymised data to be kept, or destroyed

Option No. Users %
I agree for my data to be used for research purposes after the end
of this experiment if properly anonymised 85 61%
I do not agree for my data to be kept after the end of this experiment 54 39%

Total 139 100%

two options given to the users in the Terms & Conditions form (section 3.6) when they
come to register on the application website. The table shows that 61% of the partici-
pants were happy for their data to be kept, while 39% requested the destruction of their
data.

The numbers in section 4.2 indicate that the majority were happy to share their social
networking accounts. However, we cannot extend this observation to the other 48 who
collected and RFID but never registered any information into our site.

5 Discussion and Future Work

The deployment of the application at ESWC2009 was the first where all components
were put together and a good number of participants got to use it. We observed quite a
few technical and sociological issues, which we discuss in the following.

There are many social networking sites, but in this first version we only supported
four currently popular ones. We are working on a open plug-in architecture that allows
external parties to develop the functionality needed to connect to, and crawl data from,
other networking systems. We also plan to let users submit their FOAF files.

The number of available social networking sites on the web is always on the in-
crease, and the popularity of such sites is never constant. In our application, only four
of such networking systems were taken into account. Although the ones we selected are
currently amongst the most popular ones, several users wished to add other accounts,
such as FOAF files and LinkedIn. One approach to increase extendibility and increase
coverage is to use an open architecture to allow external parties to develop and plug
applications and services to connect to, and crawl data from, other networking systems,
or sources such as FOAF files.

We had devised a privacy and data retention policy in which we pledged to anonymise
the resulting data set, and allowed participants to request the complete removal of their
data after the end of the event. This approach introduced a number of inconsistencies
and ambiguities. As highlighted in section 4.5, many users expressed their interest in ac-
quiring their data after the conference. However, the anonymisation actually precludes
that. Other issues, such as whether a participant holds the right to access information on
recorded contacts with participants that choose to have their data fully removed, points
to the need to reconsider our privacy and data retention policies for future deployments.
We believe it would be important to allow people to retain all their data, including user
accounts, profiles, contact logs, etc. This will not only enable them to access their ac-
tivity log, but it also allow them to carry their accounts across conferences where this
application is deployed.

712 H. Alani et al.

The visualisation displays of live contacts were popular points of attraction during
the conference. They gave accurate reflections of real-time social interactions during the
conference. People were often coming to those displays, searching for their colleagues,
session chairs, organisers, etc. We plan to extend these visualisations to highlight con-
ference organisers, session chairs, authors. Furthermore, we plan to introduce support
for Twitter, both as another source of on-line social links and as a way of providing
additional conference-related content in the visualisations. For example, the node cor-
responding to a person in the visualisation could be highlighted when s/he sends a
message on Twitter that relates to the conference.

The results in table 3 show that 27% of our users could not log into our system
to enter further data (social networking accounts, edit POI, etc) because of bandwidth
issues at the conference venue. To avoid rushing everyone to enter their data while at
the conference, we plan to make the application site available well ahead of the starting
date of conferences where this application will be deployed next.

Extractions of POIs has so far been limited to users’ online tagging activities. How-
ever, many of the participants have authored papers which can be used to determine their
research interests, and some of these interests are already available on semanticweb.
org in the form of paper keywords. Acquiring such interests can be added to the sys-
tem and used to improve recommendations on talks or sessions to attend, or people to
meet. Also, information from social networking accounts can be used to avoid recom-
mending existing friends. We furthermore believe it will be advantageous to organise
the interests URIs into hierarchies, to support inference and fuzzy matching.

The use of Flickr tags to identify interests seemed to be less accurate than when
using Delicious tags. This indicates the need for alternative approaches when dealing
with Flickr tags.

In the application deployment reported here, recommendation of attendees based on
physical proximity and on links in social networking systems was performed by means
of the simple scheme of section 3.3. One could consider ranking schemes for suggested
attendees, to make the recommendation more useful and serendipitous. Specifically, a
representation of the context of the conference and of the attendees’ interests can help
in ranking suggested social connections in terms of their predictability based on the
conference context.

More services will be provided in future application runs, such as a ‘search for per-
son’, ‘I want to meet’, and ‘find people with similar interests’. Data from RFIDs can be
used to identify ‘best attended session or talk’. Social contacts from social networking
systems and COPs could be used to find out who has made new contacts, especially if
we can compare data over several application launches.

6 Conclusions

The Live Social Semantics application was a demonstration of how semantics from
several different sources can be harnessed and used to enhance the real-world interac-
tions of people at a social gathering. In particular, the combination of semantic data
from social media with the real-world encounters of attendees provides a new way of
connecting to people, both in the real world and on-line.

semanticweb.org
semanticweb.org

Live Social Semantics 713

Exposing real-world encounters in digital form facilitates mining interesting and
serendipitous social connections, and greatly facilitates the process of establishing new
on-line connections to encountered people. On the other hand, connections in social
networking systems such as Facebook can be used to stimulate real-world encounters
on the basis of shared acquaintances and interests. All of these opportunities were ex-
plored by the participants of ESWC09, and their reactions, observations, and responses
provided valuable input on the future evolution of the platform.

In general, this application goes in the direction of making the co-evolution of real-
world social networks and on-line social networks more transparent to users, more
lightweight, and more usable. The Live Social Semantics application also provided a
first opportunity to expose the semantics of social encounters, and investigate recom-
mendation schemes in bodies of data that mix links from social media with links from
real-world encounters.

Overall, this application has great potential for further growth over future deploy-
ments at conferences and similar event in a wide variety of domains.

Acknowledgement

This research has been supported by the TAGora project funded by the Future and
Emerging Technologies program (IST-FET) of the European Commission under the
contract IST-34721. The information provided is the sole responsibility of the authors
and does not reflect the Commission’s opinion. The Commission is not responsible
for any use that may be made of data appearing in this publication. This research was
supported by the SocioPatterns.org project and its partners. The authors thank Milosch
Meriac from Bitmanufaktur, and also Alexander Wahler from STI Int. for supporting
our launch at ESWC09. The authors also thank Dr Michael Hausenblas for making
ESWC data available in RDF.

References

1. Barrat, A., Cattuto, C., Colizza, V., Pinton, J.-F., den Broeck, W.V., Vespignani, A.: High
resolution dynamical mapping of social interactions with active rfid (2008),
http://arxiv.org/abs/0811.4170

2. Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and explo-
ration in the tag space. In: Proc. 17th Int. World Wide Web Conf., Edinburgh, UK (2006)

3. Cantador, I., Szomszor, M., Alani, H., Fernändez, M., Castells, P.: Enriching ontological
user profiles with tagging history for multi-domain recommendations. In: Proc. Workshop
on Collective Semantics: Collective Intelligence and the Semantic Web (CISWeb 2008), in
5th ESWC, Tenerife, Spain (2008)

4. Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Personal
Ubiquitous Comput. 10(4), 255–268 (2006)

5. Glaser, H., Millard, I., Jaffri, A.: Rkbexplorer.com:a knowledge driven infrastructure for
linked data providers. In: Proc. European Semantic Web Conference, Tenerife, Spain (2008)

6. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of
Information Science 32, 198–208 (2006)

7. Guy, M., Tonkin, E.: Tidying up tags? D-Lib Magazine 12(1) (2006)

http://arxiv.org/abs/0811.4170

714 H. Alani et al.

8. Hayes, C., Avesani, P., Veeramachaneni, S.: An analysis of the use of tags in a log recom-
mender system. In: Int. Joint Conf. Artificial Intelligence (IJCAI), Hyderabad, India (2007)

9. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks
and human mobility in conference environments. In: WDTN 2005: Proc. 2005 ACM SIG-
COMM workshop on Delay-tolerant networking. ACM, New York (2005)

10. Li, X., Guo, L., Zhao, Y.E.: Tag-based social interest discovery. In: Proc. 19th Int. World
Wide Web Conf (WWW), Beijing, China (2008)

11. Mathes, A.: Folksonomies - cooperative classification and communication through shared
metadata. Computer Mediated Communication - LIS590CMC (December 2004), http://
www.adammathes.com/academic/computer-mediated-communication/
folksonomies.html

12. Mller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web dog food - the
eswc and iswc metadata projects. In: Recipes for Semantic Web Dog Food - The ESWC and
ISWC Metadata Projects, Busan, Korea (2007)

13. Passant, A., Laublet, P.: Meaning of a tag: A collaborative approach to bridge the gap between
tagging and linked data. In: Workshop on Linked Data on the Web (LDOW), Int. Word Wide
Web Conference, Beijing, China (2008)

14. Passant, A., Mulvany, I., Mika, P., Maisonneauve, N., Löser, A., Cattuto, C., Bizer, C.,
Bauckhage, C., Alani, H.: Mining for social serendipity. In: Dagstuhl Seminar on Social
Web Communities (2008)

15. Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J.-L., Robardet, C.: Description and simula-
tion of dynamic mobility networks. Comput. Netw. 52(15), 2842–2858 (2008)

16. Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg
(2007)

17. Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.: Semantic modelling of
user interests based on cross-folksonomy analysis. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 632–648. Springer, Heidelberg (2008)

18. Szomszor, M., Cantador, I., Alani, H.: Correlating user profiles from multiple folksonomies.
In: Proc. Int. Conf. Hypertext (HT 2008), Pittsburgh, PA, USA (2008)

19. Tesconi, M., Ronzano, F., Marchetti, A., Minutoli, S.: Semantigy delicious: automatically
turn your tags into senses. In: Social Data on the Web, Workshop at the 7th ISWC (2008)

20. Thibodeau, P.: IBM uses RFID to track conference attendees (2007),
http://pcworld.about.com/od/businesscenter/
IBM-uses-RFID-to-track-confere.htm

21. Yeung, C.-M.A., Gibbins, N., Shadbolt, N.: Tag meaning disambiguation through analysis of
tripartite structure of folksonomies. In: IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology Workshops, pp. 3–6 (2007)

http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://pcworld.about.com/od/businesscenter/IBM-uses-RFID-to-track-confere.htm
http://pcworld.about.com/od/businesscenter/IBM-uses-RFID-to-track-confere.htm

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 715–730, 2009.
© Springer-Verlag Berlin Heidelberg 2009

RAPID: Enabling Scalable Ad-Hoc Analytics on the
Semantic Web

Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu

North Carolina State University
{rsridha,pravind2,kogan}@ncsu.edu

Abstract. As the amount of available RDF data continues to increase steadily,
there is growing interest in developing efficient methods for analyzing such
data. While recent efforts have focused on developing efficient methods for
traditional data processing, analytical processing which typically involves more
complex queries has received much less attention. The use of cost effective
parallelization techniques such as Google’s Map-Reduce offer significant
promise for achieving Web scale analytics. However, currently available
implementations are designed for simple data processing on structured data.

In this paper, we present a language, RAPID, for scalable ad-hoc analytical
processing of RDF data on Map-Reduce frameworks. It builds on Yahoo’s Pig
Latin by introducing primitives based on a specialized join operator, the
MD-join, for expressing analytical tasks in a manner that is more amenable to
parallel processing, as well as primitives for coping with semi-structured nature
of RDF data. Experimental evaluation results demonstrate significant
performance improvements for analytical processing of RDF data over existing
Map-Reduce based techniques.

Keywords: RDF, Scalable Analytical Processing, Map-Reduce, Pig Latin.

1 Introduction

The broadening adoption of Semantic Web tenets is giving rise to a growing amount of
data represented using the foundational metadata representation language, Resource
Description Framework (RDF) [19] In order to provide adequate support for
knowledge discovery tasks such as exists in scientific research communities, many of
which have adopted Semantic Web technologies, it is important to consider how more
complex data analysis can be enabled efficiently at Semantic Web scale. Analytical
processing involves more complex queries than traditional data processing often
requiring multiple aggregations over multiple groupings of data. These queries are
often difficult to express and optimize using traditional join, grouping and aggregation
operators and algorithms. The following two examples based on the simple Sales data
in Figure 1 illustrate the challenges with analytical queries. Assume we would like to
find “for each customer, their total sales amounts for Jan, Jun and Nov for purchases
made in the state NC”, i.e., to compute the relation (cust, jansales, junsales, novsales).

716 R. Sridhar, P. Ravindra, and K. Anyanwu

Using traditional query operators this query will be expressed as a union query,
resulting in three sub queries (each computing the aggregates for each of the months
specified) and then an outer join for merging the related tuples for each customer. Each
of these sub queries will need a separate scan of the same typically large table. A
slightly more demanding example would be to find “for each product and month of
2000, the number of sales that were between the previous and following months’
average sales”. Computing the answer to this query requires that for each product and
month, we compute aggregates from tuples outside the group (the next and previous
month’s average sales). After these values are computed, we have enough information
to compute the output aggregate (count). This query also requires multiple pass
aggregation with a lot of repeated processing of the same set of tuples such as repeated
scans on relations just to compute slightly different values e.g. previous month
aggregate vs. next month aggregates. High-end database systems and OLAP servers
such as Teradata, Tandem, NCR, Oracle-n CUBE, and Microsoft and SAS OLAP
servers with specialized parallel architectures and sophisticated indexing schemes
employ techniques to mitigate this inefficiency. However, such systems are very
expensive and are targeted at enterprise scale processing making it difficult to scale
them to the Web in a straightforward and cost effective way.

Fig. 1. RDF representation of Sales relation

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 717

One promising direction is to leverage the recent advancements made by search
engine companies that utilize parallel data processing frameworks based on clusters of
commodity grade machines that can be scaled easily and cost effectively for
processing at Web scale. Examples are Google’s Map-Reduce [6] framework and an
open source version developed by Yahoo called Hadoop [18]. These frameworks also
offer the benefit of allowing users abstract from low level parallelization issues,
greatly simplifying the process of writing parallel programs for their tasks. In
furtherance of the ease-of-use goal, a high level dataflow language called Pig Latin
[12] in the spirit of SQL has been developed for Map-Reduce data processing tasks.
Such a high level language offers clear advantages like automatic optimization and
code reuse over the traditional Map-Reduce framework that relies on a black box
approach in which users writing their own implementations for their tasks making it
difficult to automatically optimize and reuse them. However, the current Pig Latin
language is targeted at processing structured data, limiting its use for semi-structured
data such as RDF. Further, it currently provides only a limited set of primitives that is
insufficient for efficient expression of complex analytical queries. This limitation
leads to the earlier mentioned problem of avoidable multi-pass aggregations. As an
example, encoding our first example in a Pig Latin program yields a 10-step whereas
the approach that we propose here results in a 3 step program. This not only improves
usability of such systems but also leads to a significant performance savings.

Related Work. The earlier generation RDF storage engines were architected either as
main memory stores [3][5] or layered on top of relational databases [2][4][15][16].
These enabled enterprise-scale performance for traditional data processing queries but
would be challenged by Web scale processing and analytics-style workloads. More
recently, native stores have been developed with a focus on achieving efficient Web
scale performance using specialized storage schemes. Some notable ones include (i)
vertically partitioned column stores [1] which combine the advantages of a vertically
partitioned scheme for property bound queries with the compressibility advantages of
column-oriented stores; (ii) multi-indexing techniques [14] that use multiple indexes
on triples to produce different sort orders on the different components of a triple,
thereby trading off space for the possibility of utilizing only fast merge joins for join
processing. In [11], the multi-indexing approach was combined with cost-based query
optimization that targets optimizing join-order using statistical synopses for entire
join paths. Multi-indexing techniques have also been combined with distributed query
processing techniques in [9] for processing queries in federated RDF databases.
However, these techniques may pose limitations for ad-hoc processing on the Web,
because they require that RDF document content be exported into a database systems
for preprocessing (index construction) before data processing can occur. Further, as
analytical queries involve filter, join as well as multiple aggregations over different
grouping, the indexes will only confer an advantage on the filter and join operations,
while the aggregations over groupings would need to occur on the intermediate results
that are not indexed. Finally, as we shall see later, the nature of query operators used
in the query expression plays a significant role in optimizability of such complex
queries.

718 R. Sridhar, P. Ravindra, and K. Anyanwu

The second line of work that is relevant is that based on extending Google’s Map-
Reduce parallel processing framework with support for data processing tasks. The
original Map-Reduce framework is designed to work with a single dataset which
creates a problem when we would need to perform binary operations like JOIN
operations. There are methods for overcoming this limitation by doing what are
known as Map-Side or a Reduce-Side Joins respectively. However, the rigid Map-
Reduce execution cycle of a Map phase followed by a Reduce, forces such join
operations to only be realizable with additional Map-Reduce cycles in which some
phases perform no-op. Such wasted cycles lead to inefficiencies and motivated an
extension of the Map-Reduce framework called Map-Reduce-Merge [17] framework.
In this programming model, an additional merge phase is added to the typical 2-phase
cycle, where the JOIN operation is performed between the two sets of data that are
partitioned and grouped together in the map and the reduce phases. However, in these
approaches, users bear the responsibility of implementing their tasks in terms of Map
and Reduce functions which makes them less amenable to automatic query
optimization techniques and offers limited opportunity for code reuse. Pig Latin[12]
is a high level dataflow language that overcomes this limitation by provide dataflow
primitives with clear semantics similar to query primitives in declarative query
languages. However, the set of primitives provided are still limited to basic data
processing of structured relational data. Some techniques [8][10] have been developed
for processing RDF data at Web scale based on the Map-Reduce platform. However,
these efforts have primarily focused on graph pattern matching queries and queries
involving inferencing and not analytical queries requiring complex grouping and
aggregation.

Contributions and Outline. The goal of the work presented here is to offer a
framework for scalable ad-hoc analytical processing of RDF data that would be easy to
use, cost effective and directly applicable to RDF document sources without requiring
expensive preprocessing. The approach is based on integrating RDF-sensitive and
advanced analytical query operators into Map-Reduce frameworks. Specifically, we
make the following contributions:

• We propose a dataflow language, RAPID, which extends Yahoo’s Pig Latin
language with query primitives for dealing with the graph structured nature of RDF.

• We propose a technique for efficient expression of complex analytical queries that
offers better opportunities for optimization and parallelization on Map-Reduce
platforms. The technique is based on integrating into Pig Latin, primitives for
implementing an efficient query operator for analytical processing called MD-join [6].

• We present evaluation results on both synthetically generated benchmark datasets
as well as real life dataset.

The rest of the paper is organized as follows: Section 2 gives an overview of
analytical queries using a sophisticated operator called MD-join and introduces the
Map-Reduce framework and the data flow language, Pig Latin. Section 3 presents the
RAPID approach and section 4 shows its experimental evaluation. Section 5
concludes the paper.

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 719

2 Preliminaries

2.1 MD-Join and Analytical Querying

Earlier examples showed that expressing complex analytical queries using traditional
query operators can lead to inefficiencies due to redundant table scans. One cause of
this problem identified in [6] is the tight coupling of the GROUPBY and aggregation
clauses in query expressions that makes it difficult for the optimizer to identify and
coalesce related computations. This led to the proposal of a hybrid join and
aggregation operator called the MD-Join [6] which decouples the grouping and the
aggregation clauses in query expressions. The MD-Join operator MD(B, R, l,
Θ) defines a relation with schema B (base table), R is the fact table, l is a list of
aggregation functions that need to be computed over attributes and Θ is a set of
conditions involving the attributes of B and R. The fact table contains all the data that
needs to be aggregated and the base table contains all combinations of key values
representing each group on which aggregations have to be computed. Using this
operator, we can express the second example query in the following way:

Fig. 2. Expressing second example query using the MD-join

This example also shows the MD-joins can be nested where the result of each
MD-Join forms the base relation for the outer MD-Join. The details of the algorithm
we omit for brevity but shown by way of an example.

Table 1. (a) Fact table representing Sales data (b) Base table being updated

720 R. Sridhar, P. Ravindra, and K. Anyanwu

Figure 1 is the fact table consisting of the Sales data. Each tuple in the Base table is
one of the desired groups consisting of a Product-Month combination. The algorithm
scans the fact table R and loops over all tuples of Base table B to identify matches
based on a condition θ. If a match is found, the appropriate aggregate columns are
updated. Table 1 (a) shows an example fact table and Table 1 (b) shows the base table
for Product, Month groups and a placeholder for the Sum(Price) aggregate initially
set to NULL. The arrows show the tuples that have just been processed by the
MD-join algorithm. The group (P2, FEB) which had an original sum of 35 based on
the second tuple is now updated to 70 after the price of the next tuple (being pointed
to) in that group is processed in the fact table. One attractive property of the MD-join
operator is that is easily amenable to parallelization. This paper primarily focuses on
how to achieve that in the context of Map-Reduce frameworks.

2.2 Data Processing in Map-Reduce Framework

In the Map-Reduce programming model, users encode their tasks in terms of two
functions: the Map and the Reduce. These functions are independent and the
execution of each can be parallelized on a cluster of machines. The Map function
groups together related data items e.g. records with same key values, and the Reduce
function focuses on performing aggregation operations on the grouped data output by
the Map function. The (key, value) mappings can be represented as:

Map (k1, v1) list (k2, v2) and Reduce (k2, list (v2)) list (v2)

Recently, Pig Latin, a high level dataflow language was proposed to overcome these
limitations. It achieves a sweet spot between the declarative style of the languages
like SQL and the low level procedural style of the Map-Reduce programming. It
provides a set of predefined functions and query expressions that can be used to
describe the data processing tasks. Its data model consists of an atom that holds a
single atomic value, a tuple that holds a series of related values, a bag that forms a
collection of tuples and a map that contains collection of key value pairs. A tuple can
be nested to an arbitrary depth. Table 2 provides an example of a nested tuple t with
fields’ f1, f2 and f3 with f2 containing tuples. It also shows data expressions for
retrieving components of the tuple t.

Table 2. Expressions in Pig Latin

The other functions offered by Pig Latin language are LOAD that implements the
reading an input file, FOREACH which is used as an iterator to loop through a collection,
FILTER for filtering out tuples, the JOIN function, grouping functions like GROUP and
COGROUP, and other common commands reminiscent of SQL. In addition to these
primitives, the language also allows supports User Defined Functions (UDFs).

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 721

3 The RAPID Language

This section introduces a dataflow
language RAPID that enables complex
manipulation of RDF graphs and builds
on Pig Latin and the MD-Join operator. It
includes primitives for describing nodes,
their properties and associated paths, as
well as primitives for expressing queries
in terms of MD-joins. The model of
RAPID is shown in Figure 3.

3.1 Primitives for Basic Manipulation of RDF Graphs in RAPID

RAPID includes Class and Property expression types that are very natural for
querying RDF data. It also supports Path expressions – defining resources in terms of
their class or property types or the navigational patterns that they are reachable by.

Table 3. Expressions for manipulating RDF data

Class expressions consist of the list of classes that are in desired groups e.g.
Customer, Product denoted as type:Class. These expressions evaluate to the resources
of type Class. Property expressions list the properties that are used in the query and
evaluate to the list of objects of that property. Finally, path expressions specify
navigational patterns required to access the resources participating in desired
aggregations. Table 3 summarizes these expressions and shows examples based on the
example data in Figure 1.

3.2 Primitives for Analytical Processing

In order to implement the MD-Join operation, we introduce three functions GFD, GBD
and MDJ for computing the fact table, base table and MD-Join respectively.

Fig. 3. Architecture of RAPID

722 R. Sridhar, P. Ravindra, and K. Anyanwu

3.2.1 Generating Fact Table (GFD)
The role of the GFD function is to reassemble related triples that represent the n-ary
relationships typically stored in an OLAP fact table. However, since a query may only
involve some parts of the relationship, the GFD function allows users to specify,
using path expressions, the specific parts (eq. to columns) of the relationships that are
required for grouping or aggregation. Desired filtering conditions (eq. rows) are
specified in a similar way. The function assumes that the input RDF document is in
the N3-like format where triples of the form <Subject, Property, Object> are
separated by a special character E.g. ‘:’. The GFD function is passed as a parameter to
the Pig Latin’s LOAD command which uses it as a file handler to reads an RDF file
and generate fact table tuples. An example command is shown below:

fact_dataset = LOAD ‘input.rdf’ USING GFD (class_expression;
property_expression; aggregation_pathExpression;filter_pathExpression);

where “input.rdf” is the RDF file to be loaded, Class_Expression lists the classes for
elements of each group, property_expressions indicate the properties whose range
values need to be aggregated.

Fig. 4. GFD Function (a) Pseudo code (b) Execution

The filter_pathExpression and aggregation_pathExpression describe the
navigational paths leading to the nodes that need to be filtered / aggregated. The GFD
loads those triples involved in the expressions in the query and groups them using the
subject values as keys. Then it performs the necessary join operations using the Pig

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 723

Latin JOIN operator (indicated by the path expressions) to reassemble the connections
between values. Figure 4 (a) shows the pseudo code for the GFD function. Figure 4 (b)
shows the steps in executing GFD.The output consists of triples of the form <Subject,
Property, Object> where Subject is a canonical representation of key value generated
using the path expression. In the output, the key C1_P1 represent the nodes C1 and P1
leading to pairs (loc, NC) and (price, 25). The output of this function is the fact table
and is stored using Pig Latin’s STORE command and subsequently retrieved as an
input to the MDJ function. The following section discusses this in more detail.

Map-Reduce Workflow for GFD Operator. In this section, we discuss the details of
the workflow of GFD operator in the context of the Hadoop environment. The
Hadoop system consists of one Job Tracker which acts as a master process, reads
input data, divides this dataset into chunks of equal size and assigns these chunks of
data to each of the Task Trackers. Task Trackers are processors that are designed to
perform the map or the reduce functions called the Mapper and Reducer respectively.

Mapper Design. The Job Tracker assigns each Mapper process with a chunk of the
dataset, using which, the Mapper generates <key, value> pairs as output. Figure 5 (a)
shows the pseudo code for the map function and Figure 5 (b) shows the output
generated by the map function.

Fig. 5. Map function (a) Pseudo code (b) Result

A Map function contains a subroutine called the Combiner. All the objects having
the same key are grouped together into a collection in the Combiner function. If the
query contains any user specified filter conditions, then the corresponding <key,
Collection of values> are filtered out based on the given condition in the Combiner
function. In [6], the authors show that the tuples for which the filter condition is not
true will never be considered by the MD-Join so these tuples can be eliminated from
the dataset. This reduces the number of records that need to be processed in the
reducer function, thus increasing the efficiency of processing.

Given the data in Figure 1, suppose the user wants to compute the total price for
each customer and the product. Figure 6 (b) shows the result after the execution of the
Combiner code. The subject column in the Figure 6 (b) shows how the Combiner
function combines multiple properties to generate the composite key when the user
query involves multi-dimensional groups. Figure 6 (a) shows the pseudo code for the
reducer implementation.

724 R. Sridhar, P. Ravindra, and K. Anyanwu

Fig. 6. Combiner function (a) Pseudo code (b) Result

Fig. 7. Compilation of GFD on Map-Reduce framework

Reducer Design. The set of keys and the collection of values obtained from the
Combiner function is the input for the reducer function. Each reducer will have a set
of tuples. Same keys for the tuples are grouped together and all the corresponding
properties of these keys are collected together as part of a reducer function. Algorithm
for the reducer function is similar to that of the Combiner function, except that the
data for the Combiner function is limited from the corresponding Mapper process,
while the data for the reducer function could be from the output of various
Mapper/Combiner functions. Figure 7 shows the compilation of the GFD operator on
Map-Reduce framework.

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 725

3.2.2 Generating Base Table (GBD)
The role of the base table in the MD-Join algorithm is to maintain container tuples
representing each group for which aggregations are desired. For every tuple in the
fact dataset, the corresponding combination in the base dataset is obtained and the
aggregation results are updated in the container tuples. Similar to GFD, the GBD
operator is executed with the LOAD function and the class_expression and
property_expression play similar roles.

base_dataset = LOAD ‘input.rdf’ USING GBD (class_expression;
property_expression; FLAG);

The FLAG holds either the value “NULL” or “BOTH” indicating whether the
aggregation is to be computed on properties got from the property_expression or a
combination of the property value and the type class. The tuples generated by the
GBD are of the type <Subject, Base, NULL> where “Base” is a keyword that
indicates that the tuple belongs to the base table. The NULL value acts as placeholder
for aggregates that will be computed by the MD-join step. Figure 8 shows the steps in
executing GFD for the given example

Fig. 8. Execution of GBD

Within the GBD function, we call the STORE function to append the base dataset
into the same MDJ.rdf file. This file is later loaded by the MDJ operator while
performing the JOIN operation, which is discussed in the next section.

base_dataset = LOAD ‘input.rdf’ USING GBD (TYPE: CUSTOMER;
BOUGHT.LOC, BOUGHT.PRICE; NULL);

Map-Reduce workflow for GBD operator. The Map-Reduce function for the GBD
operator is very similar to the GFD operator. The difference is in the Reduce function
for these two operators. In the Reduce function of the GBD operator, after the <Key,
<Collection>> of values is grouped together. For each key and its group; a
corresponding <Key, <Base, Null>> record is created. Thus the output from the
reduce function is the set of base tuples that are required for the MDJ operation. The
compilation of GBD operator is similar to GFD operator as show in Figure 7.

726 R. Sridhar, P. Ravindra, and K. Anyanwu

3.2.3 Multi-dimensional Join in RAPID
In [6], it was shown that if you partition the base table, execute the MD-Join on each
partition and union the results, the result is equivalent to executing the MD-Join on
the non-partitioned base table. This result leads to natural technique for parallelizing
the MD-join computation. It is possible to derive an analogous result to the
partitioning of the fact table as well. Due to this limited set of fact and base data
records in each partition, the execution of the MD-Join algorithm is much faster
because for each fact record we will only iterate through all the base records having
the same Key as the fact record. More formally, assume that we can partition the base
table B into B1 ∪ B2… ∪ Bn where Bi = σi(B), i.e. σi is the range condition that tuples
in Bi satisfy. Then, MD(σi(B), R, l, Θ) = MD(σi(B), σ’i(R), l, Θ). In other words, the
result of an MD-join of a member of the partition of the base table say Bi, and the
entire fact table is equivalent to Bi and the corresponding partition of the fact table -
σ’i(R). The result of the GFD and GBD operators seen in the above sections generates
the input dataset for the MDJ operator in such a way that efficient partitioning of the
records is possible to perform MDJ operation in parallel. Hence each Map processor
will receive one set of records containing both the fact and the base dataset with the
same keys set. The “MDJ.rdf” file created by the GFD and GBD operators as
mentioned in 3.2.1and 3.2.2, contains fact and base tuple sets. The MDJ operator
executes on these datasets and also takes as input the filter condition on which the
aggregation needs to be computed and the aggregation function such as the SUM,
COUNT, MAX, MIN, AVG. As is shown in the pseudo code for MDJ operator
in Figure 9 (a), when there is a match between the base and fact tuple, the aggregation
is computed and the base dataset is updated. The grouping of related datasets is

Fig. 9. MDJ Function (a) Pseudo code (b) Execution

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 727

separated into the map function while the aggregation on this grouped data is
computed within the reducer function. The syntax for MDJ operator is as follows:

output_dataset = LOAD ‘MDJ.rdf’ USING MDJ (class_name;
aggregation_func: aggregation_property; filter_property: filter_condition);

Figure 9 (b) shows the steps in executing MDJ for the given example. The output
generated is stored in an output file using the Pig Latin primitive the STORE function

output_dataset = LOAD ‘MDJ.rdf’ using MDJ(CUST; SUM:PRICE; LOC:NC);

Map-Reduce workflow for MDJ operator. When performing the LOAD operation
for MDJ we load both sets of data (the fact and base dataset) in the map function. The
reduce function will execute the pseudo code as shown in Figure 9 (a). The
compilation of MDJ on Map-Reduce is show in Figure 10.

Fig. 10. Compilation of MDJ on Map-Reduce framework

4 Experiments and Results

Our experimental setup involved clusters of 5 nodes where each node is either a single
or duo core Intel X 86 machines with 2.33 GHz processor speed and 4G memory and
running Red Hat Linux. Our test bed includes a real life dataset, SwetoDBLP [20] and
a synthetic dataset generated by the benchmark dataset generator called BSBM [21].
The queries used for the evaluation consists of 5 queries for each dataset.

4.1 Datasets and Results

SWETO dataset contains an RDF representation of the bibliographic data in DBLP
such as information about Authors, Books and other types of Publications, Year of
Publication, etc. Table 4 shows the set of queries for the DBLP dataset.

Table 4. DBLP Query table

728 R. Sridhar, P. Ravindra, and K. Anyanwu

The Berlin SPARQL Benchmark (BSBM) is a synthetic benchmark dataset for
evaluating the performance of SPARQL queries. The dataset contains information
about the Vendor, the Offers and the Product types and the relationships between
them. Table 5 shows the set of queries executed on the BSBM dataset were used for
evaluation of the two approaches.

Table 6 compares the reduction in the table scans when using RAPID as the number
of GROUPBY and JOIN operation reduces. This results in more scalable and efficient
approach for processing analytical queries. Figure 11 and Figure 12 (b), show a
comparison of the execution times for the two approaches on DBLP and BSBM dataset
respectively. Figure 12 (a) shows the number of sub-queries required for each query.
The figure clearly shows that the RAPID approach offers better usability. The reduced
number of steps in the RAPID approach is due to the coalescing of JOINS and

Table 5. BSBM Query table

Table 6. Number of full table scans for Pig and RAPID operations

Fig. 11. Cost analysis on DBLP dataset based on execution time (In minutes)

 RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web 729

Fig. 12. Cost analysis on BSBM dataset based on (a) Number of user queries (b) Execution
time (In minutes)

Fig. 13. Scalability evaluation for different file sizes of BSBM dataset (a) Query 6,8 (b)
Query 7,9,10

GROUPBY operations by the MDJ operation. Figure 13 (a) and Figure 13 (b) show
that RAPID approach scales more gracefully with increasing size of dataset.

5 Conclusion

In this paper, we present an approach for scalable analytics of RDF data. It is based
on extending easy-to-use and cost-effective parallel data processing frameworks
based on Map-Reduce such as Pig Latin with dataflow/query operators that support
efficient expression and parallelization of complex analytical queries as well as for
easier handling of graph structured data such as RDF. The results show significant
query performance improvements using this approach. A worthwhile future direction
to pursue is the integration of emerging scalable indexing techniques for further
performance gains.

730 R. Sridhar, P. Ravindra, and K. Anyanwu

References

[1] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data
Management Using Vertical Partitioning. In: Proc. of VLDB 2007, pp. 411–422 (2007)

[2] Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ICS-FORTH RDFSuite: Managing voluminous RDF description bases. In: SemWeb
(2001)

[3] Beckett, D.: The design and implementation of the Redland RDF application framework.
In: WWW (2001)

[4] Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing
and querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002.
LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)

[5] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
implementing the Semantic Web recommendations. In: WWW (2004)

[6] Chatziantoniou, D., Akinde, M., Johnson, T., Kim, S.: The MD-join: an operator for
Complex OLAP. In: ICDE 2001, pp. 108–121 (2001)

[7] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
Proc. of OSDI 2004 (2004)

[8] Erling, O., Mikhailov, I.: Towards Web Scale RDF. In: 4th International Workshop on
Scalable Semantic Web Knowledge Base Systems, SSWS 2008 (2008)

[9] Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for
Querying Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

[10] Newman, A., Li, Y., Hunter, J.: Scalable Semantics – The Silver Lining of Cloud
Computing. eScience, 2008. In: IEEE Fourth International Conference on eScience 2008
(2008)

[11] Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1),
647–659 (2008)

[12] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-foreign
language for data processing. In: Proc. of ACM SIGMOD 2008, pp. 1099–1110 (2008)

[13] Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A
Comparison of Approaches to Large-Scale Data Analysis. In: Proc. of SIGMOD 2009
(2009)

[14] Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic Web
Data Management. In: Proc. of VLDB (2008)

[15] Wilkinson, K.: Jena property table implementation. In: SSWS (2006)
[16] Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and retrieval

in Jena2. In: SWDB (2003)
[17] Yang, H., Dasdan, A., Hsias, R.-L., Parket, D.S.: Map-Reduce-Merge: Simplified

Relational Data Processing on Large Clusters. In: Proc. SIGMOD 2007, pp. 1029–1040
(2007)

[18] Apache Projects Proceedings, http://hadoop.apache.org/core/
[19] W3C Semantic Web Activity Proceedings, http://www.w3.org/RDF/
[20] Swetodblp, http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
[21] BSBM,

 http://www4.wiwiss.fu-berlin.de/bizer/
BerlinSPARQLBenchmark/spec/index.html#dataschema

LinkedGeoData:
Adding a Spatial Dimension to the Web of Data

Sören Auer, Jens Lehmann, and Sebastian Hellmann

Universität Leipzig, Institute of Computer Science,
Johannisgasse 26, 04103 Leipzig, Germany
lastname@informatik.uni-leipzig.de

http://aksw.org

Abstract. In order to employ the Web as a medium for data and in-
formation integration, comprehensive datasets and vocabularies are re-
quired as they enable the disambiguation and alignment of other data
and information. Many real-life information integration and aggrega-
tion tasks are impossible without comprehensive background knowledge
related to spatial features of the ways, structures and landscapes sur-
rounding us. In this paper we contribute to the generation of a spatial
dimension for the Data Web by elaborating on how the collaboratively
collected OpenStreetMap data can be transformed and represented ad-
hering to the RDF data model. We describe how this data can be in-
terlinked with other spatial data sets, how it can be made accessible
for machines according to the linked data paradigm and for humans by
means of a faceted geo-data browser.

1 Introduction

It is meanwhile widely acknowledged that the Data Web will be an intermediate
step on the way to the Semantic Web. The Data Web paradigm combines light-
weight knowledge representation techniques (such as RDF, RDF-Schema and
simple ontologies) with traditional Web technologies (such as HTTP and REST)
for publishing and interlinking data and information.

In order to employ the Web as a medium for data and information integra-
tion, comprehensive datasets and vocabularies are required as they enable the
disambiguation and alignment of other data and information. With DBpedia [1],
a large reference dataset providing encyclopedic knowledge about a multitude
of different domains is already available. A number of other datasets tackling
domains such as entertainment, bio-medicine or bibliographic data are available
in the emerging linked Data Web1.

Many real-life information integration and aggregation tasks are, however,
impossible without comprehensive background knowledge related to spatial fea-
tures of the ways, structures and landscapes surrounding us. Such tasks include,

1 See, for example, the listing at: http://esw.w3.org/topic/TaskForces/

CommunityProjects/LinkingOpenData/DataSets

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 731–746, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://aksw.org
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets

732 S. Auer, J. Lehmann, and S. Hellmann

for example, to depict locally the offerings of the bakery shop next door, to map
distributed branches of a company or to integrate information about historical
sights along a bicycle track.

With the OpenStreetMap (OSM)2 project, a rich source of spatial data is
freely available. It is currently used primarily for rendering various map visual-
izations, but has the potential to evolve into a crystallization point for spatial
Web data integration. In this paper we contribute to the generation of an addi-
tional spatial dimension for the Data Web by elaborating on:

– how the OpenStreetMap data can be transformed and represented adhering
to the RDF data model,

– how this data can be interlinked with other spatial data sets,
– how it can be made accessible for machines according to the linked data

paradigm and for humans by means of a faceted geo-data browser.

The resulting RDF data comprises approximately 2 billion triples. In order to
achieve satisfactory querying performance, we have developed a number of opti-
mizations. These include a one-dimensional geo-spatial indexing as well as sum-
mary tables for property and property value counts. As a result, querying and
analyzing LinkedGeoData is possible in real-time; thus enabling completely new
spatial Data Web applications.

The paper is structured as follows: after introducing the OpenStreetMap
project in Section 2, we describe how the OSM data can be transformed into
the RDF data model in Section 3 and be published as Linked Data in Section 4.
We present a mapping to existing data sources on the Data Web in Section 5.
In Section 6 we showcase a faceted geo-data browser and editor and conclude in
Section 7 with an outlook to future work.

2 The OpenStreetMap Project

OpenStreetMap is a collaborative project to create a free editable map of the
world. The maps are created by using data from portable GPS devices, aerial
photography and other free sources. Registered users can upload GPS track logs
and edit the vector data by using a number of editing tools developed by the
OSM community. Both rendered images and the vector dataset are available
for downloading under a Creative Commons Attribution-ShareAlike 2.0 license.
OpenStreetMap was inspired by the Wiki idea - the map display features a
prominent ’Edit’ tab and a full revision history is maintained.

Until now the OpenStreetMap project has succeeded in collecting a vast
amount of geographical data (cf. Figure 1), which in many regions already sur-
passes by far the quality of commercial geo-data providers3. In other regions,
where currently only few volunteers contribute, data is still sparse. The project,
2 http://openstreetmap.org
3 Data about the Leipzig Zoo, for example, includes the location and size of different

animals’ vivariums.

http://openstreetmap.org

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 733

however, enjoys a significant growth in both active contributors and daily con-
tributed data so that uncharted territory vanishes gradually. For some regions
the project also integrates publicly available data (as with the TIGER data in
the U.S.) or data donated by cooperations (as in The Netherlands).

Table 1. OSM statistics as of June 2009

Category Overall Amount Daily Additions Monthly Growth
(avg.) in the last year

Users 127,543 200 11%
Uploaded GPS points 915,392,139 1,600,000 10%
Nodes 374,507,436 400,000 5%
Ways 29,533,841 30,000 7%
Relations 136,245 300 6%

The OSM data is represented by adhering to a relatively simple data model.
It comprises three basic types - nodes, ways and relations - each of which are
uniquely identified by a numeric id. Nodes basically represent points on earth
and have longitude and latitude values. Ways are ordered sequences of nodes.
Relations are, finally, groupings of multiple nodes and/or ways. Each individual
element can have a number of arbitrary key-value pairs (tags in the OSM termi-
nology). Ways with identical start and end nodes are called closed and are used
to represent buildings or land use areas, for example.

Fig. 1. Technical OpenStreetMap architecture and components. Source: http://wiki.
openstreetmap.org/wiki/Image:OSM_Components.png

http://wiki.openstreetmap.org/wiki/Image:OSM_Components.png
http://wiki.openstreetmap.org/wiki/Image:OSM_Components.png

734 S. Auer, J. Lehmann, and S. Hellmann

The various OSM components are depicted in Figure 1. The data is stored in
a relational database. The data can be accessed, queried and edited by using a
REST API, which basically uses HTTP GET, PUT and DELETE requests with
XML payload (as shown in Figure 2). The data is also published as complete
dumps of the database in this XML format on a weekly basis. It currently ac-
counts for more than 6GB of Bzip2 compressed data. In minutely, hourly and
daily intervals the project additionally publishes changesets, which can be used
to synchronize a local deployment of the data with the OSM database.

Different authoring interfaces, accessing the API, are provided by the OSM
community. These include the online editor Potlatch, which is implemented in
Flash and accessible directly via the edit tab at the OSM map view, as well
as the desktop applications JOSM and Merkaartor. Two different rendering
services are offered for the rendering of raster maps on different zoom levels.
With Tiles@home, the performance-intense rendering tasks are dispatched to
idle machines of community members; thus achieving timeliness. The Mapnik
renderer, in turn, operates on a central tile server and re-renders tiles only in
certain intervals.

<node id="26890002" lat="51.051934" lon="13.7415877" version="10"

changeset="766465" user="saftl" uid="7989" visible="true"

timestamp="2009-03-09T08:49:48Z">

<tag k="name" v="Frauenkirche" />

<tag k="created_by" v="Potlatch 0.10e" />

<tag k="tourism" v="viewpoint" />

<tag k="url" v="http://www.frauenkirche-dresden.de/" />

<tag k="denomination" v="lutheran" />

<tag k="wikipedia:en" v="Frauenkirche_Dresden" />

<tag k="religion" v="christian" />

<tag k="amenity" v="place_of_worship" />

<tag k="wikipedia:de" v="Frauenkirche_(Dresden)" />

</node>

Fig. 2. OSM XML excerpt representing a node

Apart from geographical features, the key-value pairs associated with OSM
elements are a rich source of information. Such annotations are, for example,
used to distinguish different types of roads, to annotate points-of-interest or
to influence the map rendering. While initially intended primarily to guide the
map rendering, the key-value annotations now already contain a multiplicity
of information, which is actually not rendered on the map. This includes, for
example, opening hours, links to Web sites or speed limits. An overview over the
community-agreed annotations can be found at: http://wiki.openstreetmap.
org/wiki/Map_Features

http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Map_Features

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 735

3 Transforming OSM into RDF Data Model

A straightforward transformation of OSM data into RDF is not practical, since
the resulting 2 billion triples are difficult to handle by existing triple stores.
Current triple stores might generally be able to load and query this amount of
data; however, response times are according to our experiments not sufficient for
practical applications. A particular issue is the storage of the longitude/latitude
information, which can currently by far be more efficiently handled by relational
database indexing techniques.

As a result of these considerations, we chose to follow a mixed approach in
which part of the data is stored in relations and another part is stored according
to the RDF data model. But even with regard to the latter part some additional
assumptions can considerably reduce the amount of data and increase the query-
ing performance. For example, OSM element ids (used to identify nodes, ways
and relations) are always positive integer values. Taking this into account, the
space allocated for storing subjects in RDF triples can be significantly reduced
and the indexing can be performed more efficiently. Another optimization we
performed is to store ’interesting’ nodes, ways and relations (i.e. those tagged
with certain tags) together with their coordinates in a summary table named
elements. The resulting database schema is visualized in Figure 3.

The database is populated by importing the XML files which are published in
regular intervals by the OpenStreetMap project4. In order to be able to import

Fig. 3. LinkedGeoData database schema

4 http://planet.openstreetmap.org/

http://planet.openstreetmap.org/

736 S. Auer, J. Lehmann, and S. Hellmann

the gigantic XML exports more quickly, we developed our own optimized import
script, which is by a factor 3-5 faster than the Osmosis tool. It also handles
incremental updates, which are published by OSM on a minutely basis and
allow to syncronize a local with the OSM database.

The LinkedGeoData Ontology

A part of the LGD ontology5 is derived from the relational representation as
shown in Figure 3. It includes (or reuses) classes like geo-wgs84:SpatialThing
with subclasses node, way, relation and properties such as geo-wgs84:lat,
geo-wgs84:lon, locatedNear, rdfs:label. A major source of structure, how-
ever, are the OSM tags, i.e. attribute-value annotations to nodes, ways and
relations.

There are no restrictions whatsoever regarding the use of attributes and at-
tribute values to annotate elements in OSM. Users can create arbitrary attributes
and attribute values. This proceeding is deliberate in order to allow new uses
as well as to accommodate unforeseen ones. There is, however, a procedure in
place to recommend and standardize properties and property values for common
uses. This procedure involves a discussion on the OSM mailinglist and after ac-
ceptance by the community the documentation of the attribute on the OSM
wiki6.

When we examined the commonly used attributes we noticed that they fall
into three categories:

– classification attributes, which induce some kind of a class membership for
the element they are applied to. Example include: highway with values
motorway, secondary, path etc. or barrier with values hedge, fence, wall
etc.

– description attributes, which describe the element by attaching to it a value
from a predefined set of allowed values. Examples include: lit (indicating
street lightning) with values yes/no or internet access with values wired,
wlan, terminal etc.

– data attributes, which annotate the element with a free text or data values.
Examples include: opening hours or maxwidth (indicating the maximal al-
lowed width for vehicles on a certain road).

We employ this distinction to obtain an extensive class hierarchy as well as a
large number of object and datatype properties. The class hierarchy is derived
from OSM classification attributes. All classification attributes are interpreted as
classes and their values are represented as subclasses. Thus secondary, motorway
and path, for example, become subclasses of the class highway. OSM elements
tagged with classification attributes are represented in RDF as instances of the
respective attribute value. In some cases the value of classification attributes is
just yes - indicating that an OSM element is of a certain type, but no sub-type is
5 The LGD ontology is available at: http://linkedgeodata.org/vocabulary
6 http://wiki.openstreetmap.org/wiki/Map_Features

http://linkedgeodata.org/vocabulary
http://wiki.openstreetmap.org/wiki/Map_Features

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 737

known. In this case we, assign the element to be an instance of the class derived
from the classification attribute. Consequently, a way tagged with highway=yes
would become an instance of the class highway. Description attributes are con-
verted into object properties, the respective values into resources. Data attributes
are represented as datatype properties and their values are represented as RDF
literals.

The resulting ontology contains roughly 500 classes, 50 object properties and
ca. 15,000 datatype properties. Only half of the datatype properties, however,
are used more than once and only 15% are used more than 10 times. We aim
at making this information timely available to the OSM community so that the
coherence and integration of OSM information can be increased.

4 Publishing LinkedGeoData

For publishing the derived geo data, we use Triplify [2]. Triplify is a simplistic but
effective approach to publish Linked Data from relational databases. Triplify is
based on mapping HTTP-URI requests onto relational database queries. Triplify
transforms the resulting relations into RDF statements and publishes the data
on the Web in various RDF serializations, in particular as Linked Data.

The database schema we developed for representing the OSM data can be
easily published using Triplify. Figure 4 shows an example of a generated RDF
for an OSM node. However, in order to retrieve information, the point or way

lgd-node:26890002 rdfs:comment "Generated by Triplify V0.5" .

lgd-node:26890002 cc:license cc:by-sa/2.0 .

lgd-node:26890002 lgd-vocabulary:attribution "This data is derived" .

lgd-node:26890002#id rdf:type lgd-vocabulary:node .

lgd-node:26890002#id geo-wgs84:long "13.7416"^^xsd:decimal .

lgd-node:26890002#id geo-wgs84:lat "51.0519"^^xsd:decimal .

lgd-node:26890002#id lgd-vocabulary:created_by lgd:Potlatch+0.10e .

lgd-node:26890002#id lgd-vocabulary:religion lgd:christian .

lgd-node:26890002#id lgd-vocabulary:name "Frauenkirche" .

lgd-node:26890002#id lgd-vocabulary:tourism lgd:viewpoint .

lgd-node:26890002#id lgd-vocabulary:amenity lgd:place_of_worship .

lgd-node:26890002#id lgd-vocabulary:wikipedia%2525de

"http://de.wikipedia.org/wiki/Frauenkirche_(Dresden)" .

lgd-node:26890002#id lgd-vocabulary:wikipedia%2525en

"http://en.wikipedia.org/wiki/Frauenkirche_Dresden" .

lgd-node:26890002#id lgd-vocabulary:denomination lgd:lutheran .

lgd-node:26890002#id lgd-vocabulary:url

"http://www.frauenkirche-dresden.de/" .

lgd-node:26890002#id lgd-vocabulary:locatedNear lgd-way:23040893> .

lgd-node:26890002#id lgd-vocabulary:locatedNear lgd-way:23040894> .

Fig. 4. RDF/N3 representation of OSM node with id 26890002 (Dresdner
Frauenkirche)

738 S. Auer, J. Lehmann, and S. Hellmann

identifiers (i.e. primary keys from the respective columns) have to be known,
which is usually not the case. A natural entry point for retrieving geo data,
however, is the neighborhood around a particular point, possibly filtered by
points holding certain attributes or being of a certain type. To support this
usage scenario, we have developed a spatial Linked Data extension, which allows
to retrieve geo data of a particular circular region. The structure of the URIs
used looks as follows:

http://LinkedGeoData.org/near/48.213,16.359/1000/amenity=pub

Longitude Latitude Radius Property

The linked geo data extension is implemented in Triplify by using a configura-
tion with regular expression URL patterns which extract the geo coordinates,
radius and optionally a property with associated value and inject this infor-
mation into an SQL query for retrieving corresponding points of interest. The
following represents an excerpt of the LinkedGeoData Triplify configuration:

1 /^near\/(-?[0-9\.]+),(-?[0-9\.]+)\/([0-9]+)\/?$/=>

2 SELECT CONCAT("base:",n.type,"/",n.id,"#id") AS id,

3 CONCAT("vocabulary:",n.type) AS "rdf:type",

4 longitude AS "wgs84_pos:long^^xsd:decimal",

5 latitude AS "wgs84_pos:lat^^xsd:decimal",

6 rv.label AS "t:unc", REPLACE(rk.label,":","%25"),

7 HAVERSINE(latitude,longitude) AS "distance^^xsd:decimal"

8 FROM elements n INNER JOIN tags t USING(type,id)

9 INNER JOIN resources rk ON(rk.id=t.k)

10 INNER JOIN resources rv ON(rv.id=t.v)

11 WHERE longitude BETWEEN CEIL($2-($3/1000)/abs(cos(radians($1))*111))

12 AND CEIL($2+($3/1000)/abs(cos(radians($1))*111))

13 AND latitude BETWEEN CEIL($1-($3/1000/111)) AND CEIL($1+($3/1000/111))

14 HAVING distance < $3 LIMIT 1000’

The first line contains the regular expression, which is evaluated against HTTP
request URIs. If the expression matches, the references to parenthesized subpat-
terns in the SQL query (lines 2-14) will be replaced accordingly. In this particular
case $1 in the SQL query will be replaced with the longitude, $2 with the latitude
and $3 with the radius. The SQL query is optimized so as to retrieve first points
in the smallest rectangle covering the requested circular area (lines 11-13) and
then cutting the result set into a circular area by using the Haversine formula
(line 14), which is, for the purpose of brevity, in the example called as a stored
procedure.

Triplify requires the results of the SQL queries to adhere to a certain structure:
The first column (line 2) must contain identifiers, which are used as subjects in
the resulting triples, while the column names are converted into property iden-
tifiers (i.e. triple predicates) and the individual cells of the result into property
values (i.e. triple objects). In our example, we reuse established vocabularies for
typing the elements (line 3) and associating longitude and latitude values with

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 739

them (lines 4 and 5). The datatype for literal values can be encoded by append-
ing two carets and the datatype to the column (prospective property) name (as
can be seen in lines 4, 5 and 7). For transforming the tags, which are already
stored in a key-attribute-value notation in the tags table, into RDF, we use
the special ”t:unc” column name, which instructs Triplify to derive the property
URIs from the next column in the result set, instead of using the current column
name (line 6).

Table 2. Performance results for retrieving points-of-interest in different areas

Location Radius Property Results Time
Leipzig 1km - 291 0.05s
Leipzig 5km amenity=pub 41 0.54s
London 1km - 259 0.28s
London 5km amenity=pub 495 0.74s
Amsterdam 1km - 1811 0.31s
Amsterdam 5km amenity=pub 64 1.25s

Table 3. LinkedGeoData services provided using Triplify

Description URL

Points of interest in a
circular area

lgd:near/%lat%,%lon%/%radius%

Example: Points of interest
in a 1000m radius around
the center of Dresden

lgd:near/51.033333,13.733333/1000

Points of interest in a
circular area having a
certain property

lgd:near/%lat%,%lon%/%radius%/%category%

Example: Amenities in a
1000m radius around the
center of Dresden

lgd:near/51.033333,13.733333/1000/amenity

Points of interest in a
circular area having a
certain property value

lgd:near/%lat%,%lon%/%radius%/%property%=%value%

Example: Pubs in a 1000m
radius around the center of
Dresden

lgd:near/51.033333,13.733333/1000/amenity=pub

A particular point of
interest (identified by its
OSM id)

lgd:node/%OSMid%

Example: The Cafe B’liebig
in Dresden

lgd:node/264695865

A particular way
(identified by its OSM id)

lgd:way/%OSMid%

Example: Alte Mensa at
TU Dresden

lgd:way/27743320

740 S. Auer, J. Lehmann, and S. Hellmann

The Triplify configuration can be also used to create a complete RDF/N3
export of the LinkedGeoData database. The dump amounts to 16.3 GB file size
and 122M RDF triples. The different REST services provided by LinkedGeoData
project by means of Triplify are summarized in Table 3. Some performance re-
sults for retrieving points-of-interest in different areas are summarized in Table 2.

5 Establishing Mappings with Existing Datasources

Interlinking a knowledge base with other data sources is one of the four key
principles for publishing Linked Data according to Tim Berners-Lee7. Within
the Linking Open Data effort, dozens of data sets have already been connected
to each other via owl:sameAs links. A central interlinking hub is DBpedia, i.e. if
we are able to build links to DBpedia, then we are also connected to data sources
such as Geonames, the World Factbook, UMBEL, EuroStat, and YAGO. For this
reason, our initial effort consists of matching DBpedia resources with Linked-
GeoData. In future work, we may extend this further.

When matching two large data sets such as DBpedia and LinkedGeoData, it
is not feasible to compare all entities in both knowledge bases. Therefore, we
first restricted ourselves to those entities in DBpedia, which have latitude and
longitude properties. We then experimented with different matching approaches
and discovered that in order to achieve high accuracy, we had to take type
information into account. To detect interesting entity types, we queried DBpedia
for those classes in the DBpedia ontology which have instances with latitude and
longitude properties.

To proceed, we had to discover how those classes are represented in OSM.
For this task, we built a test set, which we later also used for evaluating the
matching quality. The set consisted of those entity pairs, where a link from
a place in OSM (and therefore a LinkedGeoData entity) to a Wikipedia page
(and therefore a DBpedia resource) already exists. Such links were set by OSM
contributors manually. This resulted in pairs of user-created owl:sameAs links
between LinkedGeoData and DBpedia. For each of the common DBpedia ontol-
ogy classes, we picked their instances within this test set. The required schema
matching between DBpedia and LGD could then be understood as a supervised
machine learning problem, where those instances were positive examples. This
problem was solved by using DL-Learner [7,8] and the result can be found in
Table 4. For the cases where we did not have instances in the test set, we con-
sulted the OSM wiki pages. Most results were straightforward, but we discovered
that suburbs are often typed as cities in DBpedia and that it is often useful to
combine the DBpedia ontology with the UMBEL class hierarchy.

The matching heuristic was then defined as a combination of three criteria:
type information, spatial distance, and name similarity. Given a DBpedia entity,
we proceeded as follows: 1.) Determine the type in LGD according to Table 4.
2.) Query all LGD points, which are within a certain maximum distance from
the DBpedia point. The maximum distance depends on the type, e.g. it is higher
7 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 741

Table 4. Schema Level Matching between DBpedia and LGD. In doubt, we preferred
a more general expression in LGD, since it does not effect matching quality negatively.

Type DBpedia LinkedGeoData

city dbpedia-owl:City or lgd:city or lgd:town

umbel-sc:City or lgd:village or lgd:suburb

railway station dbpedia-owl:Station lgd:station

university dbpedia-owl:University lgd:university

school dbpedia-owl:School or lgd:school

umbel-sc:SchoolInstitution

airport dbpedia-owl:Airport or lgd:aerodrome

umbel-sc:AirField

lake dbpedia-owl:Lake or lgd:water

umbel-sc:Lake

country dbpedia-owl:Country or lgd:country

umbel-sc:Country

island dbpedia-owl:Island or lgd:island

umbel-sc:Island

mountain dbpedia-owl:Mountain or lgd:peak

umbel-sc:Mountain

river dbpedia-owl:River or lgd:waterway

umbel-sc:River

lighthouse dbpedia-owl:LightHouse or lgd:lighthouse

umbel-sc:Lighthouse

stadium dbpedia-owl:Stadium or lgd:stadium

umbel-sc:Stadium

for a country than for a university. This restricts the set of points to consider
and improves performance. 3.) Compute a spatial score for each LGD point
depending on its distance. 4.) Compute a name similarity score for each LGD
point. 5.) Pick the LGD point with the highest combined spatial and name
similarity score, if this score exceeds a certain threshold. The outcome is either
“no match”, i.e. the highest score is below the threshold, or an LGD entity,
which is matched via owl:sameAs to the given DBpedia entity.

For computing the name similarity, we used rdfs:label in DBpedia and ad-
ditionally a shortened version of the label without disambiguation information,
e.g. “Berlin” instead of “Berlin, Connecticut”. Within LGD, we used the prop-
erties name, name%25en, and name_int (not all of those are defined for each
LGD point). For comparing the name strings, we used a Jaro distance metric.
The name similarity was then defined as the maximum of the six comparisons
between the 2 DBpedia and 3 LGD names.

For the spatial distance metric, we used a quadratic function, which had
value 1 if two points coincide exactly and value 0 at the mentioned maximum
distance of the given type. It should be noted that the coordinates in DBpedia
and LinkedGeoData were often not exactly the same, since for larger entities,
e.g. cities, both Wikipedia and OSM choose a reference point, which has to be

742 S. Auer, J. Lehmann, and S. Hellmann

Table 5. Evaluation Results

Type Entities of Matches found Correct matches Precision Recall
this type

city 275 239 235 98.3% 85.5%
railway station 56 38 38 100.0% 67.9%

a representative, but there are no strict guidelines as to how exactly this point
is chosen. For brevity, we omit a detailed discussion of the parameters of the
matching heuristic and threshold values.

We evaluated the heuristic on the above described test set. Only cities and
railway stations were contained in this set more than 20 times, so we had to limit
our evaluation to those two types. Table 5 summarizes the results. We defined
precision as the number of correct matches divided by the number of reported
matches and recall as the number of correct matches divided by the number
of entities of this type in the test set. As intended, the heuristic has a high
precision with a lower recall. This was desired since not setting an owl:sameAs
link is much less severe than setting a wrong owl:sameAs link. Upon manual
inspection, the incorrect matches turned out to be errors in the test set (places
within a city linking to the Wikipedia article about the city). Missed matches
were usually due to missing names or missing classification information.

Finally, Table 6 presents the overall matching results. More than 50.000
matchings could be found by the script, which required a total runtime of 47
hours. Most of the time was spend for SPARQL queries to our local DBpedia
and LGD endpoints. Despite our strict matching heuristic, the matches cover
53.8% of all DBpedia entities of the given types and can therefore be consid-
ered a valuable addition to the Linking Open Data effort. Most of the 53.010
matches found are cities, since they are common in Wikipedia and well tagged
in OSM. Many DBpedia entities, which cannot be matched, do either not exist
in LGD, are not classified, or misclassified in DBpedia (e.g. the German city
Aachen is typed as dbpedia-owl:Country since it used to be a country in the
Middle Ages).

Table 6. Matching Results: The second column is the total number of matches found
for this type. The third column is the percentage of DBpedia entities of this type,
which now have links to LGD.

Type #Matches Rate

city 45729 70.9%
railway station 929 24.8%
university 210 13.3%
school 1483 38.4%
airport 649 8.4%
lake 1014 22.1%

Type #Matches Rate

country 160 20.1%
island 313 29.8%
mountain 1475 24.5%
river 677 32.0%
lighthouse 25 4.3%
stadium 346 17.0%

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 743

6 Faceted LinkedGeoData Browser and Editor

In order to showcase the benefits of revealing the structured information in
OSM, we developed a facet-based browser and editor for the linked geo data (cf.
Figure 5)8. It allows to browse the world by using a slippy map. Once a region is
selected, the browser analyzes the descriptions of nodes and ways in that region
and generates facets for filtering. Once a facet or a specific facet value has been
selected, matching elements are displayed as markers on the map and in a list.
If the selected region is changed, these are updated accordingly.

Fig. 5. Faceted Linked Geo Data Browser and Editor

If a user logs into the application by using her OSM credentials, the displayed
elements can directly be edited in the map view. For this, the browser generates
a dynamic form based on existing properties. The form also allows to add arbi-
trary additional properties. In order to encourage reuse of both properties and
property values, the editor performs a type-ahead search for existing properties
and property values and ranks them according to the usage frequency. When
changes are made, these are stored locally and propagated to the main OSM
database by using the OSM API.

Performing the facet analysis naively, i.e. counting properties and property
values for a certain region based on longitude and latitude, is extremely slow.
This is due to the fact that the database can only use either the longitude or the
latitude index. Combining both - longitude and latitude - in one index is also
impossible, since, given a certain latitude region, only elements in a relatively
small longitude region are sought for.

A possible solution for this indexing problem is to combine longitude and
latitude into one binary value, which can be efficiently indexed. The challenge is

8 Available online at: http://linkedgeodata.org/browser

http://linkedgeodata.org/browser

744 S. Auer, J. Lehmann, and S. Hellmann

to find a compound of longitude and latitude, which preserves closeness. This is
possible by segmenting the world into a raster of, for example, 232 tiles, whose
x/y coordinates can be interleaved into a 32-bit binary value9. The resulting
tiles are squares with an edge length of about 600m, which is sufficient for most
use cases10.

The 32-bit tile address for a given longitude and latitude value can be effi-
ciently computed by the DBMS using the following formula:

(CONV(BIN(FLOOR(0.5 + 65535*(longitude+180)/360)), 4, 10)<<1)
| CONV(BIN(FLOOR(0.5 + 65535*(latitude+90)/180)), 4, 10)

In this formula “<<1” symbolizes a bit-shift by one digit to the left, “|” is the
bitwise “OR” and CONV converts the first argument from number base given as
second argument to the number base given as third argument.

After elements are associated with the tiles they are located on and after
tiles are indexed by the DBMS, elements located on a certain tile can be fairly
efficiently retrieved. If the user browses to a certain area, the application has to
determine all the tiles encircled by that area. Since co-located tiles are assigned
to adjacent tile numbers, a certain area usually consists of a small number of
tile ranges, which can be efficiently processed by the DBMS.

Even these indexing optimizations were not yet sufficient to obtain acceptable
response times for the faceted browser. In order to further increase the querying
performance, we precomputed the counts for all properties on all tiles, as well as
the counts of all property values for a set of predefined properties of which we
know that they have only a limited number of values. We did that not only for
the highest zoom level, but for each zoom level which users are able to select.
The lower the zoom level, the more the number of tiles reduces and the faster
corresponding property and property value count aggregates can be computed.

7 Conclusions, Related and Future Work

7.1 Conclusions

The transformation and publication of the OpenStreetMap data according to
the Linked Data principles adds a new dimension to the Data Web: spatial
data can be retrieved and interlinked on an unprecedented level of granularity.
This enhancement enables a variety of new Linked Data applications such as
geo-data syndication or semantic-spatial searches. The dynamic of the Open-
StreetMap project will ensure a steady growth of the dataset. Furthermore, we
established mappings with DBpedia as the central interlinking hub in the Web of
Data. We also presented an efficient browser and editor for semantically enriched
geo-data.

9 This is also discussed on http://wiki.openstreetmap.org/wiki/Quadtile
10 In fact, the precision can be increased arbitrarily by using simply a larger number

of tiles.

http://wiki.openstreetmap.org/wiki/Quadtile

LinkedGeoData: Adding a Spatial Dimension to the Web of Data 745

7.2 Related Work

The two main areas of relevant related work concern 1.) techniques for convert-
ing relational databases to Semantic Web standard formats and 2.) ontology
matching.

There is a large body of work dedicated to converting relational databases
to RDF and OWL. The W3C RDB2RDF incubator group, which we are par-
ticipating in, has the aim to classify and standardize such approaches. For a
comprehensive overview, we refer to http://esw.w3.org/topic/Rdb2RdfXG/
StateOfTheArt or the latest survey of the incubator group. For the article, we
restrict ourselves to naming a few relevant tools in this area: Tirmizi [11] has a
formal system to capture all information contained in a database based on the
idea that all domain semantics are already contained in it. i [9], DB2OWL [6],
and RDBToOnto [4] use less complete extraction rules and partially allow to
refine the resulting knowledge base. In particular, DB2OWL allows to align the
knowledge base to a reference ontology. For LinkedGeoData, we decided to use
Triplify. Its use requires manual effort to write SQL mapping queries, but it
is very light-weidth, easy to use, and most importantly sufficiently efficient to
handle the large volumes of data in OpenStreetMap.

Regarding ontology mapping, there have been several decades of research
starting with the integration of different database schemata. Tools like COMA [5]
provide rich support for various matching operations between data bases as well
as between RDF knowledge bases. For this article, we can limit ourselves to
instance matching, since our main goal is to match specific points of interests
in different knowledge bases. While there has been work on spatial matching
methods, our experiments indicated that it is difficult to apply them automati-
cally due to efficiency issues and the specifics of the involved knowledge bases.
SILK [12] is a framework aiming to overcome this problem, but currently lacks
support for spatial matching features.

[3] describes a semantic approach for matching export schemas of geographical
database Web services, based on the use of a small set of typical instances. The
paper also contains an extensive experiment, carried out within the context of
two gazetteers, Geonames and the ADL gazetteer, to illustrate the approach.
[10] describes an approach integrating geo data from multiple sources, which
also incorporates a temporal dimension.

7.3 Future Work

Regarding the mapping approach described in Section 5, we aim to extend it in
three different directions: 1.) We intend to interlink LinkedGeoData with further
geographic knowledge bases. For instance for Geonames11, one of the benefits
will be that the tagging structures in OpenStreetMap will be complemented by
the hierarchical structural features in Geonames. 2.) We may integrate the ef-
ficient matching methods we have used in ontology matching tools like SILK.

11 http://geonames.org

http://esw.w3.org/topic/Rdb2RdfXG/StateOfTheArt
http://esw.w3.org/topic/Rdb2RdfXG/StateOfTheArt
http://geonames.org

746 S. Auer, J. Lehmann, and S. Hellmann

3.) We intend to use machine learning techniques to facilitate proper choices of
parameters and threshold values in the matching method.

In general, we plan to build a community around LinkedGeoData and encour-
age people to use the data provided by OpenStreetMap in novel ways through
our interfaces, SPARQL endpoint, and Linked Data.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Ives, Z.: Dbpedia: A nucleus for
a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

2. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify -
lightweight linked data publication from relational databases. In: Proceedings of
the 17th International Conference on World Wide Web, WWW 2009, Madrid,
Spain, April 20-24, pp. 621–630 (2009)

3. Brauner, D.F., Intrator, C., Freitas, J.C., Casanova, M.A.: An instance-based ap-
proach for matching export schemas of geographical database Web services. In:
Proc. of the IX Brazilian Symp. on GeoInformatics (GEOINFO), pp. 109–120
(2007)

4. Cerbah, F.: Learning highly structured semantic repositories from relational
databases. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 777–781. Springer, Heidelberg (2008)

5. Do, H.H., Rahm, E.: COMA - A system for flexible combination of schema match-
ing approaches. In: VLDB, pp. 610–621. Morgan Kaufmann, San Francisco (2002)

6. Ghawi, R., Cullot, N.: Database-to-ontology mapping generation for semantic
interoperability. In: Third International Workshop on Database Interoperability
(InterDB 2007), held in conjunction with VLDB 2007 (2007)

7. Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Ma-
chine Learning Research (to appear 2009)

8. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the
ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

9. Li, M., Du, X., Wang, S.: A semi-automatic ontology acquisition method for the
semantic web. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739,
pp. 209–220. Springer, Heidelberg (2005)

10. Manguinhas, H., Martins, B., Borbinha, J.L.: A geo-temporal web gazetteer inte-
grating data from multiple sources. In: ICDIM, pp. 146–153. IEEE, Los Alamitos
(2008)

11. Tirmizi, S.H., Sequeda, J., Miranker, D.P.: Translating SQL applications to the
semantic web. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS,
vol. 5181, pp. 450–464. Springer, Heidelberg (2008)

12. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk–a link discovery framework for
the web of data. In: Proceedings of the 2nd Workshop about Linked Data on the
Web, LDOW 2009 (2009)

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 747–762, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Enrichment and Ranking of the YouTube Tag Space
and Integration with the Linked Data Cloud

Smitashree Choudhury1, John G. Breslin1,2, and Alexandre Passant1

1 DERI, National University of Ireland, Galway, Ireland
2 School of Engineering and Informatics, National University of Ireland, Galway, Ireland

{smitashree.choudhury,john.breslin,alexandre.passant}@deri.org

Abstract. The increase of personal digital cameras with video functionality
and video-enabled camera phones has increased the amount of user-generated
videos on the Web. People are spending more and more time viewing online
videos as a major source of entertainment and “infotainment”. Social web-
sites allow users to assign shared free-form tags to user-generated multimedia
resources, thus generating annotations for objects with a minimum amount of
effort. Tagging allows communities to organise their multimedia items into
browseable sets, but these tags may be poorly chosen and related tags may be
omitted. Current techniques to retrieve, integrate and present this media to
users are deficient and could do with improvement. In this paper, we describe
a framework for semantic enrichment, ranking and integration of web video
tags using Semantic Web technologies. Semantic enrichment of folksonomies
can bridge the gap between the uncontrolled and flat structures typically
found in user-generated content and structures provided by the Semantic
Web. The enhancement of tag spaces with semantics has been accomplished
through two major tasks: (1) a tag space expansion and ranking step; and (2)
through concept matching and integration with the Linked Data cloud. We
have explored social, temporal and spatial contexts to enrich and extend the
existing tag space. The resulting semantic tag space is modelled via a local
graph based on co-occurrence distances for ranking. A ranked tag list is
mapped and integrated with the Linked Data cloud through the DBpedia re-
source repository. Multi-dimensional context filtering for tag expansion
means that tag ranking is much easier and it provides less ambiguous tag to
concept matching.

1 Introduction

A key feature of the Social Web is the change in the role of a user from simply being
a consumer of media: they are now content creators. It is not just textual content that
can be shared, annotated or discussed, but any multimedia content such as pictures,
videos, or even presentation slides. With tools like iMovie for video creation and
digital cameras with built-in WiFi for instant uploads, web users can easily add their
multimedia content to social media websites. With this ease of creation, there is an
ever increasing amount of multimedia in various formats becoming available on the

748 S. Choudhury, J.G. Breslin, and A. Passant

Social Web. Recently YouTube1 reported that 20 hours of video were being uploaded
per minute, which amounts to 28,800 hours of video uploaded in one day to that site.

All of these videos are being annotated by users with free unstructured keywords.
Some video sharing sites also permit sharing and collaboration in the tagging process
by allowing other users to tag a video, thereby giving a sense of collective intelli-
gence. Current techniques to retrieve, integrate and present this tagged media to
users are deficient and could certainly benefit from improvement. Semantic tech-
nologies make it possible to give richer descriptions to media, facilitating the process
of locating, combining diverse media from various sources and personalising content
recommendation.

A major problem is that the textual annotations vary in terms of quality and their
ability to describe the video content. The tags include not only the content but also
information about the user, their subjective opinion of the content, misspelling, and
emerging co-joined tags. Given the ambiguity, subjectivity and noise in tags, one of
the fundamental problems is to learn the relevance of the tag corresponding to the
content. Unstructured and informal descriptions rule out any kind of interoperability
of the resources across similar and related content. An attempt to give a well-defined
structure and to formalise the tag space for user-generated videos will be the first step
towards a desired solution. Moreover, we believe that this could be an efficient way to
add relevant semantics to videos on the Web, in combination with existing initiatives,
such as the MPEG7 [10] standard and its associated RDF(S)/OWL mappings (that can
be used to represent image regions and add particular annotations about them) and the
current tasks of the W3C Media Annotation Working Group, as defined in their
document on “web video”2.

In this study, we have designed a framework to explore the contribution of various
types of contextual data to the tag space and their relevance in ranking. Information
embedded in video contexts such as social, spatial and temporal contexts are a good
source for video tag suggestions. Enriching tags, though helpful for more reliable
descriptions of content, can at the same time add noise to the resulting video meta-
data. In order to attenuate the noise from the tag space, we need to rank the tags.
Studies have been carried out recently on the relevance of ranking tags for docu-
ments and images, but to our knowledge there is no study yet to rank tags for user
videos on the Web. After tag ranking, we consider linking this enriched data to the
open Web following the principles envisioned in the Linking Open Data (LOD)
initiative [15]. This rich data cloud gives each object and concept a unique identifier
(URI) which is referenceable and linkable on the Web, such that they can make ref-
erence to each other irrespective of the vocabulary used. Three video resources may
be described with three different tags “new york city”, “nyc” and “big apple” by
three different users, but the intended meaning is the same, i.e. the city of New York.
When we look for “new york city”, we may not find the other two even though both
of them are describing the same content. If we can disambiguate these three and link
to one identifier, this makes retrieval much easier. To address this problem a solution
is to disambiguate each tag to an ontological concept identified by its own URI [27].
Since tags are simple uncontrolled keywords, they inherit the same IR-related

1 http://www.youtube.com/
2 http://www.w3.org/2008/WebVideo/Annotations/

 Enrichment and Ranking of the YouTube Tag Space and Integration 749

problems of synonyms and polysemy, as described in [26] and [27]. A robust disam-
biguation method is needed for direct tag-to -concept matching. In the present study,
we have not described the tag-to-concept matching module in much detail, but rather
we have described the applicability of tag-to-concept matching and the benefits of
interlinking to the structured world. The final output of the framework is a set of
RDF triples describing the video and its contextual metadata with the support of a
video model and various existing lightweight ontologies such as Dublin Core, SIOC,
MOAT, FOAF, etc.

The rest of the paper is organised as follows. Section 2 describes various related
studies in tag suggestion ranking and semantic integration. Section 3 describes the
system architecture and its modules. Section 4 describes the integration of the en-
riched video tag space and metadata into the Linked Data Cloud. This is followed by
experiments and evaluation in section 5, after which we will conclude with some
remarks and future directions in the final section.

2 Related Tag Studies

Strongly descriptive and unambiguous tags are the first step toward more effective
retrieval and interoperability across Social Web data sources. Much research has been
carried out recently in refining user-generated tags to make them more semantically
interoperable. Numerous studies [1], [8] have been carried out to suggest relevant tags
for media documents based on supervised learning techniques, where the models are
built for specific domains and co-relations of low-level features to tags are learned.
However, due to the numerous amounts of visual variations, many efforts are far from
satisfactory and moreover are restricted to a small domain of applications. Manual
and collaborative tagging is one of the alternatives adopted by most popular media
sharing sites such as Flickr and YouTube. This of course adds other problems as de-
scribed in the first section of this paper. These problems have led to many studies in
the field of folksonomies, user-tagging behaviours, semantic tagging and tag refine-
ment. We will describe some of the studies relevant to the present study and outline
how they differ from the present study. These studies mainly come under three differ-
ent groupings: tag suggestion, tag ranking and tag semantics.

2.1 Tag Suggestion

In the field of tag suggestion, different but simultaneous approaches have been pur-
sued by researchers to improve both automatic annotations and multimedia annotation
quality. Researchers from the machine vision community are now focusing on gather-
ing contextual data together with content processing to bridge the semantic gap [19],
while other researchers [17] are purely focusing on social data combined with a
knowledge base to augment media with social annotations3. Though both approaches
have their valid points, harvesting social data is not only inexpensive but can contrib-
ute significantly to bootstrapping the content understanding process.

The informal nature of tagging means that semantic information cannot be directly
inferred from an annotation, as any user can tag any resource with whatever strings

3 http://acronym.deri.org/

750 S. Choudhury, J.G. Breslin, and A. Passant

they wish. However, studying the collective tagging behaviour of a large number of
users allows emergent semantics to be derived [14]. Through a combination of such
mass collaborative ‘structural’ semantics (via tags, geo-temporal information, ratings,
etc.) and extracted multimedia ‘content’ semantics (which can be used for clustering
purposes, e.g. image similarities or musical patterns), relevant annotations can be
suggested to users when they contribute multimedia content to a community site
by comparing new items with related semantic items in one’s implicit and explicit
networks.

2.2 Tag Ranking

Research into tag ranking began with studies [1] and [8] where ranks were assigned
with respect to visual content as the result of supervised machine learning ap-
proaches, where models map relationships between visual features and semantic
concepts. Uncontrolled visual content where there are a vast number of concepts
involved makes the above approach less effective, and led to another approach for
tag ranking which followed usage statistics by studying tag co-occurrence over a
large corpus. Sigurbjörnsson et al. ranked Flickr tags [3] by means of co-occurring
tags. Hotho et al. [11] suggested Folkrank for community detection in Delicious tags.
Relevance ranking by means of frequency counting for “neighbouring” images
(in terms of visual similarity) was conducted by Li et al. [4], where they selected
common tags from neighbouring images for higher ranking. A recent study on tag
ranking by Liu et al [9] proposed a tag rank for Flickr images by means of a random
walk. Our ranking module is in the same general domain with the exception that we
enriched our tag space before ranking to tackle the problem of tag sparsity in You-
Tube videos.

2.3 Tag Semantics

Studies in tag semantics fall into two broad categories: a corpus-based or statistical
approach and a knowledge-based approach. Initial studies [2] on folksonomies ex-
plored means of leveraging the statistical co-occurrence relations between tags
to define their semantics, and knowledge-based approaches refer to external knowl-
edge sources such as thesaurus and ontologies to define the tag meaning [20].
Rattenbury et al. [5] explored tag-usage statistics to determine the events and place
semantics from Flickr tags using burst detection analysis. Research in [6] used
online ontologies and WordNet [17] to map tags for Flickr tags to concepts.
Simon et al. [7] used Wikipedia categories and template structures to classify Flickr
tags and these were mapped to WordNet concepts.

Other works on the topic include studies regarding the emergent semantics of tag-
ging systems. Among others, [22] used an approach based on related co-occurrences
of tags to extract hierarchical relationships between concepts, modeled in RDFS,
while [23] defined a socially-aware approach for building ontologies by combining
social network analysis and clustering algorithms based on folksonomies. More re-
cently, FolksOntology [29] and FLOR [28] also provide frameworks for automated
semantic enrichment of tagged data.

 Enrichment and Ranking of the YouTube Tag Space and Integration 751

Finally, various models have been developed to capture the semantics of
tagging systems using lightweight ontologies, such as SCOT [25], MOAT [24] or
CommonTag4.

3 System Architecture

In this section, we will give a detailed description of the tag expansion and ranking
system that we have built. We begin with a general overview of the different modules,
followed by an explanation of the tag filtering and expansion step, then we will de-
scribe the tag graph creation process, and finally we will detail the tag ranking meth-
ods by means of spreading activation over the tag graph.

Fig. 1. Work flow of the tag enrichment, ranking and linking processes

The goal of this work is to enrich the user-generated tag space, and to rank and
interlink the tags to DBpedia concepts for greater integration with other datasets.
DBpedia is considered as a central node in the LOD cloud (the DBpedia nucleus), and
linking to DBpedia also allows one to reach other datasets, thanks to the network
effect of this project. There are three main modules in the system, each of which con-
sists of many sub-modules. Figure 1 shows the normal work flow of the system: (1)
context analysis and tag expansion; (2) tag ranking, and (3) concept mapping and
linking to the Semantic Web.

3.1 Context Analysis and Tag Expansion

In this section, we describe our first module that implements the tag expansion strat-
egy. Because of the sparseness of video tags, we need to expand the tag base with
various other contextual sources such as social, temporal and geographical contexts.

4 http://commontag.org/

752 S. Choudhury, J.G. Breslin, and A. Passant

We will begin with a description of our pre-processing step. User-generated tags
consist of three broad categories of tags: functional tags (meaningful and mostly sin-
gle keywords), noisy tags, and compound or emerging tags. Compound or emerging
tags are those tags consisting of two or more keywords without any white space such
as “friendsoftheearth”, “iswc09” (used for friends_of_the_earth, ISWC_2009 respec-
tively). There are other categories of tags which are subjective or judgmental tags, as
studied by [21] and these reflect a user’s view point rather than the video content, for
example, “funny”, “wonderful”, “watch this”, etc. In our system, we excluded tags
with less than three characters, subjective tags, non-English tags, and tags describing
usernames for the purpose of this study. However, there can be some difficulty with
compound tags as these tags are not common words, and further work must be per-
formed to identify meaningful tags from these composite sets. The textual content
from the video title and descriptions are subject to the same kind of pre-processing
described above, including stopword removal.

3.2 Semantic Tag Space Enrichment

In this module, we work on the tag space enrichment process where the sparse video
tag space is enriched with multiple contextual sources. The sources are of various
natures and exist in the context of the video in question:

1. Other textual contexts such as title and description of the video
2. Geospatial contexts, such as the place where the video has been recorded

(latitude and longitude coordinates available through the YouTube API)
3. Temporal contexts, e.g. recording time
4. Social contexts, e.g. groups or playlists that include the tagged video as

an item
5. Related videos, i.e. videos sharing some specific characteristics such as

tags or time and space
6. User contexts, such as the type of user that includes the video in their

bookmarks or favorites list
7. Context from the Web itself, i.e. other websites delivering information

about these tags

We have considered the first five contextual sources to increase the tag space, and
omitted the last two, which may be the subject of another study. Textual contexts such
as video titles, descriptions and categories are used to rank the tag weights and some-
times add extra tags that are missing in the tag space itself. To avoid noise propaga-
tion, weights are added to different sources.

A playlist “extreme sailing” can include videos whose tag space is more compact
and clustered from the general “sailing” tag space. Playlist and group structures where
videos and users are members can propagate tags to the individual video items [18].

“Related Videos” in YouTube are those videos that are considered similar to the
original video in some aspects. YouTube provides a related video feed for each video.
It is not known on what basis YouTube ranks the relatedness of a video, and some-
times the results are unexpected. Moreover, YouTube feeds cannot be filtered with
complex queries such as “give me the videos related to the query where relatedness is
based on a shared tag space, should be from the same place, and must be within a

 Enrichment and Ranking of the YouTube Tag Space and Integration 753

time range, but not from the same user” without a lot of work, so we decided to gen-
erate a list of related videos for each video from our own data set. The related videos
are judged based on mutual content information in tag space. We adopted a space and
time normalisation criteria in selecting the related videos. To explain this, if videos
share a time and place value with the original video, they are ranked higher in relat-
edness. The intuitive explanation for this is that videos from the same place and same
time are more likely to capture the same events and content [5]. Videos from Galway
(a geographical area) from 30-05-2009 to 01-06-2009 are more likely to contain the
events “Salthill air show” and “Volvo Ocean Race”, so accordingly there is a defini-
tive pattern of high-frequency tags such as “Salthill”, “air show”, “red arrows”,
“beach”, “Volvo Ocean Race”, etc.

Spatial context is information regarding the geolocation where the video has been
recorded or the place that the content describes, which can be extracted from the geo
coordinates. Temporal context is the time of video recording (not publishing). Table 1
shows the comparative tag spaces of related videos with and without time and space
filters. This contextual information not only expands the initial tag space, but it also
adds weights to the tags. The intermediate list of tags is the input for the final phase of
tag expansion and recommendation based on tag co-occurrence. Table 2 shows the
first phase of tag expansion.

Table 1. Comparative tag spaces of related videos with and without filters

Original Video Tags Related Video Tags Without Filter
Planes, Air show, Galway Planes, Air show, red_arrows, Volvo Ocean

Race, Galway, Ireland, Panasonic, NV-
GS330, NV, GS, 330, NV-GS

Original Video Tags Related Video Tags With Time and Space
Filters

“MOV04687”, “Galway”, “Ireland”, “air
show”

“heart”, “festival”, “raf”, “in-port”, “race”,
“beach”, “galway_bay”, “salthill”, “Volvo
Ocean Race”, “red arrows”, “beach”

Table 2. Multi-contextual tag expansion

Title Planes Salthill Galway
Description same planes!!
Tags Planes, air show
Related Videos “heart”, “festival”, “raf”,

“in-port”, “race”, “beach”, “
galway_bay,” “salthill”,
“Volvo Ocean Race”, “red
arrows”, “beach”

Geolocation Galway, Ireland

“Planes”, “beach”, “Galway”,
“Air show”, “raf”, “festival”,
“salthill”, “red arrows”,
“race”, “in-port”,
“volvo_ocean_race”, “heart”,
“Ireland”, “galway_bay”

Tag co-occurrence is one of the key enablers towards creating a more comprehensive
semantically-related tag space for the video. Co-occurrence between two tags occurs
when both the tags are used to label the same resource. We opted for a second phase

754 S. Choudhury, J.G. Breslin, and A. Passant

of tag expansion based on tag co-occurrence if the tag set (N < 5) is less than five
after the first stage of expansion. Raw co-occurrence gives a weak relationship
as there may be many occurrences of less descriptive tags such as “news” for all
news category videos. Therefore, it is natural to normalise the count in order to reduce
the bias.

Intuitively, one resource will not be tagged with equivalent tags but rather with re-
lated tags in which case the distance between them will not be symmetrical: d(t1, t2) ≠
d(t2, t1). We have adopted an asymmetric approach of measuring co-occurrence using
the equation:

cd(t1, t2) = |t1∩t2|/|t1| (1)

It captures how often tag 2 (t2) occurs with tag 1 (t1) given the total number of occur-
rences. It gives a more diverse tag space when compared to a symmetric co-
occurrence coefficient.

When we get a list of co-occurring tags for each of the tags from the list above we
need a mechanism to aggregate them so that we can prepare the final list. Aggregation
can be a simple voting mechanism where frequent candidate tags are ranked higher.

3.3 Tag Ranking

In this section we describe the detection of ranked nodes in the graph, beginning with
an overview of the tag graph creation, and then describing spreading activation over
the graph to rank the nodes.

(a)

(b)

Fig. 2. (a) Tag graph for a video and (b) spreading activation from the node “planes”

Given a video v ∈ V and an extended tag set ET = {t1, t2, … tn}, we create a local
graph of tags. The tag graph is a directed weighted graph with tags as nodes and the
links between nodes are weighted edges. The edge weight is an asymmetric correla-
tion based on their co-occurrence. If the correlation value is less than a threshold (τ)
the tags are not connected. The co-occurrence relation is calculated as per equation 1.
Figure 2 (a) shows a tag graph for the video.

 Enrichment and Ranking of the YouTube Tag Space and Integration 755

We have used the tag list as a loose semantic network based on their correlations,
and processed the network using spreading activation. Spreading activation as an
information processing algorithm is based on the theory of cognitive science [16] and
human memory. It works on a semantic network of nodes and links where links are
connections between nodes based on certain relationship. Information processing
starts when the activated node starts spreading its energy towards the neighboring
nodes. At the end of processing, all nodes will have some activation value which was
contributed through its relation with neighboring nodes.

In our work, we have used the video tags as nodes of the network and their co-
occurring relations as the weighted link between nodes. The relationship between tags
can be semantic as in WordNet and other ontologies, or it can be based on co-
occurrence patterns as observed in web data. We have opted for co-occurrence relations
to connect the tags as a network. The activation process includes the following steps:

1. The graph nodes are assigned an initial value of 0 except for the firing
node which has an activation value of 1.0.

2. It spreads its activation to all nodes in its immediate neighborhood that
are connected to the source node.

3. Output activation is a function of (initial activation + (initial activation *
edge strength) * d), where d is a decay factor set up experimentally. In
our case it is .85.

4. If the node value exceeds a threshold, we fire the node again.
5. The node activation value is the weighted sum of its contributing nodes.
6. Each node activates once in the process.

Following the above steps, we rank our extended tag list turned local graph. Experi-
mentally we set up the decay factor to be .85 and the iteration was 1 for all the nodes
as this graph is not a complex nested graph. The activation starts with the top node in
the tag list. All the nodes except the firing nodes are assigned a value of 0. Once the
energy propagation starts, the node spreads its energy to the connected nodes and the
receiving amount of energy is a function of relationship strength and decaying energy
factor. Figure 2 (b) shows the activation process starting with the node “plane” and
spreading to three nodes “air show”, “raf”, “red arrows” (this node again spreads and
contributes to the “air show” node).

3.4 Linked Data Creation

Once the tags are cleaned and ranked, they can then be connected to other similar and
related resources. For example, there are videos of the “Volvo Ocean Race” on You-
Tube as well as on other media sharing sites such as Vimeo or Joost. To discover the
entire spectrum we need to create a mapping mechanism from user tags to ontological
resources so that they can be more connected and discoverable. This is where the
Linked Open Data initiative fits in. As part of its principles, one needs to identify
every entity (object, concept, event, people) with a unique web identifier or URI on
the Web. Following one URI will lead to the discovery of some more related informa-
tion. This simple yet powerful idea has rapidly gained momentum recently. The
Linked Open Data cloud now consists of more than a hundred datasets and billions of
interlinked facts as entities.

756 S. Choudhury, J.G. Breslin, and A. Passant

There is the question of how best to integrate user-generated videos with the exist-
ing structured LOD cloud. Automatic mapping from tags to concepts is desirable, but
challenging due to multiple contexts of the concept. Studies in MOAT5 showed that
users are willing to do this manually when they realise the benefits of such an effort,
for instance, if they get advanced browsing or querying features.

Fig. 3. Connecting to multimedia datasets already interlinked within the Linked Data cloud

In the present study, since we have a limited domain, the number of mappings is
quite small so we used the semantic indexing engine Sindice6 to query DBpedia and
select the most appropriate URIs. Automatic mapping of tags to concepts is ongoing
work to be reported on later. Links can also be added to user accounts (SIOC) and
locations (GeoNames) obtained from the YouTube API (Figure 3).

3.5 Tags-to-Concept Mapping

Tag-to-concept matching is not yet fully implemented and will be part of our future
work. As part of the experiment we have used DBpedia resources. We presume that
cross-resource mapping to other sources from the LOD initiative (such as Freebase)
can easily be adapted. Depending on the context, some particular datasets may also be
considered, e.g. a genes database when dealing with medical videos. Here, we will
briefly describe our approach for tag-to-concept matching. Once the tags are finalised,
we use a two-step process for assigning concept identifiers. The tags are fed into a
local WordNet module and some simple heuristics are followed:

1. If the tag matches with a WordNet noun, and if there is only one
matching synset, we select the corresponding WordNet URI in DBpedia
(Figure 4).

5 http://www.moat-project.org/
6 http://sindice.com/

 Enrichment and Ranking of the YouTube Tag Space and Integration 757

2. If there are more than one WordNet synset, we send the tag and its con-
text tags to a similarity module to compute the cosine similarity between
the current tag context and already-existing tag URIs. (The similarity
module is based on the Lucene7 text retrieval Java library and on other
work in progress).

3. For those tags that are not part of WordNet, we send them to the seman-
tic indexing engine Sindice to look for resources. Once we get the top k
URIs for the query, the user can select the URI manually or else it is fed
into another disambiguation module where URIs can be contextually
disambiguated (not implemented yet).

Fig. 4. Matching YouTube tags to DBpedia concepts

4 Experiments and Evaluation

4.1 Results

We have collected 3,990 YouTube videos. All video metadata including the metadata
of related videos was collected through the YouTube API. We collected videos of
specific categories such as “skiing”, “sailing” and “cricket”. The data includes video
tags, dates, places (if available), titles, descriptions and group tags (if available). The
total number of unique tags is more than 11,900 which includes many misspellings,
number tags, co-joined tags, and subjective as well as meaningless tags. There are
2,261 distinct users in the data set. On average, one user has less than two videos.
Since users tag differently depending on their background and expertise, we can as-
sume a relatively heterogeneous tag source. We did a preliminary filtering of tags by
removing stop words, tags with two characters and number tags. Though the tag list
is far from clean, this reduces a lot of noise. This tag set is used for extracting the co-
occurrence statistics.

7 http://lucene.apache.org/java/docs/

758 S. Choudhury, J.G. Breslin, and A. Passant

Fig. 5. The number of times the most relevant tag was suggested at different positions

We conducted a preliminary evaluation to explore the quality of our ranking
method and tag enhancement. We randomly selected 100 videos from the larger set to
explore potential benefits and problems. Three users familiar with the topics were
asked to rank the tag lists of these videos on a scale of 1 to 4: “most relevant”, “rele-
vant”, “partially relevant” and “irrelevant”, according to their depicted content. We
computed the amount of times the most relevant tag was ranked as “most relevant” by
users, and we will now discuss the quality of our tag enhancement.

Inter rater Agreement

0

10

20

30

40

Position1 position2 position 3 Position 4

User ratings

2 users

3 users

Fig. 6. Inter-rater agreement over the most relevant tag in the first four positions

Though relatively small, the user feedback gave some interesting results. Regard-
ing inter-rater variation, we considered a final rank when a minimum of two users
agreed on the same rank. For the 100 videos, Figure 5 shows that the most relevant
tag came in at the top position 51 times (where a minimum of two users have agreed),
whereas the top tag came second 27 times. Therefore, for almost 80% of the time, the
top-ranked tag was in either of the first two positions. Figure 6 shows the inter-rater
agreement over the tag relevance in the first four positions.

Similarly, we tried to explore the tag enrichment task and its effectiveness in de-
scribing the content of the video. This evaluation was conducted at two stages: before

 Enrichment and Ranking of the YouTube Tag Space and Integration 759

Fig. 7. Comparative evaluation of the quality of the tag space

the tag expansion and after the tag expansion. The users were asked to rank the origi-
nal tag list on a three-point scale of (1) sufficient for the content, (2) okay, but can be
improved, and (3) insufficient. The comparative results are in Figure 7.

The result showed that the tag enrichment process increased the content under-
standing considerably. Still, 28% of the videos need improvement. There may be
many reasons for this such as more specific tag cleaning, insufficiency of the tag list,
or perhaps due to noise propagation from the different contextual sources which were
used.

In the present study, inter-rater agreement evaluation is only focused on the top-
ranked tag. Out of the 51 times where the system-suggested top tag was considered
most relevant by users, two users agreed 33 times and three users agreed 18 times.
However, in position two, out of 27 total times, all three users agreed that the tag was
most relevant 25 times. An exhaustive analysis of user agreement over the relevance
of suggested tags is desirable to explore possible room for improvements.

We will conclude this section by discussing some potential benefits in applica-
tions such as (1) semantic tag-based search and retrieval, and (2) improved video
categorisation.

4.2 Semantic Tag-Based Search and Retrieval

We evaluated our work in a retrieval framework and describe here two use cases of tag-
based retrieval. Given a query q, the system will retrieve all the videos tagged with q but
they will be ranked according to the ranked position of q in the tag space. Thus, if two
videos tagged with q are retrieved, the video having q in a higher position will be ranked
higher. Identifying tags with DBpedia URIs opens up many possibilities of knowledge
discovery. A resource tagged with “Volvo Ocean Race” and identified with a URI such
as “http://dbpedia.org/resource/Volvo_ocean_race” will lead us to discover informa-
tion about “St._Petersburg, Russia” as it is related to the query by means of destination
port. A video tag identified with “http://dbpedia/resource/Galway” will lead us to dis-
cover more about the culture, events and history of Galway.

4.3 Improved Video Categorisation

Categories in YouTube are selected by users when uploading videos. Sometimes, a
user selects a less-relevant category for their content as it is a flat single category

760 S. Choudhury, J.G. Breslin, and A. Passant

system and the choices are also quite limited. In practice, video content may belong to
more than one category, and moreover, it may follow a hierarchal structure. Based on
our enriched tag space, we can suggest a hierarchical categorisation for a video by
exploiting the relations between tags. A video tagged with “news, Japan, earthquake,
building, tsunami” can be categorized under News >> Natural Hazard >> Earthquake
conforming to the hierarchical structure of existing ontologies such as the Large Scale
Concept Ontology for Multimedia (LSCOM) [13]. In LSCOM, “earthquake is a sub-
class of natural hazard”.

5 Conclusions

In this paper, we propose a roundtrip semantic framework which provides some steps
towards solving the above problem. The key modules that have been implemented are
for tag enrichment, tag ranking, concept mapping and semantic linking. Tag enrich-
ment involves various contextual analyses of the video and the contribution of these
contexts towards content understanding. Context not only includes textual descrip-
tions but also the temporal, spatial and social contexts in which the video is being
used and shared. Interplaying a combination of contexts provides for improved
enrichment. The advantages of the proposed algorithm for tag enrichment are: (1)
multiple sources can make the tags more reliable for content description; (2) the sub-
jective ambiguities are reduced; (3) the method is scalable since it does not require
any domain specific model training; and (4) it can evolve with tag usage.

We have also proposed a tag-ranking algorithm performed over a local tag graph
by means of spreading activation. The tag graph is based on the enriched tag set and is
connected by means of co-occurrence strength. Spreading activation helps to activate
the focused nodes and reduces the strength of noisy nodes. We also described the tag-
to-resource mapping (with DBpedia as our semantic repository) and outlined how
Linked Data principles can aid with linking to user-generated video content. Success-
ful linking to DBpedia web identifiers can harness other related data sources from the
LOD cloud and then enrich information discovery from videos.

Our future work includes a complete concept-to-URI matching mechanism and an
explorative evaluation of the approach with more users.

Acknowledgements

This work was supported by Science Foundation Ireland under grant number
SFI/08/CE/I1380 (Líon 2).

References

1. Barnard, K., Duygulu, P., Forsyth, D., Freitas, D.N., Blei, D.M., Jordan, M.I.: Matching
words and pictures. JMLR, 1107–1135 (2003)

2. Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: Improving search and ex-
ploration in the tag space. In: WWW Collaborative Web Tagging Workshop (2006)

3. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowl-
edge. In: Proc. of the International World Wide Web Conference (2008)

 Enrichment and Ranking of the YouTube Tag Space and Integration 761

4. Li, X.R., Snoek, C.G.M., Worring, M.: Learning tag relevance by neighbour voting for so-
cial image retrieval. In: Proc. of the ACM International Conference on Multimedia Infor-
mation Retrieval (2008)

5. Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place
semantics from Flickr tags. In: Proc. of SIGIR, pp. 103–110 (2007)

6. Angeletou, S., Sabou, M., Motta, E.: Semantically enriching folksonomies with FLOR. In:
Proc. of the 5th ESWC: CISWeb, Tenerife, Spain (2008)

7. Overell, S., Sigurbjörnsson, B., van Zwol, R.: Classifying tags using open content re-
sources. In: Proceedings of the Second ACM International Conference on Web Search and
Data Mining (WSDM 2009), ACM, Barcelona, Spain (2009)

8. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2008)

9. Dong, L., Xian-Seng, H., Yang, L.: Tag ranking. In: Proc. of the International World Wide
Web Conference (2009)

10. Hunter, J.: Adding multimedia to the Semantic Web – Building an MPEG-7 ontology.
In: 1st International Semantic Web Working Symposium (SWWS 2001), California, USA,
pp. 261–281 (2001)

11. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies:
search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 411–426. Springer, Heidelberg (2006)

12. Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the Semantic Web. In: Proc. of
the International World Wide Web Conference (2006)

13. Naphade, M.: Large-scale concept ontology for multimedia. IEEE Multimedia 13(3),
86–91 (2006)

14. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 522–536. Springer, Heidelberg (2005)

15. Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web (2007),
http://www4.wiwiss.fu-berlin.de/ bizer/pub/
LinkedDataTutorial/

16. Quillian, M.R.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing,
pp. 227–270. MIT Press, Cambridge (1968)

17. WordNet, http://wordnet.princeton.edu/ (last accessed March 12, 2009)
18. Celma, O., Ramírez, M., Herrera, P.: Foafing the music: A music recommendation system

based on RSS feeds and user preferences. In: Proc. of the 6th International Conference on
Music Information Retrieval (ISMIR 2005), London, UK, pp. 464–457 (2005)

19. Oge, M., Lux, M.: An exploratory study on joint analysis of visual classification in narrow
domains and the discriminative power of tags. In: Proc. of the 2nd ACM workshop on
Multimedia semantics, Vancouver, British Columbia, Canada (2008)

20. Schmitz, P.: Inducing ontology from Flickr tags. In: Proc. of the Collaborative Web Tag-
ging Workshop at the International World Wide Web Conference, Edinburgh, UK (2006)

21. Golder, S., Huberman, B.A.: The Structure of Collaborative Tagging Systems. Journal of
Information Sciences 32(2), 198–208 (2006)

22. Halpin, H., Robu, V., Shepard, H.: The Dynamics and Semantics of Collaborative Tag-
ging. In: Proceedings of the 1st Semantic Authoring and Annotation Workshop (SAAW
2006), The 5th International Semantic Web Conference (ISWC 2006), Athens, Georgia,
USA (2006)

762 S. Choudhury, J.G. Breslin, and A. Passant

23. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 522–536. Springer, Heidelberg (2005)

24. Passant, A., Laublet, P.: Meaning Of A Tag: A Collaborative Approach to Bridge the Gap
Between Tagging and Linked Data. In: Proceedings of the Linked Data on the Web Work-
shop (LDOW 2008) at the 17th International Conference on the World Wide Web (WWW
2008), Beijing, China (April 2008)

25. Kim, H.L., Yang, S.K., Breslin, J.G., Kim, H.G.: Simple Algorithms for Representing Tag
Frequencies in the SCOT Exporter. In: Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, Fremont, California, USA, pp. 536–539
(2007)

26. Mathes, A.: Folksonomies: Cooperative Classification and Communication Through
Shared Metadata. Computer Mediated Communication, LIS590CMC, Graduate School of
Library and Information Science, University of Illinois Urbana-Champaign (2004)

27. Passant, A.: Using Ontologies to Strengthen Folksonomies and Enrich Information Re-
trieval in Weblogs: Theoretical background and corporate use-case. In: ICWSM 2007
(2007)

28. Angeletou, S.: Semantic Enrichment of Folksonomy Tagspaces. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008.
LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)

29. Van Damme, C., Hepp, M., Siorpaes, K.: Folksontology: An integrated approach for turn-
ing folksonomies into ontologies. In: Bridging the Gap between Semantic Web and Web
2.0 (SemNet 2007), pp. 57–70 (2007)

Produce and Consume Linked Data with Drupal!�

Stéphane Corlosquet1,2, Renaud Delbru1, Tim Clark2,3,
Axel Polleres1, and Stefan Decker1

1 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland
2 Massachusetts General Hospital, Department of Neurology, Boston, MA, USA

3 Harvard Medical School, Department of Neurology, Boston, MA, USA

Abstract. Currently a large number of Web sites are driven by Content Manage-
ment Systems (CMS) which manage textual and multimedia content but also -
inherently - carry valuable information about a site’s structure and content model.
Exposing this structured information to the Web of Data has so far required con-
siderable expertise in RDF and OWL modelling and additional programming ef-
fort. In this paper we tackle one of the most popular CMS: Drupal. We enable site
administrators to export their site content model and data to the Web of Data with-
out requiring extensive knowledge on Semantic Web technologies. Our modules
create RDFa annotations and – optionally – a SPARQL endpoint for any Drupal
site out of the box. Likewise, we add the means to map the site data to existing
ontologies on the Web with a search interface to find commonly used ontology
terms. We also allow a Drupal site administrator to include existing RDF data
from remote SPARQL endpoints on the Web in the site. When brought together,
these features allow networked RDF Drupal sites that reuse and enrich Linked
Data. We finally discuss the adoption of our modules and report on a use case in
the biomedical field and the current status of its deployment.

1 Introduction

Since the late 90ies and early 2000s a paradigm shift has taken place in Web publishing
towards a separation of data (content) and structure (mainly layout). The first ideas to
have the data represented in a way which allows its reuse in various ways and not only
HTML, emerged in parallel in various systems such as Typo3 (1997), Plone (1999),
WebML (2000) [6]. These open source systems and their commercial counterparts are
typically subsumed under the term Content Management Systems (CMS).

While it is worthwhile to mention that the first of these systems appeared at around
the same time as Semantic Web technologies emerged, with RDF [14] being standard-
ized in 1999, the development of CMSs and Semantic Web technologies have gone
largely separate paths. Semantic Web technologies have matured to the point where
they are increasingly being deployed on the Web. But the HTML Web still dwarfs this
emerging Web of Data and – boosted by technologies such as CMSs – is still growing
at much faster pace than the Semantic Web.

� This work has been supported by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2). Preliminary results of this work were presented at the SFSW2009
workshop. We thank the reviewers and workshop audience for their valuable feedback.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 763–778, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

764 S. Corlosquet et al.

This is a pity, since actually both worlds could significantly benefit from each other.
Particularly, large amounts of RDF data can now be accessed over the Web as Linked
Data and built into Web applications [11]. Yet, widely available support for exporting
and consuming Linked Data in CMSs – especially for non-experts – is still lacking,
despite the fact that the need for dynamic inclusion and export of structured data in
Web sites is widely recognized: at present, RSS feeds are the only agreed way to share
and syndicate data across Web sites. However, the RSS format is quite limited when it
comes to semantics. It was designed to carry news information, but today it is employed
for carrying other types of information likely due to unawareness of compelling alter-
natives such as Linked (RDF) Data. We believe RDF is a good candidate for improving
interoperability between sites because RSS can only carry a flat list of news item, while
RDF can express any structured data and – by RDFS and OWL – even describe its own
structure. Moreover, it offers a structured query language and protocol in order to ex-
tract and retrieve data matching a set of criteria, whereas with RSS, one first needs to
fetch an entire feed and then process it locally to extract the desired information.

It is remarkable therefore, that although most common CMSs support RSS, RDF
is still being largely ignored as a much richer potential syndication format. This is
especially true since CMSs are typically built on a structured model of the domain
of the site, which is reflected in both the underlying database, but – also and often more
accurately – in the content types defined in the CMS itself by the site administrator. It
is reasonable to assume that such structured models map naturally to RDFS and OWL.
Additionally, the recently finished RDFa [1] standard could support the exposure of
structured data on CMSs by allowing RDF to be embedded directly into the HTML
pages, as opposed to a separate document (like in RSS). Hence RDFS, OWL and RDFa
seem to be more adequate means to expose machine-readable Linked Data on Web sites.
Likewise, the consumption and aggregation of Linked Data on a CMS site offer new
possibilities further described in this paper. Approaching site administrators of widely
used CMSs with easy-to-use tools to enhance their site with Linked Data will not only
be to their benefit, but also significantly boost the Web of Data.

To this end, we extend Drupal – a state-of-the art CMS which has been gaining pop-
ularity recently by its rapidly growing user community, openness and modular design –
with a number of features:

Firstly, we make it possible to expose the content types and fields typically defined
by a site administrator using Drupal’s Content Construction Kit (CCK) automatically
in terms of classes and properties of a canonical OWL ontology, the site vocabulary.
With our RDF CCK module, the site data itself become available as RDFa embedded
in the live Web site following Linked Data principles. While this off-the-shelf solution
already makes any Drupal site which installs our module amenable to Semantic Web
tools such as RDF crawlers, search engines, and SPARQL engines to search and query
the site, this is only a first step.

Secondly, for better linkage to the Web of Data, we enable mappings of the site
vocabulary to existing ontologies. To this end, we extend the RDF CCK module to
allow importing existing RDF vocabularies and map the site model to their terms.

Thirdly, to keep the learning curve low for site administrators, we support them in
finding existing ontologies to reuse by a search facility. Unintended modifications of

Produce and Consume Linked Data with Drupal! 765

existing ontologies as well as the introduction of potential inconsistencies on the Se-
mantic Web are avoided by our user interface as far as possible.

Fourthly, upon installation of an additional module, the site data can – on top of the
RDFa data embedded in the HTML pages – be accessible via a standard SPARQL query
interface, following the SPARQL protocol.

Finally, we allow administrators to dynamically integrate data from other RDF en-
hanced Drupal sites or Linked Data producers.

In the rest of this paper we briefly outline how our approach differs from earlier work
in Section 2. Then we move on to describing specific details on Drupal in Section 3
and outline the goals our implementation should achieve in Section 4, before we look
closer into each of our modules in Section 5. Adoption and deployment of our work are
discussed in Section 6, conclusions are drawn in Section 7.

2 Related Works

Let us explain how our approach differs from previous attempts to link CMSs with the
Semantic Web and why we believe that it is more adequate.

Although some earlier approaches proposed ontology based CMSs running natively
on ontology management systems with RDF stores as back-ends [22,13], current CMSs
run on very traditional Web application servers with relational databases back-ends. We
do not aim to replace established infrastructures, but to build on top of them, with min-
imal intrusion and maximal reuse of the existing CMS infrastructure. We aim to extract
and link ontologies from the content models and within the tools that site administra-
tors are familiar with nowadays. We believe that taking users from where they are will
enable more rapid adoption of Semantic Web technologies and lower entry barriers.

Somewhat closer to our approach is the idea to map the relational database schema
underlying a CMS to RDF/RDFS [23]. Triplify[2] also follows this path, providing
a generic mapping tool from relational databases to Linked Data (e.g. providing some
predefined mappings to wrap Drupal sites’ back-end databases into RDF). Our approach
is again significantly different, as we want to capture the site content model and its
constraints rather than the underlying database structure. Actually, a good part of the
success of CMSs is grounded precisely in the fact that site administrators do not need
to delve into the details of the underlying database system or schema – which may vary
between different versions of Drupal and be affected by changes of the content model
in non-obvious ways. Our approach works on a more abstract level (Drupal’s CCK)
directly in the API and user interface the site administrator is used to. We consider this
model of the information structure more adequate than the underlying database schema.

Finally, none of the above approaches provide an all-in-one solution for exporting,
aggregating and mapping Linked Data from within a commonly used CMS. This is
what distinguishes our work, which is tailored for easy of use.

As for pre-existing work specifically in Drupal, a recent paper [8] describes the re-
lated SCF (Science Collaboration Framework) Node Proxy architecture. This module,
developed specifically for biomedical applications, enables RDF from defined SPARQL
queries to be mapped to specific Drupal content types. These mappings must be gen-
erated individually per content type - Node Proxy is not a general RDF-to-Drupal

766 S. Corlosquet et al.

mapping facility, it does not support CCK, and it is read-only (into Drupal from
Linked Data). Nonetheless, it was a significant first step along the path we develop
further and more generally here. The Node Proxy architecture is currently used to re-
trieve Gene information from a common RDF store for StemBook1, an open access
review of stem cell biology. It will be superseded in the SCF Drupal distribution by the
much more general and fully-featured modules we describe here. We will provide more
details on the SCF use case in Section 6.

3 Drupal: A Popular CMS

Drupal (http://drupal.org/) is among the top three open-source CMS products
in terms of market share [21] and accounts for more than 175 000 installations on the
Web2. The system facilitates the creation of Web sites by handling many aspects of site
maintenance, such as data workflow, access control, user accounts, and storage of data
in the database.

As is typical for CMSs, a site administrator initially sets up a site by installing the
core Drupal Web application and choosing from a large collection of modules. Site
administrators do not write code; this is done by module developers instead. After the
site has been set up, Drupal allows non-technical users to add content and handle routine
maintenance tasks.

Each item of content in Drupal is called a node. Nodes usually correspond more or
less directly to the pages of a site. Nodes can be created, edited and deleted by con-
tent authors. Some modules extend the nodes, for example a taxonomy module allows
assignment of nodes to categories.

The Content Construction Kit (CCK) is one of the most popular and powerful mod-
ules used on Drupal sites. It allows site administrators to define types of nodes, called
content types, and to define fields for each content type. Fields can be plain text fields,
dates, file uploads, or references to other nodes, etc. Additional field types can be added
via modules. When defining content types and fields, the site administrator has to pro-
vide ID, label, and description for content types and fields. Additionally, CCK allows
to specify the following constraints on fields: (i) Cardinality: fields can be optional or
required, and may have a maximum cardinality (ii) Domain: fields can be shared among
one or more content types; (iii) Range: fields can be of type text, integer, decimal, float,
date, file attachment, or node reference; node reference fields can be restricted to nodes
of specific content types; text fields can be restricted to a fixed list of text values.

3.1 Motivating Example: The Project Blogs Site

Throughout this paper we will use a running example to illustrate our approach: a
project blogs Web site3 contains various information about the researchers at DERI
and their collaborators, including their publications, blog posts and projects they work
for. Our goal is to expose the site data and structure in a machine-readable form as well

1 http://www.stembook.org/
2 http://drupal.org/project/usage/drupal
3 Demo-site available at http://drupal.deri.ie/projectblogs/

http://drupal.org/
http://drupal.org/project/usage/drupal
http://drupal.deri.ie/projectblogs/

Produce and Consume Linked Data with Drupal! 767

as pull in data available from the Linked Data cloud or other Drupal sites in order to
enrich the information displayed on the site.

Fig. 1 shows the typical look and feel of a Drupal page and administrative inter-
face for the Person content type, without our extensions installed. This content type
offers fields such as name, homepage, email, colleagues, blog url, current project, past
projects, publications. Particularly, we will illustrate in the further sections how to ex-
tend the publications field to automatically display a list of publications pulled from
various data endpoints.

Fig. 1. A user profile page (left), editing a content type in Drupal’s CCK (right)

4 Publishing and Consuming Linked Data with a CMS

Given a Drupal CCK content model consisting of content types, fields, and nodes that
instantiate the content types, what would be a good way of representing it in RDF? We
consider the following features desirable for the RDF output which are in line with the
Linked Data principles and best practices [3]:

(i) Resolvable HTTP URIs for all resources, to take advantage of existing tools that can
consume Linked Data style RDF content. That is, when resolving URIs, one should find
machine-readable information describing the URI. On the one hand in Drupal, typically
URIs of the running site are simply URLs pointing to Web pages, but on the other hand,
each of these pages also represents a node of a certain content type in the CCK content
model. Thus, in our model, each node becomes an RDF resource, and the HTML Web
page describing the node is enriched with RDFa [1] that reflects the links in the content
model. That is, for each node URI

– we add an rdf:type triple asserting the membership of the node to a class corre-
sponding to the content type of the node,

– we add a triple for each field displayed on the page where the predicate is a property
representing the field itself and the field value is either a datatype literal (for text,
integer, decimal, float, or date fields) or the URI of the respective node reference.

(ii) Expressing Drupal CCK constraints in OWL. Constraints that are defined on
the types and fields (domains, ranges, cardinalities, disjointness) should be automati-
cally published as RDF Schema [5] or OWL [9] expressions. We will enable this by an

768 S. Corlosquet et al.

auto-generated site vocabulary that is linked from the site and which describes all con-
tent type and field URIs as classes and properties in an ontology that reflects exactly the
constraints expressible in CCK. We will explain this mapping in detail in Section 5.1.
(iii) Re-use of published ontology terms. To support sites talking about arbitrary do-
mains, pre-defined/auto-generated RDF classes and properties are most likely insuffi-
cient. In fact, the default site vocabulary only comprises an isolated ontology not related
to the rest of the Semantic Web. In order to link content to existing ontologies, we have
to provide means to the site administrator to select terms from existing ontologies when
setting up the content model. This requires that sites may reuse/import vocabulary terms
from common existing ontologies. We will explain this in more detail in Section 5.1.
(iv) Safe vocabulary re-use. Mixing the content model constraints with constraints of
a published ontology might have unintended semantic effects, especially since most site
administrators will not be familiar with the details of the OWL semantics. The system
must prevent such effects as far as possible. Practical examples are given in Section 5.1.
(v) Exposing a query interface. We rely on the SPARQL protocol [19], i.e. the site
should expose its data in a SPARQL endpoint associated with the site. It should be easy
to set up and should not be a burden for the site administrator.
(vi) Reuse of Linked Data. Where possible, linkage should be defined to other in-
stances of the Linked Data cloud.

5 Implementation

We will now present our extensions of Drupal, which are designed to fulfill the goals
outlined in the previous section, in more detail.

5.1 RDF CCK: From Content Models to Site Vocabularies

Administrators use CCK to define a site-specific content model, which is then used by
content authors to populate the site. The focus of our work is to expose (i) such a CCK
site content model as an OWL ontology that reflects the site structure which the admin-
istrator had in mind and (ii) the site content as RDF data using this ontology. We have
implemented a Drupal module that enhances Drupal’s CCK with the ability to auto-
generate RDF classes and properties for all content types and fields. We build a so-called
site vocabulary, i.e. an RDFS/OWL ontology which describes the content types and
fields used in the data model as classes and properties. The field and type names are ex-
tracted from field and type IDs from CCK, such that – following common conventions –
fields are assigned a property name, and content types are assigned a class name. Field
and content type labels and descriptions are likewise exported as rdfs:labels and
rdfs:comments. Here goes a typical content type and field definition extracted from
CCK into RDFS:

site : Person a rdfs : Class; rdfs : label ”Person”;
rdfs : comment ”Researchers in DERI and their collaborators”.

site : fn a rdf : Property; rdfs : label ”First name”;
rdfs : comment ”First name of a Person”;

Produce and Consume Linked Data with Drupal! 769

Likewise, field constraints from CCK are reflected in the site vocabulary: Cardinal-
ity is mapped to cardinality restrictions in OWL, i.e. required fields are restricted to
owl:cardinality 1. whereas fields with a maximum cardinality n are restricted to
owl:maxCardinality n. For instance, if we assume that each Person is required to
have a name and works in at most 5 projects, these constraints in CCK would be ex-
ported in OWL as follows.

site:Person a rdfs:Class; rdfs:subclassof
[a owl:Restriction; owl:onProperty site:name; owl:cardinality 1],
[a owl:Restriction; owl:onProperty site:project; owl:maxCardinality 5].

Domains are reflected by the rdfs:domain constraints. Here, fields used by a single
type can be modeled by a simple rdfs:domain triple. For instance, assuming that the
colleagues field for Persons is not shared with any other content type in the current
content model, we can simply write:

site:colleagues rdfs:domain site:Person.

CCK fields shared among several types have the union of all types sharing the field
as domain. E.g., as Publication and Blog post share the title field, the site vocabulary
contains

site:title rdfs:domain [owl:unionOf (site:Publication site:Blog post)].

Ranges of fields are analogously encoded by the rdfs:range property. Additionally,
we distinguish between fields of range text, float, integer, decimal, or date, and those re-
ferring to file attachments or node references. We declare the former as owl:Datatype-
Property and assign the datatypes supported in Drupal with their respective XSD
datatypes, i.e. text → xs : string, float → xs : float, integer → xs : integer,
decimal → xs : decimal, or date → xs : date. For instance, the text field name is
reflected in the site vocabulary as:

site:name rdfs:range xs:string; a owl:DatatypeProperty.

Fields that range over texts restricted to a fixed list of text values are assigned an enu-
merated class of values using owl:DataRanges, e.g. gender is modeled as

site:gender a owl:DatatypeProperty; rdfs:range
[a owl:DataRange; owl:oneOf (”male” ”female”)].

Adhering to Linked Data principles. Following the conventions mentioned in the
previous section, the site vocabulary is generated and published automatically at the
site URL under the default namespace http://siteurl/ns#, which we denoted
by the namespace prefix site: in the examples before. Likewise, any Drupal page
on a site will be annotated with RDFa triples that dereference terms of this site vocab-
ulary as classes and properties linking Drupal content nodes as subjects and objects.
We are in line with the Linked Data principles and best practices [3] as we provide
resolvable HTTP URIs for all resources: Each of the pages also represents a node of a
certain content type in the CCK content model. That is, as mentioned before, each node

770 S. Corlosquet et al.

becomes an RDF resource, and the HTML Web page describing the node has describing
embedded RDFa [1] using the site vocabulary. By this design, any Drupal site using our
module is off-the-shelf amenable to existing tools that can consume Linked Data.

Mapping to Existing Ontologies. While the functionality we have described previ-
ously fits Drupal sites well into the Linked Data world, so far, we have created nothing
more than an isolated ontology based on the existing site content model. However, the
benefits of this exercise remain limited, unless we additionally allow linking the site
vocabulary to existing vocabularies and ontologies populating the Semantic Web. For
instance, instead of just exposing the Person type as a class in the site vocabulary, we
might want to reuse a class in an existing ontology, such as foaf:Person from the
FOAF4 ontology which some other publishers on the Web already used. Likewise, we
may wish to state that a Publication is actually a foaf:Document, or that a Publica-
tions are linked to their Publications by Dublin Core’s5 dc:creator property, etc.

To this end, our module adds a new tab “Manage RDF mappings” to the content type
administration panel of CCK for managing such mappings cf. Fig. 2. An auto-complete
list of suggested terms is shown, based on the keyword entered by the user. The terms
are coming from two different sources, which are detailed below.

External vocabulary importer service. The module RDF external vocabulary im-
porter (evoc)6 has been created to allow the import of vocabularies available on the
Web and make the imported terms available in the mapping interface. The site adminis-
trator simply needs to fill in a form with the vocabulary URI and the prefix to be used in
the system to refer to the vocabulary term when using the CURIE [4] format. A set of
SPARQL queries are processed against the vocabulary to extract its classes and prop-
erties and some information about them like label, comment, superclass, domain, and
range. These are then cached locally to provide a smoother user experience. Given their
popularity, the Dublin Core, FOAF and SIOC vocabularies are imported automatically
upon installation of the evoc module.

External ontology search service. We have also developed an ontology search service
to help users to find ontologies published on the Web of Data. The search engine is
entity-centric, i.e. instead of returning a list of relevant ontologies, it returns a list of
relevant ontology entities to the user request. The service is currently covering cleaned
up Web crawls of DERI’s SWSE.org and Sindice.com search engines comprising Web
data documents that define properties and classes (+100.000 documents).

Data Pre-Processing. Before being indexed, we perform a sequence of pre-processing
tasks on the ontology data. Among them, the most important ones are reasoning and
splitting. Reasoning is applied on each ontology in order to infer useful information for
a search engine, such as the hierarchy of classes and properties, the domains and ranges
of properties, etc. Reasoning over semantically structured documents enable to make
explicit what would otherwise be implicit knowledge: it adds value to the information

4 http://xmlns.com/foaf/0.1/
5 http://purl.org/dc/elements/1.1/
6 http://drupal.org/project/evoc

http://xmlns.com/foaf/0.1/
http://purl.org/dc/elements/1.1/
http://drupal.org/project/evoc

Produce and Consume Linked Data with Drupal! 771

and enables an entity-centric search engine to ultimately be much more competitive in
terms of precision and recall [16]. Ontologies are then split into smaller pieces on a
per-entity basis. For each authoritative URI7 found in the ontology, we simply extract
all its outgoing links.

Indexing Model. The simplest semi-structured indexing method is to represent an on-
tology entity as a set of attribute-value pairs using a field-based approach [15]. For
example, the ontology class foaf:Person will have fields label, comment and sub-
ClassOf ; index terms are constructed by concatenating the field names with values of
this field, for example as subClassOf:Agent.

Objects of type literals and URI are normalised (tokenised) before being concate-
nated with their field name. It is thus possible to use full-text search not only on lit-
erals, but also on URIs identifying ontology terms. For example one could search for
”Agent” to match foaf:Agent, ignoring the namespace.

We allow search for plain keywords, combinations of keywords, or structured queries
(e.g. student AND subClassOf:Person or name AND domain:Person),
search examples are shown in Fig. 2; find more details on the user interface below.

Mapping process. The terms suggested by both of the import service and the on-
tology search service can be mapped to each content type and their fields. For map-
ping content types, one can choose among the classes of the imported ontologies and
for fields, one can choose among the properties. The local terms will be linked with
rdfs:subClassOf and rdfs:subPropertyOf statements, e.g.
site:Person rdfs:subClassOf foaf:Person to the mapped terms in the
site vocabulary; wherever a mapping is defined, extra triples using the mapped terms
are exposed in the RDFa of the page.

The use of subclasses and subproperties for mapping to existing external ontologies
– instead of reusing the imported terms directly in the definitions of the site vocabulary
– is a simple way of minimizing unintended conflicts between the semantics of local
vocabulary and public terms. This way we ensure that, e.g. constraints on local terms
such as the cardinality restrictions which we derive from CCK do not propagate to the
imported ontology. This ensures safe vocabulary re-use, i.e. avoids what is sometimes
referred to as “Ontology Hijacking” [12].

Intuitively, safe reuse means that a vocabulary importing another one does not mod-
ify the meaning of the imported vocabulary or “hijack” instance data of the imported
vocabulary.

We remark that this measure alone is not sufficient to guarantee consistency of the
site vocabulary. Contradicting cardinalities in the site vocabulary and imported proper-
ties could make site instance data inconsistent or imply unwanted equalities. Our map-
ping tool makes several restrictions in this respect such as disallowing properties for
mapping with cardinality restrictions that do not comply with those specified in CCK
for the respective field.

7 The Linked Data principles suggest that URIs for named entities should be dereferenceable and
should link directly to the data describing the entity itself. Following this recommendation, we
define as an authoritative URI, a URI that is dereferenceable and is linked to the ontology.

772 S. Corlosquet et al.

We emphasize that we cannot detect all inconsistencies possibly introduced by on-
tology reuse in our system. We cannot afford full reasoning services as we want our tool
to fit in the Drupal ecosystem as a normal module that is installable on a site without
the need to install separate external software components such as a DL reasoner. Our
current approach is a best-effort approach to avoid “misuse” of imported ontologies as
far as possible while deliberately keeping the interface simple. We refer the interested
reader to [7] for further details.

We emphasize that the whole mapping step is optional, and the main benefit of the
Web of Data – exposing site data for re-use by third parties – is essentially realized by
the default mapping already.

User experience. The first example illustrated on the left of Fig. 2 is the mapping
of the Person content type to an RDF class. When typing person in the text field,
a list of suggestions is pulled from both the local set of terms and from the external
search service. The local terms appear first: foaf:Person is a CURIE and reuses the
prefix definition of the site which can be defined during the import step. Then the list
is completed with the terms from the external service, which includes a much greater
variety of terms. This might help the user in discovering new terms or ontologies which
she may not previously have encountered. Note that the external terms are displayed as
full URI as we want to avoid imposing any prefix on them. We are currently evaluating
the best way to display these.

Fig. 2. RDF mappings management through the Drupal interface: RDF class mapping (left) and
RDF property mapping (right)

The second example on the right of Fig. 2 illustrates the case where the user wants
to reuse the Relationship Ontology8 to express relationships between colleagues who
work with each other. Despite the fact that the Relationship Ontology was not imported
locally, the external ontology search Web service (5.1) was able to suggest the right
term URI.

8 http://purl.org/vocab/relationship/

http://purl.org/vocab/relationship/

Produce and Consume Linked Data with Drupal! 773

5.2 Exposing and Consuming Linked Data in Drupal with SPARQL

We extend our running use case to the Linked Data cloud environment where we can
demonstrate the interoperability of multiple Web sites, as illustrated on Fig. 3. Our goal
is to use our project blogs Web site as a hub containing information federated from
various remote locations:

– DBLP is a public SPARQL endpoint containing metadata on scientific publications.
It is part of the Linking Open Data cloud and runs on a D2R server9.

– The Science Collaboration Framework Web site which contains information about
the SCF team and their scientific publications. It runs Drupal and the modules de-
scribed in this paper.

PROJECT BLOGS

REMOTE DRUPAL SITE

DBLP

SPARQL
endpoint

SPARQL
endpoint

Tim

.........

SPARQL
endpoint

SELECT ?name ?title
WHERE {
 ?person foaf:made ?pub.
 ?person rdfs:label ?name.
 ?pub dc:title ?title.
 FILTER regex(?title, "knowledge", "i")
}

Fig. 3. Extended example in a typical Linked Data eco-system

Exposing RDF data with a SPARQL endpoint. The first step to ensure interoperabil-
ity on the Web of Data is to provide an endpoint which exposes RDF data. The RDF
SPARQL endpoint module uses the PHP ARC2 library10. Upon installation, the module
will create a local RDF repository which will host all the RDF data generated by the
RDF CCK module (see Section 5.1). The site can then be indexed with a simple click.

9 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
10 http://arc.semsol.org/

http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
http://arc.semsol.org/

774 S. Corlosquet et al.

Fig. 4. A list of SPARQL results (left) and an RDF SPARQL Proxy profile form (right)

The RDF data of each node is stored in a graph which can be kept up to date easily
when the node is updated or deleted. Fig. 4 (left) depicts a list of publications whose
title contains the keyword “knowledge”.

Consuming Linked Data by lazy loading of distant RDF resources. With an ever
growing amount of data available on the Semantic Web, one site cannot technically
afford to host all the data available on the Web, even if the scope was restricted to a spe-
cific domain. Instead, each piece of data can be retrieved only when needed. This design
pattern is known as lazy loading [10]. Information on the Web of Data is made available
in endpoints which can be queried and from where information can be retrieved accord-
ing to the specific needs of an application. The SPARQL query language [18] allows
complex WHERE patterns able to extract the pieces of information desired, but another
feature of SPARQL is the ability to specify a schema in which the RDF data should
be returned. These CONSTRUCT queries are useful in the case where the information
retrieved should retain a particular structure which would not fit in flat array of results
such as a SELECT SPARQL query would provide.

Building atop the existing RDF schema provided by the RDF CCK module presented
in Section 5.1, we developed RDF SPARQL Proxy, a module which allows to import
RDF instances on demand, via a CONSTRUCT query in which the WHERE clause
corresponds to the schema of the distant data on the SPARQL endpoint, and the CON-
STRUCT clause corresponds to the local site schema defined by RDF CCK. As depicted
on Fig. 4 (right), site administrators can define profiles, which specify the rules for cre-
ating or updating the local RDF instances based on the schema of the distant RDF data.
In order to keep these profiles generic, we allow input parameters such as URIs. In this
example, we map the publications by an author represented by her URI %uri along
with the information about each publication (title, name of authors, conference) to our
local schema. The value of the %uri parameter will be replaced for the value given as
input, either in the address bar of the browser or by the API calling the RDF SPARQL
Proxy module. For our use case, we have setup two such profiles: one for bridging the
DBLP SPARQL endpoint to the project blogs Web site, and a second for bridging the
Science Collaboration Framework Web site. When visiting Tim’s profile page, the rele-
vant publication information will be fetched from both DBLP and SCF Web sites, and
either new nodes will be created on the site or older ones will be updated if necessary.

Produce and Consume Linked Data with Drupal! 775

6 Adoption and Deployment

Our hypothesis and general rationale is that ease-of-use and a one-click solution to ex-
port Linked Data from CMSs will enable many concrete applications of the Semantic
Web, and create a bridge between the CMS and Semantic Web technology ecosystems
to the benefit of both. Particular use cases and applications of this approach are dis-
cussed below.

6.1 Usability

We did a limited-scale user evaluation aimed at showing that linking a site to existing
vocabularies with our Drupal module does not impose a significant burden on site ad-
ministrators. We argue that the benefits of exposing Semantic Web data such as greatly
improved searchability, will typically outweigh this extra effort.

Our evaluation was carried out on a group of 10 users, moderately familiar with
Drupal and more or less familiar with the Semantic Web. We found that on average,
the RDF mapping process took about 50% of the time required to setup the content
model. For more detailed results, we refer the reader to [7]. While linking to external
vocabularies was subjectively experienced as easy by all users, a significant time was
actually spent deciding to which properties and classes to link with the CCK fields.
Inspired by this finding we put on our agenda to further investigate how we can better
assist non-Semantic-Web-savvy users in finding the “right” classes and properties for
their needs.

6.2 Adoption

Besides our closed evaluation, we have also released the RDF CCK module on
drupal.org. Since its release Nov. 2008, the RDF CCK module has – steadily
increasing – reached a number of 63 deployed installations11 as shown in Fig. 5. This
is encouraging. Our module is currently being tested and will be deployed in the next
version of the Science Collaboration Framework (SCF) platform, a special Drupal dis-
tribution developed at the Massachusetts General Hospital and Harvard University in
collaboration with DERI and other participating institutions [8].

Fig. 5. Evolution of the number of installations of RDF CCK

11 According to http://drupal.org/project/usage/rdfcck

http://drupal.org/project/usage/rdfcck

776 S. Corlosquet et al.

6.3 Motivation and Benefits - The SCF Use Case

Harvard Medical School and DERI are collaborating on a larger use case in the course
of which the technologies mentioned in this paper were developed. The Science Col-
laboration Framework (SCF) [8] is a distributed Drupal installation launched in Beta
version at various institutions working in the Biomedical domain.

Biomedical informatics provide one particularly cogent and well-researched set of
use-cases for the facility we have built and there are big expectations for the use of
Linked Data in this domain, especially in the SCF Project. SCF is building Drupal
based sites and tools that will enable scientific collaboration and Semantic search in
this area.

Mapping of graph-based metadata embodying controlled terminologies and rela-
tionships (ontologies) to CMS-managed content promises to be exceptionally useful
in biomedical informatics, and more broadly in scientific communications on the Web.
Biomedicine, a highly descriptive, inductive and experimentally based discipline, is rife
with complex terminologies. Synonym, subsumption, and other semantic relationships
in such terminologies are natural and necessary. But currently we are still limited in the
power of text searching across documents and sites if the relationships and properties in
the text are not computable across the elements of these terminologies (or ontologies).
This requires that certain elements in the text be assigned a semantic context which is
computable in the CMS. This is a use case for semantic tagging of documents, which
can leverage the well-defined ontologies in this domain.

For example, from scientific papers in this domain we may extract text strings such
as “nf-κB”, “nuclear factor kappa B”, or “nf-kappa-B”. By adequate thesauri, or user
tagging using CommonTag12 all of these could actually be matched to the query string
“NFKB1”, which the HUGO official gene names13 and potentially other synonyms all
resolve to a common URI represented in the Neurocommons [20] triple store, and the
synonymy relationship is represented in RDF available at the Neurocommons SPARQL
endpoint. Such extended search facilities, are next on our agenda, once the simple an-
notation of publications authors like presented in a simplified form in this paper is re-
alised. Here, mapping RDF to an associated CCK generated type in Drupal will import
the synonymy relationships and enable term expansion to increase search power.

Existing biomedical ontologies and database records which represent information
about genes and other biomedical terms represent structured relationships all of which
can be found in RDF and drawn into our site.

This use case becomes particularly compelling when one considers that biomedical
research consists of myriad sub-specialities ranging across from basic research to clin-
ical practice, as well as incorporating divisions by biological process, organ, species,
cell type, molecule, protein family, technological approach, clinical orientation, disor-
der, and so forth. Each of these areas can and often does have its own slightly different
semantic universe and forms of discourse. The ability to intersect documents and in-
formation from and about researchers across these domains of discourse, at scale, with
assistance from computers, is dependant upon our ability to leverage formal

12 http://commontag.org
13 HUGO Gene Nomenclature Committee http://www.genenames.org/

http://commontag.org
http://www.genenames.org/

Produce and Consume Linked Data with Drupal! 777

terminologies and ontologies by linking them to text in scientific communications. That
is precisely the purpose of the module described in this paper. The experts in these
domains are hardly IT or Semantic Web experts, though they are able to use easy-
configurable tools for aggregating and setting up content like Drupal, setting up the
required modules via SCF on their site, and enter relevant data.

At the moment, we deploy RDF CCK in the SCF Beta version and the other modules
mentioned in this paper are shortly before deployment and several of them have been
co-developed or inspired by existing SCF modules such as SCF Node Proxy module,
which we mentioned in the Introduction.

7 Conclusions and Outlook

We have presented a number of extensions to Drupal that enable the exposure of site
content as Linked Data and likewise allow to aggregate and reuse existing RDF data
from the Web in your Drupal site. A list of the modules used throughout this paper
is available at http://drupal.deri.ie/projectblogs/about. Our most
widely deployed module RDF CCK – available at the official Drupal site
http://drupal.org/project/rdfcck) – allows to link existing and newly
deployed Drupal sites to the Web of Data by a few clicks. It auto-exports the content
model of a Drupal site to an ontology that is published following common best practices
for ontology publication and enables the exposure of Drupal site content as RDFa. With
the Evoc module, we link to existing properties and classes from other Semantic Web
vocabularies by subclass/subproperty relations and offer a search facility for commonly
used vocabulary terms on the Web of Data. A third module – RDF SPARQL Endpoint
– exposes upon installation a SPARQL endpoint on the site data without additional
configuration steps for site administrators who wish this feature. Finally, a fourth mod-
ule – RDF SPARQL Proxy – allows to dynamically load data into the site, and displays
this data using a lazy loading strategy for minimizing delays in the user experience.

In combination, all four modules offer new possibilities to create networked Web ap-
plications and pushing further population of the Web of Data by significantly lowering
entry barriers for a large user community – CMS administrators.

Next steps include the extension of RDF/OWL export to other Drupal modules such
as the taxonomy module which allows to define tag hierarchies usable in Drupal, which
we plan to expose as RDF using SKOS [17], and content type hierarchies, to be reflected
by subclass relationships. Moreover, we shall also lower the burden for users of the
RDF SPARQL Proxy – which is at the moment only accessible to users knowledgeable
in SPARQL – to really reveal the full potential of our approach to a wider audience.

We shall further develop and deploy our approach in the Science Collaboration
Framework which we have presented as a promising early adopter use case.

The “infection” of emerging power-user communities such as the rapidly growing
Drupal site administrator and developer groups is in our opinion a key in boosting Se-
mantic Web technologies. We shall provide easy-to-use, unobtrusive RDF exposure in
a way general enough for a variety of sites, thus potentially contributing significantly to
populating the Web with high-quality RDF data.

http://drupal.deri.ie/projectblogs/about
http://drupal.org/project/rdfcck

778 S. Corlosquet et al.

References

1. Adida, B., Birbeck, M., McCarron, S., Pemberton, S. (eds.): RDFa in XHTML: Syntax and
Processing, W3C Rec (2008)

2. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumüller, D.: Triplify - Lightweight
Linked Data Publication from Relational Databases. In: WWW (2009)

3. Berrueta, D., Phipps, J. (eds.): Best Practice Recipes for Publishing RDF Vocabularies, W3C
Working Group Note (August 2008)

4. Birbeck, M., McCarron, S. (eds.): CURIE Syntax 1.0: A syntax for expressing Compact
URIs, W3C Cand. Rec (January 2009)

5. Brickley, D., Guha, R. (eds.): RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Rec (2004)

6. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. In: WWW 2000, Amsterdam, The Netherlands, pp. 137–157
(2000)

7. Corlosquet, S., Cyganiak, R., Decker, S., Polleres, A.: Semantic Web Publishing with Drupal.
Tech. Report DERI-TR-2009-04-30, DERI (April 2009)

8. Das, S., Girard, L., Green, T., Weitzman, L., Lewis-Bowen, A., Clark, T.: Building biomed-
ical Web communities using a semantically aware content management system. Briefings in
Bioinformatics 10(2), 129–138 (2009)

9. Dean, M., et al. (eds.): OWL Web Ontology Language Reference, W3C Rec (2004)
10. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Reading

(2002)
11. Hausenblas, M.: Exploiting Linked Data For Building Web Applications. IEEE Internet

Computing 13(4), 80–85 (2009)
12. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the Web. Int’l

Journal on Semantic Web and Information Systems 5(2) (2009)
13. Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: Model-Driven Ontology-Based Web Site

Management. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) SWWS (2001)
14. Lassila, O., Swick, R. (eds.): Resource Description Framework (RDF) Model and Syntax

Specification, W3C Rec (1999)
15. Luk, R.W., Leong, H.V., Dillon, T.S., Chan, A.T., Croft, W.B., Allan, J.: A survey in indexing

and searching XML documents. Journal of the American Society for Information Science and
Technology 53(6), 415–437 (2002)

16. Mayfield, J., Finin, T.: Information retrieval on the Semantic Web: Integrating inference and
retrieval. In: SIGIR Workshop on the Semantic Web (August 2003)

17. Miles, A., Bechhofer, S. (eds.): SKOS Simple Knowledge Organization System Reference,
W3C Cand. Rec (March 2009)

18. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL query language for RDF, W3C Rec
(2008)

19. Clark, K.G., Feigenbaum, L., Torres, E. (eds.): SPARQL protocol for RDF, W3C Rec (2008)
20. Ruttenberg, A., Rees, J., Samwald, M., Marshall, M.S.: Life sciences on the Semantic Web:

the Neurocommons and beyond. Briefings in Bioinformatics 10(2), 193–204 (2009)
21. Shreves, R.: Open Source CMS Market Share. White paper, Water & Stone, http://

waterandstone.com/downloads/2008OpenSourceCMSMarketSurvey.pdf
22. Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Schnurr, H.P.,

Studer, R., Sure, Y.: Semantic community Web portals. Computer Networks 33(1-6),
473–491 (2000)

23. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive Web sites into the Semantic
Web. In: SAC 2002: Proceedings of the 2002 ACM symposium on Applied computing. ACM,
New York (2002)

http://waterandstone.com/downloads/2008OpenSourceCMSMarketSurvey.pdf
http://waterandstone.com/downloads/2008OpenSourceCMSMarketSurvey.pdf

Extracting Enterprise Vocabularies Using Linked
Open Data

Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg,
and Kavitha Srinivas

IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
{dolby,achille,adityakal,ediths,ksrinivs}@us.ibm.com

Abstract. A common vocabulary is vital to smooth business operation,
yet codifying and maintaining an enterprise vocabulary is an arduous,
manual task. We describe a process to automatically extract a domain
specific vocabulary (terms and types) from unstructured data in the en-
terprise guided by term definitions in Linked Open Data (LOD). We
validate our techniques by applying them to the IT (Information Tech-
nology) domain, taking 58 Gartner analyst reports and using two specific
LOD sources – DBpedia and Freebase. We show initial findings that ad-
dress the generalizability of these techniques for vocabulary extraction
in new domains, such as the energy industry.

Keywords: Linked Data, Vocabulary Extraction.

1 Introduction

Most enterprises operate with their own domain-specific vocabularies. A vocab-
ulary can be anything from a set of semantic definitions to a formal ontology.
Vocabularies are necessary to work effectively in a global environment and to
interact with customers. They facilitate common tasks, such as searching a prod-
uct catalog or understanding general trends. However, building and maintaining
a vocabulary manually is both time-consuming and error-prone.

This paper presents a process to fully automate the construction of a domain-
specific vocabulary from unstructured documents in an enterprise. The con-
structed vocabulary is a set of terms and types, where we label each term by its
type(s). We applied this process to the IT (information technology) domain, and
automatically built an IT vocabulary taking 58 Gartner analyst reports as our
input corpus. For this domain, we capture types such as Distributed Computing
Technology, Application Server, and Programming Language, and use them to
label terms like “Cloud Computing”, “IBM WebSphere”, and “SmallTalk”.

Our approach is based on a simple observation: people searching for term
definitions on the Web usually find answers in either a glossary or Wikipedia.
We use LOD (Linked Open Data) as our source for domain-specific types. We
decided to focus on two specific subsets of LOD as our reference data – DBpedia
and Freebase. Both datasets derive from Wikipedia and thus have broad domain

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 779–794, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

780 J. Dolby et al.

coverage. Also, both have type information, e.g., DBpedia associates entities
with types from the YAGO and Wikipedia type hierarchies [1].

To perform vocabulary extraction, a key step is to determine what the relevant
domain-specific types are for a particular corpus. Simply looking up corpus terms
in LOD is not adequate since the terms may have different senses in LOD. Many or
all of these senses may be unrelated to the domain. Therefore, we use statistical
techniques to automatically isolate domain-specific types found in LOD. These
types are then used to label corpus terms. This core vocabulary extraction pro-
cess based on LOD is discussed in Section 2. For the Gartner case, this technique
produced results with high precision (80%) but poor recall (23.8%).

To address this, we present two techniques to boost recall for vocabulary ex-
traction. The first technique, presented in Section 3, directly improves recall
by increasing the coverage in LOD. Numerous instances in DBpedia or Free-
base have incomplete or no type information at all, which explains some of the
poor recall. The second technique, presented in Section 4, improves recall by
automated machine learning.

Our technique to improve coverage in LOD is a form of type inference based
on the attributes of a particular instance, and based on fuzzy definitions of
domains/ranges for these attributes. As an example, we can infer that an in-
stance has a type Company if it has an attribute revenue, because statistically,
across the DBpedia dataset, instances with the attribute revenue tend to have
Company as a type. We performed this type inference on the entire LOD dataset,
and then re-applied our core vocabulary extraction algorithm. Type inference
improved recall to 37.6% without altering the precision.

Our technique to boost recall using machine learning relies on building statis-
tical named entity recognition (NER) models automatically. We accomplished
this by using seeds generated directly from LOD and exploiting structural infor-
mation in both Wikipedia and DBpedia to generate high quality contextual pat-
terns (features) for the model. The end result was an effective, general-purpose
NER model that worked well across different corpora, i.e., it was trained on
Wikipedia but applied to the domain-specific corpus, the IT analyst reports.
Adding results from NER to our previous output gave us a net recall of 46% and
precision of 78%.

We discuss strengths and limitations of our overall approach in Section 5. In
particular, we describe initial findings that show the generalizability of the vo-
cabulary extraction techniques in new domains.Finally, we discuss related work
and conclusions in Section 6.

In summary, the main contributions of this paper are:

– We describe a process to automatically extract a domain specific vocabulary
from unstructured data in the enterprise using information in LOD. We val-
idate our techniques by applying them to a specific domain, the IT industry,
with a precision of 78% and recall of 46%.

– We describe a set of techniques to boost recall in vocabulary extraction.
The first improves the coverage of structured information in DBpedia and
Freebase (two core pieces of LOD). By making LOD more robust, it becomes

Extracting Enterprise Vocabularies Using Linked Open Data 781

more useful for a range of applications, including our current task of extract-
ing vocabularies. The improved versions of LOD improved the recall of our
vocabulary extraction process by 14% without affecting precision. The sec-
ond technique improves recall by relying on techniques for automated named
entity recognition, and this improves recall by an additional 8%.

2 Vocabulary Extraction

Our process extracts domain specific terms from an unstructured text corpus,
and labels these terms with appropriate domain-specific types. This is a differ-
ent problem than traditional NER. Off-the-shelf NERs are typically trained to
recognize a fixed set of high-level types such as Person, Organization, Location
etc. In our case, we need to discover the types for a specific domain, and use
these discovered types to label terms in the corpus. We rely on sources outside
the corpus, in particular LOD, since appropriate types may not even appear in
the corpus.

We also note that, typically, domain-specific terms in a corpus are found using
tf-idf scores. To the best of our knowledge, we have not seen type information
being used as an additional dimension to filter domain-specific terms, and this
is one of the differentiators of our approach.

Briefly, our process performs the following steps:

1. Extract a population of terms (noun phrases) from the domain corpus.
2. Extract a seed set of domain-specific terms from the corpus using traditional

tf-idf scores.
3. Extract domain-specific types from LOD, using the seed terms from step 2.
4. Filter the set of all terms from step 1, based on the domain-specific types

from step 3. The result is a set of domain-specific terms, labeled by their
respective type(s). This allows certain relevant corpus terms that have low
tf-idf scores to be selected based on their relevant domain-specific type.

The following subsections provide the details of each of these steps, and results
for the IT domain.

2.1 Term Population

We extract the noun phrases from a domain corpus, using a standard NLP part-
of-speech tagger (from OpenNLP1). These noun phrases comprise the population
of all terms. For our case study, the domain corpus was 58 IT analyst reports from
Gartner. The resulting term population extracted consisted of approximately
30,000 terms. To measure the precision and recall of our process, we created a
gold standard from the term population. We randomly selected 1000 terms from
the population, and four people judged whether each term in this sample was
relevant to the domain. A term was considered relevant only if all four judges
agreed. In the end, 10% of the sample terms were considered relevant to the IT
domain. Therefore, we expect 3,000 terms in the population to be relevant.
1 http://opennlp.sourceforge.net/

782 J. Dolby et al.

2.2 Domain-Specific Seed Terms

The next step is to extract an initial set of domain-specific terms from the corpus
based on traditional tf-idf metrics. These terms are subsequently used to look
up types in LOD, and form the basis for domain-specific type selection. For this
task, it is more important to find a precise set of domain-specific terms, than to
find all of the domain-specific terms. We use an off-the-shelf tool, GlossEx [2],
that extracts words and noun phrases along with their frequency and domain-
specificity. This associated data allows low-frequency, low-specificity terms to be
filtered out. For our analyst report corpus, we selected proper noun phrases and
common noun phrases with frequency ≥ 2 and with an appropriate tool-specific
domain-specificity threshold. We obtained 1137 domain-specific terms from the
Gartner IT reports.

2.3 Domain-Specific Types

Using the domain-specific seed terms, we discover a set of relevant interesting
types from LOD. Our algorithm to discover domain-specific types is outlined
in Table 1. The first step is to find a corresponding LOD entity for a domain-
specific term. The most precise and direct way to do this is to encode the term
directly as an LOD URI (i.e., by adding the DBpedia URL prefix) and check if
it exists. This produced matching entities for 588 of the terms.

Ideally it should be possible to simply look up the type(s) of each of these
entities and mark them as interesting. However, this does not work since a term
can ultimately map to different types with different senses. For example, “Java”
is a programming language and an island, and we may select the incorrect LOD
entity and hence sense. Even if there is a single LOD entity for a term, it may
not be the sense that is relevant for the domain. For example, the term “Fair
Warning” is a software product, but there is only one type sense in LOD, which
is Category:MusicAlbum (pointing to an album with the same name released
by Van Halen).

Table 1. Extraction of Domain-Specific Types

Input: Sdt : set of domain-specific seed terms, threshold parameters αY , αF , αC

Output: τ set of domain-specific types from LOD

(1) initialize potential type list τp ← ∅
(2) for each domain-specific seed T ∈ Sdt

(3) encode T as a DBpedia URI U
(4) τp ← τp∪ types(U)

where types(U) = values of prop. rdf:type for U ∪
values of prop. skos:subject for U ∪
‘equivalent’ types obtained via mappings to Freebase

(5) τ ← T ∈ τp if
(freq(T) ≥ αY and T is a Yago Type) or
(freq(T) ≥ αF and T is a Freebase Type) or
(freq(T) ≥ αC and T is a Wiki Category)

(6) for each type X ∈ (τp − τ)
(7) if there exists a type Y ∈ τ s.t. LOD |= X � Y
(8) τ ← τ ∪ {X}

Category:MusicAlbum

Extracting Enterprise Vocabularies Using Linked Open Data 783

To address this problem, we filter out uninteresting types using simple sta-
tistical information. We score LOD types based on the number of terms they
match across all the documents in our corpus and filter out infrequent types
(those whose frequency is below a pre-determined threshold). One issue here is
the different kinds of type information in LOD – YAGO types from DBpedia,
Freebase types and Categories that come from Wikipedia. We found that having
separate frequency thresholds (αY , αF , αC resp. in Table 1) for each of the types
produced better results.

Another issue we noticed with DBpedia is that several entities do not have
any values in their rdf:type field, but had interesting type information in the
skos:subject field. For example, the term “NetBIOS” has no rdf:type, though
its skos:subject is mentioned as Category:Middleware. Hence, we take SKOS
subject values into account as well when computing types for a seed term (step
4 of the algorithm). Also, DBpedia and Freebase come with different types for
the same instance, and we exploit these in step 4 to obtain additional related
type information from Freebase.

Filtering also removes several low frequency types that are interesting, e.g.,
yago:XMLParsers. To address this issue, we consider low frequency types as
interesting if they are subsumed by any of the high frequency types. For example,
yago:XMLParsers is subsumed by yago:Software in the Yago type hierarchy,
and is thus considered relevant as well (steps 6-8 of the algorithm).

We ran the type-discovery algorithm with 1137 seed terms and setting appro-
priate type-frequency thresholds (αY = 4, αF = 4, αC = 4) based on manual
inspection of highly frequent types in τp. This produced 170 interesting types.
Upon manual inspection, we found the output to have extremely high precision
(98%). As expected, there is a tradeoff between precision and recall – reducing
the type-frequency thresholds increases the size of the output types but decreases
its precision.

2.4 Filtered Terms and Types and Discussion of Initial Results

Once we have the set of domain-specific types, we revisit the entire population
of corpus terms from Section 2.1. We find terms in this population that belong
to one of the domain-specific types. This set is more comprehensive than the
initial seed set in 2.2. Specifically, we select the terms from the population that
are ‘closely related’ to entities in LOD which belong to at least one domain-
specific type. In order to find ‘closely related’ entities, we perform a keyword
search for each term over a database, populated with data from DBpedia and
FreeBase, and indexed using Lucene. We select matches with a relevance score
greater than 0.6. For example, searching for the term “WebSphere” over the
Lucene index produces entity matches such as “IBM WebSphere”, whose cor-
responding rdf:type/skos:subject value belonged to one of our domain-specific
types. Therefore, ‘WebSphere’ is selected as a domain-specific term.

This process resulted in 896 type-labeled terms using the 170 interesting types
found in the previous step. We evaluated the precision of both the terms and
their types by manually evaluating a 200 term sample. This gave us a precision of

Category:Middleware
yago:XMLParsers
yago:XMLParsers
yago:Software

784 J. Dolby et al.

80%. We also computed recall by taking into account our gold standard estimate
and the precision, and found that recall was 23.8%.

Although the precision of our initial results was reasonable, our recall was
poor. Our first approach to improving recall was to directly improve the coverage
of types in LOD. The techniques developed are outlined in the next section.

3 Improving Coverage of LOD

In this section, we discuss techniques to add new knowledge to our reference
LOD datasets – DBpedia and Freebase. For DBpedia, we used data dumps for
DBpedia 3.1. For Freebase, we used the WEX data dumps from July [3].

Sometimes there are no types in this combined dataset, which is a problem
when using the dataset to perform vocabulary extraction for any domain. We
therefore enhanced the type information by linking instances and types across
datasets, and by inferring new types for instances.

3.1 Adding Type Information from Linking

An obvious step to improve type coverage in Linked Open Data is to leverage
the fact that DBpedia and Freebase might have different types for the same
instance. We linked DBpedia instances to Freebase instances using their shared
Wikipedia name. This technique allowed us match all 2.2 million Freebase in-
stances except 4,946, mainly because of differences in Wikipedia versions between
the two datasets.

Although linking instances achieves the aggregation of types across Freebase
and DBpedia, the two type systems are still disconnected. It would be useful to
know mappings between the two sets of types for vocabulary extraction. For in-
stance, if we knew both that a type in DBpedia such as yago:Byway102930645
maps to the corresponding Freebase type freebase:/transportation/road,
and also knew that yago:Byway102930645 is as an interesting domain specific
type, then freebase:/transportation/road is likely an interesting type as
well. DBpedia has 159,379 types and Freebase has a much smaller set of 4,158
types that are specified at a coarser level of granularity. We therefore used the
relative frequency with which a given DBpedia type A co-occurs with a Freebase
type B to drive the mapping. We considered a mapping valid if the conditional
probability p(FreebaseType|DBpediaType) was greater than .80. Manual in-
spection of a random sample of 110 pairings revealed that 88% mappings were
correct. With this technique, we were able to map 91,558 DBpedia out of 152,696
DBpedia types to Freebase types (we excluded mappings which mapped to the
freebase type /common/topic because its a top level type like owl:Thing or
yago:Entity). In all, because a single DBpedia type can map to multiple Free-
base types (e.g., yago:InternetCompaniesEstablishedIn1996 is mapped to
freebase:/business/company and freebase:/business/employer), we had
140,063 mappings with the 80% threshold.

freebase:/transportation/road
freebase:/transportation/road
owl:Thing
yago:Entity
yago:InternetCompaniesEstablishedIn1996
freebase:/business/company
freebase:/business/employer

Extracting Enterprise Vocabularies Using Linked Open Data 785

3.2 Type Inference

We propose a simple statistical technique to extract fuzzy domain and range
restrictions for properties of an individual, and use these restrictions to perform
type inference, as we describe below.

To illustrate how our technique works in DBpedia, take as an example the in-
stance yago:Ligier, which is a French automobile maker that makes race cars.
DBpedia has the types yago:FormulaOneEntrants and yago:ReliantVehicles
as types, neither of which is a company. Yet, dbpedia:Ligier has properties
specific to companies, such as dbpedia-owl:Company#industry, dbpedia-owl:
Company#parentCompany, etc. If we had a predefined ontology, where
dbpedia-owl:Company#industry had a domain of the type yago:Company, we
could have used RDFS or OWL reasoning to infer that yago:Ligier is really
a Company. However, manually defining domain and range restrictions is not
an option, because DBpedia has 39,345 properties. We therefore used statisti-
cal techniques to define fuzzy notions of domains and ranges to perform type
inference.

Our approach to type inference is based on correlating what properties an
entity has with its explicit types. The idea is that if many instances of a particular
type have a certain set of edges, then other entities with that same set of edges
probably are instances of that type too. In performing this type of inference,
we relied on the DBpedia to Freebase mappings we established in 3.1 to infer
Freebase types. As discussed earlier, because Freebase types are specified at a
coarser level of granularity, type inference is more robust for these types because
of the larger sample size of instances.

More formally, we define the notion of a property implying a type based on
the fraction of the given edge that pertain to instances with that property being
greater than some threshold τ . Note that this notion applies to both subjects
and objects of edges.

Isubj (p, t) ≡ |{p(x, y) |x : t}|
|{p(x, y) |∃t1x : t1 }|

> τ Iobj (p, t) ≡ |{p(x, y) |y : t}|
|{p(x, y) |∃t1y : t1 }|

> τ

where i : t is an rdf:type assertion between an instance i and a type t, and
p(i, x) is a role assertion which links instance i to instance x on a property p.
This step can be thought of as inferring domains and ranges for properties, as
was done in [4]; however, rather than use these types directly as such constraints,
we use them in a voting scheme to infer types for subject and object instances.

Given the notion of a property implying a type, we define the notion of prop-
erties voting for a type, by which we simply mean how many of a given instance’s
properties imply a given type:

V (i, t) ≡
∣∣{p ∣∣ (∃x p(i, x) ∧ Isubj (p, t)) ∨ (∃x p(x, i) ∧ Iobj (p, t))

}∣∣
We additionally define the notion of all edges that take part in voting, i.e. the
number of edges that pertain to a given instance that imply any type:

Vany (i) ≡
∣∣{p ∣∣∃t ((∃x p(i, x) ∧ Isubj (p, t)) ∨ (∃x p(x, i) ∧ Iobj (p, t))

)}∣∣

yago:Ligier
yago:FormulaOneEntrants
yago:ReliantVehicles
dbpedia:Ligier
dbpedia-owl:Company#industry
dbpedia-owl:Company#parentCompany
dbpedia-owl:Company#parentCompany
dbpedia-owl:Company#industry
yago:Company
yago:Ligier
rdf:type

786 J. Dolby et al.

Finally, given the notion of voting, we define the implied types of an instance
simply as those types that receive the greatest number of votes from properties
of that instance compared to the total number of properties of that instance that
could vote for any type:

T (i) ≡
{
t

∣∣∣∣(∀t1V (i, t) ≥ V (i, t1)) ∧
V (i, t)
Vany (i)

≥ λ

}
We applied this technique to our data setting τ and λ to .5. We inferred types for
1.1M instances of the 2.1M instances in Linked Open Data. To help evaluate
these types, we introduce a technique next to automatically detect when we
might have inferred invalid types.

3.3 Evaluating Type Inferences

At its core, the detection of invalid type inference is based on the observation
that if two types are known to be logically disjoint, such as Person and Place,
and we infer a type that is disjoint with any of the explicitly asserted types of an
instance, this constitutes an error in our type inference. In prior work, ontology
reasoning has been used to automatically detect invalid type inference in text
extraction [5]. However, extending this approach to Linked Open Data is not
easy. Although YAGO types are organized in a hierarchy, there are no obvious
levels in the hierarchy to insert disjoints. Freebase has no hierarchy at all: the
type structure is completely flat.

Our approach therefore was to first statistically define a type hierarchy for
Freebase, and then use that hierarchy to define disjoint classes to detect invalid
type inferences.

Because Freebase has no type structure, each instance in Freebase is annotated
with a flat set of types, in which more-general types occur along with less-
general types. We use this fact to approximate the usual notion of supertype:
a supertype Y by definition contains all the instances of its subtype X , and,
in normal circumstances, thus we would expect to see the following, where P
denotes probability: P (i ∈ Y |i ∈ X) == 1

Because the Freebase data is noisy, this probability will most likely be less
than 1; to account for this, we can recast the above constraint as follows:
P (i ∈ Y |i ∈ X) > τ

Thus, X ⊂ Y if instances of X are almost always instances of Y . This allows
us to define groups of types that are related as subtypes; in particular, related
groups are maximal groups that are closed under subtype, i.e. G is a group if
and only if ∀x,yx ∈ G ∧ (y ⊂ x ∨ x ⊂ y) ⇒ y ∈ G

This definition gave us 78 groups, with τ set to .65. Of these, 26 groups were
singletons, and the largest group had 409 types. We further manually grouped
the 78 groups by those that appeared to belong to the same domain; this gave
us 35 larger groups of types, which covered 1,281 types out of 4,158 types.
In practice, these groups were overwhelmingly disjoint, and we dropped the few

Extracting Enterprise Vocabularies Using Linked Open Data 787

types that occurred in multiple groups. The 35 groups of types were declared as
pairwise disjoint (i.e., each type T in group A was declared disjoint from each
type Q in group B).

To evaluate the 1.1M inferred types better, we divided them into 3 categories:
(i) Verified for the entities for which at least one of the inferred types is the same
as an explicitly declared one (this category had 808,849 instances), (ii) Additional
inferred types for the entities for which the inferred types were not disjoint with
any existing type assertion, i.e. these denote additional inferred type assertions
that helps improve coverage in DBpedia (this category had 279,407 instances),
and finally (iii) Invalid for the entities for which at least one of the inferred types
conflicted with an explicitly asserted type (this category had 6,874 instances).

To determine the accuracy of our inferred types, we took samples of the invalid
and additional inferred types, and evaluated the precision for these categories
with two random samples of 200 instances each. An instance was considered
to be typed correctly if all the inferred types for an instance were correct. In
the additional inferred types category, we typed 177 instances correctly, and 23
incorrectly. In the invalid category, we typed 21 instances correctly, and 179
wrong. Taking the overall results for all the categories into account, we achieved
a net recall of 49.1% and an estimated precision of 95.8% accuracy. Note that
we have the usual trade-off between precision and recall based on values for
the parameters τ , λ, however we achieved a reasonably high F-score of 64.9.
We added only the Additional inferred types into our version of Linked Open
Data, and re-ran our vocabulary extraction. The results are described in the
next section.

3.4 Results with Improved LOD

Note that the previous execution of the vocabulary extraction algorithm
(Table 1) using off-the-shelf LOD datasets produced 170 interesting types and
896 type-labeled terms in the output, with a precision of 80% and recall of
23.8%. We re-applied the algorithm with the newly discovered type assertions
added to DBpedia and the new type mappings from DBpedia to Freebase (and
the same input parameters as earlier) and discovered 188 interesting types and a
net output of 1403 type-labeled terms. Manual inspection of a 200 term sample
revealed that the precision was unaltered, and recall had increased to 37.6%,
which validated our coverage enhancement techniques.

4 Improving Coverage Using Statistical NER

Since LOD coverage is incomplete, the techniques described above do not pro-
duce a complete domain-specific vocabulary. From our gold standard, described
in Section 2.1, we expect to find around 3K domain-specific terms, and the
output of the previous step is still quite short. In order to improve the coverage
of our solution, we automatically build an NER model for domain-specific types.

788 J. Dolby et al.

The previous step produced a large number of interesting types (>170). These
include YAGO types, Freebase types and Wikipedia Categories, which have
related groups, such as, yago:ComputerCompanies, freebase:venture_funded_
company and Category:CompaniesEstablishedIn1888, all conceptually sub-
classes of Company. Given the large number of closely related types, it does not
make sense to build an NER model for each of the types. Instead we decided
to look only at top-level types in the output (types that were not subsumed
by any other). Furthermore, given the noise in the type-instance information in
LOD, we decided to restrict ourselves to Yago types that have Wordnet sense ID’s
attached to them (e.g. yago:Company108058098), since they have a precise un-
ambiguous meaning and their instances are more accurately represented in LOD.
In our case, this yields five YAGO/Wordnet types: yago:Company108058098,
yago:Software106566077, yago:ProgrammingLanguage106898352, yago:
Format106636806 and yago:WebSite106359193.

The process of building a statistical model to do NER is inspired by techniques
described in systems such as Snowball [6] and PORE [7]. The basic methodology
is the following – start with a set of training seed tuples, where each tuple
is an <instance, type> pair; generate a set of ‘textual patterns’ (or features)
from the context surrounding the instance in a text corpus; and build a model
to learn the correlation between contextual patterns for an instance and its
corresponding type. We combine the best ideas from both Snowball and PORE
and make significant new additions (see the Related Work (Section 6) for a
detailed comparison).

We could not afford to train the model on the IT corpus itself for two rea-
sons: (i) lack of sufficient contextual data (we only had 58 reports), (ii) lack
of adequate training seed tuples (even if we took the most precise term-type
pairs generated in the previous section, it was not enough data to build a ro-
bust model). However, Wikipedia, combined with LOD, provides an excellent
and viable alternative. This is because we can automatically obtain the train-
ing seed tuples from DBpedia, without being restricted to our domain-specific
terms. We look for instances of the YAGO/Wordnet types in DBpedia, and find
the context for these instances from the corresponding Wikipedia page.For our
learning phase, we took either 1000 training seed instances per type or as many
instances as were present in LOD (e.g., yago:ProgrammingLanguage106898352
had only 206 instances). This gave us a total of 4679 seed instances across all five
types.

A key differentiator in our solution is the kind of text patterns we generate
(by patterns here, we mean a sequence of strings). For example, suppose we want
to detect the type Company. The following text pattern [X, acquired, Y], where
X,Y are proper nouns, serves as a potentially interesting pattern to infer that
X is of type Company. However, a more selective pattern is the following: [X
acquired <Company>]. Knowing that Y is of type Company, makes a stronger
case for X to be a Company. Adding type-information to patterns produces more
selective patterns.

yago:ComputerCompanies
freebase:venture_funded_company
freebase:venture_funded_company
Category:CompaniesEstablishedIn1888
yago:Company108058098
yago:Company108058098
yago:Software106566077
yago:ProgrammingLanguage106898352
yago:
Format106636806
yago:WebSite106359193
yago:ProgrammingLanguage106898352

Extracting Enterprise Vocabularies Using Linked Open Data 789

Table 2. Pattern Generation Algorithm

Input: Sentence S containing training instance I, entities with Wikipedia URLs
WN1..WNk; and complete Type-Outcome set for model OT
Output: Set CP of patterns (string sequences)
(1) Run S through OpenNLP POS tagger to get token sequence TK : [.., < word, POS >, ..]
(2) Remove tokens in TK where the word is an adverb , modifier or determiner
(3) Replace common nouns/verbs in TK with respective word stems using WordNet
(4) for each occurrence of pair < I, POS(I) > in TK,

(where posi is position index of pair)
(5) SPANS ← ExtractSpans(TK, posi)
(6) for each [start-pos, end-pos] ∈ SPANS
(7) TKspan ← subsequence TK(start-pos, end-pos)
(8) CP ← CP ∪ word sequence in TKspan

(9) CP ← CP ∪ word sequence in TKspan replacing
proper nouns/pronouns with resp. POS tag

(10) CP ← CP ∪ word sequence in TKspan replacing
WN1..WNk with corresponding types and their resp.
super-types from LOD (provided that type is in OT)

(11) Remove adjectives (JJ) from TK
repeat (8)-(10) once

(Note: When generating patterns in steps (8)-(10), we replace training instance I
by tagged variable ‘X:POS(I)’

Subroutine: ExtractSpans(TK, posi)
(1) SPANS ← ∅
(2) for each j, 0 ≤ j ≤ (posi − 1)
(3) if TK(j).POS = verb or noun
(4) SPANS ← SPANS ∪ [j, posi]
(5) for each j, (posi + 1) ≤ j ≤ length(TK)
(6) if TK(j).POS = verb or noun
(7) SPANS ← SPANS ∪ [posi, j]
(8) return SPANS

To add precise type information, we exploit the structure of Wikipedia and
DBpedia. In Wikipedia, each entity-sense has a specific page, other Wikipedia
entities mentioned on a page are typically hyperlinked to pages with the correct
sense. E.g., the “Oracle Corporation” page on Wikipedia has the sentence “Or-
acle announces bid to buy BEA”. In this sentence, the word BEA is hyperlinked
to the ‘BEA Systems’ page on Wikipedia (as opposed to Bea, a village in Spain).
Thus, using the hyperlinked Wikipedia URL as the key identifier for a particu-
lar entity sense, and obtaining type-information for the corresponding DBpedia
URL, enables us to add precise type information to patterns. For the example
sentence above, and the seed <Oracle, yago:Company108058098>, we generate
the pattern [X:NNP, announces, bid, to, buy, <yago:Company108058098>] be-
cause “BEA Systems” has the type <yago:Company108058098> (among others)
in LOD, while X here is a variable representing the seed instance Oracle, and is
tagged as a proper noun.

Moreover, not only do we substitute a named entity in a pattern by all its
corresponding types in LOD, we add in super-type information, based on the
type-hierarchy in LOD. We only focus on the YAGO/Wordnet types in the
hierarchy which are the most precise. This generalization of patterns further
helps improve recall of the model. Besides using type information, we also use a
stemmer/lemmatizer (using a Java WordNet API2) to generalize patterns, and

2 http://sourceforge.net/projects/jwordnet

yago:Company108058098
yago:Company108058098
yago:Company108058098

790 J. Dolby et al.

Table 3. Sample High Scoring Patterns

Type Pattern

Company [<NNP>, be, acquire, by, X:NNP]
Software [<Company>, release, version, of, X:NNP]
ProgLang [<Software>, write, in, X:NNP]
Format [encode, X:NNP]
Website [X:NNP, forum]

Table 4. Evaluating our NER model

Domain No Feedback With Feedback
Prec. Rec. F Prec. Rec. F

Wikipedia 71.1 41.5 52.4 69.5 42.5 52.8
IT Corpus 76.4 38.6 51.3 76.5 52.3 62.1

a part-of-speech tagger to eliminate redundant words (e.g., determiners) and
add POS information for proper nouns and pronouns in patterns. Details of our
pattern generation is described in the algorithm in Table 2.

We use the text patterns as features to train a Naive Bayesian classifier that
recognizes the concerned types. Finally, we repeat the recognition phase. Newly
recognized term-type tuples are fed back into the system and used to rescore
patterns taking in the new contexts, and also to generate new contexts for the
remaining unrecognized terms by adding in type information. This process re-
peats until nothing changes. This feedback loop is effective, since we produce
several patterns with type information in them, and these patterns are not ap-
plicable unless at least some terms in the context already have types assigned.
For example, the sentence fragment “IBM acquired Telelogic” appears in our
text corpus; initially, we detect that the term “IBM” has type Company, and
feeding this information back to the system helps the machine recognize “Tele-
logic” is a Company as well (based on the pattern [<Company>, acquired, X]
for Type(X):Company). We have to be careful during the feedback process since
terms that have incorrectly recognized types, when fed back to the system, may
propagate additional errors. To prevent this, we only feedback terms whose types
have been recognized with a high degree of confidence (Pr(Ti) > 0.81). Some
sample high scoring patterns captured by our model are shown in Table 3.

4.1 Evaluation of Our NER Model

We evaluated our NER separately on Wikipedia data and the IT corpus. For the
Wikipedia evaluation, we took our initial set of 4679 seed instances from LOD,
and randomly selected 4179 instances for training and set aside the remain-
ing 500 instances for evaluation. For evaluation on the IT corpus, we manually
generated a gold-standard of 159 <term, type> pairs, by randomly selecting a

Extracting Enterprise Vocabularies Using Linked Open Data 791

Table 5. Sample IT Vocabulary Extracted

Software Developer
BMC Software, Fujitsu, IBM Software Group, Automattic, Apache Software Foundation,...

Telecommunications equipment vendors
Alcatel-Lucent, Avaya, SonicWALL, Lucent Technologies ...

Service-oriented business computing
Multitenancy, B2B Gateway, SaaS, SOA Governace, Cloud Computing

Content Management Systems
PHP-Nuke, OsCommerce, Enterprise Content Management, WordPress, Drupal

Software
Corep, Lotus Sametime Advanced, rhype, AIM Pro Business Edition, BPMT, Agilense ...

Programming language
Joomia, ABAP, COBOL, BASIC, ruby, Java

Java Plaform
NetBeans, JDevelopper, Java Software, Java ME, Oracle JDevelopper, ZAAP

Website
Twitter, Microsoft Live, Office Online, GMail, Second Life

sample of 200 pairs from the output of Section 2.4, and then manually fixing
erroneous pairs. The results are shown in Table 4.

The table shows precision, recall and F-scores for our model over each of
the domains, with and without the feedback loop implemented. The results are
encouraging. While not near the performance of state-of-the-art NER’s (which
achieve F-scores in 90% range, e.g., [8]), there are several key points to keep in
mind.

First, typical NERs detect a pre-defined set of types and are specially opti-
mized for the types using a combination of hand-crafted patterns/rules and/or a
large amount of manually annotated training data. We have taken a completely
automated approach for both recognizing domain-specific types and generating
training data and patterns, and our scores are comparable to, and in some cases
even better than, similar approaches such as [6], [7]. The quality issues in LOD
adversely affects our results, and thus the more we can improve the quality of
LOD the better our results should be. Second, there is scope for improvement
using a more robust classifier based on Support Vector Machines (SVMs).

Finally, the performance of our model across domain corpora is significant.
The model, which is trained on Wikipedia and LOD and applied to IT corpus,
performs comparably well without feedback, and substantially better with feed-
back (esp. recall). This indicates that the kind of patterns we learn on Wikipedia,
using information from LOD, can be interesting and generic enough to be appli-
cable across different domains. The performance improvement with feedback on
the IT corpus was due to better uniformity in the writing style, and thus incor-
porating text-patterns for recognized terms in the feedback loop helped generate
additional interesting domain-specific patterns.

4.2 Results with NER Model

As a result of applying our NER model to the IT reports generated 381 new
term-type pairs, which was added to the output of Section 3.4 to give us 1784
terms in all in our domain-specific vocabulary. Using the same evaluation process

792 J. Dolby et al.

as earlier, we found that precision dropped a bit to 78%, but recall increased to
46%. Table 5 shows a sample of the extracted domain-specific vocabulary.

5 Discussion

Benefits of Using LOD: There are some direct benefits of using LOD that
we should mention. First, having labeled domain-specific terms with appropriate
types, a next logical step is to arrange the type labels in a hierarchy for classifica-
tion purposes. Here, we can leverage the YAGO Wordnet hierarchy in DBpedia
in addition to using our inferred type hierarchy from Freebase. Second, a way to
enrich the vocabulary is to capture relations between terms, e.g., the developerOf
relation between the company IBM and the software WebSphere. Such relation
information exists in LOD, making it possible to extract relevant relations be-
tween vocabulary terms. Third, because Wikipedia does cover a broad set of
topics, our techniques can generalize to a new domain. For example, we con-
ducted a preliminary experiment which suggests that our vocabulary extraction
techniques can be generalized to the energy domain.

In our experiment, the input was a corpus of 102 news articles for the energy
sector, drawn from various websites that specialize in news for the energy in-
dustry. The 102 news articles matched the 58 IT reports in terms of length (i.e.,
number of words). We started with a set of 1469 domain-specific terms drawn
from GlossEx [2], and drew a sample of 500 terms. Of this sample, 204 terms
were evaluated by four people to be relevant to the energy domain, leaving us
with an estimate of 599 relevant terms in the overall sample. Our vocabulary
extraction technique extracted 260 terms and types, of which 190 were correct
terms and types (73% precision and recall of 32%). Sample terms and types
we found in the energy sector included companies such as Gazprom, Petrobras,
important people in energy such as Kevin Walsh, Chris Skrebowski, countries or
regions relevant to energy such as Sakhalin, and South Ossetia, and terms such
as Tar sands, Bitumen, LNG, and Methane Hydrates.

Limitations: Our current recall score is still less than 50% inspite of improving
the coverage of information in our two LOD sources and using automated NER,
both of which independently had reasonably good performance. Obviously, we
could improve coverage by considering additional LOD sources or building more
NER models. Yet another way to improve recall is to look at the general Web
for additional type information. The idea, explored in previous work such as [9],
is to capture is-a relations in text using Hearst Patterns encoded as queries to a
Web search engine. For example, given the entity IBM Websphere, we can issue
the following phrase query “IBM Websphere is a” to Google, parse the outputs
looking for a noun phrase (NP) following the input query and use the NP as
a basis for the type. There are two challenges here – recognizing type-phrases
that are conceptually similar (e.g., ‘Application Server’, ”Web Server”, ‘Soft-
ware Platform”), which is typically done using clustering algorithms based on
WordNet etc., and dealing with multiple type senses and figuring out the relevant
type for a particular domain (e.g. Java could be a Programming Language or

Extracting Enterprise Vocabularies Using Linked Open Data 793

the Island). For the latter, we use our automatically discovered domain-specific
types as filters. Initial results in using our type-discovery algorithm as an out-
put filter to approaches such as [9] have been very promising – boosting recall
to 75% for the Gartner case without altering precision, and we plan to further
investigate this approach in the future.

6 Related Work and Conclusions

There are a number of attempts to define taxonomies from categories in
Wikipedia, and map the classes to Wordnet (see [1], [10]), which address a differ-
ent problem from inferring hierarchies from a relatively flat type structure like
Freebase. Wu et al. [4] address the problem of creating a class hierarchy from
Wikipedia infoboxes. Although their major focus is on detecting subsumption
amongst these infobox classes, one aspect of their work is to infer ranges for in-
fobox properties. For this, they examine what types of instances are referenced
by these properties. This is related to what we do for type inference; however,
they focus on inferring ranges for individual properties, whereas we use the do-
main and range information of all incident edges to infer types for instances
themselves.

Research in NER has mainly focused on recognizing a fixed set of generic
types, and little or no work has been done on recognizing a larger set of domain-
specific types (as is our scenario). Alternately, there has been a lot of recent
interest on relationship detection (e.g. Snowball [6], PORE [7]), and type detec-
tion can be seen as a special case of it (is-a relation). However, we differentiate
ourselves in several ways. Like Snowball, we build text-patterns to represent the
context. However, we obtain the appropriate training seeds automatically from
LOD. Our patterns capture long-distance dependencies by not being limited to
a fixed size context as in Snowball, and we add part-of-speech information to im-
prove pattern quality. Also, both Snowball and PORE add type information to
patterns, however Snowball uses an off-the-shelf NER, which suffers from granu-
larity and PORE adds type information by looking at textual information on the
Wikipedia page (e.g., Categories), which can be noisy and non-normative. As
described in Section 4, our patterns contain precise type information (i.e. Yago
Wordnet senses) from LOD for the precise-entity sense obtained by looking at
Wikipedia URIs, and we generalize types by looking at the Yago-Wordnet type
hierarchy. Finally, we have demonstrated that our patterns are generalizable
across domains, a point not addressed in previous solutions.

On the broader problem of extracting semantic relationships from Wikipedia,
Kylin’s self-supervised learning techniques to extract a large number of at-
tribute/value pairs from Wikipedia[11] has recently demonstrated very good
results. Similar to our approach, the learning is performed on the structured
information available in Wikipedia in the form of infoboxes. Our system differs
from Kylin in two important ways. First, our goal is to identify and extract only
domain specific types, not all the values of the type attribute. Second, Kylin’s
technical approach assumes that the value of the attribute appears in the text

794 J. Dolby et al.

used in the evaluation phase. In our two use cases, this assumption clearly does
not hold for the type attribute. In fact, many of the discovered domain types
were not mentioned in either the analyst reports or the energy articles.

In conclusion, we have shown that general-purpose structured information in
Linked Open Data (LOD) combined with statistical analysis can be used for
automated extraction of enterprise-specific vocabularies from text. We applied
this idea to the IT domain looking at Gartner analyst reports, and automatically
generated a vocabulary with 78% precision and 46% recall. As part of our so-
lution, we have developed an algorithm to automatically detect domain-specific
types for a corpus; a set of techniques to improve coverage of information in
LOD. We have shown initial promising results for the Energy industy and are
working on improving the solution coverage by leveraging the general Web.

References

1. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia
and wordnet. Web Semant 6(3), 203–217 (2008)

2. Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond ter-
minology identification. In: Proceedings of the 19th international conference on
Computational linguistics, pp. 1–7. Association for Computational Linguistics,
Morristown (2002)

3. Metaweb Technologies: Freebase data dumps (2008),
http://download.freebase.com/datadumps/

4. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
Proc. of 17th international conference on World Wide Web (WWW), pp. 635–644.
ACM, New York (2008)

5. Welty, C., Murdock, J.W.: Towards knowledge acquisition from information
extraction. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 709–722. Springer, Heidelberg (2006)

6. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text
collections. In: Proceedings of the Fifth ACM International Conference on Digital
Libraries (2000)

7. Wang, G., Yu, Y., Zhu, H.: Pore: Positive-only relation extraction from wikipedia
text. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 580–594. Springer,
Heidelberg (2007)

8. Chieu, H.L., Ng, H.T.: Named entity recognition with a maximum entropy ap-
proach. In: Proceedings of the seventh conference on Natural language learning
at HLT-NAACL 2003, pp. 160–163. Association for Computational Linguistics,
Morristown (2003)

9. Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explorations 6(2), 24–34
(2004)

10. Ponzetto, S., Strube, M.: Deriving a large scale taxonomy from wikipedia. In: Pro-
ceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007),
Vancouver, B.C, July, pp. 1440–1447 (2007)

11. Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from wikipedia: moving
down the long tail. In: KDD, pp. 731–739 (2008)

http://download.freebase.com/datadumps/

Reasoning about Resources and Hierarchical
Tasks Using OWL and SWRL

Daniel Elenius, David Martin, Reginald Ford, and Grit Denker

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. Military training and testing events are highly complex
affairs, potentially involving dozens of legacy systems that need to in-
teroperate in a meaningful way. There are superficial interoperability
concerns (such as two systems not sharing the same messaging formats),
but also substantive problems such as different systems not sharing the
same understanding of the terrain, positions of entities, and so forth. We
describe our approach to facilitating such events: describe the systems
and requirements in great detail using ontologies, and use automated
reasoning to automatically find and help resolve problems. The com-
plexity of our problem took us to the limits of what one can do with
owl, and we needed to introduce some innovative techniques of using
and extending it. We describe our novel ways of using swrl and dis-
cuss its limitations as well as extensions to it that we found necessary or
desirable. Another innovation is our representation of hierarchical tasks
in owl, and an engine that reasons about them. Our task ontology has
proved to be a very flexible and expressive framework to describe re-
quirements on resources and their capabilities in order to achieve some
purpose.

1 Introduction

In military training and testing events, many heterogeneous systems and re-
sources, such as simulation programs, virtual trainers, and live training instru-
mentation, are used. Often, the systems were not designed to be used together.
Therefore, many interoperability problems arise. These problems range from the
superficial – such as two systems not sharing the same messaging formats –
to more substantive problems such as different systems not sharing the same
understanding of the terrain, positions of entities, and so forth.

In [1], we described an approach for automated analysis of military train-
ing events. The approach used owl ontologies describing the systems and the
purpose for which they were to interoperate. A custom Prolog program was
used to produce warnings concerning potential interoperability problems, as
well as “configuration artifacts” such as a chain of mediation components that
could be used to connect two systems that otherwise would not be able to
communicate.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 795–810, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

796 D. Elenius et al.

This paper describes our further work in this area1, which overcomes many of
the limitations of our previous work. We provide two main contributions. First,
we have extended owl with a representation of hierarchical tasks in owl. Tasks
describe the structure of events and the requirements of resources that perform
them. This has proved to be a flexible and expressive framework to describe
military training and testing events in a way that allows automated reasoning
in order to find problems and their solutions. Second, where we previously used
hard-coded Prolog rules to detect interoperability problems, we are now using
swrl2 rules and constraints. This approach is more declarative and extensible.
We discuss shortcomings of swrl as applied to our problem domain, and propose
solutions to overcoming some of these. We have implemented general-purpose
task processing tools to manage and reason about resources and hierarchical
tasks. While our work has been driven by military training and testing domain,
most of the problems and solutions discussed in this paper are applicable to
other domains.

The paper is organized as follows. Section 2 describes some of the core on-
tologies underlying our approach. Section 3 discusses our task and task plan
concepts. Section 4 discusses some specific uses of swrl, and the benefits and
limitations derived from its use. Section 5 describes our implementation of task
processing tools. Section 6 discusses related work. Section 7 summarizes the
lessons that we have learned and our conclusions.

2 Ontologies

Our approach to interoperability analysis depends on good-quality, authoritative
ontologies. Since our intent is to find very subtle problems, many details must be
ontologized regarding simulators, training instrumentation, vehicles, communi-
cation architectures, terrain, training and testing events, and so forth. It is also
important that the task processing software does not depend on specific domain
ontologies. Most of these will not be under the control of ONISTT developers,
and we also want the software to be reusable for other domains. To that end,
we have defined a very small set of core ontologies. Different organizations can
create and maintain their own domain-specific ontologies that import the core
ontologies and create subclasses of classes therein.

We investigate system interoperability in the context of a specific purpose.
The key concepts to capture purpose are as follows. A Task is an intended action
that requires some resource(s), and potentially has some additional constraints
associated with it. A Role is a “slot” of a task that needs to be filled with some
resource. A TaskPlan is a plan for how to perform a task, including assignment
of resources to roles. The task and task plan ontologies are described in more
detail in Section 3.
1 This work was performed under the ONISTT project, sponsored by DUSD/R-RTPP

(Training Transformation) and the ANSC project, sponsored by USD/AT&L-TRMC
(S&T Portfolio).

2 http://www.w3.org/Submission/swrl/swrl.owl

http://www.w3.org/Submission/swrl/swrl.owl

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 797

The key concepts to capture details about resources are as follows. A Resource

is a thing that can do something, through the use of capabilities. Examples of
resources are a tank, a human, a simulator, or training instrumentation. We
also allow for intangible resources such as software systems. A resource can have
subresources. A Capability is a discrete piece of functionality that belongs to
a resource. Examples include the capability to send a “weapon fired” message
using some message format, the capability to physically move (at some max-
imum speed), or the capability to detect things in the infrared spectrum. A
Confederation is a set of resources.

A Deployment connects the purpose and resource descriptions. It describes an
event (such as a training or testing event) in terms of one TaskPlan and one
Confederation.

As an example of extending these core ontologies, we have an ontology of
capability types for military training and testing resources containing subclasses
of the Capability class, such as MovementCapability, DetectabilityCapability

and DirectFireCapability, and an ontology of military Task types such as TST

(time-sensitive targeting) and JCAS (joint close air support).

3 Tasks and Task Plans

A task is a description of the structure and requirements of some set of intended
actions. The structural aspects of tasks are based on two fundamental ideas:
composition and refinement. It is useful to express tasks in a compositional way,
grouping tasks into composite tasks. This allows reuse of larger units, and makes
it easier to understand a complex task at a high level. Furthermore, there are
often different ways to perform a task, imposing different requirements on the
participating resources. We model this using abstract tasks that can be refined
into several different more concrete tasks.

In the following, we define a task ontology. One could view this ontology as an
encoding of the syntax of a task language. This is analogous to the owl encoding
of swrl and owl-s3. In all three cases, an owl encoding is useful in order to
achieve a tight integration with owl. However, as in the case of owl-s process
models and swrl rules, owl cannot express the intended semantics of our task
concepts. Therefore, we provide a dedicated semantics for the new concepts. We
have in effect extended the owl language. We have also defined new reasoning
problems (task analysis and task synthesis) that could not practically be reduced
to the standard owl reasoning problems (such as class subsumption checking).

3.1 Task Ontology

The task ontology is shown in Figure 1. Tasks are structured in a hierarchi-
cal way. There are three kinds of tasks: abstract, primitive, and composite. All
tasks have formal arguments. The arguments are instances of the Role class.

3 http://www.daml.org/services/owl-s/

http://www.daml.org/services/owl-s/

798 D. Elenius et al.

Task

PrimitiveTask CompositeTaskAbstractTask

rdfs:subClassOf
refinedBy

rdf:List

formalArguments

Role

list contents

TaskInvocation

rdf:List

subtaskInvocations

NonPrimitiveTaskInvocation PrimitiveTaskInvocation

owl:subclassOf
invocationArguments

invocationArgument

formalArgument

owl:Class

Capability

class restricted to

capabilityNeeded

CapabilityConstraint

ConfigurationArtifactSpecification

configurationArtifactSpecification

capabilityConstraint

invokedTask

list contents

Fig. 1. Task ontology

Arguments are variables that can be assigned to resources in order to say what
resources are involved in performing a task. Role-resource assignments are dis-
cussed below.

Abstract tasks can be performed, or refined, in several alternative ways. Each
refinement is itself a task. Composite tasks have a list of subtasks, all of which
must be performed for the composite task to succeed. Task invocations are used
to bind the arguments of the composite task to those of its subtasks. Composite
tasks can also have constraints on their subtasks, and configuration artifacts
derived from their subtasks. Constraints and configuration artifacts are explained
below. Primitive tasks have only one formal argument and thus are performed by
one resource. Primitive tasks have an associated capability needed. The capability
needed is a subclass of the Capability class4. A resource can be assigned to a
primitive task only if it has a capability individual that is an instance of the
capability needed class.

3.2 Semantics of Tasks

The following semantics is intended to facilitate the understanding of the mean-
ing of tasks, and to provide an exact criterion for whether or not a task can be
performed.

The intended meaning of a task is a set of Horn clauses. The task atom of a task
T with formal arguments ϕ̄ is defined as the atomic formula α(T) = T (ϕ̄). Sim-
ilarly, a task invocation atom of a subtask invocation for task S with invocation
arguments ϕ̄′ is defined as the atomic formula ι(S) = S(ϕ̄′)5. We define the func-
tion H, denoting the Horn clauses of a task, in the following way (keeping the uni-
versal quantification of the variables in the clauses implicit). For an abstract task
4 This is a use of classes-as-instances, and puts the ontology in owl Full. This does

not cause us problems, because we do not perform DL reasoning on task structures.
5 From the perspective of the task ontology, the arguments are Roles. Logically, they

are variables ranging over Resources.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 799

A with refining tasks R1 . . . Rn, H(A) = {α(A) ⇐ α(R1), . . . , α(A) ⇐ α(Rn)}.
For a composite task C with subtask invocations S1 . . . Sn, H(C) = {α(C) ⇐
ι(S1) ∧ . . . ∧ ι(Sn)}. For a primitive task P with α(P) = P (x) and capability
needed Cap, H(P) = {α(P) ⇐ Resource(x) ∧ capability(x, y) ∧ Cap(y)}. A
task library L is a set of tasks T1 . . . Tn, and we extend the translation so that
H(L) = H(T1) ∪ . . . ∪ H(Tn). Let KB be an owl knowledge base, defined in
the usual way, possibly containing swrl rules, and T a function that translates
such knowledge bases to their first-order logic equivalent [2]. A task T in a task
library L is performable, given KB, iff α(T) is satisfiable by T (KB) ∪ H(L).

The mathematical descriptions account for the satisfiability of tasks. However,
tasks have other characteristics that do not affect satisfiability but can be used by
a task processing engine to produce useful information for the user, or to guide its
processing. These features include constraints and configuration artifacts, both
of which are described below.

It may reasonably be asked why we do not use swrl rules (being a representa-
tion of Horn clauses) directly to represent the tasks. One reason was mentioned
above: the “additional features” of tasks that are not formalized in the Horn
clause semantics. The other reason is that we want to constrain the users some-
what, and not allow arbitrary rules as task descriptions.

3.3 Task Plans

The task plan ontology (see Figure 2) provides a layer on top of the task ontology,
whereby one can describe how to perform a task. Task plans add five types of
information to task descriptions:

– Role-resource assignments. A determination of which resource is to fill a
particular role of the task.

– Capability assignments. A determination of which capability of the resource
assigned to a primitive task is to be used for the task.

– Choices of which refining tasks to use for abstract tasks. For each abstract
task, at most one refining task is chosen, by creating a refining task plan.

– Information about which constraints failed.
– Values for configuration artifacts.

Task plans can be partial, i.e. they do not have to have resource or capability
assignments, refining plans, or subtask invocation plans.

Figure 3 shows an example of how the task and task plan ontologies can
be instantiated. The task instances are in the left half of the figure, and the
task plan instances in the right half. A RoleAssignment is used on the primitive
task plan SendPlan 1 to assign the resource UAV1 to the Sender role. A capability
of UAV1 is also assigned to the task plan via the assignedCapability property.
Note that the task instances are reusable, whereas the task plan instances are
not reusable to the same extent – they show a particular way of performing
the task.

800 D. Elenius et al.

TaskPlan

CompositeTaskPlan AbstractTaskPlan PrimitiveTaskPlan

RoleAssignment

TaskInvocationPlan

Task
task

invokedTaskPlan

TaskInvocation

taskInvocation

Resource Role
Capability

assignedCapability

refiningPlan

CapabilityConstraint

failedConstraint resourceAssigned roleAssigned

roleAssignment

rdfs:subClassOf

capability

ConfigurationArtifact owl:Thing

configurationArtifact

artifactValue

ConfigurationArtifactSpecificationspecifiedBy

subtaskInvocationPlan

Fig. 2. Task plan ontology

Communication

DirectCommunication

Send

Receive

subtaskInvocations

SendInvocation

ReceiveInvocation

rdf:List

refinedBy

invokedTask

CommunicationPlan_1

DirectCommunicationPlan_1

SendPlan_1

ReceivePlan_1

SendInvocationPlan_1

ReceiveInvocationPlan_1

refiningPlan

invokedTaskPlan

subtaskInvocationPlan

task

task

task

task

ta
sk
In
vo
ca
tio
n

UAV1

Sender

Sender_UAV1_RoleAss

UAV1_SendCapabilitySendCapability

AbstractTaskPlan

CompositeTaskPlan

TaskInvocationPlan
instance of

instance of

instance of

instance of

roleAssigned

resourceAssigned

capability

roleAssignment

AbstractTask instance of

CompositeTask instance of

PrimitiveTaskInvocation

instance of

capabilityNeeded

PrimitiveTask

instance of

PrimitiveTaskPlan

instance of

assignedCapability

Fig. 3. Example of task and task plan instances

3.4 Semantics of Task Plans

The following is a sketch of the semantics of task plans. We leave out the precise
details because of space considerations.

The meaning of a task plan P is a set of Horn clauses Hp(P). A role assign-
ment is a substitution of a resource for a variable (role) that can be applied to a
formula. Similarly, a capability assignment is a substitution of a capability for the

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 801

variable corresponding to the capability needed in a primitive task. Intuitively,
the Horn clauses for a task plan are the Horn clauses for the corresponding task,
with the role and capability assignments applied as variable substitutions where
appropriate, and the choices of refining tasks for abstract tasks narrowed down to
what is selected in the task plan. We define the task plan atom αp of a task plan
P for task T and with role assignments R as the result of applying R to α(T). A
task plan P is valid, given an owl knowledge base KB, iff αp(P) is satisfiable
by T (KB) ∪ Hp(P). Note that if a task plan is valid, the corresponding task is
performable, but the opposite is not true in general. We call the determination
of task plan validity the Task Plan Analysis problem.

A task plan is complete if it is fully specified to the primitive level, and assigns
all roles and capabilities. Note that a complete task plan is a set of ground
Horn clauses. A task plan Pc is a completion of a task plan P if Hp(Pc) can
be produced by instantiating all the variables (roles), and removing alternative
clauses for abstract tasks, in Hp(P). A completion is always complete. Note that
there are no valid completions of an invalid task plan. The Task Plan Synthesis
problem is to generate all valid completions from a task plan.

The constraints and artifacts part of task plans does not affect validity, and
is not part of the semantics, but task plan processors can use these fields to
return useful information. This is discussed in more detail below. In Section
5 we describe our implementation of an engine that performs both task plan
analysis and task plan synthesis.

3.5 Constraints

As mentioned above, a composite task can have additional constraints on its
subtasks. While primitive tasks place constraints on individual resources by
forcing them to have a capability of a certain type, the constraints on a com-
posite task are usually used to specify requirements on the interaction be-
tween several resources that perform subtasks of the composite task. For ex-
ample, suppose we have a TransferVideo composite task with primitive subtasks
ProvideVideo and ConsumeVideo. A constraint could be used to say that all the
supportedResolutions of the provider have to be supported by the consumer.

A CapabilityConstraint of a composite task has an associated message, a
severity, and a constraint atom (see Figure 4). The constraint atom is a swrl
atom. Typically, the predicate of the atom is defined using a swrl rule. A task
processor should try to prove the constraint atom in the context of the sur-
rounding Horn clause. If it fails to do so, the constraint failure is reported in the
result of the analysis, using the failedConstraint property on the generated task
plan. The message associated with a constraint is a natural language descrip-
tion of the problem, which can be shown to the user. The task processor should
also generate an overall score for each solution, by adding up the weights of the
severities of all the constraints that failed. In other words, a lower score is better,
and a score of zero signifies the absence of any known problems. All constraints
are soft, and as mentioned previously do not affect the performability of the
task.

802 D. Elenius et al.

CapabilityConstraint ConfigurationArtifactSpecification

SWRLAtom

xsd:string

ConstraintSeverity

constraintSeverity

artifactAtomconstraintAtom

messagemessage

xsd:decimalweight

Fig. 4. Ontology elements for constraints and configuration artifacts

3.6 Configuration Artifacts

Configuration artifacts are similar to constraints (see Figure 4), except that
they also have a return value. The return value is captured by letting the second
argument of the artifact atom be a variable. This variable is bound when the
task processor evaluates the artifact atom. The return value could be an rdf:List

(created using the swrl list built-ins) or any owl individual or data value.
A typical use of configuration artifacts is to explain why a constraint failed.

Continuing on the example above with supported resolutions, we could have a
configuration artifact returning all the resolutions supported by the provider but
not by the consumer. If the constraint succeeded, the list would be empty, but
if it failed, the configuration artifact would show why it failed.

4 Benefits and Limitations of SWRL

We discuss our various uses of swrl, the benefits we derived from its use, and
the limitations that we have run into. We have put swrl to use in many areas,
such as defining constraints and configuration artifacts, reasoning about units,
and ontology mapping. While swrl has allowed us to go far beyond owl, we
have identified several limitations that appeared in different application areas:
the limitation to unary and binary predicates, the lack of negation-as-failure and
other nonmonotonic operations, and the inability to produce new individuals as
a result of evaluating a rule.

We recognize that swrl is not a standard, but most of what is said here
also applies to other prospective rule languages such as rif6, and is of general
concern.

4.1 Defining Constraints

swrl rules provide a rather flexible way to evaluate capabilities of resources and
perform various operations on them. Indeed, with the swrl builtins7, we can
even do limited forms of “programming” with rules. There are some serious lim-
itations to the usefulness of swrl, however. First, swrl “predicates” are owl

6 http://www.w3.org/2005/rules/wiki/RIF Working Group
7 http://www.w3.org/Submission/SWRL/#8

http://www.w3.org/Submission/SWRL/#8

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 803

classes or properties, and can therefore take only one or two arguments. swrl
builtin atoms solve this by using an rdf:List to contain the arguments. The
same approach can be used with the other types of swrl atoms in order to get
an arbitrary number of arguments, and we use this approach when necessary.
However, it is an awkward solution. First, we have to create a list to put argu-
ments into, in the constraint atom. Then, the swrl rule has to “unpack” the
arguments from the list, using the list operations swrlb:first and swrlb:rest.
Predicates with an arbitrary number of arguments is therefore high on our wish
list for a future Semantic Web rule language.

The lack of negation in swrl rules may be an even more serious limitation.
In principle, swrl allows any class expression, which means that one can use
complement classes, but this allows us to negate only class expressions, not ar-
bitrary swrl formulas. In addition, this is classical negation, whereas we often
need negation-as-failure. Going back to an example from Section 3, we may
want to check that a video consumer can handle all the resolutions that a video
provider can provide. Some capability of the provider and some capability of the
consumer have a property supportedResolution. We need to check that all the
provider’s property values are also property values of the consumer. However,
without negation-as-failure or a “closed world assumption” we cannot express
this in owl or swrl. owl’s open world assumption means that there could
always be more values of a property than what has been asserted. One could in-
troduce several additional axioms to express that the property values are exactly
the asserted property values:

Individual(ProvideVideoCapability

type(restriction(supportedResolution cardinality(3)))

value(supportedResolution 640x480)

value(supportedResolution 800x600)

value(supportedResolution 1024x768))

DifferentIndividuals(640x480 800x600 1024x768)

However, this quickly becomes unwieldy if one has to do this on all capabilities
and properties in order to evaluate constraints on them like the one discussed
here. Furthermore, we do not want to limit the capability to specific values in
general – we want to retain the ability to define a capability across different
ontologies in an open-ended manner. A better solution would be to make a
“local closed world assumption” inside the rule. Of course, swrl offers no such
capability. For the time being, we decided on the following solution. We introduce
a new swrl builtin, called allKnown. This works similarly to the setof predicate
in Prolog – it returns a list of all the “known” values of some property, for
some individual. Once we have lists of property values, we can use swrl’s list
built-ins to check whether one list is contained in another and so forth. The
allKnown operation is nonmonotonic, and does not fit neatly into owl’s semantic
framework. A more principled approach would be desirable, and is something we
would like to see in a future Semantic Web rule language. A promising starting

804 D. Elenius et al.

point is presented in [3], where a subset of the description logic underlying owl
is augmented with an auto-epistemic operator K that can be used with class and
role expressions. More general approaches of combining description logic with
“logic programming” are presented in [4].

4.2 Defining Configuration Artifacts

The representation of configuration artifacts using swrl shares all the issues
discussed above, and introduces an additional problem. As we mentioned in
Section 3, configuration artifacts are defined using a predicate (object property)
where the second argument is a “return value”. The value can be any owl
individual. However, there is no way to produce a new individual using a swrl
rule (with the exception that some swrl built-ins for lists can produce new
lists). We will see in the following sections how the same problem reappears in
different contexts.

4.3 Ontology Mapping

Addressing military training and testing problems on a large scale using our
ontology-based approach requires many detailed domain ontologies spanning a
wide range of subjects. The development of such ontologies will be distributed
among different stakeholders. However, not everyone will adhere to the same
ways of describing resources and capabilities. Therefore, ontology mapping will
be necessary. Ontology mapping is a wide topic, studied by many researchers
using different approaches [5]. For our purposes, what is needed is to bring in
knowledge from outside ontologies under our own upper ontologies (of resources,
capabilities and so forth).

A mapping from one ontology to another can be defined in some special
format, but a more flexible approach is to use a well-known logical formalism to
describe the relationships between the two ontologies. When there is a relatively
simple correspondence between entities in the two ontologies, one can define
class and property equivalence or subsumption between the existing classes and
properties, using owl axioms. With swrl rules, we can define more complex
mappings.

As an example, suppose we have a “normative” video ontology to describe
video provider resources, and an “external” camera ontology that we want to
map to the video ontology (see Figure 5).

camera:Camera camera:VideoFormat Resolutioncamera:videoFormat camera:resolution

video:VideoProvider
video:supportedResolution

Fig. 5. Different representations of supported resolutions of a video provider resource.
Dashed line shows relationship that needs to be generated.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 805

We can define camera:Camera to be a subclass of video:VideoProvider, but the
camera ontology describes the supported resolutions of the video provider in a
different way than the video ontology. This difference in representation can be
mapped using the swrl rule.

camera:Camera(?x) ∧ camera:videoFormat(?x, ?y)∧
camera:resolution(?y, ?z)⇒ video:supportedResolution(?x, ?z)

However, consider what happens if the “intermediate” instance is in the tar-
get ontology. This is a typical case in our real ontologies: Resources have ca-
pabilities (the intermediate individuals), which in turn have properties. For
example, a resource might have a video:ProvideVideoCapability that has the
video:supportedResolution property. Figure 6 shows the desired mapping.

camera:Camera camera:VideoFormat Resolutioncamera:videoFormat camera:resolution

video:provideVideoCapability ProvideVideoCapability video:supportedResolution

Fig. 6. Ontology mapping example. New property values (dashed lines) as well as a
new instance (dashed box) need to be generated.

The mapping can be expressed by the rule

camera:Camera(?x) ∧ camera:videoFormat(?x, ?y)∧
camera:resolution(?y, ?z)⇒∃?c: capability(?x, ?c)∧
video:ProvideVideoCapability(?c) ∧ video:supportedResolution(?c, ?z)

Here we have an existentially quantified variable in the rule head, representing a
“new instance” that needs to be created, viz. the ProvideVideoCapability of the
resource. This cannot be expressed in Horn logic or swrl rules. A limited form of
existential quantification is possible by using someValuesFrom class expressions
in a rule. However, the example above can still not be encoded in this way.
The pattern discussed here is very common in owl, since all structured data is
described using property-value chains. Thus, swrl can be used only for relatively
simple types of mapping, where there is little structure in the target ontology.

4.4 Reasoning about Units

A common problem in ontologies is how to represent and reason about units
of measure. Units are ubiquitous in our military training and testing domain,
for example, in describing formats representing time and space positions, or the
speed of vehicles. owl by itself can be used to represent information about
units, but is not adequate for making the right inferences from the information.
However, this is an area where swrl can be used to great advantage.

806 D. Elenius et al.

Figure 7 shows the essence of our “quantity” ontology. A quantity is an entity
that has a unit and a magnitude, for example 5 kg or 10 lbs. A unit has a
primary unit and a conversion factor to its primary unit. For example, the unit
lbs has primary unit kg and conversion factor 0.4535924. Based on this quantity
ontology, we have developed ontologies for engineering values (e.g., accelerations,
areas, frequencies) and computation values (e.g., bits per second, megabytes,
mebibytes).

Quantity magnitude

xsd:decimal

Unit

unit

primaryUnit

conversionFactorToPrimary

Fig. 7. Quantity ontology

Being able to describe quantities is only the first step, however. We also want
to do things with them. For example, we want to compare quantities in differ-
ent units. The quantity ontology defines a number of operations on quantities,
using swrl rules. First, we define a “helper” predicate primaryMagnitude. This
is the magnitude of a quantity in its primary unit. swrlb:multiply is a swrl
built-in, where the first argument is the result of multiplying the rest of the
arguments.

magnitude(?q, ?mag)∧ unit(?q, ?u)∧ conversionFactorToPrimary(?u, ?convf)∧
swrlb:multiply(?pmag, ?mag, ?convf)⇒ primaryMagnitude(?q, ?pmag)

Next, we can define equals, less than, and so on, using this helper predicate:

primaryMagnitude(?q1, ?pmag1)∧ primaryMagnitude(?q2, ?pmag2)∧
swrlb:lessThan(?pmag1, ?pmag2)⇒ qLessThan(?q1, ?q2)

These operations can be used to determine for example that 10 lbs is less than
5 kg. This shows a common use of swrl in our domain: We define some “abstract
data type” [6] along with some operations on it. Another example (not shown
here), which builds on the previously defined operations (e.g., less than) is quan-
tity intervals, with operations such as checking whether two quantity intervals
overlap.

One limitation is that we cannot use swrl to define operations that produce
new entities. This cannot be expressed using swrl rules because of the limita-
tion regarding existential variables illustrated in the discussion about ontology
mapping above. For example, adding two quantities produces a new quantity
that is the sum of the two. For some operations, like division, the result could
even have a different unit than the inputs.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 807

5 Implementation

We have implemented tools that realize the task planning framework described
in Section 3. The two main components are a Protégé plug-in and a task engine,
described below. The overall architecture is shown in Figure 8.

Java Virtual Machine

Protégé

OWL files

Task Engine

XSB Prolog Environment

Interprolog

Prolog
ontology

representation
OWL <-> Prolog

translator

Protégé plugin

GUI (Protégé tab etc)

Protégé
Ontology

representation

Fig. 8. Implementation architecture. The new components are the Protégé plug-in and
task engine. As shown by arrows, results from the task engine can be translated all the
way back to owl files.

5.1 Task Engine

Our task engine is a program that solves the task plan analysis and synthesis
problems discussed in Section 3.3. The engine is implemented in XSB Prolog8.
Prolog was a natural choice because it provides built-in backtracking, which we
use to generate all solutions during task plan synthesis.

Given that the meaning of a task or task plan is a set of Horn clauses, for
task plan analysis we could just translate task plans directly into Prolog rules,
query the task plan atom, and see if it succeeded or not. However, for the more
interesting task plan synthesis problem, we also want to know how the task
succeeded. This means that the engine has to “interpret” the task descriptions
and construct structured result terms. This is similar to evaluating rules and
returning the call tree and all variable assignments generated along the way.

As mentioned in Section 3, the engine depends on the entire owl KB (i.e.,
knowledge beyond the task structure) for two purposes:

– When a primitive task is evaluated, the engine must perform a KB query of
the form Resource(x) ∧ capability(x, y) ∧ Cap(y).

– When a constraint atom or artifact atom is evaluated, the engine must per-
form a KB query given by atom.

To perform these queries, the owl KB is translated to Prolog (by the owl
↔ Prolog translator component in Figure 8). The translation uses the well-
known correspondence of a large subset of owl, called DLP [7], to Horn clauses

8 http://xsb.sourceforge.net/

http://xsb.sourceforge.net/

808 D. Elenius et al.

(the translation is the same as in our previous work [1]). This means that not
all of owl’s semantics is covered (i.e., the query answering is not complete), but
in practice we have not found this to be a limitation for the ontologies that we
work with, as we do not tend to rely on the more complex owl axioms and the
inferences that they would enable.

5.2 Protégé Plug-In

We developed a plug-in for Protégé [8] to help in creating tasks and task plans,
invoking the task engine, and navigating results from the task engine.

Figure 9 shows one of several views of the results of running task synthesis for
a given deployment. Results can be fairly complex. Our plug-in helps the user
explore the result in terms of which resources were used, what warnings were
generated, and the structure of the generated task plan.

Fig. 9. Results of running the task engine from the Protégé plug-in. This view shows
which resources were used to generate the selected solution. In the view shown, the
user can explore warnings due to failed constraints.

6 Related Work

A related paradigm for task planning is Hierarchical Task Network (HTN) Plan-
ning [9]. HTNs have tasks (corresponding to our abstract tasks), methods (corre-
sponding to our composite tasks), and primitive tasks. The goal is to decompose
tasks down to primitive tasks, and assign operations to the primitive tasks. This
is constrained by preconditions and effects on the tasks. Thus, the HTN planning
engine has to keep track of the state of the world, and changes to it that tasks
achieve. This makes HTN planning a harder problem than ours, since we do not
care about the order in which tasks are performed. On the other hand, HTN plan-
ning is also easier than our problem, because the arguments to tasks are known
in advance, whereas our task planning paradigm allows us to run the planning
with variable “roles”, which then need to be assigned by the planning engine.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 809

Another related paradigm is Semantic Web Services, and owl-s in particu-
lar. owl-s is used to describe services based primarily on their inputs, outputs,
preconditions, and effects (IOPEs). This is useful in order to infer which com-
bination of services can be used to achieve a particular goal. Services can be
thought of as tasks, and indeed HTN planning has been used with owl-s ser-
vice descriptions [10]. However, owl-s is an open-ended representation scheme
without any particular mandated computational paradigm. Our task ontology
focuses on requirements on resources, whereas owl-s focuses on IOPEs and
sequencing of services, using control constructs such as sequence and split-join.

Finally, there is a wealth of work generally referred to as “scheduling” or
“planning with resources” [11]. This focuses on deciding which resources can be
used for multiple tasks at the same time and how tasks should be scheduled onto
resources in an optimal way. In contrast, we assume that all resources can be
used for any number of tasks.

7 Conclusions

Military training and testing events are highly complex affairs, potentially in-
volving dozens of legacy systems that need to interoperate in a meaningful way.
Our approach to facilitating such events is ambitious: describe the systems and
requirements in great detail using ontologies, and use automated reasoning to
automatically find and fix problems.

Our approach relies on ontologies, and it will be infeasible for us (the authors)
to create all the domain ontologies. Therefore, a standard ontology language on
which everyone can agree is critical, and owl is the de facto standard. How-
ever, the complexity of our problem took us to the limits of what one can do
with owl, and we needed to introduce some innovative techniques of using and
extending it.

One of our main contributions is our task and task plan concepts, which
can be viewed as extensions to the owl language. These concepts allow us to
represent events and their requirements in a structured way, and break down an
overwhelming amount of detail into manageable and reusable chunks. The second
main contribution is a discussion of the benefits and limitations of swrl. We
put swrl to use in many areas, such as defining constraints and configuration
artifacts, reasoning about units, and ontology mapping. Among the limitations
are the restriction to unary and binary predicates, the lack of negation-as-failure
and other nonmonotonic operations, and the inability to produce new individuals
as a result of evaluating a rule.

Our next task will be to define and evaluate a large real-world event using
the techniques described in this paper. The long-term goal is to provide a com-
plete system that is usable by military training and testing experts who are not
necessarily knowledgeable in Semantic Web technologies. For such a transition
to be successful, several different Semantic Web technologies and research areas
need to progress further. The scale and distributed nature of the necessary on-
tology development will require significant improvement in ontology engineering
approaches and tools.

810 D. Elenius et al.

References

1. Elenius, D., Ford, R., Denker, G., Martin, D., Johnson, M.: Purpose-aware rea-
soning about interoperability of heterogeneous training systems. In: Aberer, K.,
Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 750–763. Springer, Heidelberg
(2007)

2. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to reason
with OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 471–485. Springer, Heidelberg (2004)

3. Grimm, S., Motik, B.: Closed world reasoning in the Semantic Web through epis-
temic operators. In: Grau, B.C., Horrocks, I., Parsia, B., Patel-Schneider, P. (eds.)
Second International Workshop on OWL: Experiences and Directions (OWLED
2006), Galway, Ireland (2005)

4. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: Veloso, M.M. (ed.) Proc. 20th Int. Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, pp. 477–482. Morgan Kaufmann Pub-
lishers, San Francisco (2007)

5. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In:
Semantic Interoperability and Integration. Number 04391 in Dagstuhl Seminar
Proc., Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (2005)

6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer,
Heidelberg (1985)

7. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of the 2nd International
Semantic Web Conference, ISWC 2003 (2003)

8. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL
plugin: An open development environment for Semantic Web applications. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 229–243. Springer, Heidelberg (2004)

9. Ghallab, M., Nau, D., Traverso, P.: Hierarchical task network planning. In: Au-
tomated Planning: Theory and Practice, ch.11. Morgan Kaufmann Publishers,
San Francisco (2004)

10. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on the
World Wide Web 1, 377–396 (2004)

11. Ghallab, M., Nau, D., Traverso, P.: Planning and resource scheduling. In: Au-
tomated Planning: Theory and Practice, ch.15. Morgan Kaufmann Publishers,
San Francisco (2004)

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 811–826, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Hybrid Search and Query for E-discovery
Identification

Dave Grosvenor and Andy Seaborne

Hewlett-Packard Laboratories, Bristol
{dave.grosvenor,andy.seaborne}@hp.com

Abstract. We investigated the use of a hybrid search and query for locating en-
terprise data relevant to a requesting party’s legal case (e-discovery identifica-
tion). We extended the query capabilities of SPARQL with search capabilities
to provide integrated access to structured, semi-structured and unstructured data
sources. Every data source in the enterprise is potentially within the scope of
e-discovery identification. So we use some common enterprise structured data
sources that provide product and organizational information to guide the search
and restrict it to a manageable scale. We use hybrid search and query to conduct
a rich high-level search, which identifies the key people and products to
coarsely locate relevant data-sources. Furthermore the product and organiza-
tional data sources are also used to increase recall which is a key requirement
for e-discovery Identification.

Keywords: SPARQL, e-discovery, identification, hybrid search and query.

1 Introduction

E-discovery is the process of collecting, preparing, reviewing, and producing elec-
tronic documents in a variety of criminal and civil actions and proceedings [1]. In this
paper we address the problems of scale and recall in the identification stage of e-
discovery which is responsible for learning a coarse location of data relevant to a
legal case. There are two components to our approach to these problems. The first
component was to add search directives to SPARQL [2] to give two different infor-
mation retrieval models in a hybrid search and query. This gives integrated access to
both structured and unstructured data sources in the enterprise. However the second
component was to exploit some common product and organizational data sources to
both guide the searches to cope with scale, and to increase recall.

This paper is organized into five sections. Firstly we extend the introduction with
an overview of e-discovery, identification and related work. Secondly we motivate
our approach to hybrid search and query. Thirdly we discuss our use of some com-
mon data sources to both guide the search, and restrict it to a manageable scale.
Fourthly we examine a hypothetical patent violation e-discovery case and give ex-
amples on the use of hybrid search and query. Finally we give our conclusions on
the investigation.

812 D. Grosvenor and A. Seaborne

1.1 E-discovery

E-discovery is a new issue for enterprises created in 2006 by the Federal Rules for
Civil Procedure (FRCP) [3] in the US which legally require enterprises:

• To disclose the identities of all individuals likely to have discoverable informa-
tion relevant to a legal case.

• To either provide a copy, or the location and description of all Electronically
Stored Information (ESI) relevant to a legal case.

The courts can potentially impose punitive damages on an enterprise for a failure to
comply.

Fig. 1. Reference Model for E-discovery

The ESI includes both structured and unstructured information within the enter-
prise which specifically includes e-mails, web-pages, word processing files, and data-
bases stored in the memory of computers, magnetic disks (such as computer hard
drives and floppy disks), optical disks (such as DVDs and CDs), and flash memory
(such as “thumb” or “flash” drives). Currently email is the most important source of
discoverable information (80-90% according to a Magistrate Judge Survey [4]). For
example email analysis was used extensively in the ENRON case and is a subject of
the TREC legal track [5].

E-discovery requests can be initiated by arbitrary legal cases which makes it diffi-
cult to prepare for in advance. According to the “Magistrate Judge Survey” [4] only a
few types of case are responsible for most of the e-discovery issues. These types of
cases were: Individual plaintiffs in Employment cases; General Commercial cases,
Patent or Copyright cases, Class Employment actions, and Product Liability cases.
The Federal Judicial Centre provides examples of e-discovery requests [6], preserva-
tion orders [7], and ‘meet and confer’ forms [8]. The Sedona conference [9] has been
influential in the development of approaches to e-discovery. In this paper we examine
a fictitious patent violation case.

 Using Hybrid Search and Query for E-discovery Identification 813

E-discovery is a complex guided search task conducted over a long duration
(perhaps several months) by an expert team consisting of legal and IT experts acting
on behalf of the disclosing party. The Electronic Discovery Reference Model (EDRM)
[10] has been developed to explain the different stages occurring in the e-discovery
process. Figure 1 shows the sequence of stages and indicates that the earlier stages
must process a greater volume of data with each unit of data being unlikely to be
relevant to a request, whereas the later stages process less data but with each data unit
is being more likely to be relevant.

The reference model decomposes the e-discovery process into:

• An information management stage responsible for all preparation prior to an
e-discovery request, including records management and policies.

• An identification stage responsible for providing a broad characterization of the
data relevant to the discovery request.

• A preservation stage responsible for ensuring the ESI identified in the previous
step is protected from inappropriate alteration or destruction.

• A collection step responsible acquiring the identified ESI.
• A processing stage where the volume of data is further reduced and converted

into a suitable format for Review and Analysis.
• A review stage where a disclosing party’s legal team sorts out both the responsive

documents to produce, and the privileged documents to withhold.
• An analysis stage where the collection of materials is evaluated to determine

relevant summary information, such as key topics of the case, important people,
specific vocabulary and jargon, and important individual documents.

• A production stage where the ESI is delivered to the requesting party in both an
appropriate form and by an appropriate delivery mechanism.

• A presentation stage where the ESI produced is displayed before legal audiences
(dispositions, hearings, trials, etc..).

Search technology is used for many stages of the reference model [11]. However
e-discovery is not just an enterprise search application for two reasons. Firstly
e-discovery is not just concerned with the retrieval of documents. The FRCP requires
the identity of every person likely to hold relevant information. Furthermore during
the identification stage (which we address) is concerned with finding not only specific
documents, but also relevant people, projects, organizations and data repositories.
Secondly the emphasis in e-discovery is on returning all potentially responsive data
whereas enterprise search returns a selection of the documents most likely to be rele-
vant to a request. Precision and recall are two measures of information retrieval per-
formance [12] that are commonly used.

• Precision is the fraction of retrieved documents which are relevant.
• Recall is the fraction of the relevant documents which have been retrieved.

Enterprise search is primarily concerned with precision and typically focuses on find-
ing the few documents most likely to answer a user’s question. Whereas e-discovery
is concerned with recall and all responsive ESI must be located.

814 D. Grosvenor and A. Seaborne

1.2 Identification

Identification is responsible for the initial preparation that allows later automated
searches to be performed. It is usual for identification to have a strong manual ele-
ment and it can be completely manual. It starts from the subpoena and interviews of
potential custodians which are performed by the e-discovery team (referred to as
custodian-led identification). Identification begins with the key players because the
data of individuals who played a central role in the dispute are likely to contain the
majority of information relevant to the dispute. An aim of the interviews is a basic
framing of the request such as the relevant time frame, the impacted products and
organizations, the key witnesses and custodians of the relevant data sources needed.
But they also collect information needed for driving later automated searches, such as
keyword lists, special language, jargon, acronyms, and technical terms. It will also
include creating a data map showing the type and location of the disclosing com-
pany’s data sources relevant to the request.

Our aim was to provide automated support for identification. We introduced a hy-
brid of search and query to support a rich model of the identification search task
which not only retrieves documents, but people, organizations and products. However
identification poses two problems to the use of retrieval technologies:

• The scale of the data which is potentially retrievable during identification.
• The requirement for high recall.

During identification any person, product, organization and data-source within the
organization is potentially within its scope. This scope makes the brute force use of
search technology more difficult during identification. An output of the identification
stage is a manageable selection of the enterprise data that is potentially relevant to the
e-discovery request. Only the data selected in identification is subjected to the more
detailed review and analysis during of the later e-discovery stages. The recall obtained
during identification provides an upper bound for the overall recall during e-discovery
and so high recall during identification is very important. As a result identification
casts a broad net in characterizing what constitutes relevant data.

1.3 Related Work

There are many approaches to hybrid search and query to which we provide some
brief pointers. Research has aimed at search-like retrieval to access structured data,
providing keyword search, imprecise queries, top-k selection and ranking [13]. Simi-
larly other research has aimed at more query-like retrieval from unstructured data,
using information extraction to provide: querying of unstructured text [14] and
searches returning entities rather than just documents [15]. This research simply
underlines the value of both models of information retrieval and our approach has
been to make use of both. This pragmatic approach has been followed previously,
such as in the WSQ/DSQ work [16] which combines the query facilities of tradi-
tional databases with existing search engines on the Web. WSQ/DSQ leverages both
results from Web searches to enhance SQL queries over a relational database, and
uses information stored in the database to enhance and explain Web searches. Para-
metric search (such as supported by Lucene [17] and most enterprise search engines)

 Using Hybrid Search and Query for E-discovery Identification 815

provides a similar capability to hybrid search and query by both associating metadata
fields with each document that is indexed, and allowing queries to retrieve their
value and to restrict searches to particular values.

There is closely related work [18][19][20][21] which adds full text search capabil-
ity to SPARQL. They all are concerned with searching the literal strings in RDF data-
sets. The Sesame like-operator [18] simply filters the results using regular expression
matches on the literals in the result sets. Virtuoso [21] provides a system of rules for
selecting which RDF triples are indexed. We use an ARQ mechanism for extending
SPARQL that allows us to access arbitrary indexes and are not restricted to RDF
datasets. In addition ARQ provides support for both full text search of RDF datasets,
and selectively indexing RDF triples using Lucene [17].

There are standard approaches to increasing recall using domain knowledge, such
as query expansion [22] and spreading activation [23]. Both are automatic means of
obtaining more responses to an original query using domain knowledge. This is im-
portant for e-discovery identification. Query expansion operates in the query space
and transforms the query using the domain knowledge and co-occurring terms to find
related or more general search terms and constraints. Spread activation operates in the
result space and uses the initial results as seeds that are used to activate other related
concepts during a propagation phase. We use neither technique, but we use the prod-
uct catalog and the organizational data to identify related people and products which
are used both in additional queries, and to generate further results.

2 Our Approach to Hybrid Search and Query

In this section we describe our approach to accessing structured and unstructured data
using a hybrid of search and query. We give our motivation for using SPARQL ex-
tended with search directives, and explain how the search directives are evaluated
within a hybrid query.

2.1 Motivation

To exploit both structured and unstructured data sources for e-discovery requires
some form of information integration. The semantic web provides useful technology
for such integration. We use RDF as common data model to integrate some diverse
enterprise data including organizational and product information. SPARQL is used as
the common query language. This approach provides a low cost of entry allowing you
to query and navigate RDF instance data without the need for semantic integration.
This is important as e-discovery potentially requires ad hoc integration to bring to-
gether data sources for the particular legal request that would not be used together
during the normal operation of the business. Pragmatically we chose to extend
SPARQL with search directives to retrieve unstructured documents because search is
the predominant means of retrieving unstructured documents.

2.2 SPARQL

SPARQL [2] is a standard query language, protocol and XML result set format as
defined by a W3C working group. It became a W3C recommendation in January

816 D. Grosvenor and A. Seaborne

2008. A SPARQL query consists of a graph pattern and a query form (one of SELECT,
CONSTRUCT, DESCRIBE, ASK). The simplest graph pattern is the basic graph pattern
(BGP), a set of triple patterns that must all be matched. This is an extension point of
the language and we utilize it to add semantic relationships which are not directly
present in the data. In particular, we use other indexing technologies, such as free-text
indexes to relate text query strings with document URIs.

2.3 Property Functions

ARQ [24] is a query engine for Jena [25] that implements SPARQL. ARQ provides
property functions as a way to extending ARQ while remaining within the SPARQL
syntax, and new capabilities can be added by applications for local needs without
needing to modify the ARQ query engine code base. A property function causes some
custom code to be executed instead of the usual matching of a triple pattern against
the graph data. ARQ executes any property functions in a way that respects the posi-
tion of the property function in the containing BGP so which variables are already
bound at that point in the query does not change.

2.4 Free Text Searches

The property function mechanism has been used to provide access to different index-
ing technologies, including Lucene, Autonomy Enterprise Search, Google, and
Wikipedia. ARQ itself does not provide the free text indexing but provides the bridge
between a SPARQL query and the index. The property function implementing the
search directives takes a search string and accepts other parameters for controlling the
search and return values that are RDF terms. This is usually the URI of the document.
In this case the indexing technologies use the body of some arbitrary document as the
indexing text which is not part of the knowledge base itself.

3 Data Sources

We address the problems of scale and recall posed by identification by using some
common structured and semi-structured data sources both to guide the searches to
restrict the scale, and to increase the recall. This use of particular data sources
contrasts with the generic but document centric approach followed by the EDRM
reference model which is suitable for arbitrary e-discovery requests on arbitrary data
sources.

We use some common structured data sources giving the organizational hierarchy
and product catalog:

• The organizational hierarchy provides personal contact information for all people
working within HP together with information about the reporting structure and a
high-level business area names of the organizational structure.

• The product catalog is used by different content management systems within HP
to provide different kinds of product related information ranging from product
specification to collections of unstructured documents about products intended
for use by sales or marketing.

 Using Hybrid Search and Query for E-discovery Identification 817

• The product catalog and organizational hierarchy have common fields allowing
connections between people and products to be made. For example, the products
business area can be used to identify the high-level organization responsible for a
product line.

The semi-structured data sources are important because they provide connections
between the structured and the unstructured data sources. They connect structured
entities to unstructured text which can be used to characterize topics for the search of
other unstructured data sources. For example we can retrieve the technical reports
written by a particular author to provide document text which can be used to charac-
terize topics. Semi-structured data sources also connect unstructured text to structured
entities which can be joined with other structured data sources. So unstructured text in
the semi-structured data source can be searched and the entities of the responsive
documents retrieved. For example we can find documents responsive to a topic and
return the authors of these documents.

• There are many different content management systems within HP which are used
to generate the external HP web site, organize unstructured sales brochures and
support information. They associate the product catalog with many different
forms of structured and unstructured data. They are an important data source for
e-discovery.

• There are several repositories of technical reports for which author, creation date,
abstract structured fields are maintained. Some of these technical reports are
grouped by business area and maintain a record of a report’s reviewers.

• The email repositories are very important semi-structured data sources for most
e-discovery cases. But for an organization the size of HP they are costly to search
without narrowing the search down to particular people and time intervals. They
associate people and time intervals to unstructured text and titles which can be
searched.

• Patent repositories are semi-structured data sources with structured fields linking
people, publications and other patents.

4 An E-discovery Example

In a fictitious case HP is alleged to have infringed a patent on the use of impressive
print technology assigned to Another Photo Print Company. HP is required to disclose
information relevant to: the development and use of this technology in its products;
estimating the likely profit associated with the use of this technology; showing how
sales and marketing made use of the technology. HP is the disclosing party in this e-
discovery case, and Another Photo Print Company is the requesting party who initi-
ated the subpoena. HP has their own research and development program for print
technology and so whilst complying with the e-discovery request HP is also keen to
establish any prior art on the development of such a technology.

The subpoena triggers a duty to disclose and preserve all information relevant to
the patent violation case. A team is assembled which is responsible for satisfying the
legal request and applying legal holds to preserve relevant data. An identification
process is initiated to identify the key witnesses, custodians of data sources, and

818 D. Grosvenor and A. Seaborne

finding the location of data relating to individuals and organizations. The initial
problem is to get a better characterization of the topic, the people, organizations and
products relevant to the case.

The patent alleged to have been infringed will be cited in the subpoena together
with some related patents and cited publications. These cited documents can be used
to provide an initial characterization of the topics relevant to the case (e.g. as sets of
keywords and phrases). This obtains an initial characterization of the technical areas
related to the impressive print technology. Similarly the authors of the cited docu-
ments are identified and provide some an initial set of people to seed our searches.

Our approach is to use the structured and semi-structured data sources to expand
and corroborate the people, products and topics related to the case. We show exam-
ples of simple tactics for deriving a set of entities from other entities. These simple
tactics can be composed with others to obtain more complex tactics. There is a need
for an e-discovery environment to: manage the entities retrieved by such tactics; sup-
port the composition of complex tactics; and record the evidence of how they relate to
the legal case.

4.1 Finding Relevant Products

The alleged patent infringement is concerned with printing, but the subpoena did not
identify the products that may have used the impressive print technology. The
e-discovery process must identify these products because the potential value attrib-
uted to the impressive print technology needs to be assessed. The subpoena did cite
some patents and publications which can be used to characterize some relevant topics.
So we use a tactic to find products using these initial topics. The tactic searches for
web pages on the HP site for product names and numbers co-occurring with terms
related to one of these topics.

This tactic uses the Google search engine to perform a search of the HP public web
sites dedicated to product sales and support. Alternatively we could perform a search
of the internal content management system which generates the content for this web
site. Throughout this paper we will use both parameterized queries to represent such
tactics, and the convention that the variable for the parameter is prefixed with a dollar
sign and those prefixed with a question mark are bound by the query evaluation.

select ?product ?doc{
 ?product product_catalog:product_name ?name.
 ?product product_catalog:product_number ?number .
 ?query ext:printf(

“site:http://h10010.www1.hp.com %s %s %s”
$topic ?name ?number).

 ?doc ext:GoogleSearch(?query $n)
 }

The example uses a property function performing printf function to assemble a
query string composed from the topic string parameter together with the product
names and product numbers which are retrieved from the product catalog during
evaluation of the query. The GoogleSearch property function calling the Google

 Using Hybrid Search and Query for E-discovery Identification 819

search engine takes a query string for the search and a parameter controlling the
maximum number of results to be returned. The Google site query requires all terms
to be present for a web page to be returned. So not all searches will return any results
and so the search will select products for which there are documents responsive to the
topic string. This tactic provides a means of obtaining products related to the topic.

Documents matching the GoogleSearch are returned in the (ranked) order that
Google returns them. But this is not used to rank the products returned as this would
require merging the relevance of scores from distinct searches. Although in this ex-
ample it would be plausible to do so because each search shares the same terms con-
tained in the topic. It also has some different terms because of the product name and
product number. For example, we might want to return the products mentioned in
documents that are most responsive to the topic search. But we might also take into
account the number and relevance of the documents which are matched.

The ranking problem is better illustrated with a similar tactic which retrieves the
products mentioned in documents created by a given person in the technical reports
database.

select ?product ?doc ?score{
 ?product product_catalog:product_name ?name.
 ?product product_catalog:product_number ?number .
 ?query ext:printf(

“%s %s”
?name ?number).

 (?doc ?score)
ext:techreportsTextSearch(?query $n $rel).

 ?doc techreports:author $author .
 }

This tactic takes three arguments: the author, the maximum number of results, and the
minimum relevance of a document. It uses the product catalog to generate query
strings using just the product name and number. A search directive uses the generated
query string to search the technical reports database. The responsive documents re-
trieved by the search directive are only returned by the tactic when they were created
by the given author. The documents retrieved by the search directive are returned in
ranked order for each query string. But for different products the query string is dif-
ferent and so it is not meaningful to use the relevance score of a document to rank the
products. We do not address the ranking problem in this tactic, but return additional
information with the product result that can be used to discriminate the returned prod-
ucts. We return the document URI and its relevance score. This would then allow
someone to discriminate the products returned by arbitrary means, such as the number
of responsive documents and their relevance information, or use other attributes of the
documents such as date and topic, or whether other products were mentioned in the
same documents. We did not address the ranking issue because discrimination of
the results seemed sufficient for identification where we were more concerned with
recall than obtaining the top-k most relevant results. However the example does illus-
trate the general problem of ranking the results of such hybrid search and queries.

820 D. Grosvenor and A. Seaborne

4.2 Expanding the Set of Products

Once we have identified an initial set of products we can find related products using
both the product catalog and the organizational hierarchy.

The product catalog indicates products that are related through being part of series
of products addressing a market. For example there will be a printer targeting the
consumer market and others targeting the small business office. Over time there will
be a series of products addressing this market. Even within these markets products
will address different price points and have different specifications. So we can expand
from an initial seed product to retrieve all the other printers that are part of the same
series or which address the same market.

The product catalog also gives information about how the product is made and
where it is supported. For example, every product has a product line which is the
responsibility of some organization. This allows us to group products using the or-
ganizational structure as well as the market structure. So we can expand from an
initial product seed to retrieve all the products that are produced by the same product
line and organization. Furthermore we can use the organizational hierarchy for
further expansion. For example in the tactic below a product line is followed to its
organization which in turn is followed to the business unit, then the direction along
the hierarchy is reversed to find all the product lines and products produced by this
business unit.

select ?product {
 $seed_product product_catalog:product_line ?seed_pl.
 ?pl_org hp_ba_hierarchy:product_line ?seed_pl.
 ?pl_org hp_ba_hierarchy:business_unit ?unit.
 ?org hp_ba_hierarchy:partof ?unit.
 ?org hp_ba_hierarchy:product_line ?pl.
 ?product product_catalog:product_line ?pl }

4.3 Finding Relevant People

The subpoena provides an initial characterization of the topics related to the impres-
sive print technology. We now examine a tactic for using a topic to obtain a set of
relevant people using a semi-structured data source. We use the HP Labs technical
reports repository which we have indexed using both the Autonomy Enterprise search
engine and Lucene. Semi-structured data sources, such as the technical reports reposi-
tory and the content management systems, are very important because they allow the
structured and unstructured data sources to be used together.

select ?person ?doc ?score {
 (?doc ?score) ext:TechReportsTextSearch($topic
 $n $relevance).
 ?doc TechReports:author ?person
}

The text search property function used for searching the technical reports reposi-

tory again takes three arguments (the search string, the maximum number of results
and the minimum relevance score). The search returns the document URI and its

 Using Hybrid Search and Query for E-discovery Identification 821

relevance score which are both returned by the SPARQL select query because they
provides the evidence for the relevance of the person to the topic. The results of this
query will be in the ranked order returned by the single text search which gives a
meaningful relevance score and ordering because a single search was used.

For example, this tactic for finding relevant people to a topic returned the groups of
(fictious) authors of documents relevant to one of the seed topics.

• David Shaken, Neil Arrested, Ant Fame, Iris Retinex
• Daniel Lyon, Ron Glass, Gary Circle
• Neil Arrested, David Shaken, Ace Beach
• Daniel Lyon, Ron Glass
• Ron Glass
• David Shaken, Neil Arrested, Ant Fame, Iris Retinex
• Matt Goat, Kelvin Chemistry
• Peter Wilder
• Ernest House

Two of the authors (Ron Glass and Peter Wilder) were also authors of cited papers
and/or related patents cited in the subpoena. This provides further corroboration of the
relevance of these people to the case. The relevance of an entity to the case is cor-
roborated when the same entities are returned by distinct search paths. Several people
who were authors of these cited papers or patents did not show up in the search be-
cause they did not write any technical reports, but they did write lots of patents and so
a similar query on a patents database would also find patents related to the topic.

So we can derive a larger set of people who are potentially related to some of the
seed topics without using any of the people seeds given by the subpoena. Not all of
these are as good as each other, but the emphasis in e-discovery is on performing a
search with high recall and will not be discarded at this stage. Some of these seeds
were directly derived from the patent and some were corroborated by the searches. i.e.
when the same people were derived using different search strategies.

4.4 Expanding the Set of People

There are several tactics with which we can expand the set of people considered rele-
vant to the case using the structured and unstructured data sources. These are simple
tactics that take a person and retrieves a larger set of people using only the structured
data sources and not used the hybrid search capability. However these simple tactics
can be combined with some other tactics deriving a set of people relevant to a topic
which can be used to corroborate or rank the expanded set of people. For example, a
simple tactic uses the organizational hierarchy to expand the potential set of people.
This exploits the heuristic that people in the same group have similar skills or work on
similar products (which is not always true but which is still useful during identifica-
tion), and so would be likely to possess information relevant to the case.

select ?person {
 ?manager hp_org:manages $seed_person.
 ?manager hp_org:manages ?person
}

822 D. Grosvenor and A. Seaborne

Similarly other tactics use the semi-structured data sources. A simple tactic ex-
pands the set of people by retrieving the co-inventors of the patents written by the
seed inventor.

select ?person {
 ?patent Patents:inventor $inventor.
 ?patent Patents:inventor ?person
}

A similar tactic uses the technical report repository to retrieve the co-authors of

documents patents written by a given person.
Such tactics can be combined with other tactics which derive people relevant to a

topic to obtain stricter queries. For example, the following tactic makes the expansion
to all organizational peers of the seed person conditional on the manager having writ-
ten a relevant patent.

select ?person ?doc ?score {
 ?manager hp_org:manages $seed_person.
 ?manager hp_org:manages ?person.
 (?patent ?score) ext:PatentTextSearch($topic
 $n $relevance).
 ?report Patents:inventor ?manager
}

4.5 Expanding a Topic to Generate Related Topics

The technical reports repository can also be used to derive other related topics. The
repository has title and abstract fields for each document that are good sources of the
keywords used to characterize a topic. For example the following tactic retrieves the
titles of relevant technical reports to create an expanded set of topics.

select ?title {
 ?doc ext:TechReportsTextSearch($topic,
 $n,$relevance).
 ?doc TechReports:title ?title
}

We obtained an expanded set of topics (fictious) with one of the initial seed topics.

• “Ink location for Color Halftones”
• “Geometric Screening”
• “Fundamental Characteristics of Halftone Textures”
• “Curved dithering”
• “Multi-pass Error-Diffusion for Color Halftones”
• “Lossless Compression of half-toned Images”
• “Anti-aliasing Methods for Computer Graphics Hardware”
• “Inverse Half-toning for Error Diffusion”
• “n-Simplex gamut mapping”

 Using Hybrid Search and Query for E-discovery Identification 823

Some of these topics are inappropriate. Instead of the topics being concerned with
printing the topics are concerned with computer graphics and image compression.
Some topics whilst concerned with printing are concerned with color gamut mapping
and are not relevant to this particular request. Such related topics might still be useful
indicators of people with related skills and interests.

4.6 Corroboration

We can corroborate the current set of relevant entities or concepts whenever an exist-
ing entity or concept can be retrieved independently by one of these tactics. This was
encountered earlier in this paper, when we found that “Ron Glass” was also: an inven-
tor of a related patent, a publisher of a cited paper, and the author of a technical report
responsive to one of the seed topics. We can strengthen the constraints on some of our
tactics by introducing a requirement for such corroboration.

Similarly if we suspect two different entities or concepts have a relevant relation,
we can corroborate this relation by deriving some other common entities starting from
either. For example we can corroborate the relation between a topic and product by
both using a tactic to find people related to topic, and using another tactic to find
people within organizations responsible for this product. The directness of the rela-
tionship of people to the product will corroborate the relationship between the topic
and the product.

Unfortunately if we perform a topic search of the technical reports repository we
find that every author of a responsive document will occur in Labs which is not re-
sponsible for any product line. Either we need a different repository, or we need to
use a weaker relation between people and products. For a weaker relation we use the
existence of an email message relevant to a topic between the person from labs and
someone in the business.

The tactic below takes a topic and a product as arguments, plus some controls for
the two searches that are used. One performs a search of the technical reports, but the
other performs a parameteric search capability on the email repository which restricts
the search to emails between two people. The tactic returns the evidence that the top-
ics are related to the product. This evidence is the document and email that are rele-
vant to the topic, and the people who communicated about the topic – one of whom is
in an organization responsible for the product.

select ?personA ?personB ?doc ?dscore ?email ?escore{
(?doc ?dscore) ext:techreportsTextSearch($topic,$n1,
 $relevance1).
 ?doc techreports:author ?personA.
 Sproduct productmaster:product_line ?product_line.
 ?product_line hp_org:is_in_org ?org.
 ?personB hp_org:is_in_org ?org.
 (?email ?escore) email:EmailTextSearch(?personA,?personB,
 $topic,$n2, $relevance2).
}

This evidence could then be analyzed to provide a more sophisticated scoring of the
quality of the corroborating link between the topic and the product. We need some

824 D. Grosvenor and A. Seaborne

means of scoring the corroboration that would take into account either the quality of
the relevance of the technical report or the email message to the topic, or the number
of relevant communications between the two people. At the moment we just return
the evidence.

5 Conclusions

We implemented a hybrid search and query by extending SPARQL using property
functions which returned ranked search results. This gives a rich retrieval model
allowing text search and query of structured and semi-structured data to be used to-
gether. This was used to exploit product and organizational structure to increase recall
by finding potentially related people and products. Furthermore problems with scale
are avoided because the structured data sources are used to guide the search and so
avoid searching everything in the enterprise.

Unfortunately both product and organizational data sources are constantly chang-
ing. For our approach to be most effective there is a need to find the organization and
product structure for the particular periods of time relevant to the e-discovery request.
This need not be information that is kept during the normal operation of a business.
For example, it is common to keep only the current organizational information.

E-discovery legislation only requires an enterprise to disclose information that is
held by the enterprise for the normal operation of its business. It does not require
enterprises to store additional information. In fact, it is for this reason that proactive
records management systems are proposed for e-discovery, as they enforce policies
which stipulate that only data with a business purpose should be kept. However
maintaining historical organizational and product information to help e-discovery is
optional because this is not part of the normal operation of a business. Interestingly
the product and organizational structure themselves may not be relevant ESI. They are
merely a means of finding relevant ESI and perhaps of understanding its significance.

There are further opportunities for the application of semantic technologies in e-
discovery:

• Litigation readiness – where semantic technologies can be used to represent
knowledge which helps the finding of ESI without keeping additional ESI. In our
investigation we assumed that structured information about people and products
was available, which was not in itself ESI but which could help to find ESI which
already exists. An important business issue is deciding what information should
be kept.

• An information map of the data sources available in the company.
• Representing the semantics of data selected during e-discovery.
• Describing the provenance of data through the different stages of e-discovery.

Acknowledgements

Brian McBride, Dave Reynolds, Mark Butler, and Ian Dickinson were instrumental in
developing the approach to e-discovery followed in this paper.

 Using Hybrid Search and Query for E-discovery Identification 825

References

1. Rothstein, B.J., Hedges, R.J., Wiggins, E.C.: Managing Discovery of Electronic Informa-
tion: A Pocket Guide for Judges. Federal Judicial Center (2007),
http://www.fjc.gov/public/pdf.nsf/lookup/
eldscpkt.pdf/file/eldscpkt.pdf

2. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C
Recommendation (2008)

3. Federal Rules for Civil Procedure (2008),
http://www.uscourts.gov/rules/CV2008.pdf

4. Francis, J.C., Schenkier, S.I.: Surviving E-discovery. In: Magistrates Workshop (2006),
http://www.fjc.gov/public/pdf.nsf/lookup/MagJ0608.ppt/
$file/MagJ0608.ppt

5. TREC Legal Track, http://trec-legal.umiacs.umd.edu/
6. Example Electronic Discovery Request,

http://www.fjc.gov/public/pdf.nsf/lookup/ElecDi13.pdf/
$file/ElecDi13.pdf

7. Example Preservation Order,
http://www.fjc.gov/public/pdf.nsf/lookup/ElecDi21.pdf/
$file/ElecDi21.pdf

8. Example Meet and Confer Form,
http://www.fjc.gov/public/pdf.nsf/lookup/ElecDi22.rtf/
$file/ElecDi22.rtf

9. The Sedona Conference, http://www.thesedonaconference.org
10. Electronic Discovery Reference Model, http://www.edrm.net
11. EDRM Search Guide. EDRM (2009),

http://www.edrm.net/files/EDRM-Search-Guide%20v1.14.pdf
12. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, ACM

Press (1999)
13. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR Technologies: What

is the Sound of One Hand Clapping? In: Proceedings of the 2005 CIDR Conference (2005)
14. Cafarella, M.J., Re, C., Suiciu, D., Etzioni, O., Banko, M.: Structured Querying of Web

Text. In: 3rd Biennial Conference on Innovative Data Systems Research (CIDR), Asilo-
mar, California, USA (2007)

15. Cheng, T., Yan, X., Chang, K.C.: Supporting Entity Search: A Large-Scale Prototype
Search Engine. In: ACM SIGMOD 2007, Beijing, China (2007)

16. Goldman, R., Widom, J.: WSQ/DSQ: A Practical Approach for Combined Querying of
Databases and the Web. In: ACM SIGMOD International Conference on Management of
Data (2000), http://www-db.stanford.edu/~royg/wsqdsq.pdf

17. Hatcher, E., Gospodnetić, O., McCandless, M.: Lucene in Action. Manning Publications
(2004) ISBN 1932394281

18. Sesame - the like operator,
http://www.openrdf.org/doc/sesame/users/
ch06.html#section-like

19. Virtuoso - bif:contains full text search,
http://docs.openlinksw.com/virtuoso/
rdfsparqlrulefulltext.html

826 D. Grosvenor and A. Seaborne

20. Glitter - textlike and textmatch operators,
http://www.openanzo.org/projects/openanzo/wiki/
SPARQLExtensions

21. Minack, E., Sauermann, L., Grimnes, G., Fluit, C., Broekstra, J.: The Sesame LuceneSail:
RDF Queries with Full-text Search. NEPOMUK Technical Report (2008),
http://www.dfki.uni-kl.de/~sauermann/papers/Minack+2008.pdf

22. Andreou, A.: Ontologies and Query Expansion. Master of Science, School of Informatics,
University of Edinburgh (2005),
http://www.inf.ed.ac.uk/publications/thesis/
online/IM050335.pdf

23. Crestani, F.: Application of Spreading Activation Techniques in Information Retrieval. Ar-
tificial Intelligence Review 11(6), 453–482 (1997)

24. ARQ home page, http://jena.sf.net/ARQ
25. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:

Implementing the Semantic Web Recommendations. In: Proceedings of the 13th Interna-
tional World Wide Web Conference (2004)

Bridging the Gap between Linked Data
and the Semantic Desktop

Tudor Groza, Laura Drăgan, Siegfried Handschuh, and Stefan Decker

DERI, National University of Ireland, Galway
IDA Business Park, Lower Dangan, Galway, Ireland

{tudor.groza,laura.dragan,siegfried.handschuh,stefan.decker}@deri.org
http://www.deri.ie/

Abstract. The exponential growth of the World Wide Web in the last
decade brought an explosion in the information space, which has impor-
tant consequences also in the area of scientific research. Finding relevant
work in a particular field and exploring the links between publications
is currently a cumbersome task. Similarly, on the desktop, managing
the publications acquired over time can represent a real challenge. Ex-
tracting semantic metadata, exploring the linked data cloud and using
the semantic desktop for managing personal information represent, in
part, solutions for different aspects of the above mentioned issues. In
this paper, we propose an innovative approach for bridging these three
directions with the overall goal of alleviating the information overload
problem burdening early stage researchers. Our application combines
harmoniously document engineering-oriented automatic metadata ex-
traction with information expansion and visualization based on linked
data, while the resulting documents can be seamlessly integrated into
the semantic desktop.

1 Introduction

The World Wide Web represents an essential factor in the dissemination of scien-
tific work in many fields. At the same time, its exponential growth is reflected in
the substantial increase of the amount of scientific research being published. As
an example, in the biomedical domain, the well-known MedLine 1 now hosts over
18 million articles, having a growth rate of 0.5 million articles / year, which rep-
resents around 1300 articles / day [1]. In addition, we can also mention the lack
of uniformity and integration of access to information. Each event has its own
online publishing means, and there is no central hub for such information, even
within communities in the same domain. Consequently, this makes the process
of finding and linking relevant work in a particular field a cumbersome task.

On the desktop, we can find a somewhat similar problem, though on a smaller
scale. A typical researcher acquires (and stores) an significant number of publi-
cations over time. Generally, the files representing these publications have a non-
intuitive name (often the same cryptic name assigned by the system publishing

1 http://medline.cos.com/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 827–842, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

828 T. Groza et al.

them), and may, in the best case scenario, be structured in intuitive folder hier-
archies. Thus, finding a particular publication or links between the existing ones
represents quite a challenge, even with the help of tools like Google Desktop2.

Semantic Web technologies have been proved to help at alleviating, at least par-
tially, the above mentioned issues. And at the foundation of the Semantic Web we
find semantic metadata. Used in particular contexts, semantic metadata enables
a more fertile search experience, complementing full text search with search based
on different facets (e.g., one can search for a publication by a specific author and
with some specific keywords in its title). In addition, subject to its richness, it can
also leverage links between publications, e.g. citation networks.

Looking at the status of semantic metadata for scientific publications in the
two directions, i.e. the Web and the Desktop, we observe the following. With the
emergence of the Linked Open Data (LOD)3 initiative, an increasing number of
data sets were published as linked metadata. Regarding scientific publications,
efforts like the Semantic Web Dog Food Server started by Möller et al. [2] rep-
resent pioneering examples. The repository they initiated acts as a linked data
hub, for metadata extracted from different sources, such as the International or
European Semantic Web conferences, and now hosts metadata describing over
1000 publications and over 2800 people. The manual creation of metadata is their
main drawback, as well as of the other similar approaches. Within the second
direction, i.e. on the desktop, different Semantic Desktop efforts improve the sit-
uation, by extracting shallow metadata, either file-related (e.g. creator, date of
creation), or even publication-related, such as title or authors. In conclusion, we
currently have two directions targeting similar goals and having the same foun-
dation: (i) the <LOD — semantic metadata> bridge, linking publications on the
web, and (ii) the<Semantic Desktop — semantic metadata> bridge, linking pub-
lications and personal information, on the desktop.

In this paper, we propose a solution for bridging the two directions, with the
goal of enabling a more meaningful searching and linking experience on the desk-
top, having the linked data cloud as the primary source. Our method consists of a
three step process and starts from a publication with no metadata, each step car-
ried out incrementally to enrich the semantic metadata describing the publication.
The three steps are: (i) extraction – we extract automatically metadata from the
publication based on a document-engineering oriented approach; (ii) expansion –
we use the extracted raw metadata to search the linked data cloud, the result being
a set of clean and linked metadata; and (iii) integration – the metadata is further
enriched by embedding it within the semantic desktop environment, where it is au-
tomatically linked with the already existing personal metadata. The main results
of our process are: a simple and straightforwardway of finding related publications
based on the metadata extracted and linked automatically, and the opportunity
of weaving the linked publication data on the desktop, by means of usual desktop
applications (e.g. file and Web browser).

2 http://desktop.google.com/
3 http://linkeddata.org/

Bridging the Gap between Linked Data and the Semantic Desktop 829

The remainder of the paper is structured as follows: Sect. 2 introduces the sce-
nario used for exemplifying our approach, while in Sect. 3 we detail the
technical elements of each of the three steps in the process. Sect. 4 describes the
preliminary evaluation we have performed, and before concluding in Sect. 6, we
have a look at related efforts in Sect. 5.

2 Scenario

To illustrate the problem mentioned in the previous section in a particular context,
in the following, we will consider a typical scenario for an early stage researcher (or
any kind of researcher) that steps into a new field. The amount of existing publi-
cations, and their current growth rate, makes the task of getting familiarized with
the relevant literature in a specific domain highly challenging. From an abstract
perspective, the familiarization process consists of several stages, as follows: (i) the
researcher starts from a publication provided by the supervisor; (ii) she reads the
publication, thus grasping its claims and associated argumentation; (iii) reaching
a decision point, she either decides to look for another publication, or she follows
backwards the chain of references, possibly including also publications by the same
authors. This last step usually involves accessing a search engine (or a publication
repository) and typing the names of the authors, or the title of the publication, to
be able to retrieve similar results.

Each of the above activities has an associated corresponding time component:
(i) the time assigned to reading the entire publication (or most of it) — needed to
decide whether the publication is of interest or not, (ii) the time associated with
finding appropriate links and references between publications,4 and (iii) the time
associated with searching additional publications, based on different metadata el-
ements, and (manually) filtering the search results. This time increases substan-
tially when an individual is interested in all the publications of a particular author.

Finally, analyzing the pairs <activity, time component> from the metadata
perspective, and what it can do to improve the overall process, we can conclude
that:

– searching and linking related publications as mentioned above, entails the
(manual) extraction and use of shallowmetadata. Thus, performing automatic
extraction of shallow metadata and using it within the linked data cloud, will
significantly reduce the time component associated with this activity.

– reading the publication to a large extent corresponds to mining for the dis-
course knowledge items, i.e. for the rhetorical and argumentation elements
of the publication, representing its deep metadata. Consequently, extracting
automatically such discourse knowledge items from a publication, will pro-
vide the user with the opportunity of having a quick glance over the publica-
tion’s main claims and arguments and thus decrease the time spent on decid-
ing whether the publication is relevant or not.

4 Following all the references of a publication is obviously not a feasible option. Thus,
the decision is usually done based on the citation contexts mentioning the references
in the originating publication.

830 T. Groza et al.

Transposing these elements into engineering goals led us to a three step process,
detailed in the following section: extraction – automatic extraction of shallow and
deep metadata; expansion – using the extracted metadata within the linked data
cloud for cleaning and enriching purposes; integration – embedding the resulted
linked metadata within the personaldesktop to ensure a smooth search and browse
experience, by using the ordinary desktop applications.

As a side remark to the proposed scenario, an interesting parallel can be made
with the music domain. Similarly to publications, music items (e.g. music files,
tracks, etc) are also acquired and stored by people on their personal desktops, in
numbers usually increasing with time. And as well as publications, these can em-
bed (depending on the format) shallow metadata describing them, such as, band,
song title, album or genre. Thus, conceptually, the extraction — expansion — in-
tegration process we propose can be applied also in this domain. In practice, there
already exist tools that deal with parts of this process. For example, on the ex-
traction side, there are tools that help users to create or extract ID3 tags embed-
ded into MP3 files or on the expansion side, there exist tools, such as Picard,5

that clean the metadata based on specialized music metadata repositories (e.g.
MusicBrainz). As we shall see in the next section, the result of our work is quite
similar to these, but applied on scientific publications.

3 Implementation

One of our main goals was reducing as much as possible the overhead imposed
by collateral activities that need to be performed while researching a new field,
in parallel with the actual reading of publications. And at the same time, we tar-
geted an increase of the user’s reward, by ensuring a long-term effect of some of the
achieved results. An overall figure of the three step process we propose, is depicted
in Fig. 1. The first step, extraction, has as input a publication with no metadata
and it outputs two types of metadata:

(i) shallow metadata, i.e. title, authors, abstract, and (ii) deep metadata, i.e.
discourse knowledge items like claims, positions or arguments. It represents the
only step that appears to have no direct reward (or value) for the user (except for

Fig. 1. Incremental metadata enrichment process

5 http://musicbrainz.org/doc/PicardTagger

Bridging the Gap between Linked Data and the Semantic Desktop 831

the discourse knowledge items). Nevertheless, it is compulsory in order to start
the process, each subsequent step building on its results, and thus enabling an
incremental approach to the enrichment of the semantic metadata describing the
publication. Since the extraction process is based on a hybrid ’document engineer-
ing – computational linguistic’ approach, the resulting metadata may contain er-
rors. These errors can be corrected in the expansion step, in addition to enriching
the basic set of metadata with linked data, coming from different sources. As we
shall see, we opted for a clear distinction of the semantics of the owl:sameAs and
rdfs:seeAlso relations. Finally, the integration step embeds the linked metadata
into the semantic desktop environment, thus connecting it deeper within the per-
sonal information space, and fostering long-term effects of the overall process.

In terms of implementation, the first two steps are developed as part of a stand-
alone application6. The extraction currently targets publications encoded as PDF
documents and preferably using the ACM and LNCS styles, while the expansion
is achieved via the Semantic Web Dog Food Server and the Faceted DBLP7 linked
data repositories. The integration of the metadata is done using the services pro-
vided by the KDE NEPOMUK Server,8 while the searching and browsing expe-
rience is enabled via the usual KDE Desktop applications, such as Dolphin (the
equivalent of Windows Explorer) and Konqueror (a KDE Web browser). The ap-
plication we have developed is highly customizable, each step being represented
by a module. Therefore, adding more functionality is equivalent to implementing
additional modules, for example, an extraction module for MS Word documents,
or an expansion module for DBpedia.

To have a better understanding of the result of each step, we will use as a run-
ning example throughout the following sections, the metadata extracted from a
publication entitled Recipes for Semantic Web Dog Food – The ESWC and ISWC
Metadata Projects.9 More precisely, we will assume that a user would start her
quest from this publication, and show the incremental effect of using our applica-
tion on the created metadata.

3.1 Extraction

The extraction of shallow metadata was developed as a set of algorithms that fol-
low a low-level document engineering approach, by combining mining and analysis
of the publication’s text based on its formatting style and font information. The
algorithms currently work only on PDF documents, with a preference for the ones
formatted with the LNCS and ACM styles. Each algorithm in the set deals with
one aspect of the shallow metadata. Thus, there are individual algorithms for ex-
tracting the title, authors, references and the linear structure.

A complete description of the algorithms can be found in [3]. Nevertheless, to
provide the basic idea of how they work, we will describe shortly the authors ex-
traction algorithm. There are four main processing steps: (i) We first merge the
6 Demo at http://sclippy.semanticauthoring.org/movie/sclippy.htm
7 http://dblp.l3s.de/
8 http://nepomuk.kde.org/
9 http://iswc2007.semanticweb.org/papers/795.eps

832 T. Groza et al.

Fig. 2. Authors extraction algorithm example

consecutive text chunks on the first page that have the same font information and
are on the same line (i.e. the Y coordinate is the same); (ii) then, we select the
text chunks between the title and the abstract and consider them author candi-
dates; (iii) the next step is the linearization of the author candidates based on the
variations of the Y axis; (iv) finally, we split the author candidates based on the
variations of the X axis.

Fig. 2 depicts an example of a publication that has the authors structured on
several columns. The figure shows the way in which the authors’ columns con-
taining the names and affiliations are linearized, based on the variation of the Y
coordinate. The arrows in the figure show the exact linearization order. The vari-
ations on the X axis can be represented in a similar manner.

The extraction of deep metadata, i.e. discourse knowledge items (claims,
positions, arguments), was performed based on a completely different approach.
Having as foundational background the Rhetorical Structure of Text Theory
(RST) [4], we have developed a linguistic parser that mines the presence of rhetor-
ical relations within the publication’s content. In order to automatically identify
text spans and the rhetorical relations that hold among them, we relied on the
discourse function of cue phrases, i.e. words such as however, although and but.
An exploratory study of such cue phrases provided us with an empirical ground-
ing for the development of an extraction algorithm. The next phase consisted of
an experiment for determining the initial probabilities for text spans to represent
knowledge items, based on the participation in a rhetorical relation of a certain
type and its block placement in the publication (i.e. abstract, introduction, con-
clusion or related work). The parser was implemented as a GATE10 plugin. De-
tailing the actual extraction mechanism is out of the scope of this paper, as our
focus is on the incremental process that realizes the bridging the Linked Web of
Data and the Semantic Desktop. Nevertheless, it is worth mentioning that we do
extract also deep metadata, as it brings added value to the user, and as we shall
see later in this section, enables meaningful queries in the bigger context of the
full set of extracted metadata.

As mentioned, the first two steps of our process are implemented as a stand-
alone application. The left side of Fig. 3 depicts the main interface of this

10 http://gate.ac.uk/

Bridging the Gap between Linked Data and the Semantic Desktop 833

Fig. 3. Screenshot of the application’s interface: [A] – The main window; [B] – Co-
authors graph visualization

application, while with <1> we indicated the place where the result of the ex-
traction is displayed. At the same time, the listing below summarizes elements
of the metadata extracted after this first step, i.e. title, authors, the text of the
abstract, and a list of claims (i.e. the most important contributions statements
of the publication). For shaping the metadata, we used a mixture of ontologies
and vocabularies, such as SALT (Semantically Annotated LATEX) framework [5],
DublinCore and FOAF. One particular element that should be noted here, is that
this metadata may contain errors. As it can be seen in the listing below the name
of the first author is incorrect: Mo“ller instead of Möller. The user has the chance
to correct such mistakes manually, or advance to the next step, where the correc-
tion can be done automatically — if the publication under scrutiny is found in the
linked data repository. In any case, already at this point, the user can decide to
jump to the integration step, simply just export this metadata as an individual
file, or embed it directly into the originating PDF. From the scenario’s point-of-
view, the researcher already gains value, as she can quickly grasp the main claims
of the publication, by inspecting the extracted deep metadata.

<pub> a sdo:Publication . <knud> foaf:name ’’Knud Mo"ller’’ .

<pub> dc:title ’’Recipes for Semantic Web ...’’ . <abs> a sro:Abstract .

<pub> dc:creator knud . <abs> konnex:hasText ’’Semantic Web ...’’ .

<pub> dc:creator tom . <pub> dcterms:abstract abs .

<pub> dc:creator siegfried . <claim> a sro:Claim .

... <claim> konnex:hasText ’’This paper ...’’ .

<knud> a foaf:Person . <pub> konnex:hasClaim claim .

3.2 Expansion

The expansion step takes the metadata extracted previously and, under the user’s
guidance, corrects existing errors and enriches it, by using Linked Data reposito-
ries. We have currently implemented expansion modules for the Semantic Web

834 T. Groza et al.

Dog Food Sever and Faceted DBLP. The actual expansion is done based on the
extracted title and authors. On demand, these are individually used for querying
the SPARQL endpoints of the Linked Data repositories. As a prerequisite step,
both the title and the authors (one-by-one) are cleaned of any non-letter char-
acters, and transformed into regular expressions. The title is also chunked into
multiple variations based on the detected nouns, while each author name is chun-
ked based on the individual parts of the full name, discarding the parts that are
just one letter long. Consequently, each element will have an associated array of
sub-strings used for querying.

In the case of the title, the query result will be a list of resources that may con-
tain duplicates, and among which there might also be the publication given as
input. In order to detect this particular publication, we perform a shallow entity
identification. First, to mask possibly existing discrepancies in the title, we use
string similarity measures. An empirical analysis led us to using a combination
of the Monge-Elkan and Soundex algorithms, with fixed thresholds. The first one
analyzes fine-grained sub-string details, while the second looks at coarse-grained
phonetic aspects. The titles that pass the imposed thresholds (0.75 and 0.9) ad-
vance to the next step. Secondly, we consider the initially extracted authors and
compare them with the ones associated with the publications that pass over the
above mentioned thresholds. The comparison is done using the same similarity
measures, but with different thresholds (0.85 and 0.95). The publications satis-
fying both conditions have their models retrieved and presented to the user as
candidates. A similar approach is also followed on the authors’ side.

The outcome of the expansion features three elements: (i) a list of candidates,
to be used for cleaning and linking the initially extracted metadata (with their
linked model and authors’ models), (ii) a list of similar publications, mainly the
ones that did not satisfy the two conditions of the shallow entity resolution (again
with their linked model and authors’ models), and (iii) for each author of the given
publication found, the full linked model and the complete list of publications ex-
isting in the respective repository. From the scenario perspective, this outcome
provides the researcher with the chance of analyzing both publications that might
have similar approaches and inspect all the publications of a particular author.

At this stage, there are three options that can be followed. The first option is
to use the best retrieved candidate to correct and link the initial metadata. Both
the publication and the authors will inherit the discovered owl:sameAs links, that
will later provide the opportunity to browse different instances of the same entity
in different environments. The second option is to link other publications that she
considers relevant to the one under scrutiny. While at the interface level this is
done based on the user’s selection (see pointer 2 in Fig. 3), at the model level
we use the rdfs:seeAlso relation. We thus make a clear distinction in semantics
between owl:sameAs and rdfs:seeAlso. The former represents a strong link be-
tween different representations of the same entity, while the latter acts as a weak
informative link, that will later help the user in re-discovering similarities between
several publications. The third and last option is specific for authors, and allows
the user to navigate through the co-authors networks of a particular author (part

Bridging the Gap between Linked Data and the Semantic Desktop 835

B of Fig. 3). An interesting remark here, is that the visualization we have devel-
oped can act as a uniform graph visualization tool for any co-author networks
emerging from a linked dataset.

Returning to our running example, the output of this step is an added set of
metadata, presented briefly in the listing below. Thus, in addition to the already
existing metadata, we can now find the above mentioned owl:sameAs and
rdfs:seeAlso relations, and the incorrectly extracted name Mo“ller, now cor-
rected to Moeller, based on the foaf:name found in the linked data.

<knud> foaf:name ’’Knud Moeller’’ .

<knud> owl:sameAs http://data.semanticweb.org/person/knud-moeller .

<knud> owl:sameAs http://dblp.l3s.de/d2r/resource/authors/Knud_M\%C3\%B6ller .

...

<pub> owl:sameAs http://data.semanticweb.org/conference/iswc-aswc/2007/.../papers/795 .

<pub> owl:sameAs http://dblp.l3s.de/d2r/resource/publications/conf/semweb/MollerHHD07 .

<pub> rdfs:seeAlso <pub2> .

...

<pub2> a sdo:Publication .

<pub2> dc:title ’’DBPedia: A Nucleus for a Web of Open Data ... ’’ .

<pub2> dc:creator <richard> .

<pub2> dc:creator <georgi> .

<pub2> owl:sameAs http://dblp.l3s.de/d2r/resource/publications/conf/semweb/AuerBKLCI07 .

<pub2> owl:sameAs http://data.semanticweb.org/conference/iswc-aswc/2007/.../papers/715 .

3.3 Integration

The last step of our process is the integration, which embeds the extracted and
linked metadata into the personal information space, managed by the Semantic
Desktop, and thus realizing the actual bridge between the Linked Data and the
Semantic Desktop. To achieve this, we have used the NEPOMUK–KDE imple-
mentation of the Semantic Desktop. This provides a central local repository for
storing structured data and it is well integrated with the common desktop appli-
cations, such as the file and Web browsers. In terms of foundational models, it uses
the NEPOMUK Ontologies11 suite. In our case, the actual integration was done
at the metadata level, where we had to align the instances previously extracted
with the ones already existing in the local repository.

Currently, we deal with two types of alignments: person alignment and publica-
tion alignment, that are described within the Semantic Desktop context by means
of the NCO (NEPOMUK Contact Ontology), NFO (NEPOMUK File Ontology)
and PIMO (Personal Information Model Ontology) ontologies.

The person alignment resumes to checking whether an extracted author is al-
ready present in the personal information model, and in a positive case, merging
the two models in an appropriate manner. This is done based on a two step mech-
anism, similar to finding authors in a Linked Data repository. We first query the
local repository for the name of the author and the associated substrings resulted
11 http://www.semanticdesktop.org/ontologies/

836 T. Groza et al.

from chunking the name into several parts. Using the same similarity measures, we
filter out only the realistic candidates. These candidates are then analyzed based
on the existing owl:sameAs links and their linked publications. If a candidate is
found to have one identical owl:sameAs link and one identical publication with the
initial author, we consider it a match and perform the merging of the two mod-
els. In a negative case, the author’s model is stored as it is and we advance to the
publication alignment. The result of this alignment is exemplified in the listing
below. In addition to the already existing metadata, the author now has attached
an email address and the birth date, both found within the user’s personal infor-
mation space.

The publication alignment is straightforward, as from a local and physical per-
spective, the publication is represented by a file. Thus, considering that the user
started the process from such a file (which is always the case), we query the reposi-
tory for the information element corresponding to that file, having the fileUrl (or
path) as the main indicator. The conceptual model found to be associated with
the file is then merged with the extracted publication model. The listing below
shows this alignment as part of our running example, the last statement creating
the actual grounding of the publication onto a physical file.

The integration enables, in particular, two important elements: (i) firstly, more
meaningful ways of finding and linking publications on the desktop, and (ii) sec-
ondly, an opportunity of weaving the linked data present on the desktop, using
ordinary desktop applications. Fig. 4 depicts the first aspect, using Dolphin, the

<knud> nco:birthDate ’’1980-11-01’’ .

<knud> nco:emailAddress knud.moeller@deri.org .

...

<pubFile> a nfo:FileDataObject .

<pubFile> nfo:fileSize 1353543 .

<pubFile> nfo:fileUrl file:///home/user/research/papers/p215.eps .

<pub> pimo:groundingOccurence <pubFile> .

Fig. 4. Deep metadata integration in KDE applications: [A] SemNotes; [B] Dolphin

Bridging the Gap between Linked Data and the Semantic Desktop 837

KDE file browser (part B), and SemNotes,12 a KDE semantic note-taking appli-
cation (part A). As shown in the figure, to retrieve all publications having knud
among the authors, claim-ing that they deal with “real deployments of Seman-
tic Web...” and being related to (seeAlso) publications that speak about “open
data”, resolves to using the following query in Dolphin:

nepomuksearch:/ type:publication creator:knud hasClaim:‘‘real
deployments of Semantic Web*’’ seeAlso:‘‘open data*’’

The result of the query will be a virtual folder that is automatically updated in
time (enabling the long-term effect), thus showing also the publications that are
added at a later stage and that satisfy the query, independently of the name of the
physical file or its location. Similarly, while taking notes during the presentation of
this particular paper, SemNotes will automatically link both the publication and
the author mentioned in the note, therefore providing added information about
the publication and its authors.

Fig. 5. Browsing deep integrated resources with Konqueror

The second aspect is presented in Fig. 5, which shows how resources such as
publications or authors can be visualized by means of an ordinary Web browser
(here, Konqueror). More important, this enables the visualization of the rich in-
formation space surrounding a publication, both from a local and linked data per-
spective. Without even opening the actual publications, the user can: (i) quickly
grasp the main ideas of the publications, via the presented claims, (ii) see related
publications, via the rdfs:seeAlso links, or (iii) inspect the publications’ au-
thors, either via their personal contact information, or via their different instances
on the Web (owl:sameAs links). We believe that this approach combines harmo-
niously the Linked Data perspective with the Semantic Desktop perspective, thus
enabling the weaving of Linked Data on the desktop.

12 http://smile.deri.ie/projects/semn

838 T. Groza et al.

4 Preliminary Evaluation

We evaluated the extraction of semantic metadata and performed a short-term us-
ability study of the overall approach. The shallow metadata extraction achieved
high accuracies for the title (95%) and abstract (96%) extraction, and a lower ac-
curacy for authors extraction (90%). The evaluation method and complete results
can be found in [3]. In this section, we focus on the usability study, as we believe
that the developed application has to be easy to learn and use, and to provide the
most appropriate information.

The study was conducted together with 16 evaluators, a mixture of PhD stu-
dents and Post Doctorands from our institute, that were asked to perform a se-
ries of tasks covering all the application’s functionalities. Example of such tasks
included: extraction and manual correction of metadata from publications, ex-
pansion of information based on the same publications or exploration of the co-
authors graph. At the end, the evaluators filled in a questionnaire, comprising of
18 questions, with Likert scale-based or free form answers, concentrating on two
main aspects: (i) suitability and ease of use, and (ii) design, layout and confor-
mity to expectancies. The complete results of the questionnaire can be found at
http://smile.deri.ie/sclippy-usabilitystudy

Overall, the application scored very well in both categories we have targeted.
The vast majority of the evaluators (on averagemore than 90%) found the tool well
suited for the extraction and exploration of shallow and deep metadata. The same
result was achieved also for the exploration of the information space surrounding
the chosen publication, based on the extracted and linked metadata. In addition,
the information presented by the application, both for publications and authors,
was found helpful (100% for publications and 72.8% for authors), while 93.8% of
the evaluators found an added value in our tool when compared to the original
expansion environment.

In the other category, all evaluators considered the application easy to learn and
use (100%) while having the design and layout both appealing (87.5%) and suited
for the task (93.6%). Issues were discovered in two cases: (i) the self-descriptiveness
of the application’s interface (only 68.8% found it self-descriptive), mainly due to
the lack of visual indicators and tooltips, and (ii) the suggested list of similar pub-
lications (again only 68.8% found it relevant). Although the application always
found the exact publication selected for expansion in the repository, the proposed
list of similar publications created some confusion.

Apart from these findings, directly taken from the questionnaires, we observed
that even without any training and documentation, the evaluators experienced
a very smooth learning curve. Additionally, most of them enjoyed our exercise,
while some were interested in using the application on a daily basis. On the other
hand, the study pointed out a number of issues and led us to a series of directions
for improvement. First of all, the need to make use of a more complex mecha-
nism for suggesting similar publications. As we expected, the shallow similarity-
based heuristics we used for building the list of suggested publications left plenty of
space for improvement. Unfortunately, its improvement is directly dependent on
the quantity and quality of information provided by the linked data repository. As

Bridging the Gap between Linked Data and the Semantic Desktop 839

an example, while we could use the abstract provided by the Semantic Web Dog
Food Server to extract discourse knowledge items, and then perform similarity
measures at this level, this would not be possible when using the Faceted DBLP,
where such information does not exist. For this case, a possible solution, would be
to drill deeper into the linked web of data. Secondly, augmenting the expanded in-
formation with additional elements (e.g. abstract, references, citation contexts),
thus providing a deeper insight into the publications and a richer experience for
the users.

5 Related Work

To our knowledge, until now, there was no attempt to combine in such a direct
manner automatic metadata extraction from scientific publications, linked open
data and the semantic desktop. Nevertheless, there are efforts that deal with parts
of our overall approach, and, in this section, we will focus on them. Hence, we will
cover: (i) automatic extraction of shallow metadata, including the context of the
semantic desktop, and (ii) information visualization for scientific publications.

Before detailing the two above-mentioned directions, we would like to discuss
the position of the alignments described in the expansion and integration steps
to the current state of the art. To a certain extent, these person and publication
alignments are similar to performing coreference resolution. While in the person
case the resolution is solved directly via string similarity measures, in the publica-
tion case we add the authors list as an extra condition. This makes our approach
more simple and straightforward than the more accurate algorithms existing in the
literature. Examples of such techniques include: naive Bayes probability models
and Support Vector Machines [6], K-means clustering [7] or complex coreference
based on conditionally trained uni-directed graph models using attributes [8].

Extensive research has been performed in the area of the Semantic Desktop,
with a high emphasis on integration aspects within personal information man-
agement. Systems like IRIS [9] or Haystack [10] deal with bridging the different
isolated data silos existing on the desktop, by means of semantic metadata. They
extract shallow metadata from the desktop files and integrate it into a central
desktop repository. Compared to our approach, the metadata extraction is file-
oriented and shallow, whereas we extract specific publication metadata and inte-
grate it within the already existing semantic desktop data. The closest effort to
ours was the one of Brunkhorst et al. [11]. In their Beagle++ search engine, devel-
oped in the larger context of the NEPOMUK Semantic Desktop [12], the authors
also perform metadata extraction from scientific publications, but limited to title
and authors.

Regarding the general context of automatic extraction of metadata from publi-
cations, there have been several methods used, like regular expressions, rule-based
parsers or machine learning. Regular expressions and rule-based systems have the
advantage that they do not require any training and are straightforward to im-
plement. Successful work has been reported in this direction, with emphasis on
PostScript documents in [13], or considering HTML documents and use of nat-
ural language processing methods in [14]. Our approach is directly comparable

840 T. Groza et al.

with these, even though the target document format is different. In terms of accu-
racy, we surpass them with around 5% on title and authors extraction, and with
around 15% on linear structure extraction, while providing additional metadata
(i.e. abstract or references).

Although more expensive, due to the need of training data, machine learning
methods are more efficient. Hidden Markov models (HMMs) are the most widely
used among these techniques. However, HMMs are based on the assumption that
features of the model they represent are not independent from each other. Thus,
HMMs have difficulty exploiting regularities of a semi-structured real system.
Maximum entropy based Markov models [15] and conditional random fields [16]
have been introduced to deal with the problem of independent features. In the
same category, but following a different approach, is the work performed by Han
et al. [17], who uses Support Vector Machines (SVMs) for metadata extraction.

With respect to information visualization of scientific publications, a number of
methods and tools have been reported in the literature. The 2004 InfoVis
challenge had motivated the introduction of a number of visualization tools high-
lighting different aspects of a selected set of publications in the Information Vi-
sualization domain. Faisal et. al. [18] reported on using the InfoVis 2004 contest
dataset to visualize citation networks via multiple coordinated views. Unlike our
work, these tools were based on the contents of a single file, which contained man-
ually extracted and cleaned metadata. As noted by the challenge chairs, it was a
difficult task to produce the metadata file [19] and hence the considerable efforts
required made it challenging for wide-spread use. In [20], a small scale research
management tool was built to help visualizing various relationships between lab
members and their respective publications. A co-authorship network visualization
was built from data entered by users in which nodes represented researchers to-
gether with their publications, and links showed their collaborations. A similar
effort to visual domain knowledge was reported by [21], with their data source
being bibliographic files obtained from distinguished researchers in the ”network
science” area. While this work was also concerned with cleansing data from noisy
sources, the metadata in use was not extracted from publications themselves and
no further information available from external sources such as Faceted DBLP was
utilized. Another tool targeting the exploration of the co-authorship network is
CiteSpace [22]. CiteSpace tries to identify trends or salient patterns in scientific
publications. The source of information for CiteSpace is also from bibliographic
records crawled from different publishers on the web, rather than extracted meta-
data.

6 Conclusion and Future Developments

In this paper we presented an approach for dealing, at least to some extent, with
the information overload issue both on the Web and on the Desktop, and having
as target early stage researchers. Our solution, inspired from the typical process of
getting familiarized with a particular domain, combines elements from the Linked
Web of Data and the Semantic Desktop, using semantic metadata as a common

Bridging the Gap between Linked Data and the Semantic Desktop 841

denominator. The result consists of three steps (extraction – expansion – integra-
tion) that incrementally enrich the semantic metadata describing a publication,
from no metadata to a comprehensive model, linked and embedded within the
personal information space.

Each step has associated a series of open challenges that we intend to address
as part of our future work. As currently the extraction works only on publications
published as PDF documents, and formatted preferably with the LNCS and ACM
styles, we plan to improve extraction algorithms to accommodate any formatting
style, as well as develop new extraction modules for other document formats, such
as Open Document formats. At the moment, the expansion uses only two Linked
Data repositories, i.e. the Semantic Web Dog Food Server and the Faceted DBLP.
Future developments will include also other repositories, in addition to means for
creating ad-hoc mash-ups between them, thus allowing the user to see data coming
from different sources in an integrated and uniform view. Last, but not least, we
plan an even tighter integration within the Semantic Desktop, therefore enabling
more meaningful queries and a richer browsing experience, and ultimately a com-
plete automatization of the process, thus reducing the overhead to the minimum
possible.

Acknowledgments

The work presented in this paper has been funded by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2).

References

1. Tsujii, J.: Refine and pathtext, which combines text mining with pathways. In:
Keynote at Semantic Enrichment of the Scientific Literature 2009, Cambridge, UK
(2009)

2. Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for Semantic
Web Dog Food — The ESWC and ISWC Metadata Projects. In: Aberer, K.,
Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P.,
Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 802–815. Springer, Heidelberg (2007)

3. Groza, T., Handschuh, S., Hulpus, I.: A document engineering approach to auto-
matic extraction of shallow metadata from scientific publications. Technical Report
2009–06–01, Digital Enterprise Research Institute (2009)

4. Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: A theory of text orga-
nization. Technical Report RS-87-190, Information Science Institute (1987)

5. Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT - Semantically Annotated
LATEX for Scientific Publications. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 518–532. Springer, Heidelberg (2007)

6. Han, H., Zha, H., Giles, C.: A Model-based K-means Algorithm for Name Disam-
biguation. In: Proc. of the Workshop on Semantic Web Technologies for Searching
and Retrieving Scientific Data @ ISWC 2003, Sanibel Island, Florida, USA (2003)

7. Han, H., Giles, L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two supervised learn-
ing approaches for name disambiguation in author citations. In: Proc. of the 4th
ACM/IEEE-CS joint conference on Digital Libraries, Tuscon, AZ, USA (2004)

842 T. Groza et al.

8. Wellner, B., McCallum, A., Peng, F., Hay, M.: An integrated, conditional model
of information extraction and coreference with application to citation matching.
In: Proc. of the 20th Conf. on Uncertainty in Artificial Intelligence, Banff, Canada
(2004)

9. Cheyer, A., Park, J., Giuli, R.: IRIS: Integrate. Relate. Infer. Share. In: Proc. of the
Semantic Desktop and Social Semantic Collaboration Workshop (2006)

10. Quan, D., Huynh, D., Karger, D.R.: Haystack: A Platform for Authoring End User
Semantic Web Applications. In: Proc. of the 2nd International Semantic Web Con-
ference, pp. 738–753 (2003)

11. Brunkhorst, I., Chirita, P.A., Costache, S., Gaugaz, J., Ioannou, E., Iofciu, T., Mi-
nack, E., Nejdl, W., Paiu, R.: The beagle++ toolbox: Towards an extendable desk-
top search architecture. Technical report, L3S Research Centre, Hannover, Germany
(2006)

12. Bernardi, A., Decker, S., van Elst, L., Grimnes, G., Groza, T., Handschuh, S., Jazay-
eri, M., Mesnage, C., Möller, K., Reif, G., Sintek, M.: The Social Semantic Desktop:
A New Paradigm Towards Deploying the Semantic Web on the Desktop. In: Seman-
tic Web Engineering in the Knowledge Society. IGI Global (2008)

13. Shek, E.C., Yang, J.: Knowledge-Based Metadata Extraction from PostScript Files.
In: Proc. of the 5th ACM Conf. on Digital Libraries, pp. 77–84 (2000)

14. Yilmazel, O., Finneran, C.M., Liddy, E.D.: Metaextract: an nlp system to auto-
matically assign metadata. In: JCDL 2004: Proc. of the 4th ACM/IEEE-CS joint
conference on Digital libraries, pp. 241–242 (2004)

15. McCallum, A., Freitag, D., Pereira, F.: Maximum entropy markov models for infor-
mation extraction and segmentation. In: Proc. of the 17th Int. Conf. on Machine
Learning, pp. 591–598 (2000)

16. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proc. of the 18th Int. Conf.
on Machine Learning, pp. 282–289 (2001)

17. Han, H., Giles, C.L., Manavoglu, E., Zha, H., Zhang, Z., Fox, E.A.: Automatic doc-
ument metadata extraction using support vector machines. In: Proc. of the 3rd
ACM/IEEE-CS Joint Conf. on Digital libraries, pp. 37–48 (2003)

18. Faisal, S., Cairns, P.A., Blandford, A.: Building for Users not for Experts: Design-
ing a Visualization of the Literature Domain. In: Information Visualisation 2007,
pp. 707–712. IEEE Computer Society Press, Los Alamitos (2007)

19. Plaisant, C., Fekete, J.-D., Grinstein, G.: Promoting Insight-Based Evaluation of
Visualizations: From Contest to Benchmark Repository. IEEE Transactions on Vi-
sualization and Computer Graphics 14(1), 120–134 (2008)

20. Neirynck, T., Borner, K.: Representing, analyzing, and visualizing scholarly data in
support of research management. In: Information Visualisation 2007, pp. 124–129.
IEEE Computer Society Press, Los Alamitos (2007)

21. Murray, C., Ke, W., Borner, K.: Mapping scientific disciplines and author ex-
pertise based on personal bibliography files. In: Information Visualisation 2006,
pp. 258–263. IEEE Computer Society Press, Los Alamitos (2006)

22. Chen, C.: CiteSpace II: Detecting and visualizing emerging trends and transient
patterns in scientific literature. J. of the American Society for Information Science
and Technology 57(3), 359–377 (2006)

Vocabulary Matching for Book Indexing
Suggestion in Linked Libraries – A Prototype

Implementation and Evaluation

Antoine Isaac1,2, Dirk Kramer2, Lourens van der Meij1,2, Shenghui Wang1,2,
Stefan Schlobach1, and Johan Stapel2

1 Vrije Universiteit Amsterdam
2 Koninklijke Bibliotheek, Den Haag

{aisaac,lourens,swang,schlobac}@few.vu.nl,
{Dirk.Kramer,Johan.Stapel}@kb.nl

Abstract. In this paper, we report on a technology-transfer effort on
using the Semantic Web (SW) technologies, esp. ontology matching, for
solving a real-life library problem: book subject indexing. Our purpose
is to streamline one library’s book description process by suggesting new
subjects based on descriptions created by other institutions, even when
the vocabularies used are different. The case at hand concerns the Na-
tional Library of the Netherlands (KB) and the network of Dutch local
public libraries. We present a prototype subject suggestion tool, which
is directly connected to the KB production cataloguing environment.
We also report on the results of a user study and evaluation to assess
the feasibility of exploiting state-of-the art techniques in such a real-
life application. Our prototype demonstrates that SW components can
be seamlessly plugged into the KB production environment, which po-
tentially brings a higher level of flexibility and openness to networked
Cultural Heritage (CH) institutions. Technical hurdles can be tackled
and the suggested subjects are often relevant, opening up exciting new
perspectives on the daily work of the KB. However, the general perfor-
mance level should be made higher to warrant seamless embedding in
the production environment—notably by considering more contextual
metadata for the suggestion process.

1 Introduction

Motivation Cultural Heritage (CH) institutions usually own well-described col-
lections of objects, and publishing (descriptions of) their assets to unknown users
is an inherent part of their mission. Of course, both aspects are equally crucial
for the Web of Data: data with structured meta-data, and the drive to publish
data for unforeseen reuse.

This has lead to many CH institutions being at the forefront of developing and
applying Semantic Web (SW) technology. Important initiatives for representing
knowledge on the SW, such as Dublin Core [1] or SKOS [2], have been driven by
expertise and requirements from the CH domain. In turn, many recent projects

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 843–859, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

844 A. Isaac et al.

have largely benefited from using SW techniques to make CH material accessible
more easily, e.g., in [3,4].

Given these success stories, it is no surprise to see yet another fruitful cross-
fertilisation opportunity between the two fields: semantic interoperability. In the
SW community, recognition of this problem has lead to exhaustive research in
ontology matching [5], the goal of which is to make interoperable the data ex-
pressed in different ontologies. Again, CH institutions have strong interest for
adapting this technology in their daily routine and for their future vision. Col-
lections from different institutes are indeed described with different knowledge
organisation systems (KOS), such as thesauri. In a more and more inter-linked
CH world requiring cross-collection applications, alignments between different
KOSs become crucial.

Linking vocabularies across Dutch libraries. The National Library of the Nether-
lands (KB) holds numerous books also described by other libraries, many of them
having their own way of semantically describing (indexing) the content of books.
This leads to human indexers at the KB still going through each book to re-index
it in “the KB way,” i.e., using their own thesauri, although that book might have
already been described by some other institutions.

Such re-indexing process can be streamlined by suggesting indexers relevant
concepts from KB thesauri, based on other institutions’ descriptions. In the
context of the STITCH project, we implemented a prototype that provides such
a functionality. For each incoming book already indexed with concepts from the
Biblion thesaurus (used by Dutch public libraries), it suggests a new indexing
with the Brinkman subject thesaurus used in the KB. The suggestion is based
on semantic links between these two thesauri which are derived from generic
ontology matching methods [6,7].

This prototype has been directly connected to the KB production cataloguing
environment, used daily by indexers. To the best of our knowledge, KB is one
of the first non-academic institutions to use and thoroughly evaluate generic
ontology matching technology for a real-life application. This paper describes the
index suggestion prototype, an exhaustive evaluation, and some lessons learned,
particularly from the perspective of the SW technology that was used.

Evaluating the SW approach in practice. In order to assess the usefulness in
practice, we thoroughly evaluated our proposed methodology and prototype im-
plementation. We had two goals, for which involvement of KB staff at all levels
(management, technical and user—indexers) was critical:

– technology transfer. STITCH gathers researchers and practitioners to inves-
tigate how SW technology can be used to solve CH interoperability issues.
In previous experiments, researchers have played a leading role. Here, KB is
sought to actively participate in all steps of the development of a SW-based
tool, from data preparation to design and testing.

– feasibility study. This prototyping experiment had to determine whether—
and to which extent—KB could benefit in the medium term from the tech-
niques employed. The tool must deliver appropriate suggestion performance,

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 845

and its design has to fit existing processes seamlessly, both at the conceptual
and technical levels. Evaluation is thus key, as is the realistic embedding of
the developed tool into the production process.

Findings Our suggestion prototype, on one hand, shows the limitation of the
used matching methods to provide high quality suggestions. However, the close
collaboration with KB staff gives us much deeper insight into the problem and,
importantly, points out potential improvements. In particular, exploiting exist-
ing book descriptions for matching thesauri is a valid approach. Only, it may
require more thesauri to be linked, in order to make the re-indexing process more
efficient.

From that perspective, it is crucial that the prototype demonstrated that SW
components can be successfully plugged into the KB production environment.
This brings the latter a higher level of flexibility and openness, making it better
interoperable with other providers (and consumers) of semantic data.

In Sec. 2 we present the specific case we addressed in our experiment. Sec. 3
then gives a general technical overview of our prototype. Sec. 4 describes our
user study and its results, before we conclude.

2 Book Re-indexing at the KB

To manage and allow access to its collections, KB relies on a careful description of
its books. This includes subject indexing, a concise and controlled reformulation
of book subjects, typically done by assigning concepts from a KOS. Indexing
requires trained employees to analyze the content of books and carefully pick
the most appropriate concept(s) for describing them. This is labor-intensive,
and KB is aiming to assist indexers by using (semi-)automatic techniques.

2.1 Existing Work on Assisting Document Description

The first approach to automated document description is to apply natural lan-
guage processing tools to the textual content (or summary) of documents. In
SW research, text analyzers have been used to produce (structured) semantic
annotations along formal ontologies that are either pre-defined or learned on-
the-fly [8]. Similar techniques have also been deployed to produce document
annotations with KOSs that are closer to the ones used in libraries—see [9,10].

However, these techniques require a sufficient amount of textual data, which
is not always available, especially for KB whose books have mostly not been dig-
itized. As a result, one has to find sets of related documents (as in the CHOICE
project [10]) or to exploit the limited textual information present in the meta-
data record (the title, sometimes a summary). KB already experimented with
the latter approach, without obtaining convincing results.

We have opted for a different approach, exploiting descriptions resulting from
a principled interpretation. Our problem is therefore to bridge across different
interpretations, using ontology matching, rather than bridge the semantic gap
between uninterpreted text content and controlled indexing.

846 A. Isaac et al.

Fig. 1. (Partial) cloud of related collections and KOSs in KB’s environment

2.2 The Need for Re-indexing at KB

Our proposal is to assist indexers by re-using existing subject descriptions for
books, as contributed by other institutions. Quite often, indeed, a same book
can be of interest—and thus described—by several actors. KB thus holds nu-
merous books that are also held by other Dutch libraries, by publishers, or even
by foreign institutions. For instance, the collections of KB and the Dutch (local)
public libraries contain around a quarter of million books in common. Figure 1
shows some collections that are related to the KB ones. As the goals of the hold-
ing institutions often overlap, there is a certain amount of redundancy. Sharing
and connecting descriptions in such a network would thus generate interesting
synergies and productivity gains.

In fact, many libraries already share their descriptions. For instance, book
metadata in the KB is stored in a database—OCLC-Pica’s GGC—which is
also used by other libraries for shared cataloguing, in particular, by the Dutch
academic libraries and the Dutch public libraries. However, if integration of
descriptions at a basic level (authors, publication date, etc.) could be done,
these libraries still perform subject indexing with their own KOSs, as depicted
in Fig. 1. Indexing is indeed largely application-specific: different collections are
gathered for specific information needs, and require descriptions with different
granularity or expertise levels, or even in different languages. There can be sig-
nificant semantic overlap between the KOSs used, but it is not possible to benefit
directly from the work done by other institutions. To re-use existing descriptions
in the KB application context, they have first to be fit into KB needs.

In this paper, we focus on the specific KB–public libraries case. KB, for index-
ing the subject of books in its legal deposit collection, uses the Brinkman subject
thesaurus (hereafter called “Brinkman”). This thesaurus has a generic scope and

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 847

contains more than 5,000 topical concepts. The main subject thesaurus used in
the public libraries is the Biblion general keyword thesaurus (hereafter called
“Biblion”) which contains approximately 18,000 concepts. KB indexers quite of-
ten have to re-index, with Brinkman concepts, books that have already been
indexed with Biblion, while the scope and structure of the two general thesauri
overlap quite much. The question is whether this re-indexing can be streamlined
by an automatic process providing indexers with candidate subjects.

2.3 Re-indexing Requirements

One solution is to create semantic correspondences between the elements of the
KOSs at hand, allowing to convert descriptions from one system to the other. This
scenario, described in [11], can be regarded as a problem of ontology matching.

In our case, re-indexing requires to implement a translation process from con-
cepts of a Biblion-indexed book into Brinkman ones, so as to yield a Brinkman
indexing of that book. Such a functionality can be formalized by the function:

fr : 2BI → 2BR,

where 2BI and 2BR denote the powersets of Biblion and Brinkman concepts.
At first sight, one expects such function to relate Biblion concepts to Brinkman

concepts that have semantically equivalent or close meaning. Variability issues
can however make such simple equivalence associations unfit. First, one same
book may be described by two semantically different concepts, even though each
of these concepts has an equivalent concept in the other KOS. This may for
instance stem from institutions’ indexing policies aiming at different description
granularity levels. Second, related to the way KOSs are designed, a concept from
one vocabulary may be expressed using several concepts from the other KOS,
which will be combined together to describe the subject of a book.

To the best of our knowledge, there is no similar work deploying ontol-
ogy matching for migrating subject indexes from a KOS to another. Ontology
matching has been identified as a solution for the more general data migra-
tion/translation problem, but it is difficult to find examples of concrete deploy-
ments [5]. Also, in more industry-oriented database migration efforts, the focus is
rather on translating data from one schema to another—that is, focusing on the
relation between (metadata) fields rather than the values that populate them.
Finally, in the CH domain, most projects exploiting KOS alignments focus on
query reformulation or cross-collection browsing (as in HILT1 or the SW-based
Europeana Thought Lab2), which are related but different application issues.

3 Prototype Design

3.1 General Description
The core functionality of our Brinkman subject suggestion tool (SST) is to
use available Biblion indexing and other metadata to suggest new Brinkman

1 http://hilt.cdlr.strath.ac.uk/
2 http://www.europeana.eu/portal/thought-lab.html

http://hilt.cdlr.strath.ac.uk/
http://www.europeana.eu/portal/thought-lab.html

848 A. Isaac et al.

indexing. This functionality is coupled to the WinIBW software used to describe
books in the production process of the KB acquisition and cataloguing depart-
ment. WinIBW is connected to the aforementioned GGC cataloguing system,
which is also used by the public libraries. The metadata including Biblion in-
dexing can therefore be accessed and exploited seamlessly.

The SST can be activated when an indexer describes a book already indexed
with a Biblion subject. A pop-up window presents then the new Brinkman sug-
gestions. The correct suggestions can be selected and automatically inserted
within the description of the book currently being edited in WinIBW. After
this, the description is saved and stored in GGC.

In the following, we describe further the use and functioning of the SST, as
well as some aspects of the suggestion process itself.

3.2 User Interface

The SST can be launched for a given book being described in the WinIBW
system. It comes as a pop-up window split in two panels, as shown in Fig. 2. This
window gathers the existing metadata of the book and suggests new subjects.

The left-hand side displays the existing metadata, using a layout similar to
WinIBW. We reproduced this basic layout so as to integrate the prototype as
seamlessly as possible in the current process. In particular, our panel keeps to the

Fig. 2. The Suggestion Tool’s user interface

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 849

original description codes—“kenmerkcodes,” or KMCs [12]. The only additions
are the use of color for spotting different elements, and the access to basic addi-
tional information services. For instance, 112X corresponds to the “UNESCO”
classification (very general, mostly subject-based classification of books, e.g.,
“linguistics”), 111X to “KAR” (the “characteristic”, roughly corresponding to
the type of publication, e.g., “thesis”), 1401 to DGP (intellectual level/target
group, e.g., “youth fiction, 7-8 years”) and 5061 to NUR (Dutch book trade
(topical) classification focused on genres, e.g., “national history”). Further de-
scriptions of these elements can be accessed via online help resources.

The right-hand side of the screen presents the suggestions (bottom). Three
colors (blue, purple, red) are used to mirror the confidence level of the suggestions
(see Sec. 3.4 for more details). Indexers can select the suggestion(s) they agree
with by ticking them. There are also empty boxes for searching new concepts to
add to the description (“Ander Brinkman onderwerp opzoeken”).

For the user study, indexers are offered the possibility to give a general quality
assessment of the suggestions for the book (“tevreden” radio buttons) as well as
a comment (“opmerking”). When the screen has been filled, users can save the
new indexing and go back to WinIBW by pressing the “STITCH” button.

There is also the possibility to ask for more information on suggestions (the ‘+’
top-right), such as the concepts from the record that triggered them, and their
numerical confidence value. This shows more suggestions (with lower confidence).
Previously established alignments based on equivalence of concept labels (see
Sec. 3.4) can also be requested to provide more suggestions (the ‘a’ top-right).

3.3 Architecture

Our SST prototype consists of various distributed components, as illustrated in
Fig. 3.

Indexers start from the WinIBW cataloguing interface, a Windows client.
Simply clicking a button, they launch a VisualBasic script that converts the
current book data in XML format and displays it into an Internet Explorer
pop-up window.

This window uses an XSLT stylesheet to display the book metadata, as well
as querying various services and displaying the information got from them as
XML data. To enhance information presentation, the stylesheet triggers access
to two business web services—Bol.com for book images and Picarta for obtaining
additional book information. To fulfill its main concept suggestion mission, it
accesses two “alignment web services” hosted on machines at the Free University
of Amsterdam. Primary suggestions are provided by a SWI-Prolog server that
exploits the statistical rules described in Sec. 3.4. Additional (lexical) alignments
(for the ‘a’ option) are accessed via a SPARQL endpoint [13] on top of a Sesame3

RDF store.
At this stage, indexers can add one or more subjects, which they find with

the help of a vocabulary service (JavaScript/Ajax). When they are finished,

3 http://openrdf.org

http://openrdf.org

850 A. Isaac et al.

Fig. 3. The Suggestion Tool’s architecture

clicking on the STITCH button sends back the created metadata into WinIBW
(JavaScript/VBScript).

For the purpose of evaluation, existing book metadata, suggestions and user
input (including the evaluation-specific satisfaction level and comments) are
also stored in XML (VBScript). A dedicated XLST stylesheet enables the re-
displaying of that information for each considered book, as well as the creation
of tables with all gathered data.

Access to concept information is done via a generic SKOS vocabulary service4

we implemented in STITCH. To streamline management of KOSs in our archi-
tecture, we have opted for converting them to the SKOS standard to represent
KOSs in RDF [2]. The service allows to retrieve SKOS data for concepts (labels,
documentation, semantic relationships to other concepts) and enables searching
for concepts in a given KOS, e.g., by means of autocompletion. It thus provides
the basic means to explore vocabularies.

Crucially, the service can be used to access distributed RDF KOS sources,
published via either a SPARQL endpoint or other instances of the service that
are loaded with the corresponding SKOS files. This allows to seamlessly extend
our prototype to deal with unforeseen KOSs, when these are published in SKOS
on the Web of Data. Our SST could then be articulated with more collections,
even ones already linked at the semantic level—see Fig. 1.

3.4 Brinkman Subject Suggestion Rules

The suggestion process relies on statistical techniques to find association between
the elements found in the available book metadata and the Brinkman concepts to
4 http://stitch.cs.vu.nl/repository

http://stitch.cs.vu.nl/repository

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 851

be suggested for indexing. For the sake of brevity, we limit ourselves here to the
description of what the suggestion tool outputs and which information sources it
uses, and only give an overall description of the suggestion rules creation process.

Metadata Used for Creating and Applying Suggestion Rules. In a
first version of the suggestion tool, we tried to build and exploit an alignment
between Biblion (LTR field) alone and Brinkman. The idea was to provide sug-
gestions based on simple, ready-to-use individual “translation rules” from Bib-
lion to Brinkman, as obtained from lexical comparison of their labels.

However, as previously mentioned, our case comprises books which are shared
between the KB and the public library collections. Many of these books (nearly
238K) are thus indexed with both Biblion and Brinkman. Following the re-
indexing evaluation approach of [11], we used the existing Brinkman subjects of
these books as a gold standard with which we could automatically compare new
suggested subjects. Based on the low performance of this preliminary automatic
evaluation, we decided to drop these first suggestion rules. They are only acces-
sible via the advanced ‘a’ option mentioned above, as a complementary source
of suggestions.

Matching techniques using the extension of concepts, namely the way they
co-occur in book descriptions, seemed much more promising. From a theoretical
perspective, they fit well the application scenario, which is about reproducing
indexing practices instead of trying to grasp the “intrinsic meaning” of concepts.
Practical evaluations in the case of other KOSs—e.g., for the Library track of the
Ontology Alignment Evaluation Initiative [14] and for STITCH research [15]—
have further demonstrated that these techniques indeed perform well for re-
indexing.

As a matter of fact, the dually indexed corpus that we used for automatic
evaluation above could also be used as a learning set for deriving statistical asso-
ciations between Biblion and Brinkman concepts. In order to fit the application
scenario better and to take into account potential indexing- and vocabulary-
related granularity mismatches, we sought to find suggestions based on combi-
nations of one, two or three Biblion concepts. We also extended the matching
process by considering the values found in several metadata fields. This provides
more information to elicit finer-grained suggestion rules. Our prototype sugges-
tion tool uses as input the following four metadata fields (and their associated
vocabularies of controlled values) used in books with Biblion indexing:

– LTR – Biblion concepts,
– AUT – main authors of books,
– KAR – (coded) “characteristic” and
– DGP – (coded) intellectual level/target group.

Establishment of Suggestion Rules. The most important source of infor-
mation for the SST is the set of books which are described by both Brinkman
and Biblion. In order to analyse the reliability of the rules, we extracted a third
of this set as a new test set for automatic evaluation.

852 A. Isaac et al.

Suggestion rules are established by looking for statistical associations between
a source combination of metadata values (including at least one Biblion concept,
and optionally, one or two values for the AUT, KAR, DGP fields mentioned
above) and target Brinkman concepts. We adapted previous work on instance-
based thesaurus matching [6,7] to fit the re-indexing scenario. Given a source
combination of metadata values, noted as Ci, the probability that a Brinkman
concept Bj should be suggested is calculated as

p(Ci → Bj) =
|Ci ∩Bj |

|Ci|
(1)

where |Ci ∩Bj | is the number of books which are described by both Ci and Bj

and |Ci| is the number of books which are described by Ci. In order to reduce
the bias from the sparseness of the data, we took a variation of (1):

p(Ci → Bj) =
|Ci ∩Bj |

|Ci|
− 0.46 × 2

|Ci| + 1
, (2)

which gives the best performance in practice—as observed by automatic evalu-
ation over the third of the dataset which we extracted for testing.

In this way, we established a set of 1.5 million suggestion rules, each with
a “confidence level”—in fact, the probability for a suggestion to be correct—
determined by formula (2). Table 1 presents some of them. The left-hand side of
each rule corresponds to a combination of metadata values found in the training
set; the right-hand side corresponds to the Brinkman suggestion. The rightmost
column gives “correct books,” the number of books in our test set that had both

Table 1. Subject suggestion rules

Source combination → target concept
Confidence

level
Correct books

/ Total
DGP:Jeugd fictie; vanaf 13 jaar

(youth fiction; from 13 year)
+ KAR:Stripverhaal (comics)
→ BTR:stripverhalen (comics)

0.995 182/182

LTR:Reisgidsen (travel guides) + LTR:Spanje (Spain)
→ BTR:Spanje ; reisgidsen (Spain; travel guides) 0.982 50/50

...
LTR:Brabantse dialecten (Brabant dialects)

→ BTR:Nederlandse dialecten (Dutch dialects)
0.967 27/27

...
LTR:Liefde (love) + AUT:Jeanette Winterson

→ BTR:Romans en novellen ; vertaald
(novels and novellas; translated)

0.540 1/1

...
LTR:Bouwkunde (building engineering)
→ BTR:leermiddelen ; bouwtechniek

(learning material ; building engineering)
0.196 25/123

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 853

the source combination and the target concept, and “total,” the number of books
that matched the source combination.

Working the Suggestion Rules. When a book’s metadata contains a suit-
able source combination (including Biblion subject indexing, and possibly, AUT,
KAR and DGP annotations), the SST suggests a list of Brinkman subjects, each
with a confidence value. This allows to rank the suggested concepts, as well as
to classify them in broader confidence categories indicated by specific colors, as
mentioned in Sec 3.2. Thus, blue suggestions correspond to a confidence level
higher than 0.54—all suggestions based on concept combination (co-)occurring
in a single book have this measure. Purple suggestions have a confidence level
between 0.1 and 0.54, and the red suggestions are between 0.02 and 0.1.

4 User Study

4.1 Aim and Settings

Our user study aims to determine the extent to which the SST could be used at
the KB. We are also interested in users’ suggestions for improving the tool, or
applying it in alternative ways.

We gathered six indexers of the deposit cataloguing team (out of a total 16).
They were all trained indexers, with experience ranging between 10 and 30
years—five of them having at least 20 years experience.

The tests were originally planned for a period of three weeks, but this was
lengthened to 6 weeks after it appeared that too little suitable material could
be gathered in that time span.5 In total, 284 books were evaluated.

The evaluation task was seamlessly integrated in the daily work of the eval-
uators. As, when describing books with WinIBW, they recognized a book for
which Brinkman suggestions could be done, they activated the tool, and then
resumed to their “normal” tasks after that book had been indexed.

As already described, the SST interface required the evaluators to select which
were the correct suggestions, or complete these with non-suggested concepts
when required. It was also equipped with radio buttons with which evaluators
could indicate their level of satisfaction, and a free-text field where they could
enter their comments on the suggestions for the book at hand.

Before the test, the evaluators were given in a group briefing on the task and
SST’s features. We also gave each of them a questionnaire to fill at the end of
the test period—see Appendix. After the test period, we organized a (group)
evaluation interview. There, the evaluators where given an extra question list
we devised after analyzing the input from the first questionnaire, so as to get

5 Currently, KB indexes books very shortly after their publication; the number of
books indexed by Biblion before being indexed by KB turned thus to be smaller
than we hoped. Luckily, our committed evaluators pretty soon decided themselves
to collect all suitable books from their entire department, beyond the ones attributed
to them via the normal KB process.

854 A. Isaac et al.

more precise (and quantitative) feedback on specific points—see Appendix. The
list also provided a sound structure to guide the interview, during which the
evaluators had to answer it.

4.2 Suggestion Performance

Using the correct indexing selected or added by the evaluators, we could measure
the performance of our concept suggestions in terms of precision and recall. The
284 books evaluated were together given 4,021 Brinkman subject suggestions,
for a total 468 correct concepts. Table 2 gives the results for each of the three
suggestion classes mentioned in Sec. 3, where the “non suggested” category lists
the number of individual concept indices that could not be found by the system
and had to be added by indexers.

Table 2. Suggestion performance

Suggestion class # suggestions # correct precision recall
blue 308 224 72.7% 47.9%

purple 1,188 127 10.7% 27.1%
red 2,525 28 1.11% 5.98%

non suggested 89 19.0%

Looking at the “blue” row, we achieve a recall of 47.9% with a precision
of 72.7%. Taking the blue, purple and red suggestion results together, we can
achieve a recall of 81% if we accept a much lower precision of one in ten correct
suggestions (9.4%).

These results confirm our expectations regarding the categorization of sugges-
tions in terms of precision classes. Interestingly enough, they are also consistent
with the results of the automatic evaluation over the testing set, mentioned in
Sec. 3.4—see Appendix.

4.3 User Feedback

User Satisfaction. We evaluated the more subjective aspect of user satisfaction
based on the following sources:

– the general satisfaction level given to each book’s suggestions;
– the comments given for each book;
– the answers given to the first and second questionnaires;
– the informal feedback obtained during the group interview.

At the level of books, the satisfaction level seemed first relatively high. Out of the
264 books for which this information was filled, 193 were given a “++” or a “+”,
the two best marks available out of five. However, this positive appreciation does
not correlate with the perceived global usefulness of the tool, as it emerged from
latter comments and questionnaires. Indeed, when asked if they would continue
using the tool as it is , only two evaluators answered positively.

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 855

A first source of complaints is the robustness of the tool: the vocabulary
service hosted in Amsterdam crashed a couple of times. But the evaluators could
abstract from this, and they generally appreciated the functionality and the
design by the prototype.

Rather, the most important issue was clearly the perceived quality of indi-
vidual concept suggestions: the tool did not hinder evaluators’ work, yet they
expected more accurate suggestions. The current prototype displays quite many
concepts, many of which were considered useless. At low confidence levels, sug-
gestions can be based on just a insignificant overlap that is not meaningful from
an indexing perspective, as for “Cross-culturele psychologie” (cross-cultural psy-
chology) and “ groepsdynamica” (group dynamics). While including them still
brings some correct suggestions, the “serendipity” effect we wanted to test was
not considered as an advantage, in such a controlled indexing process. The basic
ranking of suggestions, based on their confidence level and expressed by the color
distinctions, was judged a very positive feature. Yet evaluators still felt they were
compelled to examine all suggestions, even the least certain ones. This suggests
finer strategies have to be devised concerning the way suggestions are presented
to the user, depending on their confidence level. A higher confidence threshold
might therefore be required for a suggestion to be displayed among the first
choices.

Our prototype also suggests that better suggestions could (and should) be
obtained, in absolute. The way suggestions are obtained is indeed judged very
promising, as testified by reactions collected on individual suggestions. Suggest-
ing new indexing based on previous ones often successfully managed to bridge
the “indexing gap” between the two collections at hand, e.g., for “Perzische taal”
(Persian language) and “Iraanse taal- en letterkunde” (Iranian language and lit-
erature). In fact in some cases it provided with suggestions which evaluators
would not have anticipated, but that turned out to be correct.

Feedback for Improvement. As a token of interest, the evaluators strongly
suggested to have the same approach applied to other situations, i.e., not only
books indexed with Biblion. They hinted that the tool could also exploit meta-
data fields like the ones using the aforementioned NUR or other elements of
Fig. 1, such as the two lists of Persons as subjects and Corporations, which have
a strong connection with topical concepts. As a matter of fact, these extra sources
may be used in the first place to improve the performance of the Biblion-based
process, they confirmed us. Exploiting co-occurrences of a larger set of concepts
would allow to grasp some interesting patterns. But they might also be sufficient
to do useful suggestions when a Biblion concept is missing. Finally, showing their
awareness of the semantic connections between the different indexing systems
in their environment—and their potential value—they suggested that concepts
from other vocabularies than Brinkman could be suggested. In particular, the
UNESCO classification, when it is not yet given for a book, would be a useful
and easy target to aim at. Other elements of Fig. 1 such as the two lists of
Persons as subjects and Corporations, would be valuable too.

856 A. Isaac et al.

In fact, as they felt that suggestion process was similar to the way they perform
indexing themselves, our evaluators also brought ideas to investigate in the longer
term, to make that similarity even higher. For instance, using “negative rules”
such as “LTR:Zussen (sisters) → BTR:Zussen, unless KAR:roman is present”;
or setting up a more interactive suggestion process that actualises the list of
suggested Brinkman concepts once a first one has been selected.

A last issue, which evaluators felt was clearly more urgent to tackle, is the
incompleteness of the data that is used for the suggestions and of the set of
concepts that can be suggested. In many cases, they expected more suggestions
to be made, considering the available metadata that could be used as a learning
set—which they have rather extensive knowledge on. This can be explained by
our selecting only two thirds of the dually indexed books as a learning set. But
the original dump of records itself dates back to 2006, and is therefore relatively
obsolete. Similarly, the SKOS versions of the vocabularies which we exploit both
for the suggestion and the vocabulary services (esp. to allow users to search
for additional concepts using auto-completion) are mere snapshots. They were
already slightly outdated at the time of our experiment, which was detected
by indexers. Update mechanisms should be set up to exploit the most recent
data.

5 Conclusion

As regards our initial aims, the main results are:

– SW technology uptake: despite a few robustness issues that should be solved
in a next implementation phase, the main technical goals have been met.
Exploiting Semantic Web technologies, we could develop a prototype with
features both innovative and relevant from a domain perspective, and which
can be integrated into the KB production process.

– feasibility of the re-indexing approach: our evaluation showed strong inter-
est from the book indexers. The quality of the suggestions must clearly be
improved before they start using such a tool. However, the prototype has val-
idated the principle of using previous indexing to suggest new one, as well as
most of our design decisions. Further, the user study provided the develop-
ment team with clear and feasible solutions to start improving on the current
prototype, wrt. both interface and suggestion quality.

An important point that motivates the adoption of SW solutions for the case at
hand is their genericity and flexibility. We could well have developed a prototype
with similar functionality, using more traditional techniques, on top of the same
collections and KOSs. In fact, some of the key benefits of SW solutions, such
as relying on unambiguous identifiers for resources, are already available for use
in the current application context. However, our technological choice guarantees
high flexibility while not requiring much additional implementation effort—off-
the-shelf RDF stores can be deployed easily and accessed by simple scripts using
SPARQL. Especially, the prototype can be adapted so as to use other metadata

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 857

(and their associated KOSs) to derive more precise suggestion rules, which is
one of the most important directions for future improvement.

As a matter of fact, our tool could be seamlessly deployed with completely
different collections and vocabularies, provided the associated metadata is also
made available in the appropriate RDF format—which was one of the bottlenecks
we identified as we proceeded with our own data conversion effort. Considering
the growing interest of CH institutions for Open Linked Data6 developments,
e.g., [16,17,18], one can be optimistic about it. For instance, as shown in Fig 1,
collections that are indexed by the subject heading lists of the American Library
of Congress and the French National Library (resp., LCSH and RAMEAU) over-
lap with the KB one. Our prototype could be extended to have KB benefit from
the work that is being done in these libraries. In that specific case we could
even seek to exploit existing semantic mappings between the two aforementioned
KOSs, which SW techniques made much easier to publish and access.7

Indeed, we believe that an important step has been made at the KB to-
wards embracing the Open Linked Data vision. In the library domain, as in
many others, institutions will not adopt new technologies unless they have been
demonstrated with scenarios bringing clear value to them. Here, we have been
able to show that a library can benefit from having other libraries’ data being
accessible, even for a back-office, mission-specific process like indexing.

In turn, our prototype confirmed that there is value for KB making acces-
sible its own data and vocabularies. If other institutes could benefit from KB
descriptions in their own metadata creation process as well, this would boost the
productivity of the entire network. In fact, as reflected in Fig. 1, this experiment
was also the opportunity to identify in a clearer way:

– from a technical perspective, the various vocabularies that can be connected
at the semantic level to enhance the indexing process;

– from a more institutional perspective, the collection holders that form to-
gether a neighbourhood of peers in the network, which can benefit from the
virtuous circle mentioned in the previous paragraph.

This may drastically enhance synergies, and make common adoption of these
new technologies an even more realistic perspective. Other institutes in the KB
neighbourhood, such as the Dutch association of public libraries, are actually
already considering moving to RDF and SKOS [19]. The time is now relatively
near, when a library cloud such as the one in Fig. 1 will lend itself to treatments
that allow the participating institutions to benefit from each other’s efforts.

Acknowledgements. This work is funded by the NWO CATCH and EU
eContentPlus programmes (STITCH and TELPlus projects). We are especially
grateful to the team of KB indexers who participated the evaluation and
provided crucial feedback.

6 http://linkeddata.org/
7 See http://id.loc.gov and http://stitch.cs.vu.nl/rameau

http://linkeddata.org/
http://id.loc.gov
http://stitch.cs.vu.nl/rameau

858 A. Isaac et al.

References

1. Dublin Core Metadata Initiative: Dublin Core Metadata Element Set. DCMI Rec-
ommendation (2008), http://dublincore.org/documents/dces/

2. Miles, A., Bechhofer, S.: SKOS Reference. W3C Proposed Recommendation (2009),
http://www.w3.org/TR/skos-reference/

3. Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila,
M., Kettula, S.: MuseumFinland – Finnish Museums on the Semantic Web. Journal
of Web Semantics 3(2) (2005)

4. Wielemaker, J., Hildebrand, M., van Ossenbruggen, J., Schreiber, G.: Thesaurus-
based search in large heterogeneous collections. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 695–708. Springer, Heidelberg (2008)

5. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
6. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-

based ontology matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 253–266. Springer, Heidelberg (2007)

7. Wang, S., Isaac, A., van der Meij, L., Schlobach, S.: Multi-concept alignment and
evaluation. In: Proc. 2nd ISWC Workshop on Ontology Matching (OM 2007),
Busan, Korea (2007)

8. Buitelaar, P., Cimiano, P. (eds.): Ontology Learning and Population: Bridging the
Gap between Text and Knowledge. IOS Press, Amsterdam (2008)

9. Golub, K.: Automated subject classification of textual web documents. Journal of
Documentation 62(3), 350–371 (2006)

10. Gazendam, L., Malaisé, V., de Jong, A., Wartena, C., Brugman, H., Schreiber, G.:
Automatic annotation suggestions for audiovisual archives: Evaluation aspects. J.
Interdisciplinary Science Reviews 34(2-3), 172–188 (2009)

11. Isaac, A., Wang, S., Zinn, C., Matthezing, H., van der Meij, L., Schlobach, S.: Eval-
uating thesaurus alignments for semantic interoperability in the library domain.
IEEE Intelligent Systems 24(2), 76–86 (2009)

12. OCLC: Kenmerkcodes in titelrecords,
http://oclcpica.org/?id=13&ln=nl&par=p-kmc (in Dutch, accessed in August
2009)

13. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF. W3C Rec-
ommendation (2008), http://www.w3.org/TR/rdf-sparql-protocol/

14. Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P., Stuckenschmidt, H., Svab, O.,
Svatek, V., van Hage, W.R., Yatskevich, M.: Results of the Ontology Alignment
Evaluation Initiative 2007. In: Proc. 2nd ISWC Workshop on Ontology Matching
(OM 2007), Busan, Korea (2007)

15. Schopman, B.A.C., Wang, S., Schlobach, S.: Deriving concept mappings through
instance mappings. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS,
vol. 5367, pp. 122–136. Springer, Heidelberg (2008)

16. Malmsten, M.: Making a Library Catalogue Part of the Semantic Web. In: Proc.
International Conference on Dublin Core and Metadata Applications (DC 2008),
Berlin, Germany (2008)

17. Summers, E., Isaac, A., Redding, C., Krech, D.: LCSH, SKOS and Linked Data.
In: Proceedings of the International Conference on Dublin Core and Metadata
Applications, Berlin, Germany (2008)

http://dublincore.org/documents/dces/
http://www.w3.org/TR/skos-reference/
http://oclcpica.org/?id=13&ln=nl&par=p-kmc
http://www.w3.org/TR/rdf-sparql-protocol/

Vocabulary Matching for Book Indexing Suggestion in Linked Libraries 859

18. Neubert, J.: Bringing the “Thesaurus for Economics” on to the Web of Linked
Data. In: Proc. WWW Workshop on Linked Data on the Web (LDOW 2009),
Madrid, Spain (2009)

19. Vereniging Openbare Bibliotheken: Informatiearchitectuur Openbare Bibliotheken,
http://www.debibliotheken.nl/content.jsp?objectid=22642 (in Dutch, 2008)

Appendix

An online annex to this paper (http://www.few.vu.nl/~aisaac/iswc2009/)
features the 1st and 2nd user study questionnaires and the results of the prelim-
inary automatic evaluation of suggestions using existing dually indexed books.

http://www.debibliotheken.nl/content.jsp?objectid=22642
http://www.few.vu.nl/~aisaac/iswc2009/

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 860–875, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Semantic Web Technologies for the Integration of
Learning Tools and Context-Aware Educational Services

Zoran Jeremić1, Jelena Jovanović1, and Dragan Gašević2

1 FON-School of Business Administration, University of Belgrade, Serbia
2 School of Computing and Information Systems, Athabasca University, Canada
jeremycod@yahoo.com, jeljov@gmail.com, dgasevic@acm.org

Abstract. One of the main software engineers’ competencies, solving software
problems, is most effectively acquired through an active examination of learn-
ing resources and work on real-world examples in small development teams.
This obviously indicates a need for an integration of several existing learning
tools and systems in a common collaborative learning environment, as well as
advanced educational services that provide students with right in time advice
about learning resources and possible collaboration partners. In this paper, we
present how we developed and applied a common ontological foundation for
the integration of different existing learning tools and systems in a common
learning environment called DEPTHS (Design Patterns Teaching Help System).
In addition, we present a set of educational services that leverages semantic rich
representation of learning resources and students’ interaction data to recom-
mend resource relevant for students’ current learning context.

Keywords: Semantic web, ontologies, collaborative learning, project-based
learning, software patterns, context-awareness.

1 Introduction

The major concern of today’s software engineering education is to provide students
with the skills necessary to integrate theory and practice; to have them recognize the
importance of modeling and appreciate the value of a good software design; and to
provide them with ability to acquire special domain knowledge beyond the computing
discipline for the purposes of supporting software development in specific domain ar-
eas. In addition, it is essential that students learn how to exploit previous successful
experiences and knowledge of other people in solving similar problems. This knowl-
edge about successful solutions to recurring problems in software design is also
known as software design patterns (DPs) [1].

Apart from learning individual DPs and the principles behind them, students
should learn how to understand and apply patterns they have not seen before, how to
integrate different DPs, and how to use this knowledge in real-life situations.

This indicates a rising need for the social constructivist approach in software
engineering education. In particular, an active learning paradigm is needed which rec-
ognizes that student activity is critical to the learning process. The basic philosophy
of active learning paradigm [2] is to foster deep understanding of subject matter by

 Semantic Web Technologies for the Integration of Learning Tools 861

engaging students in learning activities, not letting them be passive recipients of
knowledge. Moreover, the students are involved in the knowledge construction and
sharing through social interactions in the given learning context.

Following this paradigm, we identified several requirements that a learning envi-
ronment for software DPs needs to meet [3]:

1. Enable students to learn at the pace and in a place that best suits them.
2. Integrate software development tools that would enable students to experience pat-

terns-based software development in the context of real-world problems.
3. Include collaborative tools such as discussion forums, chat, and tools for software

artifacts exchange.
4. Enable seamless access to online repositories of software DPs and communities of

practice that will provide students with right-in-time access to the relevant online
resources, that is, to the resources on software DPs relevant for the problem at
hand.

5. Provide tools for informing teachers about students learning activities, their usage
of learning content and other valuable information that could help them improve
the learning content and/or the chosen teaching approach.

Even though the above mentioned kinds of tools do exist today, they are not used in
an integrated way [4]. Instead, current approaches to learning software patterns are
based on individual use of these tools. The major problem with this ‘fragmented’ ap-
proach is in its lack of means for enabling exchange of data about the activities that
students performed within individual learning tools and learning artifacts they have
produced during those activities. Besides, with such an approach it is very hard to
provide support for context-aware learning services and offer personalized learning
experience to students.

In this paper we describe an integrated learning environment for software DPs
called DEPTHS (Design Patterns Teaching Help System) [3]. DEPTHS integrates an
existing Learning Management System (LMS), a software modeling tool, diverse col-
laboration tools and relevant online repositories of software DPs. The integration of
these different learning systems and tools into a common learning environment is
achieved by using the Semantic Web technologies, ontologies in particular. Specifi-
cally, ontologies enabled us to formally represent and merge data about students in-
teractions with the systems and tools integrated in DEPTHS. On top of that data, we
have built context-aware educational services that are available throughout the
DEPTHS environment. These services enrich and foster learning processes in
DEPTHS in two main ways:

− recommendation of appropriate learning content (i.e., Web page(s), lessons or dis-
cussion forum threads describing software DP). We can recommend fine-grained
learning resources, and make the recommendations aware of the recognized learn-
ing needs.

− fostering informal learning activities by bringing together students and experts that
are dealing with the same software problem or have experience in solving similar
problems.

862 Z. Jeremić, J. Jovanović, and D. Gašević

2 Scenario of Use

Effective learning of software DPs requires a constructive approach to be applied in
the teaching process. It is very important that students experience software develop-
ment and the application of DPs on real-world examples, in order to develop a deep
understanding of the basic principles behind them and to learn how to apply them in
different situations. Having this in mind, we have explored a number of theories and
research fields in the area of project-based and computer supported collaborative
learning. Based on the guidelines for teaching software engineering to students [5] [6]
and our own teaching experience, we have identified the following three as the most
important for teaching/learning software DPs: Learning through Design, Project-
based learning (PBL) and Engagement theory. More details on pedagogical aspects of
this work could be found at [7]. In what follows, we present a usage scenario which
illustrates how these theories are applied for learning software DPs in DEPTHS.

A typical scenario for learning software DPs with DEPTHS assumes a project-
based learning approach with collaborative learning support (Fig. 1). In particular, a
teacher defines a specific software design problem that has to be solved in a work-
shop-like manner by performing several predefined tasks: brainstorming, creating and
submitting solutions, evaluating solutions etc.

First, a student is asked to present his ideas about possible ways for solving the
problem under study and to discuss and rate his peers’ ideas. In order to get the re-
quired information for performing this task, he searches online repositories about soft-
ware DPs and the related course content. DEPTHS makes this search more effective by
providing semantically-enabled context-aware learning services for finding related
online and internally produced resources (Fig. 1B). Moreover, to get some initial direc-
tions on the performing task, the student uses semantically-enabled peers finding ser-
vice (Fig. 1A) to find people who have shared interests and are engaged in similar
problems. As we explain in the following section, both kinds of services are enabled by
leveraging formally represented semantics of the learning context and learning re-
sources (both online resources and those internally produced). Afterwards, the student
has to find associations between the gained knowledge and the problem that has to be
solved and to propose potential solution strategies. Later, consultations are directed at
confirming the idea and refining it to accommodate criticisms.

Previous works on similar problems could be useful for students as they give them
opportunities to learn from positive examples; and provide them with new facts, infor-
mation, and an idea how to apply the same approach (design patterns) in a similar
situation. Moreover, exploring previous works provokes critical thinking as it helps the
student think about alternatives along with their advantages and disadvantages.
DEPTHS context-aware learning services for discovery of relevant learning resources
(both external and internal) greatly facilitate this task. These services are powered by
semantic annotations of learning resources: ontologies enable capturing and formal
representation of the semantics of the content of those resources, as well as the context
of their creation and usage (see Section 3).

Having acquired the required knowledge, students should complete the deliverable
using the software modeling tool. This learning activity requires students to external-
ize their knowledge, to analyze possible solutions and to provide a design rationale.

 Semantic Web Technologies for the Integration of Learning Tools 863

After completing the project, students are asked to evaluate their own project, as
well as to perform evaluation of each other’s work. Students reflect critically on their
own and others’ contributions, and acquire knowledge about other possible solutions.
This helps them recognize possible improvements in their own solutions. DEPTHS
uses ontologies to capture the semantic of the students’ evaluations, so that they can
be used for recommendations as well as feedback provisioning.

Fig. 1. An example learning scenario with DEPTHS: problem-based learning with collaborative
learning support

All students’ projects are published and publicly available; they are stored together
with contextual semantic-rich metadata which facilitates their discovery and reuse.
Students may be anxious that their work will be so visible, but it does seem to push
them along to polish their projects. Moreover, students can learn from each other as
portions of their projects became available before the final due date.

3 The DEPTHS Learning Environment

DEPTHS integrates existing, proven learning systems, tools and services in order to
provide an effective collaborative environment for teaching and learning software
DPs (Fig. 2). In particular, DEPTHS currently integrates an LMS (Fig. 2A), a soft-
ware modeling tool (Fig. 2B), a feedback provisioning tool for teachers (Fig. 2C), a
collaborative annotation tool (Fig. 2D), and online repositories of software patterns

864 Z. Jeremić, J. Jovanović, and D. Gašević

(Fig. 2E). This integration is achieved through a flexible underlying ontology-based
framework called LOCO (Fig. 2F).

3.1 The Ontological Foundation of DEPTHS

LOCO (Learning Object Context Ontologies) [4] is a generic framework capable of
formally representing all particularities of the given learning context: the learning ac-
tivity, the learning content that was used or produced, and the student(s) involved.
Accordingly, the framework integrates a number of learning-related ontologies, such
as learning context ontology, a user model ontology, and domain ontologies. These
ontologies allow one to formally represent all the details of any given learning con-
text, thus preserving its semantics in machine interpretable format and allowing
for development of context-aware learning services. The LOCO ontologies are
developed by following the Linked Data best practices (http://www4.wiwiss.
fu-berlin.de/bizer/pub/LinkedDataTutorial/). In particular, linkages were established
with well-known Web ontologies such as the Dublin Core vocabulary, FOAF (Friend-
Of-A-Friend, http://xmlns.com/foaf/0.1), and SIOC (Semantically Interlinked Online
Communities, http://sioc-project.org). All the ontologies of this framework are pub-
licly accessible (http://iis.fon.rs/LOCO-Analyst/loco.html).

DEPTHS currently makes use of two ontologies of this framework Learning
Context ontology and domain ontology, that is used for representing the domain of
software patterns. The Learning Context ontology allows for semantic representation
of the data about a student’s overall interactions with learning content and other stu-
dents during different learning activities. Based on this data, DEPTHS can perform
context-aware retrieval of resources on software DPs from online repositories and its
own repository of software artifacts (which may also contain artifacts produced by
other students and shared by the community). It can also identify and draw students’
attention to the related threads in discussion forums, as well as identify peers that
could help in the given learning situation (i.e., learning context). This ontology was
extended to allow for an unambiguous representation of learning contexts specific to
the systems, tools and services that DEPTHS integrates (the ontologies are available
at the project’s website: www.learningdesignpatterns.org).

Activities are very important part of the learning process in DEPTHS as they lead
to realization of learning objectives. Examples of such activities are reading lessons,
visiting online pages, participating in a workshop or doing an assignment, solving de-
sign problems, quizzing and collaborating with other participants. In the Learning
Context ontology, some of these activities are recognized and grouped as three basic
types of activities: reading, doing an assessment and collaborating. However, some
specific types of activities and events typically occurring within software modeling
tools were not supported by the formalisms of the LOCO’s Learning Context ontol-
ogy. Accordingly, we extended this ontology with a set of classes and properties that
enable collecting data about user’s activities in software development tools, namely
Brainstorming, Submitting and Assessing.

Another important concept determining any particular learning context is content
item, which represents any kind of content available in a learning environment (e.g. a
lesson, course, question, discussion forum post). We have extended the ContentItem
class with three concepts relevant for learning software DPs, namely, DesignProblem,

 Semantic Web Technologies for the Integration of Learning Tools 865

Task and Diagram (Fig. 3). The DesignProblem class identifies a software problem
defined by a teacher and presents the basis for project-based learning in the DEPTHS
environment. Students are expected to suggest their own solutions of this problem by
producing a UML diagram(s) as a graphical representation of the solution. To allow
for formally representing students software models, we have introduced the Diagram
class as a subclass of ContentItem. The Task class represents a task that a teacher can
define in the context of solving a specific software design problem. We have modeled
them as subclasses of the Task class (Brainstorm, Submission and Assessment).

Fig. 2. DEPTHS architecture

Fig. 3. The extension of the Learning Context ontology for the DEPTHS environment

866 Z. Jeremić, J. Jovanović, and D. Gašević

Since DEPTHS is devised as an environment for teaching/learning software pat-
terns, it leverages an ontology of software patterns as its domain ontology. DEPTHS
uses this ontology to annotate semantically relevant online resources and extract meta-
data that is subsequently used for finding resources appropriate for a student’s current
learning context. It also annotates semantically the products of learning activities, such
as chat messages or discussion posts. By leveraging the semantic annotations,
DEPTHS can easily connect the products of learning activities with online learning re-
sources, and use this information to further improve its context-aware support by being
able to mash-up knowledge scattered in different activities.

Rather than developing new design pattern ontology from scratch, we decided to
(re)use an existing ontology. Among the available ontologies for the design patterns
domain [8][9][10][11], we have chosen the set of ontologies suggested in [11] to
serve as the domain ontology of the DEPTHS framework. Comparing these with the
other ontologies, we found that they provide a very intuitive and concise way to de-
scribe DPs and patterns collections, and to offer more information on usability knowl-
edge and the contextual factors that impact this knowledge domain. This approach to
pattern representation has the ability to federate distributed pattern collections. These
ontologies include a set of pattern forms (e.g., Coplien Form [12], Gang of Four Form
[1]) arranged in an inheritance hierarchy which can be easy extended with additional
pattern forms (Fig. 4).

Fig. 4. Domain ontology for describing software design patterns

3.2 The Architecture of DEPTHS

The LOCO ontologies are used as the basis for the storage and exchange of data
among DEPTHS components. In particular, these ontologies underlie two DEPTHS
repositories (Fig. 2J):

Repository of interaction data stores data about students’ interaction with learning
content as well as their mutual interactions in the DEPTHS learning environment. The
interaction data are stored in the form of RDF triples compliant with the extended
Learning Context ontology of the LOCO framework (e.g., {ContentItem}
loco:hasUserEvaluation {UserNote}).

 Semantic Web Technologies for the Integration of Learning Tools 867

Repository of LO metadata stores semantic metadata about all kinds of learning ob-
jects (LO) used in the courses under study. This metadata formally define the seman-
tics of the learning content the metadata is attached to. They are stored as RDF triples
compliant with the extended Learning Context ontology and the domain ontology of
software DPs (e.g., {ContentItem} loco:hasDomainTopic {dp:DesignPattern}).

DEPTHS also includes the Repository of design artifacts which uses open standard
formats to store software artifacts created by students. The students’ artifacts are
stored in two formats: XML Metadata Interchange (XMI) and Scalable Vector
Graphic (SVG). The former facilitates storing UML diagrams in the format suitable
for later reuse in any software modeling tool, whereas the latter is suitable for content
presentation in a Web browser.

Since different learning systems, tools and services use different formats for repre-
senting and storing interaction data, DEPTHS integrates Data Mapping Module (Fig.
2G) which performs the mapping of those native data formats (e.g., the exchanged
chat messages stored within the LMS’s database, using a proprietary database
schema) into RDF triples compliant with the LOCO’s Learning Context ontology
(e.g., {ChatMessage} loco:sentBy {User}). The resulting (RDF) data is stored in the
Repository of interaction data. Data mapping is performed as a two step process: the
initial mapping, that is performed during the initialization of the system; and the real-
time mapping that is performed throughout each learning session in order to keep the
semantic repository updated (with data about the interactions occurring during that
session). The initial mapping is performed using D2RQ (http://www4.wiwiss.fu-
berlin.de/bizer/D2RQ/spec/) – an open source platform that facilitates the mapping of
relational databases into ontological models. This way a lot of valuable data that re-
sided in the LMS’ database prior to the DEPTHS initialization are made accessible to
DEPTHS in the form of RDF statements. Real-time mapping is based on events in the
DEPTHS environment (e.g., posting a message in a discussion forum thread, reading
chat message). DEPTHS uses Sesame API (http://www.openrdf.org/) to create RDF
statements (compliant with the LOCO’s Learning Context ontology) for each event
and stores them in the Repository of interaction data.

3.3 Educational Services in DEPTHS

The next layer in the DEPTHS architecture consists of learning support services, namely
Semantic Annotation and Indexing Service and Context-aware Learning Services.

Semantic Annotation and Indexing Service (Fig. 2H) is used for the semantic an-
notation and indexing of documents from publicly accessible repositories of DPs, as
well as internal content created by students and teachers (e.g., exchanged messages,
and assignments). Since all these resources are used by Context-aware Learning
Services to help students in specific learning contexts, DEPTHS needs additional
information about them in order to use them in an appropriate way. Specifically, the
most important information for DEPTHS regarding these resources is what each
specific resource is about and how relevant it is for a specific DP. However, this in-
formation is not directly available. Having analyzed many online repositories of
DPs (e.g., Portland Pattern Repository, http://c2.com/ppr/; Hilside patterns,
http://hillside.net/patterns/; etc.), we found that the majority of them contains mass
of documents, but only a few of those documents describe a specific DP. In addi-
tion, most of relevant documents describe in detail exactly one DP (we refer to it as

868 Z. Jeremić, J. Jovanović, and D. Gašević

dominant pattern throughout the section), but also mention many other DPs (e.g., in
the form of links to other documents and related DPs). Moreover, one particular DP
is often discussed in many different documents. In order to make this crowd of
documents useful for learning purposes, DEPTHS has to analyze how relevant each
document is for learning a specific DP, that is, it has to perform semantic annotation
and indexing of these documents.

Having tested many of the available tools for semantic annotation, we decided to
use the KIM framework (http://www.ontotext.com/kim/index.html), that provides APIs
for automatic semantic annotation of documents. Semantic annotation in KIM is based
on the PROTON (http://proton.semanticweb.org/) ontology which we have extended
with the ontology of software patterns (see Section 3.1) in order to make KIM aware of
the concepts from the domain of software DPs. In that way, we were able to use KIM
annotation facilities to automatically annotate documents from an online repository. To
make documents from an online repository available to KIM for processing, DEPTHS
uses a Web crawler that traverses through the structure of the online repository,
collects URLs of all its documents and sends them to the KIM annotation facilities.

Semantic annotation of the internally produced content (e.g., chat messages, forum
messages and ideas) is performed in the similar way, immediately after the user cre-
ates a content unit (i.e., following the event of submitting a new content unit to the
system). Additionally, each recognized term (DP label) is changed to the hyperlink,
used for launching web-recourse and internal content finding services.

Based on the semantic (meta)data generated using KIM, DEPTHS is aware of
the DPs mentioned in each document. However, in order to find out what the most
relevant DP for a given document is, and what the most relevant document is for a
specific DP in the whole corpus of documents, additional indexing is performed.

The index data for each document contains two values: the dominant DP (i.e., con-
cept from the DP ontology) and its accompanying relevance value. To find the domi-
nant software DP in each document (i.e., what the document is about), DEPTHS uses
the term frequency-inverse document frequency (TF-IDF) [13], which is a proven sta-
tistical measure used in information retrieval to evaluate how important a word is to a
document in a collection. DEPTHS uses a document’s semantic annotations to create a
collection of all software DPs mentioned in that document. Subsequently, it checks
how relevant the document is for each DP found in it in order to find the dominant DP.
If the TF-IDF value for the dominant DP is lower than the predefined threshold,
DEPTHS eliminates this document as not enough relevant for any specific DP. As the
result of this process, we got a set of documents, each of which describes one DP. Ad-
ditionally, for each of the indexed documents (i.e., those whose dominant DP pass the
threshold), we also capture the relevance value. The relevance value is computed as a
cosine similarity between the TF-IDF value of a document’s dominant DP (concept)
and the vector of the TF-IDF values of the DPs (concepts) discovered while the docu-
ment was semantically annotated. Thus, we can use this relevance value in the process
of ranking. That is, the data about what each document is about (i.e., concept of the
dominant pattern) and how relevant it is for a specific DP (i.e., relevance value), are
stored in the Repository of LO metadata, and used later by the Web resource finding
service for the recommendation of Web resources.

Context-aware learning services. (Fig. 2I) are accessible to all systems and tools
integrated in the DEPTHS environment and are exposed to end users (students) as
context-aware learning features. They include (but are not limited to):

 Semantic Web Technologies for the Integration of Learning Tools 869

Web resource finding. Based on the metadata provided by the Semantic Annotation
and Indexing Service, this service generates a list of recommended Web resources from
publicly accessible repositories of software DPs. The service gets activated when a stu-
dent selects a hyperlink to a domain topic (i.e., a topic related to software DPs) available
within different kinds of learning content (e.g., lessons, chat messages and project de-
scriptions). These hyperlinks result from the semantic annotation of the learning content
done by the Semantic Annotation and Indexing Service. Afterward, the service sends a
query to the Repository of LO metadata to extracts information about all Web resources
that are relevant for the desired domain topic (i.e., DP), as well as their relevance values.
Additionally, this service makes use of students estimations of the resource’s relevance
for the current DP (each time a student visits a suggested Web resource he is asked to
rate its relevance for the given DP). Students’ positive and negative ratings affect the re-
source’s overall rating according to the influence factor (value between 0 and 1) defined
by the teacher or the system administrator.

Discovery of relevant internally produced resources. This service suggests internally
created resources (e.g., discussion threads, brainstorming notes, and project descrip-
tion) that could be useful for a student to solve a problem at hand in the given learning
context. The computation of relevance is done in a similar manner to the one above de-
scribed for external, Web resources.

Fig. 5. Factors affecting estimation of potential collaborators’ competences in DEPTHS

Experts, teachers and peers discovery. Based on the current learning context, this
service suggests other students or experts as possible collaborators. Collaborators are
selected and sorted using an algorithm which considers their competences on three
different levels (Fig. 5): same content (i.e., current software problem), similar or
related learning content (i.e., similar software problem) and broader content (i.e.,
software problem in the same course). Estimation of a peer’s competence (C) on each
level is performed through assessing three types of competence indicators:

870 Z. Jeremić, J. Jovanović, and D. Gašević

− participation (Cp) in learning activities (e.g., brainstorming, submitting or assessing
peers’ works). Each activity has different impact factor on the system’s estimation
of the student’s competences. This factor is defined in the system itself, but could
be changed by the teacher.

− knowledge level (Ck) estimated by the teacher and obtained through the peers’
evaluations, including projects evaluations and idea ratings. However, not all rat-
ings have the same influence on the knowledge level estimation. For example, a
high mark given by a student with high competences on the given topic has more
impact on the final knowledge level appraisal than a high mark given by a student
with average or low competences.

− social connections (Csc) with the peer asking for help - the stronger the social con-
nection with a specific person, the more suitable that person is for the help provi-
sion [14]. We believe that an already appointed social connection could be much
more successful and effective than new connections with people one does not
know. Social connections among students are mined from their interaction data
(represented in accordance with the Learning Context ontology and stored in the
DEPTHS’s Repository of interaction data). For newcomers we are using their
FOAF profiles, if available. Otherwise, this indicator is not considered.

All this data is collected through the queries performed on both DEPTHS’ semantic
repositories. Each type of competence indicator has different influence on the overall
competence which depends on the predefined weight factor (WF) assigned to it
(default systems’ values could be changed by the teacher). To compute the overall
competence of a peer, we use the following formula:

3
scsckkpp

total

WFCWFCWFC
C

⋅+⋅+⋅
=

where WFp + WFk + WFsc = 1, and 0 ≤ WFp, WFk, WFsc ≤ 1.

Context-based semantic relatedness. This service is used by all other services, as it al-
lows for: i) computing context-based semantic relatedness between tags that students
define and/or use in the given learning contexts [15]; ii) connecting students’
tags with appropriate concepts of the domain ontology (i.e. disambiguation of the tags
with the domain concepts); iii) resolution of students’ queries containing both, tags
and domain concepts relevant for the given learning context. This service connects
tags with the concepts of the domain ontology as well as resources annotated with
these concepts and stored in the DEPTHS semantic repositories (Repository of LO
metadata and Repository of interaction data). That way the system selects only appro-
priate tags to show in the given moment based on the current learning context, and
connects these tags with appropriate domain concepts related to it. This service is cur-
rently in its development stage and uses context-based semantic relatedness measure
described in our previous work [15].

3.4 DEPTHS Implementation

The DEPTHS framework proposed in this work is a generic one. It is not dependent
on any specific learning system/tool. However, for the purpose of our research we

 Semantic Web Technologies for the Integration of Learning Tools 871

have implemented DEPTHS by leveraging open-source solutions and extending them
with Semantic web technologies. Specifically, we have integrated Moodle LMS
(http://moodle.org), ArgoUML software modeling tool (http://argouml.tigris.org),
OATS (Open Annotation and Tagging System) tool (http://ihelp.usask.ca/OATS) for
collaborative tagging and highlighting and LOCO-Analyst tool to provide teachers
with feedback regarding students’ activities [15]. Moreover, we use semantic annota-
tion services of the KIM framework (http://www.ontotext.com/kim) and the Sesame
server (http://www.openrdf.org) for semantic repositories. In order to provide students
with context-aware educational services of the DEPTHS framework, we have ex-
tended both Moodle and ArgoUML so that they can make use of these services.
Moreover, we have developed a Moodle module that supports project-based collabo-
rative learning, that is, it supports and integrates in DEPTHS several kinds of collabo-
rative activities such as brainstorming, submitting and assessing projects. Coupled
with ArgoUML and educational services in DEPTHS it provides effective learning of
software DPs, as described in Section 3 (screenshots used in Fig 1 are taken from this
implementation).

4 Evaluation

The evaluation of DEPTHS was conducted in February 2009, in the context of a course
that the first author of this paper taught at the Department of Computer Science of
Military Academy in Belgrade, Serbia. DEPTHS was evaluated with a group of 13
students of the fifth year of the computer science program who took part in our course
on software development. The students already had some elementary knowledge in the
domain of software DPs, but they were not familiar with the particular software DPs
used in this experiment (Facade, Adapter, Strategy, Composite, Visitor and Decorator).

The students were divided into 4 groups (3 groups with 3 students and 1 group with
4 students), based on the teacher’s subjective opinion about their knowledge in the
domain of software development and their previous results in the courses related to
software engineering. The size of the groups is based on our belief and teaching ex-
perience that work in small size groups (3 or 4 students) is a necessity for effective
education of software engineers.

The aim of the evaluation was to determine how effective DEPTHS is for learning
DPs. Specifically, we wanted to evaluate the perceived usefulness of the use of en-
gagement theory in software engineering education. Moreover, we wanted to check if
active students’ involvement in real world problems and the employment of context-
aware educational services could ensure a more effective way of imparting knowledge
in the domain of software development.

Before the experiment started, a demonstration of DEPTHS functionalities along
with a training using a task similar to the one used in the experiment, were performed
with students. Each group was assigned a different task (i.e., a software design prob-
lem). Students were asked to suggest solutions and evaluate each others’ solutions
within one week period of time. Actually, project organization used in the experiment
was based on the learning workflow described in Section 3.

We used an interview to collect data about the students’ satisfaction with and atti-
tudes towards learning with the DEPTHS system. The interview was also supposed to
reveal the students’ perceptions regarding the effectiveness of learning with DEPTHS.

872 Z. Jeremić, J. Jovanović, and D. Gašević

The questions were divided into three sections based on the type of information we
were interested in. The first section (14 questions) gathered data regarding the stu-
dents’ previous experience with computer-assisted learning. The questions of the sec-
ond section (15 questions) were related to the DEPTHS system and the third section
(11 questions) was aimed at evaluating the learning program on software DPs offered
by DEPTHS system. Most of the questions (33) were multiple-choice questions with 5
possible answers, ranging from 1 (most negative) to 5 (most positive). There were 6
open-ended questions and 1 combined (multiple choice and open-ended).

We used three methodologies to analyze the results gained in this experiment.
First, we analyzed the results of the overall corpus of the students using standard de-
scriptive statistic instruments such as frequency, mean, median, and average. The sec-
ond kind of analysis consisted of comparing the groups of students that were derived
by splitting the results data based on the students’ answers on the questions from the
first section of the interview. Finally, we used Pearson’s chi-square test to find if there
is significant association between different variables. We used SPSS tool
(www.spss.com) to process data and analyze the results.

Having analyzed the results, we found that the majority of students (84.62%) have
experience in using Internet to find relevant information, collaborate with colleagues
on solving common tasks (53.85%) and use tools for message exchange and discus-
sion (84.62%). However, they have far less experience with online learning tools
(only 23.07% are familiar with e-learning tools) and using the Internet to find peers
for solving problems (only 38.46% answered positively).

The DEPTHS system received high marks from the students. Majority of them
(53.85%) reported they have learned as effectively as in traditional way, and
30.77% reported that they have learned more than in traditional way. The students
reported it was intuitive and very easy to use (76.92%), but they also have reported
some technical issues. These issues were caused by the software bug that caused
problems in uploading UML diagrams to the repository, and have been resolved one
day after the beginning of the evaluation. We believe that this issue could have af-
fected students’ confidence in the system. The students felt educational services
provided in DEPTHS are very helpful: Web resource recommending service -
92,30%; course content recommending service – 84,61%; and peers recommending
service – 76,92%. They also thought that the activities provided within the tasks
considerably contribute to the learning process (brainstorming – 76.92%, and
evaluating each other’s works – 100%).

Having analyzed the trends of the different groups of students based on their an-
swers on the first group of questions, we found that all students that have taken a
course offered through an LMS consider educational services provided in DEPTHS as
very useful. Students that have used computers to find relevant collaborator for domain
that they are currently working on, have much more positive attitude for brainstorming
tool in DEPTHS and learning from other students ideas. There is no significant differ-
ence between those students who are familiar with e-learning and those who are not
with respect to their experience of learning in DEPTHS environment. However, it is in-
teresting to notice that all students who are not familiar with e-learning gave the high-
est mark for educational service for Web pages recommending.

We have identified 27 variables’ pairs that have significant association through the
use of Pearson’s chi-square (we used standard level of significance p<0.05). For ex-
ample, there is a significant association between the students’ answers on the question

 Semantic Web Technologies for the Integration of Learning Tools 873

if they used tools for sending messages and discussions, and the question if they think
that the other students’ ideas were useful. Many useful conclusions could be drawn
from these associations about how close various variable impacts might be on student
achievement. For example, we found that students’ satisfaction with the educational
services for recommending relevant Web pages and course content affected their lat-
ter satisfaction with their learning results using this program. We believe that this as-
sociation is strongly related with the students’ level of adoption of these services as
very important and useful part of a learning system. However, the deeper analysis of
these results is out of scope of this paper.

5 Related Work

The framework proposed in this paper is related to two favored research fields: col-
laborative learning in the domain of software engineering and context-aware learning.
Even though extensive work has been done in both research fields, to the best of our
knowledge there were very few attempts in developing collaborative learning envi-
ronments that support knowledge creation and sharing through the collaborative learn-
ing process based on the active learning principles.

In [16], the authors suggested an approach similar to the one presented in this
work. They have developed MICE – a learner-centered platform for regulating learn-
ers’ programming styles when studying a programming language using an integrated
development environment. It also integrates an LMS and a set of tools for communi-
cation and collaboration among users. Even though MICE follows a similar approach
to the integration of existing tools, it still lacks context-aware educational support
(e.g., recommending online resources relevant for the given learning context) that is
available in our framework. Besides our framework promises additional support for
collaborative learning as it offers social tagging support.

One of the main objectives of the EU project APOSDLE is to develop a system
that would be able to provide knowledge workers with learning resources relevant
for their present work context [17]. In particular, based on the immediate work con-
text of a user, the system should identify his/her missing competencies and learning
needs and suggest appropriate learning resources. These learning resources are cre-
ated on-the-fly from a variety of resources (documents, videos, expert profiles, and
so on) already stored in the workplace and may be in the form of learning material or
suggestions to contact experts and /or colleagues. The system’s functionality is based
primarily on its knowledge base that stores an integrated representation of various
kinds of knowledge (e.g., domain, task, and instructional). Knowledge integration
and advanced search and retrieval capabilities (associative information retrieval) are
enabled by the Semantic Web technologies. Obviously, this approach has a lot
of commonalities with the one we suggested in this paper. Nonetheless, having
grounding our approach in pedagogical theories and best practices of collaborative
learning, we can expect to provide students with better learning experience.

An e-learning framework proposed in [18] supports a peers’ recommendation
based on the student’s context. Student’s context is defined as the result of the interac-
tion of three key elements: the knowledge potential, the social proximity and the
technical access. Comparing to DEPTHS approach of peers’ recommendation, this
approach is advantageous as it considers technical context that includes factors that

874 Z. Jeremić, J. Jovanović, and D. Gašević

may influence e-learning such as technical media or time proximity. However, unlike
the approach proposed in DEPTHS, this approach does not consider the influence of
student’s participation in the learning activities on his competences to help other stu-
dents. Another approach [19] suggests use of ontologies to support online profes-
sional communities. By constructing a semantic model of the content, the interactions
and the structure of the community, the activities of an online professional community
can be supported. However, our work goes a step further and uses ontologies in con-
crete learning contexts.

Another related research work is going on within the recently started ENSEMBLE
project (www.ensemble.ac.uk). The project aims at exploring the potential of the
emerging Semantic Web to support teaching in complex and rapidly evolving fields
where case-based learning is the pedagogical approach of choice. The main idea is to
combine key elements of digital repositories, semantic web technologies, and features
of ‘social software’ in order to allow for reuse through reconfiguration, adaptation,
and collective action. However, this project is still in its early research stage.

6 Conclusions

Collaborative learning through project-based work helps students reflect on their
learning experiences in ways that promote abstraction from experience, explanation of
results, and understanding of conditions of DPs applicability in real world situations;
it also provides the experience of working in software development teams. Following
this paradigm, we have developed a learning environment for software DPs which
leverages semantic technologies to integrate several existing learning systems and
tools, and provide context-aware educational services that together allow for effective
learning of software DPs. Our present implementation and first evaluation results
convince us that this environment could significantly contribute to effective teaching
and learning of DPs. The use of Semantic Web technologies greatly facilitated the de-
velopment process. In particular, by using a common RDF-based data model as an
exchange mechanism among content and (interaction) data providers (i.e., learning
systems/tools integrated within DEPTHS), we enabled seamless integration of hetero-
geneous data and content formats different providers rely upon. Moreover, by lever-
aging the integrated data and the semantics of the interaction data model (i.e., the
Learning Context ontology) we developed educational services that enable fast and
effective search for relevant resources and possible peers.

We are encouraged with the results of the initial evaluation study that show very
positive students’ attitude toward learning in DEPTHS. Students’ perception of sys-
tem’s usefulness is valuable and encouraging for our further research. However, the
results we got still do not have a statistical power, as the participants’ sample was too
small. Further research is required that would include sufficient participants to ensure
the general applicability of the findings. In addition, in our future work we intend to
do a more precise evaluation of each specific educational service as well as a quanti-
tative evaluation of the students’ learning effectiveness. Moreover, beside the support
for working with text-based and UML based learning objects, our intention for future
work is to extend the system to support other non text-based learning objects (e.g.
Flash animations, videos, graphics). We hope this will make the DEPTHS framework
useful in broad range of domains.

 Semantic Web Technologies for the Integration of Learning Tools 875

References

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

[2] Warren, I.: Migrating to a Teaching Style that Facilitates Active Learning. CiLTHE Stage
1 Dissertation, Lancaster University (2002)

[3] Jeremić, Z., Jovanović, J., Gasević, D.: Towards a Semantic-rich Collaborative Environ-
ment for Learning Software Patterns. In: Proc. of the 3rd European Conference on Tech-
nology Enhanced Learning, pp. 155–166 (2008)

[4] Jovanović, J., et al.: Using Semantic Web Technologies for the Analysis of Learning Co-
tent. IEEE Internet Computing 11(5) (2007)

[5] Jazayeri, M.: The Education of a Software Engineer. In: Proceedings of the 19th IEEE In-
ternational Conference on Automated Software Engineering, pp. xviii–xxvii (2004)

[6] Bagert, D., Hilbum, T., Hislop, G., Lutz, M., McCracken, M., Mengel, S.: Guidelines for
Software Engineering Education, Version 1.0. Technical Report CMU/SEI-99-TR-032,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA (1999)

[7] Jeremić, Z., Jovanović, J., Gašević, D.: Project-based Collaborative Learning Environ-
ment with Context-aware Educational Services. In: Proceedings of 4th European Confer-
ence on Technology Enhanced Learning (ECTEL 2009), Nice, France (accepted, 2009)

[8] Dietrich, J., Elgar, C.: A Formal Description of Design Patterns using OWL. In: Proceed-
ings of ASWEC. IEEE Comp. Soc., Los Alamitos (2005)

[9] Montero, S., Diaz, P., Aedo, I.: Formalization of web design patterns using ontologies.
In: Proceedings of the 1st International Atlantic Web Intelligence. Conf. (AWIC), Spain,
pp. 179–188 (2003)

[10] Kampffmeyer, H., Zschaler, S.: Finding the Pattern You Need: The Design Pattern Intent
Ontology. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007.
LNCS, vol. 4735, pp. 211–225. Springer, Heidelberg (2007)

[11] Henninger, S.: A Framework for Flexible and Executable Usability Patterns Standards.
In: 31st IEEE Software Engineering Workshop (SEW-31), USA, pp. 23–34 (2007)

[12] Coplien, J.O.: Software Patterns. SIGS Books, New York (1996)
[13] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge University Press, Cambridge (2008)
[14] Bull, S., Greer, J.: Peer Help for Problem-Based Learning. In: Proceedings of ICCE/ICAI,

Taiwan, pp. 1007–1015 (2000)
[15] Torniai, C., Jovanovic, J., Gasevic, D., Batemen, S., Hatala, M.: E-Learning Meets the

Social Semantic Web. In: Proc. of 8th IEEE Int’l Conf. on Advanced Learning Technolo-
gies, pp. 389–393 (2008)

[16] Jovanović, J., Rao, S., Gašević, D., Devedžić, V., Hatala, M.: An Ontological Framework
for Educational Feedback. In: Proceedings of the 5th International Workshop on Ontolo-
gies and Semantic Web for Intelligent Distributed Educational Systems, USA, pp. 54–64
(2007)

[17] Ghidini, C., Pammer, V., Scheir, P., Serafini, L., Lindstaedt, S.: APOSDLE: Learn@work
with semantic web technology. In: I-Know 2007, Graz, Austria (2007)

[18] Yanlin, Z., Yoneo, Y.: A Framework of Context Awareness support for peer recom-
mendation in the e-learning context. British Journal of Educational Technology 38(2),
197–210 (2007)

[19] Ankolekar, A., Sycara, K., Herbsleb, J., Kraut, R., Welty, C.: Supporting online problem-
solving communities with the semantic web. In: Proc. of the 15th International WWW
Conference, Scotland, pp. 575–584 (2006)

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 876–892, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Semantic Enhancement for Enterprise Data Management

Li Ma1, Xingzhi Sun1, Feng Cao1, Chen Wang1,
Xiaoyuan Wang1, Nick Kanellos2, Dan Wolfson2, and Yue Pan1

1 IBM China Research Laboratory
ZhongGuanCun Software Park #19, Beijing 100094, China

{malli,sunxingz,caofeng,chwang,wangxyxy,panyue}@cn.ibm.com
2 IBM Software Group, 11400 Burnet Rd. Austin, TX 78758-3415, USA

kanellos@ca.ibm.com, dwolfson@us.ibm.com

Abstract. Taking customer data as an example, the paper presents an approach
to enhance the management of enterprise data by using Semantic Web
technologies. Customer data is the most important kind of core business entity a
company uses repeatedly across many business processes and systems, and
customer data management (CDM) is becoming critical for enterprises because
it keeps a single, complete and accurate record of customers across the
enterprise. Existing CDM systems focus on integrating customer data from all
customer-facing channels and front and back office systems through multiple
interfaces, as well as publishing customer data to different applications. To
make the effective use of the CDM system, this paper investigates semantic
query and analysis over the integrated and centralized customer data, enabling
automatic classification and relationship discovery. We have implemented these
features over IBM Websphere Customer Center, and shown the prototype to our
clients. We believe that our study and experiences are valuable for both Seman-
tic Web community and data management community.

Keywords: Master Data Management, Semantic Query, Mapping, Reasoning.

1 Introduction

With the increase of market competition, modern companies become more and more
seriously dependent on their information, such as customer and product data. A typi-
cal situation that companies are facing is information incomplete and inconsistent
across many systems, such as one product having different codes and descriptions in
various markets, and one customer having different IDs in various systems. This
situation mainly results from the lack of global standards (or insufficient application
of standards), and the fact that data is captured many times, in many different sys-
tems. Therefore, it is critically important to keep a single truth of core entities across
various systems within an enterprise to improve business efficiency.

Core business entities that a company uses repeatedly across many business proc-
esses and systems are called master data [7], such as lists or hierarchies of customers,
accounts, products. Customer data is the most important kind of master data, and
customer data management is becoming critical for modern enterprises because it
maintains a single, complete and accurate record of customers across the enterprise

 Semantic Enhancement for Enterprise Data Management 877

[6]. Recently, major data management solution providers, such as IBM, Oracle and
SAP, have released their master data management (MDM) solutions [2][3][4], espe-
cially on customer data management (CDM, also called customer data integration,
CDI) and product information management (PIM). But it does not mean that all prob-
lems in MDM have been well solved and these commercial systems meet all custom-
ers’ requirements. In fact, it is reported in [6][7] that there are still some technical
challenges in MDM, for instance, enterprise-wide master data models, federation and
identity management. In our previous work on PIM [14], we proposed to build an
expressive and flexible ontology to represent the semantics of product information,
which dynamically varies with business changes. The proposed approach enables
automatic categorization and relationship discovery for product data.

Different from PIM, mature industry models for customer data have been devel-
oped [8], such as the customer model for insurance and the patient model for health-
care. The CDM system can directly make use of these industry models without
changes or with few changes. Also, there are no strong business needs to change the
customer data model after it is deployed. So, based on the industry models, the CDM
system can develop well-optimized database schema and thus run in an operational
way. IBM Websphere Customer Center (WCC) V6.5 [4] is such an example. It adopts
different data models for different industries, uses an object-oriented schema for
storage and provides more than 500 business services to manage customer data. Inte-
grating customer data from heterogeneous data sources for a single, complete and
accurate record of customers has been widely studied for decades, such as the ETL
approach supported by commercial MDM solutions. In this paper, we investigate how
to search and analyze the integrated customer data stored in an operational store by
semantic Web technologies, instead of discussing data cleansing and integration is-
sues. Besides customer data, the proposed method could be easily adapted to various
enterprise data management solutions.

The rest of this paper is organized as follows. Section 2 introduces ontology en-
abled classification and relationship query. Our prototype over IBM WCC [31] is
presented in Section 3, including ontology representation, mapping, SPARQL query
evaluation, and reasoning. Section 4 presents experiment results and Section 5 con-
cludes this paper.

2 Semantic Query and Analysis for Customer Data Management

Based on W3C’s specifications on semantic Web (such as RDFS[1], OWL[10]), we
develop semantic technologies for consumption by CDM, which enables:

 Exposing customer data as RDF views and linking them with the open ontol-
ogy/data for effective collaboration.

 Declarative definition of customer entities and relationships using logic lan-
guages supported by Semantic Web.

 Analytics to discover valuable but implicit knowledge hidden in the rich rela-
tionships among customer data.

Domain Ontology Based Classification. In reality, lots of shallow ontologies [19]
(like taxonomy) for classification purpose are developed, such as profession ontology
in Figure 1(a). These ontologies encoding common knowledge can be leveraged by

878 L. Ma et al.

existing CDM systems to categorize customer data. By simply associating customer
data with such domain ontologies, users can classify and retrieve their customers by
profession, sector etc.. For instance, we can say "Customer A is a Cosmologist".
Then, when querying all "Scientist", we will obtain Customer A. This sort of concept
query is based on class inheritance in RDFS/OWL.

a) Domain ontology based classification

b) Classification based on Formal Vocabularies

Fig. 1. Semantic Query and Analysis for CDM

Classification based on Formal Vocabularies. The expressivity of OWL allows the
definition of logical classes (using intersection, union and complement operators).
This enables automatic classification for customer data. Also, OWL restrictions sup-
port the creation of new category of customer data. As the example in Figure 1(b)
shows, we can use OWL intersection and hasValue restrictions to define a new cate-
gory “US Citizen” which is a subclass of the pre-built category “Person”. Using OWL
reasoning, instances of this newly-defined category can be automatically retrieved.
Besides OWL restrictions, we can also apply rules to formally describe new catego-
ries. An example is to define VIP customers as those whose minimum payment is
larger than $10K. That is, users can extend the core CDM vocabulary using OWL
expressions or business rules, and freely define new categories at query time and
classify customers using reasoning, rather than changing the deployed CDM data

 Semantic Enhancement for Enterprise Data Management 879

model and storage model to represent new categories. This definitely helps to improve
the flexibility of CDM systems. Domain ontology based classification allows users to
leverage open ontologies to classify and query customers using relatively simple rea-
soning, whereas OWL restrictions or rules allow users to define new categories based
on existing classes and properties of the core CDM ontology and use expressive on-
tology reasoning or rule reasoning for classification.

Relationship Discovery and Query. OWL allows the definition of richer relation-
ships. In OWL, it is possible to define an Object Property as symmetric, functional, or
transitive. OWL Object Properties are suitable to describe the complex relationships
among customers, as well as those between customers and other entities like con-
tracts. Followings are some examples of relationships in CDM: Partner, Sibling,
Trustee-Trustee, Owner between party and contract, Part-of among contracts. Be-
sides using OWL to define the type of relationships, we can use rules to define more
general relationships in CDM. Using OWL and Datalog rule inference, we can effec-
tively discover implicit relationships from explicit assertions. For instance, the query
“Find all Insurance Contracts held by Persons having the same address as an insured
property” needs to compute two implicit rule paths: Contract->Holding->Property-
>Address->Person and Contract->Person->Address.

Building an ontology representation for customer data (named core WCC ontol-
ogy in Figure 1) will facilitate us to implement the above attractive features over
existing CDM systems. Moreover, end users can query customer data via classes and
relationships defined in ontologies and rules, for example “Find all Scientists living
in UK” to send mailing regarding sale of lab coats. In this paper, we refer to the
above features as semantic query and analysis over CDM systems, which can be
realized by SPARQL queries [12]. In addition, an advantage provided by ontology
and RDF is to give each CDM entity a Universal Resources Identifier (URI). That is,
we can expose customer data as linked RDF data and allow effective synchronization
of CDM utilities to other core business entities, such as those in PIM, or to open data
like DBpedia [30].

3 System Implementation

In this section, we take IBM WCC [4] as an example to detail our implementation of
semantic query and analysis for CDM [31]. But technologies developed here can
be used in other CDM systems, and easily adapted to various data management
solutions.

3.1 Architecture

A CDM system provides a unified customer view and an update environment to mul-
tiple channels. So, it is impractical to export all customer data into an RDF store for
semantic query and analysis. Figure 2 shows an overview of the proposed system,
which adds a semantic data access engine over a CDM system through a RDB-to-
ontology mapping. The engine exposes a virtual RDF view for customer data.

Firstly, we create a mapping to link customer data with the OWL ontology gener-
ated and enriched from the CDM logical data model. That is, we construct a formal

880 L. Ma et al.

ontology representation for customer data stored in the CDM system. Then, users can
define business rules for knowledge discovery, and can introduce domain ontologies
or OWL restrictions for classification. At query time, users can issue SPARQL que-
ries to the semantic data access engine for data retrieval. The query can include
classes and properties defined in both core and user-extended ontologies, and those in
domain ontologies. A query will be parsed into a SPARQL query pattern tree. Each
node in the tree will be analyzed and checked whether it implies ontology reasoning
or rule reasoning. When the rule reasoning is needed, the Datalog rule evaluation will
be conducted. If ontology reasoning for instance classification is required, the ontol-
ogy reasoner will be called. During the reasoning process, the SPARQL query pattern
tree will be modified according to the reasoning result. Finally, a SQL generator will
generate a single SQL statement, which is evaluated by the database engine where the
CDM store is built. In our current implementation, SOR ontology repository [17] is
used to store ontologies and rules, and SHER engine [15] for ontology classification
reasoning.

Fig. 2. The overview of Semantic CDM

Business users are able to directly use semantic query to retrieve customer data and
analyze the relationships among entities involved in CDM. Another valuable use
scenario of semantic query is to enable application developers to develop general
analytic services over CDM systems. Now, most existing CDM systems provide only
built-in services and do not allow direct SQL queries. For example, WCC provides
more than 500 services for various operations and may use different optimization
techniques for different services, such as materialized views. When users want addi-
tional analytic services that can be realized by the semantic queries, developers just
need to write SPARQL to implement them and do not have to consider complex SQL
statements and reasoning. That is, we provide a general way to develop new analytic
services by SPARQL queries.

3.2 Ontology and Mapping Building

The physical storage model of CDM is similar to its logical data model pre-built for a
particular industry. As introduced in the Section 1, the data model of CDM is rela-
tively stable. The CDM’s object-oriented storage model makes it possible to take full
advantage of mature relational database technologies. The stable data model sacrifices

 Semantic Enhancement for Enterprise Data Management 881

flexibility but contributes to the performance. Therefore, we should construct a rela-
tively stable, lightweight, and coarse-grained ontology model for CDM, over which
the business rules and class expressions still can be defined for expressivity. Mean-
while, we need a RDB-to-ontology mapping between the CDM storage model and the
constructed ontology model so that an ontology query can be executed smoothly over
the CDM system. Note that there are two types of ontologies in our system. The first
type of ontology is a semantic representation of underlying customer data and derived
from the logical model of the CDM system. The second type of ontology is the im-
ported domain ontology, which captures the domain knowledge and enables users to
view customer data based on the domain vocabulary.

Fig. 3. Part of High Level Industry Model for CDM

CDM Data and Storage Model. Figure 3 shows part of the WCC’s data model, in
which the attributes of entities are omitted. Within the model, Party is the most im-
portant concept, with Person and Organization as its two subconcepts. Other entities
are associated with Party via various types of relationships. Contract is another im-
portant concept in CDM, which represents the purchasing agreements of customers.
In this model, most relationships are represented as entities, e.g., Party_Relationship,
Contract_Relationship, Party_Contract_Role (linking Party with Contract). Besides
the entities and relationships, there are some simple hierarchies among them. For
example, Bank_Account_Record, Charge_Card_Record, and Payroll_Deduction are
disjoint sub-classes of Payment_Source. The WCC’s storage model is very close to
this logical data model, by considering entities as the tables, their attributes as the
columns in the corresponding tables, and their relations between entities as foreign
keys or tables.

Ontology Representation of CDM. In our study, we found that RDFS can capture
the semantics of the CDM data model. We construct the ontology representation of
the CDM model in a relatively straightforward way. For example, Party, Person, and
Organization are defined as classes, and their hierarchy is modeled by subclassOf
semantics. All objects stored in Party, Person and Organization tables are their in-
stances. Although the CDM ontology’s expressivity is RDFS, users can define very
expressive OWL classes over it.

882 L. Ma et al.

In CDM, many N-Ary relationships are used to describe the variability of customer
data. For instance, relationships can be time-dependant, such as Party_Relationship
having attributes Start_Datetime and End_Datetime. Moreover, CDM has a set of pre-
defined types for Party_Relationship, such as AncestorOf. OWL only allows the defi-
nition of binary relationships, but we need to represent N-Ary relationships in CDM.
The best practices documented at [23] for N-Ary relationship representation in OWL
provide some choices as a starting point. In our case, we model N-Ary relationships
as classes. For example, Party_Relationship is an OWL class, and the specific rela-
tionship between two parties is an OWL individual and has Start_Datetime and
End_Datetime as properties. The characteristics of relationships (such as symmetric,
transitive) can be enforced by rules. We can use a rule engine for relationships infer-
ence, which is discussed in more detail in next sub-sections.

RDB-to-Ontology Mapping. Given the designed CDM ontology, we have to map
customer data to it for semantic queries. The mapping is critical to translate a SPARQL
query on ontologies into an executable SQL on customer data. In 2008, W3C has
formed an incubator group to investigate the standardization of a mapping language
between ontology and relational database. Here, we use D2RQ mapping language [9],
which is a declarative language for defining the mapping between an ontology and a
relational data model. To generate a complete mapping file, we adopt a semi-automatic
method. We firstly generate an initial D2RQ mapping based on WCC’s physical
schema using the D2RQ mapping tool, and then revise it manually according to our
ontology.

3.3 SPARQL Query Evaluation

SPARQL queries allow to access customer data, user-defined categories and imported
domain ontologies. Figure 4 shows the high level workflow of our query processing.
A SPARQL query is firstly parsed into a query pattern tree (shown in Figure 5), and
then the Datalog rule engine checks if there are rule heads in query nodes and expands
rule heads accordingly. If there is a recursive loop in expanding the rule heads, the
Datalog engine will evaluate the corresponding query nodes directly and generate a
temporary table as evaluation results. In this process, the Datalog engine will call the
SQL generator, which is responsible to generate optimized SQL queries, to get SQL
statements for rule reasoning. Accordingly, the Datalog engine updates the SPARQL
pattern tree by modifying the query nodes that need reasoning. At last, the SQL gen-
erator translates the updated SPARQL pattern tree into a single SQL statement. As
mentioned in Section 2, we use an ontology reasoner for instance classification. If a
SPARQL query needs classification reasoning (i.e. the triple pattern using rdf:type as
predicate), the ontology reasoner will be invoked and the results are temporarily
stored in a TypeOf table, which contains user-defined classification information as
well (namely user-specified TypeOf information through domain ontologies). That is,
the query nodes with rdf:type as predicate are translated into a sub-query over a
TypeOf table.

 Semantic Enhancement for Enterprise Data Management 883

Fig. 4. The Workflow of Query Processing

Some translation methods have been proposed to translate a SPARQL query into
SQL queries for evaluation based on the RDB-to-ontology mapping, such as D2R
[20], Virtuoso’s SPARQL to SQL translation [28], etc.. But these approaches may
generate inefficient SQL queries in some cases. Our method makes use of mapping
and all other relevant information (such as database catalog) to optimize query gen-
eration. To fully utilize the well-developed SQL optimization engine, our method
translates a SPARQL query into a single SQL statement. The generated SQL query
can be directly embedded into other CDM SQL queries as a sub-query, which pro-
vides a way to integrate normal CDM queries with semantic queries.

As introduced earlier, there are some N-Ary relationships in CDM. Unfortunately,
the current SPARQL specification does not directly support N-Ary relationships.
Although SPARQL may express N-Ary relationships by combining many triple pat-
terns, it is very inconvenient. Therefore, we extend the SPARQL query with a new
pattern, called N-ARY pattern, denoting N-Ary relationships and the head predicates
in the user-defined rules. The following example shows a SPARQL query with two
N-ARY patterns VIP_Organization and Legal_Relationship, which finds all persons
with their addresses (if available) who became the legal persons of VIP organizations
that have Party relationship with IBM or HP after year 2000. Also, we show rules
used to answer this query.

SELECT ?person ?address
WHERE {

?org1 wcc:PartyRelationship ?org2 .
?org2 rdf:type wcc:Organization .
VIP_Organization(?org1).
Legal_Relationship (?person, ?org1, ?year).
OPTIONAL {?person wcc:address ?address} .
{
 {?org2 wcc:Org_Name "IBM"} UNION
 {?org2 wcc:Org_Name "Hp"}
} .
FILTER (?year > "2000-1-1") }

r1. Subs_Org_Relationship(x, y) :-
wcc:Organization(x), wcc:Organization(y), wcc:PartyRelationship(z),
wcc:Related_From(z, x), wcc: Related_To(z, y),
wcc:PartyRelationshipType(z, "Subsidiary") ;;.

r2. Sub_Org_Relationship(x, y) :-
Subs_Org_Relationship(x, z), Subs_Org_Relationship(z, y);;.

r3. Legal_Relationship(x, y, z) :-
wcc:Person(x), wcc:Organization(y), wcc:PartyRelationship(u),
wcc:Related_From(u, x), wcc:Related_To(u, y),
wcc:Start_Time(u, z), PartyRelationshipType(u, "Legal Person");;.

r4. Legal_Relationship(x, y, z) :-
Legal_Relationship(x, u, z), Sub_Org_Relationship(u, y);;.

r5.VIP_Organization(x):-
wcc:Organization(x), wcc:Client_Importance(x, "High");;.

Mapping

Extended SPARQL Query

DataLog
Engine

SQL Statement

Parser&Lexer

SPARQL Pattern Tree

Expanded SPARQL
Pattern Tree

DB
Metadata

SPARQL Pattern Tree
with Rule Head

IBM WCC OntologyTable TempTables

SQL Generator &
Executor

884 L. Ma et al.

AND

TRIPLE

TRIPLE TRIPLE

N-ARY OR TRIPLE FILTER

non-op op non-op

SPARQL Pattern Tree

non-op: Non-optional Pattern

op: Optional Pattern

N-ARY

non-op

TRIPLE

AND

TRIPLE

TRIPLE TRIPLE

TEMP FILTER ……

SPARQL Pattern Tree

AND ……

(Organization) (Client_Importance)

TEMP PATTERN (Legal_Relationship)

Fig. 5. A SPARQL Pattern Tree Fig. 6. Rule Expansion on A Pattern Tree

Generally, the graph pattern of a SPARQL query can be expressed as a SPARQL
pattern tree, which is introduced in our previous work [16]. The pattern tree shows the
backbone of the SPARQL query and is very useful for the SPARQL-to-SQL transla-
tion. Figure 5 shows the SPARQL pattern tree of the above example query. There are
five types of nodes in the pattern tree:

AND node: It corresponds to the conjunction of graph patterns in a SPARQL query.
Each child node has a flag to indicate whether the node is optional or not. By this
way, optional patterns in SPARQL are also covered by AND nodes.
OR node: It corresponds to a UNION pattern in a SPARQL query.
TRIPLE node: It represents a graph pattern with a single triple. The subject, predi-
cate and object in the triple could be constants or variables.
FILTER node: It represents a filter expression in a SPARQL query.
N-ARY node: It represents an N-ARY pattern and often directly corresponds to a rule
head. Each element in the N-ARY node could be a constant or a variable.

Due to space limitations, we highlight new structures and optimization schemes used
in our mapping based translation method.

(1) Facet of IRI/Literal pattern to translate filter expressions. Extended from the
facet of literal defined in [16], a facet of an IRI/Literal pattern is a complex SQL
expression.
(2) Semi-SQL structure to bridge the columns in SQL and the variables in SPARQL.
Semi-SQL structure consists of several sections. These sections are connected by
UNION in semantics. Each section includes two fields: a) SQL field, to keep a SQL
statement as the intermediate translation result. b) Mapping field, to record the map-
ping between each variable and IRI/Literal pattern binding.
(3) Integrity constraint based simplification for IRI/Literal comparison. The basic
ideas are: a) to compare the IRI/Literal pattern on the raw columns instead of the
generated IRIs or literals; b) to compare the constants in IRI/Literal pattern level in-
stead of instance level. TRIPLE nodes often include some constants. Taking the con-
stants as a special IRI/Literal pattern, the prefixes and the data types of the constants
are adopted to filter out unmatched property bridges and class maps, which can effec-
tively reduce the number of sub-queries.
(4) Flattened SQL to detect unnecessary JOINs. When an AND-pattern contains more
than one sub-pattern, the SQL statements of the sub-patterns should be merged for
one SQL. An alternative way of merging sub-SQL statements is to take one sub-SQL
as a table and embed the table in the FROM clause of the other sub-SQL. However,

 Semantic Enhancement for Enterprise Data Management 885

the unnecessary JOINs in embedded IRI/Literal patterns may lose the opportunity of
being detected and removed. Therefore, we adopt a flattened SQL strategy to merge
the SELECT, FROM and WHERE clauses of the sub-SQL statements, respectively.
By this way, the IRI/Literal patterns can be directly generated using the columns in
the new SELECT clause. Once the sub-queries from child pattern nodes are flattened,
it is easy to find the unnecessary self-joins on primary key. In that case, two tables in
the FROM clause can be reduced into one, and the costly join operation is avoided.

3.4 Reasoning in CDM

In this section, we first define the semantics of the reasoning system and then intro-
duce the reasoning approach.

3.4.1 Semantics of CDM reasoning
For the better understanding of reasoning semantics, we first categorize the reasoning
in CDM according to the reasoning scope as follows.

1) Reasoning for ontology: The reasoning introduced in this category is performed
based on the CDM ontology. Specifically, it is either to classify data into newly-
defined classes or to find implicit assertions from the CDM ontology. Under this
category, we further classify the reasoning as the following two types:
Reasoning based on Description Logic (DL): We apply IBM SHER engine [15] to
support all concept assertions. SHER reasoner uses a novel method that allows for
efficient querying of SHIN ontologies with large ABoxes in databases. Currently, this
method focuses on instance retrieval that queries all individuals of a given class in the
ABox. It is well known that all queries over DL ontologies can be reduced to consis-
tency check, which is usually checked by a tableau algorithm. Motivated by the fact
that in most real ontologies: 1) individuals of the same class tend to have the same
assertions with other individuals; 2) most assertions are in fact irrelevant for purposes
of consistency check, we proposed to group individuals which are instances of the
same class into a single individual to generate a summary ABox of a small size. Then,
consistency check can be done on the dramatically simplified summary ABox, instead
of the original ABox. The SHER reasoner implements this reasoning approach on top
of SOR’s storage component. It is reported in [15] that SHER can process ABox que-
ries with up to 7.4 million assertions efficiently.

Reasoning based on Description Logic Programs (DLP): DLP reasoning is applied to
discover the implicit role assertions (relationships) in the CDM ontology. Description
logic programs (DLP) is an intersection of description logic (DL) and logic programs
(LP). As a subset of LP, DLP can be fulfilled by horn rule reasoning. An example rule
in DLP could be wcc:p(x,z):-wcc:p(x,y) . wcc:p(y,z), where p is a transitive property
in the CDM ontology. Compared with DL reasoning, the complexity of which is
NEXPTIME-complete, the LP can be computed in P-time. It has been proved that
DLP reasoning is sufficient for RDFS ontology. For the ontology with more expres-
sivity, such as OWL-DL, DLP reasoning is sound but incomplete. In our application,
DLP is applied in the part of ontology reasoning. The program, which consists of a
fixed set of horn rules for DLP reasoning, is denoted as PDLP.

886 L. Ma et al.

2) Reasoning for user-defined rules: In our application, users can define a set of
business rules (denoted as program Puser) on top of ontology to enrich the semantics.
The rules are in the form of Datalog-safe rules [27], with the extension of aggregation
functions. For example, the rules r1 to r5 in Section 3.3 are user-defined rules. Spe-
cifically, r1 and r2 define the sub-organization relationship. R3 and r4 define the le-
gal-reprehensive relationship between a person and an origination. Also, the rule r5
defines the concept of VIP organization. An important constraint for user-defined rule
is that the rule head could not be the DL predicate.

For clarity, we refer to DL reasoning as ontological reasoning and logic programs
as rule reasoning. In general, the combination of ontological reasoning and rule rea-
soning causes the undecidability problem. In [24], Motik et al. proposed a decidable
combination of OWL-DL with rules by restricting the rules to so-called DL-safe ones.
In our work, we separated these two types of reasoning to gain the decidability. The
semantics of our knowledge base system is as follows. First, let KB be the knowledge
base corresponding to the CDM ontology. In addition, let KB’ denote the extension of
KB by importing domain ontology and/or defining new OWL restrictions. We apply
the ontological reasoning ∏ on KB’ to find all concept assertions, and the result

model is represented as ∏(KB’). Given the program P= PDLP∪Puser (where PDLP and
Puser are the program for DLP rules and user-defined rules respectively), the fixpoint
[27] of ∏(KB’) can be computed as P(∏(KB’)). Any assertion α is called entailed by
our reasoning system iff it is contained in P(∏(KB’)).

Note that the example in [25] shows that separating ontological reasoning and rule
reasoning may cause incompleteness problem. However, due to the simplicity of the
CDM ontology (RDFS), our reasoning scheme is practical for customer data man-
agement in terms of decidability and soundness, with the minor drawback on com-
pleteness.

3.4.2 Proposed solution
After defining the semantics, we introduce the high-level design of our reasoning
system. In terms of the reasoning scheme, we apply a runtime-based reasoning, i.e.,
the reasoning is performed at query time. Compared with materialize-based reason-
ing, in which all the inference results are pre-computed and stored in database, despite
having longer response time, the runtime reasoning occupies much less disk space and
does not have the update problem. Given the large size customer data, it is obviously
not practical to materialize all inference results. We have two reasoning components.
For ontological reasoning, SHER engine is deployed to do domain ontology based
classification and classification based on formal vocabularies and to discover all con-
cept assertions for the CDM ontology. As another key component, a Datalog engine is
designed and implemented for supporting the reasoning for all the rules.

Tree expansion approach. Recall that the functionality of the CDM reasoning sys-
tem is to rewrite original SPARQL query tree, such that every node on the tree can be
directly interpreted and processed by the SPARQL query engine. In other words, after
processed by the reasoning system, the tree becomes ready to be translated into one
SQL statement by the SQL generator component.

Technically, SHER engine will be invoked for every node corresponding concept
assertion in the SPARQL query tree. For each node related to the rule head, the rule

 Semantic Enhancement for Enterprise Data Management 887

Algorithm: TreeExpansion
Input:
node: the root of the SPARQL query tree
P: the program for rule reasoning (the set of rules)
dGraph: dependency graph of program P
hashMap: the mapping between rule-head predicate and temporary table
Output:
The root of the expanded SPARQL query tree
Method:
if (node is not a leaf)
 for each child node chNode
 chNode = TreeExpansion(chNode, hashMap, dGraph);
 return node;
/* cases for leaf node */
if (node does not requires reasoning) return node;
if (node corresponds to a type-of assertion) /* require ontological reasoning */
 Set node based on SHER reasoning result;
 return node;
/* node is related to rule head */
if (node can be found in hashMap) /* i.e., has been evaluated before */
 node = corresponding temporary pattern in hashMap;
 return node;
else /* rule reasoning */
 if (node is not in a strong connected subgraph of dGraph) /* not recursive */
 Build sub-tree sRoot by expanding node based on related rules;
 return TreeExpansion(sRoot, hashMap, dGraph);
 else /* recursive rule evaluation */
 Find the strong connected sub-graph scGraph that contains node;
 for each node dNode that is depended by a node in scGraph
 and dNode scGraph
 dNode = TreeExpansion(dNode, hashMap, dGraph);
 Call SQLGenerator(dNode) to get SQL statement;
 Create temporary table for dNode based the SQL;
 Update hashMap;
 /* call datalog evaluation for a set of rules */
 Find the set of rules ruleSet that corresponds to all nodes in scGraph;
 DatalogEvaluatior(ruleSet, hashMap);// hashMap is updated
 node = corresponding temporary pattern in hashMap;
 return node;

Fig. 7. TreeExpansion Algorithm

reasoning component will process it based on the program P (i.e., the set of all rules).
According to the characteristics of related rule(s), each rule-head node will either be
expanded into a sub pattern tree or be replaced by a temporary pattern (corresponding
to a temporary table). Specifically, if the node corresponds to one or multiple non-
recursive rules1, it can be expanded as a sub pattern tree. For example, suppose that in
Figure 5, the N-Ary pattern on the left relates to a non-recursive rule r5. Then, we can
replace the N-Ary pattern by a sub pattern tree that is built based on r5, as shown in
Figure 6. For the node corresponding to recursive rules, we have to trigger the Data-
log engine to compute the fixpoint for all related rules and append a temporary pattern
to replace the node. Suppose in Figure 5 the N-Ary pattern on the right corresponds to
the rule head of r4. Because r4 is a self-recursive rule, the N-Ary pattern can not be

1 A rule r is called recursive if it depends on itself or mutually depends on other rules. Other-

wise, r is non-recursive rule.

888 L. Ma et al.

expanded as a sub pattern tree. Instead, we do Datalog evaluation and create the tem-
porary pattern for it, as can be seen in Figure 6.

Importantly, the principle of SPARQL tree rewriting is to maintain the tree struc-
ture (i.e., expand the node) as much as possible and generate the temporary pattern
(i.e., trigger the Datalog evaluation) only when necessary. The aim is to give the
SQL generator more information for optimization. Intuitively, the more information
the SQL generator can have, the better chance exists to get the final generated SQL
optimized.

TreeExpansion algorithm. To follow the above principle, we propose a key algo-
rithm to rewrite the SPARQL query tree. Figure 7 shows the pseudo code of the algo-
rithm. The algorithm recursively expand the query tree based on the ontological
reasoning and rule reasoning. Since the SHER engine has been introduced in [27], for
simplicity, in this section, we focus on the rule reasoning part. If a node in the
SPARQL query corresponds to a rule-head predicate, the rule reasoning engine is
triggered. First, as in traditional Datalog approach, by checking dependency graph2
of program P, we can determine if the related rule(s) is recursive or not. For
non-recursive rule (i.e., the rule head is not in a strong connected sub-graph3 of the
dependency graph), we expand the node as a sub-tree and then recursively call Tree-
Expansion method on the sub-tree. If the rule is recursive, we compute the strong
connected sub-graph scGraph it belongs to. Then, we search on the dependency graph
to find any dNode such that 1) dNode is not contained in scGraph and 2) at least one
node in scGraph depends on dNode. If there does not exist such dNode, it means that
the all recursive rules corresponding to the nodes in scGraph do not depends on other
rules. In this case, we can call Datalog evaluation for computing the fixpoint for these
recursive rules. Otherwise (dNode exists), before the Datalog evaluation for recursive
rules related to scGraph, we have to get the temporary table for each dNode. So, we
treat each dNode as an N-Ary pattern. After recursively call TreeExpansion to expand
dNode, the SQL generator is called to get the SQL statement, and the data for dNode
is retrieved and stored in a temporary table. From the algorithm, we can see that our
Datalog evaluation will call DatalogEvaluatior only when we need to compute the
fixpoint for a set of recursive rules. DatalogEvaluatior is implemented based on the
semi-naïve evaluation approach with Magic Sets optimization [27]. After the evalua-
tion, DatalogEvaluatior will update the temporary table hashMap, which is designed
to avoid evaluating the same set of rules multiple times.

4 Experimental Results

We implemented our approach to semantic query and analysis over IBM Websphere
Customer Center [31]. In this section, we report the experiment results to show the

2
 A dependency graph of a program P is defined as a pair <V, E>, where V is the set of the

rule-head predicates in P, and E is the set of direct edges that shows the dependent relation-
ship among elements in V.

3
 A graph G is called a strong connected graph if for every node pair (n1, n2) in G, there exist a

path from n1 to n2. Given a program P, a rule in P is recursive if its head predicate is in a
strong connected sub-graph of DG, where DG is the dependency graph of P.

 Semantic Enhancement for Enterprise Data Management 889

effectiveness and efficiency of the proposed approach. All experiments are conducted
on a 2.8GHz Intel Pentium-D PC with 2GB RAM, running Windows XP Professional.
Through a 1.0 Gbps intranet, a 2.66GHz Intel Core2 PC with 2GB RAM serves as the
backend WCC server, with IBM DB2 9.1 Enterprise edition as the database.

In the experiments, we used a data set from a real WCC customer. The main enti-
ties in the data set include 1.9M contracts, 1.0M claims, 2.0M contacts (parties) and
3.2M location groups. The data set contains 1.9M records for contact-contract rela-
tionship. To estimate the performance of semantic queries that are of interest to WCC
customers, additional synthetic data is generated to enrich the data set. We generate
1.0M records for contact-contact relationship, contract-contract relationship, contact-
claim relationship and contract-claim relationship, respectively.

Since our approach translates a SPARQL query into a single SQL statement, its ef-
fectiveness can be evaluated by the correctness of the resulting SQL statements. The
system performance is demonstrated in terms of query translation time, response time,
and retrieval time, i.e., the duration from the time that a query is issued to the time
that a SQL statement is generated, to the time that first answer is retrieved, and to the
time that the last record in the result is retrieved, respectively.

Table 1 gives the sample rules used in the experiments. Note that in our test cases,
all reasoning tasks are covered by the rule inference. R1 and R2 define the relation-
ships that will be frequently used. R3 to R7 are designed for the scenario below: an
insurance company wants to analyze each contract to see how many large claims
(claims with amount greater than $5000) are made from it. Table 2 gives the seman-
tics of queries used in the experiments. Indeed, these types of queries are interested
and suggested by customers. Not all sample queries are shown in Table 3 due to space
limitations. Except for MQ4, all queries can be translated into a SQL statement with-
out any inference result materialized in temporary tables. MQ2-1 and MQ2-2 have the
same query semantics but MQ2-2 utilizes rule predicate (N-Ary pattern) to specify
partner-trustee relationships. The same situation happens for MQ3-1 and MQ3-2.

Figure 8 shows the translation time, response time and retrieval time for queries
MQ0, MQ1, MQ2 and MQ3. We can see that the translation time is relatively little
compared with retrieval time. Comparing MQ2-1 and MQ2-2, the expansion of the
rule predicate in the SPARQL introduces a marginal additional cost. However, rules
can be re-used and can make SPARQL queries concise. Note that the retrieval time is
less than 3 seconds for these quite complex semantic queries. This is mainly because
that our query translation approach outputs near optimal SQL statements.

To answer MQ4, rules from R3 to R7 will be triggered. Note that R4 and R6 are
recursive rules. So, we have to call the Datalog engine to do evaluation twice

0

0. 5

1

1. 5

2

2. 5

3

3. 5

MQ0 MQ1 MQ2- 1 MQ2- 2 MQ3- 1 MQ3- 2

T
i
m
e

(
S
e
c
o
n
d
)

Tr ansl at i on Ti me

Response Ti me

Ret r i eval Ti me

Fig. 8. Query Performance

890 L. Ma et al.

Table 1. Sample Rules

ID Rule
R1 Partner_Relationship(?x, ?y) :- wcc:CONTACT_Relationship_FROM(?r, ?x),

wcc:CONTACT_Relationship_TO(?r, ?y), wcc:hasCONTACT_Relationship_Type(?r, ?v),
wcc:Contact_Relationship_FROM_TO_NAME(?v, 'Partner');;.

Explanation：Define the partner relationship between two parties.

R2 Trustee_Relationship(?x, ?y) :- wcc:CONTACT_Relationship_FROM(?w, ?x),
wcc:CONTACT_Relationship_TO(?w, ?y), wcc:hasCONTACT_Relationship_Type(?w, ?z1),
wcc:Contact_Relationship_FROM_TO_NAME(?z1, 'Trustee');;.

Explanation：Define the trustee relationship between two parties.

R3 Sub_Contract(?x,?y):- wcc:CONTRACT_Relationship_FROM(?u, ?x),
wcc:CONTRACT_Relationship_TO(?u, ?y), wcc:hasContract_Relationship_Type(?u, ?z),
wcc:Contract_Relationship_FROM_TO_NAME(?z, 'Sub Agreement');;.

Explanation：Define the sub-contract relationship between two contracts

R4 Sub_Contract(?x,?y):-Sub_Contract(?x,?z),Sub_Contract(?z,?y);;.

Explanation：Define the sub-contract relationship is transitive

R5 Large_Claim_Agreement(?clm, ?contract, ?amount):- wcc:CLAIM_PAID_Amount(?clm,?amount),
wcc:CLAIM_CONTRACT_Relationship_To(?u, ?clm),
wcc:CLAIM_CONTRACT_Relationship_From(?u, ?contract);
?amount > "5000"^^xsd:double;.

Explanation：Define the relationship Large_Claim_Agreement, indicating that a contract has a claim

with the amount more than $5000
R6 Large_Claim_Agreement(?clm, ?contract, ?amount):-

Large_Claim_Agreement(?clm, ?subcontract, ?amount), Sub_Contract(?subcontract,?contract);;.

Explanation：Define that a contract is involved in the large_claim_Agreement relationship if its sub-

contract has large claims
R7 Contract_NumOfLClms(?contract, ?Agg_numclm):-Large_Claim_Agreement(?clm, ?contract, ?amount);;

Group by <?contract> Count(?clm) as ?Agg_numclm.

Explanation：Compute the contract and the total number of large claims of the contract

Table 2. Meaning of Queries

ID Query Explanation
MQ0 Find the claims that are associated to a given contract (1162960045467) and have the amount greater

than $5000
MQ1 Find the claimants of the claims that are associated to the contract 1162960045467 and have the

amount greater than $5500
MQ2 Find the person who has the partner 1000020 and is the trustee of the contact 1000045.
MQ3 Find the claimant (with their guardians) who are related to the replacement of contract with id 1000
MQ4 Find the number of large claims (amount greater than 5000) made on contract 1162960045467

(for R4 and R6 respectively) and store the inference results in temporary tables. A
naïve way to answer MQ4 is to firstly to compute the number of large claims for all
contracts, and then to select the record for the given contract 1162960045467. In the
experiment, this naïve approach takes 40.109 seconds as the retrieval time. A smarter
approach is to apply the filter condition at early stage of the query so that the infer-
ence is performed only for the relevant data. The classical Magic Sets algorithm [29]
helps to realize the later approach by rewriting the rules based on the filter condition.
To improve the query performance, we implemented the Magic Sets algorithm in our
system. As a result, the retrieval time for MQ4 is improved to 6.453 seconds.

We also tried to run MQ0, MQ1, MQ2-1 and MQ3-1 on D2R sever [9] (V0.3.2 in
our tests), an open source engine for RDF access to relational databases. However,

 Semantic Enhancement for Enterprise Data Management 891

Table 3. Sample Queries

ID SPARQL query
MQ0 Select ?clm ?amount where { ?u wcc:CLAIM_CONTRACT_Relationship_To ?clm.

?u wcc:CLAIM_CONTRACT_Relationship_From <WCC65DB.CONTRACT/1162960045467>.
?clm wcc:CLAIM_PAID_Amount ?amount. Filter(?amount>5000)}

MQ1 Select ?contact ?clm ?amount where {?u wcc:CLAIM_CONTRACT_Relationship_To ?clm.
?u wcc:CLAIM_CONTRACT_Relationship_From <wcc65db.contract/3000>.
?clm wcc:CLAIM_PAID_Amount ?amount. ?v wcc:CLAIM_ROLE_Relationship_From ?clm.
?v wcc:CLAIM_ROLE_Relationship_To ?contact. ?v wcc:hasCLAIM_ROLE_Relationship_Type ?type.
?type wcc:CLAIM_ROLE_NAME ‘Claimant‘. Filter (?amount >5500)}

MQ2-1 Select ?y where { ?r wcc:CONTACT_Relationship_FROM <WCC65DB.CONTACT/1000020>.
?r wcc:CONTACT_Relationship_TO ?y. ?r wcc:hasCONTACT_Relationship_Type ?v.
?v wcc:Contact_Relationship_FROM_TO_NAME 'Partner'.
?r1 wcc:CONTACT_Relationship_FROM ?y. ?r1 wcc:hasCONTACT_Relationship_Type ?v1.
?r1 wcc:CONTACT_Relationship_TO <WCC65DB.CONTACT/1000045>.
?v1 wcc:Contact_Relationship_FROM_TO_NAME 'Trustee'};

MQ2-2 Select ?y where {Partner_Relationship(<WCC65DB.CONTACT/1000020> ?y).
Trustee_Relationship(?y <WCC65DB.CONTACT/1000045>)};

MQ4 Select ?contract ?numofClaims where { Contract_NumOfLClms (?contract ?numofClaims).
FILTER (?contract = < WCC65DB.CONTRACT/1162960045467>)}

D2R cannot well support these queries especially when the queries may introduce a
number of JOINs. This is because that D2R server provides a memory based solution
and does not use enough optimizations (not optimized for graph traversals). As D2R
does not support N-Ary patterns and reasoning, it cannot execute MQ2-2, MQ3-2
and MQ4.

5 Conclusions

In this paper, we presented the use of semantic Web technologies for enterprise cus-
tomer data management. Taking WCC as an example, we introduced an ontology
representation for industry customer data model. An effective and practical approach
to SPARQL query processing was proposed, with the ontology and rule reasoning
incorporated. We believe that the presented approach could be easily adapted to vari-
ous enterprise data management solutions for semantic query and analysis.

References

[1] Customer Data Integration: Market Review & Forecast for 2005-2006, A CDI Institute
MarketPulseTM In-Depth Report

[2] Oracle Data Hub (2005), http://www.oracle.com/data_hub/index.html
[3] SAP Master Data Management (2005),

https://www.sdn.sap.com/irj/sdn/developerareas/mdm
[4] IBM Websphere Customer Center,

http://www-306.ibm.com/software/data/masterdata/customer/
[5] IBM Websphere Product Center,

http://www-306.ibm.com/software/data/
masterdata/product-info/

[6] Gartner Reports, Magic Quadrant for Product Information Management (2006)
[7] Morris Henry, D., Dan, V.: Managing Master Data for Business Performance Manage-

ment: The Issues and Hyperion’ s Solution. IDC white paper (2005)

892 L. Ma et al.

[8] IBM Industry Models,
http://www-306.ibm.com/software/
data/ips/products/industrymodels/

[9] The D2RQ Platform v0.5.1 - Treating Non-RDF Relational Databases as Virtual RDF
Graphs, http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/spec/

[10] Smith, M.K., Welty, C., McGuinness, D.: OWL web ontology language guide. W3C rec-
ommendation (Febuary 2004)

[11] Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema. W3C
recommendation (February 2004)

[12] Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF W3C recommen-
dation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

[13] Hayes, P., Welty, C.: Defining N-ary Relations on the Semantic Web, W3C Working
Group Note (April 12, 2006)

[14] Brunner, J., Ma, L., Wang, C., Zhang, L.: Explorations in the Use of Semantic Web
Technologies for Product Information Management. In: WWW 2007, pp. 747–756 (2007)

[15] Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas,
K.: Scalable Semantic Retrieval Through Summarization and Refinement. In: Proc. of
AAAI 2007, pp. 299–304 (2007)

[16] Lu, R., Cao, F., Ma, L., Yu, Y.: An Effective SPARQL Support over Relational Data-
bases. In: Joint ODBIS & SWDB workshop on Semantic Web, Ontologies, Databases,
VLDB 2007 (2007)

[17] Ma, L., Wang, C., Lu, J., Cao, F., Pan, Y., Yu, Y.: Effective and Efficient Semantic Web
Data Management over DB2. SIGMOD, 1183–1194 (2008)

[18] Motik, B.: On the properties of meta-modeling in OWL. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 548–562.
Springer, Heidelberg (2005)

[19] Shadbolt, N., Berners-Lee, T., Hall, W.: Nigel Shadbolt, Tim Berners-Lee and Wendy
Hall, The Semantic Web Revisited. IEEE Intelligent Systems 21(3), 96–101 (2006)

[20] Bizer, C., Cyganiak, R.: D2R Server – Publishing Relational Databases on the Semantic
Web. In: Proc. of ISWC (2006)

[21] Chen, H., Wu, Z., Wang, H., Mao, Y.: RDF/RDFS-based Relational Database Integration.
In: Proc. of ICDE (2006)

[22] Cyganiak, R.: A relational algebra for SPARQL. HP-Labs Technical Report (September 2005)
[23] The best practices of N-Ary relationships representation in Semantic web,

http://www.w3.org/TR/swbp-n-aryRelations/
[24] Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. In: Interna-

tional Semantic Web Conference (2004)
[25] Levy, A.Y., Rousset, M.-C.: Combining Horn Rules and Description Logics in CARIN.

Artifical Intelligence 104(1-2) (1998)
[26] Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and De-

scription Logics. J. Intell. Inf. Syst. 10(3) (1998)
[27] Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg

(1990)
[28] Mapping relational data to rdf in virtuoso,

http://virtuoso.openlinksw.com/wiki/main/Main/VOSSQLRDF
[29] Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.: Magic sets and other strange ways to im-

plement logic programs. In: Proc. of the Fifth ACM Symposium on Principles of Data-
base Systems (1986)

[30] DBpedia (2009), http://dppedia.org/About
[31] Wang, X., Sun, X., Cao, F., Ma, L., et al.: SMDM: Enhancing Enterprise-Wide Master

Data Management Using Semantic Web Technologies. In: VLDB, pp. 1594–1597 (2009)

Lifting Events in RDF from Interactions with
Annotated Web Pages

Roland Stühmer1, Darko Anicic1, Sinan Sen1, Jun Ma1, Kay-Uwe Schmidt2,
and Nenad Stojanovic1

1 FZI Research Center for Information Technology
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

{roland.stuehmer,darko.anicic,sinan.sen,jun.ma,nenad.stojanovic}@fzi.de
http://www.fzi.de/
2 SAP AG, Research

Vincenz-Prießnitz-Straße 1, 76131 Karlsruhe
kay-uwe.schmidt@sap.com

http://www.sap.com

Abstract. In this paper we present a method and an implementation
for creating and processing semantic events from interaction with Web
pages which opens possibilities to build event-driven applications for the
(Semantic) Web. Events, simple or complex, are models for things that
happen e.g., when a user interacts with a Web page. Events are consumed
in some meaningful way e.g., for monitoring reasons or to trigger actions
such as responses. In order for receiving parties to understand events
e.g., comprehend what has led to an event, we propose a general event
schema using RDFS. In this schema we cover the composition of complex
events and event-to-event relationships. These events can then be used
to route semantic information about an occurrence to different recipients
helping in making the Semantic Web active. Additionally, we present an
architecture for detecting and composing events in Web clients. For the
contents of events we show a way of how they are enriched with seman-
tic information about the context in which they occurred. The paper
is presented in conjunction with the use case of Semantic Advertising,
which extends traditional clickstream analysis by introducing seman-
tic short-term profiling, enabling discovery of the current interest of a
Web user and therefore supporting advertisement providers in respond-
ing with more relevant advertisements.

Keywords: Complex Event Processing, Event Representation, Semantic
Advertising, User Profiling, RDFa, event-condition-action, ECA.

1 Introduction

Currently the Semantic Web largely obeys a request/response style of commu-
nication. This is owed to the predominating way in which the traditional Web
is used. However, the Active Web is making progress demonstrated by applica-
tions such as Twitter which are able to push information to recipients at the

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 893–908, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.fzi.de/
http://www.sap.com

894 R. Stühmer et al.

time when the information is created. Event-driven ways of disseminating data
were identified as being efficient as well as intuitive for many business applica-
tions e.g., in [1]. The (Semantic) Web of the future will also benefit from active
technologies which help deliver information on time and in a resource saving
manner i.e., without having to poll for new or changed information.

In this paper we propose an architecture for capturing and processing
complex events on the Web, based on the use of Semantic Web technologies,
making it suitable for the future (Active) Semantic Web. As part of this we pro-
duce an event representation which facilitates mutual understanding of events
on the Semantic Web. Additionally, we demonstrate the benefits of event pro-
cessing and evaluate them in the field of Semantic Advertising as a use case
scenario.

To achieve this, we assess Semantic Web technologies to enable reactivity and
design and implement a client-side framework to generate and process events.
Furthermore, we demonstrate this framework in the aforementioned advertising
use case. The main contributions of this work will be an extensible represen-
tation for events on the (Semantic) Web, as well as an implementation of a
client-side framework to create these events based on user interactions with Web
documents as a source of events. These contributions serve to advance the state
of reactivity on the Web and promote new ways of efficiently communicating
Web-based information, which we see as a necessary factor for future Semantic
Web applications.

This paper is structured as follows: In Section 2 we will describe the require-
ments for generating meaningful events from Web documents, followed by means
of processing these events to detect complex situations. In subsequent sections
we will name key parts and technologies for our architecture such as a client-side
reactive rule language in Section 3, an RDFS ontology for representing complex
events in Section 4 and a way of obtaining meaningful context for events from
annotations in Section 5. We will then present implementation details of our
architecture in Section 6. The whole approach will be evaluated for performance
and usefulness in the advertising scenario in Section 7 and we will discuss related
work and conclude the paper in the last remaining sections.

2 Event Generation and Processing from Semantic Web
Pages

The main issue in making the Web active is to enable capturing of actions
or changes in Web documents. These can be treated as events, which an event-
driven system will react to. For our use case of advertising we will focus on events
created from a user’s interaction with Web documents. After having extracted
events from a Web document, they must be processed in order to interpret
them semantically, to be able to react on them appropriately. The following two
subsections describe our approach for these two issues: generation and processing
of Web events.

Lifting Events in RDF from Interactions with Annotated Web Pages 895

2.1 Event Generation

A simple event in Web clients is characterized by two dimensions; the type
of event (e.g. click, mouseover) and the part of the Web page, where the event
occurred (e.g. a node of the Document Object Model of the Web document). This
node is, however, just a syntactical artifact of the document as it is presented
in a Web browser. Adding this node or parts of it to the event body will not
significantly add meaning to the event and not ease the understanding of the
event for the recipient of the event.

We therefore propose to add semantic information to the event which per-
tains to the actual domain knowledge that the Web page is about. In order to
enable this, the first step is to represent the content of a Web page in a form
that can be used for generating meaningful events. To do so without having
to manually annotate every Web document, we envision a mechanism, which
ensures the relevance of the annotations. This can be done in many (semi-) au-
tomatic ways, e.g. by providing Web forms (page templates), which for a given
user’s input, automatically adds the proper semantic relationships between the
form fields. In this way all user generated content will be annotated. The Web
forms are created based on supported vocabularies for a particular Web site. Our
particular focus is on widely spread vocabularies such as Dublin Core1, Creative
Commons 2, FOAF3, GeoRSS4 and OpenCalais5. Regarding the format of struc-
tured data, RDFa [2], eRDF6 and Microformats7 are all good candidates for this
purpose. They support semantics embedded within actual Web page data and
allow reusable semantic markup inside of Web pages. In our implementation we
use RDFa, since in comparison to eRDF it is a more encouraged candidate by the
W3C. Comparing it further to Microformats, RDFa is more flexible in mixing
different existing vocabularies.

In the remaining part of this section we give an example demonstrating the
generation of events in the context of a Semantic Advertising scenario. The ad
space is a part of the Web page which can be dynamically filled by an ad provider
as a response to an event the client sends. In our approach ad content is created
based on a current user’s attention. In order to accomplish this we need as much
(meta-) information as possible about the content of the Web page. Therefore,
we assume semantically enriched Web content such that context extraction is
easier and more precise. Additionally, every page is split up in a number of
Semantic Web Widgets (SWW). We introduce Semantic Web Widgets as self-
contained components annotated with semantic data and displayed in a Web
page. Semantic Web Widgets give a high-level description of the content, and
provide the basic context of data contained in the widgets. For instance on a

1 Dublin Core: http://dublincore.org
2 Creative Commons: http://creativecommons.org
3 FOAF: http://foaf-project.org
4 GeoRSS: http://georss.org
5 OpenCalais: http://opencalais.com
6 eRDF: http://research.talis.com/2005/erdf
7 Microformats: http://microformats.org

http://dublincore.org
http://creativecommons.org
http://foaf-project.org
http://georss.org
http://opencalais.com
http://research.talis.com/2005/erdf
http://microformats.org

896 R. Stühmer et al.

1 <div xmlns:rdf = "http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
2 xmlns:dc = "http: //purl.org/dc/elements /1.1/"
3 xmlns:vCard = "http://www.w3.org /2001/ vcard -rdf /3.0#"
4 xmlns:iCal = "http://www.w3.org /2002/12/ cal/ical#">
5 <ul about="events/Mary_Poppins_Show">
6 <li typeof="cal:Vevent">
7 Classic , Comedy , Kid Friendly , Musical <

/a>
8 October 8th at

18am
9 2 hour

10 <vCard:TEL rdf:parseType="Resource">
11 <rdf:value >(212) 307 -4100</rdf:value >
12 <rdf:type rdf:resource="http: //www.w3.org /2001/ vcard -rdf /3.0# work"/>
13 </vCard:TEL >
14 <vCard:ADR rdf:parseType="Resource">
15 <vCard:Street > 214 West 42nd Street </vCard:Street >
16 <vCard:Locality > New York City </vCard:Locality >
17 <vCard:Pcode > NY 10036 </vCard:Pcode >
18 <vCard:Country > USA </vCard:Country >
19 </vCard:ADR >
20 Mary Poppins takes up residence at

magnificent New Amsterdam Theater.
21
22
23
24 </div>

Listing 1. An example for a musical listed in a Semantic Web Widget

news portal incorporating semantic advertising one widget could be used for
listing all news belonging to one subcategory, e.g., politics, another one for arts,
etc..

In Figure 1 we show an RDFa example of the semantic description for an arts
event8 listed in a widget related to musicals. The code snippet presents an event
named “Mary Poppins Show” described using RDF Schemata for Dublin Core,
vCard and iCal vocabularies. Information such as categories, start and duration
of the musical are provided together with contact information, location and
so on.

2.2 Complex Event Processing

Simple events extracted from Web documents can be combined in order to de-
tect complex situations. This is the task of Complex Event Processing, that we
describe in the context of the Semantic Advertising use case. Detecting the be-
havior of Web users according to our proposal is divided into design time and
run time. The design time consists of (i) semantically enhancing the Web page
and then (ii) recording average viewing statistics of the annotated elements, e.g.
from log files. From the statistical data we generate client-side rules. Once these
rules are created they are pulled by the next client request and loaded into the
rule engine for the run time.

For the run time we have developed a client-side event-condition-action (ECA)
rule engine. It uses a lightweight rule language which supports ECA rules
8 An event in the sense of a gathering of people.

Lifting Events in RDF from Interactions with Annotated Web Pages 897

Event-driven RIA

User

Content
Provider

Browser

Ontologies

User
Tracking

R
R R

Rule Selection

Complex Event
Detection

Condition Evaluation

Rete

Behavior
Events

Working
Memory

Event & Rule
Repository

User and DOM
Events

Detection Graph

Event Sources

Internet

Clock

a) b)

Annotated
Context

Formal Short
Term User

Profile

Ad
Provider

Context
Detection

Rules

Analysis of
User Profiles

Fig. 1. Architecture: a) Logical Architecture b) Client-side User Behavior Analysis

described in more detail in Section 3. The rules on the client serve to detect
users exhibiting interesting behavior as learned from the average usage patterns.
The user causes events to occur by interacting with the Web page, detected by
the event processor and rule engine. Rules are triggered which create interme-
diate events in a hierarchy of event abstraction. These events are subsequently
accumulated until sufficient interest according to the ad provider is recorded
(threshold achieved) and actions can be taken by further rules.

The distinction between run time and design time in this section is not a
strict temporal distinction as the names would suggest. Rather, because new
users will inevitably alter our knowledge of what is interesting there is a loop in
the process, feeding back from the run time into the design time to evolve new
rules for future users.

Figure 1 shows a rough architecture of our approach: Part b) on the right hand
side of the figure depicts the components of our client-side rule engine. Multiple
event sources provide input for the event detection, creating complex events.
Also, a working memory submits its changes to a Rete network, evaluating rule
conditions. The logic for both the event detection and condition evaluation is
supplied by rules from a repository, generated from past user activities. Part a) on
the left hand side places the client-side components above the protocol boundary
dividing client and server. Below on the server or several distributed servers
hold the Web content as well as the advertising content. The Web content is
annotated, providing semantical relations to the advertisements. Short-term user
models provide a temporal model of how a user interacts with the Web content.
The ad provider analyses user models to provide up-to-date and personalized
advertisements.

In the next three sections we present in detail three mechanisms which enable
the realization of the approach we present in Section 6.

898 R. Stühmer et al.

3 JSON-Rules: A Client-Side Rule Language

To facilitate client-side advertisement we use JSON-Rules, our client-side rule
language. It resembles a lightweight reaction rule language tailored to the needs
of Rich Internet Applications, specifically applications that profit from or re-
quire Complex Event Processing, condition evaluation on a working memory,
and running rule actions written in JavaScript. As a representation for our rules
we use JSON9, because it is natively usable within JavaScript. JSON can specify
objects, arrays and primitives. Rule objects in our JSON-Rules language contain
the three attributes event, condition and action. The event part consists of
patterns in the event pattern language Snoop [3]. The condition part consists of
conjunctive predicates over variables from a working memory. The action part
in turn contains one or more JavaScript code blocks to gain a maximum degree
of versatility for the rule author. Alternatively for rule actions we offer to trig-
ger certain desired events as well as manipulations of the working memory. The
latter types of action offer greater declarativity while formulating rules. This
increase is, however, bought at the price of some flexibility. Thus, we still offer
all three kinds of rule actions which can be freely mixed.

For the event part of each rule the usual Snoop operators are available:
Or(E1, E2), And(E1, E2), Any(m,E1, E2, . . .), Seq(E1, E2), A(E1, E2, E3),
A∗(E1, E2, E3), P (E1, T I[:parameters], E3), P ∗(E1, T I:parameters, E3),
Not(E1, E2, E3), and Plus(E1, T I). We only briefly list them here, their se-
mantics are documented in [3]. Additionally we define further event operators
Mask(E1, condition) and Thres(E1, threshold) as follows. The operator Filter
enforces a condition on each occurrence of events E1. This allows e.g. for fine-
grained content-based filtering/masking of events. The operator Thres is an-
other content-based operator which we need to extend the Snoop algebra with.
Thres(E1, threshold) accumulates the events of type E1 until the boolean func-
tion threshold returns true, releasing all accumulated events as a complex event
and starting accumulation anew.

A condition in our language may use comparison operators on facts from
the working memory and literal values. The condition part is a conjunction of
predicates. Comparison operators are <, >, =, <= and >=. Variables specify
items from the working memory. For the advertising use case conditions are not
needed, the current rules react purely to events.

Rule actions are JavaScript code blocks or new events or modifications to
the working memory to be triggered on rule execution. A code block has access
to the set of events and facts that has led to the firing of the rule. Thus, rule
authors may create applications that do calculations on the parameters of the
collected events and matched condition variables.

Listing 2 shows an example rule. It can be automatically created from ana-
lyzing histories of interesting behavior. The only requirement is knowledge, that
e.g. states that only two percent of users look at a politics item followed by a
science item. The actual rule consists of an event part starting at line 5 and an

9 JavaScript Object Notation: http://www.json.org/

http://www.json.org/

Lifting Events in RDF from Interactions with Annotated Web Pages 899

1 {
2 "meta": {
3 "rule": "Politics ->Science =>2%"
4 },
5 "event": {
6 "type": "SEQ",
7 "children": [
8 {
9 "type": "DOM",

10 "selector": "div[property=dc:keywords][content ?= politics]",
11 "event": "click"
12 },
13 {
14 "type": "DOM",
15 "selector": "div[property=dc:keywords][content ?= science]",
16 "event": "click"
17 }
18]
19 },
20 "action": [
21 {
22 "type": "EVENT",
23 "trigger": "unusual",
24 "parameters": {"probability": 0.02}
25 }
26]
27 }

Listing 2. Example of a single Rule

action part starting at line 20. The rule resembles an event-condition-action rule
where the condition is left blank, i.e. is always true.

The event part in this example describes a sequence of two sub-events. Both
sub-events are of type “DOM” which means they are adding handlers to the Web
page. In this case each one listens to clicks on DIV elements in the document
object model (DOM) where the keywords politics and science are annotated.
The rule action is of type “EVENT” which means the rule raises another event.
The event to be created is called “unusual” and carries a parameter containing
a probability. This event can be subscribed to by further rules. In our case there
is a rule aggregating all events of this type until enough unusualness (in terms
of aggregated probability) is observed. This example rule is a small part of our
whole architecture [4,5] which detects, aggregates and finally submits the user
profile in form of one or more complex events.

4 RDFS

In this chapter we present an RDFS ontology for events. It covers a schema for
simple events and for modeling derived events such as events composed of one
or more simpler event occurrences. The basic classes of the ontology are shown
in Figure 2.

An event in terms of our ontology is either a simple event or a complex event.
All events have a type, some timestamps and may contain a body (also called pay-
load). A simple event is an instantaneous occurrence where start and end times
are equal. A complex event is composed of one or more events which means that

900 R. Stühmer et al.

#endTime
#startTime
#body
#eventType

Event

SimpleEvent

ComplexEvent

AndEvent FilterEventNotEventOrEvent SeqEvent

1..*

0..1

< composedOf

+cssSelector
+jsEventType

DomEvent

ClockEvent

Fig. 2. RDFS ontology for events. The composition of complex events is conceptualized
via classes with the names of the operators used in their detection. For simple events
we currently only require the subclasses DomEvent for user interaction with a Web page
and ClockEvent for purely temporal events such as timers, reminders, etc..

a complex event can occur over an interval of time, where start and end time are
different. A complex event instance is usually detected by applying an event pat-
tern to a stream of events. A complex event may contain its contributing events
which led to the detection of the complex event. So, for example for a pattern of
And(E1, E2) an instance contains one event of each typeE1 andE2. To distinguish
such a complex event from other complex event which are incidentally composed
of two contributing events, we create a type for the complex event pertaining to
the event operator which was used in the detection.

Therefore, we obtain an ontology of subtypes of ComplexEvent which repre-
sent event operators. To come up with a list of operators we started with one
of the oldest general purpose event languages named Snoop [3]. Snoop contains
a fairly comprehensive list of boolean and temporal operators. They are mod-
eled in our ontology. What is missing in Snoop are operators which inspect the
contents of input events such as attributes other than timestamps and type.
Therefore, we added a FilterEvent as an example of what is needed to filter
events by their content.

For simple events we identify two significant subtypes which are relevant to
the client-side of the Web. These are the actual events created in the browser
after a user interaction is detected and events form the client’s clock. They are
represented as DomEvent and ClockEvent respectively. These two types of events
make up all of the client-side event load in a Web browser.

5 RDFa

In the previous section we described our schema for events, simple or complex. In
this section we focus on enriching simple events with semantics from the context
of the Web page in which the event occurred.

Lifting Events in RDF from Interactions with Annotated Web Pages 901

A simple event in Web clients is characterized by two dimensions; the type
of event (e.g. click, mouseover) and the part of the Web page, where the event
occurred (e.g. a node in the Document Object Model of the Web document).
Subscribing to simple events of these types therefore requires the specification
of type and the specification of the node or nodes where the events may origi-
nate. Both dimensions are retained in an event instance by using the attributes
jsEventType and cssSelector (cf. Figure 2).

In order to better understand these events and make sense of what happened
we must enrich the content of events when they are produced. The jsEventType
tells us what a user has done and the cssSelector tells us where on the Web
page the user did it. However, the latter is a purely presentation-dependent
measure. There is no semantics which has any meaning beyond the context of
a specific Web page structure. We propose to extract presentation-independent
semantic information from the Web page if present. Instead of creating events
from interaction with purely syntactic items of a Web document, we create events
about interaction with semantic concepts which the document stands for. As an
example, an event should not represent e.g., a click on a certain headline element
of a Web document but rather a user’s interaction with an article talking about
politics and certain persons mentioned within.

To annotate a Web page with semantic data such as the topics of an article,
we use RDFa. Defined in [2] RDFa is a means of adding RDF data to existing
Web pages by using inline XHTML attributes.

After detecting an event which happened in the context of a certain DOM
node of a Web document, we collect all semantic information in the Web page
about the thing that is reported in that given DOM node. We currently achieve
this by employing the client-side RDFa library ubiquity10. The lifting of context
is achieved in a two-phase process. In the first phase we collect the list of RDF
subjects of possible triples. This is done close to where the event happened in
the document to provide accurate context. In the second phase we collect every
triple with these subjects from the overall document in order to provide a very
rich context.

To find valid subjects the first phase traverses the node where the event hap-
pened and its complete subtree11. If the given main node does not contain a
subject, the immediate dominator node containing a subject is added to the
list. This serves two purposes, guaranteeing a single root subject for orphan
properties and objects in the subtree and guaranteeing a non-empty result set.

In the second phase all triples with the given subjects are collected from the
entire document tree12. The gathered triples are then reified and appended as a
bag to the event payload.

10 The Ubiquity RDFa parser project: http://ubiquity-rdfa.googlecode.com/
11 In the use case example this could include a news article about a politician and all

the contained paragraphs.
12 In the use case example this includes all triples about the politician from the article

as well as possible extra information such as scattered information areas on the
remaining Web page.

http://ubiquity-rdfa.googlecode.com/

902 R. Stühmer et al.

Even if the event itself becomes part of more complex events during the process
of correlating and aggregating events, this basic data is retained as part of the
simple event.

6 Implementation: Client-Side Event-Enabled Rule
Engine

For our implementation we chose JavaScript from the available Web program-
ming languages, for reasons of widespread availability. The data structures and
program logic we implemented are roughly divided into the following areas:
adapters for the rule language and remote event sources, the working memory,
condition representation and evaluation as well as complex event detection.

For Complex Event Processing we are using a graph based approach as pro-
posed in [3]. Initially the graph is a tree with nested complex events being parents
of their less deeply nested sub-events, down to the leaves being simple events.
However, common subtrees may be shared by more than one parent. This saves
space and time compared to detecting the same sub-events multiple times, and
renders the former tree a directed acyclic graph.

When using the term event, the distinction must be drawn between event
occurrences (i.e. instances) and event types, usually done implicitly. In the de-
tection graph the nodes are event types, they exist before there are any instances.
Event instances exist after simple instances arrive and are fed into the graph at
the leaves. Complex instances are then formed at the parent nodes, which in
turn propagate their results upwards. Every complex event occurrence carries
pointers to the set of its constituent event occurrences, so that the events and
their parameters can be accessed later. Once an occurrence is computed at a
node which is attached to a rule, the state of the associated Rete node is started
and actions are triggered.

7 Evaluation

In this section we first evaluate the performance of our client side complex event
processor. After that we present a first discussion of a running demo application
collecting and aggregating events from test users we invited to a demo “news
portal”.

7.1 Performance

In this section we show the results from a performance test demonstrating that
CEP and a client-side rule engine for the Web are indeed feasible. It is a technical
evaluation of the event-processing capabilities of our ECA-rule-based framework.
We will show that an event rate of about 64 events per second is possible with
a given rule set on our test machine. Our test machine is a 2.4 GHz Intel Core2
CPU with four cores. Since JavaScript execution is inherently single-threaded it

Lifting Events in RDF from Interactions with Annotated Web Pages 903

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 512
CP

U
 lo

ad

events per second

Fig. 3. CPU load by increasing event frequency

profits only from one CPU core. Having spare cores for other tasks combined with
a generally low operating system load provides results which are uninfluenced
by other running tasks. The chosen JavaScript engine is Mozilla Firefox 3.0.3 for
Windows using the Firebug13 profiler. The browser was installed freshly with no
extra plug-ins.

We start out with the BEAST benchmark [6]. BEAST is an attempt at mea-
suring CEP performance in early CEP applications, which use a similar event
algebra than Snoop. We borrow some of the rules which are applicable to our
CEP engine. Some of the event operators were not applicable to Snoop, like
the count based window operator (cf. Figure 3 on page 8 of [6]). The event ex-
pressions from BEAST which are tested are described as follows, using event
operators from the Snoop algebra:

SEQ(E1,E2) (1)
NOT(E3,E4,E5) (2)

SEQ(E6, SEQ(OR(E7,E8),E9)) (3)

Event expression 1 represents a sequence of two events. Event expression 2 rep-
resents the non-occurrence of E4 in the interval of two other specified events and
finally: event expression 3 represents the sequence of one event followed by a
disjunction and followed by another event.

The tested rules contain empty rule actions, so only the CPU load for Com-
plex Event Processing is measured. We run each test for 30 seconds at various
frequencies of simple events per second. The simple events in the mentioned
patterns are entered into the detection system in a round robin manner. We
then measure the load percentage caused by the detection system matching the
incoming events and producing complex events.

The results are shown in Figure 3. The chart shows that our event detector
can handle a maximum of about 64 events per second in real time. After that
the JavaScript engine is used up to capacity and further incoming events are

13 Firebug Web site: http://getfirebug.com/

http://getfirebug.com/

904 R. Stühmer et al.

queued up. Rule conditions, unlike event expressions, are not strictly needed for
our approach to online advertising. Their evaluation can be found in [5].

The general use case for our framework is to monitor the user’s event-based
interaction with a Web page. This means reacting mainly to human actions.
Since events from the human user are not occurring at millisecond rates, our
framework should be fast enough to handle events at near real-time. Although
expensive rule actions may lessen these results, upcoming new browsers promise
a significant increase in general JavaScript performance due to newer compiling
techniques. Currently, we expect the results to be sufficient for most client-side
applications including our application of event-driven online advertising.

7.2 Ad Quality

To evaluate the return of targeted advertisements we created a demo Web page
with some news articles. Each news article is contained in a separate part of the
page, termed Semantic Web Widget (cf. Section 2.1). Each widget is annotated
using RDFa using basic keywords and concepts pertaining to the article. For a
user entering our demo, each widget is at first partially concealed. This is done
to solicit an action from the user when “unfolding” the widget. Thereby the user
expresses interest. This creates explicit events which can then be processed by
our engine. Our initial evaluation of the ad quality was performed as follows:

1. We selected three different news domains (politics, culture, sports) in order
to prove the domain-independence of the approach and pull into the demo
Web page, as separate evaluation sessions.

2. We selected five users (PhD students from the Institute) with different cul-
tural backgrounds.

3. The users should browse the demo Web page and judge about the relevance of
generated ad-keywords in the case of a) the keywords generated statistically
from the Web page (Google approach) and b) keywords generated by using
the event-driven approach described in this paper. In order to ensure a fair
comparison, the users did not know which list of ad-keywords was produced
by which method.

We ask the users to rate the gathered keywords in terms of relevance to what
they had been doing in the news portal and to compare this with a static list of
keywords extracted from the overall page. The results are very encouraging: in
the average 85% of keywords generated in our approach were described as “very
relevant” and 98% as “relevant” (very similar results across all three domains).
The traditional approach achieved 65% success for “very relevant” and 85%
sucess for “relevant” ad-keywords. This result demonstrates the advantages of
our approach for generating very relevant ads.

In comparison, Web Usage Mining (e.g., [7]) is used on log files which are
analyzed on the server side at certain intervals or possibly in a continuous fash-
ion. It is important, however, to stress that our approach detected all events on
the client. Events occurred purely by folding and unfolding widgets as parts of

Lifting Events in RDF from Interactions with Annotated Web Pages 905

the page. No communication with the server took place and hence no artifacts
are visible in server log files. Thus, our approach extends clickstream analysis to
regions which were previously invisible to server-based mining techniques.

Moreover, our approach is a truly event-driven application, meaning that we
detect events in real-time, as soon as they happen. In contrast, traditional mining
techniques function in a query-driven manner where results are only created at
intervals, such as daily analyses of the log files.

8 Related Work

In this section we discuss related work from several fields of research relevant for
this paper, namely reactivity for the Web, online advertising related to our use
case and Complex Event Processing in general and specifically for the Web.

There exist several approaches to reactivity for the Web. The approach from
[8] describes a rule-based event processing language for XML events. The lan-
guage design is described as focusing on aspects of data extraction, event com-
position (operators), temporal relationships and event accumulation. The ap-
proach is based on logic programming. Some drawbacks are inherited from this.
The most striking fact is that events (simple and complex) are detected and
reacted to in a query-driven fashion. This means that event patterns are only
fulfilled when the query engine asks for the patterns. There is no data-driven
way of fulfilling patterns in the moment each event arrives. This behavior is
based on the fact that logic programming systems such as Prolog operate in a
backward-chaining way, fulfilling queries only when they are posed. There is no
first class notion of continuous queries. This means that the approach from [8]
as well as others such as [9] are not truly event-driven, because events are not
handled when they occur but are stored until the query is posed for the next
time. Furthermore, it is unclear where the events come from and how they are
entered into the logic programming system; There is no notion of subscribing to
input streams or similar ways of accessing event sources. Consumption of events
is also not defined; Events seem to have indefinite life-time and be reused in
new patterns over and over. In comparison to our work there is no focus on
client-side events which occur in a browser, e.g. from humans interacting with
Semantic Web documents.

Another event processing language for the Web is presented in [10]. It is
likewise an event-condition-action (ECA) rule-based approach, with pluggable
language dialects for each of the E,C and A parts of a rule. An ontology of the
compositional approach is presented. The question of connecting event sources is
addressed in this work, but requires a degree of cooperation of nodes on the Web
which is currently not practical. For example, a possible source of events is said
to be the changes to XML data. However, such events are only created if change
is monitored, e.g. with the help of an active XML database. As a workaround,
so-called ECA services are proposed which provide active notifications from
passive nodes. However, as this requires polling/querying, it is again not strictly
event-driven. Our solution actively publishes events when they occur and as

906 R. Stühmer et al.

such is fully event-driven. In a federated setup of the mentioned related work,
our solution could possibly be used as a source of events.

In Web advertising there are essentially two main approaches, contextual ad-
vertising and behavioral advertising. Contextual advertising [11] is driven by the
user’s context, represented usually in the form of keywords that are extracted
from the Web page content, are related to the user’s geographical location, time
and other contextual factors. An ad provider (ad serving service) utilizes these
meta data to deliver relevant ads. Similarly, a users’ search words can also be
used to deliver related advertisement in search engine results page, Google’s
second pillar in online advertising. However, contextual advertising, although
exploited today by major advertising players (e.g., GoogleAdsense14, Yahoo!
Publisher Network15, Microsoft adCenter16, Ad-in-Motion17 etc.), shows seri-
ous weaknesses. Very often the automatically detected context is wrong, and
hence ads delivered within that context are irrelevant18. For instance, a banner
ad offering a travel deal to Florida can possibly be seen side-by-side to a story
of a tornado tearing through Florida. This is happening because the context
was determined using purely keywords such as “Florida, “shore” etc (i.e., with-
out taking keyword semantics into account). While there are improvements in
contextual advertising (e.g., language-independent proximity pattern matching
algorithm [12]), this approach still often leads companies to investments that are
wasting their advertising budgets, brand promotion and sentiment. In contrast,
our approach utilizes semantics to cure major drawbacks of today’s contextual
advertising. Semantic Web technologies can be used to improve analysis of the
meaning of a Web page, and accordingly to ensure that the Web page contains
the most appropriate advertising.

The second approach to Web advertising is based on the user’s behavior,
collected through the user’s Web browsing history (i.e., behavioral targeted ad-
vertising). The behavior model for each user is established by a persistent cookie.
For example, Web sites for online shopping utilize cookies to record the user’s
past activities and thereby gain knowledge about the user or a cluster of users.
There are several reasons why behavioral targeted advertisement via cookies
is not a definitive answer to all advertisement problems. First, if a user, after
browsing the information about an item purchases that item, he or she will not
be interested in that particular good afterwards. Therefore, all ads and “special
deals” offered to the user later while browsing that Web site are useless. Also,
the short-term user interest should be detected more quickly (i.e., during the
current user session). Displayed ads need to reflect current moods or transient
user interest. For example, a user looking hastily to buy a gift of flowers is not
interested in ads related to his/her long-term profile, created during previous

14 GoogleAdsense: http://google.com/adsense
15 Yahoo! Publisher Network: http://publisher.yahoo.com
16 Microsoft adCenter: http://adcenter.microsoft.com
17 Ad-in-Motion: http://ad-in-motion.com
18 Adam Ostrow, When Contextual Advertising Goes Horribly Wrong - Mashable:

http://mashable.com/2008/06/19/contextual-advertising

http://google.com/adsense
http://publisher.yahoo.com
http://adcenter.microsoft.com
http://ad-in-motion.com
http://mashable.com/2008/06/19/contextual-advertising

Lifting Events in RDF from Interactions with Annotated Web Pages 907

purchases unrelated good or services. Further on, there are problems with cook-
ies. Computers are sometimes shared and users get to see ads governed by other
user’s cookies. Finally, given the European Union’s Directive and US legisla-
tion concerned with restricted use of cookies, behavioral targeted advertisement
based on cookies is not a promising direction for Web advertising.

We believe that short-term profiling (in contrast to long-term profiles created
by cookies) is a valid and possibly augmenting approach in terms of personal-
ization and identification of the user’s interest. We realize a short-term profiling
using client-side Complex Event Processing techniques (cf. Section 2.2), and
background semantics (cf. Section 2). Such profiles are automatically detected,
are always up-to-date and fully personalized.

The work from [13] describes event processing for Web clients. Events are
observed on the client, however, complex events are not detected in the client.
All simple events are propagated to the server for detection of patterns. This
incurs latency and reduced locality for the processing of events, so the advantages
of client-side event processing are lost.

9 Conclusion

In this paper we present a novel approach for generating and processing complex
events form Web pages which opens possibilities to build event-driven applica-
tions for the (Semantic) Web. We envision the future of the (Semantic) Web as
a huge, decentralized event repository (the so-called Event Cloud in CEP termi-
nology), which will contain information about the real-time activities of different
Web users. Such an event repository will enable different kinds of processing of
the real-time information, making the Semantic Web really active, i.e. the envi-
ronment can react and adapt itself on the signals sensed from the environment,
connecting the Internet of Things with the Internet of Services, two basic ele-
ments of the Future Internet. As a result this paper makes contributions to the
integration of the Semantic Web in the Future Internet. The presented Seman-
tic Advertising use case shows clearly how efficient the contribution of active
components and semantic technologies in future Internet applications can be.

Acknowledgments. We would like to thank Weiping Qu for his contribution
to the RDF schema and to the implementation.

References

1. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2001)

2. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: Rdfa in xhtml: Syntax and
processing (October 2008), http://www.w3.org/TR/rdfa-syntax/

http://www.w3.org/TR/rdfa-syntax/

908 R. Stühmer et al.

3. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events
for active databases: Semantics, contexts and detection. In: Bocca, J.B.,
Jarke, M., Zaniolo, C. (eds.) 20th International Conference on Very Large Data
Bases, Santiago, Chile proceedings, Los Altos, CA 94022, USA, September 12–15,
pp. 606–617. Morgan Kaufmann Publishers, San Francisco (1994)

4. Schmidt, K.U., Stühmer, R., Stojanovic, L.: From business rules to application rules
in rich internet applications. Scalable Computing: Practice and Experience 9(4),
329–340 (2008)

5. Schmidt, K.U., Stühmer, R., Stojanovic, L.: Gaining reactivity for rich internet
applications by introducing client-side complex event processing and declarative
rules. In: Stojanovic, N., Abecker, A., Etzion, O., Paschke, A. (eds.) The 2009
AAAI Spring Symposium on Intelligent Event Processing, Association for the Ad-
vancement of Artificial Intelligence, March 2009, pp. 67–72 (2009)

6. Geppert, A., Berndtsson, M., Lieuwen, D., Roncancio, C.: Performance evalua-
tion of object-oriented active database systems using the beast benchmark. Theor.
Pract. Object Syst. 4(3), 135–149 (1998)

7. Liu, B.: Web Data Mining. Data-Centric Systems and Applications. Springer,
Heidelberg (2007)

8. Bry, F., Eckert, M.: Rule-based composite event queries: The language xchangeeq
and its semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007.
LNCS, vol. 4524, pp. 16–30. Springer, Heidelberg (2007)

9. Paschke, A., Kozlenkov, A., Boley, H.: A homogenous reaction rules language for
complex event processing. In: International Workshop on Event Drive Architecture
for Complex Event Process (2007)

10. May, W., Alferes, J.J., Amador, R.: An ontology- and resources-based approach
to evolution and reactivity in the semantic web. In: Meersman, R., Tari, Z. (eds.)
OTM 2005. LNCS, vol. 3761, pp. 1553–1570. Springer, Heidelberg (2005)

11. Kenny, D., Marshall, J.: Contextual marketing–the real business of the Internet.
Harvard Business Review 78(6), 119–125 (2000)

12. Schonfeld, E.: Proximic signs deals with yahoo and ebay to turn product listings
into contextual ads; taking on adsense. Online Article (January 2008),
http://www.techcrunch.com/2008/01/15/proximic-signs-deals-with-yahoo-

and-ebay-to-turn-product-listings-into-contextual-ads-

taking-on-adsense/ (Last visited August 2009)
13. Carughi, G.T., Comai, S., Bozzon, A., Fraternali, P.: Modeling distributed events

in data-intensive rich internet applications. In: Benatallah, B., Casati, F., Geor-
gakopoulos, D., Bartolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS,
vol. 4831, pp. 593–602. Springer, Heidelberg (2007)

http://www.techcrunch.com/2008/01/15/proximic-signs-deals-with-yahoo-and-ebay-to-turn-product-listings-into-contextual-ads-taking-on-adsense/
http://www.techcrunch.com/2008/01/15/proximic-signs-deals-with-yahoo-and-ebay-to-turn-product-listings-into-contextual-ads-taking-on-adsense/
http://www.techcrunch.com/2008/01/15/proximic-signs-deals-with-yahoo-and-ebay-to-turn-product-listings-into-contextual-ads-taking-on-adsense/

A Case Study in Integrating Multiple
E-commerce Standards via Semantic Web

Technology

Yang Yu, Donald Hillman, Basuki Setio, and Jeff Heflin

Department of Computer Science and Engineering. Lehigh University
19 Memorial Drive West, Bethlehem, PA 18015
{yay208,djh3,bas207,heflin}@cse.lehigh.edu

Abstract. Internet business-to-business transactions present great chal-
lenges in merging information from different sources. In this paper we
describe a project to integrate four representative commercial classifi-
cation systems with the Federal Cataloging System (FCS). The FCS is
used by the US Defense Logistics Agency to name, describe and classify
all items under inventory control by the DoD. Our approach uses the
ECCMA Open Technical Dictionary (eOTD) as a common vocabulary
to accommodate all different classifications. We create a semantic bridg-
ing ontology between each classification and the eOTD to describe their
logical relationships in OWL DL. The essential idea is that since each
classification has formal definitions in a common vocabulary, we can use
subsumption to automatically integrate them, thus mitigating the need
for pairwise mappings. Furthermore our system provides an interactive
interface to let users choose and browse the results and more impor-
tantly it can translate catalogs that commit to these classifications using
compiled mapping results.

Keywords: e-commerce, ontology integration.

1 Introduction

Internet business-to-business transactions afford both dramatically increased
flexibility and present great challenges in merging information coming from so
many sources. To provide B2B services, suppliers must deal with the problem of
heterogeneity underlying their customers’ product, catalog, and document de-
scriptions. Due to the lack of global common standards to classify products, a
key task for these marketplaces is to effectively and efficiently manage different
description styles. In real-world marketplaces, developing a scalable approach
for information integration has become essential to expanding business.

The Federal Cataloging System (FCS) is an extensive taxonomy for naming,
classifying, and describing items of supply. The Defense Logistics Information
Service (DLIS) created the FCS and uses it to catalog and differentiate items of
supply. DLIS routinely catalogs a varied population of items. The conventional
coding of products for internal operations has resulted in product identifiers that

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 909–924, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

910 Y. Yu et al.

are not easily exchangeable across taxonomies, causing significant duplication
and inefficiencies in business processes. For DLIS to have full access to suppliers
and their products everywhere and at all times, the FCS taxonomy must be
aligned with supplier taxonomies.

There are many taxonomies and classification schemes and more than 40 of
them have been publicly identified. Most of them organize data into domains
viewed from the perspective of a specific use case. ECl@ss is a Standardized
Material and Service Classification, while Product Service Classification (PSC),
United Nations Standardized Products and Services Code (UNSPSC), Common
Procurement Vocabulary (CPV), Common Procurement Code (CPC), Roset-
taNet Technical Dictionary (RTD), and the Customs Harmonized Tariff Code
(HS) are commodity classifications. It is not only products that appear in tax-
onomies. For example, the Standard Industrial Classification (SIC) code and the
North American Industrial Classification Code (NAIC) organize companies by
principal occupation, such as Manufacturer, Wholesaler, Retailer, etc.

In this project we integrated four representative commercial classification sys-
tems with the FCS by focusing on their underlying knowledge structures rather
than on their surface characteristics. Since these four systems adopt significantly
differing classification strategies and cover most leading classification styles, we
believe that the experience of this development is sufficiently general and capa-
ble of being used in most other popular classifications. The four classifications
we used were the UNSPSC, CPV, eCl@ss, and the ISO 13584-511 Fasteners
Dictionary. (The official acronym for ISO 13584 is PLIB, so we use PLIB-511 as
its short name in this paper.)

The paper is organized as following. Section two introduces the necessary
background knowledge for better understanding. In section three we briefly
overview the approach we devised. The process of constructing an ontology for
the taxonomies is described in section four. Section five discusses how we built
mappings among the ontologies. Section six introduces prototype tools. The last
section describes the conclusion and future work.

2 Background

It is necessary to first make clear the definitions of the terms “taxonomy” and
“ontology” because they are distinct concepts that we frequently misused as
synonyms. A taxonomy is a particular classification arranged in a hierarchical
structure organised by subtype-supertype relationships. Guarino defines that
”an ontology is a logical theory accounting for the intended meaning of a formal
vocabulary [7].” Simply speaking, a taxonomy only contains the corresponding
vocabulary with a hierarchical structure in the ontology; however an ontology
can include axioms to define and restrict the semantics and relationships in the
taxonomy, which is more important. Most ontologies have a taxonomy, but not
all taxonomies can be easily converted to ontologies, due to ill-defined parent-
child relationships. In a formal ontology, strict is-a interpretation is used for the
taxonomy, i.e. every instance of a child is an instance of the parent. But in infor-
mal taxonomies parent-child relationships are often topic-oriented. Therefore an

A Case Study in Integrating Multiple E-commerce Standards 911

important and difficult step in our project is first to convert all the taxonomies
into corresponding ontologies.

One of the advantages of using ontologies is that they naturally support large-
scale distributed information. When information resources commit to the same
ontology then the same meaning is anticipated for any term from that ontology.
Even when information resources commit to different ontologies, there are still
methods to integrate the information [8], as long as the ontologies have certain
relationships, e.g. their concepts are defined in terms of a common ontology or
an alignment is provided. Some other advantages of ontologies for the integration
of heterogeneous and distributed classifications in e-commerce are discussed in
[6].

The basis of the Semantic Web is that there are a number of ontologies,
and different information resources commit to the definitions in these ontologies
[1]. The problem considered in this paper can be solved by using the Seman-
tic Web approaches. There are multiple semantic web languages with different
features that have been intensively researched and designed. OWL is the W3C
recommendation for a web ontology language and is an extension of the Re-
source Description Framework (RDF). The OWL class constructors (see Table
1) and axioms can be used to express rich semantics. In this paper, we focus on
OWL DL, the sublanguage of OWL that most closely corresponds to description
logics (DL). Most DLs are decidable and have sound and complete reasoning
algorithms. The worst-case complexity of SHOIN(D), the DL corresponding to
OWL DL, is NEXPTIME-complete [16], but modern tableaux-based reasoners
typically have very good performance.

Creating domain ontologies from industrial products categorization standards
is not straightforward as it appears. We have seen the RDF-S version [10] and
the DAML+OIL version [12] of UNSPSC. There also exists a prototype of a
RDF representation of eCl@ss 4.1 based on an OWL Full ontology [2]. These
ontologies, however, were created automatically and have not been used for later
integration. They do not reflect the semantics of the underlying standards pre-
cisely and specifically enough and are thus not suitable for the basis of inference.
Hepp [9] points out that many classifications are created from a procurement
viewpoint, and this results in hierarchies that do not have the strict ”is-a” se-
mantics of rdfs:subClassOf. For example, eCl@ss typically includes parts and
accessories as subcategories of each product in its hierarchy. He proposed to
represent a concept in the classification using two concepts in the ontology, one
is a generic concept and the other is for the taxonomy category (representing
the concept plus related goods). The taxonomy concepts are arranged in a strict
rdfs:subClassOf hierarchy corresponding to the classification. A new ”annota-
tion class” is created for each concept, and is made as rdfs:subClassOf both the
generic and the taxonomy class. Any specific products are asserted to be of this
type.

Ontology matching is actively researched. There are mainly three categories
[4]. The first is ontology mapping between an integrated global ontology and local
ontologies, and typical tools include LSD and MOMIS. The second is mapping

912 Y. Yu et al.

Table 1. OWL class constructors

Constructor DL Syntax Example
intersectionOf C1 � C2 GasTurbine � AircraftPart

unionOf C1 � C2 Door � Airframe � TailSection
complementOf ¬C ¬Aircraft

oneOf {x1,...,x2} {F15, F16}
allValuesFrom ∀P.C ∀partOf.Airframe

someValuesFrom ∃P.C ∃hasPart.Door
maxCardinality ≤ nP ≤10hasPart
minCardinality ≥ nP ≥2hasPart

between local ontologies which is more suitable for cases with many ontologies
and typical tools include GLUE, MAFRA and ONION. The third allows a single
coherent merged ontology to be created when ontologies which have the same or
overlapping domains; and tools include PROMPT [13] and Chimaera [11]. Auto-
mated and semi-automated methods typically use syntactic techniques, linguis-
tic resources and/or ontology structure to identify matches. To the best of our
knowledge, no automated technique can discover alignments more complicated
than subsumption between two named classes.

Omelayenko [14] surveys various integration approaches for ecommerce. Most
of these techniques focus on syntactic matching [3]. The approach proposed by
Corcho et al. [5] is most similar to ours. In their approach they separate e-
commerce standards into generic ontologies, which provide coarse-grained clas-
sifications of products, and regional ontologies whose concepts share a common
root by all mapping to the concepts in the generic ontologies. Below those two
levels, there are catalogs and optional local ontologies. This mechanism makes
classifications into a multi-layered structure. However, since Corcho et al. do not
map generic ontologies to other generic ontologies, each regional ontology must
map to each concept in any overlapping portions of these ontologies. Also, since
they do not map regional ontologies to each other, it is not possible to align the
most specific concept in these ontologies. Finally, we note that they only use
equivalent, subclass and union-of axioms in their mappings, limiting the types
of mappings that they can express.

Compared to that proposal, the agreed common ontology in our approach is
created based on common vocabularies from all incorporated e-commerce stan-
dards. Additionally all standards are on the same layer so that we do not need
preliminary work to determine their roles. The mapping based on this structure
is clear and easily understood. This simple structure has significant flexibility
for changes of ontologies since each ontology only needs to map to a single inter-
change ontology. The additional advantage is that the user of a standard does
not need to understand all partners’ standards in order to integrate with them,
because that standard only needs to be integrated with the common ontology.
Obviously this costs less both when initially building mappings among them and
when new ontologies are incorporated.

A Case Study in Integrating Multiple E-commerce Standards 913

Fig. 1. The ontology network for the project. Each node is an ontology and the arrow
points to another ontology which it extends from.

3 Approach

As introduced in the previous section, DL can be used to integrate taxonomies.
To accomplish this, we must transform all taxonomies into OWL DL in order
to describe concepts, terms and all expressive relationships in order to further
embody higher level semantics. This step semi-automates the process of knowl-
edge acquisition from the sources of information selected and adapts them to
the ontological knowledge model. For all product ontologies, we assume that
instances are “item of production,” i.e. each instance is a specific part from
a specific manufacturer. All created ontologies form an inter-related ontology
network. Besides the FCS, the core of the network includes the eOTD which
provides the means for comparing an external classification with the core FCS
classification. It acts as a lingua franca whereby one classification can be mapped
to another, which means classifications are not mapped directly to each other
but by the eOTD intermediary. At the perimeter of the network (see Fig. 1) are
all external ontologies derived from commercial taxonomies.

The next and critical step in our system is to formally define the terms in
the FCS and external ontologies. We do this by writing axioms that ground
the concepts defined in them with eOTD concepts. Therefore, the eOTD func-
tions as the ”standard” reference taxonomy against which other taxonomies are
compared. Although these axioms could be included in the FCS and external on-
tologies themselves, for modularity reasons we place them in mapping ontologies.
These mappings constitute “mediator” ontologies or navigational paths among
different ontologies.

Assuming a sufficient intermediary ontology and axiomatization of the other
ontologies, any concept can be translated to its subsuming concept in another on-
tology simply via logical entailment. We built a product classification translator
that integrates all the taxonomies and analyzes potential reasonable relation-
ships to search for “best available match” through multiple edges.

Using the translator’s outcome we can solve a more practical requirement from
the suppliers. The wrapper and compiler tools together fulfill this requirement

914 Y. Yu et al.

to translate product descriptions to the FCS classification scheme and can be
applied to heterogeneous formats, like XML, spreadsheets and other semi-
structured or structured documents.

4 Ontology Construction

The core ontologies include four ontology files for the FCS taxonomy and one for
the eOTD. In addition, there are four other ontologies for external taxonomies:
eCl@ss, CPV, UNSPSC and PLIB-511. When we created these four external
ontologies, we tried to automate the processes and keep their original hierarchical
structures, because this can prove that our method does not need significant
work to change or adapt other classifications for our approach. The semantic
gap between those classifications and the FCS is shortened by ontology mapping
which will be described in section 5. Therefore in this section we mainly discuss
the construction of core ontologies and the characteristics and difficulties of
external taxonomies we found during ontology construction.

4.1 Naming Convention

In order to build mappings systematically in later steps, it is necessary to
establish certain naming conventions. In generating ontology identifiers we took
the original name from the taxonomy and removed all spaces and punctuations
converting it to Camelback notation. In accord with RDF convention, we start
classes with an upper case letter and properties with a lower case letter (e.g.
“taperIncludedAngle”). Properties that have the same name but apply to dif-
ferent classes are distinguished by numbers at the end of the class name. If a
child uses the same name to refer to a more specific concept, we append “All”
in the name of its super class. If a class actually includes things that are not is-a
children of the named concept, we append “Etc” because this indicates that the
more general concept is improperly named. We use the underscore where a class
name begins with a number, such as “ 12”.

Sometimes, this naming convention fails to adequately denote the concept,
because punctuation may aid in interpreting a name. We use a rdfs:label to
preserve the original name. Thus for example, the class name: StudAssembly-
TurnlockFastener could be supplemented with the label: “STUD ASSEMBLY,
TURNLOCK FASTENER” for a more natural English interpretation.

4.2 FCS Ontology

The FCS is an extensive taxonomy for naming, classifying, and describing items
of supply under inventory control by the Department of Defense (DoD). The
Defense Logistics Information Service (DLIS) is responsible for the FCS and
uses the taxonomy to catalog and differentiate items of supply. Each item in the
FCS is assigned a four-digit code by the government to designate various groups
of common use. The first two digits is the Federal Supply Groups (FSG) code

A Case Study in Integrating Multiple E-commerce Standards 915

identifying the group and the last two digits is the Federal Supply Class (FSC)
code identifying the classes within each group. Each FSC has many Item Name
Codes (INCs) which are five-digit numbers assigned by DLIS to each Approved
Item Name (AIN). Although we don’t discuss it in this paper, each INC also has
many National Stock Numbers (NSNs) where each represents a different item of
supply. The Master Requirement Code (MRC) is a four-character code assigned
to a Federal Item Identification Guide (FIIG) requirement, and a set of MRCs
can be used to indicate whether a requirement in a FIIG needs to be described
for the item being identified.

Since the purpose of this project is to integrate external taxonomies with the
FCS, our first step was to automatically create the FCS ontology from FCS
database. The first ontology (fcs-top) for the FCS defines higher level terms
in the FCS, such as the classes for FSGs and FSCs. Each FSC class is an
rdfs:subClassOf its parent FSG class. This ontology contains all FSGs and FSCs.
The second ontology (fcs-ont) for the FCS extends from fcs-top and defines
classes for all the AINs in our scope. It includes properties for all mandatory
MRCs of each AIN. Every AIN is an rdf:subClassOf its appropriate FSC class.
The third ontology (fcs-values-ont) for FCS extends from fcs-ont and defines the
values in the FIIGs of the FCS as instances in the ontology. To support the
ontologies above, we created a meta ontology (fcs-meta) that defines annotation
properties for recording the FSG, FSC, INC and MRC codes. This allows the
ontology to be searched by DLIS personnel using their terminology.

Since this project was only a prototype, we focused on 128 AINs describing
batteries, bearings, bushings, fasteners, gaskets and electronic circuits. In most
cases, each AIN is represented in the ontology as a class and is identified by its
INC in the fcs-ont. We use a minimum cardinality restriction to indicate prop-
erties defined as mandatory by the FCS. In principle, each item of production
should have exactly one AIN, therefore we made all of the AINs under an FSC
disjoint, and all FSCs under an FSG disjoint. In general disjointness axioms like
these help in detecting errors in alignment axioms and can even be used to infer
most specific relationships between classes in different ontologies. So we tried to
make every disjoint relationship explicitly declared in every ontology we created.
For instance, “fsc:BatteryNonrechargeable 	 fsc:BatteryRechargeable ≡ ⊥”. Al-
though we generally found the FCS to be a well-designed classification system,
there were some defficiencies. For example, some different MRCs have the same
syntactic words as name, e.g. MATT and MATL both have names “Material”.

4.3 eOTD Ontology

The eOTD is an international standard for e-catalogs via the ISO 22745 desig-
nation used to create unambiguous language independent encoded descriptions
of master data. It is designed to support industry classification by providing
a classification neutral dictionary of names and attributes (or characteristics,
properties) of items.

Since the eOTD is designed to be classification neutral, it does not contain
a taxonomy. It only includes the most specific terms from each incorporated

916 Y. Yu et al.

classification scheme. One of these schemes is the FCS. The eOTD includes a
class for each AIN and a property for each MRC. In creating our OWL ontology,
we only included those classes and properties that are in the scope of the project.
In section 5.1, we discuss how we enrich the eOTD with a class hierarchy to better
support our mappings.

4.4 External Ontologies

In this sub-section, we briefly introduce the four representative external ontolo-
gies we selected in this project.

Ecl@ss is a German initiative to create a standard classification of material
and services for information exchange between suppliers and their customers. We
use the 6.0 version of eCl@ss which has over 25,000 nodes arranged in a four-level
hierarchy. We only created classes for those concepts that were in our project
scope. We did not have access to a machine-readable copy, the only source we
accessed is the website (http://www.eclass-online.com/). The eCl@ss ontology
has a limited set of properties.

UNSPSC is a coding system to classify both products and services for use
throughout the global eCommerce marketplace and its partners include 3M,
AOL, Arthur Andersen, BT, Castrol and others. There are over 20,000 nodes in
the hierarchy, which like eCl@ss is four levels deep. A limitation of the UNSPSC
is that it does not define any properties, and no definitions are given for classes.
We wrote a simple program to translate an Excel spreadsheet describing the
catalogue into RDF.

CPV is the European-wide classification system for public procurement con-
tracts. It has over 8,000 nodes arranged in a hierarchy with 7 levels. It employs
two different methods for building the taxonomy. The first is a straightforward
hierarchy proceeding from more general concepts to specific instances. The sec-
ond method is based on a type relationship model. Like UNSPSC, CPV also
does not have any properties nor are concept definitions provided. As above, we
automated data extraction from Excel spreadsheets.

PLIB [15] is the Parts Library series of international standards, and is defined
by ISO 13584. It is developed and maintained by the ISO technical committee.
PLIB is a data model. In this project we use PLIB-511, the PLIB fasteners
dictionary as an external ontology. Our ontology includes all of the classes and
properties from this dictionary. PLIB-511 has a finer granularity of classes, but
the FCS has a superior breadth of coverage. It is the only external ontology
considered that has a relatively large number of properties. PLIB specifies an
electronic interchange format which facilitates automatic conversion to OWL.

Table 2 summarizes all the ontologies we created so far. Most of our classifi-
cations have limited or no properties, for instance eCl@ss, UNSPSC and CPV
described above. However properties are important components for a full ontol-
ogy. Some properties do exist in taxonomies though they are at a fairly high
level and lack detail. Furthermore, there are no definitions, at least in UNSPSC,
CPV and the online version of eCl@ss that we were able to access over the Web.
At best, there are lists of alternatives for specified terms. Also sometimes the

A Case Study in Integrating Multiple E-commerce Standards 917

modeling is inconsistent and fails to always observe implicit modeling conven-
tions. These conditions introduce difficulties when mapping ontologies.

Table 2. Statistics of ontologies created

Ontology Classes Properties Depth Mean Siblings
fcs-top 735 365 2 14
fcs-ont 128 2 3 13
eOTD 194 180 5 10
eCl@ss 313 18 4 8

UNSPSC 228 0 4 13
CPV 208 0 7 5

PLIB-511 186 204 6 12

5 Ontology Mapping

This section discusses how to build mappings between ontologies for each corre-
sponding taxonomy. All the original ontologies and mapping ontologies form an
inter-connected ontology network (recall Fig. 1).

Our mapping construction is done iteratively as described in Fig. 2. As a
preliminary step in the mapping process, we enriched the eOTD vocabulary to
provide a solid basis for later steps. In the mapping process, we found and built
a number of mappings manually, then used a reasoner to evaluate the validity of
these constructs. If there were some errors in our previous manual construction,
additional editing or correction of these mappings were needed. Otherwise, we
repeated this process iteratively based on all of the preceding knowledge.

5.1 Enriching the eOTD

Given the wide variety of terms, attributes and properties across the taxonomies,
we need to find a way to accommodate all of the differences. As we mentioned
in section 4.3, one of the purposes of the eOTD is to serve as the common vo-
cabulary that can be used to define concepts in all of other ontologies. However,
this mapping is complicated by the fact that the eOTD does not have a hierar-
chy. Therefore we found it helpful to add more general concepts to the ontology.
Not only are those concepts convenient when we are defining terms from more
abstract external ontologies, but they enable definitions even when the eOTD
terms provide incomplete coverage of the varieties of a product. We refer to these
concepts as “abstract classes,” and populate them by analyzing the FCS and, to
a lesser extent, the external ontologies. Here we use two guidelines. The first is
to remove one or more modifiers from class names. For instance, we created two
abstract classes “Bearing” and “BearingRoller” for the AIN “Bearing, Roller,
Self-Aligning.” Another guideline is to identify “foundational” classes from FSGs
and FSCs. For instance, we create four abstract classes “BearingsAntifriction,”
“BearingsPlain,” “BearingsMounted” and “BearingsUnmounted” since we have

918 Y. Yu et al.

Fig. 2. The process of building mappings

FSCs “Bearings, Antifriction, Unmounted,” “Bearings, Plain, Unmounted” and
“Bearings, Mounted.” The classes in the eOTD serve a similar role to Hepp’s
generic classes [9]. However, as we discuss in the next section, we provide ex-
plicit formal mappings to the original classes from commercial classification
schemes.

5.2 Semantic Discovery and Bridging

Ontology mapping is the process of aligning the classes and properties of two
ontologies. We do this by creating axioms in a mapping ontology that state
equivalence, subclass, superclass relationships, exception, restriction, etc. In or-
der to establish mappings between two ontologies, it is necessary to discover
their logical and semantic relationships. Discovery of these relationships is the
precondition to building the mappings.

We note that automated ontology alignment approaches [4] are not very help-
ful here. The differences between classification schemes are not as simple as the
equivalence or subclass relations between named classes typically found by such
systems. Even terms with identical names are often semantically different. For
this reason, our alignment was a manual process that involved looking at names
and ontology structures, and when possible we used definitions and actual prod-
uct descriptions.

Our discovery focuses on two kinds of mapping axioms: owl:equivalentClass
and rdf:subClassOf. In all mapping axioms, the left-hand side is a description
composed of classes from one ontology, and the right-hand side is a description
composed of classes from another ontology. Although equivalence is the most
desirable matching, it is difficult to find it. Concepts that appear at one level in
one classification frequently appear at different levels in the other taxonomies.
When equivalence matches cannot be found, we tried to specify a most specific
subsumer and most general subsumee. For example,

A Case Study in Integrating Multiple E-commerce Standards 919

cpv:PrimaryBatteries � eOTD:BatteryAssemblyAll
eOTD:BatteryThermal � cpv:PrimaryBatteries.

To build these mappings, we used the most appropriate OWL constructs (see
Table 1 for details) to express their relationship, such as those listed below.

1. Union (A ≡ B " C)
Sometimes a term name is the literal aggregation of two or more other terms

from different classification. From the conventional English point of view, the
phrase “A and B” usually does not mean the logical conjunction of A with
B, but instead the disjunction of the concepts, e.g. “fsc:KnobsAndPointers ≡
eOTD:Knob " eOTD:Pointer.”

2. Intersection (A ≡ B 	 C)
When a concept’s name describes multiple independent characteristics, it

is best defined as an intersection of classes representing these characteristics.
For instance, “fsc:BearingAntifrictionUnmounted ≡ eOTD:BearingAntifriction
	 eOTD:BearingUnmounted.”

3. Exclusion (A ≡ B 	 ¬C)
We often found that the different classifications have similar concepts with

significant overlap, but there are often exceptions. In this case, we can correlate
them by pointing out the difference between them. Exclusion can be used to
specify that A and B are the same except for some C. This idiom is especially
useful when trying to align a procurement-based taxonomy with formal “is-
a” taxonomies. For instance, “eOTD:BearingPlain ≡ eCl@ss:PlainBearing 	 ¬
eCl@ss:PlainBearingParts.”

4. Class vs. property distinction (A � ∃ P.{a, b, c})
In some cases, the distinction made by a class in one ontology is made

by a property in another. We found this to be true when mapping PLIB-
511 to the FCS/eOTD, because it is a much more specialized taxonomy. We
can use someValuesFrom or hasValue axioms to account for this. For example,
“PLIB:HexagonHeadTappingScrewWithAFlatEnd” is classified partly accord-
ing to two properties head style and point style. Meanwhile we can enumer-
ate the values of both properties. So this item should have one of these val-
ues on the property. Thus “PLIB:HexagonHeadTappingScrewWithAFlatEnd �
∃eOTD:headStyle.{eOTD:Hexagon}” and “PLIB:HexagonHeadTappingScrew-
WithAFlatEnd � ∃eOTD:pointStyle.{eOTD:Flat, eOTD:Flat2, eOTD:Flat3, e-
OTD:Flat4}.” This restriction demonstrates that this concept in PLIB-511 has
a determined value for the property head style, and simultaneously has a limited
set of values on another property, point style.

5.3 Reasoning and Validation

Although domain experts and ontology developers can try to build all knowledge
into an ontology, it is possible that they did not declare all assumptions or
supplied incorrect axioms. Thus after each iteration of semantic discovery and
bridging, a consistency check for the mapping of the ontology is necessary. A
typical example of an inconsistency is when a class is a subclass of two disjoint

920 Y. Yu et al.

classes. The most likely cause of this is an incorrect mapping axiom, but it is
also possible that the disjointness condition is invalid.

Besides checking consistency, the second purpose of reasoning is to compute
subsumption for the ontology. Subsumption determines which classes are nec-
essarily subclasses of other classes based on the classes’ descriptions and our
bridging axioms. If insufficient subsumptions are discovered, then we need to
add new mapping axioms or make the existing ones more specific.

6 Implementation

In previous sections, we have introduced the one-to-one ontology mappings. Now
we will illustrate how they can be expanded to the mappings across the whole
ontology network. The knowledge of domain experts is often limited to a few
familiar classification schemes, and perhaps even only specific classes of product
within these schemes. It is unrealistic to expect one person to know how to map
to all other classification schemes. But if two classifications of different domains
both have a correspondence (mapping) to a common third domain or more
generally there is a correspondence path of multiple bridges between them, we
can incorporate a DL reasoner to automatically infer a virtual correspondence
between these two classifications. In other words, this method can implicitly
“merge” two classifications via other ontologies.

Based on this idea we implemented a translator tool that intended to selects
the most specific FCS concepts that include the terms appearing in the four
external classification systems. It takes in a selected external ontology, core on-
tologies and the bridging ontologies between them together as input, and queries
the DL reasoner about every kind of possible logical relationship we are inter-
ested in. Finally we visualize the quality of these mappings on the interface.
We use HAWK1, a homegrown Java Semantic Web API, to parse the ontologies
and use a DIG interface to load these ontologies into FaCT++, although any
DIG-compliant reasoner could be used.

We query the reasoner about equivalent and direct super class of each item
in a selected external ontology. In the result we filter out those classes which are
not in FCS ontologies, because we are only interested in those classes. Obviously,
equivalent classes are preferred, because they imply an exact translation. Failing
this, the most specific subsuming class is sufficient because this is an accurate
(although more general) description of the original class. If the reasoner does not
return any direct superclasses that are from the FCS, we then recursively query
the classes that are returned until we find an FCS class. We call these results
“indirect” subsumption. So the translator finally output three kinds of relations:
equivalence, direct and indirect subsumption.

Table 3 gives a brief summary of translation results. We note that generic
concepts rarely have matches due to classifications grouping things from different
perspectives. As a result, very specialized schemes like PLIB-511 have a high
degree of matches with FCS, while generic schemes like CPV have fewer matches.
1 http://swat.cse.lehigh.edu/downloads/index.html#hawk

A Case Study in Integrating Multiple E-commerce Standards 921

Fig. 3. An example of translation

For this reason, we recommend that suppliers use the most specific classification
schemes available.

Table 3. Summary of computed matches. The scope means the number of concepts
where we build mappings. The general scope includes all concepts in the scope and all
concepts descended from them. The matching percentage is the sum of all three kinds
of matches divided by the general scope.

Ontology Scope General Equivalence Direct Indirect Matching
Scope Subsumption Subsumption Percentage

eCl@ss 86 191 13 21 78 58.64%
UNSPSC 79 103 7 55 18 77.67%

CPV 43 117 1 8 23 27.35%
PLIB-511 86 86 0 13 72 98.83%

Fig. 3 is an example of translation. A cataloger needs to register a new supplier
who has used eCl@ss to describe their products, including a Barrel Bearing (code:
23.05.09.12). In order to determine how these items can be classified in the FCS,
the cataloger can use our product classifciation translator. Given the eCl@ss
ontology, its mapping to the eOTD ontology, and the mapping of the eOTD to
the FCS ontology, the translator can determine that “eCl@ss:BarrelBearing �
fsc:BearingAntifrictionUnmounted” is entailed. Thus the Barrel Bearing product
should be clasified under this FSC.

To help both suppliers and customers to easily control and understand these
translations, we developed a graphical user interface (see Fig. 4). Through it,
users can select external classifications being mapped into the FCS classification.
The results include the concept names and codes of both sides and the relation-
ship mentioned above. The results of class and properties are separated in two
pages. They are all listed in a tabular form which can be sorted by any column.
Thus users can clearly read whether these mappings are satisfied.

In our prototype, the ontologies are of moderate size (typically hundreds of
classes and a few thousand axioms) and as a result the translation is completed
in tens of seconds including the reasoner’s computation. However, in production

922 Y. Yu et al.

Fig. 4. The graphical user interface of the translator

the ontologies will be much larger. In order to save time, we provide a way
to compile these mappings into persistent storage form, since these ontologies
do not change very frequently (usually at the scale of months). This can make
applications that use the translations much more efficient. The compiler can
be rerun any time when source or target ontologies change. Therefore we can
compare the mappings of different versions and more importantly subsequent
steps can directly utilize these existing mappings rather than translating the
ontologies “on the fly.”

In order to translate data items from a target product description into FCS
terms, we need to make the technical data items queryable by the OWL ontology
language. So we provide a wrapper, i.e. a structure, for these data items to
be translated into RDF Format. Via this process, the source data instances
are transformed into standard form which uses terminology from the ontology
version of the target classification.

Fig. 5. The complete process of compilation. The white boxes are our prototype tools

A Case Study in Integrating Multiple E-commerce Standards 923

As Fig. 5 shows, the wrapper takes in the supplier’s raw catalog data which
could be in the format of plain text, webpages or XML documents, and rewrites
it into an RDF form that commits to the appropriate external ontology. Then
the previously compiled translation results are incorporated to translate the
wrapped catalog into a new catalog which commits to the FCS ontology. Specif-
ically, the system first determines the category and type information of a catalog
product description. After that it uses the previously compiled mapping relation
(mentioned above) between this concept and the target concept in the FCS to
rewrite the description of this product. With this tool, suppliers can easily find
each product’s corresponding descriptions in the terms of the FCS classification
system.

7 Conclusion and Future Work

In this paper, we have demonstrated how Semantic Web technology can be used
to ease integration of various e-commerce classification schemes. With some ex-
tensions, the eOTD provide an excellent common vocabulary and OWL DL
is expressive enough to relate classification schemes that have different levels
of specificity and different assumptions about what a parent-child relationship
means. Ideally, we would like to see suppliers and maintainers of standard clas-
sification schemes create their own mappings to the eOTD, or have them use a
standard product ontology that is so mapped, but in the meantime it is possible
for these mappings to be developed by a third party. This would reduce the
cost of integrating such ontology with the FCS or any other terminology. The
clear advantage is less ambiguous classifications and the ability to automatically
interchange with other schemes.

Future work includes extending the scope to include other kinds of products
and improving our tools. We would like to refine the translator so that translating
a source class to a property value works correctly and properties are translated
in a more comprehensive way. We also believe that there are only a finite num-
ber of ways of modeling any given product, and would like to investigate the
possibility of using automated methods to align new ontologies with the most
similar ontology in our ontology network, achieving an economy of scale as the
ontology network grows.

Acknowledgments

This work is supported by the Defense Supply Center Philadelphia, Philadel-
phia PA, and the Defense Logistics Agency, Ft. Belvoir, VA under contract
SP4701-07-C-0006. We thank Peter Benson of the Electronic Commerce Code
Management Association (ECCMA), Gerald Radack of Concurrent Technologies
Corporation, Xinlei Wu and Ameet Chitnis for their help with the project.

924 Y. Yu et al.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284, 34–43 (2001)

2. Bizer, C., Wolk, J.: RDF Version of the eClass 4.1 Product Classification Schema
(retrieved June 2009),
http://www.wiwiss.fu-berlin.de/suhl/bizer/ecommerce/eClass-4.1.rdf

3. Bowers, S., Delcambre, L.: Representing and Transforming Model-Based Informa-
tion. In: Proceedings of the Workshop on the Semantic Web at ECDL 2000, Lisbon,
Portugal, September 21 (2000)

4. Choi, N., Song, I.-Y., Han, H.: A Survey on Ontology Mapping Sigmod Record.
ACM SIGMOD Record archive 35(3) (2006)

5. Corcho, O., Gomez-Perez, A.: Solving Integration Problems of Ecommerce Stan-
dards and Initiatives through Ontological Mappings. In: IJCAI 2001 Workshop on
Ontologies and Information Sharing, pp. 131–140 (2001)

6. Fensel, D., McGuinness, D.L., Schulten, E., Ng, W.K., Lim, E.-P., Yan, G.: On-
tologies and Electronic Commerce. IEEE Intelligent Systems 16(1), 8–14 (2001)

7. Guarino, N.: Formal Ontology in Information Systems. In: Proceedings of FOIS
1998, Trento, Italy, pp. 3–15. IOS Press, Amsterdam (1998)

8. Heflin, J., Hendler, J.: Dynamic Ontologies on the Web. In: Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI 2000),
pp. 443–449. AAAI/MIT Press (2000)

9. Hepp, M.: Products and Services Ontologies: A Methodology for Deriving OWL
Ontologies from Industrial Categorization Standards. Int’l Journal on Semantic
Web & Information Systems (IJSWIS) 2(1), 72–99 (2006)

10. Klein, M.: DAML+OIL and RDF Schema representation of UNSPSC (retrieved
June 4, 2009), http://www.cs.vu.nl/~mcaklein/unspsc/

11. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An Environment for Merging and
Testing Large Ontologies. In: Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Reasoning (KR 2000), Brecken-
ridge, Colorado, pp. 12–15 (April 2000)

12. McGuinness, D.L.: UNSPSC Ontology in DAML+OIL (retrieved from June 4,
2009) http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml

13. Noy, N., Musen, M.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: Proceedings of the AAAI 2000 Conference, Austin,
TX (2000)

14. Omelayenko, B.: Syntactic-Level Ontology Integration Rules for E-Commerce. In:
FLAIRS Conference 2001, pp. 324–328 (2001)

15. Pierra, G.: Context-explication in conceptual ontologies: The PLIB approach. In:
Proceedings of 10th ISPE International Conference on Concurrent Engineering:
Research and Applications (ce 2003): Special Track on Data Integration in Engi-
neering, pp. 243–254 (2003)

16. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals
in expressive Description Logics. J. of Artificial Intelligence Research (JAIR) 12,
199–217 (2000)

http://www.wiwiss.fu-berlin.de/suhl/bizer/ecommerce/eClass-4.1.rdf
http://www.cs.vu.nl/~mcaklein/unspsc/
http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 925–940, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Supporting Multi-view User Ontology to Understand
Company Value Chains

Landong Zuo1, Manuel Salvadores1, SM Hazzaz Imtiaz1, John Darlington1,
Nicholas Gibbins1, Nigel R Shadbolt1, and James Dobree2

1 Intelligence, Agents, Multimedia (IAM) Group
School of Electronics and Computer Science

University of Southampton, UK
{lz,ms8,hsmi,jd,mng,nrs}@ecs.soton.ac.uk

2 Semantric Ltd.
25 Landsdowne Gardens London, SW8 2EQ, UK

james@semantric.com

Abstract. The objective of the Market Blended Insight (MBI) project is to
develop web based techniques to improve the performance of UK Business to
Business (B2B) marketing activities. The analysis of company value chains is a
fundamental task within MBI because it is an important model for understand-
ing the market place and the company interactions within it. The project has
aggregated rich data profiles of 3.7 million companies that form the active UK
business community. The profiles are augmented by Web extractions from het-
erogeneous sources to provide unparalleled business insight. Advances by the
Semantic Web in knowledge representation and logic reasoning allow flexible
integration of data from heterogeneous sources, transformation between
different representations and reasoning about their meaning. The MBI project
has identified that the market insight and analysis interests of different types of
users are difficult to maintain using a single domain ontology. Therefore, the
project has developed a technique to undertake a plurality of analyses of value
chains by deploying a distributed multi-view ontology to capture different user
views over the classification of companies and their various relationships.

Keywords: Ontology Engineering, Data Management, Market Modeling,
Semantic Web, Value Chain, Network Analysis.

1 Introduction

The MBI project [14] has the clear objective to make a significant performance
improvement in UK business to business (B2B) marketing activities by providing
unparalleled insight into UK business activity and support for intelligent decision-
making processes. The project consortium includes the marketing departments of 5
influential companies each representing a different set of needs within the UK B2B
market, 3M, AXA, British Gas Business, National Australia Group Europe (Clydes-
dale and York shire Bank) and Parcel Force Worldwide.

926 L. Zuo et al.

A major issue for the project, and the market analysis techniques that have been
researched, is how domain knowledge can be utilized to support the diverse analysis
interests from all project partners. The issue is made complex by the need for rich
semantics of the specific business scenarios that need to be modeled while at the same
time supporting common forms of market analysis such as a value chain analysis.
This paper argues that a single domain ontology is too rigid to resolve the problem
and therefore, proposes a layered user viewpoint model which gives extra flexibility
in terms of unique user views of information classification and relationship definition.
The principle of multiple user view ontologies is generic but is illustrated in this paper
with the latest achievement of value-chain analysis application.

The remainder of paper is structured as follows: section 2 reviews the related work,
section 3 gives the background knowledge of value-chain analysis, section 4 describes
the application architecture and processing work flow, section 5 includes the underly-
ing data with extraction and integration processes, section 6 and section 7 explain the
approach of multi-view ontology engineering and semantic annotation in detail,
section 8 presents the execution result of value chain analysis, which is followed by
the summary and future work in section 9.

2 Related Work

The information analysis over semantic integration of public information has at-
tracted significant interest from different Semantic Web communities. The AKT PSI
project [4] demonstrated the added-value of richer information insight by using
Semantic Web technologies as an important means to integrate a large collection of
public information from distributed legacy data sources. The underlying data, in less-
standardized formats, was converted into RDF following local data-centric ontology.
The different data sources were integrated using an ad-hoc ontology alignment
approach.

The EDEN-IW project [12] integrated the water environmental information from
heterogeneous databases to support cross-country decision-making processes at the
European level. The semantic heterogeneity in terms of different data structures and
multi-lingual representations was harmonized at the conceptual level by deploying a
multi-layered ontology model. The conceptual viewpoints of local database ontology
and user ontology were connected via rule-based mapping to the global ontology.
The high-level user queries were translated into global terms and corresponding SQL
syntax was constructed and executed over the legacy databases.

The first MBI prototype [14] extracted unstructured and semi-structured text from
different web sources, transformed that into RDF and integrated the data with core
structured and semantically annotated information. A global ontology was constructed
from domain knowledge of the B2B market and was designed to be extensible in order
to reuse additional conceptual schema extracted from external sources. The informa-
tion analysis was performed using specific scenarios such as micro-segmentation and
value-chain modeling. These require the application logic to follow either standard
business classification schemes or ad-hoc operational logic of individual use cases.

 Supporting Multi-view User Ontology to Understand Company Value Chains 927

An important goal for the project is to achieve a rich analysis insight over a wide
range of data sources. The design of above applications was normally driven by
specific key use cases in the closed domain in order to satisfy the mutual interests of
particular user group. This could have led to a data-centric approach to save the cost
of knowledge engineering. However, the potential diversity of operational logic in
real business scenarios cannot be fully addressed in such an approach. The project
identified a number of issues:

• The global specification of domain knowledge is too coarse and needs
refinement to reflect the requirement of the individual analytical case.

• It can be too expensive to develop a complete global domain ontology that
meets all requirements. This requires close collaboration between project
stake-holders including domain experts, knowledge engineers and software
developers.

• The representation of domain knowledge amongst different user group needs
is rarely agreed as being common. In the extreme circumstance, the applica-
tion development may have to repeat the knowledge learning process for
every case resulting in separate solutions for each partner. The knowledge
learning can become a very time-consuming process.

• There may be security concerns regarding sensitive information that cannot
be shared.

The development process can become extended as new business scenarios emerge and
changes to the analysis logic result in significant rework of the software implementation.

3 Background

A Value-Chain is defined by Porter [11] as a series of value-generating activities.
Products pass through all activities of the chain in order, and at each activity the
product gains some value. In MBI, the value chain is addressed as a network path
consisting of relationship fragments between companies. The value-chain application
is a semantic search and navigation tool featured with special interest in supporting
the modeling of company relationships and the capability to identify key trading
behavior and entities that have significant influence on a company’s propensity to
buy. The relationship is defined at a conceptual level as typed connections between
two sub-types of company following specified patterns of trading behavior. In prac-
tice, the conceptual model regarding company classification scheme and trading
behavior can vary with each individual case and can change frequently. The value-
chain model needs to be analyzed in the context of a specific business scenario and
user understanding of the industry domain.

4 Application Architecture

To achieve improved use of information the MBI project proposes a multi-view ontol-
ogy approach to resolve the problem of varying user scenarios. It enables individual
user conceptual views over a value-chain network as well as cross-domain knowledge

928 L. Zuo et al.

manipulation by domain expertise. The approach is prototyped within a generic
framework architecture, as shown in Fig. 1, which separates the definition or configura-
tion of a form of marketing analysis from the execution or visualization of a specific
analysis of the market.

Domain Expertise

User-view

Configuration
Analysis Execution

CETF Data Aggregator

RDF triple-store/Company Backbone

Total market ontology

Unstructured Web Contents

User view ontology

Marketing Analyst

RDF Annotation/

Inference

Fig. 1. Generic architecture of value-chain application

The Total Market ontology is a central knowledge base capturing the common con-
ceptualization of a company profile. The common conceptualization includes the
general definition of upper concepts and relationships common to all potential analy-
sis projects.

Besides the common concepts and relationships, the refined viewpoint of an
individual user scenario is addressed in the User View ontology that extends the Total
Market ontology. The information access is enhanced by the augmentation insights of
market including both common view and special view.

The user-view configuration is a web-based ontology editor that allows experts of in-
dustry domain to define their own knowledge view over the total market. The generated
output is a user-view ontology that extends the general class and relationship definition
from the Total Market ontology with additional finer definitions.

The Common Extraction and Translation Framework (CETF) is an ontology-driven
process that extracts unstructured information from selected external web site. The web
sites are of particular interests about trading relationships between companies. The
output of web extractions is translated into RDF and follows the semantics of the Total
Market ontology or its extensions.

The extracted RDF needs to be integrated with company profile backbone to
establish a solid data foundation to support high level queries. The individual view of
user conceptualization is not included in the extracted RDF because the extraction
process is designed to be generic. The extraction process is completely independent of

 Supporting Multi-view User Ontology to Understand Company Value Chains 929

the analysis process. The application has an additional RDF annotation process that
tags the extracted RDF triples into the specific user view. The details of multi-view
ontology engineering and data annotation approach are further explained in Section 6
and Section 7. The marketing analyst is operating over the analysis execution interface
where value-chain visualization and navigation is supported over high-level semantic
query according to user-view conceptualization.

In this architecture, the knowledge representation is separated from operational
process to achieve more flexible information access. The ontology is used here as an
extensive knowledge vehicle that allows richer semantic definitions to represent com-
plex analysis scenarios whilst diversity of user-views conceptualization is effectively
maintained by introduction of user-defined concept and relationship over Total Market
ontology. The concepts and relationships are restricted by semantic rules and mapped
to super-classes in the Total Market ontology. The RDF annotation process loads the
mapping rules, performs a forward-chained reasoning and generates SPARQL syntax
to query the underlying integrated data. The logic consistency and answering correct-
ness between domain expertises and marketing analyst is guaranteed.

Both types of users, the Marketing Analyst and the Domain Expert, interact with
the system through a web portal. This portal is developed using the Django frame-
work1 and acts as a bridge to a collection of backend services. The collection of
backend services work tightly with a set of JavaScript widgets in order to provide
easy interaction and visualization functions over the semantic data. The list of func-
tionalities is as follows:

1. Extract Graph Based Information: this data is extracted by a JavaScript
library developed ad-hoc for this project2. The first prototype used
Prefuse3 but it did not meet the performance. Our implementation for
visualizing graphs is Java Applet free and, it uses the HTML Canvas
component to render the objects in the browser.

2. Represent Tree Based Structures: this service offers to the ontology editor
the possibility of querying any graph structure and retrieve it in the shape
of a tree. This functionality is flexible enough to allow users the creation
of trees from RDF graph.

3. Extract Table and List Based Structures: the prototype uses extensively
list and tables data structures. This service follows the schema definition
for the data sets in order to retrieve the information in such a way as to be
properly visualized in the front-end.

4. Schema Browsing Service: this service provides a unique point to query
the ontology schema using T-Box reasoning. The front-end invokes this
service to display a comprehensive view of the structure of RDF data (see
Fig. 2).

1 http://www.djangoproject.com/ (last accessed in April 2009).
2 All the graphs-alike screenshots on this paper are examples of the mentioned JavaScript

library.
3 http://prefuse.org/ (last accessed in April 2009).

930 L. Zuo et al.

Fig. 2. Schema Browsing Service

5 Underlying Data

The MBI project has aggregated information from heterogeneous sources including
structured data, semi-structured data and unstructured data. The company backbone is
converted from an industry provided structured data source containing 3.7 million
company profiles covering the total UK market. This is augmented with web-based
content extracted from selective Web sites.

5.1 Company Backbone

The company backbone is created from an industry provided relational database
dump. The company profile data is converted into RDF following concept and rela-
tionship definitions in the Total Market ontology. The company backbone is updated
on a monthly basis providing an ongoing view of company profiles which can be
analyzed over a historical period. In MBI, company backbone data is saved into
persistent semantic storage of 4Store4 RDF database and each update has more than
160 million triples.

5.2 Ontology-Driven Web Extraction

To exercise the value-chain model, the application prototype is used to create projects
that focused on the domain of the Building and Construction (B&C) Industry using
data that is regularly extracted from the trade web sites with rich contents about B&C
projects and contracts in order to build a network of data depicting the historical
trading relationship in the UK B&C industry. Two web sites are selected to support
this prototype.

4 The home page is at http://4store.org (last access in August 2009).

 Supporting Multi-view User Ontology to Understand Company Value Chains 931

• Architect Journal Specification is a monthly UK-based magazine, which
covers the issues of specifying products, and there use in building projects.
The MBI project currently has extracted contract, supply and product infor-
mation details including 632 building projects, 392 architects and 4318
suppliers.

• Barbour ABI is the leading provider of sales leads and construction contract
data for the UK market. Their UK-based research team track 100% of all
planning applications on every planned building project valued over
£100,000 and publish contract update on the daily basis.

The CETF supports the generic ontology-driven solution dealing with unstructured or
semi-structured web extractions. The CETF keeps a set of extraction patterns that is
matched with the semantic definition of class, instance and properties in the ontology.
This may include regular expressions, Gate jape grammar[5], natural languages
expressions, concept instances, parsers etc. needed to build a gate pipeline and carry
out any data extraction. The framework supports extraction from HTML pages with
complex structures, such as nested tables or lists. The string similarity algorithm, for
example Levenshtein Distance algorithm [8], is used to compute the similarity of
table headers against its matching concepts in the ontology. The WordNet based
semantic similarity measure [9] is also deployed. Some generic extraction logic is
applied to translate semi-structured tabular data into RDF. For example, if at least one
column maps to a concept attribute, instances are generated for each row with corre-
sponding attributes. In the case of nested tables, a concept may be linked to other
concepts through object properties. Then a column itself may contain concepts rather
than just attributes of the main concept. The extraction task is performed on a sched-
uled or event-driven basis following the user’s instruction. For example, the AJSPEC
extraction is performed on the monthly basis and ABI extraction is on the daily basis
and driven by any data update.

5.3 Semantic Integration for Companies

The output of a web extraction is identified in a different namespace connecting to the
URL of extraction source in order to retain their provenance. The extraction output
contains richer semantic information regarding company trading relations that need to
be integrated with the company backbone to form the proper value chain definition.
The comprehensive description of the approach to semantic integration is not part of
this paper. The value-chain application has developed and deployed an ad-hoc
integration model with fast mapping functions to match companies identified in web
extractions to companies in the backbone data. The company matching can be
declared as equivalent if the postcode of registered address of two companies is the
same and their company names are closely matched. The Levenshtein Distance
algorithm[8] is used here to measure string similarity between two company names.
The algorithm output is normalized to the length of string and produces a real number
between 0 and 1. The similarity is null if two strings are completely different. The
similarity is 1 if two strings are exactly the same. If the similarity exceeds the accept-
able threshold, the matching is successful and two companies are tagged with
OWL:sameAs relation.

932 L. Zuo et al.

0
2
4
6
8

10
12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold/ Matching
Ratio

Fig. 3. Company matching using Normalized Levenshtein Distance algorithm

The instance matching result using AJSPEC data based on 4318 suppliers is shown in
Fig. 3. Using the matching logic described above, the diagram shows how the match-
ing ratio varies against the value change of similarity threshold. The matching ratio
was calculated as the number of equivalent matching divided by total number of
companies. The result shows the algorithm ends up with reasonable output if the
threshold is between 0.4 and 0.6.

5.4 Data Storage and Query

The persistent storage of the company backbone is supported by 4Store, a large-scale
RDF triple-store developed from previous work on the semantic database and query
engine, 3Store [6]. The 4Store is capable of scaling up to 60 billion triples5 with
efficient supports of semantic query via SPARQL [3].

6 Ontology Engineering of Layered Model

The layered model is proposed and deployed in MBI value-chain application to
support individual user-view, as shown in Fig. 4. The user-defined concepts and rela-
tionship presents the restricted view over the Total Market ontology. The user-defined
concept is specified at schema level as classes that are mapped to the Total Market
ontology using rdfs:subClassOf relationship plus filtering rules. Semantically, the
user-defined company type is a special subset of total market Organization featured
with unique attribute characteristics. The restriction of such subset are explicitly
expressed in filtering rules that lead to a filtering process against Organization over
underlying data using pre-defined filtering algebra. The user-defined company
relationship is also explicitly specified in filtering rules to connect two company
sub-types following the specific semantic patterns of trading behaviors in the Total
Market ontology.

The data annotation process works as an off-line service to reason the semantic
specification of user-defined concept and relationship with filtering rules and find
satisfactory evidence from underlying data. The satisfying company individuals are
annotated with additional triples in terms of user-defined class and relationship. The
relating company profiles, the additional triples generated from annotation process are
merged and saved into 4Store as user scenario data. Meta-data about this merging

5 The number was cited from the page, http://www.garlik.com/press.php?id=136-GRLK_PRD

 Supporting Multi-view User Ontology to Understand Company Value Chains 933

data set is created and linked to the individual user view. Thereafter, the knowledge
representation of user conceptualization is transformed into underlying triples and the
queries in user-defined terms are supported. The users can easily create new
user-views, change and share the contents and make it quickly effective in analysis
execution.

Fig. 4. Semantic adaptation crossing layered Ontology models

6.1 Total Market Ontology

The Total Market ontology was extended from the underlying schema of company
backbone following a bottom-up approach, i.e. the ontology schema was derived from
underlying database dump with neutral mappings to the conceptual structure of
database tables and attributes. The ontology was developed in a generic purpose
combining conceptual knowledge from relating domains including people, product,
location and transactional information. The ontology has also adopted semantics from
other established namespaces including Dublin core[1], OWL-time[7] and SKOS[2].
The ontology model benefits from this method in two extents: Firstly it supports
query and reasoning request following the standard classes and attributes definition
that would make the application extensible to connect to other applications via an
open interface; Secondly, the company profile data is the major part of data aggrega-
tion. The straight mapping would save much of transformation efforts to convert
relational database dumps into semantic forms.

The conceptualization of total market ontology is shown in Fig. 5, which provides
an overall picture over the B2B trading domain with specific focus of Organization.
The ontology contains many extending branches where further extension is conducted
and created in separate ontologies, for examples the offering ontology extends the
concept of Product, specifying standard taxonomic and part-of relationship in product
domain and synonym representations, the business activity ontology describes the
company classification in UKSIC Code 2003[10] standard and extends UK SIC Code.
The extended semantics would allow richer data aggregation of public information
and standards from different domains and thus supports finer company classification
using comprehensive semantic restrictions.

934 L. Zuo et al.

Fig. 5. Domain conceptualization of total market ontology

6.2 User-View Ontology

Information viewpoints model a given representation for some specific point of
interest, among the set of possible representations [15]. The user-view ontology offers
a particular perspective on the Total Market ontology, capturing explicit specification
of additional concepts and relationships required for individual analysis scenarios. In
value-chain analysis, the view ontology is developed in a top-down approach, i.e.
specifying the user-defined company classification and relationships regardless of the
existence of corresponding individuals in the underlying data. The user selects the
Total Market ontology or additional conceptual knowledge derived from external
Web Extraction to declare the restricted meaning of user-defined concept and
relationship. The user-view specification is passed into reasoning service and the
underlying RDF is annotated according to user views. The output of annotation
service representing the value-chain relationship from different provenances can be
further merged or compared to support higher order decision-making processes by the
user.

The generic web-based ontology editing interface, user-view configuration, is
developed to support user manipulation of view ontology. The underlying syntax of
ontology language of OWL and filtering rules is hidden from the user with the ontol-
ogy presented as a network graph following property domain and range relationships.

6.3 Common Ontology and Project Ontology

To improve the usability of user-view, the ontology representation is sub-typed into
hierarchies regarding the common use and knowledge sharing of value-chain analysis.
Two types of user-view are created in the prototype application: common view and
project view. The common view contains the sharing knowledge, any concept agreed
as being common amongst user groups is presented in the common view and to be
shared amongst authorized users. The project view includes specific knowledge
referring to the individual analysis scenario. It extends the common view ontology
and inherits all common definition of company classification and relationship. If one
concept or relationship in project view becomes popular and is recognized by most

 Supporting Multi-view User Ontology to Understand Company Value Chains 935

users, it can be inserted in common view making it visible to other project users. The
user can easily create new individual project view from a sharing view of other users.
The developing time of user-view conceptualization is saved. The view hierarchies
can be further extended to include more layers according to the actual management
hierarchy inside the organization, for example sales department and marketing
department may share the common set of use scenario whilst the diverse view is still
captured in the individual project view. In the value-chain model, the basic common
view mainly defines general company classification scheme following UK SIC Code
standards, for example, manufacturer, retailer and whole seller. The project includes
the additional classification scheme based on the common definition plus semantic
restrictions.

6.4 Filtering Rules to Map User-View and Total Market Ontology

The semantic meaning of user-defined concepts is specified as sub-class of total
market concept and restricted with filtering rules, which is further interpreted as: the
general class in total market ontology is filtered by attribute values of one or multiple
connecting concepts following selective semantic path crossing the schema network
of total market ontology. For example, a new concept “Manufacturer of Glazing” in
individual user-view can be interpreted as: the existence of an Organization that has
more than 2 historical transactions producing product “Glazing” between
“01/01/2009” and “01/05/2009”. In such statement, the general concept Organization
is restricted by the semantic connection relating to concept Product and traverse
concept Business_Transaction filtered by number of transaction and occurrence time
period.

The MBI project has developed an ontology-driven, rich semantic interface to
guide the user through the specification of such restriction logic and creation of a
proper filtering template. The operation of new concept creation is conducted follow-
ing the steps below,

1. The user needs to select the base concept to extend, in the case of value-
chain it can be Organization or any user-defined sub-class of Organization.

2. Next, the user is supposed to select a restrictive concept in the Total Market
ontology to apply the restriction over base concept, for example Product.
The selection implies the semantics of new concept is limited by existing re-
lations connecting base concept and Product.

3. The backend ontology service crosses the Total Market ontology graph to
find any possible connecting paths between base concept and restrictive con-
cept. The calculation of semantic path considers any class and relationship in
the path taking into account of all domain/range properties being explicitly
declared with the class or implicitly inherited from its super-classes.

4. The user selects one or multiple paths from the preliminary calculation result.
5. For each selected path, the user can select to restrict over any class or relation

in the path. The setting-up of restriction is guided by pre-defined filtering
algebra that works with ontological definitions including data-type property,
class definition and object-property.

936 L. Zuo et al.

The preliminary result of ontology computing paths consists of any possible templates
regarding the semantic restriction between the base concept and the restrictive
concept. The path addresses the unique interpretation of semantic restriction over the
base concept following the conceptual specification of the Total Market ontology.
Although some paths may not make proper sense to the domain experts, it does
comply with the logic structure defined in the underlying ontology. Therefore, the
human knowledge of domain expertise is required to validate the preliminary result
and make correct choice according to the analysis scenario. The significant flexibility
and good data quality is made via combination of formal representation of domain
knowledge with diverse understanding of individual scenario from domain expertise.
Any multiple selections from the computing paths are regarded as logic AND in the
annotation process.

The restriction over user-defined relationship has to follow the same procedure
except that relationship is specified as connections between two company sub-types,
for example, the user-defined relationship Supply-To may link Manufacturer and
Whole Seller following a specific historical transaction pattern. Similarly, the user
needs to select correct pattern from computing paths to declare the restriction. The
user has options to select from two type of logic pattern, either explicit relationship or
implicit relationship. The explicit relationship follows the single path to cross the
semantic network and connect two companies. For example, the historical transaction
pattern implies that two companies are connected in the relationship if there is at least
one trading transaction between them. The implicit pattern defines a flexible model to
handle implicit transaction information where interaction between buyer and seller is
not explicitly specified. This requires user selection of the third concept to link two
company types. For example, user specifies that a Contractor has contactWith
connection to an Architect, if two companies have participated into the same building
project. The user can also define other types of relationship in a similar pattern, for
example the relation competeTo can be defined semantically to connect two compa-
nies producing the same type of Product. The implicit model can be further extended
to cover more complex use cases.

The filtering rules are written in Jena-like[13] rule syntax plus additional extension
supporting filtering algebra. Some functions are already supported by the Jena
inference engine, the reason of re-definition in filtering algebra is explained in Section
7. The pre-defined filtering algebra includes following functions:

1. Data-type property functions:

• String restriction functions: equals, starts with, contains and ends with;
• Integer or Float type functions: less than, equals and greater than;
• Date-time type functions: equals, starts from, ends by;

2. Class type restrictions: equals, all value from sub-type, union of;
3. Object Property restriction: occurrence (more than), occurrence(less than),

occurrence(equals)

The selective combination of the filtering functions and computing paths gives the
explicit meaning of user-defined concept and relationship in terms of how satisfied
companies and relationships can be derived from underlying data.

 Supporting Multi-view User Ontology to Understand Company Value Chains 937

7 Data Annotation via Rule-Based Reasoning

The value-chain application needs to query and reason over 200 million triples held in
the 4Store. 4Store supports the SPARQL standard without any inference capability.
Most inference engines, such as Pellet and Jena, are supposed to work over their
native interface to access the underlying triple-stores, i.e. the reasoning engine is
bounded with the query engine. To our knowledge, such generic inference engines do
not support reasoning tasks by accessing an additional persistent triple-store via
SPARQL interface. The MBI project has developed a computational model working
as replacement for a generic logic inference engine to reason about filtering rules. The
model takes into account of user-defined concept and relationship and filtering rules,
to decompose the task, generate SPARQL syntax dynamically, and execute the
queries over the underlying data. The underlying data of individual companies are
annotated with additional triples generated from reasoning process. The model
supports reasoning functions in terms of RDF forward-chained rule syntax to prove
the supporting evidence that a company is an instance of classification type or the
relationship exists between two companies. These are the primary pieces of informa-
tion required for a value chain analysis.

Fig. 6. Semantic reasoning over user-view conceptualization

The example of reasoning outcomes from a user conceptualization is shown in Fig. 6.
The result was created from the AJSPEC data in the Building and Construction
domain. The connecting network represents the individual user view over the industry
domain. The user-defined company types are structured into a type hierarchy tree and
the relationship types are named respectively following the historical transactions
between two companies. The reasoning is conducted over iterations. The reasoning
process tries to fire every satisfying rule in the iteration. The SPARQL syntax is
constructed from filtering rules and executed against the underlying data to generate
new triples for user-defined concept and relationship. The process continues until no
more new triple is generated. The output in terms of generated triples are saved with

938 L. Zuo et al.

Web Extraction data and company profiles creating a new RDF data set, to support
queries following the user-view conceptualization.

8 Value-Chain Execution over Project View

The value-chain execution is designed as a generic navigation service to visualize the
value-chain relationships between companies according a specific user-view
conceptualization. The value-chain model is constructed in a series of steps, each
finding the potential connecting companies for a specific company following selected
relationships or company types as defined in the user view. The analysis execution
does not need to prove the underlying semantic meaning of each concept and
relationship. It loads the user-view ontology and composes queries in the high-level
user’s terms. It executes the query against the user scenario data and visualizes the
result in a network graph, see Fig. 7 .

Fig. 7. Value-chain execution and visualization

The example shows the output of a value-chain execution. The construction starts
from a client and follows the user-defined relationships to cross the trading network
and reach other companies of user-defined types. The relationship closeness is
defined by the weight of influential factors such as the number of transactions in the
historical transactional data sets. The analysis execution enables quick construction of
value-chain models following any user-defined logic view over different industry
domains thus providing a generic service required by all project partners.

9 Conclusion and Future Work

The first MBI prototype showed the value of semantic data augmentation from
heterogeneous sources. In this paper, we have considered an extension of the
approach that covers the more important modeling and sharing of processing logic

 Supporting Multi-view User Ontology to Understand Company Value Chains 939

needed to analyze the underlying data. The extension creates flexibility in support of
individual analytical user views to model the reality of specific business scenarios.
The multi-view ontology approach was developed and deployed specifically for, but
not limited to, value-chain analysis. It extends a single domain ontology to support
modeling of varying analysis scenarios and fulfills the user requirements regarding
different industry domains. The network analysis is separated at an abstract level into
analysis configuration and analysis execution respectively supporting knowledge
manipulation of user conceptualization and specific value-chain explorations. The
processing logic of the data analysis is persisted in an ontology and aligned with
underlying data via an annotation service following generic inference rules. The user-
view ontology and corresponding annotated data are passed through two sub-phases
in parallel, to separate high-level value-chain visualization and navigation functions
from the scenario variation of analysis context. The ontology here is used as a super
vehicle to convey rich semantic contents of analysis case from domain expertise to
marketing analyst, and maintain the semantic consistency throughout annotation
process. The information analysis benefits from explicit and extensible knowledge
representation using Semantic Web technology. The application logic of analysis
scenario is updated in an evolutionary rather revolutionary way by extending and
reuse shared ontology views amongst user groups. Much time and effort is saved
because user-view conceptualization is simply managed and validated by domain
expert via the web-based ontological editing interface. The knowledge transferring is
transparent to marketing analyst with less intervention required from software devel-
oper, thus performance of analysis project is improved in a long-term scale by using
semantic web technology.

The future work is to continue to progress the inference service to provide a
comprehensive analysis with more complex semantics, for example the value-chain
analysis over an Offering ontology, to allow value chains analysis based on “potential
product offering chains” as well as “historical transaction chains”.

References

1. Dublin Core Metadata Element Set, Version 1.1,
http://dublincore.org/documents/2008/01/14/dces/

2. SKOS simple Knowledge Organization System - Home Page,
http://www.w3.org/2004/02/skos/

3. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
4. Alani, H., Dupplaw, D., Sheridan, J., O’Hara, K., Darlington, J., Shadbolt, N.R., Tullo, C.:

Unlocking the potential of public sector information with semantic web technology. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC
2007 and ISWC 2007. LNCS, vol. 4825, pp. 708–721. Springer, Heidelberg (2007)

5. Cunningham, H., et al.: JAPE: Regular Expressions Over Annotations,
http://gate.ac.uk/sale/tao/index.html#x1-1790007

6. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: 1st International Workshop
on Practical and Scalable Semantic Systems (PSSS 2003), Sanibel Island, Florida, USA
(2003)

7. Hobbs, J.R., Pan, F.: Time Ontology in OWL,
http://www.w3.org/TR/owl-time/

940 L. Zuo et al.

8. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,
vol. 163, pp. 845–848 (1965)

9. Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 15th In-
ternational Conference on Machine Learning, pp. 296–304 (1998)

10. National-Statistics, U.K.: Standard Industry Classification of Economic Activities pdf
(2003),
http://www.statistics.gov.uk/methods_quality/
sic/downloads/UK_SIC_Vol1.2003.pdf

11. Porter, M.E.: Competitive Strategy: Techniques for Analyzing Industries and Competitors.
Simon and Schuster (1980)

12. Poslad, S., Zuo, L.: An Adaptive Semantic Framework to Support Multiple User View-
points over Multiple Databases. In: Advances in Semantic Media Adaptation and Personal-
ization, pp. 261–284 (2008)

13. Reynolds, D.: Jena 2 Inference Support, http://jena.sourceforge.net/inference/
14. Salvadores, M., Zuo, L., Imtiaz, S.H., Darlington, J., Gibbins, N., Shadbolt, N.R.,

Dobree, J.: Market blended insight: Modeling propensity to buy with the semantic web.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 777–789. Springer, Heidelberg (2008)

15. Spaccapietra, S., Parent, C., Vangenot, C.: GIS databases: From multiscale to multiRep-
resentation. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864,
pp. 57–70. Springer, Heidelberg (2000)

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 941–948, 2009.
© Springer-Verlag Berlin Heidelberg 2009

EXPRESS: EXPressing REstful Semantic Services Using
Domain Ontologies

Areeb Alowisheq, David E. Millard, and Thanassis Tiropanis

Learning Societies Lab, School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, UK

{aaa08r,dem,tt2}@ecs.soton.ac.uk

Abstract. Existing approaches to Semantic Web Services (SWS) require a
domain ontology and a semantic description of the service. In the case of light-
weight SWS approaches, such as SAWSDL, service description is achieved by
semantically annotating existing web service interfaces. Other approaches such
as OWL-S and WSMO describe services in a separate ontology. So, existing
approaches separate service description from domain description, therefore
increasing design efforts. We propose EXPRESS a lightweight approach to
SWS that requires the domain ontology definition only. Its simplicity stems
from the similarities between REST and the Semantic Web such as resource
realization, self describing representations, and uniform interfaces. The seman-
tics of a service is elicited from a resource’s semantic description in the domain
ontology and the semantics of the uniform interface, hence eliminating the need
for ontologically describing services. We provide an example that illustrates
EXPRESS and then discuss how it compares to SA-REST and WSMO.

Keywords: Semantic Web, Semantic Web Services, Ontologies, REST,
SA-REST, WSMO.

1 Introduction

The emergence of Web Service technologies offers great business opportunities.
Traditional Web Services, based on the SOAP/WSDL standards provide syntactic
descriptions of services. Offering syntactic descriptions however, is insufficient for
the automation or semi-automation of service discovery and composition, stating that
a service accepts an integer and returns a string will not offer information on what the
service does. In order to solve this problem research has been done to semantically,
rather than syntactically, describe Web Services. The Semantic Web is a set of
technologies enabling the semantic description of resources using standards such as
RDF and OWL. Therefore it offers a solution to the lack of semantics in the Web
Services world. The research community has introduced several approaches for Web
Service semantic descriptions. These range from lightweight solutions like SAWSDL
[1] to complex ones like OWL-S [2] and WSMO [3]. The complexity of these
approaches stems from their heavy reliance on logical reasoning for the automation of
discovery, matchmaking and composition. This complexity also means it will be very

942 A. Alowisheq, D.E. Millard, and T. Tiropanis

challenging for these features to be available at Web scale [4] [5] [6]. There is a
trade-off between automation and scalability, and existing SWS approaches tend to
focus on automation. Recently, there has been a rising interest in lightweight SWS for
reasons of scalability and minimising complexity and design overhead [7] [8].

Another issue with these approaches, whether heavy or lightweight, is that in
addition to semantically describing services they require a semantic description of the
domain. This separation of domains and services descriptions stems from the SOA
and RPC mindset these approaches are based on. This was the prevalent mindset in
traditional Web Services when SWS research began. However another approach to
Web Services came forward, known as RESTful Web Services. This approach is
based on REST [9] where resources are key actors just as services are in SOA.

REST is an architectural style for network-based systems. It provides a set of
constraints learnt from the Web’s HTTP development and when applied can make
systems scalable, reliable, reusable, resilient and other desired features of the Web
as a network-based system. Constraints of REST are: identification of resources,
manipulation of resources through representations, self descriptive messages, and
hypermedia as the engine of application state. REST was not introduced as an ap-
proach to designing web services, yet it has been adopted by the non-corporate Web
Service community as alternative to SOAP/WSDL. Although not always adhering
to the all of REST’s constraints [10] [11] [12], RESTful Web Services are gaining
popularity and are adopted by major service providers like Google, Amazon and
Yahoo.

The RESTful approach is a natural fit to the Semantic Web since the Semantic Web
is based on resources and REST provides a uniform way to provide Web Services. In
this paper we explain an approach we called EXPRESS [13] that offers Semantic
RESTful Web Services by exploiting Semantic Web resources through a RESTful
interface with the minimum of design and development overhead. EXPRESS uses the
ontologies that describe classes, instances and relationships among them to create re-
sources accessible via RESTful interfaces. Because the mapping between entities in an
ontology and resources is direct, we created a tool that automatically creates a RESTful
interface for the semantic resources, therefore simplifying the deployment process. The
next section provides a brief overview of existing SWS approaches. In section 3 we
discuss EXPRESS with an example. In section 4 we briefly compare EXPRESS with
SA-REST and WSMO, then we conclude by highlighting the research questions and
future directions.

2 Approaches to Semantic Web Services

We can classify SWS approaches into two main categories: in the first category are
approaches that semantically enhance Web Services. The second are approaches that
are based on manipulating semantic resources.

2.1 Semantically Enhancing Web Services Approaches

These approaches can be either based on SOA or based on REST.

 EXPRESS: EXPressing REstful Semantic Services Using Domain Ontologies 943

2.1.1 SOA Based SWS
SAWSDL [1] is a lightweight solution and the only W3C SWS recommendation. It
annotates WSDL components such as inputs and outputs with references to ontolo-
gies. More ambitious W3C submissions for SWS, such as OWL-S and WSMO, are
more complex. OWL-S [2] based on OWL, defines an ontology describing 3 aspects
of the service: profile, process and grounding. The profile is for advertising and dis-
covery and contains non-functional and functional properties (inputs, outputs, precon-
ditions and effects.) The service process describes how inputs relate to outputs and
preconditions to effects. The grounding maps to a concrete service specification. The
limitation of OWL-S is in using OWL as a language based on description logics.
OWL-S is overcoming this by incorporating SWRL [14] for defining rules. WSMO
[3], another approach, is based on 4 major elements for modelling: ontologies, web
services, goals and mediators. Ontologies provide the terminology to describe the
domain and services. Web services describe service capabilities (preconditions, as-
sumptions, postconditions and effects) and interfaces (choreography and orchestra-
tion.) Goals model service requester’s requirements which are used for matchmaking
with service capabilities. Mediators handle heterogeneity. WSMO uses WSML1 as the
language for modelling ontologies and rules. It is more expressive and complex than
OWL. A criticism of WSMO is its drifting from W3C standards. Efforts have been
made to bridge between them.

2.1.2 REST Based SWS
RESTful WS are gaining more popularity, and interests in RESTful SWS are rising.
SA-REST [8] is similar to SAWSDL, as it semantically annotates RESTful WS, but
because there are no WSDL files for RESTful WS, it adds the annotations to web
pages that describe the services. It uses GRDDL2 or RDFa3 to embed the annotations
in HTML files. By adding semantics SA-REST aims to provide an easier way to cre-
ate and coordinate mashups. hRESTs and microWSMO [7] are similar approaches to
SA-REST. Another approach was introduced in [15] in their approach Semantic
Bridge for Web Services (SBWS), they annotated WADL4 documents linking them to
ontologies.

2.2 Semantic Resources Based Approaches

Another part of the work in [15] involved providing a RESTful interface for Semantic
data called Semantic REST. They mapped the HTTP methods into SPARQL
commands that included proposed extensions for insertion, deletion and updating. In
this way RDF datasets offering SPARQL endpoints can offer RESTful functionality
integrating them with Web 2.0 clients.

Another approach that is based on semantic constructs is Triple Space Computing
(TSC) [16]. It is based on Tuple Space Computing. The communication is shifted to
reading and writing RDF triples in a shared triple space.

1 Web Service Modeling Language, http://www.w3.org/Submission/WSML/
2 Gleaning Resource Descriptions from Dialects of Languages, http://www.w3.org/TR/grddl/
3 RDFa in XHTML, http://www.w3.org/TR/rdfa-syntax/
4 Web Application Description Language, describes interfaces for RESTful WS,

https://wadl.dev.java.net/

944 A. Alowisheq, D.E. Millard, and T. Tiropanis

3 EXPRESS

EXPRESS eliminates the need for describing services separately because it provides
resources with a uniform interface. The uniform interface is the HTTP methods GET,
PUT, DELETE, POST and OPTIONS which define consistent operational semantics
on all resources. The resources that EXPRESS exploits are entities described semanti-
cally in an OWL ontology. So by combining the expressivity and semantics in
ontologies and providing a uniform interface to them, RESTful SWS can be created.

A service provider using EXPRESS provides an OWL file describing the resources
in a Web Service. This is run through an EXPRESS deployment engine to generate
URIs for classes, instances and properties. The service provider then specifies which
of the HTTP methods can be applied to these resources and this can differ for
different kinds of users, providing a role based access control (RBAC) at the resource
methods level. The method is simple and generic and can be applied to any ontology.
It builds upon existing standards and does not introduce additional complexity.

In this section we will describe how the method is applied in a simple example.
We chose Amazon’s Simple Storage Service S35, because it is a real service, it is
simple so we describe how EXPRESS works in a limited space, and it is familiar to
readers interested in REST6. S3 enables storing and managing data programmatically
on Amazon’s servers. It also provides the owner of the data with the ability to charge
for downloads. There are two main concepts to manage users’ data, Objects (data
files) and Buckets (containers of these data files). S3 provides URIs for these objects.
For example a file with a name -or key as S3 calls it- doc in a bucket b1 would have
the following URI http://s3.amazon.com/b1/doc. S3 also enables owners to control
access to their data. S3 provides both REST and SOAP API.

3.1 A RESTful Semantic S3 Service

If Amazon wanted to provide a RESTful Semantic Web Service for S3, it should
provide an ontology describing resources in S3 and relationships between them. We
assume that this OWL file is provided. The next listing describes the relevant parts:

:User a owl:Class.
:Name a owl:DatatypeProperty;
 rdfs:domain :User; rdfs:range xsd:string.

:Bucket a owl:Class.
:Key a owl:DatatypeProperty;
 rdfs:domain :Object; rdfs:range xsd:string.
:Owner a owl:ObjectProperty;
 rdfs:domain :Bucket; rdfs:range :User.
:RequestPay a owl:DatatypeProperty;
 rdfs:domain :Bucket; rdfs:range xsd:boolean.
:CreationDate a owl:DatatypeProperty;
 rdfs:domain :Bucket; rdfs:range xsd:string.
:Objects a owl:ObjectProperty;
 rdfs:domain :Bucket; rdfs:range :Object.

5 Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3/
6 This example, as a non-semantic RESTful Web Service is explained in [11].

 EXPRESS: EXPressing REstful Semantic Services Using Domain Ontologies 945

:Object a owl:Class.
:ContainingBucket a owl:ObjectProperty;
 rdfs:domain :Object rdfs:range :Bucket.

The OWL file is parsed; classes, properties and individuals are given URIs based on
their names in the file. The following are examples of generated URIs.

http://s3.amazon.com/User (a class URI)
http://s3.amazon.com/Bucket/MyBucket (a bucket instance URI)

Properties also have URIs, for example the bucket’s creation date has this URI

http://s3.amazon.com/Bucket/MyBucket/CreationDate.

An Amazon developer specifies which methods (GET, PUT, POST and DELETE)
can be applied to each URI. The stubs are generated then the Amazon developer maps
these stubs to existing services. Before providing an example, we will explain the
differences between the URI structure in the existing S3 and our proposed S3. In the
existing S3 the URIs of buckets and objects have the following forms respectively

http://s3.amazon.com/{bucket name}
http://s3.amazon.com/{bucket name}/{object name}

In our proposed S3 service the forms of the URIs are

http://s3.amazon.com/Bucket/{bucket name}
http://s3.amazon.com/Object/{object name}

The difference in the URI forms stems from design decisions. In the existing S3 there
are only two types of resources: buckets and objects. The routing of requests to the
processes dealing with each type is based on the structure of the URI. If a request was
to http://s3.amazon.com/myspace then this will be considered a bucket and will be
routed to the function that processes buckets. However if the request was to
http://s3.amazon.com/myspace/m1 it will be considered an object and routed to the
processing function. EXPRESS however, is designed for a general purpose and in
most cases there will be more than two resources in the system and therefore the
routing decisions could not be made based on URI structure only. The URIs are
designed to include the type of the requested resources as shown above and this also
acts in accordance with the W3C note on cool URIs7.

Now we will provide a simple scenario of how the service works by showing how
a user can create a bucket, add objects to it and delete it. The interaction starts by the
client accessing the OWL file. It can access it in the same way it GETs any other
resource. The purpose of the OWL file is to show the resource representation -and
thus the exchanged messages format-, relationships, and special instances. If the
client wants to use the existing S3 services it will have to sign up with Amazon. The
semantics of this action is creating a user. The OWL file contains the URIs of
resources the client can manipulate. Restrictions in the OWL file such as

 indicate that a user must be created before creating a
bucket. As resources have a uniform interface - HTTP methods- the client knows how to
create any resource, so the client will send a POST request to http://s3.amazon.com/User

7 Cool URIs for the Semantic Web http://www.w3.org/TR/cooluris/

946 A. Alowisheq, D.E. Millard, and T. Tiropanis

the message will contain required user information, specified by the OWL file as all the
properties where user is the subject. In the excerpt of the S3 OWL file above the only
property is required is the name, although other properties are required such as au-
thentication information we did not discuss them due to space limitations. The ser-
vice response will be creating a new user resource and returning its URI for example
http://s3.amazon.com/User/user1234. The client can create a bucket in a similar
approach. It sends a PUT request to http://s3.amazon.com/Bucket/ and the message
will be:

:MyBucket a :Bucket;
 :Key "MyBucket"^^xsd:string;

:Owner :user1234;
:RequestPay "false"^^xsd:boolean.
:AccessControlPolicy "public-read"^^xsd:string.

Because the name of the bucket is specified by the client the PUT method is used
instead of POST to create it. This complies with the HTTP standard. The server re-
sponds by creating the bucket at the requested URI which is
http://s3.amazon.com/Bucket/MyBucket. In order to add an object to this bucket the
client sends a similar PUT request to http://s3.amazon.com/Object/ but with required
Object properties and the file as a payload. This will make the files available at the S3
storage space and the client can then provide the URIs to its clients to download.
Deleting a bucket is straightforward as a DELETE request is sent to a bucket’s URI.

We can realize patterns in the way clients manipulate resources in EXPRESS,
these patterns are further explained in [13]. To summarise, the Amazon developer
needed to provide a domain ontology, specify control access on resources and then
map the generated stubs to existing services. The resulting service will be semantic
because: relationships between resources are described semantically, resources can be
semantically associated to widely agreed on ontologies for example User could be
defined as a subclass of foaf:person, and actions come down to adding, deleting and
modifying assertions. The resulting service will also be RESTful, resources have
URIs, resources have uniform interfaces, the exchanged messages are in OWL which
is self-described, and the server guides the client by responding with URIs in which
the client can follow where there are next states to go through.

4 Comparison to SA-REST and WSMO

In this section we will highlight the efforts in describing SWS in both SA-REST and
WSMO. Creating the domain ontology is an effort that exists in all SWS approaches.
We chose to compare to SA-REST, because like EXPRESS it recognises the
increasing popularity of RESTful WS. SA-REST as explained in section 2 aims to
integrate existing RESTful WS into the Semantic Web by semantically annotating
their HTML documentations. Whereas EXPRESS is an approach of using OWL files
and REST principles to describe and create RESTful SWS.

The efforts in SA-REST are creating the domain ontology then annotating the
HTML documentation. A developer must annotate documentation pages with
descriptions such as sarest:input, sarest:output, sarest:operation, sarest:lifting or
sarest:lowering linking them to the domain ontology. For example in the case of S3

 EXPRESS: EXPressing REstful Semantic Services Using Domain Ontologies 947

there are approximately 30 pages, the developer must decide which ones to annotate,
and then annotate them with inputs, outputs, and actions. This can increase mainte-
nance costs especially if documentation pages are scattered. In terms of RESTfulness
SA-REST is not concerned if the services it describes are actually RESTful. As
mentioned in the introduction not all RESTful Web Services adhere to REST’s
constraints. On the other hand services designed in EXPRESS are RESTful.

In the case of WSMO much more effort is needed. The developer needs to under-
stand WSML and its variants. And for each web service a capability and interface
have to be defined. The capability consists of axioms describing: preconditions,
assumptions, postconditions, and effects. Preconditions and postconditions describe
the Web Service information space state before and after the Web Service execution,
whereas assumptions and effects describe the world’s state. Furthermore the devel-
oper needs to describe the interface consisting of the choreography and orchestration
of the service. In the choreography transitions rules that guide the interaction with this
service must be specified. In the orchestration the rules guiding how this service uses
other services to achieve its overall functionality is stated. For a simple service like S3
at least 15 service descriptions need to be created. It must be noted however, that the
efforts included to describe a Web Service in WSMO are in the aim to automate or
semi-automate the discovery, composition and invocation of Web Services. Criticisms
to this approach and similar ones question whether the overhead is practical, and
whether the automation’s limited scalability justifies such efforts [4].

5 Conclusions and Future Work

In this paper we have explained EXPRESS, provided an example of how it works and
briefly compared it to SA-REST and WSMO. The work done on EXPRESS is in its
early stages. EXPRESS uses the OWL file as a description of a RESTful Semantic
Service. The implemented deployment system parses OWL files and generates stubs
to access the resources. It offers fine grained role based access control, controlling
what can be accessed, how and who can access it. In order to understand EXPRESS
better we would like to fully implement an existing system, develop the approach
more, and analyse its applicability and constraints. EXPRESS’s simplicity and
nativity to both the Web and the Semantic Web, harvesting the strengths of both, and
introducing the minimum level of complexity are features that motivate us to
investigate it further. The research questions we would like to answer are:

1. How to perform automatic discovery and composition in EXPRESS?
2. How to facilitate transforming legacy systems to be Semantic and RESTful?

Initial ideas are to start from ontologies derived from legacy DB schemas.
3. How to utilise the mapping between PI calculus and ROA Resource-Oriented Ar-

chitecture [11] (an architecture influenced by REST) as described in [17] to answer
the previous questions?

Our goal is provide pragmatic solutions that can contribute towards building
infrastructure of the Semantic Web.

948 A. Alowisheq, D.E. Millard, and T. Tiropanis

References

[1] Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. In: W3C
Recommendation, World Wide Web Consortium, W3C (2007)

[2] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S., Narayanan,
S., Paulocci, M., Parsia, B., Payne, T.R., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services, W3C Member Submission, World Wide Web Con-
sortium, W3C (2004)

[3] Bruijn, J.D., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D.,
Scicluna, J., Stollberg, M.: Web Service Modeling Ontology (WSMO), W3C Member
Submission, W3C (2005)

[4] Klusch, M.: Semantic Web Service Description. In: CASCOM: Intelligent Service Coor-
dination in the Semantic Web, Birkhäuser Verlag, Basel (2008)

[5] Fensel, D., Harmelen, F.V.: Unifying Reasoning and Search to Web Scale. IEEE Internet
Computing 11(2), 96, 94–95 (2007)

[6] Hench, G., Simperl, E., Wahler, A., Fensel, D.: A Conceptual Roadmap for Scalable
Semantic Computing. In: IEEE International Conference on Semantic Computing,
pp. 562–568 (2008)

[7] Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML Microformat for Describing
RESTful Web Services. In: IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology, pp. 619–625 (2008)

[8] Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and Eas-
ier-to-Use Services and Mashups. IEEE Internet Computing 11, 91–94 (2007)

[9] Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. Doctoral dissertation, University of California (2000)

[10] Fielding, R.T.: A Little REST and Relaxation. In: Jazoon 2007 The International Confer-
ence for Java Technology (2007)

[11] Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Sebastopol (2007)
[12] Vinoski, S.: RESTful Web Services Development Checklist. Internet Computing,

IEEE 12, 96–95 (2008)
[13] Alowisheq, A., Millard, D.E.: EXPRESS: EXPressing REstful Semantic Services. To ap-

pear in: The 2nd Doctoral Workshop for 2009 IEEE/WIC/ACM International Joint Con-
ference onWeb Intelligence and Intelligent Agent Technology, Milan, Italy (2009)

[14] Harrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submis-
sion, World Wide Web Consortium, W3C (2004)

[15] Battle, R., Benson, E.: Bridging the semantic Web and Web 2.0 with Representational
State Transfer (REST). Web Semantics 6, 61–69 (2008)

[16] Riemer, J., Martin-Recuerda, F., Ding, Y., Murth, M., Sapkota, B., Krummenacher, R.,
Shafiq, M.O., Fensel, D., Kühn, E.: Triple space computing: Adding semantics to space-
based computing. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006.
LNCS, vol. 4185, pp. 300–306. Springer, Heidelberg (2006)

[17] Overdick, H.: The Resource-Oriented Architecture. In: IEEE Congress on Services,
pp. 340–347 (2007)

A Lexical-Ontological Resource
for Consumer Heathcare

Elena Cardillo

FBK-IRST, Via Sommarive 18, 38123 Trento, Italy
cardillo@fbk.eu

Abstract. In Consumer Healthcare Informatics it is still difficult for
laypersons to understand and act on health information, due to the
persistent communication gap between specialized medical terminology
and that used by healthcare consumers. Furthermore, existing clinically-
oriented terminologies cannot provide sufficient support when inte-
grated into consumer-oriented applications, so there is a need to create
consumer-friendly terminologies reflecting the different ways healthcare
consumers express and think about health topics. Following this direc-
tion, this work suggests a way to support the design of an ontology-
based system that mitigates this gap, using knowledge engineering and
Semantic Web technologies. The system is based on the development
of a consumer-oriented medical terminology which will be integrated
with other existing domain ontologies/terminologies into a medical ontol-
ogy repository. This will support consumer-oriented healthcare systems
by providing many knowledge services to help users in accessing and
managing their healthcare data.

Keywords: Medical Knowledge Acquisition, Knowledge Integration,
Medical Ontologies, Consumer Medical Terminologies.

1 Introduction

With the advent of the Social Web and Healthcare Informatics technologies,
we can recognize that a linguistic and semantic discrepancy still exists between
specialized medical terminology used by healthcare providers or professionals,
and the so called “lay” medical terminology used by healthcare consumers. The
medical communication gap became more evident when consumers started to
play an active role in healthcare information access, becoming more responsible
for their personal healthcare, exploring health-related information sources on
their own, consulting decision-support healthcare sites on the web, and using
patient-oriented healthcare systems which allow them to directly read and in-
terpret clinical notes or test results and to fill in their Personal Health Record
(PHR). To help consumers fill this gap, the challenge is to sort out the dif-
ferent ways they communicate within distinct discourse groups and map the
common, shared expressions and contexts to the more constrained, specialized
language of healthcare professionals. In particular, medical Knowledge Integra-
tion in healthcare systems is facilitated by the use of Semantic Web technologies,

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 949–956, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

950 E. Cardillo

helping consumers during their access to healthcare information and improving
the exchange of their personal clinical data. Though much effort has been spent
on the creation of these medical resources, used above all to help physicians in
filling in Electronic Health Records (EHR), there is little work based on the use
of consumer-oriented medical terminology, and in addition most existing studies
have been done only for English.

Given this scenario, this work want to propose a methodology for the creation
of a consumer-oriented lexical-ontological resource for Italian, and its integration
with a coherent semantic medical resource, which could be used in healthcare
systems, like Personal Health Records, to help consumers during the process of
querying and accessing healthcare information. The present work will be struc-
tured as follows: In Section 2 is described the State of the Art in the field of med-
ical terminologies/ontologies, both in consumer-oriented and clinically-oriented
healthcare; in Section 3 are exposed the problem statement, our objectives and
approach to reach them; in Section 4 are presented preliminary results; and
finally in Section 5 are proposed concluding remarks and some future works.

2 State of the Art

2.1 Medical Terminologies and Ontologies

Over the last two decades the standardization efforts have established a num-
ber of medical terminologies and classification systems as well as conversion
mappings between them to help medical professionals in managing and codify-
ing their patients health care data, such as UMLS Metathesaurus, SNOMED,
ICD-10 (International Classification of Diseases) and the ICPC-2 (International
Classification of Primary Care). They concern “the meaning, expression, and
use of concepts in statements in the medical records or other clinical informa-
tion systems” [11]. In the presence of all these medical terminologies interop-
erability has become a significant problem. Content, structure, completeness,
detail, cross-mapping, taxonomy, and definitions vary between existing vocab-
ularies. So during the last few years, thanks to the Semantic Web perspective,
the collaboration between the areas of Healthcare Informatics and Knowledge
Representation generated a set of new methodologies and tools for improving
healthcare systems, and in particular medical terminologies, which were trans-
lated into more formal representations using ontology languages (e.g. the logical
formalization of SNOMED CT).

During the last few years much effort has also been spent on the creation
of new Biomedical Ontologies (e.g. the Foundational Model Anatomy -FMA-
[9]). Ontologies become relevant in healthcare if integrated into an EHRs, which
manage an increasing volume of narrative data, to allow: structuring and se-
mantics of the recorded information; and references to concepts from ontologies
of the first kind, e.g. ICD 10/9 or SNOMED terms [5]. Two other important
issues to take into account, given the presence of all these medical ontologies
are: Ontology Mapping, to show how concepts of one ontology are semantically

A Lexical-Ontological Resource for Consumer Heathcare 951

related to concepts of another ontology [6]; and Ontology Integration, which al-
lows access to multiple heterogeneous ontologies. Much work has been done in
this direction, for the alignment of different Biomedical Ontologies with concept
overlap (here can be mentioned the works of Mork and Bernstein [8], and Zhang
and Bodenreider [13]), and for their integration by means of medical ontology
repositories, such as the creation of Bio-Portal, a Web-based system that serves
as a repository for biomedical ontologies [10].

2.2 Consumer-Oriented Medical Vocabularies

In spite of these advantages reached by the integration of Healthcare Infor-
matics and Semantic Web technologies, the vocabulary problem continues to
plague health professionals and their information systems, and in particular
laypersons who are the most damaged by the increased medical linguistic gap.
To respond this healthcare consumers’ needs, during the last few years, many
researchers have labored over the creation of lexical resources that reflect the way
consumers/patients express and think about health topics. One of the largest ini-
tiatives in this direction is the Consumer Health Vocabulary Initiative1, resulted
in the creation of the Open Access Collaborative Consumer Health Vocabulary
(OAC CHV) for English. It includes lay medical terms and synonyms connected
to their corresponding technical concepts in the UMLS Metathesaurus. They
combined corpus-based text analysis with a human review approach, including
the identification of consumer forms for “standard” health-related concepts. An
overview of all these studies can be found elsewhere [7].

It is important to stress that there are only few examples of the real ap-
plication of the most of initiatives. For example, in Zeng et al. [14] there is an
attempt to face syntactic and semantic issues in the effort to improve PHRs read-
ability, using the CHV to map content in EHRs and PHRs. On the other hand,
Rosembloom et al. [12] developed a clinical interface terminology, a systematic
collection of healthcare-related phrases (terms) to support clinicians’ entries of
patient-related information into computer programs such as clinical “note cap-
ture” and decision support tools, facilitating display of computer-stored patient
information to clinician-users as simple human-readable texts.

3 Research Objectives and Directions

3.1 The Problem Statement

As mentioned in Section 1, healthcare consumers actually play an active role
in accessing and managing their personal health care data. For this reason they
need an easy and understandable access to medical information when using such
healthcare systems, and at the same time physicians, from their side, need to
understand patients reports on their conditions (severity pain, degree of discom-
fort). So communication terminology and understanding of medical concepts are

1 http://www.consumerhealthvocab.org

http://www.consumerhealthvocab.org

952 E. Cardillo

serious barriers. This linguistic gap, in addition, also prevent full participation
of consumers for example in shared health records, and often interferes in com-
munication between patients and their health care providers. Furthermore, most
of the existing “standards” medical terminologies and ontologies have been de-
veloped from the point of view of physicians, so they don’t provide a sufficient
support for their integration in all that applications designed for laypersons. This
highlights the necessity of an intermediate consumer understandable terminol-
ogy to be integrated with standard specific terminologies/ontologies in order to
support the integration of consumer-oriented applications with that designed for
experts. This thesis work will also focus on the nature of this medical commu-
nication gap in the Italian context, where there is a lack of consumer-oriented
medical terminologies (as seen in Section 2, all previous works have been done
for English), and where illiteracy, regional diversity, and the high presence of
non-native speakers further intensify the problem.

3.2 The Objectives

The purpose of this work is to support the design of an ontology-based system
that mitigates the language barrier between the healthcare consumer and pro-
fessional medical domains. Knowing the forms used by laypersons and how such
forms map to medical concepts is useful in assisting healthcare consumers to for-
mulate queries and to understand retrieved medical documents, and also helps
professionals and information systems to deal with patient inputs. The general
aim can be divided into the following sub-objectives:

1. Development of a Consumer Medical Vocabulary for Italian, able to reflect
the different ways consumers and patients express and think about health
topics.

2. Integration of this “lay” terminology with other existing terminologies, in
particular with the clinical ones relevant to reconstruct the process of care
in General Practice.

3. Formal Representation in OWL language of these terminologies, and inte-
gration of them into a unique Medical Ontology Repository.

4. Implementation of Reasoning and Search services to support the develop-
ment of semantic-based healthcare systems which need interchanges with
patients and consumers.

3.3 Approach

The global approach followed for this research activity is divided in two macro
phases. The first one includes the creation of a Consumer Health Vocabulary
for Italian, for collecting common medical expressions and terms used by Italian
speaking people. The second one focuses on the formal representation of medical
terminologies which will be integrated with the developed consumers vocabulary,
and the development of a Medical Ontology Repository in which all these on-
tologies and terminologies will be integrated. The activity will be characterized
by the following tasks:

A Lexical-Ontological Resource for Consumer Heathcare 953

– Knowledge Acquisition/Terminology Extraction. Use of elicitation tech-
niques to acquire all the lay terms, words, and expressions, used by laypeople
to indicate specific medical concepts;

– Generation of the Italian Consumer Health Terminology. Selection of all
the lay terms extracted that have been identified as good representatives of
technical medical concepts, and consequent mapping analysis to a standard
medical terminology.

– Formalization in terms of OWL. Medical terminologies such as ICD10 and
ICPC2 will be formalized into OWL ontologies, and then will be integrated
with the consumer-oriented medical vocabulary and other existing medical
ontologies to guarantee semantic interoperability.

– Creation of a Medical Ontology Repository (MORe) and implementation of
Knowledge Services. Some relevant resources will be integrated into MORe,
an ontology collection that will be extended with a set of basic reasoning
services to support the implementation of semantic based patient healthcare
applications.

4 What Has Been Done So Far

4.1 Knowledge Acquisition Task

This first task aims at the acquisition of consumer-oriented terminology and
knowledge about a specific subset of healthcare domain, and at the creation of
the consumer-oriented medical vocabulary for Italian. A hybrid methodology
was used for the identification of “lay” terms and expressions used by Italian
speaking people to indicate “symptoms”, “diseases”, and “anatomical concepts”.
Three different target groups were considered: First Aid patients subjected to
the Triage process; a community of high educated and middle age people; and
finally a group of elderly people. In this methodology three different Elicitation
Techniques were applied to the mentioned groups of people: 1) Collaborative
wiki-based medical knowledge acquisition; 2) Nurse-assisted medical knowledge
acquisition; and 3) Interactive medical knowledge acquisition combining tradi-
tional elicitation techniques (Focus Groups, Concepts Sorting and Games).

All the aquired knowledge was analysed by means of a term extraction tool
(Text2Knowledge - T2K), which allowed to automatically extract terminology
and to perform typical text processing techniques and statistical analyses (more
details about the tool can be found in [1]). Term extracted were reviewed by two
physicians to find incongruities done by laypeople in categorization of medical
terms and in synonymy relations. Physicians have been also asked to map a
term/medical concept pair by using a professional health classification system,
the above mentioned International Classification for Primary Care 2nd Edition
(ICPC2-E), which is used in particular by general practitioners for encoding
symptoms, medical procedures and diagnosis. A more detailed description of the
methodology for knowledge acquisition and of the term extraction process and
mapping analysis can be found in Cardillo et al. [4].

954 E. Cardillo

First Results Evaluation. A variegated consumer-oriented terminology was
acquired. From 225 Wiki pages 962 medical terms were extracted, and in par-
ticular were found 173 Exact Mappings, 80 Related Mappings, 94 Hyperonyms,
51 Hypomyms and, finally, 186 Not Mapped ICPC2 concepts. Most of the exact
mappings to ICPC2 are related to anatomical concepts, and many synonyms
were found for symptoms. Concerning the Nurse-assisted data set, from 2.000
Triage records 1108 relevant terms were extracted, providing mapping only for
726 terms. Here can be highlighted the high presence of lay terms used for ex-
pressing symptoms with exact mappings to ICPC2 (134 on a total of 240 exact
mappings), but also many synonyms in lay terminology for ICPC2 concepts
(386 Related Mappings). Finally, 321 medical terms were extracted by the Focus
Group data set. Here all the symptoms extracted (79 terms) had correspond-
ing medical concept in ICPC2 terminology (35 Exact Mappings and 44 Related
Mappings).

The most profitable methodology for acquiring consumer-oriented medical
terminology resulted the one assisted by Nurses. While Wiki-based method,
even if not exploited for the collaborative characteristic, has demonstrated good
qualitative and quantitative results. Comparing the three sets, the overlap is
only of 60 relevant consumer medical terms. The overlap with ICPC2 is about
508 medical concepts on a total of 706 ICPC2 concepts. This means that all
the other mapped terms can be considered synonyms or quasi synonyms of the
ICPC2 concepts. The large number of not mapped terms and the low overlap
between the three sets of extracted terms demonstrate that it was possible to
extract a very variegated range of medical terms, many compound terms and
expressions, which can be representative of the corresponding technical terms
present in standard terminology, and which can be used as candidate for the
construction of our consumer-oriented medical terminology for Italian.

4.2 OWL Encoding of Medical Classification Systems

A parallel activity to that of consumer-oriented terminology acquisition was per-
formed to formalize two Medical Classification Systems into OWL ontologies [2]:
the previously mentioned ICPC2 and ICD10, expressing the two ontologies ac-
cording to the sublanguage DL (Description Logic). In the process of conversion
of ICPC2-ICD10 to OWL formalism two important principles of classification
have been preserved: the disjointness of terms (nodes) and the exhaustiveness of
classification, by introducing the use of special groups of terms such as “other”,
“unspecified” and “not elsewhere classified”, reflecting this property in OWL
by the explicit definition of sibling classes as disjoint and by the closure defini-
tion of any subdivision class as to be equivalent to a disjunction of all its child
classes (including other, unspecified and so on). In encoding ICD10 to OWL,
every ICD10 chapter is a class and each section is a subclass, which contain
in turn each three or four digit ICD items. So only the subsumption and the
disjunction relations are defined, the concepts representing each ICD category
are labelled by the ICD codes. In encoding ICPC2 we preserved its biaxal struc-
ture creating a class for each chapter (body system or problem area) and a class

A Lexical-Ontological Resource for Consumer Heathcare 955

for each component (Symptom and Complaint ; Procedure, and Diagnosis and
Disease). We added disjoint statements between siblings and some objects and
datatype properties (description, terms of inclusion, terms of exclusion, ICD10
corrispondence)2.

A well-founded and medically sound mapping model between the two ontolo-
gies was constructed as well, by means of its formalization in terms of OWL
axioms (686 in total) and the validation of its coherence using Semantic Web
techniques. Standardly, given two heterogeneous representations, a mapping can
be viewed as a triple 〈e, e′, r〉, where e, e′ are the entities (e.g., formula, terms,
classes, etc.) belonging two the different representations, and r is the relation
asserted by the mapping. Due to the idea of encoding ICPC-ICD mappings as
OWL axioms, the entities in the mapping correspond to ICPC-2 and ICD-10
classes and expressions, while the relation r is given a set-theoretic meaning by
using subsumption and equivalence. Details about methodology for formaliza-
tion and results can be found in [3]. After the task of mapping analysis and
the evaluation of the first results, the extracted “lay” terms considered as good
synonyms for the ICPC2 symptoms and diseases have been added to the ICPC2
ontology to integrate it with the consumer-oriented terminology.

5 Concluding Remarks and Future Works

This paper proposed a thesis work aiming at the creation of a consumer-oriented
lexical-ontological resource that would help fill in the medical linguistic gap
between specialized and “lay” terminology, and which could be used in consumer-
oriented halthcare systems to help consumers in accessing to and managing of
their healthcare data. In particular, preliminary results have been presented for
the task of consumer-oriented terminology acquisition, on the basis of statistical
and mapping analyses, which helped to find overlaps between extracted “lay”
terms and specialized medical concepts in the ICPC2 medical terminology. First
results are encouraging because many consumer-oriented terms were acquired,
and a low overlap with ICPC2 medical concepts and a high number of synonyms
were found. The formalization in terms of OWL axioms of the ICP2 and ICD10
coding systems, and the existing clinical mappig between them, were provided,
and results were very positive allowing the reduction of the efforts for upgrading
mappings in view of the next publication of the two encoded systems, ICD11
and ICPC3; and to reuse Mapping Consistency, Debugging, and Entailment.

This thesis work will potentially contribute to the state of the art in several re-
search areas, including Medical Terminology, Healthcare Informatics, Knowledge
Acquisition and Representation, and it can have the following potential aspects:
1) the Cross-Domain Interdisciplinarity; 2) the Integration of specialized and
consumer-oriented medical knowledge, which helps to fill the medical communi-
cation gap; and 3) new methodologies for integration tasks and for knowledge
services, which this framework will offer in the application for example to a PHR,
to improve its management and accessibility.
2 These ontologies can be consulted at: https://dkm.fbk.eu/index.php/Resources

https://dkm.fbk.eu/index.php/Resources

956 E. Cardillo

To improve the results of the knowledge acquisition process and to extract
more variegated consumer-oriented terminology, a written corpus, which include
forum postings of an Italian medical website for asking questions to on-line
doctors3 has been analyzing. This will allow extending our sample and cover a
wider range of ages, people with different background and consequently different
levels of health literacy.

References

1. Bartolini, R., Lenci, A., Marchi, S., Montemagni, S., Pirrelli, V.: Text-2-knowledge:
Acquisizione semi-automatica di ontologie per l’indicizzazione semantica di docu-
menti. Technical Report for the PEKITA Project, ILC. Pisa p.23 (2005)

2. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F., Stein, A.L.: OWL Web Ontology Language Reference, W3C
Recommendation (2004)

3. Cardillo, E., Eccher, C., Tamilin, A., Serafini, L.: Logical Analysis of Mappings
between Medical Classification Systems. In: Dochev, D., Pistore, M., Traverso, P.
(eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 311–321. Springer, Heidelberg
(2008)

4. Cardillo, E., Serafini, L., Tamilin, A.: A Hybrid Methodology for Consumer-
oriented Healthcare Knowledge Acquisition. In: proceedings of the KR4HC 2009
Workshop, Verona, July 19 (2009)

5. Ceusters, W., Smith, B., De Moor, G.: Ontology-Based Integration of Medical
Coding Systems and Electronic Patient Records. In: MIE 2005 (2005)

6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
7. Keselman, A., Logan, R., Smith, C.A., Leroy, G., Zeng, Q.: Developing Informatics

Tools and Strategies for Consumer-centered Health Communication. Journal of
Am. Med. Inf. Assoc. 14(4), 473–483 (2008)

8. Mork, P., Bernstein, P.: Adapting a generic Match Algorithm to Align Ontologies
of Human Anatomy. In: Proceedings of ICDE (2004)

9. Noy, N.F., Rubin, D.L.: Translating the Foundational Model of Anatomy into
OWL, in Web Semantics: Science, Services and Agents on the World Wide Web.
Elsevier Science 6(2), 133–136 (2008)

10. Noy, N.F., Musen, N., Shah, N., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Montegut, M., Rubin, D., Youn, C.: BioPortal: A Web Repository for Biomedical
Ontologies and Data Resources. In: The International Semantic Web Conference,
ISWC 2008, Karlsruhe, Germany (2008)

11. Rector, A.: Clinical Terminology: Why is it so hard? Methods of Information in
Medicine 38(4), 239–252 (1999)

12. Rosembloom, T.S., Miller, R.A., Johnson, K.B., Elkin, P.L., Brown, H.S.: Interface
Terminologies: Facilitating Direct Entry of Clinical Data into Electronic Health
Record Systems. Journal of Am. Med. Inf. Assoc. 13(3), 277–287 (2006)

13. Zhang, S., Bodenreiden, O.: Experience in aligning anatomical ontologies. Interna-
tional Journal on Semantic Web and Information Systems 3(2), 1–26 (2007)

14. Zeng, Q., Goryachev, S., Keselman, A., Rosendale, D.: Making Text in Electronic
Health Records Comprehensible to Consumers: A Prototype Translator. In: The
31st American Medical Informatics Association’s Annual Symposium, AMIA 2007,
pp. 846–850 (2007)

3 http://medicitalia.it

http://medicitalia.it

Semantic Web for Search�

Jessica Gronski��

UC Santa Cruz
jgronski@soe.ucsc.edu

Abstract. Semantic Web data seems like a promising source of infor-
mation for improving search. While there is some literature about how
semantic data should be used to enhance search, there are no positive
conclusions about the best approach. This paper surveys existing ap-
proaches to semantic web search, describes adapting a TREC benchmark
for evaluation, and proposes a learned representation algorithm for using
semantic web data in search.

1 Introduction

The Semantic Web(SW)[2] aims to provide a common framework for publishing
linked data on the web. While the SW has yet to become a fully adopted tech-
nology, the data that is published about web pages, can and should be exploited
for improving web search. Improving web search with SW data is interesting not
only because search is an important industry but because it provides another
compelling reason for wide adoption of the SW.

This paper describes the beginning of my doctoral research on how to use SW
data to improve traditional keyword search over documents. The next section
describes the existing approaches to search using SW data and concludes with a
summary of experimental results from the literature. Section 3 describes the work
done to create a benchmark. Section 4 follows with the description of a proposed
learned-representation search algorithm. Section 5 concludes with future work
for the project.

2 Search Using Semantic Web Data

Regardless of whether the search algorithm retrieves web pages, RDF documents,
RDF triples, or linked-data paths, SW search algorithms follow three information
retrieval models: Boolean, Vector Space, or Link-based models.

2.1 Boolean Models

In boolean retrieval, documents are modeled as a set of boolean variables indi-
cating whether the document contains a word, a query is modeled as a boolean
� All research is funded by Los Alamos National Labs.

�� Thanks to my advisors Yi Zhang and Herbert Van de Sompel.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 957–964, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

958 J. Gronski

proposition, and the retrieval algorithm returns all documents satisfying the
boolean proposition. Given the query “cats AND dogs”, a boolean model re-
turns all documents containing both the terms “cats” and “dogs”.

Boolean algorithms will miss documents that use words synonymous to the
query terms and also fails to specify the order of documents returned. To address
the latter problem, algorithms have ordered documents returned by the number
of relevant terms contained [22] or used cover density, the distance between query
terms within the document [5].

Many SW search algorithms employ boolean models [17,12,24,21,11] where
documents are modeled as sets of variables which correspond to the WHERE clauses
of a SPARQL query, and the boolean algorithm returns all query-satisfying
items. Most do not address the ordering problem, an exception is K-search [3]
which orders the boolean retrieved documents using the query’s term frequency
in the document text (ignoring the SW data). Others order the boolean re-
trieved documents using an adaptation of vector-space and link-based models to
SW data and are grouped accordingly in subsequent sections.

2.2 Vector Space Models

The vector space model projects document and queries into a vector space with
each dimension representing a different term. The ranking function returns doc-
uments ordered by measuring their distance to the query in vector space.

Using Euclidean distance for matching the query and document vectors dis-
criminates against long documents so instead normalized cosine distance is used:

normcos(−→q ,−→d) =
−→q ×−→

d

||−→q || · ||−→d ||

where −→q and −→
d are the vector representations of the query and document re-

spectively. Alternatives include vector similarity measures which bias for length
as it was discovered that in TREC, an established information retrieval bench-
mark, longer documents were more likely to be relevant[4,25].

The vector space models differ not only in how they compare vectors, but
also in their approaches to mapping documents and queries into the term vector
space. One approach, TFIDF[4,23], uses term frequency and inverse document
frequency, calculates the document’s weight in each of the vector space dimension
(recall that each dimension represents a term) as the frequency of that term(t)
in the document(d) divided by the frequency of documents in the corpus(Δ)
containing the term.

TFIDF (d, t) =
|t ∈ d|∑
τ |τ ∈ d|IDF (t)−1 where IDF (t) =

|{δ|t ∈ δ ∧ δ ∈ Δ}|
|Δ|

The SW search papers which use vector-space models generally incorporate a
variation of TFIDF [8] or use frequency directly [1,26] when ranking items. The
approach taken by Vallet et. al[8] is to perform a boolean retrieval on the docu-
ments by translating the keyword query into a structured SW query. They then

Semantic Web for Search 959

order the returned documents using an adaptation of TFIDF where instead of
looking at the frequency of terms when calculating TFIDF they look at the
frequency of the queried SW class instances. Two systems [1,26] that rank com-
pound direct and indirect paths between SW instances, use the frequency of the
constituent relationships to order the paths.

2.3 Link-Based Models

Link-based retrieval models rely on documents having links between them such
as web pages or scholarly documents.

The Pagerank algorithm[19] models documents as nodes and HTML links
as directed edges between nodes. Pagerank then models the user as a ran-
dom walker that generally walks along edges and is equally likely to follow
each outgoing link. With small probability, the walker will not follow a link
but jump to any node with equal probability. Pagerank ranks the documents
using the stationary distributions over documents which the random walker cre-
ates. Pagerank and its many variants[14,15,10] can be unified as part of the same
framework and the variants have been shown to produce scores that are highly
correlated[6].

Link-based SW algorithms adapt Pagerank to the SW setting by using the
links between SW data [7,9,27,20]. The Swoogle search engine weighs different
types of links more than others [7,9]. The SWRank algorithm[27] reverses the
SW links when computing Pagerank. Most link-based algorithms use boolean
retrieval to narrow the search to query relevant documents [7,9,27], and use their
adapted Pagerank scores to order the boolean results. The exception is SWRank
which incorporates a term-based TFIDF component to make the scoring query
sensitive.

2.4 Experimental Evaluation in Semantic Web Search

Despite the large number of papers on using SW data in search, it is difficult to
compare the retrieval performance of each algorithm as all but one of the papers
report qualitative, positive results on different datasets and eschew established
retrieval benchmarks. Vallet et. al is the notable exception as they used a TREC
information retrieval benchmark for evaluation, however they reported negative
results for their TFIDF algorithm. This lack of consensus on how to incorporate
SW data in search is what motivates this work.

3 Experiment Setup

For evaluating any algorithm, we need an established benchmark ideally contain-
ing a set of documents with supporting SW data, a suite of queries, judgments
for each document-query pair, and a baseline algorithm capturing the current
best approach to the benchmark.

960 J. Gronski

3.1 TREC Blog Track: Documents, Queries and Judgments

As we know of no ideal benchmark we choose to use the BLOG06 dataset created
for the TREC benchmark conference’s blog retrieval track because though it
lacks explicit SW data, the results can be directly compared with competitive
information retrieval algorithms.

The BLOG06 dataset was collected during late 2005 and early 2006 and con-
sists of 100,649 feeds, 3,215,171 permalink documents (blog posts), and 324,880
homepages from both top-quality blogs, spam blogs, and manually picked blogs
of unknown quality. The TREC blog track has two relevant tasks, the blog and
post retrieval tasks (called the distillation and adhoc tasks in the literature). For
each task TREC provides a set of questions, a dataset of documents and binary
judgments of relevance for a subset of the blog-query or post-query pairs.

We shall evaluate an algorithm’s performance using standard TREC metrics
mean average precision (MAP), precision at ten documents (P@10), and R-
Precision.

3.2 Semantic Web Data Creation

We extract SW data from BLOG06 documents and create SIOC[18] blog on-
tology classes and links between them which can be summarized on the right
side of Figure 1. The two containment relationships sioc:container of and
reply of shows that a post is contained in a blog and a comment is a reply of
a post respectively. The sioc:links to citation relationship indicates that the
origin entity has an HTML link pointing to destination entity (all links, not in
a comment or post are assumed in the blog). This data is distinct from ordinary
HTML links as they originate from entities rather than web documents and thus
the distinction between a informative link in a post and a spam link contained in
a comment can be made. As blog-internal sioc:links to data does not convey
the same semantic information as links to external sites (often they are to the
prior/next entry), we exclude this data.

For the learned graph approach we shall describe this SW data as a multi-
relational graph G = (V,E = {E ∈ V ×V }) where the nodes V are the instances
of SIOC classes weblog, post, and comment and E is the set of directed, typed
edge matrices E. Each E is a binary adjacency matrix which represents a con-
nection that exists between different entities (either Blogs, posts, or comments)
in the dataset. These edge sets are summarized on the right side of Figure 1.

3.3 TREC Baseline

Though the ideal baseline would be the best results reported in the TREC con-
ference, we were unable to parse all blogs and thus cannot use these results.
Instead we used the paper of the winners of the TREC 2007 blog distillation
task (which used the same BLOG06 dataset) as a guideline to develop an algo-
rithm which approximates their performance on the original data and apply it
to our restricted dataset. The resulting baseline performance on both the adhoc

Semantic Web for Search 961

E ∈ E Description
Ew2w weblog sioc:links to weblogs
Ep2w post sioc:links to weblogs
Ep2p post sioc:links to posts
Ec2w comment sioc:links to weblogs
Ec2p comment sioc:links to posts
Ep∈w weblog sioc:container of post
Ec∈p post sioc:reply to comment

Fig. 1. Links between (w)eblogs, (p)osts, and (c)omments in the TREC dataset

Data
BLOG06 (baseline/reported) BLOG06 subset (baseline)

Task MAP R-Prec. P@10 MAP R-Prec. P@10
Blog Distillation 0.35/0.34 0.36/0.41 0.42/0.47 0.21 0.28 0.36

Adhoc Task 0.40/0.35 0.41/0.39 0.66/0.56 0.42 0.42 0.62

Fig. 2. On the left the results verify that the recreated TREC 2007 algorithm is close
to the conference’s reported values. The right column describes the performance of the
recreated TREC algorithm on the parsed subset.

and distillation tasks is described in Figure 2 with the left side showing that it
gives comparable performance on the entire BLOG06 dataset and the right side
showing the baseline’s results on the parsed subset.

4 Proposed Learned Representation Approach

We plan on using a learned representation approach for ranking documents with
SW data. This link-based approach is based on recent work in the domain of
document recommendations by Zhou et. al[28]. Their approach uses a multi-
relational graph describing different kinds of links between entities (in their case:
scholarly documents, authors and venues) to find latent representations of these
entities and then finally produce document recommendations. In our dataset we

962 J. Gronski

have a multi-relational graph describing blog entities (blogs, posts, and com-
ments) with HTML link relationships and structural relationships (a post is
contained in a blog). Using Zhou’s technique and the multi-relational graph, we
shall find hidden representations of the blog entities and use the representations
as features in a learning to rank algorithm to order the entities.

The approach used to discover the latent representations encodes graph edges
as adjacency matrices, with each matrix describing the graph defined by one
edge type. The latent representation of the nodes is found by defining a loss
function between the adjacency matrices and the hidden representations of the
nodes, and choosing the representations which minimize the loss function.

The loss function defined for the citation relationships, such as the post con-
taining an HTML link to another post relationship Ep2p, is a laplacian loss
function:

Loss(XP) = Tr(XT
P L(Ep2p)XP)

where XP is the hidden representation of the post nodes and L(Ep2p) is the
Laplacian of the graph Ep2p. The laplacian loss function smooths the difference
between adjacent node values and captures the intuition that similar entities will
cite one another so the values of their latent representations should be similar.

An undesirable way but effective way to minimize the laplacian loss function
above is to use a representation where the values of every node is the same. This
makes the function uninteresting and thus the loss function is regularized with
−log|XT

PXP | to prevent these kinds of simplistic representations.
Besides citation relationships between blogs there also exist containment re-

lationships. For example, the posts in blogs containment graph Ep∈w is a kind
of containment relationship. We define a loss function for containment relation-
ships which captures the intuition that post related by blogs will be close in the
latent space:

Loss(XW , XP) = ||Ep∈w −XPX
T
W ||2F

where XW and XP are hidden representations of the blog and post entities
respectively.

Using these two types of loss functions and taking a linear combination of
all loss functions for each edge type we can construct a global loss function to
minimize1:

Loss(XW , XP , XC) = k1||Ep∈w −XPX
T
W ||2F

+k2Tr(XT
WL(Ew2w)XW) + k3Tr(XT

P L(Ep2p)XP)
+k4Tr(XT

WL(ET
p∈wEp2w)XW)−log(|XT

WXW | ∗ |XT
PXP |)

where the ki are tunable constants. As the equation is convex the entity repre-
sentations minimizing the loss function can be found using a nonlinear conjugate
gradient(CG) method given the derivatives (see appendix A). The minimal latent
representations of the blog entities found will be used as features in a learning
to rank algorithm such as Ranking SVM.
1 For brevity, this loss functions omits relationships with the comment entity. The

omitted terms mimic those contained in this representative loss function.

Semantic Web for Search 963

5 Future Work

In order to complete the evaluation of the learned representation approach we
need to implement the loss function and apply the macopt[16] convex optimiza-
tion package to optimize the function. Once our latent representation is found
we plan on using Ranking SVM package provided by SVMlight[13], to incorpo-
rate the latent representation with the baseline algorithm. The algorithm will
be considered effective only if the scores produced by ranking SVM will improve
on the TREC-based baseline algorithm.

While blog search problem is not as general as web search, the features used
by the proposed algorithm (containment and citation links) are not, and we
expect will apply to other vertical search over SW data.

Another challenge we hope to address in the future is that the learned repre-
sentation algorithm in its current form is ontology-sensitive and needs to know
what kind of relationship a link-type is (containment or link relationship) to
define the loss function. We hope to later develop an ontology-independent loss
function or algorithm to deal with a more general environment where the mean-
ing of the relationship is unknown.

References

1. Anyanwu, K., Maduko, A., Sheth, A.: Semrank: ranking complex relationship
search results on the semantic web. In: WWW 2005, pp. 117–127. ACM Press,
New York (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web: Scientific american.
Scientific american (2001)

3. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid
search: Effectively combining keywords and semantic searches, pp. 554–568 (2008)

4. Buckley, C., Singhal, A., Mitra, M., Salton, G.: New retrieval approaches using
smart: Trec

5. Clarke, C.L.A., Cormack, G.V., Tudhope, E.A.: Relevance ranking for one to three
term queries. Inf. Process. Manage. 36(2), 291–311 (2000)

6. Ding, C., He, X., Husbands, P., Zha, H., Simon, H.: Pagerank, HITS and a unified
framework for link analysis. Technical Report 49372, LBNL (2002)

7. Ding, L., Finin, T., Joshi, A., Peng, Y., Pan, R., Reddivari, P.: Search on the
semantic web. Computer 38(10), 62–69 (2005)

8. Fernandez, M., Lopez, V., Sabou, M., Uren, V., Vallet, D., Motta, E., Castells,
P.: Semantic search meets the web. In: IEEE Semantic Computing, pp. 253–260
(2008)

9. Finin, T., Mayfield, J., Joshi, A., Cost, R.S., Fink, C.: Information retrieval and
the semantic web, p. 113a (2005)

10. Gevrey, J., Ruger, S.M.: Link-based approaches for text retrieval. In: Text RE-
trieval Conference (2001)

11. Guha, R., Mccool, R., Miller, E.: Semantic search. In: WWW 2003: Proceedings of
the 12th international conference on World Wide Web, pp. 700–709. ACM Press,
New York (2003)

12. Heflin, J., Hendler, J.: Searching the web with shoe. In: AAAI Workshop 2000,
pp. 35–40 (2000)

964 J. Gronski

13. Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods,
Theory and Algorithms. Kluwer Academic Publishers, Norwell (2002)

14. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

15. Lempel, R., Moran, S.: Salsa: the stochastic approach for link-structure analysis.
ACM Trans. Inf. Syst. 19(2), 131–160 (2001)

16. Mackay, D.: Macopt,
http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html

17. Michalowski, M., Ambite, J.L., Thakkar, S., Tuchinda, R., Knoblock, C.A.,
Minton, S.: Retrieving and semantically integrating heterogeneous data from the
web. Intelligent Systems, IEEE 19(3), 72–79 (2004)

18. Möller, K., Bojrs, U., Breslin, J.: Using semantics to enhance the blogging experi-
ence, pp. 679–696 (2006)

19. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

20. Patel, C., Supekar, K., Lee, Y., Park, E.K.: Ontokhoj: a semantic web portal for
ontology searching, ranking and classification. In: WIDM 2003, pp. 58–61. ACM
Press, New York (2003)

21. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim & ndash;
a semantic platform for information extraction and retrieval. Nat. Lang. Eng.
10(3-4), 375–392 (2004)

22. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

23. Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun.
ACM 26(11), 1022–1036 (1983)

24. Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing
semantic content for the web. IEEE Internet Computing 6(4), 80–87 (2002)

25. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
SIGIR 1996, pp. 21–29. ACM, New York (1996)

26. Stojanovic, N., Studer, R., Stojanovic, L.: An approach for the ranking of query
results in the semantic web, pp. 500–516 (2003)

27. Wu, G., Li, J.: Swrank: An approach for ranking semantic web reversely and con-
sistently. In: SKG 2007, pp. 116–121. IEEE Computer Society Press, Los Alamitos
(2007)

28. Zhou, D., Zhu, S., Yu, K., Song, X., Tseng, B.L., Zha, H., Giles, L.C.: Learning
multiple graphs for document recommendations. In: WWW 2008, pp. 141–150.
ACM, New York (2008)

A Derivative of Loss Function

∂Loss
∂XW

= 2(XP XT
W − Ep∈w)XW + 2L(Ew2w)XW + 2L(ET

p∈wEp2w)XW + 2XW (XT
W XW)−1

∂Loss
∂XP

= 2(XW XT
P − ET

p∈w)XP + 2L(Ep2p)XP + 2XP (XT
P XP)−1

http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html

Towards Agile Ontology Maintenance

Markus Luczak-Rösch

Freie Universität Berlin, Institute of Computer Science,
Corporate Semantic Web Workgroup, Berlin D-14195, Germany

markus.luczak-roesch@fu-berlin.de

Abstract. Ontologies are an appropriate means to represent knowledge
on the Web. Research on ontology engineering reached practices for an
integrative lifecycle support. However, a broader success of ontologies
in Web-based information systems remains unreached while the more
lightweight semantic approaches are rather successful. We assume, paired
with the emerging trend of services and microservices on the Web, new
dynamic scenarios gain momentum in which a shared knowledge base is
made available to several dynamically changing services with disparate
requirements. Our work envisions a step towards such a dynamic scenario
in which an ontology adapts to the requirements of the accessing services
and applications as well as the user’s needs in an agile way and reduces
the experts’ involvement in ontology maintenance processes.

1 Introduction

Ontologies are an appropriate means to represent knowledge on the Web.
Research on ontology engineering methodologies has come from describing the
scratch development of ontologies and reached practices for an integrative life-
cycle support. The ontology engineering discipline has changed from an individ-
ual art towards a collaborative and distributed process with disparate skilled
users develop consensual models and distributed networks of ontologies. How-
ever, a broader success of ontologies in Web-based information systems remains
unreached. They gained momentum in some characteristic and closed domains,
such as health care and life sciences. On the every-day Web the more lightweight
semantic approaches are rather successful which are based upon small vocabu-
laries, e.g. the emerging linked data initiative. But also this lightweight semantic
cannot deploy its full potential. The Web 2.0 resulted huge so called data si-
los. By use of wrappers or crawlers huge RDF datasets are derived from the
relational databases of such silos. Consolidating and integrating the whole data
of a specific application-dependent purpose or a specific individual remains a
cumbersome task. Not to mention the control of the unintegratedly evolving
knowledge in the silos.

As a next logical step one should await that, against the trend of the data
silos, the user holds and controls her data on her own. Paired with the emerging
trend of services and microservices on the Web [3] this results in a dynamic sce-
nario in which a shared knowledge base is made available to several dynamically

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 965–972, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

966 M. Luczak-Rösch

changing services with disparate requirements. This work envisions a step to-
wards such a dynamic scenario in which an ontology adapts to the requirements
of the accessing services and applications in an agile way. Therefore I design an
innovative approach for agile ontology maintenance.

This paper starts with a presentation of the motivation for and the concrete
problem statement of our work in Section 2. From our best knowledge we derived
related approaches in the field of the research topic which we introduce briefly
in the same section. Section 3 outlines the artifacts which we will contribute as
the results of this work. The followed research methodology as well as the aimed
evaluation are part of Section 4 before this paper ends with a summary of the
goals, initial results, and the work in the nearest future in Section 5.

2 Motivation, Problem Statement and Related Work

The general and personal motivation for this work consists of three core parts.
The first part is based upon our studies of the existing ontology engineering
methodologies. It represents the fundamental direction of this work. As a second
part, we derive from personal interviews with small and mid-sized enterprise
(SME) partners of the project Corporate Semantic Web, that they look for
a lightweight and dynamic process for ontology maintenance which minimizes
the need for ontology experts to be present. We explicitly focus this scenario,
however, we respect that there are enterprise settings as well which need and deal
with heavyweight ontology engineering processes. On the whole, our idea meets
the gap, which we identified as the result of the study of ontology engineering
approaches and which has been also identified by others, such as [11]. That
means concretely that research regards human-centered feedback as elementary
part of the ontology lifecycle and ontology maintenance is more or less treated
as the loop back to the beginning of the development process. Thus, ontology
maintenance results as the specific direction of this work. The third part of the
motivation is our personal vision of the next logical step of the Web from a
social Web 2.0/3.0 towards a Web of services and alternative access devices.
That means, that the next generation of the Web will be less driven by direct
human access to contents and services by use of conventional client tools (e.g.
Web browsers) but more by mobile devices and services. As a result of that
the concepts of human-centered ontology engineering, such as argumentation to
concepts and relations to reach the ontology consensus will loose impact.

2.1 A Running Example

To clarify this motivation we will briefly come up with a simple running
example for the problem which we want to solve. Consider a company’s knowl-
edge base which includes information about the employees. In the beginning
only personal information have been collected conforming the friend of a friend
(FOAF) vocabulary. One service uses the knowledge base which generates lists
of employees with certain interests. Each time a new service is bound to the

Towards Agile Ontology Maintenance 967

knowledge base, such as a service for displaying absent employees or informa-
tion about the income (e.g. for the accounting), the maintainer of the knowledge
base has to find out which facts, in the sense of the T-box of the ontology, are
missing and how she can easily adopt the current T-box and possibly the A-box
as well to these new application requirements. It is also possible that separate
services require the same information represented in different vocabularies (e.g.
foaf:name vs. myvocabulary:name) which yields the conflict for the maintainer
whether to replace the present representation or to model a mapping between
both. The decision for either the first or the latter depends on several criteria,
such as the computability of the ontology for complex reasoning or obsolete and
unused information.

This yields the central research questions of our work:

1. How does a methodology for ontology maintenance in an agile environment
look like? We search for a process which puts less emphasize on the initial
development of an ontology but more on the ontology usage and evolution.
That covers technical aspects of the modeling as well as aspects of the release
management.

2. Can we reduce the necessary influence of human experts in the ontology
maintenance process by tracking feedback about ontology usage? In this case
our work searches for a formal model that allows the analysis of ontology
usage for ontology evolution purposes.

2.2 Related Work

The methodologies and architectures for ontology engineering purposes mostly
differ in details regarding to the composition of ontology engineering and appli-
cation development, the range of users interacting in ontology engineering tasks,
and the degree of lifecycle support. We studied the broad range of engineering
methodologies, such as [6,15,7,9] beside others. While theses methodologies are
from the perspective of the ontology engineers our approach changes this to the
perspective of the ontology adopter which is a person with much less exper-
tise in knowledge modeling and ontologies. We also border our approach from
the recent one called RapidOWL [1], since RapidOWL introduces an idea of ag-
ile knowledge engineering. In contrast to us, Auer proposes a paradigm-based
approach without any phase model and which is application-independent. The
actually running NeOn project contributes the NeOn methodology for ontol-
ogy engineering and the NeOn architecture for lifecycle support[16]. The NeOn
methodology is well researched and adequate for projects with long iterations
which are less dynamic than those which we address. The NeOn architecture
proposes a feedback loop as part of the ontology lifecycle and adopts principles
from service oriented architectures, thus it is an interesting base for our mainte-
nance management framework and possibly reusable. However, it differs in detail
since the feedback which it tracks is intended as explicit human feedback and
an observation of informal background domain knowledge [18] while we want to

968 M. Luczak-Rösch

adopt to the requirements of dynamically changing applications which use the
knowledge base.

Ontology evolution has been researched under two scopes, that are (1)
ontology versioning and change management as in [8,17] and (2) identification
of informational extension, reduction, or reorganization as in [4,14,18]. Mostly,
the representatives of both scopes end up in an expert-oriented perspective with
focus to the initial ontology as the input and an evolved ontology as the output
of the evolution process. The deployment of the new ontology including side ef-
fects to systems which apply it, such as updates of distributed stored instances
because of schema changes, is not explicitly treated and the communication of
the impact of ontology change from the ontology engineer to the ontology user
are out of scope as well. We are also aware of the usage-oriented approaches
presented in [12] and [13]. Compared to these we go one step further, since we
focus both, user-oriented as well as application-oriented needs to an ontology.

As it is more or less usual for the ontology engineering discipline the whole
field of software engineering methodologies is relevant work from which well-
researched principles may be adopted. In this special case this is focused to
maintenance management including bug and feature tracking [5] for software
engineering processes. For sure, the field of database maintenance is related work,
too. Here we focus on research on the incorporation of feedback into schema
evolution and multi-tenant databases [2].

3 Contributions

We plan a multi layered result of this research activity. Altogether, from the
bottom of theories to the top of method and tool support, we are working on (1)
an ontology maintenance management methodology and (2) an ontology feed-
back tracking mechanism which both will be part of (3) an integrative ontology
maintenance management framework.

COLM – An Agile Ontology Maintenance Methodology. The Corpo-
rate Ontology Lifecycle Methodology (COLM) reflects the agility of knowledge
engineering processes and brings application dependency through the concrete
definition of the application environment. We define it as an agile ontology main-
tenance methodology since it is focused on continuously evolving ontologies in an
application-dependent context. To clarify which process steps are more expert-
oriented and thus need higher human involvement and those which need less,
COLM consists of two different cycles, namely the engineering cycle (high in-
volvement) and the usage cycle (less involvement). The overall goal is to use an
intuitive reporting of tracked usage information which indicates the necessity of
change.

As depicted in Figure 1, the process starts at the selection / development / in-
tegration phase. The result of this phase is an ontology, which is validated within
an application-dependent context. If it is approved that the ontology suites the
requirements it is deployed to be in use and it is populated. Throughout the

Towards Agile Ontology Maintenance 969

Fig. 1. The Corporate Ontology Lifecycle Methodology COLM

whole feedback tracking phase, formal statements about users’ feedback and be-
havior are recorded and finally a reporting of this information is performed. The
usage cycle is left if any necessary change has been detected and the knowledge
engineers evaluate the weaknesses of the current ontology.

Ontology Change Recommendation by Feedback Tracking. Inspired by
the approaches of argumentation-based ontology engineering and motivated by
our viewpoint, that the human feedback within ontology engineering processes
has to be reduced our integrative feedback tracking respects implicit feedback
hidden in behaviors of users and applications. We winnow two categories of feed-
back. First, we regard the application-oriented feedback as the feedback which
helps to fulfill the dynamically changing application requirements. Second, we
regard the user-oriented feedback which helps to follow the evolution of dynam-
ically changing and informal needs of the ontology user. In detail the feedback
mechanisms which we design are query observation for the application-oriented
feedback and annotation behavior observation for the user-oriented feedback.

The overall goal is to keep track of relevant information which help to create an
ontology which properly describes a domain of interest that easy and rather small
for better computation, so that the requirements of all accessing applications and
the user’s information needs are fulfilled.

Putting the Things Together. As we described it before we propose an evolu-
tion of ontologies by respecting their application-dependent context. Integrating
new knowledge and evolving the existing by tracking the usage and distribut-
ing coexisting ontology versions to applications by intelligent version control are
its central concepts. Our first draft proposal of this architecture is shown in
Figure 2.

This depiction describes the various systems which access an ontology, re-
spectively an ontology repository, for certain tasks, e.g. the ontology editors for

970 M. Luczak-Rösch

(l)

SVN Cli
Ont. basedSVoNt

(Ontology)
Editors

SVN Clients
Ont. based

Applications
SVoNt
Clients

URI Handler Query Interface

Access Handler

load queryURI Handler

Ontology Version Rep.

Query Interface

SVoNt Feedback Tracker

Ontology Version Rep.

Change
Log

Ont
Metadata Feedback Rep.Command

Handler

Classic SVN

Fig. 2. High-level architecture of a proposed ontology maintenance management
framework

manipulating an ontology or ontology-based applications for querying them. A
central component is the feedback tracker which observes actions performed on
the ontologies and supports the detection of new knowledge or potentially weak
parts of the model.

The underlying technical essential of evolution in an agile environment is
a flexible version management. At the moment we plan to integrate SVN for
ontologies (SVoNt) into our maintenance management framework, which sets
up on top of the well-known version control system SVN. To facilitate ontology
versioning the text-based approach of SVN has to be extended to act on semantic
structures of OWL ontologies. Internally, we add two major components which
facilitate this additional functionality, namely consistency checks and generation
of the ontology diff. From the set of differences we calculate a set of atomic
change operations and store them into a log. In extend of SVoNt we also work
on a process for an ontology release management which allows push and pull
scenarios for the deployment of coexisting ontology versions. The model will
provide a mechanism for the asynchronous evolution of a T-box and various
central as well as distributed A-boxes which conform this schema.

4 Research Methodology and Aimed Evaluation

As we mentioned it in Section 2 the initial point for our work is based upon
personal studies of the foundations of ontology engineering processes as well
as a set of face to face interviews with representatives of small and mid-sized
enterprises in Germany about the applicability of semantic technologies and
ontologies in their corporate contexts.

Towards Agile Ontology Maintenance 971

Coming from theses requirements we aim at a multi layered contribution of
this work, which touches fundamental research, instrumentalist research, and
applied research. Thus it is necessary that we evaluate it multi-perspectively.
We will choose methodologies which reflect the domain and the amount of the
approach, range the results with reference to related work, and at least proof
the applicability of the concepts in practice.

By today we see the chance to run and test COLM within two use cases.
First, at the Ontonym GmbH which is a company that provides semantic search
services supported by self-constructed and self-maintained ontologies in the back-
ground. Second, in cooperation with the DBpedia project, which supports a gi-
ant linked dataset based on s self-constructed and self-maintained ontology and
crawled information from Wikipedia. Especially the latter use case seems to be
valuable since our study will run in parallel to the development of a community-
driven approach for an evolution of the DBpedia ontology. To set the approach
in relation to other approaches and to measure its quality we will apply the
ONTOCOM cost-estimation model for ontology engineering on it as it has been
done for other methodologies, e.g. DILIGENT [10], as well.

5 Initial Results, Outlook and Conclusions

In this paper we presented our work towards an integrative ontology main-
tenance management for agile application-dependent scenarios. Based on the
COLM methodology the SVoNt system for SVN-based version control of OWL
ontologies and a feedback tracking mechanism will be combined into a frame-
work application that supports the whole ontology lifecycle from the viewpoint
of the ontology user.

The COLM methodology has been developed, published, and iteratively re-
fined based on several valuable comments by experts. It is in a mature state right
now. Based on the theories of COLM we proposed a high level architecture of an
ontology maintenance management framework which will integrate the SVoNt
server and the feedback tracking mechanism. The latter two components are
in a preliminary design state right now. We envision to finish the fundamental
work on these partial components until the end of 2009. The evaluation will
be performed after the prototype implementation of our proposed framework is
finished. We plan to finish this work until the beginning of 2011.

Altogether, our approach towards agile ontology maintenance should promote
ontology engineering from the user’s and the usage’s perspective. In combination
with several research trends, such as end-user generated microservices and the
service Web 3.0, this is a promising step ahead to bring ontologies to broader
success.

References

1. Auer, S., Herre, H.: RapidOWL — An Agile Knowledge Engineering Methodology.
In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 424–430.
Springer, Heidelberg (2007)

972 M. Luczak-Rösch

2. Aulbach, S., Jacobs, D., Kemper, A., Seibold, M.: A comparison of flexible schemas
for software as a service. In: SIGMOD 2009: Proceedings of the 35th SIGMOD
international conference on Management of data, pp. 881–888. ACM, New York
(2009)

3. Davies, M.: Towards a Semantic Infrastructure for User Generated Mobile Ser-
vices. In: ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 924–928. Springer,
Heidelberg (2009)

4. Djedidi, R., Aufaure, M.-A.: Ontological knowledge maintenance methodology. In:
Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI),
vol. 5177, pp. 557–564. Springer, Heidelberg (2008)

5. Erdil, K., Finn, E., Keating, K., Meattle, J., Park, S., Yoon, D.: Software Mainte-
nance As Part of the Software Life Cycle. Comp180: Software Engineering Project,
December 16 (2003)

6. Fernndez-Lpez, M., Gmez-Prez, A., Juristo, N.: METHONTOLOGY: From Onto-
logical Art Towards Ontological Engineering. In: AAAI 1997 Spring Symposium
on Ontological Engineering. AAAI Press, Menlo Park (1997)

7. Kotis, K., Vouros, A.: Human-centered ontology engineering: The HCOME
methodology. Knowl. Inf. Syst. 10(1), 109–131 (2006)

8. Noy, N.F., Kunnatur, S., Klein, M., Musen, M.: Tracking Changes During Ontology
Evolution. In: Proceedings of the Third International Semantic Web Conference,
pp. 259–273. Springer, Berlin (2004)

9. Pinto, H.S., Tempich, C., Staab, S., Sure, Y.: Distributed Engineering of Ontologies
(DILIGENT). Semantic Web and Peer-to-Peer. Springer, Heidelberg (2005)

10. Simperl, E., Tempich, C.: How Much Does It Cost? Applying ONTOCOM to DILI-
GENT. Technical Report, FU Berlin (2005)

11. Simperl, E., Tempich, C.: Ontology Engineering: A Reality Check. In: ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 836–854. Springer, Heidelberg (2006)

12. Stojanovic, N., Stojanovic, L.: Usage-Oriented Evolution of Ontology-Based
Knowledge Management Systems. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS
2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519. Springer, Heidelberg (2002)

13. Stojanovic, L., Stojanovic, N., Gonzalez, J., Studer, R.: OntoManager - A Sys-
tem for the Usage-Based Ontology Management. In: CoopIS/DOA/ODBASE,
vol. 2888. Springer, Heidelberg (2003)

14. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD Thesis, University
of Karlsruhe, Germany (2004)

15. Sure, Y., Studer, R.: On-To-Knowledge Methodology — Expanded Version. In: On-
To-Knowledge deliverable, vol. 17, Institute AIFB, University of Karlsruhe (2002)

16. Tran, T., Haase, P., Lewen, H., Muñoz-Garćıa, Ó., Gómez-Pérez, A., Studer, R.:
Lifecycle-Support in Architectures for Ontology-Based Information Systems. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 508–522. Springer,
Heidelberg (2007)

17. Völkel, M., Groza, T.: SemVersion: RDF-based Ontology Versioning System. In:
Proceedings of the IADIS International Conference WWW / Internet 2006 (ICWI
2006), Murcia, Spain (2006)

18. Zablith, F.: Dynamic Ontology Evolution. In: International Semantic Web Confer-
ence (ISWC) Doctoral Consortium, Karlsruhe, Germany

Ontologies for User Interface Integration

Heiko Paulheim

SAP Research
heiko.paulheim@sap.com

Abstract. Application integration can be carried out on three different
levels: the data source level, the business logic level, and the user in-
terface level. With ontologies-based integration on the data source level
dating back to the 1990s and semantic web services for integrating on
the business logic level coming of age, it is time for the next logical step:
employing ontologies for integration on the user interface level. Such an
approach supports both the developer (in terms of reduced development
times) and the user (in terms of better usability) of integrated applica-
tions. In this paper, we introduce a framework employing ontologies for
integrating applications on the user interface level.

1 Introduction

Applications are often described in three layers: data, business logic, and user
interface. Consequently, application integration can be performed on each of
those three levels [1], as depicted in Fig. 1:

– Integrating the data sources, and developing common business logic and user
interface layers above the integration layer,

– integrating the business logic, and developing a common user interface above
the integration layer, and

– integrating the user interfaces.

Integrating applications on the user interface level means reusing existing user
interfaces or parts thereof and coupling them in a way that a user can interact
with those interfaces as if they were a single application. Such an integration
may include that the applications share a common toolbar or menu, that one
application reacts to user actions performed with another one, e.g. related objects
are highlighted in other applications when selected in one application, objects
can be dragged and dropped from on application to the other, etc. There are some
approaches such as plugin-based systems [2], portals [3], and mashups [4] that
propose integration on the user interface level. However, all of those approaches
are either very limited concerning cross-application interaction or require deep
changes of the applications in order to facilitate such interactions [1].

With semantic database integration [5] as well as ontology-based agents [6]
and semantic web services [7,8], there have been considerable efforts to using
ontologies in the integration on the database and business logic layer. However,
little research has been conducted on ontology-based integration on the user

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 973–981, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

974 H. Paulheim

Fig. 1. Three layers of integration; based on [1]

interface level so far. In contrast to integration on the lower layers, user interface
level integration has two significant advantages:

– The development of the user interface consumes up to 50% of the total efforts
in developing an application [9]. Therefore, the benefit from reusing existing
user interface components is significant.

– Users interacting with applications integrated on the user interface level will
experience a decreased learning effort if already familiar with the applica-
tions’ original interfaces, compared to interacting with a newly developed
common user interface.

Yu et al. argue that user interface integration requires a description of the inter-
faces to be integrated that is formal, human readable, modular, and simple [10].
Ontologies perfectly meet the first two criteria and also provide the possibility
for modularization [11]. As simplicity is a rather subjective criterion, and the
description language must be flexible enough to cover all possible cases of inte-
gration, hence must not be too simple, we claim that ontologies are a suitable
approach.

Since, as discussed above, interaction plays a crucial role in integrated user
interfaces as well as it imposes problems in current approaches to user inter-
face integration, the approach discussed in this paper aims at describing such

Ontologies for User Interface Integration 975

interactions with ontologies. We introduce a prototype framework that allows
run-time integration of user interfaces based on ontological descriptions of the
interactions they support.

2 State of the Art

There are some approaches that employ ontologies for user interface integration
in portals and mashups. The approach described in [12] uses semantic web ser-
vices, i.e., web services described by means of ontologies. It rather focuses on
communication between a portlet and its backend system than on inter-portlet
communication and on user interaction. The work described in [13] uses on-
tologies to annotate the contents delivered by portlets. That approach is rather
data-centric and has little focus on interaction. The work described in [14] shows
how ontologies can help building mashup applications to integrate contents from
diverse data sources in one mashup.

The work described in [15] and [16] shows how ontologies can be used to
formalize user interfaces and to generate user interfaces with a model driven ap-
proach. The approach suggested in [17] also formalizes user interfaces with the
help of ontologies, but with the aim of making user interfaces accessible to peo-
ple with disabilities. Other approaches, such as [18] and [19], annotate software
components in general (not necessarily user interface components) with ontolo-
gies to support the developer in searching and choosing appropriate components.
The work described in [20] and [21] propose ontologies for describing different
types of user interfaces on a rather general level, such as characterizing different
input and output devices. Such formalizations are helpful, but so far, they have
not been applied to integrating different user interfaces.

A research direction which comes close to ontologies-based user interface inte-
gration is the Semantic Desktop [22]. Here, data encapsulated in different appli-
cations is made accessible via a central query interface. In some semantic desktop
systems, existing applications may be integrated as plugins [23]. The main focus
of this direction, however, is to provide an integrated access to data in differ-
ent applications rather than on cross-application interaction; it can therefore
be regarded as an approach to data integration rather than to user interface
integration.

3 Roadmap

3.1 Prototype

So far, a first prototype has been developed that shows how user interfaces can
be integrated by using ontologies [24]. Three types of ontologies are used (see
Fig. 2):

– An ontology of the user interfaces and interactions domain, which defines
basic categories for describing applications. This ontology is part of the
framework discussed in this paper.

976 H. Paulheim

Fig. 2. Using two domain ontologies and several application ontologies for integration
on the user interface level

– An ontology of the application’s real world domain, which defines the cate-
gories of real world objects of the domain that the integrated application is
built for (such as banking, travel, etc.). The information objects processed
by the application represent those real worlds objects. When integrating ap-
plications from a given domain, an appropriate domain ontology has to be
chosen or developed. A set of different real world domain ontologies may be
used in case of modular domain ontologies or when developing cross-domain
applications.

– One or more application ontologies, which use the user interfaces and interac-
tions ontology’s basic concepts to describe the applications to be integrated,
and the interactions that are possible with them. The application ontolo-
gies may refer to the real world domain ontology for describing the types
of objects that may be processed by the integrated applications. During the
integration process, one application ontology per integrated application has
to be developed.

This categorization resembles Guarino’s classification [25] (without the top level
layer, which may also be present in our framework, but its presence is not es-
sential) – here, two kinds of domain ontologies are used. While the ontology of
the user interfaces and interactions domain is a part of the integration frame-
work, the real world domain ontology and application ontologies are dynamically
added for each integrated application. It is particularly noteworthy that there is
no direct connection from the user interfaces and interactions domain ontology
to the real world domain ontology. Thus, the framework is domain independent.

Fig. 3 shows an overview of the framework prototype, which is based on Java
and the OntoBroker reasoner [26]. Integrated applications consist of a class model
for representing data, a user interface, and a business logic (the classical model
view controller [27] components), and are described by an application ontology.

Ontologies for User Interface Integration 977

Fig. 3. Overview on the prototype’s framework architecture. Applications are described
by ontologies. A reasoning component evaluates those ontologies to facilitate integra-
tion at run time.

Applications communicate via events which are annotated using the respective
application ontology. One key design decision is that no application sends events
directly to any other application. Instead, events are processed by a reasoning
component. For example, one application sends an event that a certain object
is selected. The reasoner reads the event, queries the application ontologies to
determine those applications which declare to react to that sort of event, and
notifies the respective applications. Thus, no application has to directly react to
other applications’ events and only needs to process the event types defined in
its own application ontology.

To allow mediation between different data models, an object ontology mapping
registry is introduced. In this registry, each application stores annotations of its
data model. Classes as well as properties may be annotated with concepts from
the domain ontology. When the reasoner receives an object from an application
or vice versa, the receiver consults the registry to analyse that object and convert
it into a representation which can be processed by the reasoner.

3.2 Further Research Plan

While the prototype shows that the approach is valid and feasible, there are
quite a few open research questions. We have shown that simple interactions
(such as highlighting objects selected in different applications) are possible with
our framework. More complex interactions will require extensions and refactoring
of both the application ontology and the prototype implementation.

So far, we have only considered typical single-user WIMP (Windows, Icons,
Mouse, Pointing) interfaces when modelling the application ontology. A more

978 H. Paulheim

sophisticated ontology describing interactions would be flexible enough to allow
different input and output devices (such as speech interfaces, gestures, and so
on) [28], as well as multi-user interaction. Coupling the application ontology with
a device ontology, such as the FIPA device ontology [29], could lead to a more
universal framework.

Complex interactions may have conditions under which they may be per-
formed, e.g. the visibility of a component or the presence of an application which
is able to perform a certain task. To evaluate those conditions, an application’s
internal state has to be exposed to a certain extent. Thus, the relevant state
information has to be identified and modelled in the user interfaces ontology.
Furthermore, the state information has to be made known to the reasoner, ei-
ther by the reasoner dynamically querying the applications or by the applications
sending updates to the reasoner. A special case of preconditions are the users’
rights to perform a certain interaction. Thus, adding an ontology of users’ rights,
such as the one proposed in [30], would be a feasible approach to account for
that requirement.

The design decision that each application can use their own data model eases
the reuse of existing components, but it comes with certain challenges in data
integration. As there is a large variety of heterogeneities that may occur here
[31], some methods to cope with those heterogeneities is needed. Such methods
will probably impose certain restrictions on the data model used (such as a 1:1
mapping between elementary data types in the data model and data attributes
in the domain ontology). We aim at finding a minimal set of such restrictions in
order to allow a maximum degree of freedom in the applications’ data models.

The application ontologies describing the interactions possible with appli-
cations may not only be used for integration. Another way of utilizing those
ontologies is the provision of user assistance, such as automatic generation of
help texts, or highlighting possible drop locations in different applications when
dragging an object. The latter has already been successfully demonstrated in
our prototype.

Finally, the approach requires validation beyond having a running prototype.
We plan to conduct case studies where different example applications are to be
integrated in a way providing a given set of interactions. Here, development ef-
forts can be measured, e.g. in lines of code, and expert interviews with developers
can reveal additional insights into the feasibility of the approach. In addition,
studies with end users may be conducted to demonstrate the advantage of inte-
grated user interfaces over non-integrated side-by-side use of applications.

4 Conclusion

In this paper, we have presented the idea of using ontologies for integrating appli-
cations on the user interface level. In our framework, applications are described
by application ontologies, making use of two or more shared domain ontologies.

A first prototype shows that the approach is feasible. It has been successfully
used in the SoKNOS project [32], where an integrated emergency management

Ontologies for User Interface Integration 979

software has been built, consisting of twelve integrated single applications, serv-
ing purposes such as planning measures with resources, handling messages, or
displaying relevant mission data on charts and geographic maps.

This prototype as well as the underlying ontology and algorithms are going to
be subsequently extended. The aim is to enhance the framework in a way that it
covers the most common interaction patterns between integrated applications,
and that it can be enhanced in cases where more unusual interactions are to be
implemented.

In summary, we believe that such a framework for integrating applications on
the user interface level is a useful complement to existing integration efforts on
the data and business logic level.

Acknowledgements

The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research under grant no. 01ISO7009.

References

1. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

2. Birsan, D.: On plug-ins and extensible architectures. ACM Queue 3(2), 40–46
(2005)

3. Wege, C.: Portal Server Technology. IEEE Internet Computing 6(3), 73–77 (2002)
4. Abiteboul, S., Greenshpan, O., Milo, T.: Modeling the Mashup Space. In: WIDM

2008: Proceeding of the 10th ACM workshop on Web information and data man-
agement, pp. 87–94. ACM, New York (2008)

5. Doan, A., Halevy, A.Y.: Semantic Integration Research in the Database Commu-
nity: A Brief Survey. AI Magazine 26(1), 83–94 (2005)

6. Sycara, K.P., Paolucci, M.: 17. International Handbooks on Information Systems.
In: Ontologies in Agent Architectures, pp. 343–364. Springer, Heidelberg (2004)

7. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services (November 2004),
http://www.w3.org/Submission/OWL-S/

8. Lausen, H., Polleres, A., Roman, D., de Bruijn, J., Bussler, C., Domingue, J.,
Fensel, D., Hepp, M., Keller, U., Kifer, M., König-Ries, B., Kopecky, J., Lara, R.,
Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J., Stollberg, M.: Web Ser-
vice Modeling Ontology, WSMO (2005), http://www.w3.org/Submission/WSMO/

9. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: CHI 1992:
Proceedings of the SIGCHI conference on Human factors in computing systems,
pp. 195–202. ACM, New York (1992)

10. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: WWW 2007: Proceed-
ings of the 16th international conference on World Wide Web, pp. 923–932. ACM,
New York (2007)

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/

980 H. Paulheim

11. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing, Duluth, MN, USA, vol. 43, pp. 907–928. Academic Press, Inc., New York
(1995)

12. Dettborn, T., König-Ries, B., Welsch, M.: Using Semantics in Portal Development.
In: Proceedings of the 4th International Workshop on Semantic Web Enabled Soft-
ware Engineering (2008)

13. Dı́az, O., Iturrioz, J., Irastorza, A.: Improving portlet interoperability through deep
annotation. In: WWW 2005: Proceedings of the 14th international conference on
World Wide Web, pp. 372–381. ACM, New York (2005)

14. Ankolekar, A., Krötzsch, M., Tran, T., Vrandecic, D.: The Two Cultures: Mashing
Up Web 2.0 and the Semantic Web. In: WWW 2007: Proceedings of the 16th In-
ternational Conference on World Wide Web, pp. 825–834. ACM, New York (2007)

15. Sergevich, K.A., Viktorovna, G.V.: From an Ontology-Oriented Approach Concep-
tion to User Interface Development. International Journal Information Theories
and Applications 10(1), 89–98 (2003)

16. Liu, B., Chen, H., He, W.: Deriving User Interface from Ontologies: A Model-Based
Approach. In: ICTAI 2005: Proceedings of the 17th IEEE International Confer-
ence on Tools with Artificial Intelligence, pp. 254–259. IEEE Computer Society,
Los Alamitos (2005)

17. W3C: WAI-ARIA Overview (2009), http://www.w3.org/WAI/intro/aria
18. Graubmann, P., Roshchin, M.: Semantic Annotation of Software Components. In:

EUROMICRO 2006: Proceedings of the 32nd EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, Washington, DC, USA, pp. 46–53.
IEEE Computer Society, Los Alamitos (2006)

19. Happel, H.J., Korthaus, A., Seedorf, S., Tomczyk, P.: KOntoR: An Ontology-
enabled Approach to Software Reuse. In: Zhang, K., Spanoudakis, G.,
Visaggio, G. (eds.) Proceedings of the Eighteenth International Conference on Soft-
ware Engineering & Knowledge Engineering (SEKE), pp. 349–354 (2006)

20. Coutaz, J., Lachenal, C., Dupuy-Chessa, S.: Ontology for Multi-surface Interac-
tion. In: Proceedings of IFIP INTERACT03: Human-Computer Interaction, IFIP
Technical Committee No 13 on Human-Computer Interaction, pp. 447–454 (2003)

21. Eick, S.G., Wills, G.J.: High Interaction Graphics. European Journal of Opera-
tional Research 84, 445–459 (1995)

22. Sauermann, L., Bernardi, A., Dengel, A.: Overview and Outlook on the Semantic
Desktop. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729. Springer, Heidelberg (2005)

23. Cheyer, A., Park, J., Giuli, R.: Iris: Integrate. relate. infer. share. In: Workshop on
the Semantic Desktop: Next Generation Personal Information Management and
Collaboration Infrastructure (2005)

24. Paulheim, H.: Ontology-based Modularization of User Interfaces. In: Calvary, G.,
Graham, T.C.N., Gray, P. (eds.) Proceedings of The ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, pp. 23–28. ACM, New York (2009)

25. Guarino, N. (ed.): Formal Ontology and Information Systems. In: Guarino, N. (ed.)
Proc. of the 1st Int’l Conf. on Formal Ontologies in Information Systems (FOIS
1998), Trento, Italy. IOS Press, Amsterdam (1998)

26. ontoPrise: OntoBroker Website (2009),
http://www.ontoprise.de/de/en/home/products/ontobroker.html

27. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user
interface paradigm in small-talk-80. Journal of Object Oriented Programming 1,
26–49 (1988)

http://www.w3.org/WAI/intro/aria
http://www.ontoprise.de/de/en/home/products/ontobroker.html

Ontologies for User Interface Integration 981

28. van Dam, A.: Post-wimp user interfaces. Commun. ACM 40(2), 63–67 (1997)
29. Foundation for Intelligent Phyiscal Agents: FIPA Device Ontology Specification

(December 2002),
http://www.fipa.org/specs/fipa00091/index.html (accessed, 2008-01-22)

30. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing envi-
ronment. In: POLICY 2003: Proceedings of the IEEE 4th International Workshop
on Policies for Distributed Systems and Networks (2003)

31. Klein, M.: Combining and relating ontologies: an analysis of problems and solu-
tions. In: Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., Uschold, M. (eds.)
Workshop on Ontologies and Information Sharing, IJCAI 2001, Seattle, USA (2001)

32. Doeweling, S., Probst, F., Ziegert, T., Manske, K.: SoKNOS - An Interactive Visual
Emergency Management Framework. In: Amicis, R.D., Stojanovic, R., Conti, G.
(eds.) GeoSpatial Visual Analytics. NATO Science for Peace and Security Series
C: Environmental Security, pp. 251–262. Springer, Heidelberg (2009)

http://www.fipa.org/specs/fipa00091/index.html

Semantic Usage Policies for Web Services�

Sebastian Speiser

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
speiser@kit.edu

Abstract. Web Services provide standardized interfaces for accessing
software systems and data sources over the Internet. Semantic descrip-
tions of Web Services help to automate the discovery and invocation of
new services and their integration into existing applications. However not
all services are freely available for every purpose and not all data is in the
public domain. Usage policies describe the terms and conditions under
which services and data can be used. Current approaches to semantic
Web Service description are mostly focused on functional properties and
quality attributes, and do not cover usage policies. We plan to develop
a formal language for usage policies with clearly defined semantics that
relies on ontologies for representing domain specific terms. We will also
extend service discovery and ranking algorithms to incorporate usage
policies.

1 Introduction

The classical World Wide Web (WWW) makes services and data available
through Web sites targeted at human users. The Web sites are interlinked but
the integration of information and services from different sources is a manual
effort. The Internet of Services as well as the Semantic Web both go one step
further and aim at interoperable and machine-understandable descriptions and
interfaces for services and data. It will therefore be easier to combine both types
of resources to a network that fulfills a user need which is not satisfiable by any
single component. Such networks can be created in various ways, e.g.

– Keyword searches are automatically translated into formal queries over mul-
tiple Web resources [1].

– Mashup editors which allow even unskilled users to combine Web services
and data sources with minimal time effort [2].

– Creating a business process and orchestrate it with BPEL.

All approaches have in common that suitable services have to be selected that
can be part of a network fulfilling the user need.

Users select services based on the net value they expect from the service con-
sumption [3](p. 23ff). The net value is given by subtracting the costs from the

� This work was funded by the European project SOA4All and the Karlsruhe Service
Research Institute (KSRI).

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 982–989, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Semantic Usage Policies for Web Services 983

experienced gross value. Both can only be determined after service consump-
tion and therefore the selection is based on expected value and costs in which
users incorporate their uncertainty about the result. In order to minimize the
uncertainties and therefore increase the expected net value for users, two things
have to be established: (i) services have to be described in such a way that users
know which value and costs to expect, and (ii) these descriptions have to be
trustworthy. This thesis deals with the first aspect.

The two most obvious factors influencing the value and cost of a service are its
functionality that has to match the user’s need and its price. Costs of a service are
not restricted to money but also include other obligations and conditions the user
has to fulfill, e.g. ensure that the output data is only stored on encrypted hard
disks. Expected value is affected by uncertainties about the service experience
which can be reduced by statements of the provider about the non-functional
properties (NFPs) of the service which comprise the following areas:

– Quality of service (QoS) and data, e.g. availability of the service, are deliv-
ered stock prices real-time or delayed?

– Usage policy for input data. Data that is given by the user to the provider in
order to consume a service can have restrictions on their usage, e.g. the user
may specify that his e-mail address or credit card number are not allowed
to be forwarded to other parties. This is also called privacy statement.

– Usage policy for output data, e.g. user is not allowed to display stock prices
on public homepage, user has to attribute provider of weather data. We call
this also data license.

– Usage policy of service, e.g. mobile data service must not be combined with
VoIP service. We denote such policies also as service licenses. They also
include customer obligations, e.g. pricing (every call costs 1 Euro, flat-fee
for one month of 20 $).

Fig. 1. Functional and Non-Functional Service Descriptions

Input Output

Functional
Description

Description of
Behavior

type

part of

used by

QoS
Configuration

Non-Functional
Description

Privacy
Statement

Data
License

Service
License

Usage Policy

984 S. Speiser

In Figure 1 we show an overview of the service description, where we count
input, output and behavioral description to the functional description and the
above-mentioned aspects to the non-functional description.

As we consider a Web scenario with a large number of heterogeneous providers
and an even larger number of services, we want to support the user with tools
for service selection. Therefore we need formal descriptions of services. This is
tackled by various semantic Web service approaches (e.g. WSMO1, SAWSDL2,
OWL-S3). All approaches deal with functionality but non-functional properties
are mostly restricted to quality of service and price.

This means that most usage policies are in natural language which requires
a significant human effort to evaluate in terms of compatibility with user pref-
erences. Especially in the mashup and keyword search scenario with their high
user convenience this effort seems inappropriate. This makes it likely that natural
language licenses are just ignored and possibly violated. Formal usage policies
representing the licenses and user requirements would allow them to be inte-
grated into service selection tools. In this way adhering to a license can be made
easier for the user. As we mentioned above we consider a Web scenario with
numerous, heterogeneous providers and therefore we need a license language
with clearly defined formal semantics. Our goal is to create such a language and
extend service selection and ranking algorithms to include usage policies.

In order to make the language applicable to a wide range of scenarios and
different domains of Web resources we want to restrict it to a small core that has a
well-defined meaning for permissions, prohibitions, obligations and constraints.
The core elements can then be linked to domain-specific ontologies, e.g. for
payments or subject and resource identification.

The rest of this paper is structured as follows. Section 2 discusses related
work. In Section 3 we outline our planned solution for semantic usage policies
and we describe in Section 4 how we want to achieve it. Finally we summarize
in Section 5.

2 Related Work

O’Sullivan presents in his thesis a taxonomy of non-functional properties (NFPs)
of services [4]. His results are based on the analysis of classic services and Web
services from numerous domains. The taxonomy is very comprehensive and deals
with various categories of NFPs, such as availability, price, discounts and quality.
Usage policy related concepts that allow providers e.g. to forbid commercial
usage of their service are not considered. The taxonomy itself is not concerned
with the specification of service policies but delivers a vocabulary for common
aspects of services.

The taxonomy of O’Sullivan was modeled as WSML ontologies and used to
represent NFPs in WSMO [5]. Originally WSMO supported annotations like
1 http://www.wsmo.org
2 http://www.w3.org/TR/sawsdl
3 http://www.w3.org/Submission/OWL-S

Semantic Usage Policies for Web Services 985

creator or title adapted from Dublin Core to describe non-functional properties of
ontology elements. With the integration of the O’Sullivan NFP concepts and the
extension of WSMO models to include rule-based definitions of NFPs for services,
the approach is now able to describe expressive NFP offers in terms of the
defined ontologies. Toma et al. present an algorithm that ranks WSMO services
according to user specified preferences on NFPs [6]. The ranking is currently
limited to NFPs that result in numerical values given the service specification
and user provided context and input information.

Web service policy languages can be used to define quality guarantees and
also user requirements. For example WS-Policy can specify with assertions which
technologies users have to support, e.g. encryption[7]. Assertions are defined in
different WS-* standards which cover technical domains but no usage rights and
restrictions.

Formalized usage policies exist for digital objects such as e-books and music
files. The RDF serialization of the Creative Commons licenses can be used for
automatic determination of associated rights [8]. This is used by Google’s ad-
vanced search4, where users can specify their desired Creative Commons license
and only documents that were annotated correspondingly by their owner are re-
turned. However Creative Commons is mainly suitable for open contents, as the
licenses are generally addressed to the public and do not specify rights for single
users. Another point is that commercial usage can be allowed but no specific
terms (e.g. price) can be expressed.

In the area of digital rights management (DRM), there exist several rights ex-
pression languages (REL), e.g. ODRL [9] and XrML [10]. These are XML based
languages that allow more complex right specifications than Creative Commons.
In theory existing RELs would be a good basis for service usage policies, how-
ever the mentioned RELs include language elements that go far beyond rights
expression. They handle encryption, media encodings, user authentication and
other domain-specific aspects. These are represented as syntactically defined
XML elements and a meaning has to be given in the corresponding standard
specifications (e.g. ODRL). Also they are lacking formal semantics which leads
to ambiguities in scenarios with heterogeneous providers.

This problem is also recognized by Jamkhedkar et al. who present a DRM ar-
chitecture that separates rights expression from other aspects [11]. They propose
that there is a need for a core REL which is based on a mathematical foundation
[12]. We share this thought and will further investigate if such a core REL could
be reused for service usage policies.

Arnab and Hutchison present LiREL which is a formal REL [13]. They show
what the difference to classical access control is and what the resulting require-
ments for an REL are. LiREL focuses on the expression of rights and requires an
external standardized vocabulary for the definition of actions, constraints, etc.
This is in contrast to our planned solution which relies on ontologies and ontol-
ogy mappings rather than trying to build a standard vocabulary that covers all
domains and has to be used by all providers and users.

4 http://www.google.com/advanced search

986 S. Speiser

Gangadharan et al. developed an ODRL profile for service licenses (ODRL-S)
[14]. As a service license they define regulations concerning the use of a service.
This is a similar concept to our proposed usage policies, however their approach
defines a static vocabulary of actions, including composition or attribution. This
regulates general usage of the service but does not incorporate context infor-
mation, e.g. this means that generally composition can be forbidden but there
is no way to specify that composition is allowed with specific other services or
providers. Also the policy does not refer to the output data of services. The lack
of clear semantics is inherited from ODRL. The interpretation of licenses relies
on information such as: composition is a special case of derivation. This hierar-
chy is however not modeled formally, so that it has to be implemented manually
in every program that reasons about service licenses.

In general it can be said that existing rights expression approaches mostly
rely on XML for syntax and specify the meaning of elements in human-readable
documents. This makes it difficult to automatically match different terminologies
that are likely to be used in the Web with its heterogeneous provider structure.

The thesis of Lamparter presents a policy-based approach for service offers, re-
quests and contracts for Web service markets using ontologies to match
different provider vocabularies [15]. The approach models functions ranging over
non-functional properties of Web services. The functions are used to compactly
represent policies that map configurations of NFPs to numerical values. Users
specify their valuation of configurations and providers their prices. The policies
are then used to find the optimal configuration with respect to the difference of
user valuation and price. Lamparter identifies the allowed use of information re-
turned by services as a relevant NFP and exemplifies it by showing how to restrict
the disclosure of data. A general model for usage policies is however not given.

Kagal et al. developed the semantic policy language Rei[16]. It models the ba-
sic deontic concepts of permissions, prohibitions, obligations and dispensations.
Concrete concepts have to be modeled in external domain-specific ontologies.
Rei uses OWL as a serialization format but represents rules that have to be
interpreted by an external rule engine based on logic programming. The usage
of Rei was mainly for access control and we will investigate if it can also applied
to usage policies.

The traditional access control model is the access control matrix, which spec-
ifies whether a specific action on a specific object by a specific subject is allowed
or not [17]. Most access control approaches like role based access control do not
explicitly state the matrix but can be reduced to it. Parker et al. break with
this model and present the UCONABC approach for usage control [18] which
not only regulates the access to resources but also their further usage [19]. Their
model includes obligations on the user side and mutable subject and object at-
tributes that have influence on user rights after the initial access to a resource
was granted, e.g. an object can only be printed twice. Parker et al. observe that
DRM, privacy policies and access control are developed independently despite
their similarity and propose the UCONABC model as a theoretical foundation
for the mentioned wide range of application areas [18]. The model has received
broad attention and will be regarded in our formalization of usage policies.

Semantic Usage Policies for Web Services 987

3 Planned Contribution

In this section we list the components that are necessary for a solution that
integrates formal usage policies in (semi-)automatic service selection.

The first required component is a language that represents the core notions
of usage policies with clearly defined semantics. These notions include the ABC
defined by UCONABC as Authorizations (A), oBligations (B), Conditions (C).
The core REL by Jamkhedkar et al., LiREL and ODRL have all slightly different
terms such as for example constraints, permissions or prohibitions. We will inves-
tigate if these notions are substitutable and which are suitable for our purposes.
We envision a solution that is in a similar relationship to ODRL as SAWSDL
is to WSDL for Web service description. That means that the structure of the
language itself remains the same, but individual elements of a document can
reference concepts of an external domain ontology.

These domain ontologies form the second required component of our solution.
We plan to reuse results from O’Sullivan [4] and their formalization as ontologies
by Toma et al. [5]. For the domain of pricing we will consider the approach by
Lamparter [15] which provides an extensive formalization for service pricing
models depending on other non-functional attributes.

Being able to describe services is only one part of tool-supported service se-
lection. The other one are algorithms which can be classified in two categories:
discovery and ranking. Discovery means that the user formulates his functional
and non-functional requirements for a service and the result is a list of matching
services. We plan to first extend existing service discovery algorithms to include
our proposed model for usage policies. However especially for non-functional
properties users often have not only hard requirements but preferences (e.g. a
user prefers generally cheaper services but also considers response time). Ser-
vice ranking denotes the sorting of discovered services according to a preference
structure. This structure can either be global for all users and built into the
ranking algorithm or specified by each user in a preference formalism. Our goal
is to extend existing service ranking algorithms such as the works by Toma et
al. [6] and Lamparter [15] to be able to express preferences over usage policies.

In summary our planned contribution is a formal language for usage policies
and extensions to service discovery and ranking algorithms that considers usage
policy requirements and preferences of users.

4 Work Plan

Until now we have completed the review of the state of the art. We have ana-
lyzed different approaches to usage policies and related problems such as access
control and DRM. We identified the requirement that the core language should
be separated from domain-specific descriptions. We also decided on using on-
tologies for these descriptions as they support interoperability between different
vocabularies likely to be used in a scenario with heterogeneous providers.

As a next step we plan to develop or adapt the core language for usage policies
and preferences. As described above we will investigate the possibility to align

988 S. Speiser

the non-domain specific parts of ODRL with one of the formal models for usage
control languages. The resulting language will integrate references to external
ontologies. Based on a selection of Web service and information source licenses
we will identify a set of required domain ontologies.

Afterwards we will develop a possibility for users to express their policy needs
and preferences. These will serve as inputs to the discovery and ranking algo-
rithms that will be the result of the next stage.

Finally the whole system is evaluated for three aspects: (i) expressivity of the
language, (ii) efficiency, and (iii) added value for users. This will be done with
the following experiments:

1. Take a list of popular services e.g. from Seekda (http://seekda.com) and
distribute them to different users who have to create usage policies using our
formalism. By assigning the same license to different users we can afterwards
check the equivalence of their results and in this way verify their work. Users
have to track which licenses or terms were not expressible in our framework.
This experiment evaluates expressivity of the formalism. Additionally the
users have to fill out questionnaires about the policy creation process. In
this way we want to find out if the approach is practically usable or too
complicated.

2. Based on the annotated services we will build a list of user requests and
measure the time to complete discovery and ranking with and without usage
policies. This will show us if the computational overhead from introducing
more complex descriptions is reasonable. The added expressivity of user re-
quirements can lead to a smaller number of services that have to be ranked,
which can have a positive effect on the performance.

3. In order to test the added value for users, we will integrate our descriptions
and algorithms in a tool, such as for example the keyword-driven search by
Tran et al. [1]. With such an implementation we will be able to perform user
studies where we can observe if users see a benefit in having tools that are
aware of usage policies.

5 Conclusions

The Internet grows more and more into a system that provides us data and
services that can easily be accessed and integrated, thanks to Semantic Web
and Web Service technology. In such an environment it is natural for common
users to build networks of services directly or indirectly and provide them to
other users. This large number of providers and services needs formal and inter-
operable descriptions of services in order to let service location scale. Current
approaches to this problem treat functionality and quality aspects. However not
all services are freely usable and not all data is in the public domain. The policies
of such services also include privacy statements and are currently mostly avail-
able in natural language. In this proposal we presented our planned research
that includes a formalization of usage policies and their integration into service
discovery and ranking algorithms. We believe that the possibility to express such

Semantic Usage Policies for Web Services 989

policies will be a motivation for providers to open up their services and data to
the Web as it reduces their risk of policy violation.

References

1. Tran, D.T., Wang, H., Rudolph, S., Cimiano, P.: Top-k Exploration of Query Can-
didates for Efficient Keyword Search on Graph-Shaped (RDF) Data. In: Proceed-
ings of the 25th International Conference on Data Engineering, ICDE (2009)

2. Pautasso, C., Frisoni, M.: The Mashup Atelier. In: Second International Workshop
on Web APIs and Services Mashups (Mashups 2008) at ICSOC (2008)

3. Ng, I.C.: The Pricing and Revenue Management of Services: a strategic approach.
Routledge Advances in Management and Business Studies (2007)

4. O’Sullivan, J.: Towards a precise understanding of service properties. PhD thesis,
Queensland University of Technology (2006)

5. Toma, I., Foxvog, D.: Non-Functional Properties in Web Services. Technical Report
D28.4 v0.1, WSMO Working Draft (October 2006)

6. Toma, I., Roman, D., Fensel, D., Sapkota, B., Gómez, J.M.: A Multi-criteria Ser-
vice Ranking Approach Based on Non-Functional Properties Rules Evaluation. In:
ICSOC, pp. 435–441 (2007)

7. Vedamuthu, A., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Bubez, T.,
Yacinalp, U.: Web Services Policy 1.5 - Framework. Technical report

8. Abelson, H., Adida, B., Linksvayer, M., Yergler, N.: ccREL: The Creative Com-
mons Rights Expression Language. Technical report, Creative Commons (2008)

9. Iannella, R.: Open Digital Rights Language (ODRL) Version 1.1. W3C Note (2002)
10. Wang, X., Lao, G., Demartini, T., Reddy, H., Nguyen, M., Valenzuela, E.: XrML -

eXtensible rights Markup Language. In: ACM workshop on XML security (2002)
11. Jamkhedkar, P.A., Heileman, G.L.: Digital rights management architectures. Com-

put. Electr. Eng. 35(2), 376–394 (2009)
12. Jamkhedkar, P.A., Heileman, G.L.: A formal conceptual model for rights. In: Dig-

ital Rights Management Workshop, pp. 29–38 (2008)
13. Arnab, A., Hutchison, A.: Persistent Access Control: A Formal Model for DRM.

In: ACM workshop on Digital Rights Management, pp. 41–53 (2007)
14. Gangadharan, G.R., D’Andrea, V., Weiss, M.: Service Licensing Composition and

Compatibility Analysis. Int. J. Cooperative Inf. Syst. 17(3), 301–317 (2008)
15. Lamparter, S.: Policy-based Contracting in Semantic Web Service Markets. PhD

thesis, Universität Karlsruhe (TH), Institut AIFB (2007)
16. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing envi-

ronment. In: Policies for Distributed Systems and Networks, June 2003, pp. 63–74
(2003)

17. Lampson, B.W.: Protection. In: Proc. Firth Princeton Symposium on Informa-
tion Sciences and Systems, pp. 437–443. Princeton University, Princeton (1971);
reprinted in Operating Systems Review 8(1), 18–24 (1974)

18. Park, J., Sandhu, R.S.: The UCONABC usage control model. ACM Trans. Inf.
Syst. Secur. 7(1), 128–174 (2004)

19. Park, J., Sandhu, R.: Towards usage control models: beyond traditional access
control. In: ACM Symp. on Access Control Models and Technologies SACMAT
2002 (2002)

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 990–997, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Ontology-Driven Generalization of Cartographic
Representations by Aggregation and Dimensional

Collapse

Eric B. Wolf

Center of Excellence in GIScience
US Geological Survey
ebwolf@usgs.gov

Abstract. Automatic generalization of cartographic features has been recognized
as a goal of Geographic Information Science (GIScience). Many successful algo-
rithms have been introduced for generalization tasks such as point reduction and
smoothing of linear features. Such algorithms operate well as a function of
change in map scale or resolution. Other generalization tasks have proved con-
siderably more difficult. Two of these operations, aggregation and dimensional
collapse, are trivial to implement – replacing a set of points with an area feature
or replacing an area feature with a single point – but have proven challenging to
make operational. The decision to aggregate or collapse features is as much
dependent on the context of the features as they are change in map scale. This
dissertation proposes to show how ontologies can be used to inform automated
generalization in these operations.

Keywords: ontologies, cartographic generalization, automated generalization.

1 Problem Statement

This dissertation proposes to link two significant areas of research: automated gener-
alization and knowledge engineering with ontologies. Cartographic generalization is
often split into two categories: feature modification based on geometry (e.g., sinuosity
or area-perimeter ratios) and feature modification based on semantics. This study
focuses on two generalization operations: aggregation and dimensional collapse. These
two operations occur in response to constraints which can be measured empirically.
But as Bertin [2] noted, altering the dimensionality of representation – what he refers
to as implantation – is more of a conceptual change. It is the goal of this dissertation to
demonstrate how ontologies can be used to constrain or enhance the conceptual
changes during aggregation and dimensional collapse.

The intellectual merit of this effort lies in the application of current knowledge
engineering methods to automated generalization. Generalization is well-documented
as a process that is strongly dependent on the semantics of the information being
modified. Ontologies have advanced knowledge in creating a means to encode such
semantics in a form that is machine readable and that can guide automated processes.
Efforts have been made to encode cartographic rules in ontologies [14] [7]. Other

 Ontology-Driven Generalization of Cartographic Representations 991

efforts have involved applying semantic relationships as an input into generalization
operations [8]. No known effort has been made to extend existing cartographic task
ontologies specifically toward generalization.

The broader impacts of this study lie in connecting the semantics of geographic
information with the generalization process in a manner that can be automated.
National Mapping Agencies (NMA), such as the United States Geological Survey
(USGS), Ordnance Survey of the United Kingdom or Institut Geographique National
of France, currently maintain multiple databases representing the same geographic
extents at different levels of detail. The ability to derive all levels of detail from a
single database would result in significant cost savings and reduction in update errors.
The effort will directly involve the research goals of the USGS towards future
versions of The National Map. Specifically, the effort could bridge existing research
projects in the USGS in generalization and ontology development.

1.1 Generalization of Cartographic Representations

Data collected for a database with a scale of 1:5,000 would be too detailed for a map at
a scale of 1:100,000. A representation appropriate for 1:5,000 scale would need to be
generalized to a representation appropriate at 1:100,000 scale. Cartographic generaliza-
tion is the process in which data is transformed to better represent geographic phenom-
ena that are most significant for the map purpose or scale. Dimensional collapse and
aggregation are related in that they alter the geometric dimensionality of the represen-
tations. Dimensional collapse involves reducing the geometric dimensionality of a
representation: a two-dimensional polygon representing the borders of a city at fine
scales may be replaced with a single zero-dimensional point symbol at coarser scales.
Aggregation involves replacing collections of similar point symbols with a polygonal
representation denoting a field of similar objects (Figure 1) [10]. These operations may
be invoked due to constraints or for abstraction. Constraints are the limitations imposed
by the communication medium (paper, screen, color palette, etc.) and human
perception (semiotics) on how the abstracted data is communicated. Abstraction refers
to the process in which the surveyor or data collector gather information and structure
it according to demands of the desired end product. For instance, the location of wells,
irrigation ditches and land parcels might be collected as locations and areas stored
abstractly as points and polygons for the purpose of managing water rights [3].

Fig. 1. Aggregation and Collapse generalization operations [10]

992 E.B. Wolf

Bertin [2] divides cartographic generalization into two categories: structural gener-
alization and conceptual generalization. Structural generalization involves geometric or
symbolic changes to feature representation without impacting the semantic relationship
with other features. Conceptual generalization requires not just symbolic or geometric
changes, but a change in “implantation” [2]. A change in implantation means a change
in representation from one primitive type, point, line or area, to another. Collapsing an
area to a point or aggregating a collection of points into an area are examples of change
in implantation [12]. Bertin provides the example of ‘mines’ symbolized by points and
then aggregated into an area symbol for a ‘coal field’. Structural generalization may
alter the number of point symbols for mines but a conceptual generalization replaces
the points entirely with an area symbol representing the coal field.

Similarly, Ratajski [11] divides generalization into the quantitative and the qualita-
tive. Quantitative generalization is defined as “a gradual reduction of map contents
depending on the reduction of the map scale” whereas qualitative generalization is
given as “turning from the more elementary ideas to the more general ones”. Continu-
ing with Bertin’s example, the application of quantitative generalization would result
in a reduction of the number of mine symbols whereas the application of qualitative
generalization would replace the concept of individual mines with a new concept of a
‘coal field’.

Weibel [16] also creates a binary division describing generalization operators as
either context-independent or context-dependent. Specifically, the generalization
operators selection/elimination, simplification and smoothing are termed context-
independent because they can be applied to individual feature representations without
respect to surrounding features. Aggregation and displacement are examples of
context-dependent operators that are only used when the surrounding spatial context
necessitates it.

Mackaness [9] states “ultimately the results of generalisation do manifest them-
selves through the manipulation of geometric primitives. But current thinking argues
that the reasoning behind those manipulations needs to be based on the analysis of the
context.” Thus, structural or quantitative generalization can be automated through the
application of computational geometry but conceptual or qualitative generalization
requires a context-oriented, semantic approach.

Dutton and Edwardes [4] declare “semantic properties and relations needed for
generalization that cannot be inferred from geometry must be coded explicitly.” In
other words, the semantic relationships that govern generalization cannot always be
determined through mathematical manipulation of the representations. These semantic
relationships must be explicitly established. Further, in order to automate the gener-
alization process the relationships must be encoded in a machine-readable format.

1.2 Ontologies for Cartographic Generalization

According to Smith [13], in the philosophical sense, ontology is the branch of
metaphysics that “seeks to provide a definitive and exhaustive classification of
entities in all spheres of being.” In contrast to Smith, Gruber [5] defines an ontology
as a formal, explicit specification of a conceptualization. In this definition, the term
conceptualization refers to a model of some phenomenon constructed through the
identification and enumeration of relevant concepts. The ontology should be explicit

 Ontology-Driven Generalization of Cartographic Representations 993

in that each concept and constraints on its use should be clearly delineated. This
explicit conceptualization should be encoded formally – that is, the ontology should
be machine-readable. The term conceptualization appears similar to both a map and a
spatial database. Both provide an “abstract model of some phenomenon in the world”
and both, through cartographic or model generalization identify “the relevant concepts
of that phenomenon”. In the case of a map, the conceptualization, or abstract model of
some phenomenon in the world, is encoded in geometric shapes, patterns of color and
texture. The kinds and categories in this abstract model are explicitly defined in the
map legend but the constraints on their use are only loosely defined as visual
variables and cartographic guidelines. But the conceptualization encoded as a map is
not formal or machine-readable In the case of the spatial database, the data model
nicely equates to the abstract model of some phenomenon in the world. The data
model of a spatial database is also explicit and formal. The data model explicitly
defines the concepts used and the constraints on their use. These data models are also
machine readable but generally machine readable by specific database systems.

Gruber’s definition of ontology has been made operational through formal
languages like the Web Ontology Language OWL. By encoding conceptual relation-
ships for a domain ontology in OWL, semantic relationships can be evaluated during
automated processing. Automated generalization methods can use these linkages to

maintain the semantic character of representations while reducing detail [15].
The application of ontologies to generalization and even the use of ontologies is

not a new concept. Andrienko and Andrienko [1] develop what they term “the first
system on automated mapping considering semantic relationships among data
components.” Their Descartes system automatically creates thematic maps based on
semantic relationships of demographic statistics. Kulik et al. [8] present a novel
algorithm for simplification of linear features that takes into account map purpose as
encoded in the semantic weights. Other efforts focus on developing domain ontolo-
gies to facilitate cartographic generalization and representation in spatial databases.
Dutton and Edwardes [4] state that “…without accounting for the roles of features in
a landscape and in a map, it is difficult to select, simplify, displace and re-symbolize
features appropriately.” They develop an ontology based on the place names of
features common between USGS topographic maps and NOAA navigational charts.

Torres et al. [14] describe domain ontologies for hydrological and topographic
maps. The goal of their exercise is to explore representations of these maps as ontolo-
gies. Iosifesci-Enescu and Hurni [7] introduce ontologies for the formalization of
cartographic knowledge and rules. They demonstrate both a cartographic domain
ontology “centered on concepts of map, graphic element, visual variable and symbol”
and point towards a task ontology that formalizes “the storage, access and exchange
cartographic rules.”

This dissertation will attempt tasks to help inform how semantic relationships drive
the generalization operations of aggregation and dimensional collapse. While these
operations are typically employed to maintain the presence of a feature representa-
tions in response to reduction in map scale, they are sometimes employed in response
to changes in context according to the purpose of the map [4].

994 E.B. Wolf

2 Research Questions

The questions this dissertation addresses are:

1. Can the semantic relationships encoded as ontologies be used to automate dimen-
sional collapse and aggregation?

2. Separate domain ontologies must be created for each separate map series. Can a
single task ontology for generalization be created to manage the semantics for all
map scales? How is generalization modeled inside this ontology?

3. If multiple ontologies must be created, how can the ontologies be aligned to
represent continuity across levels of detail?

3 Workplan

As a demonstration of the concepts in this dissertation, application ontologies will be
developed for air navigation charts similar to the domain ontologies created by Torres
et al. [14]. Air navigation charts are ideal for this case study because the database and
scale remain fixed while representation is varied. The charts represent essentially the
same information but with two unique perspectives. Visual Flight Rules (VFR) charts
are designed for conditions in which pilots can navigate by visually surveying the
landscape. Instrument Flight Rules (IFR) charts are designed for conditions in which
pilots must rely solely on instrument readouts (Figure 2).

Fig. 2. Section of IFR and VFR Charts over Jefferson County Airport. Two cartographic
ontologies based on one spatial database model.

Once the demonstration ontologies are completed, cartographic application on-
tologies will be created for multi-scale map series produced by the USGS (Figure 3).
To limit the scope of the study, focus will be on feature complexes in and around
selected international airports. A single ontology will be created for each multi-scale
map series by examining the official data dictionaries. The availability of the official
data dictionaries may further limit the scope of this task. A significant question
arises from this process: Is it better to have one ontology that manages generalization
and change in scale internally? Or is it better to have multiple ontologies with the
generalization process becoming a process of creating semantic agreements between
the ontologies?

 Ontology-Driven Generalization of Cartographic Representations 995

Fig. 3. San Francisco International Airport in USGS Topographic multi-scale map series. Left
to right 1:24,000 7.5” Quandrangle, 1:100,000 30’ x 60’ Quadrangle, and 1:250,000 1 degree
by 2 degree Quadrangle, presented as uniform-scale graphics.

Finally, task ontologies will be constructed for cartographic generalization opera-
tions used in each application ontology. Relationships among the domain ontologies
developed in this study will be established. For instance, a domain ontology for the
spatial databases underlying the USGS National Map could be aligned with different
cartographic domain ontologies. The same will be done for the generalization task
ontologies. Theoretically, such a system will allow for the generation of ontologically-
dissimilar maps like the IFR and VFR charts as well as guiding the generalization of
data for multi-scale map series.

In the first half of this research project, a series of domain and task ontologies are
to be developed for creating similar maps. Several iterations of each ontology may be
necessary to balance the requirements of each criterion. Gruber [6] gives objective
criteria for evaluating the design of formal ontologies. The ontologies developed in
this dissertation will be evaluated against these criteria

The demonstration task involves the flight navigation charts controls for scale and
underlying database while varying map purpose. It is anticipated that a single domain
ontology may be constructed for both VFR and IFR perspectives. Also, a task ontol-
ogy for cartographic representation would be created based on a subset of the
cartographic rules used on the flight navigation charts similar to Iosifescu-Enescu and
Hurni’s ontology [7]. The differences in the perspectives would be encoded in two
application ontologies based on these domain and task ontologies.

The main research effort involves creating ontologies for multi-scale map series.
This effort will be considerably more challenging than the demonstration, not just
because of the number of maps involved, but because at least two different models are
possible. In both models, it is anticipated that a single domain ontology will be
needed for each map series. The cartographic task ontology from the demonstration
would be expanded to include generalization operators. Task ontologies encode
relationships among tasks but not specific sequences. Application ontologies rely on
these relationships by the tasks to concepts in the domain ontology. Thus, application
ontologies would be created for either each map or each map series depending on
whether or not a single application ontology can be created for an entire map series.

Once completed, the final effort would be to utilize the hierarchy of domain and
task ontologies to explore relationships between scale and ontology in order to answer
the research questions. One method of exploring these relationships would be to map
the successful ontologies onto heterogeneous database ontologies for the purpose of

996 E.B. Wolf

guiding the generalization process. The overall goal of the project is to guide the
conceptual generalization of geographic representations through the semantic
relationships encoded in the ontologies. In order to evaluate this goal, it will be neces-
sary to develop programs that utilize ontologies in automating the generalization
process.

4 Summary

This dissertation is designed to demonstrate how ontologies can be used to constrain
or enhance the conceptual changes during aggregation and dimensional collapse.
These two generalization operations modify the conceptual nature of representations
and must be guided by semantics, not geometry [11] [2] [16] [9].

The expected outcomes of this research are the creation of a series of domain
ontologies from data dictionaries published by NMAs as well as one or more
task ontologies which model generalization within the context of cartography. These
ontologies will be aligned as application ontologies that will be coupled with scripts
to drive automated generalization for dimensional collapse and aggregation.

Acknowledgments. This research was supported by the United States Geological
Survey as part of the project titled “Building an Ontology for The National Map”.

References

1. Andrienko, G., Andrienko, N.: Knowledge Engineering for Automated Map Design in
Descarates. In: ACM GIS 1999, Kansas City, MO USA (1999)

2. Bertin, J.: Semiology of Graphics, p. 415. The University of Wisconsin Press, Madison
(1983)

3. Buttenfield, B.P., Mark, D.M.: Expert Systems in Cartographic Design. In: Geographic In-
formation Systems: The Microcomputer and Modern Cartography, pp. 129–150. Pergamon
Press, Oxford (1990)

4. Dutton, G., Edwardes, A.: Ontological Modeling of Geographical Relationships for Map
Generalization. In: The 9th ICA Workshop on Generalization and Multiple Representa-
tions, Vancouver, Washington (2006)

5. Gruber, T.R.: A Translation Approach to Portable Ontology Specification. Knowledge
Acquisition 5, 199–220 (1993)

6. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Shar-
ing. International Journal of Human-Computer Studies 43(5/6), 22 (1995)

7. Iosifescu-Enescu, I., Hurni, L.: Towards Cartographic Ontologies Or How Computers
Learn Cartography. In: 23rd International Cartographic Conference, Moscow, Russia
(2007)

8. Kulik, L., Duckham, M., et al.: Ontology-Driven Map Generalization. Journal of Visual
Languages and Computing 16(2), 245–267 (2005)

9. Mackaness, W.A., Ruas, A., et al. (eds.): Generalisation of Geographic Information: Car-
tographic Modelling and Applications, p. 370. Elsevier, Oxford (2007)

10. McMaster, R.B., Shea, K.S.: Cartographic Generalization in a Digital Environment: When
and How to Generalize. AutoCarto 9, Baltimore, MD (1989)

 Ontology-Driven Generalization of Cartographic Representations 997

11. Ratajski, L.: Phenomenes Des Points De Generalization. International Yearbook of Cartog-
raphy 7, 143–151 (1967)

12. Slocum, T.A., McMaster, R.B., et al.: Scale and Generalization. In: Thematic Cartography
and Geographic Visualization, pp. 103–120. Prentice Hall, Upper Saddle River (2005)

13. Smith, B.: Ontology. In: Blackwell Guide to the Philosophy of Computing and Informa-
tion, pp. 155–166. Blackwell, Malden (2003)

14. Torres, M., Quintero, R., et al.: Ontology-Driven Description of Spatial Data for Their
Semantic Processing. In: GeoSpatial Semantics 2005. Springer, Heidelberg (2005)

15. Tran, V.X., Tsuji, H.: Owl-T: A Task Ontology Language for Automatic Service Compo-
sition. In: IEEE International Conference on Web Services. IEEE, Los Alamitos (2007)

16. Weibel, R.: Generalization of Spatial Data: Principles and Selected Algorithms. In:
van Kreveld, M., Roos, T., Nievergelt, J., Widmayer, P. (eds.) CISM School 1996. LNCS,
vol. 1340, pp. 99–152. Springer, Heidelberg (1997)

Populating the Semantic Web by Macro-reading
Internet Text

Tom M. Mitchell1, Justin Betteridge1, Andrew Carlson1, Estevam Hruschka1,2,
and Richard Wang1

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
Tom.Mitchell@cs.cmu.edu

http://www.cs.cmu.edu/∼tom
2 Federal University of Sao Carlos, Brazil

Abstract. A key question regarding the future of the semantic web is
“how will we acquire structured information to populate the semantic
web on a vast scale?” One approach is to enter this information manu-
ally. A second approach is to take advantage of pre-existing databases,
and to develop common ontologies, publishing standards, and reward
systems to make this data widely accessible. We consider here a third
approach: developing software that automatically extracts structured in-
formation from unstructured text present on the web. We also describe
preliminary results demonstrating that machine learning algorithms can
learn to extract tens of thousands of facts to populate a diverse ontology,
with imperfect but reasonably good accuracy.

1 The Problem

The future impact of the semantic web will depend critically on the breadth and
depth of its content. One can imagine several approaches to constructing this con-
tent, including manual content entry by motivated teams of people, convincing
owners of existing databases to publish them on the semantic web, and automat-
ically extracting structured information from the vast quantity of unstructured
online text. We consider here the third of these approaches, and argue both that
it is feasible and that this kind of approach will be able to collect knowledge
that is unlikely to be captured as easily by other approaches.

The feasibility of extracting structured information automatically from text
will itself depend on the technical state-of-the-art of natural language processing
(NLP) methods. We have witnessed significant progress in NLP over the past
decade, on problems from sentence parsing [1] to named entity extraction [2], to
question answering [3], to document classification [4]. Nevertheless, computer al-
gorithms remain very far from being able to truly “understand” natural language
text (e.g., to read and extract the full content of the paper you are currently
reading). Given this shortcoming, why might we take the position that NLP al-
gorithms offer a promising near-term approach to populating the semantic web?

We believe automatic methods offer a feasible near-term approach because
the problem of automatically populating large databases from the internet can

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 998–1002, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Populating the Semantic Web by Macro-reading Internet Text 999

be formulated so that it is much easier to solve than the problem of full natural
language understanding. Our own formulation involves three key design choices:

1. Macro-reading instead of micro-reading. We use the term “micro-
reading” to refer to the traditional NLP task where a single text document
is input, and the desired output is the full information content of that docu-
ment. In contrast, we define “macro-reading” as a task where the input is a
large text collection (e.g., the web), and the desired output is a large collection
of facts expressed by the text collection, without requiring that every fact be
extracted. We argue that macro-reading is much easier than micro-reading, for
two reasons. First, macro-reading does not require extracting every bit of infor-
mation contained in the text collection. Second, in text corpora as large as the
web, many important facts will be stated redundantly, thousands of times, using
different wordings. A macro-reader can benefit from this redundancy by focusing
on analyzing only the simple wordings of the fact, ignoring hopelessly complex
sentences, and by statistically combining evidence from many text fragments in
order to determine how strongly to believe a particular candidate hypothesis.

2. Ontology-driven reading. Much of the difficulty in truly understanding
free-form text follows from the fact that it can say anything. In contrast, we
formulate our macro-reading problem as a task of populating an ontology that
is given as input, and that defines the categories (e.g., sport, person, team) and
relations (e.g., plays-sport, plays-on-team) of interest. This is a natural way to
frame a problem of populating some portion of the semantic web for which an
ontology is available. It also makes our macro-reading problem easier in two ways.
First, the system can focus only on a subset of text that is on-topic relative to the
ontology. Second, the ontology itself can define meta-properties of its categories
and relations that make extraction easier and more accurate (e.g., it can state
that the relation ’plays-on-team’ relates arguments of type ‘person’ and ‘team’).

3. Machine learning methods whose accuracy improves with ontology
complexity. A third design choice is to use semi-supervised machine learning
methods that automatically discover patterns of text and hypertext that support
reliable fact extraction. Our machine learning approach acquires extraction pat-
terns (e.g., “mayor of X” often implies X is a city) for each predicate (category
or relation) in the input ontology. We build on earlier semi-supervised bootstrap
learning methods [5,6,7,8] that learn from just a handful of labeled training ex-
amples, plus a large corpus of unlabeled text. While these earlier methods showed
the feasibility of semi-supervised learning of extraction patterns, they were lim-
ited because accurate learning requires more constraints than are provided by a
few dozen labeled training examples. Our algorithm achieves significantly higher
accuracy by using the input ontology itself to provide additional constraints that
guide the learner[9]. For example, when our algorithm learns extraction patterns
for the predicates ’person’, ’team’ and ’plays-on-team’, prior knowledge from the
ontology requires that for any unlabeled sentence containing noun phrases A and
B, the extractor for ’plays-on-team’ can label <A, B > a positive example of the
relation only if the ’person’ classifier labels A positive, and the ’team’ classifier

1000 T.M. Mitchell et al.

Fig. 1. Extracted facts for two companies discovered by our system. These two compa-
nies were extracted by the learned ‘company’ extractor, and the relations shown were
extracted by learned relation extractors.

Table 1. Horn clause rules learned from extracted instances. Numbers indicate the
conditional probability that the literal to the left of the “:-” will be satisfied if the
literals to its right are satisfied.

0.84 playsSport(?x,?y) :- playsFor(?x,?z), teamPlaysSport(?z,?y)

0.70 playsSport(?x,baseball) :- playsFor(?x,yankees)

0.82 teamPlaysSport(?x,?y) :- playsFor(?x,?z), playsSport(?z,?y)

0.73 teamPlaysSport(?x,baseball) :- playsAgainst(?x,yankees)

labels B positive. As the ontology grows in complexity, the set of constraints on
the learner also grows, resulting in even higher accuracy.

In summary, our approach uses a coupled semi-supervised learning algorithm
to acquire extraction strategies for each predicate in the input ontology, and
applies these to macro-read millions of web pages to populate that ontology.

2 The ReadTheWeb System

Our current system learns extraction patterns defined over free text and over
HTML structure, starting from an initial ontology containing dozens of cat-
egories and relations, and 10-15 seed examples of each. The textual pattern
learner, CBL [9], iteratively grows a set of extraction patterns while obeying
mutual exclusion, subset, and type checking constraints given by the ontology.
The HTML pattern learner, SEAL [10], learns patterns of HTML and text to-
kens that capture regularities such as HTML lists of predicate instances. Based
on the belief that these techniques should make independent errors, our system
only trusts instances that are extracted by both techniques. Such instances are
added to the current beliefs at the end of each iteration, and the process repeats
by invoking the subordinate techniques with the newly promoted instances. Fig-
ure 1 shows some facts extracted by a recent run of the system (see the complete
results at http://rtw.ml.cmu.edu/readtheweb.html).

In a recent experiment involving 16 categories, our current system achieved
an average precision of 97% while promoting 4224 category instances. In experi-
ments with CBL which involved an additional 14 relations, it achieved an average
precision of 83% for the categories and 84% for the relations while promoting
15520 category instances and 2674 relation instances.

Populating the Semantic Web by Macro-reading Internet Text 1001

Another component of our system mines the thousands of extracted beliefs,
to learn probabilistic Horn clause rules that capture empirical regularities in this
data. The resulting rules (Table 1) can then be used to infer additional beliefs
to further populate the ontology. In this case the new beliefs are not extracted
from text, but are instead inferred from the learned rules and other previously
extracted beliefs. Note each learned rule contributes yet another constraint to
couple the subsequent training of extractors for the predicates it mentions.

3 Conclusions

We argue that macro-reading the web to populate target ontologies is feasible
in the near term, especially as progress continues on coupled semi-supervised
learning methods, and intelligent approaches to lightly supervising them. Our
preliminary results demonstrate that such an approach can successfully extract
tens of thousands of beliefs to populate an input ontology, at imperfect but
reasonable accuracy.

One key to our argument is that macro-reading is much easier than solving the
full NLP problem. We note that micro-reading will also be important, especially
for anotating individual web pages, and for extracting information that is stated
only infrequently on the web (e.g., personal information that appears only on a
person’s home page). One direction for future work is to explore whether and
how a macro-reader like ours can help train a micro-reader.

While we believe machine reading will play an important role in populat-
ing the semantic web, other approaches will be valuable too, and it is useful
to understand different roles these different approaches can play. For example,
publishing pre-existing databases may be especially useful for providing deep
coverage over fairly narrow domains (e.g., the census data). In contrast, our ap-
proach of macro-reading the web may be better suited to populating more broad
ontologies, especially with items that are mentioned frequently on the web (and
hence easiest to macro-read). Because it can be retrained to fairly arbitrary
ontologies, our approach might also be useful for more specialized applications
where manual methods are prohibitively expensive.

Acknowledgements. This research has been supported by DARPA, Google,
and the Brazilian Research Agency CAPES. Yahoo! Inc. has provided graduate
fellowship support as well as access to their M45 computing cluster.

References

1. Nivre, J.: Incremental non-projective dependency parsing. HLT-NAACL, 396–403
(2007)

2. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In: Proceedings of CoNLL
2003, pp. 142–147 (2003)

3. Vorhees, E.: Overview of TREC 2007. In: TREC (2007)

1002 T.M. Mitchell et al.

4. Nigam, K., Andrew McCallum, S.T., Mitchell, T.: Text classification from labeled
and unlabeled documents using em. Machine Learning 39, 103–134 (2000)

5. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised meth-
ods. In: ACL, pp. 189–196 (1995)

6. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: COLT (1998)

7. Riloff, E., Jones, R.: Learning dictionaries for information extraction by multi-level
bootstrapping. In: AAAI (1999)

8. Brin, S.: Extracting patterns and relations from the world wide web. In: WebDB
(1998)

9. Carlson, A., Betteridge, J., Hruschka Jr, E.R., Mitchell, T.M.: Coupling semi-
supervised learning of categories and relations. In: Proceedings of the NAACL
HLT 2009 Workshop on Semi-supervised Learning for NLP (2009)

10. Wang, R.C., Cohen, W.W.: Language-independent set expansion of named entities
using the web. In: ICDM (2007)

Search 3.0: Present, Personal, Precise

Nova Spivack

Radar Networks, USA

The next generation of Web search is already beginning to emerge. With it we
will see several shifts in the way people search, and the way major search engines
provide search functionality to consumers.

To understand movement towards the next generation of Web search, it is
helpful to first look at how it has developed to its current state. Beginning with
Tim Berners-Lee’s foundational proposal in 1989, the Web’s evolution may be
divided into three distinct phases.

Web 1.0, the first decade of the Web (1989 - 1999), was characterized by a
distinctly desktop-like search paradigm. The overriding idea was that the Web is
a collection of documents, not unlike the folder tree on the desktop, that must be
searched and ranked hierarchically. Relevancy was considered to be how closely
a document matched a given query string.

Web 2.0, the second decade of the Web (1999 - 2009), ushered in the be-
ginnings of a shift towards social search. In particular, blogging tools, social
bookmarking tools, social networks, social media sites, and microblogging ser-
vices began to organize the Web around people and their relationships. This
added the beginnings of a primitive ”web of trust” to the search repertoire, en-
abling search engines to begin to take the social value of content (as evidenced
by discussions, ratings, sharing, linking, referrals, etc.) as an additional measure-
ment in the relevancy equation. Those items that were both most relevant on a
keyword level, and most relevant in the social graph (closer and/or more popular
in the graph), were considered to be more relevant. Thus results could be ranked
according to their social value - how many people in the community liked them
and current activity level - as well as by semantic relevancy measures.

In the coming third decade of the Web, Web 3.0 (2009 - 2019), there will
be another shift in the search paradigm. This is a shift to from the past to the
present, and from the social to the personal, and from the generic to the precise.

Established search engines like Google rank results primarily by keyword (se-
mantic) relevancy. Social search engines rank results primarily by activity and
social value (Digg, Twine 1.0, etc.). But the new search engines of the Web
3.0 era will also take into account two additional factors when determining rel-
evancy: timeliness and personalization. The result will be a more precise and
customized search capability.

Google returns the same results for everyone, but why should that be the
case? In fact, when two different people search for the same information, they
may want to elicit very different kinds of results. Someone who is a novice in

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 1003–1004, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

1004 N. Spivack

a field may want beginner-level information to rank higher in the results than
someone who is an expert. There may be a desire to emphasize things that
are novel over things that have been seen before, or that have happened in the
past; the more timely something is the more relevant it may be as well. These
three themes - present, personal, and precise - will define the next great search
experience.

To accomplish this, we need to make progress on a number of fronts. First of
all, search engines need better ways to understand what content is, without hav-
ing to do extensive computation. The best solution for this is to utilize metadata
and the methods of the emerging semantic web.

Metadata reduces the need for computation in order to determine what con-
tent is about - it makes that information explicit and machine-understandable.
To the extent that machine-understandable metadata is added or generated for
the Web, it will become more precisely searchable and productive for searchers.

This applies especially to the area of the real-time Web, where, for example,
short ”tweets” of content contain very little context to support good natural-
language processing. In such cases, a little metadata can go a long way. In ad-
dition, of course, metadata makes a dramatic difference in search of the larger
non-real-time Web as well.

Beyond metadata, search engines need to modify their algorithms to be more
personalized. Instead of a ”one-size fits all” ranking for each query, the ranking
may differ for different people depending on their varying interests and search
histories.

Finally, to provide better search of the present, search has to become more
realtime. To this end, rankings need to be developed that surface not only what
just happened now, but what happened recently and is also trending upwards
and/or of note. Realtime search has to be more than merely listing search results
chronologically. There must be effective ways to filter the noise and surface what’s
most important effectively. Social graph analysis is a key tool for doing this, but
in addition, powerful statistical analysis and new visualizations may also be
required to make a compelling experience.

The pace at which Semantic technology is finally developing makes the shift
into the third generation of Web search now realizable. Tools operating within
the new paradigm of present (Oneriot, Topsy, Twitter), personalized (My6Sense,
Siri, Twine), and precise (Bing/Powerset, Hakia, WolframAlpha) are already
leading the way in expanding conceptions of how search can function. Search 3.0
will bring a breakthrough in the Semantic indexing of the entire Web, allowing
vertical search to be taken to its ultimate conclusion.

Author Index

Alani, Harith 698
Alferes, José Júlio 1
Alowisheq, Areeb 941
Ambite, José Luis 17
Anicic, Darko 893
Antoniou, Grigoris 666
Anyanwu, Kemafor 715
Auer, Sören 731
Averbakh, Anna 33

Baader, Franz 49
Barrat, Alain 698
Berners-Lee, Tim 553
Betteridge, Justin 998
Bizer, Christian 293, 650
Blomqvist, Eva 65
Böhm, Christoph 81
Bröcheler, Matthias 97
Breslin, John G. 747
Bron, Marc 424
Buffa, Michel 180

Cao, Feng 876
Cardillo, Elena 949
Carlson, Andrew 998
Cattuto, Ciro 698
Choudhury, Smitashree 747
Christophides, Vassilis 196, 473
Ciravegna, Fabio 505
Clark, Tim 763
Corby, Olivier 180
Corlosquet, Stéphane 763
Correndo, Gianluca 698

Dadzie, Aba-Sah 505
Darbha, Sirish 17
Darlington, John 925
Decker, Stefan 277, 456, 763, 827
Delbru, Renaud 763
Denker, Grit 795
de Rijke, Maarten 424
Di Francescomarino, Chiara 114
Dobree, James 925
Dolby, Julian 779
Doran, Paul 130

Drăgan, Laura 827
Du, Jianfeng 146, 163

Elenius, Daniel 795
Erétéo, Guillaume 180

Flouris, Giorgos 196, 473
Fokoue, Achille 408, 779
Ford, Reginald 795
Franz, Thomas 213
Freytag, Johann-Christoph 293
Fundulaki, Irini 196, 473

Gaber, Mohamed Methat 618
Gaedke, Martin 650
Gandon, Fabien 180
Gašević, Dragan 860
Ghazvinian, Amir 229
Ghidini, Chiara 114
Gibbins, Nicholas 925
Goel, Aman 17
Golbeck, Jennifer 344
Groener, Gerd 243
Gronski, Jessica 957
Grosvenor, Dave 811
Groth, Philip 81
Groza, Tudor 827
Gruhl, Daniel 260

Haase, Peter 521
Handschuh, Siegfried 827
Harth, Andreas 277
Hartig, Olaf 293
Heflin, Jeff 909
Hellmann, Sebastian 731
Hendler, James A. 682
Hillman, Donald 909
Hollink, Laura 424
Horrocks, Ian 489, 569
Hruschka, Estevam 998
Huurnink, Bouke 424

Ianni, Giovambattista 310
Imtiaz, SM Hazzaz 925
Isaac, Antoine 843
Isberner, Malte 392

1006 Author Index

Jeremić, Zoran 860
Ji, Qiu 163, 521
Jonquet, Clement 229
Jovanović, Jelena 860

Kagal, Lalana 553
Kalyanpur, Aditya 408, 779
Kaneiwa, Ken 328
Kanellos, Nick 876
Kinsella, Sheila 277
Knechtel, Martin 49
Knoblock, Craig A. 17
Knorr, Matthias 1
Kobilarov, Georgi 650
Kotoulas, Spyros 634
Kotzinos, Dimitris 473
Kramer, Dirk 843
Krause, Daniel 33
Krennwallner, Thomas 310
Krishnaswamy, Shonali 618
Kubczak, Christian 392
Kuter, Ugur 344

Langegger, Andreas 359
Lécué, Freddy 375
Lehmann, Jens 731
Lerman, Kristina 17
Leser, Ulf 81
Li, Hanyu 408, 585
Li, Juanzi 585
Liu, Shengping 408
Luczak-Rösch, Markus 965

Ma, Jun 893
Ma, Li 876
Margaria, Tiziana 392
Martello, Alessandra 310
Martin, David 795
Mazumdar, Suvodeep 505
McIlraith, Sheila A. 601
Mei, Jing 408
Meij, Edgar 424, 441
Meyer, Daniel 392
Mika, Peter 441
Millard, David E. 941
Mitchell, Tom M. 998
Motik, Boris 489
Musen, Mark A. 229

Nagarajan, Meena 260
Nguyen, Philip H.P. 328
Ni, Yuan 408
Nováček, Vı́t 456
Noy, Natalya F. 229

Oren, Eyal 634

Palmisano, Ignazio 130
Pan, Jeff Z. 146, 666
Pan, Yue 408, 876
Papavassiliou, Vicky 473
Parundekar, Rahul 17
Passant, Alexandre 747
Paulheim, Heiko 973
Payne, Terry 130
Pediaditis, Panagiotis 196
Peñaloza, Rafael 49
Pérez-Urbina, Héctor 489
Petrelli, Daniela 505
Pieper, Jan 260
Polleres, Axel 310, 763
Pugliese, Andrea 97

Qi, Guilin 146, 163, 521

Ravindra, Padmashree 715
Robson, Christine 260
Rospocher, Marco 114
Russ, Thomas 17

Salvadores, Manuel 925
Schandl, Bernhard 537
Schlobach, Stefan 843
Schmidt, Kay-Uwe 893
Schonberg, Edith 779
Schultz, Antje 213
Seaborne, Andy 811
Sen, Sinan 893
Seneviratne, Oshani 553
Serafini, Luciano 114
Setio, Basuki 909
Shadbolt, Nigel R. 925
Shah, Nigam 229
Shearer, Rob 569
Shen, Yi-Dong 146
Sheth, Amit 260
Shi, Feng 585
Sizov, Sergej 213
Skoutas, Dimitrios 33
Sohrabi, Shirin 601

Author Index 1007

Speiser, Sebastian 982
Spivack, Nova 1003
Sridhar, Radhika 715
Srinivas, Kavitha 779
Staab, Steffen 213, 243
Stapel, Johan 843
Steffen, Bernhard 392
Steller, Luke Albert 618
Stojanovic, Nenad 893
Stühmer, Roland 893
Subrahmanian, V.S. 97
Sun, Xingzhi 876
Swift, Terrance 1
Szomszor, Martin 698

Tamma, Valentina 130
Tang, Jie 585
Theoharis, Yannis 196
Tiropanis, Thanassis 941
Tonella, Paolo 114
Topor, Rodney 666

Urbani, Jacopo 634

Van den Broeck, Wouter 698
van der Meij, Lourens 843
van Harmelen, Frank 634
Volz, Julius 650

Wang, Chen 876
Wang, Kewen 666
Wang, Richard 998
Wang, Shenghui 843
Wang, Xiaoyuan 876
Wang, Zhe 666
Weaver, Jesse 682
Wolf, Eric B. 990
Wolfson, Dan 876
Wöß, Wolfram 359

Xie, Guotong 408, 585

Yu, Yang 909

Zaragoza, Hugo 441
Zuo, Landong 925

	Title Page
	Preface
	Organization
	Table of Contents
	Research Track
	Queries to Hybrid MKNF Knowledge Bases through Oracular Tabling
	Introduction
	Preliminaries
	Syntax of Hybrid MKNF Knowledge Bases
	Well-Founded Semantics of Hybrid MKNF Knowledge Bases

	Alternative Computation of $MKNF_{WFS}$
	Tabled SLG($\mathcal O$)-Resolution for Hybrid MKNF
	Properties
	Discussion and Conclusions
	References

	Automatically Constructing Semantic Web Services from Online Sources
	Introduction
	Prior Work
	End-to-End Discovery, Extraction, and Modeling
	Source Discovery
	Source Invocation and Extraction
	Semantic Typing of Sources
	Source Modeling

	Automatically Building Semantic Web Services
	Results on Discovering and Modeling New Services
	Related Work
	Conclusion
	References

	Exploiting User Feedback to Improve Semantic Web Service Discovery
	Introduction
	Related Work
	Architecture
	Service Matchmaking
	Incorporating User Feedback
	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions
	References

	A Generic Approach for Large-Scale Ontological Reasoning in the Presence of Access Restrictions to the Ontology’s Axioms
	Introduction
	Basic Definitions and Results
	Computing a Boundary
	Using Full Axiom Pinpointing
	Label-Optimized Axiom Pinpointing
	Binary Search for Linear Ordering

	Empirical Evaluation
	Test Data and Test Environment
	Results

	Conclusion
	References

	OntoCase-Automatic Ontology Enrichment Based on Ontology Design Patterns
	Introduction
	Ontology Learning
	Content Ontology Design Patterns

	Related Work
	OntoCase - Retrieve and Reuse
	Assumptions and Input
	Example Scenario
	Pattern Ranking
	Pattern-Based Enrichment
	Implementation

	Evaluation
	Evaluation Setup
	The SEMCO Requirements Engineering Ontology
	The JIBSNet Information Structure Ontology
	The FAO Agricultural Ontology
	Result Summary

	Conclusions and Future Work
	References

	Graph-Based Ontology Construction from Heterogenous Evidences
	Introduction
	Related Work
	Concept Occurrences and Relationship Extraction
	Concept Occurrences
	Relationship Extraction

	Graph-Based Ontology Extraction
	The Problem
	Greedy Edge Inclusion (GEI)
	Strong Node Sets
	Hierarchical Greedy Expansion (HGE)
	Weighted Dominating Set Problem (wDSP)

	Evaluation
	Discussion
	References

	DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases
	Introduction
	Preliminaries
	The DOGMA Index
	Algorithms for Processing Graph Queries
	The DOGMA_basic Query Processing Algorithm
	The DOGMA_adv Algorithm
	DOGMA_ipd
	DOGMA_epd

	Experimental Results
	Related Work
	Conclusions and Future Work
	References

	Semantically-Aided Business Process Modeling
	Introduction
	A Motivating Example
	Representing Semantically Annotated Processes
	Specifying Structural Requirements
	Merging Axioms
	Process Specific Constraints

	Checking Constraints as a Satisfiability Problem
	Automatically Encoding a BPD into an Abox
	An Experimental Evaluation

	Related Work
	Conclusions
	References

	Task Oriented Evaluation of Module Extraction Techniques
	Introduction
	Ontology Modularization
	Traversal Based Extraction
	Logical Based Extraction
	Evaluation of Ontology Modularization Approaches

	Evaluation
	Evaluation Setup
	Monotonicity in DL and False Negatives
	Discussion

	Conclusions
	References

	A Decomposition-Based Approach to Optimizing Conjunctive Query Answering in OWL DL
	Introduction
	Preliminaries
	The Proposed Decomposition-Based Approach
	The Basic Idea of the Proposed Approach
	Translating to First-Order Logic
	Approximate Grounding of the First-Order Logic Program
	Computing All Answers with the Help of the Grounding
	Optimization by Computing More ABox Entailments

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	References

	Goal-Directed Module Extraction for Explaining OWL DL Entailments
	Introduction
	Related Work
	Preliminaries
	Goal-Directed Module Extraction
	Compiling a Diagnosing Program
	Exact Grounding of the Diagnosing Program
	Extracting a Justification-Preserving Module
	Approximate Grounding of the Diagnosing Program

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	References

	Analysis of a Real Online Social Network Using Semantic Web Frameworks
	Introduction
	Semantic Social Network Analysis
	A New Version of SemSNA: The Ontology of Social Network Analysis
	Extract SNA Concepts with SPARQL

	Linking Online Interaction Data to the Semantic Web
	SemSNI: Extending SIOC to Model Social Networking Interactions
	Generating RDF from a Relational Database with Corese

	Results
	Conclusion
	References

	Coloring RDF Triples to Capture Provenance
	Introduction
	Motivating Example
	Preliminaries
	Provenance for RDF/S Data
	Inference
	Redundancy Elimination

	Querying and Updating RDF Datasets
	Querying RDF Datasets
	Updating RDF Datasets
	Complexity Analysis

	Related Work
	Conclusion
	References

	TripleRank: Ranking Semantic Web Data by Tensor Decomposition
	Introduction
	Related Work
	Rating Web Pages
	Rating (Semi-)Structured Data

	TripleRank: The Semantic Web as Tensor
	The TripleRank Model
	PARAFAC for Authority Ranking
	Ranking Example

	Implementation
	Data Collection and Transformation
	Pre-processing
	Analysis

	Evaluation
	Data Sets
	Performance
	User Evaluation: Faceted Browsing
	Baseline Method
	TripleRank Method
	Results
	Lessons Learned: TripleRank Advantages

	Conclusion and Future Work
	References

	What Four Million Mappings Can Tell You about Two Hundred Ontologies
	Why Create the Mappings?
	Materials and Methods: What's in a Link?
	The NCBO Ontology Set
	Creating Lexical Mappings between Concepts
	Identifying Links between Ontologies

	Results
	How Many Links Do Ontologies Have?
	Hubs and Clusters
	How Similar Are the Ontologies?

	Discussion and Analysis
	Conclusions, Limitations, and Future Work
	References

	Modeling and Query Patterns for Process Retrieval in OWL
	Introduction
	Process Retrieval Problems
	An Example Process Model as UML Activity Diagram
	Requesting Process Descriptions
	Requirements for Process Modeling

	Process Modeling in OWL
	Design Principles and Transformation
	Process Transformation to OWL
	Relations between Processes

	Semantic Query Patterns for Process Retrieval
	Evaluation
	Related Work
	Conclusion
	References

	Context and Domain Knowledge Enhanced Entity Spotting in Informal Text
	Introduction
	Challenging Features of the Music Domain
	Our Approach and Contributions

	Related Work
	Named Entity Recognition and Use of Domain Knowledge
	Named Entity Recognition in Informal English

	Restricted Entity Extraction
	Ground Truth Data Set
	Impact of Domain Restrictions

	Real World Constraints
	NLP Assist
	Features
	Data and Experiments
	Usefulness of Feature Combinations

	Improving Spotter Accuracy Using NLP Analysis
	Conclusion and Future Work
	Future Work

	References

	Using Naming Authority to Rank Data and Ontologies for Web Search
	Introduction
	Motivating Example
	Method Overview
	Data Model
	Requirements
	Algorithm Outline

	Naming Authority
	Naming Authority for URIs
	Deriving the Naming Authority Matrix
	Pay-Level Domains
	Internal vs. External Links

	Calculating Ranks
	Calculating Source Ranks
	Calculating Identifier Ranks

	Experiments and Evaluation
	Datasets
	Evaluation Variants
	Performance Evaluation
	Scale-Up Experiment
	Quality Evaluation

	Related Work
	Conclusion
	References

	Executing SPARQL Queries over the Web of Linked Data
	Introduction
	Overview of the Query Execution Approach
	Pipelining-Based Basic Graph Pattern Matching
	Solutions in SPARQL Query Execution
	An Algorithm to Evaluate Basic Graph Patterns
	A Formalization of Iterator-Based Pipelining

	Evaluating Basic Graph Patterns over the Web
	Non-blocking Iterators
	Evaluation
	Real-World Examples
	The Impact of URI Prefetching and Non-blocking Iterators

	Related work
	Conclusion
	References

	Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
	Introduction
	SPARQL and Some Motivating Examples
	A Framework for Using Ontologies and Rules in SPARQL
	SPARQL with Extended Datasets
	SPARQL with Arbitrary Rulesets

	Translating SPARQL into Datalog and SQL
	Experiments
	Future Work and Conclusion
	References

	Decidable Order-Sorted Logic Programming for Ontologies and Rules with Argument Restructuring
	Introduction
	Motivating Examples
	Order-Sorted Logic with Meta-predicates
	Horn-Clause Calculus for Predicate Hierarchies
	Query System
	Derivation Using Argument Restructuring
	Conclusions
	References

	Semantic Web Service Composition in Social Environments
	Motivations
	Overview
	A Feature Taxonomy for the Behavioral Characteristics of Web Services
	Social Trust
	Computing Trust between Users
	Semantic Web Services, User Ratings and Trust

	Web Service Composition with Social Trust
	Discussion

	Experiments
	Related Work
	Conclusions and Future Work
	References

	XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL
	Introduction
	Background
	Information Representation in Spreadsheets
	Definition of Spreadsheet Applications
	Dumping versus On-the-Fly Processing of SPARQL Queries

	Related Work
	XLWrap Mapping Formalism
	XLWrap Mappings
	Example Mapping

	Transformation Process
	Conclusion
	References

	Optimizing QoS-Aware Semantic Web Service Composition
	Introduction
	Background
	Semantic Links between Web Services
	Common Description of a Semantic Link
	Modelling Web Service Composition

	Quality Model
	Quality of Semantic Link
	QoS-Extended Quality of Semantic Link
	Quality of Composition

	A Genetic Algorithm Based Optimization
	GA Parameters for Optimizing Composition
	GA for Optimizing Composition in a Nutshell

	Experimental Results
	Context of Experimentation
	Benefits of Combining QoS and Functional Criteria
	Evolution of the Composition Quality
	Towards Large Scale Based Compositions
	Decoupling GA Process and DL Reasoning
	Convergence of GA-Based Approaches

	Related Work
	Conclusion
	References

	Synthesizing Semantic Web Service Compositions with jMosel and Golog
	Introduction
	Our Modeling Framework
	Modeling Domain Knowledge with Taxonomies
	Dataflow Facts as Semantic Preconditions/Effects
	Expressing Behavioral Knowledge

	Solving the Mediation with M2L(Str) in jMosel
	jMosel, M2L and SLTL
	Mediator Synthesis

	The Situation Calculus Solution with Golog
	Intuitive Ontology of the Situation Calculus and Golog
	`Loose' Golog: The :-Operator

	Conclusion and Perspectives
	References

	A Practical Approach for Scalable Conjunctive Query Answering on Acyclic $\mathcal {EL}^+$ Knowledge Base
	Introduction
	Preliminaries
	\mathcal{EL}^+ and \mathcal{EL} Family
	Conjunctive Query Answering

	ABox Completion
	ABox Completion Rules
	ABox Completion Implementation

	Query Answering
	The Running Example
	Reverse Trees in Query
	Base Paths in ABox Completion
	Query Rewriting
	Optimization

	Preliminary Experiments
	Related Work
	Conclusion
	References

	Learning Semantic Query Suggestions
	Introduction
	Related Work
	The Task
	Approach
	Ranking Concepts
	Learning to Rerank Concepts
	Features Used

	Experimental Setup
	Data
	Training Data
	Parameters
	Testing and Evaluation

	Results
	Baseline
	N-gram Based Reranking
	Feature Selection

	Conclusion and Future Work
	References

	Investigating the Semantic Gap through Query Log Analysis
	Introduction
	Related Work
	TheDataGap
	Methodology
	The Role of Popular Sites
	The Influence of the Query Category

	The Vocabulary Gap
	Extraction Methods
	Evaluation of Type-Based Context Prediction
	Qualitative Analysis

	Conclusion and Future Work
	References

	Towards Lightweight and Robust Large Scale Emergent Knowledge Processing
	Introduction
	General Framework
	Entities and Their Grounding
	Knowledge Bases, Aggregation and Query Answering

	Particular Implementation and Deployment
	Relational Storage of Knowledge Bases
	Aggregating and Accessing the Emergent Knowledge

	Evaluation with Sample Users
	Related Work
	Conclusions and Future Work
	References

	On Detecting High-Level Changes in RDF/S KBs
	Introduction
	Motivating Example
	Change Detection Framework, Language and Algorithm
	Formal Definitions
	Formal Results on the Proposed Language of Changes
	Change Detection Algorithm

	Operations Based on Heuristics
	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References

	Efficient Query Answering for OWL 2
	Introduction
	Ontology-Based Data Access via Query Rewriting
	Query Rewriting Algorithms
	CGLLR
	RQR
	Differences
	Optimizations

	Evaluation
	Test Ontologies and Queries
	Results

	Future Work
	References

	Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data
	Introduction
	Related Work
	A User-Interaction Framework for Semantic Data Exploration
	Knowledge Visualization and Manipulation
	Implementation
	User Evaluation
	Setup and Procedure
	Analysis and Results
	Discussion

	Conclusions and Future Work
	References

	A Conflict-Based Operator for Mapping Revision
	Introduction
	Preliminaries
	A Conflict-Based Mapping Revision Operator
	An Algorithm for Mapping Revision
	Algorithm
	Concrete Revision Operators

	Experimental Evaluation
	Data Sets
	Evaluation Results

	Conclusion and Discussion
	References

	Functions over RDF Language Elements
	Introduction
	RDFunctions
	Tripcel: Applying RDFunctions in Spreadsheets
	The Tripcel Formula Syntax
	Implementation

	Evaluation
	Related Work
	Conclusions and Further Research Directions
	References

	Policy-Aware Content Reuse on theWeb
	Introduction
	Background
	Inline Provenance Using Metadata
	Policies for Rights Enforcement on the Web

	Motivation
	Experiment Setup
	Results
	Issues and Limitations of the Experiment

	Tools to Enable Policy Awareness
	Attribution License Violations Validator for Flickr Images
	Semantic Clipboard

	Related Work
	Future Work
	Conclusion
	References

	Exploiting Partial Information in Taxonomy Construction
	Introduction
	Overview
	Deducing a Quasi-Ordering
	Maximizing Partial Information
	Taxonomy Construction and Searching
	Example

	Extracting Subsumption Information from Models
	Identifying Non-subsumptions
	Identifying Subsumptions

	Related Work
	Empirical Evaluation
	Discussion and Future Work
	References

	Actively Learning Ontology Matching via UserInteraction
	Introduction
	Problem Formulation
	An Active Learning Framework for Ontology Matching
	Match Selection and Correct Propagation
	Threshold Selection with User Feedback
	Candidate Match Selection
	Correct Propagation

	Experiments
	Experiment Setup, Data, and Evaluation Methodology
	Threshold Selection
	Measurements of Error Match Selection
	Correct Propagation
	Summary

	Related Work
	Ontology Matching
	Active Learning

	Conclusion and Future Work
	References

	Optimizing Web Service Composition While Enforcing Regulations
	Introduction
	Preliminaries
	OWL-S
	HTN Planning
	From OWL-S to HTN

	WSC with Preferences
	Specifying Preferences in Our PDDL3 Extension
	Service Selection Preferences

	Regulation-Based Composition
	Computing Preferred WSC Adhering to Regulations
	Implementation and Evaluation
	Summary and Related Work
	References

	A Weighted Approach to Partial Matching for Mobile Reasoning
	Introduction
	Related Work
	Tableaux Reasoning
	Weighted Adaptive Reasoning
	Weighted Expansion Tree Traversal
	Branch Identifiers and State Management
	Degree of Match and Match Confidence

	Implementation and Evaluation
	Case Study
	Implementation
	Evaluation

	Conclusion
	References

	Scalable Distributed Reasoning Using MapReduce
	Introduction
	Related Work
	What Is the MapReduce Framework?
	Naive RDFS Reasoning with MapReduce
	Encoding an Example RDFS Rule in MapReduce
	Complete RDFS Reasoning: The Need for Fixpoint Iteration

	Efficient RDFS Reasoning with MapReduce
	Loading Schema Triples in Memory
	Data Grouping to Avoid Duplicates
	Ordering the Application of the RDFS Rules
	The Complete Picture

	Experimental Results
	Results for RDFS Reasoning
	Results for OWL Reasoning
	Discussion

	Conclusion
	References

	Discovering and Maintaining Links on the Web of Data
	Introduction
	Link Specification Language
	Data Access
	Link Conditions
	Silk Selector Language
	Pre-matching

	Evaluating Links
	Resource Comparison
	Evaluation against a Reference Linkset
	Improving the DBpedia/DrugBank Link Specification

	Web of Data – Link Maintenance Protocol
	Link Transfer to Target
	Request of Target Change List
	Subscription of Target Changes

	Implementation
	Related Work
	Conclusion
	References

	Concept and Role Forgetting in \mathcal{ALC} Ontologies
	Introduction
	Description Logic \mathcal{ALC}
	Forgetting in \mathcal{ALC} Ontologies
	Forgetting in \mathcal{ALC} Concept Descriptions
	Approximate Forgetting in \mathcal{ALC} Ontologies
	Conclusion
	References

	Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples
	Introduction
	Related Work
	Our Approach to Parallel RDFS Reasoning
	Workload Partitioning
	Parallel File I/O for RDF Data
	Distributed Blank Nodes

	Implementation
	Evaluation
	Performance
	Inferences Produced

	Future Work
	Conclusion
	References

	Semantic Web In Use
	Live Social Semantics
	Introduction
	Related Work
	Live Social Semantics Application
	General Architecture
	Semantically Interlinked Personal Data
	Real-Time Social Contacts
	Profiles of Interest
	Visualisation
	Privacy

	Results
	Participation
	Social Networking Accounts
	Social Profiles-of-Interest Results
	RFID Results
	Privacy Results

	Discussion and Future Work
	Conclusions
	References

	RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web
	Introduction
	Preliminaries
	MD-Join and Analytical Querying
	Data Processing in Map-Reduce Framework

	The RAPID Language
	Primitives for Basic Manipulation of RDF Graphs in RAPID
	Primitives for Analytical Processing

	Experiments and Results
	Datasets and Results

	Conclusion
	References

	LinkedGeoData: Adding a Spatial Dimension to the Web of Data
	Introduction
	The OpenStreetMap Project
	Transforming OSM into RDF Data Model
	Publishing LinkedGeoData
	Establishing Mappings with Existing Datasources
	Faceted LinkedGeoData Browser and Editor
	Conclusions, Related and Future Work
	Conclusions
	Related Work
	Future Work

	References

	Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud
	Introduction
	Related Tag Studies
	Tag Suggestion
	Tag Ranking
	Tag Semantics

	System Architecture
	Context Analysis and Tag Expansion
	Semantic Tag Space Enrichment
	Tag Ranking
	Linked Data Creation
	Tags-to-Concept Mapping

	Experiments and Evaluation
	Results
	Semantic Tag-Based Search and Retrieval
	Improved Video Categorisation

	Conclusions
	References

	Produce and Consume Linked Data with Drupal!
	Introduction
	Related Works
	Drupal: A Popular CMS
	Motivating Example: The Project Blogs Site

	Publishing and Consuming Linked Data with a CMS
	Implementation
	RDF CCK: From Content Models to Site Vocabularies
	Exposing and Consuming Linked Data in Drupal with SPARQL

	Adoption and Deployment
	Usability
	Adoption
	Motivation and Benefits - The SCF Use Case

	Conclusions and Outlook
	References

	Extracting Enterprise Vocabularies Using Linked Open Data
	Introduction
	Vocabulary Extraction
	Term Population
	Domain-Specific Seed Terms
	Domain-Specific Types
	Filtered Terms and Types and Discussion of Initial Results

	Improving Coverage of LOD
	Adding Type Information from Linking
	Type Inference
	Evaluating Type Inferences
	Results with Improved LOD

	Improving Coverage Using Statistical NER
	Evaluation of Our NER Model
	Results with NER Model

	Discussion
	Related Work and Conclusions
	References

	Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL
	Introduction
	Ontologies
	Tasks and Task Plans
	Task Ontology
	Semantics of Tasks
	Task Plans
	Semantics of Task Plans
	Constraints
	Configuration Artifacts

	Benefits and Limitations of SWRL
	Defining Constraints
	Defining Configuration Artifacts
	Ontology Mapping
	Reasoning about Units

	Implementation
	Task Engine
	Protégé Plug-In

	Related Work
	Conclusions
	References

	Using Hybrid Search and Query for E-discovery Identification
	Introduction
	E-discovery
	Identification
	Related Work

	Our Approach to Hybrid Search and Query
	Motivation
	SPARQL
	Property Functions
	Free Text Searches

	Data Sources
	An E-discovery Example
	Finding Relevant Products
	Expanding the Set of Products
	Finding Relevant People
	Expanding the Set of People
	Expanding a Topic to Generate Related Topics
	Corroboration

	Conclusions
	References

	Bridging the Gap between Linked Data and the Semantic Desktop
	Introduction
	Scenario
	Implementation
	Extraction
	Expansion
	Integration

	Preliminary Evaluation
	Related Work
	Conclusion and Future Developments
	References

	Vocabulary Matching for Book Indexing Suggestion in Linked Libraries – A Prototype Implementation and Evaluation
	Introduction
	Book Re-indexing at the KB
	Existing Work on Assisting Document Description
	The Need for Re-indexing at KB
	Re-indexing Requirements

	Prototype Design
	General Description
	User Interface
	Architecture
	Brinkman Subject Suggestion Rules

	User Study
	Aim and Settings
	Suggestion Performance
	User Feedback

	Conclusion
	References
	Appendix

	Semantic Web Technologies for the Integration of Learning Tools and Context-Aware Educational Services
	Introduction
	Scenario of Use
	The DEPTHS Learning Environment
	The Ontological Foundation of DEPTHS
	The Architecture of DEPTHS
	Educational Services in DEPTHS
	DEPTHS Implementation

	Evaluation
	Related Work
	Conclusions
	References

	Semantic Enhancement for Enterprise Data Management
	Introduction
	Semantic Query and Analysis for Customer Data Management
	System Implementation
	Architecture
	Ontology and Mapping Building
	SPARQL Query Evaluation
	Reasoning in CDM

	Experimental Results
	Conclusions
	References

	Lifting Events in RDF from Interactions with Annotated Web Pages
	Introduction
	Event Generation and Processing from Semantic Web Pages
	Event Generation
	Complex Event Processing

	JSON-Rules: A Client-Side Rule Language
	RDFS
	RDFa
	Implementation: Client-Side Event-Enabled Rule Engine
	Evaluation
	Performance
	Ad Quality

	Related Work
	Conclusion
	References

	A Case Study in Integrating Multiple E-commerce Standards via Semantic Web Technology
	Introduction
	Background
	Approach
	Ontology Construction
	Naming Convention
	FCS Ontology
	eOTD Ontology
	External Ontologies

	Ontology Mapping
	Enriching the eOTD
	Semantic Discovery and Bridging
	Reasoning and Validation

	Implementation
	Conclusion and Future Work
	References

	Supporting Multi-view User Ontology to Understand Company Value Chains
	Introduction
	Related Work
	Background
	Application Architecture
	Underlying Data
	Company Backbone
	Ontology-Driven Web Extraction
	Semantic Integration for Companies
	Data Storage and Query

	Ontology Engineering of Layered Model
	Total Market Ontology
	User-View Ontology
	Common Ontology and Project Ontology
	Filtering Rules to Map User-View and Total Market Ontology

	Data Annotation via Rule-Based Reasoning
	Value-Chain Execution over Project View
	Conclusion and Future Work
	References

	Doctoral Consortium
	EXPRESS: EXPressing REstful Semantic Services Using Domain Ontologies
	Introduction
	Approaches to Semantic Web Services
	Semantically Enhancing Web Services Approaches
	Semantic Resources Based Approaches

	EXPRESS
	A RESTful Semantic S3 Service

	Comparison to SA-REST and WSMO
	Conclusions and Future Work
	References

	A Lexical-Ontological Resource for Consumer Heathcare
	Introduction
	State of the Art
	Medical Terminologies and Ontologies
	Consumer-Oriented Medical Vocabularies

	Research Objectives and Directions
	The Problem Statement
	The Objectives
	Approach

	What Has Been Done So Far
	Knowledge Acquisition Task
	OWL Encoding of Medical Classification Systems

	Concluding Remarks and Future Works
	References

	Semantic Web for Search
	Introduction
	Search Using Semantic Web Data
	Boolean Models
	Vector Space Models
	Link-Based Models
	Experimental Evaluation in Semantic Web Search

	Experiment Setup
	TREC Blog Track: Documents, Queries and Judgments
	Semantic Web Data Creation
	TREC Baseline

	Proposed Learned Representation Approach
	Future Work
	Derivative of Loss Function

	Towards Agile Ontology Maintenance
	Introduction
	Motivation, Problem Statement and Related Work
	A Running Example
	Related Work

	Contributions
	Research Methodology and Aimed Evaluation
	Initial Results, Outlook and Conclusions
	References

	Ontologies for User Interface Integration
	Introduction
	State of the Art
	Roadmap
	Prototype
	Further Research Plan

	Conclusion
	References

	Semantic Usage Policies for Web Services
	Introduction
	Related Work
	Planned Contribution
	Work Plan
	Conclusions
	References

	Ontology-Driven Generalization of Cartographic Representations by Aggregation and Dimensional Collapse
	Problem Statement
	Generalization of Cartographic Representations
	Ontologies for Cartographic Generalization

	Research Questions
	Workplan
	Summary
	References

	Invited Talks
	Populating the Semantic Web by Macro-reading Internet Text
	The Problem
	The ReadTheWeb System
	Conclusions
	References

	Search 3.0: Present, Personal, Precise

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

