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Preface

The ICANNGA series of conferences has been organized since 1993 and has a
long history of promoting the principles and understanding of computational
intelligence paradigms within the scientific community. Originally ICANNGA
stood for “International Conference on Artificial Neural Networks and Genetic
Algorithms,” but in 2005 the conference was renamed to “International Con-
ference on Adaptive and Natural Computing Algorithms,” while keeping the
acronym ICANNGA. The first ICANNGA conference was held in Innsbruck Aus-
tria (1993), then Alés in France (1995), Norwich in the UK (1997), Portoroz in
Slovenia (1999), Prague in the Czech Republic (2001), Roanne in France (2003),
Coimbra in Portugal (2005) and Warsaw in Poland (2007). Continuing this Euro-
pean tradition, the 9th ICANNGA was held in Kuopio, Finland (2009). The vast
majority of ICANNGA conferences is organized by and based at a university.

Drawing on the experience of previous events and following the same gen-
eral model, ICANNGA 2009 combined plenary lectures and technical sessions.
Apart from being a widely recognized conference, it enhanced the possibility to
exchange opinions through lectures and discussions, provided a great opportu-
nity to meet new colleagues, as well as to renew old friendships and to facilitate
the possibilities for international collaborations. As previously, the conference
proceedings are published in the Springer LNCS series.

The size of the ICANNGA conference has varied as has the popularity of
different topics over the years. This year we had a compact conference. There
were 112 papers submitted, which went through a peer-review process by at least
two reviewers. Out of these papers 63 were presented. We are confident that it is
an optimal number of papers sustaining the high quality of the ICANNGA con-
ference and supporting the publication standard of Springers LNCS. The most
popular topics were: neural networks (18), evolutionary computation (15) and
learning (13). From these papers about 50% could be classified as applications,
and that actually also holds for the submitted papers.

The ICANNGA 2009 plenary lectures were focused on biological and human
phenomena. They were presented by distinguished scientists: adaptive model-
ing of linguistics and social phenomena (Timo Honkela), artificial and cultured
neural networks (Kevin Warwick), digital media (Lars Kai Hansen) and systems
biology (David Broomhead).

Besides the scientific program, we had the pleasure to organize social events
that mirrored the roots of ICANNGA and the local culture. The organizing team
was especially happy with the way the conference participants took part in the
traditional Finnish events.

All those people who made this conference possible deserve our gratitude. The
members of the Organizing Committee worked one and a half years to create this
conference edition: Mikko Kolehmainen, Pekka Toivanen, Yrjö Hiltunen, Erkki



VI Preface

Pesonen, Niina Päivinen and Mauno Rönkkö. Especially, we would like to thank
our Conference Secretary Karin Koivisto for her tremendous work. Our techni-
cal team kept the wheels rolling during the conference and it consisted of the
following persons: Teemu Räsänen, Harri Niska, Jukka-Pekka Skön, Jarkko Ti-
irikainen, Juha Parviainen, Taneli Laavola, Okko Kauhanen, and Marko Jäntti.

We would like to thank the Advisory Committee for giving us this unique
opportunity to organize the ICANNGA conference and their continuous support.
We are grateful to the Program Committee and reviewers of the conference for
their substantial work in refereeing the papers.

We also wish to thank our publisher, especially Alfred Hofmann, Editor-in
Chief of LNCS, and Anna Kramer for their support and collaboration.

On behalf of the Organizing Committee we would like to thank all of you
who participated in ICANNGA 2009 and contributed to its success.

May 2009 Mikko Kolehmainen
Pekka Toivanen

Bartlomiej Beliczynski
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Amaury Lendasse, Finland
Joachim Marques de Sá, Portugal
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D. López-Rodŕıguez, and E.J. Palomo

Emission Analysis of a Fluidized Bed Boiler by Using Self-Organizing
Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Mika Liukkonen, Mikko Heikkinen, Eero Hälikkä,
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Automatic Discriminative Lossy Binary
Conversion of Redundant Real Training Data

Inputs for Simplifying an Input Data Space and
Data Representation

Adrian Horzyk

AGH University of Science and Technology, Department of Automatics
Mickiewicza Av. 30, 30-059 Cracow, Poland

horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk

Abstract. Many times we come across the need to simplify or reduce
an input data space in order to achieve a better model or better perfor-
mance of an artificial intelligence solution. The well known PCA, ICA
and rough sets can simplify and reduce input data space but they can-
not transform real input data vectors into binary ones. Binary training
vectors can simplify a training process of neural networks and let them
to construct more compact topologies. This paper introduces a new al-
gorithm that reduces input data space and simultaneously automatically
lossy transforms real input training data vectors into binary vectors so
that they do not lose their discrimination properties. The problem is how
to effectively transform real input training data vectors into binary vec-
tors so that an input data space could be simplified and the transformed
binary vectors would be enough representative to be able to discriminate
all training samples of all classes correctly? The described lossy conver-
sion makes possible to achieve better generalization results for various
soft-computing algorithms, can be widely used and avoids the curse of
dimensionality problem. This paper introduces a new Automatic Dis-
criminative Lossy Binary Conversion Algorithm (ADLBCA) that is able
to solve all these tasks. Generally, no other method can simultaneously
and so fast do all these tasks.

1 Introduction

The adaptation processes of various soft-computing algorithms, especially the
training process of neural networks, are usually preceded by certain transforma-
tions or conversions of training data (TD). It is convenient to simplify an input
data space by reducing dispensable inputs before a soft-computing model is cre-
ated and trained. Almost all soft-computing algorithms have some limitations on
input or output values that should be binarised, normalized or narrowed to cer-
tain specific ranges of values [1], [2], [3], [4], [6]. The quality of soft-computing
training results is also strongly influenced by a preprocessing method of TD.
Sometimes, real input vectors have to be converted to binary vectors in order
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to make data suitable for a soft-computing training method or to achieve better
generalization results. Moreover, an input data space should be reduced in order
to construct more compact neural network topologies faster or to achieve better
performance and generalization properties.

An input data space can be simplified using the well known PCA, ICA or
rough sets [5], [1], [7], [9]. These algorithms can simplify an input data space but
cannot perform any binary transformations on TD. Moreover, these methods
have the higher computational cost than the introduced ADLBCA. The real
input data vectors can be simply converted to binary vectors dividing input data
into certain smooth ranges of their real values using various density of ranges
as shown in figure 1. In this way, real inputs of each range are transformed
into a single binary feature. The problem is how to set up these ranges? What
size and density of ranges should be chosen (fig. 1)? The simple smooth ranges
can be established experimentally or using various soft-computing algorithms to
find out a more suitable set of ranges for some given input data. This solution
is very laborious and does not warrant discrimination of converted input data.
Another solution is to transform each real input value into a single binary input,
but this algorithm produces a huge number of binary inputs that will neither
provide a satisfactory generalization nor enable a NN construction algorithm
to create a compact NN topology. Furthermore, the unsuitable conversion can
spoil generalization properties and results of a later constructed neural network
or another soft-computing solution.

The described method has been inspired by the way human eyes process lumi-
nous input data into various frequencies of binary spikes that can be afterwards
processed by our central nervous system. The eye neuron dendrite projections
merge one another, so the same luminous information is usually transformed
and processed by more than a single neuron. Many eye neurons convert a wide
range of luminous input signals [2], [4], [8]. The similar transformation has been
used in the described method in this paper. Ranges of real inputs can merge
one another, i.e. they do not need to be disjunctive. A single lossy binarising
neuron can gather information from a wide range of input data values (fig. 3).
The lossy binarising ranges are selected in such a way that training samples
of all classes can be univocally discriminated only if TD are not contradictory.
Moreover, these ranges should be computed in such a way that their number can
be minimized, an input data space can be simplified and a generalization qual-
ity can be maximized. Many neural networks compete for better generalization
using various training strategies, neuron functions, numbers of layers, intercon-
nections and initiations of weight parameters. The generalization results depend
also on an input data space representation, e.g. the ranges of real input values
that neurons can cover and cost-effectively represent. The described algorithm
can make many known training processes much easier when the real training
input vectors are transformed into binary vectors that represent wide ranges of
real input ranges ([1], [2], [3], [6]).

This paper describes an Automatic Discriminative Lossy Binary Conversion
Algorithm (ADLBCA) dedicated to various classification tasks and
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Fig. 1. The comparison of the simple smooth and described ADLBCA transformations
of real input values into binary ones for the Iris data from the ML Repository

soft-computing methods which require or prefer binary input vectors. The men-
tioned thesis is illustrated by means of the Iris, Wine and Heart data from the
ML Repository. The Iris data set has been used to demonstrate (figs. 1, 4, 6)
how this method transforms and evaluates input data using a special algorithm
for a selection of input data ranges.

The presented algorithm cannot be easy compared with other algorithms be-
cause there is no other algorithm that is be able to automatically transform real
vectors into binary ones, simultaneously simplifying an input data space and
warrant discrimination of converted input data. A real input data dimension is
hardly comparable with a binary data dimension because these two data spaces
have a very different influence on a training process, a topology construction
and network elements, e.g. neuron functions. The binary input features have
been computed in order to simplify next computations that can be processed by
various soft-computing algorithms (tab. 1). On the other hand, simple smooth
binary transformations (fig. 1) usually produce many redundant input binary
features and cannot warrant discrimination after conversion. The usefulness and
performance of the ADLBCA are demonstrated and compared in conjunction
with the other soft-computing methods (tab. 1) that use binary input vectors
constructed by the ADLBCA instead of original ones.
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2 Automatic Discriminative Lossy Binary Conversion
Algorithm

The Automatic Discriminative Lossy Binary Conversion Algorithm (ADLBCA)
starts its lossy binary conversion from an input data analysis that takes into
consideration the following goals:

– the lossy binary conversion ranges should be wide in order to cover important
parts of an input data space sufficiently and to achieve good generalization,

– the number of lossy binary conversion ranges should be as minimal as possi-
ble in order to simplify or even reduce the binary input data space and the
computational cost of the classification method,

– the computed lossy binary conversion ranges should enable the training al-
gorithm to discriminate all training cases of all classes provided that TD are
not contradictory,

– a discriminative property of lossy binary conversion ranges should be esti-
mated using statistical analysis of training data,

– the computational and memory costs of the method should be low.

The main goal of this algorithm is to find a possibly minimal set of discrimi-
native lossy binary conversion ranges (DLBCRs) for all real data input features
and to convert the values vt from these ranges R = [Lt

m; P t
m] into the value

+1 and other values outside these ranges R = [Lt
m; P t

m] into the value 0 or −1
depending on the prefered coding: unipolar 1 or bipolar (2). Moreover, an ap-
propriate selection of these ranges can predifferentiate and prediscriminate some
training cases and help a following soft-computing algorithm ultimately to dis-
criminate them. Real input values from these ranges R can be transformed into
binary values using Lossy Binarizing Neurons (LBNs) (fig. 3) which compute
their outputs using equation (1) or (2). First, real data inputs have to be sorted
and indexed separately for each input feature. Figure 1 illustrates the sorted Iris
data after all input features. The heapsort algorithm should be used because its
computational cost is always O(nlogn). The stability of the sorting algorithm
does not matter for this method.

After all input data features are sorted, the algorithm starts to search for a
minimal set of DLBCRs taking into account the following criteria:

1. The selected range should contain as many cases of the same class and as
few cases of different classes as possible,

2. The ranges containing cases of a smaller number of classes are preferred. The
best discriminative ranges contain cases from a single class.

3. The ranges can contain training cases from other classes only if they are
discriminated by other ranges.

These criteria are important to satisfy the requirements mentioned at the
beginning of this paper, especially in view of good generalization properties. This
algorithm sorts TD after each feature value and indexes training data for all input
features separately and then looks for optimal ranges R in the following way:
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Sample 1 of Setosa

Differentiated from classes:

YES YES

Setosa Versicolor Virginica

Sample 2 of Setosa YES YES

Sample 3 of Setosa YES YES

Sample 50 of Setosa YES YES

Sample 1 of Versicolor YES YES

Sample 2 of Versicolor YES NO

Sample 3 of Versicolor YES

Sample 50 of Versicolor NO YES

Sample 1 of Virginica YES NO

Sample 2 of Virginica NO NO

Sample 3 of Virginica YES YES

Sample 50 of Virginica YES NO

...

...

...

...

...

...

Fig. 2. The exemplar tables of the discriminated classes for the Iris samples

1. First, all training cases are marked as indiscriminated for all classes except
the classes they represent.

2. Next, all yet indiscriminated data cases for all input features are looked
through in the sorted order and a range containing a maximal number of
training cases and the minimum number of classes are sought. Each range is
described by an input feature and its range of values.

3. All yet indiscriminated cases for which the range was chosen are marked as
discriminated for all classes which this range does not contain.

4. Next, all fully discriminated training cases for all input features are looked
through in order to remove their indexes from the sorted index tables (fig. 2).

5. Steps 2, 3 and 4 are repeated until all TD cases are discriminated from all
other classes (fig. 2) or there is no more range (that includes the indiscrimi-
nated training samples) to consider.

6. If not all training cases are discriminated and no more ranges can be used
to carry out their discrimination, all the atomic ranges are chosen for all
input features that contain indiscriminated training cases and are added
to the previously selected ranges in steps 2, 3 and 4. The atomic ranges
always contain a sequence of cases of a single class or they may represent
a few classes but the range is narrowed to a single value (fig. 1). If step 6
occurs it means that some training cases are contradictory or they can be
differentiated only by a combination of these ranges.
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3 The Neural Adaptation of the ADLBCA

The achieved discriminative lossy binary conversion ranges (DLBCRs) computed
for the real data input features by the ADLBCA can be easily transformed
into specific losy binary conversion neurons (LBNs) (fig. 3) that can be used
in various neural network applications. The created DLBCRs can be used to
construct a simple single layer lossy binary conversion neural network. Figures 4
and 5 illustrate the networks constructed for 12 DLBCRs computed for the Iris
data and for 7 DLBCRs computed for the Wine data from the ML Repository.

Figures 6-8 show that the ADLBCA can also automatically simplify and some-
times even reduce an input data space, e.g. for the Iris data, the real input feature
v1 has not been used to create the DLBCRs at all. The ADLBCA can automat-
ically find out and choose these real input data features ranges that provide a
cost-effective discrimination of samples of various classes.

The DLBCRs (e.g. fig. 4 for the Iris data, fig. 5 for the Wine data) can be
transformed into a binary values in various ways ((1) or (2)) dependent on an
application or a used soft-computing algorithm (figs. 6-8):

fLB
k (vr, R) =

{
1 Lk

m ≤ vr ≤ P k
m where R = [Lk

m; P k
m]

0 otherwise
(1)

fLB
k (vr , R) =

{
1 Lk

m ≤ vr ≤ P k
m where R = [Lk

m; P k
m]

−1 otherwise
(2)

Functions (1) and (2) together with the described ranges simplify the repre-
sentation of input data vectors but all training samples can be still correctly
discriminated. That is one of the most important feature of this algorithm. The
ADLBCA is partially similar to PCA, ICM, rough sets, fuzzy sets and even
lossy compression algorithms, e.g. jpeg. The acceptable level for ADLBCA is
established by the ability to univocally and correctly discriminate all training
samples. The lossy compression and simplification reduce minor and unimpor-
tant data values and input features transforming the important ones to binary
representation of them (figs. 4-5).

+1

0

+1

-1
(1) (2)

vr ukf k

LB

f k

LB
f k

LB

Fig. 3. The lossy binary conversion neuron (LBN) created for the real input feature
vr and for the binary conversion discrimination range R producing the binary output
feature uk. The unipolar (1) and bipolar (2) binary conversion functions.
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Fig. 4. The lossy binary conversion neural network and the base DLBCRs for the Iris
data where ur - the binary features, vk - the original real features

4 The ADLBCA Applications

The ADLBCA has been used to convert the Iris, Wine and Heart data input
vectors into the binary vectors (figs. 1, 4 and 5) and used for classification using
the selected soft-computing algorithms (tab. 1) [1], [3], [4], [6]. The ADLBCA has
been also included as a part of the methodology for a construction of the Self-
Optimizing Neural Networks 3 (SONN-3) and used to develop better optimized
neural network topologies [3]. Figure 6 shows the SONN-3 classifier for the Iris
data using binary vectors computed for the DLBCRs (shown in fig. 4). Figures
7 and 8 show the SONN-3 topologies for the Wine and Heart data.

The Wine data have been randomly divided into 78 training and 100 validating
data in order to show the generalization abilities on the original real data and on
binary transformed data using the ADLBCA. Table 1 describes the parameters of
the selected soft-computing algorithms: MLP, RBF, GRNN, SONN-2, SONN-
3, SSV Tree, FSM, SVM, IncNet, k-NN [1], [2], [3], [4], [6] which have been
used to compare generalization properties of the best solutions found for these
data using the built-in Statistica Neural Networks and Ghost Miner 3.0 solvers,
automatic designers and cross-validation. The comparisons presented in table 1
demonstrate that when the ADLBCA has been used for the TD preprocessing the
considered soft-computing algorithms have always achieved the better training
and generalization results, the more reduced input data spaces and the more
compact NN topologies or rules etc.
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Fig. 5. The lossy binary conversion neural network and the base DLBCRs for the Wine
data where ur - the binary features, vk - the original real features

5 Conclusions

The new Automatic Discriminative Lossy Binary Conversion Algorithm (ADL-
BCA) has been described in this paper. The ADLBCA is able to fully automat-
ically lossy convert real input data vectors into binary vectors. This feature can
be used by various soft-computing methods to make further computations more
easy or to achieve better generalization results. The presented algorithm lossy
compresses real values from the specially computed ranges and transforms them
into the binary values. The ADLBCA lossy compression warrants that all impor-
tant differences that make possible to discriminate training samples from various
classes are not lost. Only insignificantly differing real values are grouped together
into the described discriminative lossy binary conversion ranges (DLBCRs). The
introduced ADLBCA can very fast (O(nlogn)) process the described conversion
and provide the better discrimination of all training samples of all classes only
if they are not contradictory. The main goal of this algorithm is not to reduce
an input data space but to simplify it for other soft-computing methods. It can
emphasize important data differences and use them to achieve better generaliza-
tion results. Moreover, the ADLBCA computes the DLBCRs in such a way that
a small number of binary inputs and a compact soft-computing solution can be
achieved (tab. 1). It also covers an input data space with the most important
and discriminative data features. The ADLBCA also automatically reduces some
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Fig. 6. The SONN-3 classifier effectively using 3 of 4 original input features and 11 of
12 converted lossy binary features created for the Iris data by the ADLBCA

Fig. 7. The SONN-3 classifier effectively using 5 of 13 original input features and 6 of
7 converted lossy binary features created for the Wine data by the ADLBCA

Fig. 8. The SONN-3 classifier effectively using 17 of 44 original input features and 20
converted lossy binary features created for the Heart data by the ADLBCA
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Table 1. The comparisons of the best achieved performance, generalization and di-
mension reductions for the Wine data and the soft-computing algorithms

minor input features that do not discriminate TD sufficiently. The resultant bi-
nary input data space can sometimes have a smaller data space than an original
one (figs. 7-8). This algorithm can also help many soft-computing algorithms to
avoid the curse of dimensionality problem. The constructive ADLBCA can be
successfully used to various data and can cooperate with many soft-computing
algorithms (e.g. figs. 6-8, tab. 1). The DLBCRs can be easily transformed into
a lossy binary conversion neural network described in this paper. The lossy bi-
nary conversion neural network consists of the lossy binary conversion neurons
(LBNs) that can be interconnected to other neurons that are trained or adapted
by other soft-computing algorithms. The performed experiments confirm effec-
tiveness and high performance of the described ADLBCA.
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Abstract. The tractability of neural-network approximation is investi-
gated. The dependence of worst-case errors on the number of variables
is studied. Estimates for Gaussian radial-basis-function and perceptron
networks are derived.

1 Introduction

Widely-used connectionistic models take on the form of linear combinations of
all n-tuples of functions computable by computational units of various kinds
(e.g., perceptrons, radial or kernel units) with trigonometric, Heaviside, Gaus-
sian, or spline activation functions. In contrast to approximation schemes where
approximating functions belong to a linear subspace generated by the first n
elements of a set of functions with a fixed linear ordering, fixed-basis approxi-
mation, the approximation scheme used in connectionistic models is sometimes
called variable-basis approximation or approximation from a dictionary.

Bounds on worst-case approximation errors of these connectionistic models
typically include several factors, one of which involves the number n of terms in
the linear combinations (i.e., the number of computational units) - called model
complexity - while another involves (often implicitly) the number d of variables
(i.e., the number of network inputs). Dependence on the dimension d is often
cryptic; i.e., estimates depend on “constants”, but the “constants” may grow
with the dimension even exponentially. Moreover, the families of functions for
which the bounds are valid may become negligibly small for large d.

An emphasis on the model complexity n is certainly reasonable when the
number d of variables is fixed, but in modern research (where technology allows
ever-increasing amounts of data to be collected) it is natural to also take into
account the role of d. Indeed, this is considered in information-based complexity
(see [1,2,3]) and more recently this situation has been studied in the context of
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functional approximation and neural networks [4,5]. The upper bounds on the
approximation error are called tractable (with respect to d) when for every fixed
n they take on the form of a polynomial in d. Various authors derived upper
bounds in the factorized form ξ(d)κ(n), for a nonincreasing function κ(n) (often
of the form n−α for α > 0) and a typically unspecified increasing function ξ(d)
of the number d of variables. In these cases, tractability is guaranteed when ξ(d)
is a polynomial. In some literature (e.g., [6]) the term ξ(d) is referred to as “a
constant”; however, it is such only for a fixed value of d. Often, the function ξ(d)
is “hidden” in the “big o” notation [7], which, despite its frequent use, may be
quite misleading as it focuses only on the dependence on n.

The rate of growth of ξ(d) is not crucial for small values of d. However, for
large values of d, the approximation error can even grow exponentially with d as
a consequence of exponential growth in ξ(d) (e.g., [6, item 9, p. 940]), when the
“curse of dimensionality” [8] strikes. As remarked in [2], in general estimating
the dependence of the approximation error on d is much harder than estimating
its dependence on n and only few estimates are available.

The purpose of this paper is to use tractability to look at available results from
a unifying perspective, and to analyze when neural network approximation, by
and for parameterized sets of functions, can be applied. We give dimensional
analysis of formulas in terms of the parameters involved.

We compare and contrast various results in which tractability in dimension
is achieved for neural-network approximation of “reasonable” families of func-
tions large enough to include such members as the Gaussian function in each
dimension. We also discuss cases in which the function ξ(d) decreases - even
exponentially fast - with dimension. For neural-network approximation, upper
bounds that depend polynomially on d, so guaranteeing tractability, were de-
rived in, e.g., [4,6,9,10]. However, polynomials may not provide much control
unless the degrees are quite small. For large d, even quadratic approximation is
not going to be sufficient. For this reason, in sections 4 and 5 we focus on the
case where dependence on d is linear (or better).

The paper is organized as follows. In Section 2 the concept of tractability with
respect to the dimension d of the worst-case approximation by functions from a
dictionary is introduced. In Section 3, results from approximation theory are used
to describe sets of functions for which variable-basis approximation is tractable.
These results are applied to approximation by Gaussian radial-basis function net-
works in Section 4 and to perceptron networks in Section 5. Section 6 is a brief
discussion.

2 Worst-Case Tractability in Neural-Network
Approximation

Let (Xd, ‖.‖Xd
) be a normed linear space of functions or equivalence classes of

functions of d variables and let Ad, Gd be two nonempty subsets of Xd. Functions
in Ad are to be approximated by linear combinations of elements of Gd.
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We use the following terminology: For a subset G of a linear space, spann

means the set of all n-fold linear combinations, i.e.,

spann G =

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
.

With suitable choices, these sets consist of functions computable by one-hidden
layer neural networks, radial-basis functions, kernel models, splines with free
nodes, trigonometric polynomials with free frequencies, etc. Other choices for G
include Bessel potential functions [5] and Hermite functions [11].

The set G is sometimes called a dictionary and the approximation scheme
spann G is called variable-basis approximation scheme. The integer n can be
interpreted as the model complexity measured by the number of computational
units.

If A and T are nonempty subsets of a normed linear space (X , ‖.‖X ), the
deviation δ(A, T ) of A from T is the worst-case error in ‖.‖X in approximating
functions in A by functions from T

δ(A, T )X := sup
f∈A

inf
g∈T

‖f − g‖X .

Clearly, δ(A′, T ′) ≤ δ(A, T ) if A′ ⊆ A and T ′ ⊇ T . Also, δ(c A, cT ) = c δ(A, T ),
where c A = {c a | a ∈ A} .

For variable-basis models, many upper bounds on rates of approximation take
on the factorized form

δ(Ad, spann Gd)Xd
≤ ξ(d)κ(n) , (1)

where ξ : N → R+ is a function of the number d of variables of functions in Xd

and κ : N → R+ is a nonincreasing function of the model complexity n (often
κ(n) = n−1/2); see, e.g., [6,9,12,13,14,15].

If the upper bound (1) holds with a polynomial ξ(d) in the number d of
variables, then the problem of approximating Ad by elements of spann Gd is
called tractable with respect to d in the worst case 1, or simply tractable.

3 Tractability for Balls in Variational Norms

Sets of functions which can be tractably approximated by spannG are given by
a theorem on approximation by convex combinations of n elements of a bounded
subset of a Hilbert space, derived by Maurey [16], Jones [15], and Barron [6].
The Maurey-Jones-Barron theorem was extended to (Lp(Ωd), ‖.‖Lp(Ωd)), p ∈
(1,∞), in [14], and to the space (M(Ωd), ‖.‖∞) of bounded measurable functions
on Ωd ⊆ Rd with the essential supremum norm in [17]. These results can be
reformulated in terms of a norm, introduced in [18] as an extension of “variation

1 Tractability with respect to other quantities and in different settings has been de-
fined; see, e.g., [1].
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with respect to half-spaces” from [12]. This norm, called G-variation and denoted
‖·‖G, is defined for any bounded subset of a normed linear space (X , ‖.‖X ) as the
Minkowski functional (see, e.g., [19, p. 131]) of the X -closure of the symmetric
convex hull of G, i.e.,

‖f‖G,X = ‖f‖G := inf
{
c > 0 | c−1f ∈ clX conv (G ∪ −G)

}
. (2)

Note that G-variation can be infinite and that it depends on the ambient space
norm; when this norm is clear from the context we merely write ‖f‖G.

For a nonempty set Ω and S ⊆ Ω, we denote by χS the indicator function
of S, i.e., χS(x) = 1 if x ∈ S, otherwise χS(x) = 0. Let F be any family of
indicator functions of subsets of Ω, S = {S ⊆ Ω |χS ∈ F} be the family of
the corresponding subsets of Ω, and A be a subset of Ω. Then A is said to be
shattered by F if {S∩A |S ∈ S} is the whole power set of A. The VC-dimension
of F is the largest cardinality of any subset A which is shattered by F . The
coVC-dimension of F is the VC-dimension of the set F ′ := {evx |x ∈ Ω}, where
the evaluation evx : F → {0, 1} is defined for every χS ∈ F as evx(χS) = χS(x).

For a normed linear space (X , ‖.‖) and r > 0 we denote by Br(‖.‖) the closed
ball of radius r centered at zero, i.e.,

Br(‖.‖) = {f ∈ X | ‖f‖ ≤ r} .

The following theorem gives upper bounds of the form ξ(d)κ(n) on the worst-case
errors in approximation of functions from balls in Gd-variations by spann Gd .

Theorem 1. Let d be a positive integer, (Xd, ‖.‖Xd
) be a Banach space of d-

variable functions, Gd its bounded subset with sd = supf∈Gd
‖f‖Xd

, and rd > 0.
Then for every positive integer n, the following hold.
(i) If (Xd, ‖.‖Xd

) is a Hilbert space, then

δ(Brd
(‖.‖Gd

), spann Gd)Xd
≤ sd rd n−1/2 ;

(ii) If Ωd ⊆ Rd, p ∈ (1,∞), and (Xd, ‖.‖Xd
) = (Lp(Ωd), ‖.‖Lp), then

δ(Brd
(‖.‖Gd

), spann Gd)Lp(Ωd) ≤ 21+1/p̄ sd rd n−1/q̄ ,

where q = p/(p− 1), p̄ = min(p, q), and q̄ = max(p, q).
(iii) If Ωd ⊆ Rd, (Xd, ‖.‖Xd

) = (M(Ωd), ‖.‖∞) and Gd = ΘΩd
is a set of some

indicator functions on Ωd such that the co-VC-dimension h∗
d,Θ of ΘΩd

is finite,
then

δ(Brd
(‖.‖ΘΩd

), spann ΘΩd
)M(Ωd) ≤ 6

√
3
(
h∗

d,Θ

)1/2
sd rd (log n)1/2

n−1/2 .

Proof. (i) By Maurey-Jones-Barron’s estimate restated in terms of G-variation
[18], for every bounded subset Gd of a Hilbert space (Xd, ‖.‖Xd

), every f ∈
Xd, and every positive integer n, we get ‖f − spann Gd‖Xd

≤ ( s2
G ‖f‖2

Gd
−

‖f‖2
Xd

)n−1/2 .
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(ii) By [20, Theorem A.4] (which is a slight reformulation of [14, Theorem
5]), for every f ∈ Lp(Ωd) and every positive integer n, ‖f − spann Gd‖Lp(Ωd) ≤
21+1/p̄sd rd n−1/q̄ . So the statement follows again by the definition of deviation.

(iii) This follows by [17, Theorem 3]. �

In the upper bounds in Theorem 1 (i)-(iii), the functions ξ(d) are of the forms
ξ(d) = sd rd, ξ(d) = h∗

d sd rd , and ξ(d) = d1/2 sd rd , resp. These estimates imply
tractability when sd rd, h∗

d,Θ sd rd , and d1/2 sd rd , resp., grow polynomially with
d increasing. Note that sd and h∗

d,Θ are determined by the choice of Gd, but rd

can be chosen in such a way that ξ(d) is a polynomial.

4 Tractability for Gaussian Radial-Basis-Function
Networks

In this section, we investigate tractability of approximation by Gaussian radial-
basis function (RBF) networks.

Let γd,b : Rd → R denote the d-dimensional Gaussian function of width b,
given by

γd,b(x) = e−b‖x‖2
.

For every y ∈ Rd, let τy be the translation operator defined for any g : Rd → R

by the equation
τy(g)(x) = g(x− y) .

When b = 1, we merely write γd instead of γd,1. The set of Gaussian radial-basis
d-variable functions with varying widths and varying centriods is denoted by

Gγ
d =

{
τy(γd,b) | y ∈ Rd, b > 0

}
,

while the set of Gaussian radial-basis d-variable functions with a fixed width
b > 0 and varying centroids is denoted by

Gγ,b
d =

{
τy(γd,b) | y ∈ Rd

}
.

Our first estimate holds for Gaussian RBF networks with units of fixed width.
A simple calculation shows that for b > 0, ‖γd,b‖L2(Rd) = (π/2b)d/4. Thus sd =
(π/2b)d/4. By Theorem 1 (i), we get the following corollary.

Corollary 1. Let d be a positive integer, b > 0, and rd > 0. Then for every
positive integer n

δ(Brd
(‖.‖Gγ,b

d
), spann Gγ,b

d )L2(Rd) ≤
( π

2b

)d/4
rd n−1/2 .

So in the upper bound from Corollary 1, ξ(d) = ξ(d, b) = (π/2b)d/4 rd. Thus for
b = π/2, this corollary implies tractability for rd growing with d polynomially,
for b > π/2, it implies tractability even if rd is increasing exponentially fast,
while for b < π/2, it merely implies tractability for rd decreasing exponentially
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fast. Hence, the width b of Gaussians has a strong impact on the size of radii
rd of balls in Gγ,b

d -variation for which ξ(d) is a polynomial. The narrower the
Gaussians, the larger the balls for which Corollary 1 implies tractability.

In [5], upper bounds of the form ξ(d)κ(n) on approximation by Gaussian RBF
networks were derived for smooth functions defined by smoothing operators in
the form of convolutions with certain kernels called Bessel potentials. These
potentials are defined by means of their Fourier transforms: for s > 0, the Bessel
potential of order s, denoted by βd,s, is the function on Rd with Fourier transform

β̂d,s(ω) = (1 + ‖ω‖2)−s/2 .

For q ∈ [1,∞), d a positive integer, and s > d/q, the Bessel potential space (with
respect to Rd) [21, pp. 134-136], denoted by (Lq,s, ‖.‖Lq,s), is defined as

Lq,s(Rd) := {f | f = w ∗ βd,s, w ∈ Lq(Rd)}

‖f‖Lq,s(Rd) := ‖w‖Lq(Rd) for f = w ∗ βd,s.

Since the Fourier transform of a convolution is (2π)d/2 times the product of the
transforms, we have ŵ = (2π)−d/2f̂/β̂d,s. Thus w is uniquely determined by f
and so the Bessel potential norm is well-defined.

The next theorem gives upper bounds on worst-case errors of two sets of
smooth functions in approximation by Gaussian RBF networks.

(i) The first set is the ball of radius rd in the Bessel potential space L1,s(Rd).
(ii) The second set is the intersection of the ball of radius rd in L2,s(Rd) with

those functions f = w∗βd,s such that w has support supp w = cl{x ∈ Rd |w(x) =
0} of Lebesgue measure bounded by νd, i.e.,

A(1)
s,rd,νd

= {f ∈ L2(Rd)
∣∣ f = w ∗ βd,s , ‖w‖L2(Rd) ≤ rd, λ(supp w) ≤ νd} .

The following upper bounds on worse-case L2-errors in approximation of these
three sets of smooth functions by Gaussian networks were proven in [5, Theorems
4.4 and 5.1] under the additional condition that w is continuous a.e. However,
with a more careful argument, only measurability is required. Recall that for
complex z with Re[z] > 0, Γ (z) =

∫∞
0 tz−1e−t dt and Γ (n) = (n− 1)!.

Theorem 2. Let d, n be positive integers, s > d/2, and rd > 0. Then

(i) δ(Brd
(‖.‖L1,s(Rd)), spann Gγ

d)L2(Rd) ≤
(π

2

)d/4 Γ (s/2− d/4)
Γ (s/2)

rd n−1/2 ;

(ii) δn(A(1)
s,rd,νd

, spann Gγ
d)L2(Rd) ≤

(π

2

)d/4 Γ (s/2− d/4)
Γ (s/2)

ν
1/2
d rd n−1/2 .

Note that Γ (s/2−d/4)
Γ (s/2) as a function of s is decreasing on the interval (d/2,∞).

The bounds from Theorem 2 are of the form ξ(d)κ(n) where κ(n) = n−1/2, while
ξ(d) are multiples of rd and ν

1/2
d with coefficients going to zero exponentially

fast with d increasing.
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The shape of the support of the function w determines νd for which f = w∗βd,s

belongs to A
(1)
s,rd,νd , while the L2-norm of the function w determines rd. When

the support of w is the Euclidean unit ball in Rd, then f = w ∗ βd,s belongs to
A

(1)
s,rd,νd with νd equal to πd/2/Γ ((d + 2)/2) [22, p. 304]. So in this case, νd goes

to zero exponentially fast with the dimension d. However, when the support of
w is a cube, then growth or decrease of νd depends on the size of its side (see
also the remarks in [23, Section 18.2]).

5 Tractability for Perceptron Networks

In this section we investigate tractability of worst-case errors in approximation
by perceptron networks.

A measurable function σ : R → R is called a sigmoid when limt→−∞ σ(t) = 0,
and limt→∞ σ(t) = 1. A special case is the Heaviside function ϑ : R → R defined
as ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0. For Ωd ⊆ Rd, let

Hd(Ωd) = {ϑ(e · x + b) : Ωd → R | e ∈ Sd−1, b ∈ R}

denote the set of functions on Ωd computable by Heaviside perceptrons with input
weights e in the unit sphere Sd−1 in Rd and biases b ∈ R. For a sigmoid σ, we
denote by

Hσ
d (Ωd) = {σ(v · x + b) : Ωd → R | v ∈ Rd, b ∈ R}

the set of functions on Ωd computable by sigmoidal perceptrons. When Ωd = Rd,
we merely write Hd and Hσ

d . For Ωd bounded, the set Hd(Ωd) is equal to the
set of all indicator functions of subsets of Ωd. Thus Hd-variation is sometimes
called variation with respect to half-spaces.

The next corollary estimates worst-case ‖.‖∞-errors in approximation of balls
in Hd-variation.

Corollary 2. Let d be a positive integer and rd > 0, then for every positive
integer n

δ(Brd
(‖.‖Hd

), spann Hd)M(Rd) ≤ 6
√

3 d1/2 rd (log n)1/2
n−1/2 .

Proof. The statement follows by Theorem 1 (iii) and the fact that the co-VC
dimension of the set Hd of closed half-space indicator functions on Rd is equal
to d [17, p. 162]. �

In the upper bound in Corollary 2, we have ξ(d) = d1/2 rd . This implies tractabil-
ity for every rd growing polynomially with d.

We now consider upper estimates known only for the odd-dimensional case.
A real-valued function f on Rd, d odd, is of weakly controlled decay [9] if it is
d-times continuously differentiable and satisfies for all multi-indices α ∈ Nd, with
|α| = ∑d

i=1 αi and Dα = ∂α1 · . . . · ∂αd ,
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(i) |α| < d =⇒ lim‖x‖→∞ Dαf(x) = 0, and
(ii) |α| = d =⇒ ∃ε > 0 such that lim‖x‖→∞ Dαf(x)‖x‖d+1+ε = 0.

We denote by V(Rd) the set of all functions of weakly controlled decay on Rd.
This set includes the Schwartz class of functions rapidly decreasing at infinity as
well as the class of d-times continuously differentiable functions with compact
supports. In particular, it includes the Gaussian function. Functions in V(Rd)
have finite Sobolev seminorms defined as

‖f‖d,1,∞ := max
|α|=d

‖Dαf‖L1(Rd).

Let A
(3)
rd denote the intersection of V(Rd) with the ball Brd

(‖ · ‖d,1,∞) of radius
rd in the Sobolev seminorm ‖.‖d,1,∞, i.e.,

A(3)
rd

= V(Rd) ∩Brd
(‖ · ‖d,1,∞).

So, smoothness of functions in A
(3)
rd is expressed in terms of a condition on the

maxima of L1-norms of iterated partial derivatives of order |α| = d.

Theorem 3. Let d be an odd integer, Ωd ⊂ Rd be a set of finite Lebesgue mea-
sure, rd > 0, kd = 21−dπ1−d/2dd/2/Γ (d/2) ∼ (πd)1/2(e/2π)d/2, and σ be any
continuous nondecreasing sigmoid. Then for all positive integers n

(i) δ(A(3)
rd |Ωd

, spann Hd(Ωd))L2(Ωd) ≤ kdλ(Ωd)1/2 rd n−1/2

(ii) δ(A(3)
rd |Ωd

, spann Hσ
d (Ωd))L2(Ωd) ≤ kdλ(Ωd)1/2 rd n−1/2 .

Proof. (i) It was shown in [9, Corollary 4.3] that for d odd and every f ∈ V(Rd)
one has ‖f‖Hd,M(Rd) ≤ kd‖f‖d,1,∞. It is easy to check that for every Ωd of finite
Lebesgue measure ‖f |Ωd

‖Hd(Ωd),L2(Ωd) ≤ ‖f |Ωd
‖Hd(Ωd),M(Ωd) ≤ ‖f‖Hd,M(Rd) .

As supg∈Hd(Ωd) ‖g‖L2(Ωd) = λ(Ωd)1/2 , the item (i) follows by Theorem 1 (i).
(ii) It was shown in [24] that if Ωd ⊂ Rd is a set of a finite Lebesgue measure,

then in Lp(Ωd) for any continuous nondecreasing sigmoid σ, Hσ
d (Ωd)-variation

is equal to Hd(Ωd)-variation. So the statement follows by (i). �

In the upper bounds from Theorem 3, ξ(d) = kd λ(Ωd)1/2 rd. Since kd ∼
(πd)1/2 ( e

2π

)d/2 tends to zero exponentially fast, even if the maxima of L1-norms
of partial derivatives grow rather quickly with the dimension d, approximation
is still tractable.

The rate of growth of rd for which Theorem 3 guarantees tractability depends
on the shape of the domain Ωd, too. The same remark as the one after Theorem 2
on the dependence of Lebesgue measures of balls and cubes on d applies here.

The next corollary estimates the worst-case L2-errors in approximation by
perceptron networks of the set Gγ,1

d =
{
τy(γd) | y ∈ Rd

}
of d-variable Gaussians

with widths equal to 1 and varying centroids.

Corollary 3. Let d be an odd integer and Ωd ⊂ Rd be a set of a finite Lebesgue
measure. Then for every positive integer n

δ(Gγ,1
d |Ωd

, spann Hd(Ωd)L2(Ωd)) ≤ (2 π d)3/4 λ(Ω)1/2 n−1/2 .
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Proof. It was shown in [9, Corollary 6.2] that ‖γd‖Hd,M(Rd) ≤ (2 π d)3/4. It
is easy to see that for every G ⊂ (X , ‖.‖X ) closed under translation, every f ,
and every y ∈ Rd, one has ‖τy(f)‖G,X = ‖f‖G,X . Hence ‖τy(γd)‖Hd,M(Rd) ≤
(2 π d)3/4. Thus, for every Ωd of a finite Lebesgue measure we get

‖τy(γd)|Ωd
‖Hd(Ωd),L2(Ωd) ≤ ‖τy(γd)|Ωd

‖Hd(Ωd),M(Ωd) ≤ ‖τy(γd)‖Hd,M(Rd) .

As supg∈Hd(Ωd) ‖g‖L2(Ωd) = λ(Ω)1/2 , by Theorem 1 (i) for every y ∈ Rd we get
‖τy(γd)|Ωd

− spann Hd(Ωd)‖L2(Ωd) ≤ (2πd)3/4 λ(Ω)1/2 n−1/2, which implies the
statement. �

In the upper bound from Corollary 3, we have ξ(d) = d3/4 λ(Ωd)1/2. This implies
that approximation of d-variable Gaussians on domains Ωd by perceptron net-
works is tractable when the Lebesgue measures λ(Ωd) grow polynomially with d.
So, Gaussian-basis functions can be replaced by Heaviside perceptron networks
with only a polynomial increase in the number of computational units. In par-
ticular for d odd and sets Ωd ⊂ Rd of unit Lebesgue d-dimensional measures,
the L2(Ωd)-errors in approximating the Gaussians by linear combinations of n
Heaviside perceptrons are at most (2 π d)3/4 n−1/2.

6 Discussion

We have described some sets of functions for which approximation by neural
networks with n hidden units is tractable in the number d of variables. For such
sets, estimates of worst-case errors in the form ξ(d)κ(n) with ξ(d) polynomial
follow from the Maurey-Jones-Barron theorem and its extensions to Lp-spaces,
for p ∈ (1,∞]. However, other proof techniques for estimation of rates of neural-
network approximation (such as those based on Hermite polynomials used in [4]
and [25]) may yield other tractability results.
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2. Wasilkowski, G.W., Woźniakowski, H.: Complexity of weighted approximation over
Rd. J. of Complexity 17, 722–740 (2001)
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Abstract. In this paper new approach to treat incomplete data has
been proposed. It has been based on the evolution of imputation strate-
gies built using both non-parametric and parametric imputation meth-
ods. Genetic algorithms and multilayer perceptrons have been applied to
develop a framework for constructing the imputation strategies address-
ing multiple incomplete attributes. Furthermore we evaluate imputation
methods in the context of not only the data they are applied to, but
also the model using the data. The accuracy of classification on data
sets completed using obtained imputation strategies has been described.
The results outperform the corresponding results calculated for the same
data sets completed using standard strategies.

Keywords: imputation methods, incomplete data, genetic algorithm,
multilayer perceptron.

1 Introduction

Data quality is always a matter of concern. Whether the task is data mining,
machine learning, statistical analysis or any other, the results strongly depend
on the quality of the given data. Most data sets are imperfect in some way. Over
the years there have been quite a few attempts to define all the kinds of imper-
fections found in various data sets. Parsons [12] makes a summary of some of
those attempts, and presents five imperfection types: uncertainty, imprecision,
incompleteness, inconsistency and ignorance. In this paper we focus on incom-
pleteness which occurs when some values in a data set are missing. Little and
Rubin[11] define three ways in which data may be missing : MCAR (missing
completely at random), MAR (missing at random) and NMAR (not missing at
random or non-ignorable). MCAR means that whether some value is missing
does not depend on any other values present in the data set. MAR is a situation
in which a missing value of some attribute may depend on the other attributes,
but not on the value itself. NMR is the most difficult situation in which the fact
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that a value is missing may depend on the value itself. The method proposed in
this paper does not directly require the data to fit to one specific type. However,
as method vectors use imputation methods, such requirements may be imposed
by the latter.

There are three general approaches in face of incompleteness. First of all, an
attempt can be made to acquire and fill in the missing data. This however can
be time consuming, difficult, expensive or sometimes not even possible. Another
possibility is to revise the data set and delete all the impaired instances or even
attributes (this approach is sometimes called complete case analysis). When the
data are valuable, this is unfortunately not feasible. The last solution is to impute
the missing values using a proper method. The imputation approach makes it
possible to avoid deleting possibly useful information on one side, but poses a
threat of introducing errors into the data set on the other. Yet in many cases
imputation is the best solution to incompleteness.

Filling in missing data requires choosing from all the available methods the
one that gives the best possible results. One of the most famous is probably the
EM-algorithm presented, among others, by Dempster et al. [4] and Schafer [13].
The procedure assumes a distribution of the missing values and then fills them
in using a two step iterative procedure : the E-step estimates the expected values
of the missing data and the M-step changes the parameters of the distribution
to maximize the likelihood of the data. Another interesting iterative method
called non invasive imputation has been proposed by Gediga and Düntsch [5].
Abdella and Marwala propose to use neural networks as an imputation method
[1]. A whole framework for dealing with incomplete data for use in data mining
is described by Wei and Tang [15]. One-class classifiers are proposed as a method
by Juszczak and Duin [10]. The kNN algorithm is used as an imputation method
by Acũna [2], Batista and Monard [3], Cohen et al. [8] and Jönsson [9]. Finally
Hu et al. [8] gives an overview of some popular imputation methods.

When there is a need to fill in missing values to more than one attribute in a
data set, the choice of a single method to perform all the imputations becomes
difficult, or not even possible. In particular, the latter problem occurs when no
method suitable for all the attribute types exists. Furthermore, using a single
method to perform all the imputations does not guarantee the possibility of
achieving the best results.

In addition, the notion of correct imputation may depend on the problem
the data set is used for. Treating incompleteness of a data set is usually a pre-
processing step, which is meant to prepare the set to be used by some model. In
such situations, the same model can be used when choosing the right imputation
methods, i.e. in their evaluation.

In this paper a framework aiming to combine different imputation methods has
been proposed. The way evolutionary algorithm can be used to find imputation
strategies for data sets with multiple incomplete attributes has been proposed.
Moreover, the strategies are evaluated in view of the problem the data set is
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used for. In other words, the suitability of imputation strategy is evaluated in
terms of its impact on the prediction or classification process that is performed
using the data set.

The framework combines genetic algorithms and multilayer perceptrons. Ge-
netic algorithms have been used to evolve method vectors representing impu-
tation strategies. Multilayer perceptrons (MLP) have been applied to represent
classification models used in test cases. The error rate of classification performed
on the data sets imputed using a strategy, provides basis for the fitness func-
tion. In other words, the higher the accuracy of the classification performed on
the imputed data set, the better the imputation strategy used to fill in missing
values is.

The work follows our research on time series prediction using combination of
evolutionary algorithms and neural networks [6,7]. The main assumption is to
develop frameworks capable of autonomous model development and data pro-
cessing that do not require expert intervention.

The rest of the paper is organized as follows. Section 2 describes the concept of
model-based evaluation. In section 3 precise definition of method vectors is given
and an evolutionary algorithm for finding them is proposed. Section 4 contains
the description of the framework used to test our propositions. Tests and results
are described in section 5. Finally a summary is presented and further work
topics are proposed.

2 Model Based Evaluation

When evaluating an imputation method, the distances between the original and
the filled in values are often used as the performance measure. This applies to
the test cases, in which values are artificially removed and then imputed.

However when the data set is noisy, and this is often the case, such an approach
may lead to efforts in recreating noise. Consider a situation in which there is a
character recognizing model given and it is meant to be used on a data sample
from Fig. 1. The only problem is that the model cannot handle incomplete data
and therefore all missing parts have to be filled in. Which imputation methods
could be considered as “good” in such a situation? Bearing in mind the goal
(which is character recognition) the answer is: all the methods that impute the
missing data in a way, which will not distort the character recognition model
(i.e. the model should recognize the “K” letter on the sample). There is no need
to try to find a method which could recreate the missing part of the sample
precisely with all the noise that was originally there.

We want to check the feasibility of measuring performance of imputation
methods (in our case method vectors) in context of the model that will be using
the filled in data. In real life situations the models, the incomplete data sets are
meant for, are often known before performing the imputations. In such situations,
knowing which methods perform well for the given model would be beneficial.
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Fig. 1. A noisy letter sample with some of the data missing

3 Method Vectors

For a given set of imputation methods Γ , and a given data set D, in which
attributes a1, a2, . . . an suffer from incompleteness, V = [m1, m2, . . . , mn] is a
method vector, where mi ∈ Γ is an imputation method meant for filling in miss-
ing values for attribute ai. Thus method vectors are vectors in an n-dimensional
imputation method space defined by a specific data set D and a specific set of
imputation methods Γ . Such vectors are used to fill in the incomplete data sets.
The goal is of course to achieve the best results possible, but in order to do
that we have to define what exactly is the best method vector. To evaluate the
method vectors we use a model-based approach and present a definition of the
best method vector below.

With all the previous assumptions, let M denote a given model to be used.
The role of the model is to address the problem the data set is used for e.g.
to perform prediction or classification. Thus, in general M : RN → RC , while
D ⊂ RN and n ≤ N . In particular all attributes can miss some values. In the
latter case n = N . In case of classification the number of output signals produced
by model M is C = 1. In our test case the model is implemented using multilayer
perceptron.

Moreover, eM (D) denotes the mean absolute error of model M on data set
D. Furthermore DV is the data set created from D by filling in all the missing
values using methods from vector V .

Using the above notation, the best method vector V ∗ = [m1, m2, . . . , mn] is
defined as follows:

eM (DV ∗) = min
V

eM (DV ) (1)

Equation 1 holds when all the methods in Γ are non-parametric, however some
imputation methods do have parameters. In such situations not only the method
vectors have to be found, but also their parameters.

Let
P (V ) = {p : p ∈ Pm′

1
× Pm′

2
× . . .× Pm′

K
}

denote the parameter space for vector V , where K ≤ n and Pm′
i
is the parameter

space for the i-th parametric method. Dp
V denotes the data set created from D
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by filling in all the missing values using methods from vector V with parameters
p ∈ P (V ).

The objective of finding the best imputation method vector with parameters,
means actually finding the best pair [V ∗, p∗], where p∗ ∈ P (V ∗) and it holds
that

eM

(
Dp∗

V ∗

)
= min

V,p∈P (V )
eM (Dp

V ) (2)

Now a procedure of performing an imputation using method vectors can be
proposed. For a given data model M and a given incomplete data set D, the
imputation procedure proposed in Alg. 1 has been used.

Input: Γ - a set of imputation methods to be used, D - an incomplete data set,
M - a model to be used for data set D

Result: Dp∗
V ∗ , which is a complete data set to be used by model M

begin
[V ∗; p∗] = find a pair for which Eq. 2 holds;
Dp∗

V ∗ = fill in the incomplete data set D using methods defined in vector V ∗

with parameters p∗;
return Dp∗

V ∗ ;
end

Algorithm 1. Method vector based imputation procedure

This formulates quite a difficult optimization task, which can be solved using
a genetic algorithm. In our approach, the genetic algorithm works on populations
of method vectors. Each individual consists of n genes representing imputation
methods used for n individual incomplete attributes. To simplify the notation
we can assume that we have two types of genes: non-parametric genes - used for
non-parametric methods and parametric genes applied for parametric methods.
This means that parametric genes are actually pairs [m, pm], where m is an
imputation method, and pm is the vector of parameter values for this method.

The proposed algorithm uses two types of genetic operators to diversify the
population, namely crossover and mutation. Both operators have two versions.
One version is used for non-parametric and one for parametric genes.

For a given maximum range R, mutation changes an individual by randomly
changing a random number r ∈ [0, R] of genes. The crossover operator is based
on one-point crossover. Both the parametric mutation and parametric crossover
depend on specific parametric genes i.e. imputation method each parametric
gene represents. This is the case, because the parameter space may and usually is
different for each imputation method. For example a kNN based method requires
one parameter, while a SOM based method would require at least two. The
mutation is applied according to Alg. 2.

In general, in the first stage of the algorithm changes occur both to the set
of methods and parameters of methods comprising on imputation strategies can
occur. In the final stage of the algorithm, changes are applied to parameters
only.
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Data: P = [i1, . . . , iP ] - current population, ij =
[
gj
1, . . . , g

j
N

]
- j-th individual

with genes gj
1, . . . , g

j
N , T - the threshold turning off non parametric

operations, num - current generation number, MAX - maximal number
of generations, par - the parametric mutations threshold

begin
ij = randomly select an individual from P ;
l = |{gj : gj is a parametric method}| ;
if l = 0 ∧ num > T × MAX then

return no mutation;
else

p = a random number within [0; 1];
if l > 0 ∧ ((num > T × MAX) ∨ (p ≤ par)) then

return parametric mutation of individual i;
else

return non-parametric mutation of individual i;
end

end

end
Algorithm 2. The selection of mutation operator

4 Tests

The goal of the tests was to compare the results that can be achieved using
the proposed algorithm with the standard approach i.e. using single imputation
method to fill in all the missing data. The comparison has been based on the per-
formance of classification models working on the imputed data sets. Multilayer
perceptrons have been used to implement the models.

4.1 Method Set

The method set defining the search space used during our tests consists of the
following methods: random/median/mode/mean imputation, non-invasive im-
putation, the kNN algorithm and the SOM-based imputation. The latter two
methods have been used in three versions, namely mean/median and mode.

Random imputation fills in values at random with a distribution based on the
complete parts of the data set. Median, mode and mean imputation fill in the
missing values with the median, mode and mean values, respectively. The kNN
method fills the incomplete data using the mean, median or mode from k nearest
neighbours of the given data row. The SOM-based approach is similar to kNN,
except for the fact that the neighbourhood is found using a self organizing map
to cluster the rows together. Non-invasive imputation is an iterative algorithm
presented in [5].

4.2 Test Preparation

The tests were done on 3 data sets from the UCI machine learning repository:
Iris, Congressional Voting Records and Breast Cancer Wisconsin (Diagnostic).
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Table 1. Genetic algorithm parameters

Value Description

20 population size
100 number of generations
0.1 mutated population fraction
0.2 crossed over population fraction
0.8 fraction of generation with non-parametric genetic operations

The data sets were split into training and testing parts and they were used to
train and test neural networks for each data set. The incomplete rows of the
Votes set were put aside for this part of the tests.

MLP has been used to build a model using each data set. Java Neural Network
Simulator (JNNS) was used to train a neural network for each of our test data
sets. Having all the neural networks, data sets for the genetic algorithm were
prepared. Values from 25% and 50% of the rows from the testing parts of Iris
and Wisconsin data sets were removed. The Votes set is already incomplete. The
obtained incomplete sets were used as the working sets for the rest of our tests.
The objective of the algorithm was to minimize the neural network mean square
errors achieved on the imputed working set.

4.3 Test Procedure

For each working set - 75% (search part) was used to find the best method
vectors and single imputation methods, and 25% (evaluation part) to evaluate
the found solutions. Iris set was an exception - because it contains only 150 rows,
10 fold cross-validation was used in that case.

The algorithm settings have been chosen so that to allow numerous runs of the
algorithm and ensure adequate data for comparison purposes. In real applica-
tions, the number of generations and population members can be increased. The
genetic algorithm was run 50 times for each data set with the parameters given
in Tab.1. The performance of method vectors was compared with performance
of single methods, which were found using another evolutionary algorithm. Al-
gorithm 1 depicts the test procedure.

5 Results

The results of the tests are summarised in Tab. 2. All the values have been
obtained on the testing set. The set was used neither to drive the evolution
process, nor to train the MLP model. eV stands for average MSE of the neural
network on the data set filled in with method vectors. eS denotes average MSE
of the neural network on the data set filled in with single method used to impute
all the missing values in all incomplete attributes. What should be emphasised,
the set of individual methods that are investigated in the latter case, contains
all the methods that can be used in method vectors.
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Data:
D1 = [Iris25, Iris50],D2 = [Wisconsin25, Wisconsin50, Votes] - test data sets
begin

foreach D ∈ D1 do
tab[1 . . . 10] = split D into 10 parts;
eV = eS = 0;
for i = 1 . . . 10 do

V = solution from the genetic algorithm run on set D − tab[i];
S = single best method found using set D − tab[i];
eV + = 0.1 ∗ ( evaluate solution V on set tab[i]);
eS+ = 0.1 ∗ ( evaluate solution S on set tab[i]);

end
return eV , eS

end
foreach D ∈ D2 do

tab[1 . . . 2] = split D into 2 parts;
V = solution from the genetic algorithm run on set tab[1];
S = single best method found using set tab[1];
eV = evaluate solution V on set tab[2];
eS = evaluate solution S on set tab[2];
return eV , eS

end

end
Algorithm 3. The test procedure

Table 2. Test results. N - number of rows, NInc - number of incomplete rows, σeV ,
σeS - standard deviations.

Set N NInc eV σeV eS σeS

Iris 25% 75 19 0.0730 0.0189 0.2494 0.0430
Iris 50% 75 38 0.0873 0.0347 0.4191 0.0565

Wisconsin 25% 285 72 0.1246 0.0274 0.2208 0.0360
Wisconsin 50% 285 143 0.1061 0.0491 0.3834 0.0594

Votes 280 203 0.0903 0.0060 0.1868 0.0168

The results show that for all data sets a suitable method vector representing
an imputation strategy has been found. The error rate of classification models
M , denoted by eV has been significantly lower than the error rate eS achieved
when completing the data with the best individual strategy. Moreover, standard
deviation σeV shows that the proposed method provides results with highly
similar quality in different algorithm runs.

An interesting phenomenon can be seen when comparing the results of Iris
25% and Iris 50%, and also Wisconsin 25% and Wisconsin 50%. The perfor-
mance obtained on the sets with more data missing (50%) does not decrease
(in comparison with the 25% versions) as significantly as it could be expected.
Moreover, in the case of Wisconsin data sets, the performance even improves.
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This is an interesting observation which may have different causes. First of all
a greater number of missing values means that the objective function becomes
more sensitive to the filled in values, which may make it easier for the genetic
algorithm to find the best solutions. Another possibility is that using the model
for calculating the objective function clears some errors originally present in the
data set, or maybe distorts the data. The observed phenomenon of achieving bet-
ter performance on potentially worse data deserves further investigation. This
will require performing tests on a number of different models and data sets with
a larger gradation of incompleteness levels.

To sum up, the results show that the imputation strategy found by the algo-
rithm outperforms individual strategies used for the same data sets. Not only, the
improvement of on average 73% in MSE rates has been obtained, but also the min-
imal improvement was 45%. Therefore, the algorithm helps to address the need
for model-driven data imputation.

6 Summary

Method vectors may lead to much better results in data imputation. However
finding the best method vectors is not an easy task, as the search space is com-
plicated and has many different potential solutions achieving the same or similar
results. The proposed algorithm successfully finds imputation strategies address-
ing the need of completing incomplete data sets. The error rate achieved when
using these imputation strategies is significantly lower than the error rate ob-
tained when completing the data set by the best involved individual imputation
method.

The proposed framework allows to adopt multiple imputation methods used
to deal with incompleteness of individual attributes. Not only the combination of
them, but also their parameters can be set by evolution. Moreover, the framework
construction allows to use different decision models. Any model, based on neural
networks or other AI techniques that is applied to solve the classification or
prediction problem can be included in the framework.

An interesting concept for further studies is to introduce an order in which the
imputations take place and allow the methods to use previously filled in values
for further imputation steps.
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Abstract. The generalization capability of a multilayer perceptron can
be adjusted by adding a penalty (weight decay) term to the cost function
used in the training process. In this paper we present a possible heuristic
method for finding a good coefficient for this regularization term while,
at the same time, looking for a well-regularized MLP model. The simple
heuristic is based on validation error, but not strictly in the sense of early
stopping; instead, we compare different coefficients using a subdivision of
the training data for quality evaluation, and in this way we try to find a
coefficient that yields good generalization even after a training run that
ends up in full convergence to a cost minimum, given a certain accuracy
goal. At the time of writing, we are still working on benchmarking and
improving the heuristic, published here for the first time.

Keywords: classification, neural networks, MLP, regularization,
heuristic.

1 Introduction

This paper deals with the task of pattern classification. We begin by going
through the necessary definitions and equations for those who want to implement
a similar system. Later on, we shall turn to less formalized, heuristic ideas.

Let {xi}N
i=1,xi ∈ RD be a set of N vectors of dimension D. Each vector

xi is known to belong to a class ci ∈ {1, . . . , C}, coded as a binary vector
yi ∈ RC such that the components of the i:th vector are (yi)k = 1 for k = ci

and (yi)k = −1 for k = ci. Using the known pairs (xi,yi) as examples, we aim to
train a computer system to associate vectors with a corresponding class. For our
current purposes, any vector y ∈ RC is converted to an exact class representative
by choosing c equal to smallest k for which (y)k ≥ (y)j for all j ∈ {1, . . . , C},
i.e., selection of the index of the largest component, or, in the case of equality,
the one with the smallest index. This conversion works fine for vectors that are
already approximately close to the encoded class prototype.

We especially want the machine to be able to generalize what it has learned by
example, and apply the knowledge to new vectors xq /∈ {xi}N

i=1 for which nobody
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knows the proper class before the machine makes its advisory guess. In this
way, we can automatically identify images, sounds, industrial measurements, and
other useful things that can be represented as vectors. Artificial neural networks
(ANN) are a widely used system for such automatic classification tasks. For more
knowledge about ANNs, we refer to the textbook [1].

Of special interest in this study is the multilayer perceptron (MLP), a feed-
forward ANN with sigmoidal activation. Such an ANN can be easily (and effi-
ciently) implemented directly from the matrix representation described in prior
works [2,3,4]. For any x ∈ RD we set

o0 = x, ol = F l(Wlô(l−1)) for l = 1, . . . , L . (1)

By the notation o0 we mean the vector on the “zeroth” layer, which is considered
to be the input vector x presented to the network. Iterative computation yields
the output vectors ol for all the other L layers of the network, numbered l =
1, . . . , L. The values depend on the selection of layer-wise neural weight matrices
Wl. The hat notation ô(l−1) means that the output vector of the previous layer
o(l−1) is extended by an initial coordinate of value one, facilitating the bias
mechanism so that the first column of Wl contains the biases of neurons on
layer l. Finally, the notation F l(·) denotes the application of a function matrix
to a vector. For this study, the function matrices are diagonal, and they consist
solely of the traditional hyperbolic tangent activation function on hidden layers
and the identity mapping on the output layer. The reasoning behind this choice
is presented in [3]. The final output of the MLP resides in the output vector
oL. We use the notation N ({Wl})(x) = oL to denote the output of the above
iterative computation.

A model such as (1) is to be trained somehow. A usual way is to minimize an
error function, or cost function, computed over the available training data set.
The present work is based on the following cost function formulation:

J({Wl}) =
1

2N

N∑
i=1

∥∥N ({Wl})(xi)− yi

∥∥2
+ β

L∑
l=1

∑
(i,j)∈Il

1
2Sl

|Wl
i,j |2 (2)

for β ≥ 0. Here, the index set Il contains all other indices of the weight matrices
except the ones corresponding to the bias-vector (i.e., first column) of WL as
suggested by the test results in [3] (see also [5], Chapter 9). Sl is the number of
elements in the index set Il. This averaging divisor was not present in the earlier
works [3,4].

If we were to use only the first mean-squared-error term, and find a model near
the global optimum of that cost function, it is quite likely that the model would
overfit individual quirks of the training examples, and not be able to generalize
into unforeseen vectors. As seen from the formula, we have decided to make
experiments with the well-known method of adding a regularization term, with
a weight coefficient β called the regularization parameter [5]. The choice of the
weight decay formulation with a single coefficient is more thoroughly explained
and contrasted with early stopping in [3].
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We are aware of other alternative heuristic methods to overcome the overfit-
ting issue, such as network growing and pruning (or other ways of evolving the
architecture), and early stopping by validation [1]. In the future, we will look into
incorporating ideas from them, as well as from evolutionary and multiobjective
approaches such as those in [6,7,8]. For this paper though, we use a non-evolving,
fully connected MLP, and use the more traditional gradient-based training at
the core. Early stopping will be involved, in a way.

In Sect. 2 we motivate and describe a heuristic training algorithm that op-
erates using the ideas of cross-validation, brute-force parameter search, regular-
ization, and early stopping. To our knowledge, the method as such has not been
published before. In the crowded field of machine learning we can be mistaken, in
which case we hope this paper is still useful as a utility assessment and computa-
tional experiment on that specific heuristic. In Sect. 3 we show how the heuristic
operates in practice, using a benchmark classification problem, and in Sect. 4 we
recap, and make remarks of the current and future study of the method.

2 Tentative Proposal of a Heuristic for Finding a Good
Regularized MLP

We begin by describing the track of thoughts leading to the algorithm which is
then stated in pseudocode.

2.1 Underpinnings of the Heuristic

In essence, our basic idea is to shoot some random starting points into the weight
space, and try, by means of some extra control, to hit at least one location
that feels promising. Then, in the end, we take a more determined look in the
neighborhood of that location.

First of all, because we use local gradient-based optimization while the cost
function is known to be non-convex, we cannot avoid the fact that the result
depends on the starting point selection. In fact, the cost surface in MLP training
is known to be quite tricky for optimization (as a side note, in [9] the cost function
is visualized approximately, and several factors affecting the shape, including the
effect of weight decay, are pointed out and visualized). Because of this reasoning,
we introduce multiple starting points as the basis of the algorithm: as an outer
loop, we start many times from different random weights.

Another heuristic belief is that, because the cost function is tricky, perhaps
we should not be obliged to use the most robust optimization with guaranteed
convergence properties with “non-tricky” assumptions. In a way, we always “stop
early” before true convergence no matter how we decide when to stop. So, heuris-
tically thinking, we could maybe use a quick-and-dirty optimization that will go
towards the closest local optimum if it is easy, and more or less give up if it is not
easy – as long as it happens so fast that we can have many restarts. As a first
attempt, we imagine a short spirt of conjugate gradient optimization with loose
accuracy criterion or hard-limited iteration counts will create a desired kind of
local step forward.
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We need to be able to tell which encountered network is likely to be the
best. So, like in early stopping, we train the network using a training set for
some epochs further from its current state, and then pause for a moment to
do quality evaluation using a validation set. But we do a bit more at each of
these checkpoints: We change the value of β each time. In the beginning, we
set β to a relatively high value, which is known to pull weights towards zero,
inhibiting the saturation of neurons, among other virtues. Strong regularization
also smoothens the cost landscape, thus maybe accelerating the optimization in
the beginning.

Because the first steps are done with a high amount of regularization, the MLP
might automatically seek into a friendly position for the later steps, during which
the regularization level is diminished. On the other hand, there is also a danger
of underfitting; it was definitely not hard to experience this on the first day of
trial runs. This looks like a question to think about, and gain some more insight.

As the inner loop, we decrease β towards zero with a few logarithmic steps.
As a result, we expect the network to become a more aggressive classifier due
to some greater weights. Eventually it could start overfitting, if it is complex
enough. We refuse to make a guess about when overfitting occurs; instead of
ever stopping, we keep a record of (i) the best validation error so far, (ii) the
exact neural model, {Wl}L

l=1, that yielded the best result, and (iii) the β that
was used while arriving at the best result. Early stopping is unnecessary, because
we can always come back to the so-far best result. Early stopping would definitely
save time, but now we care more about generalization than training time.

It is assumed that after sufficiently many restarts, we end up with a reasonably
good network, and a reasonably good regularization coefficient. In the very end,
we use the whole original training set, and strict demands in accuracy to make
a final training session. We start the final optimization from the so-far best
network, using the so-far best regularization coefficient. This way we eventually
use the whole available data for training, but we have already incorporated
validation measures.

If we were to step the β’s with greater density, and with shorter iteration
limits, we would be approaching a multi-starting, “early-stopping” search with
a gradually decreasing penalty included in the cost function. But we see ours as
a different kind of algorithm, since the β stepping is so sparse. And instead of
guessing when to stop, we come back later to the sweetest looking spot. It is more
like “random multistart with a bit of guidance for each restart”. Unfortunately,
at this point we cannot report to have found a definitive sequence of β’s that
would work well regardless of what data set is used, so the stepping strategy
remains an open question. Other issues are addressed in Sect. 4.

2.2 Pseudocode

After verbosely describing the ideas and mainstays behind our algorithm, we
present our current, tentative proposal as the following pseudocode:

1. Split the original training set into pre-train and validation (half-and-half).
Decide a plan for successive betas to try; a basic choice is:
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beta_plan = [1e-0, 1e-0.5, 1e-1, 1e-1.5, ..., 1e-6]

Initialize tracking of best combination:

beta_best = undefined.

valE_best = Inf

W_best = undefined.

2. Execute the main loop:

For N_restarts times:

W = random weights

For each beta in beta_plan:

W = network trained further from current values,

using pre-train set, and current beta, loose accuracy.

valE_this = sum-squared-error on pre-validation set

If (valE_this < valE_best):

beta_best = beta

valE_best = valE_this

W_best = W

3. After all the N_restarts runs, reload the so-far best combination:

beta = beta_best

W = W_best

4. Train the final network using the full training data, starting from W_best,
using beta_best, tight accuracy demand, many iterations.

2.3 Gradient-Based Local Minimization

To train the MLP classifier further on each step of the algorithm we use a
fast gradient-based local minimization scheme based on the conjugate gradient
method. We recall from [3] the layer-wise matrix representation of the gradient
of Eq. (2):

∇Wl J({Wl}) =
1
N

N∑
i=1

ξl
i [ô(l−1)

i ]T +
β

Sl
W̃l ,

where

ξL
i = N ({Wl})(xi)− yi, (3)

ξl
i = Diag{(F l)

′
(Wl ô(l−1)

i )} (W(l+1)
1 )T ξ

(l+1)
i . (4)

In the formula, W(l+1)
1 denotes a matrix otherwise identical to W(l+1) but

with the first column, containing the bias values, removed. Furthermore, W̃l =
[0 WL

1 ] for l = L, and coincides with the whole matrix Wl for 1 ≤ l < L. This
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last detail is necessary because we exclude the output layer’s bias weights from
the regularization term in the formulation (2).

Assessments of optimization methodology is beyond the scope of this paper.
A comprehensive comparison to other training algorithms is being prepared and
planned to be published as a technical report; we refer to the author’s website
for the current research status.

3 Computational Experiments

We have found benchmark problems available in the UCI Machine Learning
Repository [10] to be useful. So far, we have run preliminary tests on the following
data set titles:

– Iris: classifying flowers; this is a small case that takes little time to compute
with, but on the other hand it could be too small for practical assessments.
Interesting cases could include for example a surplus 4-100-3 net, like the
one illustrated in [9].

– Wine: classifying wine cultivors; we have briefly tried 13-5-4-3 and 13-100-3
nets on this task; without artificial tampering this looks a bit too “easy” for
benchmarking.

– PenDigits: the pen digit task with different net architectures has been tried;
it is the only one to be present in this paper.

– Thyroid (ANN): the hypothyroid diagnosis task is being used, also with
different net architectures.

More data sets will be tried later. Results of the benchmarking are still indecisive,
and we postpone their presentation to a follow-up article. Nevertheless, we are
already able to show some graphics about how the heuristic is supposed to work.
Similar behaviour can be seen on most of the tried architectures and datasets,
but so far they need manual tweaking of the parameters.

One major goal of our heuristic is to make the obtained classification accu-
racy independent of the chosen ANN architecture (i.e., number of layers and
neurons), as long as the architecture is above some threshold level of complexity
to prevent underfitting. The regularization (found via our heuristic) is respon-
sible for the prevention of overfitting. For the demonstration presented in what
follows, we chose a network structure of 16-30-10, which means 16 input vari-
ables, 30 neurons on one hidden layer, and 10 outputs for binary encoding of
the base-10 digits to be recognized. Based on trials, even a smaller hidden layer
would work for this dataset. And, as said, anything reasonably more complex
should be usable with our heuristic.

3.1 Progression of the Heuristic

In Fig. 1 we can see how some observables change while the algorithm proceeds
over the betas. In the illustration, the succession of β’s is actually the 16 values
[ 12 , 10−1, 10−2, . . . , 10−7, 10−6, . . . , 10]. Each line in the drawing (replicated once
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Fig. 1. Progression of the heuristic on the PenDigits 16-30-10 case: As β gradually
decreases, and then increases again, the MLP passes a point where we believe it has
a good generalization capability. In the end, the final training continues from the best
location so-far, using the full training set and greater accuracy goal.

in each quadrant box) corresponds to one launch of a random initial MLP. The
horizontal axis contains the checkpoints after which the validation error is mea-
sured and β is updated. For Fig. 1 this was after each 100 epochs, summing up
to 1600 epochs for each restart. The vertical axes show how the measured value
changes from checkpoint to checkpoint.

In the top left box, the vertical axis shows the key measurable, the validation
error. From among all the runs, the final decision is made by remembering the
minimal value hit of the sum-of-squared errors (SSE) measure on the validation
set. It is hoped, and visually confirmed at least in the case of Fig. 1, that the
validation SSE reflects quite well the classification accuracy of the test set (which
is labeled “secret” in the image because the training algorithm may not use it
for any decisions). The secret true accuracy is shown in the lower left box.

On the upper right box, we show the validation accuracy; it is basically the
true functionality which may be different from the SSE measure. This is no secret
to the algorithm, if we should choose to use it as a measure.

Lastly, on the lower right, we show the sum of squares of the MLP’s neuronal
connection weights. The effect of regularization is evident, because in the test
run illustrated in Fig. 1 we let the β increase again after it touched the value
10−7. In fact, such a there-and-back plan for β’s could be a justifiable variation
of the proposed algorithm.

The data marker in the lower-left box shows that the test set accuracy was
96.4 % for the 13th selection (β = 0.01), for which the validation SSE was
minimal. For this individual, the model {W} and β got stored, and it can be
seen that the heuristic did a rather good job here.



Ideas about a Regularized MLP Classifier 39

3.2 Comparison to Early Stopping with a Constant Regularization
Coefficient

It is clear that the implementation of the algorithm is quite easy to turn into
a traditional early-stopping mechanism by imposing a low maximum iteration
limit for local optimization and setting the plan of β’s to a long series of con-
stant, or very little changing, values. For comparison, we ran the exact same
benchmark case as in Fig. 1 through such a stripped-down training with β = 0.
The progression of such algorithm is shown in Fig. 2. The validation error seems
to be getting smaller all the time, even though quite slowly. It is hard to tell
at which point of this slowing down is a proper time to stop the training. The
real-world test accuracy, which should be our secret goal, starts to deteriorate
quite soon for some restarts!

The scalings in Figs. 1 and 2 are the same, and we can observe that even
though slightly higher test accuracies are momentarily achieved in the simulated
early stopping scheme (Fig. 2), there is no clear indication of when to stop
training. The heuristic, shown in Fig. 1, on the other hand, provides a controlled
way of making such a decision automatically.

At this point, we have made too few benchmark runs to be able to make
conclusive statements based on evidence, and the depicted PenDigits case may
not be the most illustrative one. But here we have presented, with the preliminary
example that we have, one of our current research efforts. By visualizations and
experiments such as those demonstrated here, we hope to gain an understanding
of the mechanisms and potential heuristics to obtain better generalization for
the easy-to-build, efficient-to-use MLPs.
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Fig. 2. Progression with constant value of β = 0 for the PenDigits 16-30-10 case
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4 Discussion

We presented a tentative heuristic algorithm for training an MLP to perform
pattern classification. Regularization using a weight decay penalty is applied as
an attempt to provide generalization capability. The coefficient of the penalty
term is changed in a step-wise manner during the training process, and the best
combination is recorded to be used as the starting point of the final training
phase.

The proposed heuristic is easy to implement, provided that an implementation
of an MLP with weight decay cost formulation and a fast local gradient-based
optimization algorithm are available. At its current status, the heuristic is a bit
rough, and it has not yet been subjected to sufficient benchmark comparisons
with other methods. Benchmarking, and probably also improvements are due in
the future. Scientific interest is found in looking for justifiable evidence to support
or object the underlying ideas. So far, in our computational experiments, we have
had to adjust the parameters depending on the test case, which is not good for
a system in real use. More insight into the proposed method’s functioning is
therefore needed.

This is the first time we publish this algorithm that surfaces from our overall
research goal of non-linear classification of industrial data. The ideas are based
on previous research, documented in [3,4], and computational experiments per-
formed afterwards. A similar system is already working for a specific industrial
task, which gives us hope of generalizing the idea and explaining also its theo-
retical underpinnings in a useful way.

Looking into the future, the heuristic has to be compared more rigorously
against other methods, in terms of quality and computational performance.
There are many other ways to achieve generalization, briefly noted in the in-
troduction of this paper. It could also be meaningful to introduce some ele-
ments from evolutionary algorithms; after all, the MLP already “matures” in
our heuristic under varying environmental pressures, and we keep track of an
“elite” individual. Why not extend this to a small population, and experiment
with mutations and crossover. Also, interesting prospects could be found by
using a proper multiobjective optimization methodology.
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Abstract. The problem we address in this paper is that of finding effective and 
parsimonious patterns of connectivity in sparse associative memories. This 
problem must be addressed in real neuronal systems, so results in artificial sys-
tems could throw light on real systems.  We show that there are efficient pat-
terns of connectivity and that these patterns are effective in models with either 
spiking or non-spiking neurons.  This suggests that there may be some underly-
ing general principles governing good connectivity in such networks. 

Keywords: Associative Memory, Spiking Neural Network, Small World Net-
work, Connectivity. 

1   Introduction 

In earlier work [1-3] we have shown how the pattern of connectivity in sparsely con-
nected, associative memories influences the functionality of the networks. The nodes in 
our networks are given a position, either in a 1D or 2D space. It is then meaningful to 
talk about issues such as path length, clustering and other concepts familiar from the 
study of non-random graphs. We have found that networks with only local connec-
tivity do not perform well, as global computation is difficult, whereas random connec-
tivity gives good performance, albeit with a much greater amount of connection fiber. 
We, and others [3-5], have shown that small world patterns of connectivity can give 
good performance, with more economical use of resources. However our most efficient 
networks have been those with almost completely local connections [4]. 

In these experiments we have used large networks (up to 50,000 units) of simple 
threshold units with no signal delay between nodes.  The dynamics is therefore akin to 
a standard, sparse Hopfield network, although not identical, as we make no require-
ment for symmetry in connections. In the work presented here we take steps towards 
much more biologically plausible networks. Firstly we use artificial integrate and fire, 
spiking neurons and secondly we model signal propagation times according to the 
geometry of the model. Of course the dynamical behavior of the resulting network is 
much richer than that of the non-spiking network, but we are now able to investigate 
the generality of our previous results. Our main finding is that the relation between 
performance and connectivity in the spiking neural network is surprisingly similar to 
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that of the more abstract model.  This in turn suggests that there may be some general 
principles at work, which could be of relevance to the analysis of real neuronal  
networks.  

2   Models Examined 

Our basic model has a collection of artificial neurons arranged in a ring.  The distance 
between any pair of neurons is taken as the minimum number of steps, on the ring, to 
get between them. All our networks share two important features. Firstly the networks 
are regular, so that each neuron has k incoming connections. Secondly the networks 
are sparse, so that with a network of N units, k << N. 

With this configuration there are two extremes of connectivity. In a local network, 
or lattice, each node is connected to those nodes that are closest to it; such networks 
are known as cellular networks in the context of neural computation, where they are 
normally 2D lattices. Alternatively the network can have random connectivity, where 
the probability of any two nodes being connected is k/N, independently of their posi-
tion.  It has been established that whilst local networks have minimum wiring length, 
they perform poorly as associative memories: pattern correction is a global computa-
tion and local connectivity does not allow easy passage of information across the 
whole network [4]. Randomly connected networks, have very short characteristic path 
lengths (scaling with log N) and consequently pattern correction is much better, and in 
fact cannot be improved with any other architecture [4]. However, random networks 
use a lot of connecting fibre and this has encouraged the investigation of other types 
of connectivity: it is desirable to find patterns of connectivity that give performance 
comparable to random networks, but with more economical wiring. It has been estab-
lished that there are indeed such patterns of connectivity; in particular several  
researchers have shown that so-called small world [6] connectivity can give good 
performance. We have also shown, that in non-spiking networks, fairly tight Gaussian 
distributions of connectivity can give very parsimonious networks [2]. In this paper 
we extend our analysis of how the connectivity affects performance to the more com-
plex dynamics exhibited by networks of integrate and fire spiking neurons. 

2.1   Connectivity  

N artificial neurons are arranged in a 1-D space with periodic boundary conditions – 
they can be thought of as occupying a ring, see Figure 1. Each neuron has k incoming 
connections, and so the network is regular.  The reason for this restriction is given in 
the next section, when discussing the learning rule. The local network has each node 
connected to its k nearest neighbours, excluding itself (none of our networks has di-
rect self connectivity). Small world networks are constructed using the standard 
method introduced by Watts and Strogatz [6]. The local network is made progres-
sively more random by rewiring a fraction (p) of the connections to random locations. 
When p = 1 the local network is transformed into a random network.  
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Fig. 1. Units arranged in a simple one-dimensional ring. On the left the units have random 
connectivity and on the right they have local connectivity and some distal connections – a small 
world model. 

We also investigate networks with a Gaussian pattern of connectivity. Here the prob-
ability that any two nodes are connected falls as a Gaussian function of distance be-
tween the two nodes, see Figure 2. The shape of the Gaussian is parameterised by its 
standard deviation, σ. Such distributions are particularly interesting as connectivity 
between individual neurons in the mammalian cortex is thought to be similar [7], see 
Figure 2. 

 

Fig. 2. The probability of a connection between any pair of neurons in layer 3 of the rat visual 
cortex against cell separation. The horizontal axis is marked in µm. Taken from [7]. 

2.2   Learning 

Before the effect of connectivity can be empirically evaluated the networks must be 
trained.  The simplest approach would be to use the covariance weights of the stan-
dard Hopfield network (with or without clipping). This, however, is not a particularly 
good approach when the networks are sparse and non-symmetric [3]. A more effec-
tive method, in this case, is to use standard perceptron learning.  In this case, for a 
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given level of connectivity, optimal capacity and performance is obtained when the 
connectivity is regular, and hence our restriction to regular networks. 

The sets of training patterns used consist of random, bipolar or binary vectors, 
where the probability of any bit being on (+1) is 0.5. The learning process is: 
 
Begin with zero weights 
Repeat until all units are correct 

  Set state of network to one of the ξ p
 

  For each unit, i, in turn: 

   Calculate its net input hi
p
.  

   If ξ i
p = on and hi

p < T( ) or ξ i
p = off and hi

p > −T( ) 
   then change all the weights to unit i  
    according to: 

 

wij = wij +
ξ j

p

k
 when ξ i

p = on and hi
p < T( ) 

wij = wij −
ξ j

p

k
 when ξ i

p = off and hi
p > −T( ) 

The value ξ i
p = on denotes the ith bit of pattern p being +1

and the value ξ i
p = off denotes the value -1 or 0 according to the type of network

 

T is the learning threshold and here we set T = 10. 
 

For the non-spiking network we use the standard bipolar +1/-1 representation.  How-
ever for the spiking network we use 0/1 binary patterns, as these can then be easily 
mapped onto the presence or absence of spikes.   

2.3   Network Dynamics 

2.3.1   Non-spiking Network 
These networks use the standard asynchronous dynamics of the Hopfield network: 
units output +1 if their net input is positive and -1 if negative.  As the connectivity is 
not symmetrical there is no guarantee that the network will converge to a fixed point, 
but, in practice these networks normally exhibit straightforward dynamics [8].  How-
ever, if the network does not converge within 5000 epochs we take the network state 
at this point as the final state. 

2.3.2   Integrate and Fire Spiking Network 
The model uses a leaky integrate-and-fire spiking neuron which includes synaptic 
integration, conduction delays and external current charges.  The membrane potential 
(in volts), V, of each neuron in the network is set to 0 if no stimulation is presented, 
and is referred to as the membrane resting potential.  The neuron can be stimulated 
and change its potential by either receiving spikes from other connected neurons, or 
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by receiving an external current.  If the membrane potential of a neuron reaches a 
fixed firing threshold, VFIRE , the neuron emits a spike and the potential is reset to 
resting state (0mV) for a certain period (the refractory period).  During this period the 
neuron cannot fire another spike even if it receives very high stimulation.  Here the 
refractory period is set to a reasonable value of 3ms [9]. 

A spike that arrive at a synapse triggers a current, the density of this current (in 
Amperes per Farad), I ij t( ) (where i is the postsynaptic neuron and j is the presynaptic 

neuron), is given by: 

 

I ij t( )=
t − tarrive( )

τ
exp 1−

t − tarrive( )
τ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

where tarrive  is the time that a spike arrives at node i from node j

so that tarrive = tspike + delayij

 

The value of I ij t( ) will reach a peak τ  seconds (the synaptic time constant) after a 

spike arrives.  We set τ  to be 2ms. 
Two delay modes were used in the model.  The fixed delay mode gives each con-

nection a fixed 1ms delay. In the second mode, the delay of spikes (in ms) over a 
connection is defined by: delayij = dij

3 where dij  is the distance between the two 

nodes. This gives a rough mapping from a one dimensional ring structure to a more 
realistic three dimensional system.  For a network with 5000 units, the delay will vary 
between 1ms and about 14ms. 

The rate of change of membrane potential is defined by: 
dV

dt
= − V

τ m

+ ITOTAL . Here 

the first term represents the leak of current density and consequently a decrease in 
voltage in the neuron. The second term is the total current density entering the cell. It 
is calculated as the weighted sum of synaptic inputs and any external stimulation:  

ITOTAL = wijI jj
∑ + IEXTERNAL  

The Injection of External Currents 
The network requires an initial stimulation from external currents in order to trigger 
the first spikes. A simple current injection, which transforms a static binary pattern to 
a set of current densities is used. Given an input pattern, unit i receives an external 
current if it is on in that pattern, otherwise the unit receives no external current. Each 
external current has a density of 3A/F and is continually applied to the unit for the 
first 50ms of simulation. This mechanism guarantees that the first spiking pattern 
triggered in the network is identical to the input pattern. After the first spikes (about 7 
~ 8ms from the start of a simulation), both internal currents caused by spikes, and the 
external currents, affect the network dynamics. Spike activity continues after the re-
moval of external currents, as the internal currents caused by spike chains become the 
driving force. The network is then allowed to run for 500ms, before its final state is 
evaluated, as will be described in the next section. 
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3   Performance Measures 

The Effective Capacity (EC) [10] of a network is a measure of the maximum number 
of patterns that can be stored in the network with reasonable pattern correction still 
taking place.  In other words, it is a capacity measure that takes into account the dy-
namic ability of the network to perform pattern correction.  We take a fairly arbitrary 
definition of reasonable as the ability to correct the addition of 60% noise to within 
an overlap of 95% with the original fundamental memory. Varying these two percent-
age figures gives differing values for EC but the values with these settings are robust 
for comparison purposes. For large fully connected networks the EC value is about 
0.1 of the conventional capacity of the network, but for networks with sparse, struc-
tured connectivity EC is dependent upon the actual connectivity pattern.  

The Effective Capacity of a particular network is determined as follows: 

 
Initialise the number of patterns, P, to 0 
Repeat 

Increment P 
Create a training set of P random patterns 

 Train the network 
 For each pattern in the training set 
  Degrade the pattern randomly by adding 60% of noise 
        With this noisy pattern as start state, allow the network to converge 
        Calculate the overlap of the final network state with the 

original pattern 
 EndFor 
 Calculate the mean pattern overlap over all final states  
Until the mean pattern overlap is less than 95% 
The Effective Capacity is then P-1.  

 
The Effective Capacity of the network is therefore the highest pattern loading for 
which a 60% corrupted pattern has, after convergence, a mean overlap of 95% or 
greater with its original value. 

Of course this measure is simple to calculate for the network of non-spiking neu-
rons, but its implementation in the spiking network is not as straightforward, as we 
need to define exactly what is meant by overlap of the network state, a collection of 
spike events, with a stored pattern.  To this end we follow the method of Anishenko 
[4].  The state of any unit in the network is assumed to be encoded in its firing 
rate, ri t( ), as measured over a short time window (in our case 20ms).   The overlap of 

the network state and a binary pattern vector is then defined as the cosine of the angle 

between the pattern and the vector of firing rates: Oξ t( )=
ξ iri t( )

i
∑

ξ i
2

i
∑ ri

2 t( )
i

∑
. 
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4    Results 

We use two patterns of connectivity, small world and Gaussian in networks of 5000 
units, with each unit having 100 incoming connections.  In the non-spiking network 
this implies a theoretical maximum loading of up to 200 unbiased random patterns, 
although in practice the capacity is around 140 patterns.  For each type of network 
results are means over 10 runs.  Error bars are not shown, as they are so small as to be 
virtually invisible. 

4.1   Small World Networks 

We begin by giving the results of the small world networks, as these include the two 
extremes of local and random connectivity.  Here a local network was progressively 
rewired, in increments of p = 0.1, until a random network with p = 1 was reached. 

In Figure 3 the results for the non-spiking network, the spiking network with fixed 
signal propagation delay and the spiking network with cube root delay are given. At 
the left side of the graph the Effective Capacity of the networks with local connec-
tivity only is shown. All three networks show an EC value of about 20 patterns. At the 
right side of the graph can be seen the performance of completely rewired networks, a 
random graph. The performance in this case is much improved, ranging from 44 to 56 
patterns. The best performing network is the spiking network with fixed delays. To 
reiterate the implication of this: a local pattern of connectivity does not support good  
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Fig. 3. The Effective Capacity of three types of network: one learning rule, but varying dynam-
ics. Locally connected networks are transformed into random networks by progressive rewir-
ing. The networks are 5000 units with k = 100. 
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integration of information across the whole network, whereas random connectivity 
provides good global computation in these networks. As our earlier work has already 
indicated a rewiring rate of about 0.6 gives optimal performance in the non-spiking 
network. Interestingly the spiking networks continue to improve past this point. It is 
worth pointing out that none of the well performing networks can be properly de-
scribed as being small world networks, in the Watts and Strogatz [6] sense. They 
identified the small world regime at a rewiring level of only about 0.01, when path 
lengths have dropped, but clustering remains high. At p = 0.6 clustering has dropped 
to a level similar to a random network. 

There are two intriguing features of these results. Firstly it is apparent that the very 
simple non-spiking network acts as a reasonable predictor of the much more compli-
cated integrate and fire spiking network. Secondly the spiking networks, in some 
circumstances, perform better than their non-spiking cousins. It is not obvious to us 
why this should be the case. 

4.2   Gaussian Networks 

In this pattern of connectivity the probability of any two nodes being connected falls 
with a Gaussian function of their spatial separation.  The specific distribution is con-
trolled by σ.  In this experiment σ varies from 0.4k (40) and then in increments of 
0.2k (20) to k (100) and thereafter in multiples of k.  Remembering that with the size 
of the networks being 5000 units, the maximum separation between any two nodes is 
2500, so that a distribution with σ = 200, say, is very tight, relative to the size of the 
complete network. 

 

Fig. 4. The Effective Capacity of networks with connection probability following a Gaussian 
distribution of varying s. The networks are 5000 units with k = 100. 
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The results are shown in Figure 4. At the left hand side of the graph the initial net-
works have an Effective Capacity of 25-27 patterns.  These networks have very tight 
connectivity distributions, with most connections (~ 95%) made with the 80 units on 
either side.  This has given the network a small improvement on the local network, 
with connections made to all 50 units on each side.  All three types of network then 
show rapidly improving performance to about σ = 2k (200) – here the performance of 
the three networks is similar with an EC of about 42 patterns. Further widening of the 
connectivity does not bring much benefit to the non-spiking network; this is not sur-
prising as it is already almost at the performance level of a random network.  How-
ever both spiking networks continue to improve, passing an EC of 50 at a σ of 4k. 

5   Discussion 

In the work presented here we have endeavored to examine the performance of associative 
memory networks of spiking neurons, in relation to the connectivity in the network, and to 
compare this performance to the simpler Hopfield type associative memories. Our first 
finding is that the non-spiking networks provide a reasonably good prediction of the per-
formance of spiking networks with the same connectivity and weights. Moreover this 
prediction is both qualitative and quantitative. To the best of our knowledge this is the first 
study to make this direct comparison of these neural models.   

In one sense the similarity of the two models could be expected: both types of neu-
ron integrate their input and respond when this net input exceeds a firing threshold. 
However, in another sense it would not be anticipated. In the non-spiking network 
continuous time is not modeled. In the spiking model, however, time is an integral 
part of the process, with signal propagation delays, refractory periods, integration of 
inputs over time and encoding of information in spiking frequencies.   

Our second finding is related to the first result. In spiking neural networks local 
connectivity alone gives relatively poor performance, and increasing distal connec-
tivity improves the network. However, the most parsimonious use of resources is 
found when a fairly tight Gaussian distribution of connections is used. A good net-
work configuration to produce high effective capacity with relatively low wiring cost 
is a network with a distribution having a standard deviation of about 400 (in a net-
work of 5000 nodes and 100 connections per node). 

The spiking network with fixed delays performed slightly better than the network 
with delays varying with the length of the connecting fiber. However the difference 
was not pronounced, suggesting that associative memories are reasonably robust to 
this feature of their functionality. 

Finally we have found that in some circumstances the spiking model actually per-
forms better than the non-spiking version.  Further work is needed to analyse why this 
should be the case. 
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Abstract. Some enhancements and comments to approximation of 2D
functions in orthogonal basis are presented. This is a direct extension
of the results obtained in [2]. First of all we prove that a constant bias
extracted from the function contributes to the error decrease. We demon-
strate how to choose that bias prooving an appropriate theorem. Sec-
ondly we discuss how to select a 2D basis among orthonormal functions
to achieve minimum error for a fixed dimension of an approximation
space. Thirdly we prove that loss of orthonormality due to truncation
of the arguments range of the basis functions does not effect the overall
error of approximation and the formula for calculating of the expansion
coefficients remains the same. As an illustrative example, we show how
these enhanencements can be used.

1 Introduction

In this paper we consider several issues of 2D function approximation in Hilbert
space. For a fixed basis functions in a Hilbert space, there always exists the
best approximation. Contrary to many neural network schemes contemporar-
ily used, the approximation basis here, is chosen to be orthonormal. This gives
several implementation advantages [3]. First of all, the best approximation prop-
erty is achieved instantly and approximation learning phase is reduced to simple
calculation of the expansion coefficients. Any improvement contributing to the
decrease of error is done incrementally. Secondly approximation error is calcu-
lated and controlled in every approximation step. Thirdly, because calculations
are very simple, no searching methods, no matrix inversion, no even simple divi-
sion is necessary, the method is numerically efficient and robust. Quite easily one
can go for thousands of basis functions. As the result, the expansion coefficients
may represent well the original function. Such a representation usually requires
less space than the original data points. The original function could be recalled
by using again basis functions either in continuous or sampled form with any
desired sampling rate.

In [2] several enhancements to 1D orthogonal approximation were described.
Instead of approximating function f , it was suggested to approximate f − f0,
where f0 was a fixed chosen function. After approximation was done, f0 was
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added to the approximated f − f0. From approximation and data compression
point of view, this procedure makes sense if additional efforts put into repre-
sentation of f0 are compensated by reduction of the approximation error. The
second suggestion made there, was to calculate and collect excessive number of
basis functions and its expansion coefficients and select those only which con-
tribute the most to the approximation error reduction. The third problem which
was stated and discussed there, was the problem of loosing orthonormality prop-
erty by basis functions if the set IR of their arguments range was replaced by its
subset. When approximating basis is orthonormal, the expansion coefficients are
calculated easily. Otherwise these calculations are more complicated. However
it was proved there that when truncating the basis functions, despite of loss of
orthonormality, we might determined the expansion coefficients as before.

In this paper a generalization of the results of [2] for 2D space is presented
and discussed. First of all we demonstrate how to choose f0 function. Secondly
we discuss how to select a 2D basis among orthonormal functions to achieve
minimum error for a fixed dimension of approximation space. We consider it, but
some practical doubts of efficiency in 2D case occur. The third issue concerning
loss of basis orthonormality is also generalized for 2D. The 2D approximation is
demonstrated by using color picture approximation. We employ practically very
useful 2D Hermite basis.

This paper is organized as follows. In Section 2 basic facts about 2D approxi-
mation needed for later use are recalled. In Section 3 we present our main results
concerning bias extraction, basis functions selection and prove of correctness for
expansion coefficients calculation despite the lack of basis orthonormality. In
Section 4 some comments on relationship between neural networks, orthonormal
basis and Hermite functions are presented. In Section 5 certain practicalities
and an application of our improvements to the image approximation are demon-
strated and discussed. In Section 6 conclusions are drawn.

2 Approximation Framework for 2D Functions

In this Section selected facts on 2D function approximation useful for this paper
will be recalled for the subsequent use. Let us consider the following function

fn+1,m+1 =
n∑

i=0

m∑
j=0

wijgij , (1)

where gij ∈ G ⊂ H, and H is a Hilbert space H = (H,||.||), wij ∈ IR, i = 0, . . . , n,
.j = 0, ..., m.

For any function f from a Hilbert space H and a closed (finite dimensional)
subspace G ⊂ H with basis {g00, ..., gij,..., gnm} there exists a unique best ap-
proximation of f by elements of G ([4]). Let us denote it by gb. Because the
error of the best approximation is orthogonal to all elements of the approxima-
tion space f − gb⊥G, the coefficients wi may be calculated from the set of linear
equations
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〈gij , f − gb〉 = 0 for i = 0, ..., n, j = 0, ..., m (2)

where 〈., .〉 denotes inner product.
Formula (2) can also be written as〈

gij , f −
n∑

k=0

m∑
l=0

wklgkl

〉
= 〈gij , f〉 −

n∑
k=0

m∑
l=0

wkl 〈gij , gkl〉 = 0 (3)

for i = 0, ..., n, .j = 0, ..., m.

Now if 2D basis {e00, ..., eij,..., enm} is orthonormal i.e.

〈eij , ekl〉 =
{

1 if i = k and j = l
0 elsewhere

}
(4)

then
wij = 〈eij , f〉 (5)

Finally (1) will take the form

fn+1,m+1 =
n∑

i=0

m∑
j=0

〈eij , f〉 eij , (6)

The squared error, errorn+1,m+1 =< f − fn+1,m+1, f − fn+1,m+1 > of the best
approximation of a function f in the basis {e00, ..., eij,..., enm} is thus express-
ible by

||errorn+1,m+1 ||2 = ||f ||2 −
n∑

i=0

m∑
j=0

w2
ij . (7)

3 Main Results

3.1 Extracting of Bias

In this section our first enhancement is introduced. Let f be any function from a
Hilbert spaceH. Instead of approximating function f, we suggest to approximate
the function f − f0,where f0 ⊂ H is a known function. Later f0 is added to the
approximant of f − f0. Now a modification of (6) will be the following

ff0
n+1 = f0 +

n∑
i=0

m∑
j=0

< f − f0, eij > eij , (8)

Then approximation error will be expressed as

ef0
n = f − ff0

n+1 = f − f0 −
n∑

i=0

m∑
j=0

< f − f0, eij > eij ,

and similarly to (7) its squared norm
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||ef0
n+1||2 = ||f − f0||2 −

n∑
i=0

m∑
j=0

< f − f0, eij >2 (9)

Theorem 1. Let H be a Hilbert space of functions on a subset of R2 containing
the rectangular region D = [a1, a2]× [b1, b2], let f be a function from H, f ∈ H,
{e00, ..., eij , .. ., enm} be an orthonormal set in H, c be a constant c ∈ R. Let
f0 = c1D where 1D denotes a function of value 1 in the region D and 0 elsewhere,
and the approximation formula be the following

ff0
n+1 = f0 +

n∑
i=0

m∑
j=0

< f − f0, eij > eij

then the norm of the approximation error is minimized for c = c0 and

c0 =
< f, 1D > −∑n

i=0
∑m

j=0 < f, eij >< eij , 1D >

(a2 − a1)(b2 − b1)−
∑n

i=0
∑m

j=0 < eij , 1D >2 (10)

Proof. The squared error formula (9) could be expressed as follows ||ef0
n+1||2 =∣∣∣∣∣∣f − ff0

n+1

∣∣∣∣∣∣2 = ||f ||2 + ||f0||2− 2 < f, f0 > −∑n
i=0

∑m
j=0(〈f, eij〉 − 〈eij , f0〉)2 =

||f ||2+c2(a2−a1)(b2−b1)−2c < f, 1D > −∑n
i=0

∑m
j=0(〈f, eij〉2+c2 〈eij , 1D〉2−

2c 〈f, eij〉 〈eij , 1D〉). Now differentiating the squared error formula in respect of
c and equating it to zero one obtains (10).

Along the Theorem 1 we are suggesting a two step approximation. First f0 should
be calculated and then the function f − f0 will be approximated in a usual way.

Remark 1. One may notice that in many applications c0 of (10) could well be
approximated by

c0 � < f, 1D >

(a2 − a1)(b2 − b1)
(11)

The right hand side of (11) expresses the mean value of the approximated func-
tion f in the region D. A usual choice of D is such as an actual function f
arguments range.

3.2 Basis Selection

In a typically stated approximation problem there is a function to be approxi-
mated f and a basis {e00, ..., eij , ..., enm} of approximation. We are looking for
the function expansion coefficients. Because orthonormality of the basis, those
coefficients contribute directly to the approximation error decrease as shown in
(7). So one can calculate an excessive number of expansion coefficients and order
them in a descending sequence. Then using as many coefficients as needed for
the approximation, one may ensure the fastest decrease of error with respect
to the number of basis functions. A theoretical question might be stated. How
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many coefficients should initially be calculated as to achieve, as the result of or-
dering, N the most significant ones? This is similar problem as for 1D functions.
However for 2D case, the number of 1D components and then 2D approximating
functions is usually very large. Thus all selection methods are time and space
consuming and this enhancement for 2D system it is less attractive.

3.3 Truncated Basis

According to equation (3) and (5), the best approximation coefficients can easily
be calculated if the approximation basis is orthonormal. While implementing, ba-
sis functions are represented via their discrete arguments values being truncated
into a limited range of its arguments. Thus the basis represented in computer,
as a rule, looses its orthonormality property. However formula (5) for calculating
weights is still valid. More precisely this is stated in Proposition 1.

Proposition 1. Let H be a Hilbert space of functions on a subset of R2 con-
taining the rectangular region D = [a1, a2]× [b1, b2], {et

00, ..., e
t
ij , .. ., et

nm} be an
orthonormal set of functions in H, truncated to the region D, let f be a function
from H and f be zero outside of D then

wij =
〈
et

ij , f
〉
, for i = 0, ..., n, .j = 0, ..., m.

Proof. If basis is orthonormal then the best approximation coefficients are cal-
culated via wij = 〈eij , f〉 , for i = 0, ..., n, .j = 0, ..., m, but because f is being
nonzero only in the region D, thus 〈eij , f〉 =

〈
et

ij , f
〉
.

Remark 2. If a function to be approximated is defined over a limited range of its
argument, the orthonormal basis of approximation is truncated to that range as
well, then despite the loss of orthonormality, the best approximation is calculated
in the same easy way as in the non truncated case.

4 Neural Networks and Orthonormal Basis
Approximation

The great advantage of neural network based function approximation is the uni-
versal approximation architecture allowing any Rd function be approximated
with any desired accuracy. Even one-hidden-layer architecture with sufficient
number of nodes and an activation function selected from a wide class is appro-
priate for this task [5]. Neural networks are the approximators usually acting
in spaces with non-orthogonal, adaptively selected basis. Neural networks nodes
activation functions are the same for all the nodes.

Recently in several publications (see for instance [6], [7]) it was suggested to
use Hermite functions as activation functions in neural schemes. Novelty of this
approach is that contrary to the traditional neural architecture, every node in
the hidden layer has different activation function. It gains several advantages of
the Hermite functions and prove to be successful in real data classification tasks
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[6]. However, in such approach orthogonality of Hermite functions is not really
exploited.

Another opportunity is to look at Hermite functions as RBF functions and
adopt RBFN methods to the Hermite learning tasks. However among Hermite
functions properties what is really important, is that the Hermite functions are
orthonormal. In such case, the approximation is much simpler than in the case
of RBF algorithms. No searching methods are necessary.

Various orthonormal basis might be considered: generalized Fourier series,
Legendre, Laguerre and Hermite polynomials based, orthonormal wavelets etc.
Their particular features determine their usefulness and applications. Among
various types of orthonormal basis which might be used for approximation, the
Hermite functions draw special attention. A set of Hermite functions is natu-
rally attractive for various approximation, classification and data compression
tasks. The Hermite functions are well localized in time and frequency. They
are defined on the real numbers set IR. They can be recursively calculated. Ap-
proximating function coefficients are determined relatively easily to achieve the
best approximation property. Since Hermite functions are eigenfunctions of the
Fourier transform, the time and frequency spectra are simultaneously approxi-
mated. Each subsequent function extends frequency bandwidth within a limited
range of well concentrated energy; see for instance [1]. By introducing scaling
parameter we may control that bandwidth influencing at the same time the dy-
namic range of the input argument, till we strike a desirable balance. If Hermite
functions are generalized into two variables functions, they retain the same useful
properties.

5 Practicalities and Illustrative Example

5.1 2D Hermite Functions

In this Section we will describe some practicalities useful for implementation
and an illustrative example. The orthonormal basis chosen for implementation
is the Hermite basis. The approximated function expansion coefficients are easily
and independently calculated from (5). We will focus our attention to a space
of a great practical interest L2(−∞, +∞)× L2(−∞, +∞)with the inner product

defined < f(x, y), g(x, y) >=
+∞∫
−∞

+∞∫
−∞

f(x, y)g(x, y)dxdy. In such space a sequence

of linearly independent and bounded functions could be defined as follows

hij(x, y) = hi(x)hj(y), i = 0, ..., n, .j = 0, ..., m

where

hi(t) = cie
− t2

2 Hi(t); Hi(t) = (−1)iet2 di

dti
(e−t2); ci =

1
(2ii!

√
π)1/2 . (12)



58 B. Beliczynski

Fig. 1. 2D Hermite functions h01(x, y) (left) and h22(x, y) (right)

The polynomials Hi(t) are Hermite polynomials and the functions hi(t) are
Hermite functions [3]. According to (12) the first several Hermite functions could
be calculated

h0(t) =
1

π1/4 e−
t2
2 ; h1(t) =

1√
2π1/4

e−
t2
2 2t;

h2(t) =
1

2
√

2π1/4
e−

t2
2 (4t2 − 2); h3(t) =

1
4
√

3π1/4
e−

t2
2 (8t3 − 12t)

Selected plots of two 2D functions of the Hermite basis are shown in Fig.1.
Described here 2D Hermite functions are direct products of 1D Hermite func-

tions. The last could be evaluated from the direct formula (12). However for
large n, Hermite polynomials reach very large values and those calculations are
error prone. Another possibility for determining Hermite functions, which is nu-
merically better conditioned, is to use recursive formula (see for instance [1]).

If a function to be approximated is represented by a set of pairs {(ti, fi)}N
i=−N ,

in the range [−tmax, tmax] then starting from h0(t) and h1(t) one obtains the
Hermite basis and the expansion coefficients from (5).

If sampling is regular with sampling time denoted as T , then the inner product
in (5) could be approximated as follows

< f, eij >=

+∞∫
−∞

+∞∫
−∞

f(x, y)eij(x, y)dxdy ≈

N∑
k=−N

M∑
l=−M

f(xk, yl)eij(xk, yl)T 2

(13)
From engineering point of view, while approximating a function it is important
to meet the time and frequency requirements. These two domains interrelated
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via Fourier transform could be controlled by scaling parameter σ ∈ (0,∞). So if
one substitutes t := t

σ into (12) and modifies cn to ensure orthonormality, then

hn(t, σ) = cn,σe
− t2

2σ2
Hn(

t

σ
) where cn,σ =

1
(σ2nn!

√
π)1/2 (14)

and
hn(t, σ) =

1√
σ

hn(
t

σ
) and h̃n(ω, σ) =

√
σh̃n(σω) (15)

Note that hn as defined by (14) has two arguments whereas hi as defined by (12)
has one argument. These functions are related by (15). Described in this paper
2D approximation uses products of 1D Hermite functions, so those properties
are transferred.

5.2 An Illustrative Example of Approximation

In this section we will describe a 2D function approximation example. It will be
a simultaneous approximation of three functions in the form of an color image.
The color image was particularly chosen, because it is well defined, non-trivial
example of 2D function. Quality of approximation may well be visually asses,
apart from the rigorous error calculation.

The function is represented by 2272x1704x3≈3.8Mx3 data points and
is shown in Fig.2. For each color, the parameter c0 of (10) was determined
c0 = [133 137 140]T and f0 extracted from the function as stated in Theorem 1.
Then the number of Hermite functions in each direction were arbitrary selected

Fig. 2. The original image consisting of 2272x1704x3=3.8Mx3 data points
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Fig. 3. The approximating image recalled from 2D basis with 151 Hermite functions
in x direction and 114 functions in y direction and totally 17kx3 coefficients

as number data points divided by 15. This resulted with 151 Hermite functions
in x direction, 114 Hermite functions in y direction and total 17kx3 expansion
coefficients. The parameters σ in both directions were the following σx = 81.6
and σy = 70.4. The function was represented by its expansion coefficients. The
approximation basis could have been treated as continuous or sampled with any
sampling rates. In Fig.3 the approximating function is shown where the contin-
uous basis functions have been sampled with sampling time the same as for the
original image. Of course better approximation could have been achieved in the
expense of increasing number of basis functions.

Modification of the approximation equation as in (8) contributes to the error
decrease. Without modification, the average squared error per data point was
on the level 0.00707,but when the modification was applied as in Fig.3, the error
decreased to the level 0.00587, what means about 17% of improvement. The
differences were clearly seen on the picture. Further improvement could have be
achieved by selecting such Hermite functions which contribute the most to the
error decrease. If we consider this process from data compression point of view,
one also has to take into account the sequence of indices of Hermite functions
used in the basis. This additional data should be stored or transmitted as well
and such modification become less attractive.

6 Conclusions

We described some enhancements and one prove of correctness for the 2D or-
thonormal function based approximation. The results were proved in an abstract
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way and illustrated by an example of image approximation. These results were
immediate generalization of 1D case presented in [2]. Contrary to many neural
schemes, this 2D function approximation method is very efficient and numer-
ically robust. We have run approximation with several dozen thousand coeffi-
cients. Good numerical properties are due to orthogonal basis, recursive formula
for basis calculation and dispensing with searching methods.
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Abstract. In this paper, we investigate the use of artificial neural
networks in order to solve the Shortest Common Superstring Problem.
Concretely, the neural network used in this work is based on a multival-
ued model, MREM, very suitable for solving combinatorial optimization
problems. We describe the foundations of this neural model, and how it
can be implemented in the context of this problem, by taking advantage
of a better representation than in other models, which, in turn, con-
tributes to ease the computational dynamics of the model. Experimen-
tal results prove that our model outperforms other heuristic approaches
known from the specialized literature.

1 Introduction

Many problems in computational biology, such as DNA sequencing [1,2,3,4],
and in data compression [5,6], can be formulated as instances of the Shortest
Common Superstring Problem (SCSS).

For example, DNA sequencing consists in determining the correct sequence
of nucleotides in a DNA molecule. Nucleotides (adenine, cytosine, guanine and
thymine) are represented by the alphabet {a,c,g,t}. Currently, the nucleotides of
a DNA fragment can be directly determined in laboratories. Once the nucleotides
of all fragments have been determined, the sequence assembly problem aims at
reconstructing the original molecule from overlapping fragments. SCSS can be
viewed as an abstract representation of this particular task.

This problem is defined as follows: Given a set of strings P = {s1, . . . , sN},
the objective is to find the string S∗ of minimum length, such that, for all
i ∈ {1, . . . , N}, si ∈ P is a substring of S∗.

Finding such a superstring is known to be a NP-hard problem [7,8]. Further-
more, it is MAX-SNP-hard [9]. Arora, in [10] proved that problems in MAX-
SNP-hard do not admit polynomial time approximation schemes unless P=NP.

Among the approximation algorithms used to compute the shortest super-
string, we can find a greedy algorithm [9], which consists in merging pairs of
strings with maximum overlap, until a unique string is obtained, which is the
approximated solution.

This greedy approach is conjectured to be a 2-approximation algorithm [11],
meaning that, in the worst case, the solution provided by this method is twice
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as long as the optimal solution. However, Blum et al. [9] proved a factor of 4 for
this problem.

This greedy algorithm was further improved by Jiang [12] (within a factor
of 2 2

3 ) and later by Sweedyk [13] (obtaining a constant factor of 2.5), the best
result up-to-date. However, these algorithms are not easily implementable and,
in practice, the original greedy algorithm (reliable and fast), proposed in [9], is
preferred, as well as some of its variants.

In this work, we propose the use of a discrete neural network to solve SCSS
problem. In the recent years, a Hopfield-like discrete neural network [14] has
been presented to solve this problem. However, its use implies the correct fine-
tuning of some parameters. Another drawback of that model is that it needed
N2 neurons to represent the solution of the problem when the number of strings
to be merged is |P | = N .

The neural model proposed in this work is a generalization of Hopfield’s dis-
crete model [15], allowing the neurons to take any value in a discrete set. With
the help of a simple computational dynamics, this model is able to represent so-
lutions to this problem better than the previous neural approach, just by using
N neurons.

The multivalued MREM model has obtained very good results when applied
to other combinatorial optimization problems [16,17,18,19], guaranteeing the
convergence to local minima of the energy function.

The rest of this paper is structured as follows: in Sec. 2, we present a detailed
formulation of the SCSS problem. Later, in Sec. 3, the neural model MREM
is described, as well as the implementation of the computational dynamics to
solve the problem at hand. In Sec. 4, experimental results of applying our neural
model are shown, whereas in Sec. 5 some conclusions and remarks to this work
are presented.

2 Description of the Problem

Given an alphabet A, and a set of strings over the alphabet, P = {s1, . . . , sn}, the
Shortest Common Superstring Problem consists in finding a string S∗ containing
all strings in P as substrings and with minimum length.

Let us define the overlap si,j between strings si and sj (in this order), as the
string of maximum length (denoted by |si,j |) such that it is a suffix for si and a
prefix for sj .

The solution to SCSS can be represented as a permutation Π of numbers
{1, . . . , n}, meaning the order in which strings in S must be arranged to get the
solution string S∗ = SΠ .

Thus, the objective function to be minimized is:

|SΠ | = F (Π) =
n∑

i=1

|si| −
n−1∑
i=1

|sΠ(i),Π(i+1) | (1)
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where |s| denotes the length of string s. Note that sΠ(i),Π(i+1) is the overlap
between 2 consecutive strings in SΠ , corresponding to strings at positions Π(i)
and Π(i + 1).

The minimization of the total length of SΠ is here achieved by maximizing
the sum of the lengths of the respective overlaps in the corresponding order given
by permutation Π .

Note that the solution may not be unique:

Example. Let us consider the set of strings P = {agcct, acgcgt, cgtacg, tgatc,
gtgag} over the alphabet A = {a, c, g, t}. Then, S1 = cgtacgcgtgagcctgatc and
S2 = tgatcgtacgcgtgagcct are superstrings containing all strings in P , of equal
length.

3 The MREM Model

In this section, the fundamentals of the Multivalued REcurrent Model (MREM)
[20] are described. This discrete neural network is a generalization of Hopfield’s
model [21,15] and other binary and multivalued models, such as SOAR [22] and
MAREN [23].

3.1 Description of the Neural Network

Let us consider a recurrent neural network formed by N neurons, where the state
of each neuron i ∈ I = {1, . . . , N} is defined by its output vi taking values in
any finite set M = {m1, m2, . . . , mL}. This set does not need to be numerical.
For example, M = {red, green, blue} or M = {Sunday, Monday, . . . , Saturday}.

The vector V whose components are the corresponding neuron outputs, V =
(v1, v2, . . . , vN ), is called state vector. Associated to each state vector, an energy
function, similar to Hopfield’s, can be defined:

E(V ) = −1
2

N∑
i=1

N∑
j=1

wi,jf(vi, vj) +
N∑

i=1

θi(vi) (2)

where

– W = (wi,j) is the synaptic weight matrix, expressing the connection strength
between neurons.

– f : M×M→ R is the so-called similarity function, since f(vi, vj) measures
the similarity between the outputs of neurons i and j.

– θi : M→ R is the generalization of the biases θi ∈ R, present in Hopfield’s
model.

The aim of the network is to minimize the energy function given by Eq. (2),
i.e., to achieve a stable state corresponding to a local (global, when possible)
minimum of the energy function, which is usually identified with the objective
function of the problem to solve.
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The introduction of the similarity function f makes the network very versa-
tile and usually causes a better representation of the problem at hand, see, for
example, [24,18,25,26]. It leads to a better representation of problems than other
multivalued models, as SOAR and MAREN [23,22], since in those models most
of the information enclosed in the multivalued representation is lost by the use
of the signum function that only produces values in {−1, 0, 1}.

Many computational dynamics can be defined for this model, that is, several
neuron updating schemes are available provided the versatility of the network.

Usually, neuron updates are made by taking into consideration the input to the
network, called synaptic potential. This potential is computed as U = −ΔE, that
is, the opposite of the energy increase produced by the studied neuron update.
Thus, if E is the current energy value, and E′ is the energy value associated to
the proposed update, then U = E − E′.

If several possible updates {V1, . . . , VK} are studied, consider Uj = E − E′
j ,

where E′
j is the energy value associated to the possible new state Vj . In this

case, the update is given by the new state achieving the maximum potential
u = Uj = max{U1, . . . , UK}.

If u > 0, then the update reduces the value of the energy function. Otherwise,
since no improvement is obtained by that update, the network does not perform
the action. In this situation, the network is said to have converged to a stable state.

Stable states correspond to local minima of the energy function, in the sense
that, by using the given dynamics, it is not possible to achieve a further im-
provement of the solution.

3.2 MREM Applied to SCSS

Note that a solution to SCSS problem can be represented as a permutation of
the strings, meaning the order in which strings have to be merged to obtain that
solution.

Then, we define feasible state vectors as those representing permutations of
{1, . . . , n}. Thus, any feasible state vector V will represent an ordering of the
strings in S. vi = k means that sk is placed in the i-th place in the solution
string sV .

It can be observed that the objective function in Eq. (1) for SCSS consists of
two terms. The first one,

∑
i |si| is fixed, and therefore it is not important at the

optimization stage.
The other term,−∑n−1

i=1 |sΠ(i),Π(i+1)|, can be expressed as the energy function
of the MREM model.

By comparing the objective function in Eq. (1) and the energy function of the
neural model, in Eq. (2), we can define:

wi,j =
{

2, if j = i + 1, i = 1, . . . , n− 1
0, otherwise

f(x, y) = |sx,y|
θi(x) = 0

to obtain the desired identification between both functions.
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The computational dynamics of this model is based on that the network must
remain in a feasible state along iterations. This is the reason for not needing
the fine-tuning of parameters, usually present in Hopfield’s energy function, as
penalty terms for unsatisfied constraints. Furthermore, it is an easily imple-
mentable dynamics, and it can be described as follows:

1. Select a random initial feasible state for the network.
2. The net sequentially selects 2 neurons m and p such that 1 ≤ m < p ≤ N .

Then, the current solution V can be expressed as the concatenation of 3
subsequences, represented by 3 vectors a = (v1, . . . , vm), b = (vm+1, . . . , vp)
and c = (vp+1, . . . , vN ).

3. The network studies the updates to different configurations: acb, bac, bca,
cab, cba, where

acb = (v1, . . . , vm, vp+1, . . . , vN , vm+1, . . . , vp)

bac = (vm+1, . . . , vp, v1, . . . , vm, vp+1, . . . , vN )

bca = (vm+1, . . . , vp, vp+1, . . . , vN , v1, . . . , vm)

cab = (vp+1, . . . , vN , v1, . . . , vm, vm+1, . . . , vp)

cba = (vp+1, . . . , vN , vm+1, . . . , vp, v1, . . . , vm)

by computing the corresponding synaptic potentials:

Uabc = 0 (since there is no change in state vector)

Uacb = |svm,vp+1 |+ |svN ,vm+1 | − |svm,vm+1 | − |svp,vp+1|
Ubac = |svp,v1 |+ |svm,vp+1 | − |svm,vm+1 | − |svp,vp+1|

Ubca = |svp,vp+1 |+ |svN ,v1 | − |svm,vm+1 | − |svp,vp+1 | = |svN ,v1 | − |svm,vm+1 |
Ucab = |svN ,v1 |+ |svm,vm+1 | − |svm,vm+1 | − |svp,vp+1 | = |svN ,v1 | − |svp,vp+1 |

Ucba = |svN ,vm+1 |+ |svp,v1 | − |svm,vm+1 | − |svp,vp+1 |
These expressions are derived from U = E − E′, being E the energy as-
sociated to the current network state, and E′ the energy associated to the
corresponding update.

4. The next network configuration is the one decreasing most the energy func-
tion value (equivalently, achieving the greatest potential): if Uijk is the
maximum in {Uabc, Uacb, Ubac, Ubca, Ucab, Ucba}, then the next state is ijk ∈
{abc, acb, bac, bca, cab, cba}. If ijk = abc, there is no change in the state
vector.

5. Repeat steps 2 - 4 until convergence is detected, that is, all pairs of neurons
have been studied, and no change is done in the configuration of the network
(state vector).

Once the network converges, the stable state represents a minimum of the
energy function which, in our case, is equivalent to a maximum of the aggregate
overlap length in the resulting string, given by SV .



Shortest Common Superstring Problem with Discrete Neural Networks 67

Algorithm 1. Greedy Heuristic
Data: Set P = {s1, . . . , sN} of strings.
Result: A string s such that every si is a substring of s (intended to have

minimal length).
begin

while |P | > 1 do
Select two strings a, b ∈ P with maximal overlap
Merge a and b into a new string c
P ←− (P \ {a, b}) ∪ {c}

return the unique string s ∈ P .
end

4 Experimental Results

In this section, we compare the efficiency of our neural model MREM to the
greedy heuristic presented in [9], which was conjectured to be a 2-approximation
algorithm. This greedy heuristic is shown in Algorithm 1.

Two experiments have been performed with these algorithms. The first one
consisted on find the SCSS of a set of strings of fixed length, whereas the second
allowed to use strings of variable length.

Fixed length string datasets were randomly built according to 3 parameters:
string length ({6,8,10}), number of words in P (|P | ∈ {25, 50, 100}) and number
of symbols in the alphabet (|A| ∈ {2, 4, 6, 8}). For each combination of these
parameters, 10 instances were built (that is, 10 sets P ), and the algorithms
were independently run 100 times to obtain the superstring length results given
in Table 1. Note that the greedy algorithm always selected the same solution,
whereas MREM achieves different results depending on its random initial state,
what helps avoiding local optima of the energy function.

In the last two columns of the tables, we present the improvement made by
MREM with respect to the greedy algorithm (in %). Positive values indicate
that MREM performed better than the greedy. Note that our neural approach
outperformed the greedy algorithm in most cases on average, and always on best
result.

For variable length string datasets, the definition of |P | and |A| remain the
same, but string length was randomly selected in {2, . . . , 10}. Thus, for each
value of |A|, |P | strings of length between 2 and 10, formed the set P . As before,
for each combination of the parameters, 10 sets P were built and 100 independent
executions were performed with each one. Superstring length results are given
in Table 2. Note that, in all cases, MREM outperformed the greedy algorithm,
obtaining shorter superstrings, not only on minimal length, but also on average
length.

There are 2 behaviors that can be seen on these tables:

– As the number |A| of symbols in the alphabet increases (for a fixed number
of strings, |P |), MREM and the greedy algorithm tend to obtain more similar
results, reducing the improvement made by MREM over the latter.
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Table 1. Average and minimum superstring length comparison between our neural
proposal and the greedy algorithm, for fixed length strings

MREM Greedy Improvement
Length |P | |A| Average Best Time (sec.) Best Time (sec.) Average Best

6 25 2 67.169 63.1 0.0216 91.5 0.0256 26.59 31.04
4 106.065 103.1 0.0211 113 0.0234 6.14 8.76
6 121.516 118.3 0.0217 120.1 0.0239 -1.18 1.5
8 126.033 123.7 0.0209 124.1 0.0237 -1.56 0.32

50 2 100.276 92.9 0.1442 168.7 0.091 40.56 44.93
4 195.324 189 0.1342 209.5 0.0917 6.77 9.79
6 225.096 219.8 0.1336 236 0.0912 4.62 6.86
8 238.884 234 0.1447 249.2 0.092 4.14 6.1

100 2 146.332 136.3 0.9982 326.7 0.4456 55.21 58.28
4 362.473 352.2 0.7874 383.5 0.4063 5.48 8.16
6 418.712 409.1 0.8418 424.1 0.4063 1.27 3.54
8 451.846 443.8 0.8881 458 0.4118 1.34 3.1

8 25 2 112.69 108.1 0.0251 127.9 0.0272 11.89 15.48
4 158.908 155.7 0.0204 158.9 0.257 -0.01 2.01
6 170.554 167.8 0.0221 174.3 0.025 2.15 3.73
8 178.423 176.1 0.0206 179.6 0.0258 0.66 1.95

50 2 180.117 171.6 0.149 237.6 0.0954 24.19 27.78
4 291.753 284.8 0.1399 305.1 0.0961 4.37 6.65
6 323.997 318.6 0.1391 332.1 0.0965 2.44 4.07
8 339.505 334.9 0.1338 346.1 0.0944 1.91 3.24

100 2 287.94 275 0.9774 439.7 0.4076 34.51 37.46
4 547.072 536.8 0.8547 567.1 0.414 3.53 5.34
6 617.981 609.9 0.8469 633.1 0.4253 2.39 3.66
8 650.429 642.8 0.9 656.7 0.4273 0.95 2.12

10 25 2 155.939 151 0.0234 176.7 0.0258 11.75 14.54
4 207.935 204.6 0.0219 215.3 0.0259 3.42 4.97
6 220.99 218.2 0.0207 220 0.0261 -0.45 0.82
8 226.615 224.4 0.0206 229.6 0.0262 1.3 2.26

50 2 284.153 274 0.1614 318.6 0.0984 10.81 14
4 396.893 390.5 0.1396 399 0.0986 0.53 2.13
6 425.848 420.9 0.134 432.4 0.0995 1.52 2.66
8 439.814 434.8 0.1449 445.6 0.0999 1.3 2.42

100 2 465.955 450.5 0.955 581.9 0.4389 19.93 22.58
4 740.486 729.7 0.8943 770.4 0.428 3.88 5.28
6 818.364 809.9 0.8752 834.6 0.4318 1.95 2.96
8 853.481 845.4 0.8965 867 0.4371 1.56 2.49

– As the number of strings in P increases (for fixed number |A|), MREM
improves its relative performance with respect to the greedy algorithm. Thus,
in real-world problems, MREM may achieve better results than the greedy
algorithm.
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Table 2. Average and minimum superstring length comparison between our neural
proposal and the greedy algorithm, for variable length strings

MREM Greedy Improvement
|P | |A| Average Best Time (sec.) Best Time (sec.) Average Best
25 2 66.004 62.2 0.0189 77.3 0.0293 14.61 19.53
25 4 101.112 98.5 0.0186 105.7 0.024 4.34 6.81
25 6 109.799 107.3 0.0204 110.4 0.0238 0.54 2.81
25 8 109.829 107.5 0.0216 111.5 0.0238 1.5 3.59
50 2 117.959 110.4 0.1303 142.9 0.0929 17.45 22.74
50 4 181.495 176.1 0.1302 189.2 0.0935 4.07 6.92
50 6 198.456 192.9 0.1382 210.1 0.0972 5.54 8.19
50 8 225.345 220.8 0.1448 230.7 0.0954 2.32 4.29
100 2 201.824 190.8 0.9567 253.8 0.436 20.48 24.82
100 4 351.522 342 0.8342 382 0.4214 7.98 10.47
100 6 388.724 380.6 0.8386 405.2 0.4205 4.07 6.07
100 8 421.852 414.4 0.8033 435.6 0.4248 3.16 4.87

5 Conclusions and Future Work

In this work, a neural model, MREM, is presented to solve the Shortest Common
Superstring problem. This problem arises in real-world applications coming from
molecular genetics (DNA sequencing) and data compression.

The neural model MREM is a generalization of Hopfield’s model. Its main fea-
ture is that neuron states can be selected from a discrete set M = {m1, . . . , mL},
instead of taking value in {-1,1} or {0,1}. This fact makes the network represent
combinatorial optimization problems more easily.

A neural dynamics has been developed and implemented to solve the problem
at hand, taking advantage of the representation of a solution as a permutation
of the indices of the strings to be merged.

We have tested our approach by comparing it to a greedy algorithm, well-
known from the specialized literature. In our results, MREM proved to outper-
form the greedy algorithm in most cases. It may be of great help in tackling
real-world SCSS instances.

As a future work, we plan to:

– Develop a parallel version of the computational dynamics presented in this
paper, in order to reduce the computational time used to achieve the solution.

– Introduce some mechanism to avoid local optima of the objective function.
The hybridization of MREM with other stochastic techniques (Genetic Al-
gorithms, Simulated Annealing) may be helpful.

– Make a theoretical study on the behavior of this new neural algorithm, in
order to confirm the improvement over the greedy algorithm.



70 D. López-Rodŕıguez and E. Mérida-Casermeiro

Acknowledgements

This work is partially supported by Junta de Andalućıa (Spain) under contract
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Abstract. Feedforward neural networks have been established as versatile tools 
for nonlinear black-box modeling, but in many data-mining tasks the choice of 
relevant inputs and network complexity is still a major challenge. Statistical 
tests for detecting relations between inputs and outputs are largely based on 
linear theory, and laborious retraining combined with the risk of getting stuck in 
local minima make the application of exhaustive search through all possible 
network configurations impossible but for toy problems. This paper proposes a 
systematic method to tackle the problem where an output shall be estimated on 
the basis of a (large) set of potential inputs. Feedforward neural networks of 
multi-layer perceptron type are used in the three-stage modeling approach: 
First, starting from sufficiently large networks an efficient pruning method is 
applied to detect a pool of potential model candidates. Next, the Akaike weights 
are used as to select the actual Kullback-Leibler best models in the pool. Third, 
the hidden nodes of these networks are available for the final network, where 
mixed-integer linear programming is applied to find the optimal combination of 
M hidden nodes, and the corresponding upper-layer weights. The procedure 
outlined is demonstrated to yield parsimonious models for a nonlinear 
benchmark problem, and to detect the relevant inputs. 

Keywords: Non-linear black-box modeling, Neural networks, Information 
criterion, Structural and parametric optimization. 

1   Introduction 

In many complex modeling problems encountered in engineering and business, there 
is a large number of variables that potentially affect the “dependent” variable(s), and 
the underlying relations between the variables are often poorly known. Neural 
network have become popular data-driven modeling tools due to their ability to 
express arbitrary nonlinear relations, but the choices of inputs and network structure 
still constitute major challenges when real-world problems are tackled. This is due to 
the requirement to restrict the number of network parameters (weights) to avoid over-
fitting, which is a serious problem when data with noise is studied. A simple trial-and-
error approach, where different inputs are tested with networks of different 
complexity, is clearly a tedious and inefficient procedure that does not work on large 
problems: Many practical data-mining problems are also of a size that does not allow 
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for an exhaustive search among all possible models, keeping in mind the convergence 
problems that may be encountered in estimating the parameters of neural networks. 

The problem has been tackled mainly by two techniques that can be termed 
constructive or destructive. In constructive methods (e.g., [1-2]) a small network is 
allowed to grow according to some criteria until it provides a reasonable solution to 
the problem at hand. By contrast, in destructive or pruning approaches (e.g., [3-5]), 
the connections or hidden nodes of a large network are gradually removed until the 
point is reached when further pruning proves detrimental for the network 
performance. Methods have also been proposed where both approaches have been 
used [6]. Even though these methods may lead to parsimonious models, they are often 
very sensitive to the noise-to-signal ratio and, as a rule, also require laborious 
retraining, which may still give rise to results sensitive to the successful convergence 
of the training, since only one network at a time is manipulated. In more recently 
reported efforts, multiple networks have been entertained, e.g., populations in genetic 
algorithms, in a simultaneous optimization of weights and network structure [7-10]. 
Still, the stochastic nature of these search methods may leave interesting model 
candidates unexplored and the fine-tuning of the weights can also be a problem. 

The present paper outlines a method that tackles the problem of finding a 
(nonlinear) model on the basis of a large number of potential inputs. Feedforward 
neural networks are used as models, and special attention is paid to the detection of 
hidden nodes appropriately connected to relevant inputs. Starting from sufficiently 
large networks a large number of runs with an efficient pruning algorithm is applied 
to produce promising models capturing the underlying input-output relationships. The 
best of these models are selected on the basis of the Akaike weights, and the hidden 
nodes of the selected models, together with their (sparse) input connections, are made 
available for the final model candidates. Mixed-integer linear programming (MILP) is 
applied to optimize the upper-layer weights and the selection of the most important 
hidden nodes for building a final model, gradually increasing its complexity 
(expressed in terms of numbers of hidden nodes). The next section presents the steps 
of the method, while the performance of it on a test problem is illustrated in Section 3. 
The last section concludes the paper with a brief discussion. 

2   The Method 

2.1   Pruning Method 

The pruning algorithm is based on feedforward neural networks of multi-layer 
perceptron type with a single layer of hidden nonlinear units connected to N inputs x 
(weight matrix W) and to a single linear output node y (weight vector v). If the 
outputs of the hidden nodes are known, v can be determined by matrix inversion. The 
algorithm starts with a random W and equates each element in this matrix, in turn, to 
zero, determines the optimal upper-layer weights and the corresponding value of the 

objective function, 
2

2
ŷy −=ε /n, where n is the number of observations (=dim(y)). 

It detects the connection which at deletion yields the smallest objective function, 
permanently equates the corresponding weight in W to zero, and repeats the 
procedure. For more details, the readers are referred to refs. [11-13]. 
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In order to determine the point where enough connections have been removed, we 
apply the Akaike information criterion (AIC) [14], modified for a small-sample bias 
adjustment [15] 
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The index is calculated during the pruning and the network corresponding to the 
minimum AICc value is selected to a pool of promising networks.  

2.2   Model Selection within the Pool 

Since similar networks may appear in the pool, and also some rather poor models (due 
to the effect of the random initialization of the lower-layer weights prior to the 
pruning step), an evaluation of the networks in the pool should be made, retaining 
only the best models. Therefore, the minimum value of the Akaike criterion among 
the R models in the pool, AICc,min, was determined. The likelihood of a model gi on 
the given data X is [16] 

( ) ( )2/exp ii XgL Δ−∝  (2) 

with 

.min,c,c AICAIC ii −=Δ  (3) 

A relative likelihood can be defined by normalization 
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where ωi is called the Akaike weight, and considered an evidence ratio for the fact 
that model i is the actual Kullback-Leibler best model amongst the ones available in 
the set. [16] The networks with an Akaike weight value exceeding a threshold can be 
retained. 

2.3   Selection of Hidden Nodes and Upper-Layer Weights in the Final Model 

As the last step of the algorithm, the hidden nodes of the remaining networks, with 
their input connections and weights, are considered central building blocks to be 
optimally assembled in the final model. The determination of the best combinations of 
these hidden nodes, where the total number of included hidden nodes, M, is varied 
from one to a sufficiently large value, Mmax, is done by solving mixed-integer linear 
programming problems (MILP). The MILP problems, which are solved with respect 
to which nodes to select and the upper-layer weights, are based on a linearization of a 
problem minimizing ε. Since the problem is quadratic it can easily be represented 
with a suitable set of linear under-estimators, while the presence of each hidden node 
in the final optimal network is identified with a binary variable.  
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3   Illustrative Example 

A test function [11] with a three-dimensional input (N = 3) is used to illustrate the 
performance of the method 

ηbxxxaxxxay ++−++= )5.0)(1()5.0( 2
33221

2
1  (5) 

This function was designed to yield a varying and nonlinear dependence between the 
inputs and the output for different values of the parameter a ∈ (0,1): The output is 
independent of  x3 for a = 1, independent of x1 for a = 0, while for 0 < a < 1 it depends 
on all three input variables. The parameter b controls the level of noise in the model. 
All inputs as well as the noise term were generated as normally distributed random 
variables with zero mean and unit variance, i.e., η, xi = N (0,1). Even though it is 
usually advantageous to normalize the inputs and outputs before a data-driven 
modeling effort, it was decided not to do so in the present example, because of the 
problems associated with interpreting the results in terms of final residual levels.  

The method was evaluated on 400 data points for different degrees of complexity 
of the input-output relation by using a = 0.1, 0.5, or 0.9 with either lower (b = 0.05) or 
higher (b = 0.20) noise level. The pruning method was executed from different 
random lower-layer weight matrixes with 15 hidden nodes, yielding 40 smaller 
sparsely connected networks with 12-15 remaining hidden nodes where AICc 
corresponded to a minimum. These networks were moved to the pool, and the hidden 
nodes with their lower-layer connections of those of them for which ωi > 0.1 (cf. Eq. 
(4)) were collected into the final network. As the last stage of the algorithm, a final 
network model was determined with a step-wise increase of complexity for M = 
1…15 hidden nodes, where for every case the most advantageous combination of M 
hidden nodes was determined by solving a MILP problem. 

Figure 1 presents the performance of the final model candidates with growing 
number of hidden nodes for the low-noise (b = 0.05, upper panel) and high-noise (b = 
0.20, lower panel) cases. The following conclusions can be drawn:  

The cases with a = 0.1 and a = 0.9 show similar behavior in both figures 
(excluding the excursion in Fig. 1b for a = 0.9 and 3-5 hidden nodes): This is 
expected due to the symmetry of the data with respect to the inputs x1 and x3 (cf. Eq. 
(5)). The case with a = 0.5, in turn, is seen to require more hidden nodes for achieving 
a model with a given error, ε; this agrees with the higher complexity of this model, 
where all three inputs are important. This case also shows the highest residuals for 
models of high complexity. A general observation is that models with 6-8 hidden 
nodes are appropriate for capturing the underlying dependence between the inputs and 
output.  

Another interesting way of analyzing the result is to study the occurrence of the 
three inputs in the optimal models of different complexity. Figure 2 shows for a = 
0.10, 0.50 and 0.90, with b = 0.05 (Fig. 2a) and b = 0.20 (Fig. 2a) the ratio of 
connections from the hidden nodes to given inputs and the total number of connection 
from the hidden nodes to the inputs, using the symbols  for x1,  for x2 and  for x3. 
The top panel of Fig. 2a shows that the only input is x3 for networks with one or two 
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hidden nodes, and that x1 is not included among the inputs until the eight hidden node 
is incorporated. A similar behavior is seen in the bottom panel of the figure, but now 
with interchanged x1 ( ) and x3 ( ). The occurrence of the second input, x2, follows a 
somewhat more complicated pattern due to its role in both parts of Eq. (5), and this 
variable is present in all models with three or more hidden nodes. In summary, the 
method has successfully detected the relevant input variables. 

As for the effect of noise, it may be concluded that the results are comparatively 
insensitive to the noise levels, which indicates that the method has been successful in 
capturing the underlying input-output mapping of the function. However, tests on data 
with smaller sample size are still needed to verify this statement, as well as an 
evaluation on real-world problems. 
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Fig. 1. Evolution of the error of the final model as functions of the number of hidden nodes. a) 
Low noise level. b) High noise level. The values of a is given in the legends and b above the 
panels (cf. Eq. (5)). 
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Fig. 2. Share si of connections to input xi in final models of growing number of hidden nodes 
for a = 0.10, 0.50 and 0.90. a) Low noise level, b =0.05, b) High noise level, b = 0.20. 

4   Conclusions 

An algorithm for automatic data-driven generation of nonlinear models has been 
proposed. In a pruning step, several neural models with a single layer of sigmoid units 
are evolved by discarding unnecessary lower-layer connections using a statistical 
criterion for determining the stopping point, where parsimonious models remain. 
These networks are collected in a pool, and a statistical criterion is applied to select 
the best ones. Finally, the hidden nodes of the selected networks are used as building 
blocks of the final model, and MILP is applied to simultaneously select the hidden 
nodes and train their upper-layer weights for gradually increasing network size. The 
method has been illustrated on a test problem where the number of relevant inputs, the 
nonlinearity as well as the signal-to-noise level can be varied, demonstrating the 
method’s ability to detect relevant inputs and to tackle the bias-variance  
dilemma [17]. 
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In forthcoming work, the method will be applied to real-world problems, where the 
relevant inputs and their influence on the output variable(s) will be detected on the 
basis of large data sets from the fields of engineering and business. Future efforts will 
also be geared towards developing the criteria for how the final model complexity 
shall be determined. 
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Abstract. This paper discusses a Model Predictive Control (MPC)
structure for economic optimisation of nonlinear technological processes.
It contains two parts: an MPC economic optimiser/constraint governor
and an unconstrained MPC algorithm. Two neural models are used: a
dynamic one for control and a steady-state one for economic optimisa-
tion. Both models are linearised on-line. As a result, an easy to solve
on-line one quadratic programming problem is formulated. Unlike the
classical multilayer control system structure, the necessity of repeating
two nonlinear optimisation problems at each sampling instant is avoided.

1 Introduction

Model Predictive Control (MPC) algorithms based on linear models have
been successfully used for years in advanced large-scale industrial applica-
tions [11,13,15]. It is mainly because MPC algorithms have a unique ability
to take into account constraints imposed on process inputs (manipulated vari-
ables) and outputs (controlled variables) which decide on quality, economic ef-
ficiency and safety. Moreover, MPC is very efficient in multivariable process
control. To maximise economic gains MPC cooperates with economic optimisa-
tion [1,2,4,7,8,9,14,15].

In case of nonlinear processes it is justified to use neural models [5] for
economic optimisation and control [6,8,9,10,12,15,16] rather than fundamental
models. Fundamental models are usually not suitable for on-line control and
optimisation as they are very complicated and may lead to numerical problems
(ill-conditioning, stiffness, etc.). Neural models can be efficiently used on-line
in MPC and economic optimisation because they have excellent approximation
abilities, a small number of parameters and a simple structure. Moreover, neural
models directly describe input-output relations of process variables, complicated
systems of algebraic and differential equations do not have to be solved on-line.

The way MPC cooperates with economic optimisation is very important be-
cause it determines not only possible economic profits but also computational
efficiency. In the classical multilayer control system structure [4,15] the control
layer keeps the process at given operating points and the optimisation layer
calculates these set-points. Typically, because of big computational burden, the
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nonlinear economic optimisation task is solved significantly less frequently than
the MPC controller executes. Such an approach can result in low economic ef-
fectiveness [15]. As an alternative to the classical structure, the MPC algorithm
can be supplemented with an additional steady-state target optimisation task
which recalculates the operating point determined by the nonlinear economic op-
timisation layer as frequently as MPC executes [7,9,13,15]. Unfortunately, three
optimisation problems have to be solved on-line. Another idea is to integrate
economic optimisation and MPC optimisation into one task [8,15].

This paper presents an efficient MPC scheme based on neural models for eco-
nomic optimisation and control of nonlinear technological processes. The main
part of the structure is an MPC economic optimiser/constraint governor which
calculates on-line the operating point in such a way that economic gains are
maximised and constraints are satisfied. The operating point is next used in
an unconstrained MPC algorithm with Nonlinear Prediction and Linearisation
(MPC-NPL) [10,15,16]. Two neural models are used: a dynamic model in the con-
trol subproblem, a steady-state model in the economic optimisation/constraint
governor. Both models are linearised on-line. As a result, the described con-
trol system structure requires solving on-line only one quadratic programming
problem. Unlike the classical multilayer structure, the necessity of repeating two
nonlinear optimisation problems at each sampling instant is avoided.

2 The Classical Multilayer Control System Structure

The structure of the standard multilayer control system is depicted in Fig. 1.
The objective of economic optimisation (named local steady-state optimisation)
is to maximise the production profit and to satisfy constraints, which determine
safety and quality of production. Typically, the economic optimisation layer
solves the following problem (for simplicity of presentation Single-Input Single-
Output (SISO) process is assumed)

min
us

{JE(k) = cuus − cyys}
umin ≤ us ≤ umax

ymin ≤ ys ≤ ymax

ys = fs(us, hs)

(1)

where u is the input of the process (manipulated variable), y is the output
(controlled variable) and h is the measured (or estimated) disturbance, the su-
perscript ’s’ refers to the steady-state. The function fs : �2 −→ � ∈ C1 denotes
a steady-state model of the process. Quantities cu, cy represent economic prices,
umin, umax, ymin, ymax denote constraints.

In MPC at each sampling instant k future control increments are calculated

Δu(k) = [Δu(k|k) Δu(k + 1|k) . . .Δu(k + Nu − 1|k)]T (2)

Only the first element of the determined sequence (2) is applied to the process
i.e. u(k) = Δu(k|k)+u(k−1). At the next sampling instant, k+1, the prediction
is shifted one step forward and the whole procedure is repeated.
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Fig. 1. The classical multilayer control system structure

Let us
eo be the solution to economic optimisation (1). Using the nonlinear

steady-state model, the value ys
eo corresponding to us

eo is calculated. It is next
passed as the desired set-point (ys(k) = ys

eo) to the MPC optimisation problem

min
Δu(k)

{
JMPC(k) =

N∑
p=1

μp(ys(k)− ŷ(k + p|k))2 +
Nu−1∑
p=0

λp(Δu(k + p|k))2
}

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−Δumax ≤ Δu(k + p|k) ≤ Δumax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(3)

N and Nu are prediction and control horizons, respectively, μp ≥ 0, λp > 0.
If the process is nonlinear it is reasonable to use a nonlinear steady-state

model in economic optimisation (1) and a nonlinear dynamic model in MPC
optimisation (3). As a results, in the standard multilayer control system structure
two nonlinear optimisation problems have to be solved on-line.

Typically, the economic optimisation problem is solved less frequently than
the MPC controller executes, while the MPC optimisation task has to be solved
at each sampling instant. In the case of slowly varying disturbances such an
approach gives satisfactory results. On the other hand, in practice disturbances
(e.g. flow rates, properties of feed and energy streams) vary significantly and not
much slower than the dynamics of the process. In such cases the classical multi-
layer structure with low frequency of economic optimisation can be economically
inefficient [15]. As increasing the frequency of nonlinear economic optimisation
is usually not possible in practice, MPC can be supplemented with additional
steady-state target optimisation which recalculates the optimal operating point
as frequently as MPC executes [7,9,13,15]. Alternatively, economic and MPC
tasks can be integrated into one optimisation problem [8,15].
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Fig. 2. The configuration of the MPC economic optimiser/constraint governor coop-
erating with the unconstrained MPC-NPL algorithm

3 A Predictive Control Economic Optimiser and
Constraint Governor Based on Neural Models

The configuration of the discussed structure is shown in Fig. 2. An MPC eco-
nomic optimiser/constraint governor calculates on-line the operating point ys(k)
in such a way that economic profits are maximised and constraints are satis-
fied. The operating point is next used in an unconstrained MPC algorithm with
Nonlinear Prediction and Linearisation (MPC-NPL) [10,15,16] which calculates
future control increments Δu(k). The economic optimiser/constraint governor
directly uses the MPC-NPL control law (dashed boxes in Fig. 2 overlap).

Two nonlinear neural models are used. A dynamic neural model is used in
the unconstrained MPC-NPL algorithm, a steady-state neural model is used
in the economic optimiser/constraint governor. Both models are linearised on-
line taking into account the current state of the process. As a result, only one
quadratic programming problem must be solved on-line. Unlike the classical
multilayer control system structure, the necessity of repeating two nonlinear
optimisation problems at each sampling instant is avoided.

3.1 Neural Models of the Process and On-Line Linearisation

Let the dynamic model of the process under consideration be described by

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA), (4)
h(k − τh), . . . , h(k − nC))
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where f : �nA+nB+nC−τ−τh+2 −→ � ∈ C1, τ ≤ nB, τh ≤ nC . A MultiLayer
Perceptron (MLP) neural network with one hidden layer and a linear output [5]
is used as the function f in (4). Output of the model can be expressed as

y(k) = f(x(k)) = w2
0 +

K∑
i=1

w2
i ϕ(zi(k)) (5)

where zi(k) are sums of inputs of the ith hidden node, ϕ : � −→ � is the
nonlinear transfer function, K is the number of hidden nodes. From (4) one has

zi(k) = w1
i,0 +

Iu∑
j=1

w1
i,ju(k − τ + 1− j) +

nA∑
j=1

w1
i,Iu+jy(k − j) (6)

+
Ih∑

j=1

w1
i,Iu+nA+jh(k − τh + 1− j)

Weights of the network are denoted by w1
i,j , i = 1, . . . , K, j = 0, . . . , nA +

nB + nC − τ − τh + 2, and w2
i , i = 0, . . . , K, for the first and the second layer,

respectively, Iu = nB − τ + 1, Ih = nC − τh + 1.
The dynamic neural model is linearised on-line taking into account the current

state x̄(k) of the process determined by past input and output signal values
corresponding to the arguments of the nonlinear model (4). Using Taylor series
expansion, the linear approximation of the model is

y(k) =f(x̄(k)) +
nB∑
l=1

bl(x̄(k))(u(k − l)− ū(k − l)) (7)

−
nA∑
l=1

al(x̄(k))(y(k − l)− ȳ(k − l))

where al(x̄(k)) = −∂f(x̄(k))
∂y(k−l) , bl(x̄(k)) = ∂f(x̄(k))

∂u(k−l) are coefficients of the linearised
model [8,9,10].

The second MLP network is used as the steady-state model ys = fs(us, hs)

ys = fs(us, hs) = w2s
0 +

Ks∑
i=1

w2s
i vs

i = w2s
0 +

Ks∑
i=1

w2s
i ϕ(zs

i ) (8)

where zs
i = w1s

i,0 + w1s
i,1u

s + w1s
i,2h

s. Weights of the second network are denoted
by w1s

i,j , i = 1, . . . , Ks, j = 0, 1, 2, and w2s
i , i = 0, . . . , Ks.

The steady-state neural model is linearised on-line taking into account the
current state of the process determined by u(k−1) and h(k). The linear approx-
imation of the model is

ys = fs(us, hs)|us=u(k−1), hs=h(k) + H(k)(us − u(k − 1)) (9)

where

H(k) =
dfs(us, hs)

dus

∣∣∣∣
us=u(k−1), hs=h(k)

(10)
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3.2 Economic Optimiser and Constraint Governor Optimisation

As shown in Fig. 2, in the unconstrained MPC-NPL algorithm at each sampling
instant k the nonlinear dynamic neural model (4) is used on-line twice: to find a
local linearisation (7) and a nonlinear free trajectory. Thanks to the linearisation,
the output prediction can be expressed as the sum of a forced trajectory, which
depends only on the future (on future input moves Δu(k)) and a free trajectory
y0(k), which depends only on the past

ŷ(k) = G(k)Δu(k) + y0(k) (11)

where the matrix G(k) of dimensionality N ×Nu contains step-response coeffi-
cients of the linearised dynamic model (7), ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T ,
y0(k) =

[
y0(k + 1|k) . . . y0(k + N |k)

]T .
The idea of the discussed control system is to remove constraints originally

taken into account in the general MPC optimisation problem (3) and use the un-
constrained MPC-NPL algorithm. In order to maximise economic profits and sat-
isfy constraints originally present in the original economic optimisation problem
(1) and in the MPC optimisation problem, the economic optimiser/constraint
governor is used. Thanks to the prediction equation (11), the MPC performance
function JMPC(k) in (3) becomes a quadratic function. Optimal future control
increments can be calculated analytically, without any optimisation as

Δu(k) = P +(k)
[

SM (ys(k)− y0(k))
0Nu×1

]
(12)

where ST
MSM = M , ST

ΛSΛ = Λ, P (k) =
[

SM G(k)
−SΛ

]
, ys(k) = [ys(k) . . . ys(k)]T

is a vector of length N and ’+’ denotes Moore-Penrose pseudo-inverse which can
be effectively calculated by means of Singular Value Decomposition (SVD) of
the matrix P (k) = U(k)Σ(k)V (k)T

P +(k) = V (k)

[
diag

(
1

σ1(k) , . . . ,
1

σNu (k)

)
0N×Nu

]T

UT (k) (13)

where σ1(k), . . . , σNu(k) are singular values of the matrix P (k). Optimal control
increments in the unconstrained MPC-NPL algorithms can be expressed as

Δu(k) = K(k)(ys(k)− y0(k)) (14)

where K(k) = P +(k) [INu×Nu0Nu×N ]T .
The objective of the economic optimiser/constraint governor is to maximise

the production profit and to satisfy constraints taken into account originally
in the economic optimisation task (1) and in the rudimentary MPC optimisa-
tion task (3). Steady-state and dynamic models are linearised, the suboptimal
prediction (11) is used. The quadratic programming problem is
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min
us(k), εmin, εmax

{
cuus(k)− cyys(k) + ρmin

∥∥εmin
∥∥2 + ρmax ‖εmax‖2

}
umin ≤ JΔu(k) + uk−1(k) ≤ umax

−Δumax ≤ Δu(k) ≤ Δumax

ymin − εmin ≤ G(k)Δu(k) + y0(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0
umin ≤ us(k) ≤ umax

ymin ≤ ys(k) ≤ ymax

ys(k) = fs(us, hs)|us=u(k−1), hs=h(k) + H(k)(us(k)− u(k − 1))

Δu(k) = K(k)(ys(k)− y0(k))

(15)

where ymin =
[
ymin . . . ymin

]T , ymax = [ymax . . . ymax]T are vectors of

length N , umin =
[
umin . . . umin

]T , umax = [umax . . . umax]T , Δumax =
[Δumax . . . Δumax]T , uk−1(k) = [u(k − 1) . . .u(k − 1)]T are vectors of length
Nu, J is the all ones lower triangular matrix of dimensionality Nu × Nu,
M = diag(μ1, . . . , μN ), Λ = diag(λ0, . . . , λNu−1). To cope with infeasibility,
output constraints are softened by slack variables (vectors εmin, εmax > 0 of
length N) [11,15].

Considering the system structure depicted in Fig. 2, at each sampling instant
k the following steps are repeated:

1. Linearisation of the steady-state neural model: obtain H(k).
2. Linearisation of the dynamic neural model: calculate coefficients al(x̄(k)),

bl(x̄(k)) of the linearised model and step response coefficients comprising
the dynamic matrix G(k).

3. Find the nonlinear free trajectory y0(k) using the dynamic neural model.
4. Using the SVD decomposition find the matrix K(k) which defines the un-

constrained MPC-NPL control law Δu(k) = K(k)(ys(k)− y0(k)).
5. Solve the quadratic programming problem (15).
6. Calculate Δu(k) using the unconstrained MPC-NPL control law.
7. Apply the first element of the sequence Δu(k), i.e. u(k) = Δu(k|k)+u(k−1).
8. Set k := k + 1, go to step 1.

Detailed description of on-line linearisation of neural models, calculation of step-
response coefficients and of the free trajectory is given in [8,9,10].

4 Simulation Results

The studied process is a neutralisation chemical reactor [3] in which acid (HNO3),
base (NaOH) and buffer (NaHCO3) are continuously mixed. The output pH is
controlled by manipulating the base flow rate q3, the buffer flow rate q2 is the
measured disturbance (u = q3, h = q2, y = pH). As steady-state and dynamic
properties of the process are nonlinear, nonlinear neural models are used.
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Three models of the process are used. The fundamental model [3] is used as
the real process during simulations. An identification procedure is carried out,
two neural models are obtained: a dynamic one (K = 6) and a steady-state one
(Ks = 4) which are next used for MPC and economic optimisation, respectively.
Parameters of MPC are: N = 10, Nu = 2, μp = 1, λp = 0.01.

To maximise the production rate the economic performance function is

JE(k) = −qs
3 (16)

The following constraints are imposed on manipulated and controlled variables

qmin
3 ≤ q3, q

s
3 ≤ qmax

3 , pH, pHs ≤ pHmax (17)

where qmin
3 = 1 ml/s, qmax

3 = 31.2 ml/s. For the first part of the simulation
(k = 1, . . . , 119) pHmax = 10.5, for the second part (k = 120, . . . , 199) pHmax =
10.6 and for the third part (k = 200, . . . , 350) pHmax = 10.7. The scenario of
disturbance changes is

q2(k) = 2− 1.6(sin(0.008k)− sin(0.08)) (18)

In the multilayer structure the MPC algorithm with on-line Nonlinear Opti-
misation (MPC-NO) is used. Three versions of this structure are compared:
a) nonlinear economic optimisation is repeated 70 times less frequently than

the MPC-NO algorithm executes,
b) nonlinear economic optimisation is repeated 45 times less frequently than

the MPC-NO algorithm executes,
c) the “ideal” multilayer structure in which nonlinear economic optimisation is

repeated as frequently as the MPC-NO algorithm executes.

In the first two cases nonlinear MPC optimisation is repeated at each sampling
instant on-line whereas nonlinear economic optimisation every 70th or 45th sam-
pling instant, respectively. In the third case two nonlinear optimisation problems
are solved at each sampling instant.

Simulation results are depicted in Fig. 3. In the first two cases the frequency of
nonlinear economic optimisation is low. It means that changes in the disturbance
and in the output constraint are taken into account infrequently. As a result the
operating point is constant for long periods. For the whole simulation horizon the
economic performance index JE =

∑350
k=1 JE(k) =

∑350
k=1(−q3(k)) is calculated.

In the first case JE = −10211.52, in the second case JE = −10230.63 (the bigger
the negative value the better). In the “ideal” multilayer structure changes in
the disturbance q2 and in the output constraint are taken into account at each
sampling instant. The economic performance index improves to JE = −10279.68.

When the discussed structure with the economic optimiser/constraint gover-
nor cooperating with the unconstrained MPC-NPL algorithm is used, the trajec-
tory of the system is very close to that obtained in the “ideal” but unrealistic case
when two nonlinear optimisation problems are solved at each sampling instant
on-line (at economic optimisation and MPC layers). In the discussed structure
JE = −10272.94 (only 0.065% worse in comparison with the “ideal” structure).
At the same time, the discussed structure is computationally efficient because
only one quadratic programming problem is solved on-line.
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Fig. 3. Simulation results: the multilayer structure with nonlinear economic optimisa-
tion repeated 70 (dashed line) and 45 (dashed line with asterisks) times less frequently
than the nonlinear MPC controller, the “ideal” multilayer structure with nonlinear
economic optimisation repeated as frequently as the nonlinear MPC controller (solid
line with circles) and the MPC economic optimiser/constraint governor cooperating
with the unconstrained MPC-NPL algorithm (dashed line with dots)

5 Conclusions

The constraint governor/economic optimiser maximises economic profits and
satisfies constraints. It cooperates with the unconstrained MPC algorithm with
Nonlinear Prediction and Linearisation. Neural models are linearised on-line,
only one quadratic programming task is solved. Economic results are very close to
those obtained in the “ideal” classical multilayer structure in which two nonlinear
optimisation problems are solved at each sampling instant. The approach is also
computationally efficient in comparison with the steady-state target optimisation
structure in which three optimisation problems are solved on-line [9,15].

Neural models are used because they have excellent approximation abilities,
a small number of parameters and a simple structure. Moreover, they directly
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describe input-output relations of process variables while in the case of funda-
mental models complex systems of differential and algebraic equations have to be
solved on-line. Although MLP neural networks are used, different types of net-
works can be considered (e.g. RBF). The presented approach can be relatively
easy extended to deal with Multiple-Input Multiple-Output (MIMO) processes.

Acknowledgement. This work was partly supported by Polish national budget
funds 2007-2009 for science as a research project.
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Abstract. This paper is concerned with RBF neural multi-models and a
computationally efficient nonlinear Model Predictive Control (MPC) al-
gorithm based on such models. The multi-model has an ability to calcu-
late predictions over the whole prediction horizon without using previous
predictions. Unlike the classical Nonlinear Auto Regressive with eXternal
input (NARX) model, the multi-model is not used recursively in MPC, the
prediction error is not propagated. The presented MPC algorithm needs
solving on-line only a quadratic programming problem but in practice it
gives closed-loop control performance similar to that obtained in nonlin-
ear MPC, which hinges on on-line non-convex optimisation.

1 Introduction

Model Predictive Control (MPC) algorithms based on linear models have been
successfully used for years in advanced industrial applications [7,12,14]. It is
largely because MPC algorithms can take into account constraints imposed on
both process inputs (manipulated variables) and outputs (controlled variables),
which usually decide on quality, economic efficiency and safety. Moreover, MPC
algorithms are very efficient in multivariable process control.

Because properties of many technological processes are nonlinear, different
nonlinear MPC techniques have been developed [8,14]. In particular, MPC al-
gorithms based on neural models [1] of processes can be effectively used on-line
[2,4,5,6,9,10,11,14]. It is because neural models have excellent approximation
abilities, relatively a small number of parameters and a simple structure. Neural
models directly describe input-output relations of process variables, complicated
systems of algebraic and differential equations (fundamental models) do not have
to be solved on-line which may lead to numerical problems (ill-conditioning, stiff-
ness, etc.).

MPC algorithms are very model-based. The role of the model cannot be ig-
nored during model structure selection and identification. The model has to be
able to precisely predict future behaviour of the process over the whole predic-
tion horizon. In practice, neural network models are usually trained using the
rudimentary backpropagation algorithm which yields one-step ahead predictors.
Recurrent neural network training is much more complicated. Naturally, one-
step ahead predictors are not suited to be used recursively in MPC for long

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 89–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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range prediction since the prediction error is propagated. It is because of noise,
model inaccuracies and underparameterisation, i.e. the order of the model used
in MPC is usually significantly lower than the order of the real process or even
the proper model order is unknown. To solve the problem resulting from the in-
accuracy of one-step ahead predictors in MPC a multi-model approach has been
proposed in [3,13] for linear processes. Alternatively, the model of a specialised
structure can be used which does not ignore its specific role in MPC [6].

Contribution of this paper is twofold. It describes the RBF neural multi-model
and derives a computationally efficient (suboptimal) MPC algorithm with Non-
linear Prediction and Linearisation (MPC-NPL) [5,6,14] based on such models.
The algorithm needs solving on-line a numerically reliable quadratic program-
ming approach. In practice, the algorithm gives closed-loop performance com-
parable to that obtained in fully-fledged nonlinear MPC, in which nonlinear
optimisation is repeated at each sampling instant.

2 Model Predictive Control Algorithms

In MPC algorithms [7,14] at each consecutive sampling instant k a set of future
control increments is calculated

Δu(k) = [Δu(k|k) Δu(k + 1|k) . . .Δu(k + Nu − 1|k)]T (1)

It is assumed that Δu(k + p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective is to minimise the differences between the reference trajectory
yref (k + p|k) and predicted values of the output ŷ(k + p|k) over the prediction
horizon N ≥ Nu. The following quadratic cost function is usually used

J(k) =
N∑

p=1

μp(yref (k + p|k)− ŷ(k + p|k))2 +
Nu−1∑
p=0

λp(Δu(k + p|k))2 (2)

where μp ≥ 0, λp > 0 are weighting factors. Only the first element of the
determined sequence (1) is applied to the process

u(k) = Δu(k|k) + u(k − 1) (3)

At the next sampling instant, k + 1, the prediction is shifted one step forward
and the whole procedure is repeated.

Since constraints have to be usually taken into account, future control incre-
ments are determined from the following optimisation problem (for simplicity of
presentation hard output constraints [7,14] are used)

min
Δu(k|k)...Δu(k+Nu−1|k)

J(k)

subject to
umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−Δumax ≤ Δu(k + p|k) ≤ Δumax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(4)
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2.1 Classical Modelling and Prediction

Let the Single-Input Single-Output (SISO) process be described by the following
discrete-time Nonlinear Auto Regressive with eXternal input (NARX) model

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (5)

where f : �nA+nB−τ+1 −→ �, τ ≤ nB. In MPC predictions are obtained from

ŷ(k + p|k) = y(k + p|k) + d(k) (6)

where quantities y(k + p|k) are calculated from the nonlinear model (5) used for
p = 1, . . . , N . In the ”DMC type” disturbance model the unmeasured distur-
bance d(k) is assumed to be constant over the prediction horizon [14].

Using (5) and (6), output predictions for p = 1, . . . , N are calculated from

ŷ(k + p|k) = f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

, (7)

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyp(p)

, y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyp(p)

) + d(k)

where Iuf (p) = max(min(p − τ + 1, Iu), 0), Iu = nB − τ + 1, Iyp(p) = max(p−
1, nA). In MPC the model must be used recursively as predictions depend on pre-
dictions calculated for previous sampling instants within the prediction horizon.
Although a one-step ahead predictor is given as the result of backpropagation
training, it is used for N -steps ahead prediction. Since model inaccuracies, under-
parameterisation and noise are unavoidable, the prediction error is propagated.

3 MPC-NPL Algorithm Based on Neural Multi-models

3.1 Neural Multi-modelling and Prediction

In the multi-model approach one independent neural model is used for each
sampling instant within the prediction horizon. For the sampling instant k + 1
(i.e. the first instant of the prediction horizon) the following model is used

y(k + 1) = f1(u(k − τ + 1), . . . , u(k − nB), (8)
y(k), . . . , y(k − nA))

where f1 : �min(nB−τ+2,nB)+max(2−τ,0)+nA+1 −→ � is a nonlinear function which
describes the first submodel. For the sampling instant k + 2 the model is

y(k + 2) = f2(u(k − τ + 2), . . . , u(k − nB), (9)
y(k), . . . , y(k − nA))
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Fig. 1. The neural multi-model used for prediction in MPC

where f2 : �min(nB−τ+3,nB)+max(3−τ,0)+nA+1 −→ � is a nonlinear function which
describes the second submodel. In general, for p = 1, . . . , N , all submodels can
be expressed in a compact form as

y(k + p) = fp(x(k + p|k)) = fp(u(k − τ + p), . . . , u(k − nB), (10)
y(k), . . . , y(k − nA))

where fp : �min(nB+p−τ+1,nB)+max(p−τ+1,0)+nA+1 −→ � is a nonlinear function
which describes the pth submodel.

Fig. 1 shows the neural multi-model used for prediction in MPC. The multi-
model consists of N neural networks. One independent neural network is used for
each sampling instant within the prediction horizon. These neural networks re-
alise functions f1, . . . , fN , inputs of neural networks correspond to the arguments
of the multi-model (10), all networks have one output. Because independent sub-
models are used for consecutive sampling instant of the prediction horizon, the
”DMC type” disturbance model cannot be used. Instead of (6), one has to use

ŷ(k + p|k) = y(k + p|k) + d(k + p|k) (11)

for p = 1, . . . , N . Independent disturbance estimations are

d(k + p|k) = y(k)− fp(k|k − 1) (12)

where y(k) is measured while fp(k|k−1) is calculated from the multi-model used
for the sampling instant k

fp(k|k − 1) = fp(u(k − τ), . . . , u(k − nB − p), (13)
y(k − p), . . . , y(k − nA − p))

Using (10) and (11), output predictions for p = 1, . . . , N are calculated from

ŷ(k + p|k)=fp(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k−max(τ − p, 1)), . . . , u(k−nB)︸ ︷︷ ︸
Iup(p)

,

y(k), . . . , y(k − nA)︸ ︷︷ ︸
nA+1

) + d(k + p|k) (14)
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where Iuf (p) = max(p − τ + 1, 0), Iup(p) = nB − max(τ − p, 1) + 1. Unlike
predictions (7) calculated from the NARX model (5), they do not depend on
predictions for previous sampling instants within the prediction horizon. The
multi-model is not used recursively, the prediction error is not propagated.

Although the multi-model is used for long-range prediction in MPC, neural
networks are trained as one-step ahead predictors. It is possible because for
prediction one independent neural submodel is used for each sampling instant
within the prediction horizon. Thanks to the structure of the multi-model it is
not used recursively, predictions do not depend on previous predictions.

The multi-model is comprised of N feedforward RBF type neural networks
with one hidden layer containing Gaussian functions and linear outputs [1]. Out-
put of the multi-model for the sampling instant k + p, p = 1, . . . , N is

y(k + p|k) = fp(x(k + p|k)) =wp
0 +

Kp∑
i=1

wp
i exp(−‖x(k + p|k)− cp

i ‖Qp
i
)

=wp
0 +

Kp∑
i=1

wp
i exp(−zp

i (k + p|k)) (15)

where Kp is the number of hidden nodes of the pth network. Vectors cp
i and diago-

nal weighting matrices Qp
i = diag(qp

i,1, . . . , q
p
i,max(p−τ+1,0)−max(τ−p,1)+nA+nB+2)

describe centres and widths of the nodes, respectively, weights are denoted by
wp

i , i = 1, . . . , Kp, p = 1, . . . , N . The model (15) is sometimes named Hyper
Radial Basis Function (HRBF) neural network in contrast to the ordinary RBF
neural networks in which widths of the nodes are constant. Let zp

i (k + p|k) be
sums of inputs of the ith hidden node. Using (14) one has

zp
i (k + p|k) =

Iuf (p)∑
j=1

qp
i,j(u(k − τ + 1− j + p|k)− cp

i,j)
2 (16)

+
Iup(p)∑
j=1

qp
i,Iuf (p)+j(u(k −max(τ − p, 1) + 1− j)− cp

i,Iuf (p)+j)
2

+
nA+1∑
j=1

qp
i,Iuf (p)+Iup(p)+j(y(k − j + 1− p)− cp

i,Iuf (p)+Iup(p)+j)
2

3.2 MPC-NPL Optimisation Problem

If for prediction the nonlinear multi-model is used without any simplifications,
the nonlinear optimisation problem (4) must be solved on-line at each sampling
instant. To reduce computational complexity, the MPC algorithm with Nonlin-
ear Prediction and Linearisation (MPC-NPL) [5,6,14] is adopted here. At each
sampling instant k the neural multi-model is used on-line twice: to find a local
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Fig. 2. The structure of the MPC-NPL algorithm

linearisation and a nonlinear free trajectory as shown in Fig. 2. The output pre-
diction is the sum of a forced trajectory, which depends only on future control
signals and a free trajectory y0(k), which depends only on the past

ŷ(k) = B(k)uN (k) + y0(k) (17)

where ŷ(k)= [ŷ(k + 1|k) . . . ŷ(k + N |k)]T , uN (k)= [u(k|k) . . .u(k + N − 1|k)]T ,
y0(k) =

[
y0(k + 1|k) . . . y0(k + N |k)

]T
are vectors of length N . The matrix B(k)

is calculated from the on-line linearisation of the neural multi-model

B(k) =

⎡⎢⎢⎢⎣
b1,0(k) b1,1(k) . . . b1,N−1(k)
b2,0(k) b2,1(k) . . . b2,N−1(k)

...
...

. . .
...

bN,0(k) bN,1(k) . . . bN,N−1(k)

⎤⎥⎥⎥⎦ (18)

Quantities bp,l(k) = ∂fp(x̄(k+p|k))
∂u(k+l|k) are calculated analytically from (15) and (16).

Linearisation points x̄(k + p|k) are comprised of past input and output signal
values corresponding to arguments of the neural multi-model (10)

x̄(k + p|k) = [ū(k − 1) . . . ū(k − 1)︸ ︷︷ ︸
Iuf (p)

ū(k −max(τ − p, 1)) . . . ū(k − nB)︸ ︷︷ ︸
Iup(p)

(19)

ȳ(k) . . . ȳ(k − nA)︸ ︷︷ ︸
nA+1

]T

Future control signals are not known in advance, ū(k+p|k) = ū(k−1) for p ≥ 0.
In MPC only Nu ≤ N future control moves Δu(k) are found. One has

uN (k) = JΔu(k) + uk−1
N (k) (20)

where J =
[

J1
J2

]
is a matrix of dimensionality N ×Nu, J1 is the all ones lower

triangular matrix of dimensionality Nu × Nu, J2 is the all ones matrix of di-
mensionality (N −Nu) ×Nu and uk−1

N (k) = [u(k − 1) . . .u(k − 1)]T is a vector
of length N . Using (20), the prediction equation (17) is
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ŷ(k) = B(k)JΔu(k) + B(k)uk−1
N (k) + y0(k) (21)

Thanks to using the suboptimal prediction equation (17), the optimisation prob-
lem (4) becomes the following quadratic programming task

min
Δu(k)

∥∥yref (k)−B(k)JΔu(k)−B(k)uk−1
N (k)− y0(k)

∥∥2
M

+ ‖Δu(k)‖2
Λ

subject to
umin ≤ J1Δu(k) + uk−1(k) ≤ umax

−Δumax ≤ Δu(k) ≤ Δumax

ymin ≤ B(k)JΔu(k) + B(k)uk−1
N (k) + y0(k) ≤ ymax

(22)

where yref (k) =
[
yref (k + 1|k) . . . yref(k + N |k)

]T
, ymin(k) =

[
ymin . . . ymin

]T
,

ymax(k) = [ymax . . . ymax]T are vectors of length N , umin =
[
umin . . . umin

]T ,
umax = [umax . . . umax]T , uk−1(k) = [u(k − 1) . . . u(k − 1)]T ,
Δumax = [Δumax . . . Δumax]T are vectors of length Nu, M = diag(μ1, . . . , μN),
Λ = diag(λ0, . . . , λNu−1).

In the MPC-NPL algorithm (Fig. 2) at each sampling instant k the following
steps are repeated:

1. Linearisation of the neural multi-model: obtain the matrix B(k).
2. Find the nonlinear free trajectory y0(k) using the neural multi-model assum-

ing no changes in the control signal from the sampling instant k onwards.
3. Solve the quadratic programming problem (22) to determine Δu(k).
4. Apply u(k) = Δu(k|k) + u(k − 1).
5. Set k := k + 1, go to step 1.

4 Simulation Results

For simplicity of presentation neural multi-models and the MPC-NPL algorithm
are described for SISO processes with one input and one output. On the other
hand, as emphasised in the Introduction, MPC algorithms are very efficient when
applied to Multiple-Input Multiple-Output (MIMO) processes. Hence, during
simulations a methanol-water distillation column shown in Fig. 3 is considered.
From the perspective of supervisory MPC algorithms, the plant has two manip-
ulated variables: R – the reflux stream flow rate, V – the vapour stream flow rate
and two controlled variables: xd – the composition of the top product, xb – the
composition of the bottom product. The process exhibits significantly nonlinear
behaviour, both steady-state and dynamic properties are nonlinear. As a result,
MPC algorithms based on linear models are inefficient [5].

The fundamental model is used as the real process during simulations. It
is simulated open-loop to obtain data for training. Two classes of neural RBF
models are trained, namely the classical NARX model and the multi-model.
Second-order dynamics is assumed while the real order of the process (the fun-
damental model) is high (neural models are deliberately underparameterised).
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Fig. 3. The distillation column control system structure

The classical NARX model is comprised of two RBF networks with 30 Gaus-
sian functions in the hidden layer and one output. The first network calculates
the composition of the top product, the second one – the composition of the
bottom product. The multi-model is comprised of RBF neural networks with 10
Gaussian functions in the hidden layer and one output.

When trained (the backpropagation algorithm), both the classical NARX
model and the multi-model have similar Mean Squared Errors. In the first case
MSE = 7.8185 · 10−2, in the second case MSE = 7.9354 · 10−2 (for the training
data set). Fig. 4 shows step responses of the process and predictions for N = 10.
Initially xd = 0.95, xb = 0.05. The reflux flow rate R decreases at the sampling in-
stant 0 by 10 kmol/h while the vapour flow rate V is constant, the sampling time is
1 min. The classical NARX neural model correctly calculates the first predictions
(for p = 1) while for next sampling instants the prediction error is propagated
and predictions differ from the real process. Conversely, the neural multi-model
correctly predicts behaviour of the process over the whole prediction horizon.

For control two models are used. The fundamental model is used as the real
process during simulations. Parameters of MPC are: N = 10, Nu = 3, Mp =
diag(5, 0.5), Λp = diag(1.5, 1.5). Manipulated variables are constrained: Rmin =
R0−20 kmol/h, Rmax = R0+20 kmol/h, V min = V0−20 kmol/h, V max = V0+20
kmol/h where R0 = 33.3634 kmol/h, V0 = 83.3636 kmol/h.
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Fig. 4. Step responses (long-range predictions) calculated by the classical NARX neu-
ral model (solid line with asterisks) and by the neural multi-model (dashed line with
circles) vs. the real process (solid line with dots)
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Fig. 5. Simulation results: the MPC-NO algorithm (solid line with dots) and the MPC-
NPL algorithm (dashed line with circles) with the same neural multi-model

Two MPC schemes are compared with the same neural multi-model: the MPC
algorithm with Nonlinear Optimisation (MPC-NO) and the described MPC-NPL
algorithm. Simulation results are depicted in Fig. 5 for given reference trajec-
tories (xref

d , xref
b ). The closed-loop performance obtained in the suboptimal

MPC-NPL algorithm with quadratic programming is practically the same as in
the computationally prohibitive MPC-NO approach in which at each sampling
instant a nonlinear optimisation problem has to be solved on-line.

5 Conclusions

The model used in MPC has to be able to make accurate predictions of the
process over the whole prediction horizon. The rudimentary backpropagation
algorithm gives neural models which are in fact one-step ahead predictors. They
are not suited to be used recursively in MPC for long range prediction since the
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prediction error is propagated. It is particularly important when the order of the
model used in MPC is lower than the order of the real process.

The neural multi-model recommended in this paper predicts future behaviour
of the process over the whole prediction horizon without taking into account
previous predictions. Consecutive submodels are trained using the classical back-
propagation algorithm as one-step ahead predictors. The paper also describes a
computationally efficient and accurate MPC-NPL algorithm based on the multi-
model. The algorithm uses on-line only a numerically reliable quadratic pro-
gramming procedure, the necessity of repeating full nonlinear optimisation at
each sampling instant is avoided.

To reduce the number of model parameters one can prune neural networks
and take into account in the MPC cost function (2) only selected predictions.
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Abstract. Neural networks have proved to be effective in solving a wide
range of problems. As problems become more and more demanding, they
require larger neural networks, and the time used for learning is conse-
quently greater. Parallel implementations of learning algorithms are there-
fore vital for a useful application. Implementation, however, strongly
depends on the features of the learning algorithm and the underlying hard-
ware architecture. For this experimental work a dynamic problem was cho-
sen which implicates the use of recurrent neural networks and a learning
algorithm based on the paradigm of learning automata. Two parallel im-
plementations of the algorithm were applied - one on a computing cluster
using MPI and OpenMP libraries and one on a graphics processing unit
using the CUDA library. The performance of both parallel implementa-
tions justifies the development of parallel algorithms.

1 Introduction

In recent years the commercial computer industry has been undergoing a massive
shift towards parallel and distributed computing. This shift was mainly initiated
by the current limitations of semiconductor manufacturing. New developments
are also reflected in the areas of intensive computing applications by fully ex-
ploiting the capabilities of the underlying hardware architecture, and impressive
enhancements in algorithm performance can be achieved with a low to moderate
investment of time and money.

Today, clusters of loosely coupled desktop computers represent an extremely
popular infrastructure for implementation of parallel algorithms. Processes run-
ning on computing nodes in the cluster communicate with each other through
messages. The message passing interface (MPI) is a standardized and portable
implementation of this concept, providing several abstractions that simplify the
use of parallel computers with distributed memory [1].

Recently, the development of powerful graphics processing units (GPUs) has
made high-performance parallel computing possible by using commercial discrete
general-purpose graphics cards [2]. There are many technologies, among which
Nvidia’s compute unified device architecture (CUDA) is the most popular [3]. It
includes C/C++ software development tools, function libraries and a hardware
abstraction mechanism that hides GPU hardware architecture from developers.

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 99–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



100 U. Lotrič and A. Dobnikar

Algorithms for implementation of various neural networks can take advan-
tage of parallel hardware architectures [4,5,6]. This comes from the concurrency,
inherently present in the neural network models themselves. Training of neural
network models is computationally expensive and time consuming, especially in
cases when large neural networks and/or large data sets of input-output sam-
ples are considered. However, each particular neural network model has its own
characteristics, and even the same model with different parameters and train-
ing data sets may lead to different behaviors on the same parallel hardware.
From that point of view, gathering universal solutions is impossible, although
the applicable parallelization concepts become very similar.

In this paper the parallel implementations of training algorithm for large re-
current neural networks are considered, taking into account the possibilities of
available technologies. In the next section a fully recurrent neural network is
presented together with a training algorithm based on the linear reward penalty
correction scheme. Furthermore, the possibilities for parallelization are outlined
in section three, taking into account the capabilities and limitations of the tech-
nologies. Hardware architectures used in the experiments are presented in section
four, followed in section five by the experimental setup and the results in terms
of processing times and speedups. Finally, the main findings are summarized.

2 Fully Connected Recurrent Neural Network

The recurrent neural network is one of the most general types of neural net-
works [7]. Feed-back connections enable the recurrent neural network to memo-
rize. A fully connected recurrent neural network with outputs from each neuron
connected to all neurons is presented in Fig. 1. Assume a recurrent neural net-
work with m inputs and n neurons, the first l of them being connected to the
outputs. At time t, input sample x(t) together with the current outputs of the

Fig. 1. Fully connected recurrent neural network with m = 2 inputs, n = 5 neurons
and l = 3 outputs
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neurons y(t) is presented to the neural network. For easier notation, input to
the neurons can be written as the vector z(t) = (x(t),y(t), 1) with m + n + 1
elements, the last element representing the bias. During the learning process,
knowledge is stored in the weights on connections wij , where index i runs over
the neurons and index j over the elements of the vector z. The output value of
i-th neuron is given by the non-linear sigmoid function of the weighted sum

yi(t + 1) =
1

1 + e−ui(t)
, ui(t) =

m+n+1∑
j=1

wijzj(t) . (1)

The objective of a neural network learning algorithm is to find a set of weights
that minimizes the error function on the given data set of input-output samples
(x(t),d(t)), t = 0, . . . , T ,

E =
T∑

t=1

E(t) , E(t) =
1
2

l∑
i=1

ei(t)2 , (2)

with ei(t) = di(t)−yi(t) being the difference between the desired and calculated
value of the i-th neuron. The recurrent neural networks attempt to acquire the
dynamics of the system, and therefore input-output pairs should be presented
in causative order.

Many algorithms for recurrent neural network learning are known [7]. The
most standard approaches apply gradient-based techniques such as back prop-
agation through time or real time recurrent learning. The problem of both is
expensive computation of gradients and slow convergence when large recurrent
neural networks are applied. One of alternatives is learning with heuristic ap-
proaches that mimic computation of gradients but with much smaller computa-
tion requirements. Such an algorithm is the linear reward penalty algorithm, or
LRP correction scheme, known from the field of learning automata [8].

The basic idea of the LRP correction scheme is to change the probabilities
of possible changes in individual weights (actions), based on a given response
from the environment. When an action is rewarded, its probability is increased.
Contrarily, when an action is penalized, its probability is decreased. To preserve
the total probability of all actions, the probabilities of non-selected actions are
proportionally reduced in the first case and increased in the second case.

In neural network learning, an action represents a change in a single weight
for a given value Δw [9]. There are two actions associated with each weight:
one increases the weight and the other decreases it. In the presented fully con-
nected recurrent neural network there are Nw = n(m + n + 1) weights leading
to Na = 2Nw possible actions, while the response of the environment from the
LRP correction scheme is simply represented by the error function given in (2).

At the beginning of the learning process all actions have equal probabilities,
pk(0) = 1/Na, k = 1, . . . , Na. During the learning process the probabilities and
weights are updated according to the following scheme. Suppose that in learning
step s the action a is rewarded. In this case the probabilities of actions are
updated as
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pk(s + 1) = pk(s) +
{

+λ[1− pa(s)] , k = a
−λpk(s) , k = a

, (3)

with λ, 0 < λ < 1, being the correction constant, and the weight change is
accepted. Conversely, when in learning step s the action a is penalized, the
corresponding weight is returned to the previous value and the probabilities of
actions become

pk(s + 1) = pk(s) +

{−λpa(s) , k = a

+λ
[

1
Na−1 − pk(s)

]
, k = a

. (4)

3 Exploiting Concurrency in Training Algorithm

Algorithms can be efficiently parallelized by following the methodology proposed
by Ian Foster [1]. It consists of four design steps: partitioning, communication,
agglomeration and mapping. The focus of the first two is to find as much concur-
rency as possible, while the latter two consider the requirements of the underlying
hardware architecture. In the partitioning step, the data and/or computations
are divided into small tasks that can be computed in parallel. In the communica-
tion step, data that has to be passed between tasks is identified. Communication
represents the overhead of parallel designs and should be kept as low as possible.
In the agglomeration step, small tasks are grouped in the agglomerated tasks to
improve performance, mainly by reducing communication. In the mapping step
the agglomerated tasks are assigned to the processing units. Usually there are
as many agglomerated tasks as there are independent processing units.

The pseudo-code of the learning algorithm for the recurrent neural network
based on the LRP correction scheme is given in Fig. 2. The most obvious portion
of code, suitable for parallelization, is the updating of probabilities, identified
by *1* in Fig. 2. The for k loop can be partitioned into Na small tasks, each
of them responsible for updating one probability, either by (3) or (4). Small
tasks only need to send their results to the task that chooses a new action. It is
also straightforward to parallelize the propagation of signals through the neural
network. The for i loop, identified by *2* in Fig. 2, can also be split into n
small tasks, each calculating the output of one neuron following (1). However,
the result yi(t+1) obtained for each task must be broadcasted to all other tasks
in order to make the calculation of neuron outputs in the next time step possible.
In both identified cases, the computation is not very time demanding; therefore,
fast communication is the key issue for successful parallelization.

While using intra-processor communication can still be profitable in the spec-
ified situations, inter-processor communication is certainly too slow. In cases
of slow communication between processors the computation time of each task
must be large compared to the time needed for communication. Unfortunately,
the given algorithm does not exhibit such concurrency.

In cases where the number of concurrent processes is small compared to the
number of input-output samples T , slight modification of the learning algorithm
leads to an efficient parallelization, also for systems with slow inter-processor
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randomly initialize neural network weights wij

initialize probabilities for actions pk(0)
for s ← 1 to S do

randomly choose action a and adequately change corresponding weight

calculate the response of the environment

initialize variables: Eold ← E, E ← 0, y(0) ← 0
for t ← 1 to T do // over all input-output samples *3*

for i ← 1 to n do // over all neurons *2*

calculate yi(t + 1)
update error, E ← E + E(t)

end for t
update probabilities, if E < Eold use (3) else (4)

for k ← 1 to Na do // over all actions *1*

update probability pk(s + 1)
end for k

end for s

Fig. 2. Pseudo-code of the LRP correction scheme for a recurrent neural network. Parts
of the code suitable for parallelization are indicated by a number surrounded by two
asterisks.

communication. More precisely, instead of parallelizing the for k and for i
loops, one can decide to parallelize the for t loop, marked *3* in Fig. 2. The
causality between consecutive input-output samples in the for t loop prevents
one from directly parallelizing it. Parallelization is only possible if the data set
of T input-output samples is split into P parts of approximately T/P samples,
on which the response of the environment can be calculated separately and
afterwards brought together. Instead of a single initialization of the vector y
at the beginning of the response calculation in Fig. 2, additional initializations
are needed for each part separately, which causes transitional phenomena on the
outputs of the neurons. The modified portion of the code is presented in Fig. 3.

calculate the response of the environment

initialize variables: Eold ← E, E ← 0
for r ← 1 to P do // over all P parts *4*

initialize variables: y(	(r − 1)T/P 
) ← 0
for t ← 	(r − 1)T/P 
 + 1 to 	rT/P 
 do

for i ← 1 to n do

calculate yi(t + 1)
end for i
update error, E ← E + E(t)

end for t
end for r

Fig. 3. Modified pseudo-code of the LRP correction scheme for recurrent neural net-
work. The for r loop, suitable for parallelization is indicated by *4*.
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In this case suitable partitioning involves splitting the for r loop into P
processes. Communication is basically needed only to get the cumulative error
E . When the processes do not share memory, each process needs its own copy of
the weights. Therefore, it is additionally necessary to update the weights after
each iteration of the for s loop.

4 Parallel Hardware Architectures

Parallelization of the recurrent network learning algorithm based on the LRP
correction scheme was examined on two distributed hardware platforms: on a
computing cluster and on graphics processing units.

4.1 Commodity Computing Cluster

Currently, the most popular and affordable parallel computers are clusters of
commodity desktop computers. Processes running on the computing nodes in a
cluster communicate with each other through messages. The Message Passing
Interface (MPI), the standardized and portable implementation of communica-
tion through messages, is most commonly used to make parallelization on such
systems feasible. Unfortunately, commodity clusters are typically not balanced
between computation speed and communication speed - the communication net-
work is usually quite slow compared to the speed of the processors. Therefore,
in the process of parallel algorithm design it is important to be aware of slow
communication.

In the present work, a commodity cluster composed of four nodes, each having
an Intel Core Duo 6700 processor running at 2.66 GHz and 2 GB of RAM, is
used. The nodes are connected over a 1 Gb Ethernet switch as shown in Fig 4a.
DeinoMPI [10] implementation of the MPI standard [1] is used on the Windows
XP operating system. The application utilizes MPI and OpenMP [1] function
calls.

Many modern commodity clusters are made of dual-core or even quad-core
multiprocessors. The MPI standard supports communication between process-
ing cores inside the same multiprocessor in the same way as between processors
belonging to distinct computers. In this case the interaction between MPI pro-
cesses running on the same multiprocessor will happen via message passing.
Some additional time can be gained by using only one MPI process per mul-
tiprocessor and within this process by forking threads to occupy unused cores.
OpenMP is a standardized software library that supports such thread creation
and interaction among cores via the concept of shared variables. Because of the
lower communication overhead, forking threads with OpenMP function calls in-
side multiprocessors is preferable to pure MPI implementation because it usually
leads to faster programs.

4.2 Graphics Processing Units

Graphics processing units (GPUs) are nowadays extending their initial role as
specialized 2D and 3D graphics accelerators to high performance computing
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Fig. 4. Hardware architectures of a) a computing cluster and b) a graphics processing
unit

devices, specialized for computing-intensive and memory-intensive highly par-
allel computation. Nvidia’s compute unified device architecture (CUDA) is the
most popular library, also featuring development tools.

CUDA represents GPUs as computing devices capable of executing a very large
number of threads in parallel. For example, the Nvidia GeForce 8800GT GPU,
used in our further experiments, consists of 14 multiprocessors, which can use 1
GB of device memory. Each multiprocessor consists of 8 scalar processors with 16
kB of shared memory and 8192 32-bit registers allowing computation in single-
precision floating point. Its architecture is schematically represented in Fig. 4b.

GPUs feature memory access bandwidth an order of magnitude higher than
ordinary CPUs. For example, when there is no conflict, the shared memory inside
the multiprocessor can be accessed as quickly as reading a register. Despite very
high bandwidth to the device memory, access to the device memory is faced
with very high latency, measured in hundreds of GPU cycles. Besides, CUDA
features additional texture memory. Although the shared memory and the device
memory are not cached, the texture memory is. Reading data from the texture
memory instead of the device memory can thus result in performance benefits.

In our work a desktop computer with an Intel Core Duo 8400 Processor and 4
GB of RAM with 64-bit Windows XP installed hosts two Nvidia GeForce 8800
GT graphics processing units.

According to the CUDA programming model the computation is organized
into grids, which are executed sequentially. Each grid is organized as a set of
thread blocks, in which threads are executed concurrently and can cooperate
together by efficiently sharing data inside a multiprocessor. A maximum of 512
threads can run in parallel in each thread block. Unfortunately, threads in dif-
ferent blocks of the same grid cannot communicate and synchronize with each
other. Moreover, thread blocks of the same grid have the same size and their
threads execute the same kernel. A kernel is a portion of an application, a
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function, that is executed on the GPU. It is coded in annotated C/C++ language
with CUDA extensions.

GPU performance is radically dependent on finding high degrees of paral-
lelism. A typical application running on the GPU must express thousands of
threads in order to effectively use the underlying hardware. In practice, a large
number of thread blocks is needed to ensure that the computing power of the
GPU is efficiently utilized [3]. Utilization of the GPU heavily depends on the
size of the global data set, the maximum amount of local data in multiprocessors
that threads in thread blocks can share, the number of thread processors in the
GPU, the number of registers each thread requires, as well as the sizes of the
GPU local memories. When analyzing an algorithm and data, a programmer has
to be aware of the underlying hardware in order to find the optimal number of
threads and blocks that will keep the GPU fully utilized.

5 Experimental Work

In this section the performance of the proposed hardware architectures on origi-
nal and modified learning algorithms is assessed. In all cases the fully connected
recurrent neural network was trained to identify an unknown discrete dynamic
system, in our case a finite state machine which performs the time-delayed ex-
clusive or xor(3) function, y(t) = x(t − 2) ⊕ x(t − 3). There are 1000 binary
input-output samples in the training data set.

5.1 Original LRP Correction Scheme

In this case only the for loops indicated by *1* and *2* in Fig. 2 were paral-
lelized. In the case of the computing cluster, the results are given only for the
setup in which all four nodes were utilized. Communication between nodes was
performed using the MPI library, while parallelization inside the node was done
using pragma directives of the OpenMP standard. Source code was compiled
using a Microsoft C/C++ compiler. On the other hand, only one GPU was used
to parallelize the original algorithm.

Processing times, normalized to 1000 iterations, and speedups of both archi-
tectures are given in Fig. 5 for a range of neural network sizes. For comparison,
the processing times of the standalone application, exploiting only one core of
the Intel Core Duo 6700 processor, are presented.

It is obvious that the cluster is not appropriate for parallelization of the orig-
inal LRP correction scheme, since communication overwhelms computation by
a large margin. A linear relationship between processing time and the num-
ber of neurons is expected since the length of the messages increases linearly
with the number of neurons. On the GPU, the computation of (1) is performed
concurrently for all neurons, and therefore an approximately linear increase in
computation time with an increasing number of neurons is observed. The local
peeks at 400 and 800 neurons on the speedup curve are the consequence of the
GPU hardware architecture.
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Fig. 5. Performance of the original LRP correction scheme as a function of the number
of neurons on different architectures: a) processing time and b) speedup

Although some speedup, defined as the ratio between standalone and parallel
computation time, is observed in the case of cluster computing, the usage of
nodes is far from efficient, with less than 20% utilization of nodes. In addition
the linear dependence of the speedup on the number of neurons shows that the
GPU is not fully utilized when the learning algorithm is running on small neural
networks.

5.2 Modified LRP Correction Scheme

Due to the unpromising parallelization of the original LRP correction scheme,
only the for r loop marked by *4* in Fig. 3 was parallelized on the computing
cluster in this case. On the other hand, the second GPU was utilized for paral-
lelization of the for r loop in Fig. 3, while inside each GPU the parallelization
scheme from the original algorithm was further used. Processing times for both
parallel architectures and the standalone application are given in Fig. 6a.

When parallelizing the for r loop, far more time is spent in processing than in
communication. Therefore, the processing on the cluster of four dual core nodes
is sped up by approximately a factor of eight. On the GPUs a similar dependence
is observed as in the case of the original LRP correction scheme, except that the
processing times are approximately halved whilst the speedups are doubled.

Fig. 6. Performance of the modified LRP correction scheme as a function of the number
of neurons on different architectures: a) processing time and b) speedup
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6 Conclusion

Neural networks offer a high degree of internal parallelism, which makes them
perfect candidates for implementation on parallel hardware architectures. This
paper compared two affordable parallel hardware architectures on the problem
of learning in a fully connected recurrent neural network.

The presented results show that the computing clusters provide a very limited
speedup when parallelizing the internal structure of the neural network. Results
are far more promising when the processing is performed in batches and not
online. The development of graphics processing units now offers highly parallel
hardware platforms to users. The performance of graphics processing units is im-
proving with an increasing number of concurrent operations, and therefore they
represent a perfect target platform for neural network computation. Their main
drawbacks are computation in single-precision floating point and the develop-
ment tools, which somehow require that the user understands the particularities
of the hardware in order to benefit from it.
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Abstract. The aim of this paper is to present the use of Growing Com-
petitive Neural Networks as a precise method to track moving objects for
video-surveillance. The number of neurons in this neural model can be
automatically increased or decreased in order to get a one-to-one associa-
tion between objects currently in the scene and neurons. This association
is kept in each frame, what constitutes the foundations of this tracking
system. Experiments show that our method is capable to accurately track
objects in real-world video sequences.

1 Introduction

In video surveillance systems, accurate and real-time multiple objects tracking
will greatly improve the performance of objects recognition, activity analysis and
high level event understanding [1,2,3,4].

Segmentation and tracking of multiple objects is important not only for vi-
sual surveillance, but also for other video analysis applications such as video
compression, indexing, video archival and retrieval systems [5,6], as well as in
robotics [7], human-machine interfaces [8], ambient intelligent systems [9] and
augmented reality applications [10].

Most of the work on tracking for visual surveillance is based on change detec-
tion [5,11,12,13] or frame differencing [14] if the camera is stationary.

The most popular approach for visual tracking is the adaptive tracking of
coloured regions, with techniques such as the particle filtering of coloured regions
[10,15] and the Kalman/mean-shift [16], which uses the well known mean-shift
algorithm [17] to determine the search region, and the Kalman filter to predict
the position of the target object in the next frame.

In this paper, the use of growing competitive neural networks (GCNNs) [18] to
perform object tracking is proposed. These networks are derived from the usual
competitive neural networks (CNNs) [19]. Their main particularity consists in
that this kind of network is able to generate new process units (neurons) when
needed, in order to get a better representation of the input space.

In general, CNNs are suitable for data clustering, since each neuron in a CNN
is specifically designed to represent a single cluster. In the field of object tracking
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in video sequences, such clusters correspond to moving objects. Thus, it seems
reasonable to use CNNs as trackers.

However, due to the dynamic nature of a video sequence, objects are con-
stantly appearing and disappearing from the scene, and the method used to
track objects should take care of this situation. Consequently, since classical
CNNs are not able to manage a variable number of clusters (that is, objects in
the scene), the use of GCNNs become a good approach for tracking.

Another advantage of using a neural model to tackle this problem is that neu-
ral networks are intrinsically parallel, which allows the processing of all objects
in the scene at the same time.

The rest of this paper is structured as follows: in section 2 standard competitive
neural networks are briefly described. Section 3 is devoted to the segmentation
algorithm, while section 4 explains the tracking system. Finally some experimental
results and conclusions are presented in sections 5 and 6 respectively.

2 Standard Competitive Neural Network

The standard competitive neural network [19] forms the kernel of the presented
segmentation and tracking modules. Some modifications, which are explained
in next sections, have been added to the network in order to obtain a good
performance when it is used for these two processes.

The standard competitive neural network has a unique layer of N process units
or neurons. This number of neurons is fixed a priori by the user. In each time
instant t, an input pattern x(t) is presented to the network and a competition
process among the neurons starts. The neuron whose weight vector wj is closest
to the input pattern in the input space is declared the winner. Therefore, the
winner neuron is the one which best represents that input pattern:

c(t) = arg min
1≤j≤N

{‖x(t)−wj(t)‖2} (1)

Once the winner neuron has been determined, the weight vector wc(t) must
be updated in order to incorporate some knowledge from the pattern to the
network. Only the winner neuron has gained the right to learn something from
the pattern and, thus, it is the only neuron which will be updated in the instant
time t. Thus, the standard competitive updated rule is

wi(t) =
{

wi(t− 1) + α (x(t)−wj(t− 1)) if i = c(t)
wi(t− 1) otherwise (2)

where α ∈ [0, 1] is named the learning rate and determines how important is
the information extracted from the current input sample with respect to the
information already known from previous training steps.

3 Object Segmentation

Almost every visual surveillance system starts with motion detection. Motion
detection aims at segmenting regions corresponding to moving objects from the
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rest of an image. Subsequent processes such as tracking and behaviour recog-
nition are greatly dependent on it. It usually involves environment modelling,
segmentation motion, shadow detection and object classification.

Many works based on motion detection and, more concretely, on background
subtraction using fixed cameras as the CCTV cameras installed in public trans-
port can be found in the literature [4,2,5]. All of these methods try to effectively
estimate the background model from the temporal sequence of the frames and,
subsequently capture objects in motion of the scene.

In this step a video object segmentation algorithm is used [20], which aims
at classifying the pixels in a video sequence as belonging to foreground or back-
ground. This algorithm uses a neural network model to learn pixel colour statis-
tics from the frames observed in the video sequence. Concretely, the recent
history of the RGB colour space of each pixel is modelled by an unsupervised
competitive neural network.

The learning rule used by each network to model the input space is the stan-
dard competitive learning rule, which updates the synaptic weight wc of the
winning neuron according to Eq. (2).

This neural network is formed by at least 2 neurons (foreground and back-
ground), although more neurons can be added for multimodal backgrounds. Note
that one neuron represents the foreground and the rest of neurons represents the
background. The B most activated neurons are used to model the background,
whereas the rest of neurons correspond to foreground objects. This value B is
computed as the amount of neurons whose number of activations na1 , . . . , naB

verify na1+...+naB

N > T for a prefixed threshold T , where N is the total num-
ber of activations of all neurons, as proposed in [4]. In this work, we have used
T = 0.7.

When the segmentation results have been obtained, additional techniques as
shadow detection [4] and morphological operations are necessary to obtain clear
foreground regions.

4 The Tracking Module

The tracking module is based on a growing competitive neural network, which
follows an online training process. The number of neurons of the network is not
fixed, and is changed depending on the amount of objects which must be tracked
by the system in each time instant.

Every object appearing in the video frame is assigned to a neuron. This neuron
becomes the responsible for identifying and representing the object, as well as
predicting its location in future instants if needed. New neurons are created when
not previously detected objects appear in the image, whereas some neurons are
killed if they are useless, that is, when the objects associated to the neurons
leave the scene.

On the other hand, it is desirable that most of the problems related to this
tracking phase can be tackled and solved by the network. Some of these problems
are those produced by object occlusion, and those due to some deficiencies in the
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segmentation phase, such as the appearance of spurious objects in the middle of
the video frame and the sudden disappearance of objects which should remain
in the scene several frames later.

In algorithm 1 the main steps of the algorithm are shown. Each step is de-
scribed more detailedly in the following sections.

4.1 Adapting the Network to the Tracking Application

Object tracking is a task which must be solved in real time. The video may be
considered as a data stream, where only information related to the current frame
is known. Data from previous video frames are forgotten unless the network uses
some memory mechanism to store that previous data, or at least a part of it. There-
fore, the tracking system must be able to perform in an online way. In a time in-
stant t the system will be provided M training patterns (or input patterns) xi(t),
i ∈ {1 . . .M}. These patterns correspond to M objects which were detected by
the segmentation module in the video frame sampled in time instant t.

The proposed solution considers that each neuron represents an object in the
frame and tracks this object through the input space frame by frame. Hence, the
cluster defined by each neuron does not only enclose different object patterns
in the frame, but possible variations of the object pattern. Each cluster can be
seen as the expected value for the object pattern between consecutive frames.
This way, the learning rate should be fixed to a large value, for example 0.9.
Otherwise, the network cannot adequately detect changes in the object, and
thus, the object may not be identified.

On the other hand, objects in the middle of the scene cannot vanish into thin
air. They leave the scene after reaching and trespassing one of the four frame bor-
ders. Occlusions may seem an exception to that fact. But, even when an object
is partially or totally covered by another object, the former one continues in the
scene. This knowledge can be added to the tracking module and, consequently, to
the network, producing several changes in the classical competitive model.

First, the memory capacity of the neurons has been augmented. Each neuron,
j, stores a log, Hj , which contains the known information about the object
assigned to the neuron during the last K video frames. Hence, if the object
disappears for a short period of time then some object properties such as its
location can be predicted by means of the previous information that is known
about it and is kept in the log.

Second, every neuron is allowed to modify its weight vector in each training
step. If the neuron wins the competition then it uses the input pattern that
made the competition arise. On the contrary, each neuron which does not win
the competition predicts the object features based on the knowledge stored in its
log, and this estimated pattern is used to modify its weight vector. Thus, the
update rule is defined as:

wj(t) =
{

wj(t− 1) + α (x(t)−wj(t− 1)) if j = c(t)
wj(t− 1) + α (x̂j(t)−wj(t− 1)) otherwise (3)

where x̂j(t) is the pattern predicted by neuron j.
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The estimated pattern x̂j(t) is obtained by summing the current object pat-
tern, stored in the weight vector of the neuron, and the averaged change observed
in that pattern and computed for the K previous frames.

x̂j(t) = wj(t− 1) +
1

K − 1

K−1∑
i=1

(Hj(i + 1)−Hj(i)) (4)

with Hj(i) the entry which was written down, in the log of the j-th neuron,
t−K − 1− i frames ago.

Finally, the competition rule has also been slightly modified. This time a mask
vector m ∈ {0, 1}D, with D dimension of the input space, has been added in
order to let the user choose which object components should be considered when
calculating the quantisation error during the competition process. Then,

c(t) = arg min
1≤j≤N

{‖m · (x(t)−wj(t))‖2} (5)

where · means the componentwise product.

4.2 Neurons Birth and Death

The size of the neural network layer should not be fixed a priori because the
number of objects which are present in the scene varies from one frame to an-
other. Hence, the proposed network is formed by n(t) neurons in a time instant
t, and a mechanism to add new neurons to the network and to eliminate the
useless neurons is needed.

When an unknown object appears in the scene, none of the existing neurons
is able to represent it accurately and the quantisation error is expected to reach
a high value, compared with the error obtained for correctly identified objects.
Thus, a new neuron should be created in order to track that new object. A
user-defined parameter δ ∈ [0, 1] has been utilised. It is related to the maximum
relative error permitted in the quantisation process. The parameter δ manages
the neurons birth by means of the check

∀j ∈ {1 . . .n(t)} ‖x(t)−wj(t)‖
‖x(t)‖ > δ (6)

Notice that if δ is assigned a low value, then (6) ensures that the neurons are
updated only if the input pattern x(t) is very close to wj(t) in the input space.
That is, when x(t) and wj(t) are patterns representing the same object in dif-
ferent frames.

Once the neuron is created, its memory structures are initialised. The input
pattern responsible for the birth of the neuron is assigned to the weight vector
of the neuron and to the first entry in the neuron log.

wj(t) = x(t) ; Hj(1) = x(t) (7)

On the other hand, if an object leaves the scene then the neuron which represents
it should be destroyed. For this purpose, each neuron has a counter Cdie which
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Algorithm 1. Main steps of the tracking algorithm
Input: Time instant t and the features of the segmented objects xi(t)
Output: Labelling of the segmented objects
foreach Segmented object xi(t) do

Compute winner neuron by means of Eq. (5);
if Eq. (6) is satisfied then

Create a new neuron. Initialize it;
else

Update the network using equation Eq. (3);
end

end
Refresh the counter values belonging to the neurons which win a competition;
Decrement all neurons counter values by one;
Check out neuron counters and destroy neurons whose counter value is zero;

means the lifetime of the neuron, measured in number of training steps, i.e.,
frames. Each training step, the counter value is decreased by one and, if the value
reaches zero then the corresponding neuron is removed. Every time a neuron wins
a competition its counter value is changed to the initial value. Therefore, only
neurons associated to objects which are not longer in the scene are destroyed,
since it is very unlikely for these neurons to win a competition.

5 Results

In this section the results of our tracking approach to detect and track rigid
objects are showed. Some traffic sequences are used to prove the effectiveness of
our method. In these sequences some common problems appear, such as occlu-
sions, stopped car in the scene or errors happened in the segmentation phase,
which must be satisfactorily solved by a robust tracking algorithm. They are
provided by a video surveillance online repository [21] and the Federal High-
way Administration (FHWA) under the Next Generation Simulation (NGSIM)
program.1

Each object pattern has nine components: the x-coordinate and y-coordinate
of the object centroid, the 2-d coordinates of the upper left corner of the box
which bounds the object, the length and width of that bounding box; and the
RGB color components. In our experiments the mask vector is set to hide all
object components except for the centroid.

In figure 1, the objects of the sequence are detected and tracked along several
frames. In figure 2(b) errors in segmentation phase are observed. Two objects
are overlapped at the bottom of the image and one object is divided in two blobs
at the left. These problems are solved in fig. 2(c) as it can be observed in the
objects identified by the numbers 15, 17 and 13.

Other two different sequences are showed in fig. 3 and 4. Figure 3 contains
occlusions of the objects in motion caused by background objects, such as trees.

1 Datasets of NGSIM are available at http://ngsim.fhwa.dot.gov/
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(a) (b)

Fig. 1. Two frames (209, 218) of a traffic sequence are viewed in which the objects are
identified and tracked

(a) (b)

(c)

Fig. 2. Problems in the segmentation phase, which are observed in 2(b), are solved in
the tracking phase. The trajectory of some objects are plotted in 2(c).

Objects identified in 3(a) by 142 and 154, are robustly obtained in 3(d) despite
the segmentation results showed in 3(c).

6 Conclusions

In this work we have presented a new algorithm for moving object detection and
tracking in video sequences. This is an important part of video surveillance sys-
tems, since these systems need a good starting point to analyse object behaviour.
With a reliable tracking algorithm, objects can be easily identified in the video
sequence and, using other analysis tools, the behaviour of these objects can be
studied, and the system can determine whether there are suspicious/dangerous
objects or not.
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(a) (b)

(c) (d)

Fig. 3. Stopped cars and car occlusions caused by some trees are observed in this scene.
3(a) shows the frame 740 of the sequence and its identified objects. In 3(b) (frame 747)
an occlusion of the car 154 is observed. 3(c) shows the results of segmentation step. In
3(d) the object 154 is correctly tracked.

(a) (b)

Fig. 4. Another sequence obtained in [21]. Results of our tracking approach can be
observed in 4(a) and 4(b) (frames 245 and 255).
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The algorithm proposed in this paper is based on the use of a subtype of
the well-known competitive neural networks: the growing competitive neural
network (GCNN), which allows the creation and removing of neurons, which
are identified to the objects in the scene. Since the number of objects in a video
sequence can change from frame to frame, it seems reasonable to permit a change
in the number of process units of the network. Thus, a better representation of
the foreground objects is obtained.

This new neural model is able to predict the features of each object (loca-
tion...), by using a log which stores all information known for every object in
the last few frames. This allows to deal with several problems produced at the
segmentation phase, such as object occlusion or fusion.

Experimental results show that our approach is a reliable and accurate method
to detect objects in video sequences publicly available in Internet. In addition,
segmentation derived problems can be robustly tackled by this method.

Our future work covers aspects of behavioural analysis, as it is the next logical
step in a surveillance system.
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video object segmentation in traffic surveillance. In: Campilho, A., Kamel, M.S.
(eds.) ICIAR 2008. LNCS, vol. 5112, pp. 151–158. Springer, Heidelberg (2008)

21. Vezzani, R., Cucchiara, R.: Visor: Video surveillance online repository. In: BMVA
symposium on Security and surveillance: performance evaluation (2007)



M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 119–129, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Emission Analysis of a Fluidized Bed Boiler by Using 
Self-Organizing Maps 

Mika Liukkonen1,*, Mikko Heikkinen1, Eero Hälikkä2, 
Reijo Kuivalainen2, and Yrjö Hiltunen1 

1 Department of Environmental Science, University of Kuopio, P.O. Box 1627, 
70211 Kuopio, Finland 

{Mika.Liukkonen,Mikko.Heikkinen,Yrjo.Hiltunen}@uku.fi 
2 Foster Wheeler Power Group, P.O. Box 201, 78201 Varkaus, Finland 
{Eero.Halikka,Reijo.Kuivalainen}@fwfin.fwc.com 

Abstract. In this study, a self-organizing map (SOM) -based process analysis 
and parameter approximation method was used to the emission analysis of a 
circulating fluidized bed process. The aim was to obtain the optimal process 
parameters in respect to the flue gas nitrogen oxide (NOx) content in different 
predefined states of process. The data processing procedure in the research went 
as follows. First, the process data were processed by using a self-organizing 
map and k-means clustering to generate subsets representing the separate 
process states in the boiler. These process states represent the higher level 
process conditions in the combustion, and can include for example start-ups, 
shutdowns, and idle times in addition to the normal process flow. Next, optimal 
areas were discovered from the map within each process state, and the reference 
vectors of the optimal neurons were used to approximate the values of desired 
process parameters. In addition, a subtraction analysis of reference vectors was 
performed to analyze the optimal situations. In conclusion, the method showed 
potential considering its wider use in the field of energy production. 

Keywords: Self-organizing map, Fluidized bed, Optimization, Emission 
modeling, Parameter estimation, Neural networks. 

1   Introduction 

The world-wide targets for reducing harmful process emissions are having an 
increasing effect on the modern-day production of energy. At the meantime, higher 
demands are set for the efficiency of combustion processes. Therefore it is essential to 
develop such data analysis and modeling methods that can respond to these challenges. 
Nevertheless, efficient combustion of fuels with lower emissions is a difficult task in 
power plants because usually it is not possible to reduce the emissions by cutting the 
production of power. For example in industry a certain amount of energy is needed to 
maintain the current level of production. This means that other ways of action must be 
                                                           
* Corresponding author. 
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discovered to reduce the emissions. Fortunately, process data can involve important 
information on the behavior of the process and on different phexmena that affect the 
emissions and the energy efficiency of a combustion process. This information can be 
extremely valuable when optimizing the process. 

Artificial neural networks (ANN) have proved their power and usability in the 
modeling of different industrial processes [1–4]. ANNs have offered functional 
applications in miscellaneous fields of industry, for instance in the production of steel, 
pulp and energy, in chemical and electronics industry, and even in waste water 
treatment [5–10]. The benefits of neural networks include flexibility, nonlinearity, 
applicability, adaptivity, a high tolerance of faults and a high computing power [2, 
11–12], which has led to a large variety of applications. These strong advantages 
make ANNs a valuable alternative for modeling method in industrial processes. 

1.1   Process States and Their Sub-models 

The use of a self-organizing map (SOM) [11], developed by Kohonen in the early 
1980s, in the analysis of process states has produced a variety of applications in the 
past years. Kasslin et al [13] have first introduced the concept of process states in 
1992 by using a SOM to monitor the state of a power transformer. Later on, 
Alhoniemi et al. [5] have broadened the field of SOM-based applications by using the 
method in the monitoring and modeling of several industrial processes. 

Several of our recent studies have shown [8, 14–15] that different states of the 
fluidized bed combustion process can be discovered in process data by using the 
SOM. These states can include for instance start-ups, shut-downs, idle times and 
different states of normal process flow. There can be major differences in the 
performance of the process between these conditions, for example the quantities of 
different emission components may vary greatly. In addition, we have proposed that 
these upper level process states involve secondary process states, where e.g. the steam 
flow is lower than normally or the bed temperature is unstable [14]. Sometimes it is 
crucial to identify these secondary states, because the performance of the process can 
fluctuate also in a smaller scale but regardless by affecting critically e.g. the formation 
of an emission component. In this study, however, we concentrate on the upper level 
states of process, because in this case they seem to provide the best sub-models and 
the most illustrative examples. 

Constructing sub-models in parallel with higher level models opens an interesting 
perspective to present-day process modeling. This is due to the fact that process states 
and their related sub-models can offer valuable information on the performance of the 
process, which is indicated in our earlier studies concerning the wave soldering and 
the activated sludge treatment process [6, 10]. The sub-model -based approach is 
realistic for example when it is evident that less detectable but still important 
condition-related phenomena remain concealed when using generic modeling. Despite 
being more difficult to distinguish, these events can have substantial effects on the 
combustion process [14]. Nonetheless, these latent phenomena can be analyzed by 
identifying different process states and creating sub-models, advancing from a generic 
model to more detailed models [14].  
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1.2   Optimization 

The theoretical optimum of a variable can be determined by using classic optimization 
methods, such as extreme-value calculation or linear optimization. These methods are 
relatively simple to use, needing only one cycle to process. However, the classic 
methods also make strict demands on the search space, setting limits that are 
sometimes difficult to achieve [16]. Additionally, a large number of variables can 
make these methods complicated to use because it is usually necessary to perform a 
selection of variables or a sensitivity analysis first. More precise representation of 
reality can be attained by using simulation-supported optimization due to the use of 
real data as solution suggestions. On the other hand, simulation-supported optimization 
methods generally necessitate the optimization cycle to be completed several times 
[16], so they can be lengthy procedures in complicated optimization cases. 

The analysis and optimization approach presented here offers a valuable option for 
real-world applications because it takes generally only a few seconds’ processing time 
for a computer to create the self-organizing feature map, illustrate the results and 
propose the optimal parameters. In consequence, this enables comparatively fast 
responding to the fluctuations of the process, and would enable even dynamic 
optimization and control of process parameters. Evidently the preconditions for swift 
responses are the regular and frequent updating of modeling data and the appropriate 
definition of the possible cost function. Additionally, it is important that the data 
samples represent the whole range of probable machine operation. 

2   Process and Data 

Fluidized bed combustion is a common technology used in power plants and designed 
chiefly for solid fuels such as coal. Start-ups are generally the only occasions that 
involve the use of supporting fuels such as oil or natural gas. An archetypal 
circulating fluidized bed (CFB) boiler comprises a combustion chamber, a separator 
and a return leg for the recirculation of the bed particles, whereas the fluidized bed is 
composed of sand, fuel ash and sulfur capturing material. This granular mixture is 
fluidized by the combustion air brought in from the bottom of the chamber. Due to 
high fluidizing velocities, the bed particles are in consistent movement with the flue 
gases. The particles pass through the main combustion chamber into a separator, 
where the larger particles are extracted and directed back to the combustion chamber. 
Meanwhile, the finer particles are separated from the cycle and gathered by using a 
bag-house filter or an electrostatic precipitator located downstream from the 
convection section of the boiler. The characteristic combustion temperature in CFB 
boilers is between 850 and 900 °C. 

The raw process data were compressed for the analysis by using a moving average 
to comprise 10 000 data samples. After averaging the resolution of the data used in 
modeling was five minutes, the number of variables being 36. 

3   Methodology 

The self-organizing map (SOM) [11] algorithm was used as a modeling method, 
whereas the k-means [17] clustering algorithm was used to create sub-categories 
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representing the different states of the process on the map. At the last stage, the 
reference vectors of the SOM were used to approximate the optimal parameters. 

3.1   Self-Organizing Maps (SOM) 

The applications based on the self-organizing map [11] algorithm form one of the 
most diverse application areas of artificial neural networks. Conventionally the SOM 
has been exploited in many different practical applications, such as exploratory data 
analysis, pattern recognition, speech analysis, industrial and medical diagnostics, 
robotics and instrumentation, and even control [11]. Kasslin et al [13] and Alhoniemi 
et al [5] have presented SOM-based applications to process monitoring and modeling 
in several industrial processes. In recent times, the gamut of industrial applications 
based on the algorithm has become especially diverse [6, 8, 10, 14–15]. 

The ordinary use of SOM is to make data analysis easier by mapping n-
dimensional input vectors to classes, or neurons, for instance in a two-dimensional 
lattice (map). The map of neurons reflects dissimilarities in the statistics of the data, 
and chooses such features that approximate to the distribution of the data samples. 
The topological organization of the input data is preserved on the SOM by associating 
the input vectors with common features with the same or neighboring neurons. In 
addition, the generalized properties of a neuron can be represented with an n-
dimensional, neuron-specific prototype vector, or reference vector. The size of the 
map can be varied depending on the purpose by changing the number of neurons; the 
bigger the map, the more details appear. 

The analysis with SOM involves an unsupervised learning process. Firstly, the 
preliminary reference vectors are initialized randomly by picking their values from an 
even distribution whose limits are determined by the input data. During the learning 
process the inputs are classified one by one into best matching units (BMU) on the 
map. Generally the BMU is defined as the neuron whose reference vector has the 
smallest n-dimensional Euclidean distance to the input vector. Even as the BMU is 
discovered for the input, the nearest neighbors of the BMU become activated as well, 
according to a predefined neighborhood function (e.g. Gaussian distribution) that is 
dependent on the topology of the network. Eventually the reference vectors of all 
activated neurons are updated. 

3.2   K-Means Clustering 

The k-means algorithm [17] is an extensively used non-hierarchical data clustering 
method. The basic way to execute the algorithm is to determine k cluster centers at 
random, and thereafter to direct each data point to the cluster whose mean value is the 
closest equivalent in the Euclidean-distances-sense. Subsequently, the mean vectors 
of the data points included to each cluster are computed and used iteratively as new 
cluster centers. The optimal number of clusters can be discovered e.g. by using the 
Davies-Bouldin -index [18]. Small values of DB-index correspond to compact 
clusters whose centers are far from each other. Thus, the optimal number of clusters is 
the number where the DB-index reaches its minimum. This way the need for knowing 
the clusters a priori can be avoided. 
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3.3   Determination of Process States  

The states of the combustion process were defined by combining the SOM analysis, 
k-means clustering, and process expertise. Firstly, all the input values were variance 
scaled. At the next stage, the scaled data were coded into inputs for a self-organizing 
network, whereby a SOM having 384 neurons in a 24x16 hexagonal arrangement was 
created. The parameters of the final SOM were defined by experimental testing. The 
linear initialization and batch training algorithm were used in the training of the map, 
and the neighborhood function was Gaussian. The map was taught with 10 epochs, 
and the initial neighborhood had the value of 6. The SOM Toolbox 
(http://www.cis.hut.fi/projects/somtoolbox/) was used in the analysis under a Matlab 
(version 7.6) software (Mathworks Inc., Natick, MA, USA, 2008) platform. The k-
means method was then used to cluster the reference vectors of the trained map, 
whereby the optimal number of clusters was defined by using the DB-index. Next, the 
information gained by clustering was united to expert process knowledge to identify 
the different states of process outlined by the clusters. 

3.4   Subtraction Analysis 

Subtraction of reference vectors can identify reasons for events, as the result describes 
the difference between the two vectors concerned. This form of analysis is called the 
subtraction analysis here. To perform subtraction analysis within each process state 
(cluster), the following formula was used: 

s = Cγ – ropt ,                                                         (1) 

where s is the result vector of subtraction analysis,  Cγ is the center vector of cluster γ, 
and ropt signifies the reference vector of the optimal neuron in cluster γ. This way the 
variables contributing to low emission rates within each process state are revealed. 
There are two important aspects to bear in mind when interpreting the results: (i) a 
great absolute value of the variable component in vector s means that the variable has 
largely affected the reduction of the emission within the process state concerned, and 
(ii) if the value of s is negative, the value of the variable has been higher in the 
optimal situation than in the cluster in general; in contrast, if the value of s is positive, 
the value of the variable has been lower in the optimal situation than in the cluster in 
general. 

3.5   Visualization and Optimization 

There are a number of ways to visualize a SOM. Perhaps the most common of them is 
to use 2-dimensional mapping of neurons, and to use color coding to visualize the 
special features on the map. Nonetheless, one of the most descriptive methods is to 
use 3-dimensional visualization of the component map. In this approach, the first two 
dimensions are defined by the arrangement of neurons, while the third dimension 
illustrates the desired output feature, or vector component. This kind of map is more 
informative and more decipherable than the conventional 2-dimensional map. 

After training the SOM, each neuron is defined by its location on the map grid and 
by its reference vector, which represents an average description of the data rows 
assimilated to the neuron concerned. The reference vector has the same 
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dimensionality as the input vectors. Therefore it is possible to regard a neuron as an n-
dimensional reference vector, which can be represented as follows:  

rm = (rm1, rm2, …, rmn), (m = 1, …, M) ,                                  (2) 

where n is the number of variables and M refers to the total number of map neurons. 
If the criteria for optimization are known the vectors can also be used as parameter 
estimators for optimal situations (e.g. process conditions with low emissions). Thus 
the reference vector of the optimal neuron is determined by using the following 
equation: 

ropt = rm[min(E)] ,                                                  (3) 

where E signifies the computational value for the vector component of the emission 
compound in the reference vector rm. Alternatively, E can be a derivative variable, 
e.g. the result of a specified cost function. Realistic values for different vector 
components are achieved by undoing data normalization.  

4   Results 

The clustering of data followed roughly the intensity of the steam flow, as can be seen 
in Fig. 1 a) and b), where the SOM component plane of the main steam flow and the 
clusters with the identified process states are represented, respectively. In addition,  

 

 

Fig. 1. a) SOM component plane for steam flow, b) SOM with clusters and identified process 
states, c) SOM component plane for NOx content of flue gas, where also the optimal neurons 
(N1, N2 and N3) for respective process states are indicated. 
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Fig. 2. The results of the subtraction analysis. a) Process state 1 (low steam flow), b) process 
state 2 (medium steam flow), and c) process state 3 (high steam flow). Cγ1, Cγ2 and Cγ3 indicate 
the center vectors of clusters γ1, γ2 and γ3, respectively; rN1, rN2 and rN3 are the reference vectors 
of neurons N1, N2 and N3 presented in Fig. 1 c). ‘std’ refers to the standard deviation of the 
averaged variable. 
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the component plane of the nitric oxide (NOx) content with process state -specific 
optimal neurons is presented in Fig. 1 c). 

The results of the subtraction analysis for process states γ1 (low steam flow), γ2 
(medium steam flow) and γ3 (high steam flow) are presented in Fig. 2 a), b) and c), 
respectively. Finally, the optimal values for selected process parameters in the process 
state γ3 (high boiler load) are shown in a scaled form in Table 1. 

Table 1. Optimal values for selected parameters in process state γ3 (high steam flow). The 
original values are scaled and the units are not shown due to confidentiality. 

 
Optimal 

Optimal + 
nearest neighbors 

(1ave) 

Optimal + 
nearest neighbors 

(2std) 
Total limestone flow 1,33 1,34 0,04 
Main steam flow 65,2 65,1 0,35 
Primary air flow 13,1 13,0 0,37 
Primary air flow to fuel feed 2,24 2,23 0,05 
Secondary air flow 5,31 5,30 0,09 
Fluidized bed pressure 1,07 1,06 0,03 
Coal conveyor speed 13,1 12,9 0,42 
Fluidized bed temperature 283 283 0,52 
Furnace middle level temperature 109 109 0,22 
Flue gas O2 after economizer 1,56 1,56 0,01 
Oil flow before burner 0,19 0,19 0,02 
Flue gas NOx content 47,2 48,0 0,67 
1Average of vector components in optimal neuron and its nearest neighbors. 
2Standard deviation of vector components in optimal neuron and its nearest neighbors. 

5   Discussion 

The general goal in improving the performance of an industrial process is to reduce 
the total cost of production to maximize the profit. In the near future, an increasing 
part of the production cost of energy is likely to result from different process 
emissions, which are already at the moment highly regulated and even sanctioned. 
This leads to an increasing demand for modeling and optimization methods that can 
be exploited in decision support systems or even in integrated applications. 

The schematic presentation of the method used in this study is shown in Fig. 3. At 
the first stage the raw data are pre-processed, which involves all the required actions, 
such as the normalization of variables, to process the data to a form suitable for 
modeling. Then the SOM and k-means clustering are used and linked with expert 
process knowledge to discover the different states of the process. Finally, the 
subtraction analysis of reference vectors and the optimization are performed within 
the process states, and the optimal parameters are approximated in the separate states. 

The results showed the potential of the method in the modeling of the circulating 
fluidized bed process. The identification of process states produced clearly defined  
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Fig. 3. Schematic presentation of the method used 

states, cluster borders following mostly the changes in the intensity of steam flow, in 
other words the degree of the boiler load. It is obvious that the optimal situation 
concerning the NOx formation on the high boiler load is different from the optimal on 
the low load. This is because it is not possible to obtain the lower level of emissions if 
a certain amount of steam must be produced. In addition, it must be borne in mind 
that sometimes the definition of process states may not be as clear as in this case. 
Thus it is reasonable to identify the process states before optimization is performed. 

The subtraction analysis of vectors offers deeper information on factors affecting 
the reduction of emissions, or NOx in this case. For instance in respect to high boiler 
load, 3–6 factors seem to contribute to the lower concentration of nitrogen oxides. In 
contrast, the corresponding factors in the other states are different. In the process state 
of medium steam flow (including start-up times), for example, the sufficient flow of 
oil seems to ensure a lower concentration of NOx. These observations support the fact 
that the optimization should be performed within the process states. 

The optimization of an industrial process is often a time-consuming and laborious 
task. By using the method presented the process parameters can be estimated fast and 
reliably if the modeling data cover the search space widely enough. The noticeable 
benefits of the presented method are its flexibility, nonlinearity and a strong 
computing power. The method used is also very illustrative, informative and quite 
simple to use, and therefore provides a useful, efficient and fruitful way to define the 
optimal parameters for a real manufacturing process. 

The method presented offers several opportunities in the near future. For example, 
currently only a few emission components are included to international emission 
trading. However, the regulations restricting different emissions are tightening world-
wide due to environmental issues such as global warming. As new emission 
components are probably included to the trading of emissions, the method can be used 
for emission cost modeling after the definition of a cost function to be used in the 
optimization. Optionally, the method can also be used to more general process 
optimization, for instance to optimize the total profit of producing steam in fluidized 
bed boilers. 
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5   Conclusion 

The acquisition of process data and their exploitation have become increasingly 
important considerations in the production of energy because of intentions to achieve 
process improvements, more efficient processes and, at the mean time, to reduce 
process emissions. Unfortunately the process data stored in the databases may not be 
used extensively enough in respect to the potential of the valuable information. This is 
partly due to the lack of methods suitable for easy and fast processing of data. For this 
reason it is important to develop new methods applicable to process analysis, 
modeling and optimization. The analysis method presented offers new possibilities for 
the development of industrial data processing, and also empowers the process 
engineers to develop more efficient processes. 
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Abstract. This paper presents a hierarchical self-organizing neural net-
work for intrusion detection. The proposed neural model consists of a hi-
erarchical architecture composed of independent growing self-organizing
maps (SOMs). The SOMs have shown to be successful for the analy-
sis of high-dimensional input data as in data mining applications such
as network security. An intrusion detection system (IDS) monitors the
IP packets flowing over the network to capture intrusions or anomalies.
One of the techniques used for anomaly detection is building statistical
models using metrics derived from observation of the user’s actions. The
proposed growing hierarchical SOM (GHSOM) address the limitations
of the SOM related to their static architecture. Experimental results are
provided by applying the well-known KDD Cup 1999 benchmark data
set, which contains a great variety of simulated networks attacks. Ran-
domly selected subsets that contain both attacks and normal records
from this benchmark are used for training the GHSOM. Before training,
a transformation for qualitative features present in the benchmark data
set is proposed in order to compute distance among qualitative values.
Comparative results with other related works are also provided.

Keywords: Self-organization, network security, intrusion detection
system.

1 Introduction

Data clustering is an unsupervised learning method to find most similar groups
from input data. According to a similarity measure, data belonging to one group
are most similar than data belonging to different groups. The unsupervised learn-
ing methods are especially useful when we have no information about the input
data and we have to discover the existing groups in data. The input data are
usually represented as feature vectors in a multidimensional space.

The self-organizing map (SOM) is being widely used as a tool for knowledge
discovery, data mining, detection of inherent structures in high-dimensional data
and mapping these data into a two-dimensional representation space [1]. This
neural network has been applied successfully in multiple areas since the mapping
retains the relationship among input data and preserves their topology, so that
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an understanding of the structure of the data is provided. On the other hand,
SOMs have some difficulties. First, the network architecture has to be established
in advance. Due to the high dimensionality of the input data, it is not easy
determine the number and arrangement of neurons that obtains the best results.
Second, hierarchical relations among input data are difficult to detect, so that
understanding of the data is limited.

The growing hierarchical SOM (GHSOM) intends to solve these limitations.
This model has a hierarchical architecture structured in layers, where each layer
is composed of different SOMs with an adaptative architecture. The architecture
of each SOM is determined during the unsupervised learning process, in such
a way that the architecture mirrors the structure of the data. The proposed
GHSOM by Rauber et al. [2], uses the metric based on Euclidean distance to
compare two input data. However, although this metric is useful for vectors with
quantitative values, it is not appropriate for vectors where qualitative values are
present due to the fact that qualitative values do not have an order associated.
Therefore, the use of a distance measure is not appropriate for qualitative val-
ues. Most of related works have mapped these qualitative values into consecutive
quantitative values [3,4,5]. Although using this mapping we can apply the Eu-
clidean distance, it assigns different distances among distinct qualitative values.

The GHSOM model is used to implement an Intrusion Detection System (IDS)
in a network environment. A pre-processing of the qualitative values to correctly
represent quantitative values is proposed in this paper. There are two differ-
ent approaches commonly used in detecting intrusions [6]. The first approach
is known as misuse detection, which detect attacks by storing the signatures
of previously known attacks. This approach fails detecting unknown attacks or
variants of known attacks and the signature database has to be manually up-
dated. The second approach is known as the anomaly detection approach, where
a normal profile is first established. Then, deviants from the normal profile are
considered intrusions. Therefore, our IDS is an anomaly detection system, since
detects new attack types in addition to normal connections. There is a wide vari-
ety of anomaly detection systems proposed using data mining techniques such as
clustering, support vector machines (SVM) and neural network systems [7,8,9].
Also, various IDS based on self-organization have been used, however the false
positive rates is usually very high [10].

In this work, the KDD Cup 1999 benchmark data set [11,12] has been used
for training and testing. This data set has served as the first and only reliable
benchmark data set that has been used for most of the research work on intrusion
detection algorithms [4]. The wide variety of attacks and the presence of both
quantitative and qualitative values have done this data set very appropriate for
our experiments.

The remainder of this paper is organized as follows. In Section 2, a description
of the GHSOM model and the pre-processing of the qualitative data features are
provided. In Section 3, some experimental results after training and testing the
IDS with the KDD Cup 1999 benchmark data set are presented. Also, a result
comparison with other related works is provided. Section 4 concludes this paper.
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2 GHSOM Model

The GHSOM has a hierarchical architecture composed of layers, which consist of
several growing SOMs [13]. Initially, the GHSOM consists of a single SOM of 2x2
neurons. During the training, the GHSOM architecture is automatically adapted
depending on the input patterns. For each SOM more neurons can be added until
reach a certain level of detail in the representation of the data mapped onto the
SOM. After the growing of the map, the heterogeneity of each neuron of the
map is checked. If the neuron has a bad representation of the data, that is, if
the cluster has heterogeneous data, the neuron is expanded in a new map in the
next layer of the hierarchy in order to provide a more detailed representation.
When the training has finished, the GHSOM mirrors the inherent structure of
the input patterns, improving the representation achieved with a single SOM.
Therefore, each neuron represents a data cluster, where data belonging to one
cluster are more similar than data belonging to different clusters.

An example of the GHSOM architecture is given in Fig. 1. This architecture
consists of just two layers; the first layer has just one map with 2x2 neurons,
whereas the second layer has two maps expanded from two first-layer neurons.
The layer 0 represents all the input data and is used to control the hierarchical
growth process.

The metric used in the GHSOM to compare two vectors is based on the
Euclidean distance. In many real life problems, there exist qualitative data in
addition to quantitative data. For example, in the case of network security, some
of the features to analyze contain just qualitative data, such as the protocol
type, whose values are TCP, UDP or ICMP. In order to feed the neural network
with these data, most of the related works map these data into consecutive

Fig. 1. Sample architecture of a GHSOM
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quantitative values. However, since qualitative data have no an order associated,
the use of the Euclidean distance is not appropriate for these types of data. For
example, if the TCP, UDP and ICMP values are assigned 1, 2 and 3, respectively,
and the Euclidean distance is used to compare these values, why is the distance
greater between TCP and ICMP than between TCP and UDP? Therefore, we
need qualitative values to have the same distance, since qualitative values must
just indicate whether they are present or not.

In this paper, this problem has been solved replacing each qualitative feature
with a binary vector composed by as many binary features as different possible
values that feature can take, as shown in Fig. 2. These binary features are known
as dummy variables or dummy features. Let Q = {q1, q2, ..., qn} be the set of a
n-valued qualitative feature, where qi is the i-th value of the feature Q. The
replacing is defined by the following function

f : Q −→ {0, 1}n

f(qi) = (0, .., 0︸ ︷︷ ︸
i−1

, 1, 0, .., 0︸ ︷︷ ︸
n−i

)

This way, the distance among qualitative values is always the same allowing
the use of the Euclidean distance or other standard metric, whereas the binary
values represent the values of the qualitative feature. Note that in this mapping
each qualitative value represents a unit vector of the vector space.

The adaptative growth process of a GHSOM, is controlled by two parameters
τ1 and τ2, which are used to control the growth of a map and to control the
hierarchical growth of the GHSOM, that is, the neural expansion in new maps,
respectively. These parameters are the only ones that have to be established in
advance. But the automatic adaptation of the GHSOM depends mainly on the
error in the representation of each neuron, also called quantization error of the
neuron (qe). The qe is a measure of the similarity of data mapped onto each

Fig. 2. Replacing qualitative features with dummy features
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neuron, where the higher is the qe, the higher is the heterogeneity of the data
cluster. The quantization error of the unit i is defined as follows

qei =
∑

xj∈Ci

‖wi − xj‖ (1)

where Ci is the set of patterns mapped onto the neuron i, xj is the jth input
pattern from Ci, and wi is the weight vector of the neuron i.

Initially, the quantization error at layer 0 must be computed as given in (2),
where w0 is the mean of the all input data I.

qe0 =
∑
xj∈I

‖w0 − xj‖ (2)

The initial quantization error qe0, measures the dissimilarity of all input data
and it is used for the hierarchical growth process of the GHSOM together with
the τ2 parameter, following the condition given in (3). That is, the quantization
error of a neuron i (qei) must be smaller than a fraction (τ2) of the initial
quantization error (qe0). Otherwise, the neuron is expanded in a new map in the
next level of the hierarchy.

qei < τ2 · qe0 (3)

When a new map is created, a coherent initialization of the weight vectors of the
neurons of the new map is used as proposed in [14]. This initialization provides
a global orientation of the individual maps in the various layers of the hierarchy.
Thus, the weight vectors of neurons mirror the orientation of the weight vectors
of the neighbor neurons of its parent. The initialization proposed computes the
mean of the parent and its neighbors in the respective directions.

The new map created from the expansion of a neuron in the previous level of
the hierarchy, it is trained as a single SOM. During the training, the set of input
patterns are those that were mapped onto the upper expanded unit. In each
iteration t, an input pattern is randomly selected from this data subset. The
winning neuron of the map is the neuron with the smallest Euclidean distance
to the input pattern, whose index r is defined in (4).

r(t) = arg min
i
{‖x(t)− wi(t)‖} (4)

The winner’s weight vector is updated guided by a learning rate α, decreasing in
time (5). In addition to the winner, the neighbors of the winner are updated de-
pending on a Gaussian neighborhood function hi and its distance to the winner.
This neighborhood function reduces its neighborhood kernel in each iteration.

wi(t + 1) = wi(t) + α(t)hi(t)[x(t) − wi(t)] (5)

When the training of the map m is finished, the growing of the map has to be
checked. For that, the quantization error of each neuron (qei) must be computed
in order to compute the mean of the quantization error of the map (MQEm). If
the MQEm of the map m is smaller than a certain fraction τ1 of the quantization
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error of the corresponding unit u in the upper layer, the map stops growing. This
stopping for the growth of a map is defined in (6). Otherwise, the map grows to
achieve a better level of representation of the data mapped onto the map.

MQEm < τ1 · qeu (6)

The growing of a map is done by inserting a row or a column of neurons between
two neurons, the neuron with the highest quantization error e and its most
dissimilar neighbor d. The neuron d is computed according to the expression
(7), where Λe is the set of neighbor neurons of e.

d = arg max
i

(‖we − wi‖), wi ∈ Λe (7)

3 Experimental Results

The proposed GHSOM model has been used to implement an IDS. It was trained
and tested with the pre-processed KDD Cup 1999 benchmark data set created by
MIT Lincoln Laboratory. The purpose of this benchmark was to build a network
intrusion detector capable of distinguishing between intrusions or attacks, and
normal connections. The 10% KDD Cup 1999 benchmark training data set has
been used for training the GHSOM. It contains 494,021 connection records,
each of them with 41 features pre-processed from monitoring TCP packets in a
military network environment. In the training data set exists 22 attack types in
addition to normal records, which fall into four main categories [15]: DoS (denial
of service), Probe, R2L (Remote-to-Local) and U2R (User-to-Root). The testing
was done with the 10% testing data set, which is composed of 311,029 connection
records and 15 additional attack types.

In both data sets three qualitative features are found: protocol type, service
and status of the connection flag. As was mentioned in Section 2, qualitative
features have to be mapped to numerical values in order to compare two vectors
with the Euclidean distance. However, it is not enough to map qualitative values
into quantitative values since it assigns an order among qualitative values of a
feature. Therefore, each qualitative feature has been replaced with new binary
features (dummy features), according to the number of possible values of each
feature. In the training data set the number of features has been increased from
41 to 118, since the protocol type feature has 3 different values, the service
feature 66 and the status of the connection flag feature 11. The new binary
feature has assigned the value 1 if the replaced symbolic feature had assigned
the value that represents that new feature or 0 otherwise. This way, among the
input data there are just quantitative features but the qualitative values are still
represented.

In order to train our IDS, we have selected two data subsets from the total
of 494,021 connection records, DS1 with 100,000 connection records and DS2
with 169,000. Both DS1 and DS2 contain the 22 attack types in addition to
normal records. The distribution of the selected data mirrors the distribution
of the data in the 10% KDD Cup data set, which has an irregular distribution.
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The distribution of training and testing data subsets used is given in Table 1,
where the ’Unknown’ connection category represents the connection records of
the new attack types present in the testing data set. Both DS1 and DS2 were
trained with 0.1 and 0.07 as value for parameters τ1 and τ2, respectively. Thus,
the training with DS1 and DS2 data subsets generated a very simple architecture
of just two layers in both cases, with just 20 and 17 neurons, respectively.

Table 1. Data distribution of different data subsets

Connection Category 10% Training DS1 DS2 10% Test
Normal 97278 30416 53416 60593

DoS 391458 64299 110299 223298
Probe 4107 4107 4107 2377
R2L 1126 1126 1126 5993
U2R 52 52 52 39

Unknown 0 0 0 18729

Related works are usually interested in distinguish between attacks or normal
records. However, we are also interested in classify an anomaly into its attack
type using 23 groups or clusters (22 attack types in addition to normal records)
instead 2 groups (normal or attack records). Thus, the detected rate are the
attacks that were detected as attacks, the false positive rate are the normal con-
nection records that were detected as attacks, and the identified rate are the
connection records that were identified as their correct connection type. The
training results using both subsets are given in Table 2. DS1 achieved 100% de-
tection rate and 1.78% false positive rate during the training. DS2 also achieved
100% detection rate, but with a lower false positive rate (0.71%). The identifi-
cation rate was around 94% and 95% in both cases, respectively.

Table 2. Training results for DS1 and DS2

Training Set Detected(%) False Positive(%) Identified(%)
DS1 100 1.78 94.03
DS2 100 0.71 95.158

The two trained GHSOMs where testing with the entire 311,029 connection
records from the 10% KDD Cup 1999 testing data set, where 15 new attack types
are found in addition to the rest of attack types and normal records. The testing
results are shown in Table 3, where we can notice that both GHSOMs achieved
similar results. DS1 and DS2 achieved a detection rate of 99.99%, whereas DS2
false positive rate and identification rate are slightly lower than those for DS1.

Most of the related works have used self-organizing maps to implement an IDS.
In [4], a hierarchical Kohonen net (K-Map) was proposed. It was composed of



Network Security Using Growing Hierarchical Self-Organizing Maps 137

Table 3. Testing results with 311,029 records for DS1 and DS2

Training Set Detected(%) False Positive(%) Identified(%)
DS1 99.99 3.94 90.73
DS2 99.99 3.72 90.42

three pre-specified levels, where each level is a single K-Map or SOM. Their best
result was 99.63% detection rate after testing, but taking into account several
limitations. It was trained with a selected 169,000 connection records data set
with 22 attack types from the KDD Cup 1999 data set as we used. However, just
three attack types were used during the testing, while we used 38 attack types,
where 15 attack types were unknown. They used a combination of 20 features
that had to be established in advance. Furthermore, 48 neurons were used in each
level. From [15], where a self-organizing map was applied to network security,
we chose the only one SOM trained on all the 41 features in order to compare
results. This neural network achieved a detection rate of 97.31%, but using 400
neurons. An emergent SOM (ESOM) for the Intrusion Detection process was
proposed in [16]. They achieved detection rates between 98.3% and 99.81% and
false positives between 2.9% and 0.1%. However, the intrusion detection was just
limited to DoS attacks and they used a pre-selected subset of 9 features. Also,
a large number of neurons were used in order to achieve emergency, between
160x180 and 180x200 neurons. In addition, their best result (99.81% detection
rate and 0.1% false positive rate) was just trained and tested with one DoS
attack type, the smurf attack. These different results are summarized in Table 4.
Note that our false positive rates are higher than the rest of the proposed IDSs
due to the lower number of neurons. Nevertheless, we achieved higher detection
rates with a more simple architecture, where the data hierarchical structure is
easier to understand than other approaches using more complex architectures.

Table 4. Testing results for differents IDSs based on self-organization

Detected(%) False Positive(%) Neurons
GHSOM 99.99 3.72 17
K-Map 99.63 0.34 144
SOM 97.31 0.042 400

SOM (DoS) 99.81 0.1 28800

4 Conclusions

In this paper, a growing hierarchical self-organizing map (GHSOM) is pro-
posed for network security applications. The proposed neural model performs an
anomaly detector using the GHSOM. This GHSOM can deal with the limitation
of SOMs related to their static architecture. The architecture of the proposed
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model is composed of several SOMs arranged in layers, where the whole archi-
tecture (number of layers, maps and neurons) is established during the training
process depending on the input data and mirroring their inherent structure.

The proposed GHSOM has been used to implement an Intrusion Detection
System (IDS). Our model was trained and tested with the standard KDD Cup
1999 benchmark data set, which is composed of 494,021 connection records for
training and 311,029 for testing. These connection records consist of 41 features,
where 3 of them are qualitative. A transformation of these qualitative features
into binary features has been proposed to be able to compute the Euclidean
distance among qualitative features.

Two different subsets have been selected for the experimental results, DS1
and DS2 with 100,000 and 169,000 connection records, respectively. During the
training, we achieved 100% detection rate and 0.71% false positive rate. After
testing, a detection rate of 99.99% was achieved with a false positive rate of
3.72%. These results have been compared with those achieved in [4,15,16], which
also used the same benchmark data set. For our experiments, we have taken into
account all the features and the attack types, both during the training and
testing, using a reduced number of neurons, mirroring the inherent structure of
the data and without get worried about establish the architecture in advance.
Moreover, we are interested in the number of connection records identified as
their correct connection record types (identification rate), achieving around the
95% during the training and around 90% after testing.
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Abstract. This research deals with the use of self-organising maps for the clas-
sification of text documents. The aim was to classify documents to separate 
classes according to their topics. We therefore constructed self-organising maps 
that were effective for this task and tested them with German newspaper docu-
ments. We compared the results gained to those of k nearest neighbour search-
ing and k-means clustering. For five and ten classes, the self-organising maps 
were better yielding as high average classification accuracies as 88-89%, 
whereas nearest neighbour searching gave 74-83% and k-means clustering 72-
79% as their highest accuracies. 

1   Introduction 

The growth of digital documents and information stored as text in the Internet has 
been rapid in the recent years. Searching and grouping such documents in various 
ways have become an important and challenging function. A myriad of documents are 
daily accessed in the Internet to find interesting and applicable information. Distin-
guishing in some way interesting documents from the uninteresting ones is, even if a 
self-evident goal, crucial. For this purpose, computational methods are of paramount 
importance. We are interested in researching the classification of text documents, also 
those written in languages other than English. 

There are known methods for constructing groups, clusters or models of documents, 
see for instance [4], [12] and [13]. These machine learning methods have included k 
nearest neighbour searching, probabilistic methods such as Naïve Bayesian classifiers 
[5] and evolutionary learning with genetic algorithms [13]. The methods were of the 
supervised category. We investigated the use of unsupervised Kohonen self-organising 
maps [8] that seemed to be seldom used in this field. They have been, however, applied 
to constructing visual maps of text document clusters, in which documents were clus-
tered based on the features they contain. WEBSOM [7] [9] was employed to organize 
large document collections, but it did not include document classification in the sense 
to be compared with the current research. Chowdhury and Saha [2] classified 400, 500 
and 600 sport articles, whereas Guerro-Bote et al. [6] employed 202 documents from a 
bibliographic database. Moya-Anegón et al. [10] made domain analysis of documents 
with self-organising maps, clustering and multidimensional scaling. Instead of  
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document clustering, we were interested in investigating how accurately and reliably  
self-organising maps are able to classify documents. Therefore, we constructed self-
organising maps on document sets belonging to different known classes and used them 
to classify new documents. We employed ten-fold crossvalidation runs on our test 
document collection to assess classification accuracy in the document collection. We 
also performed comparable tests with k nearest neighbour searching and k-means clus-
tering which employ supervised learning to find a baseline level for the classification 
of the document data used. In principle, the use of self-organising maps is reasonable, 
because outside laboratory tests there is not necessarily a reliably classified learning set 
available. 

In the present research, we extend our previous research of using self-organising 
maps for information retrieval in the same German document collection as in [11]. In 
the prior work, we studied retrieval from the document collection, the topics of which 
were associated with some of its documents, and we used both relevant and non-
relevant documents in the document sample extracted from the collection. In the pre-
sent work, our interest was in the classification, in other words separation between 
document classes. We therefore used only documents relevant to the classes examined. 

2   The Data and Its Preprocessing 

We used a German document set which was taken from an original collection of 
294809 documents [1] from CLEF 2003 of the years 1994 and 1995 (http://www.clef-
campaign.org/). The articles were from newspapers such as Frankfurter Allgemeine 
and Der Spiegel. There were 60 test topics associated with the collection. In every 
topic there was a relatively small subset of relevant documents. Relevant topics were 
included in our tests. At first, 20 topics were taken from the 60 topics otherwise ran-
domly. From those 20 selected the smallest classes (topics) were still left out which 
included 6-25 relevant documents in the collection. Such small document classes 
would not have been quite reasonable for 10-fold crossvalidation tests, because their 
average numbers of test documents in test sets would only have been from 0.6 to 2.5, 
which might have resulted in considerable random influence. Thus, we attained 10 
topics (classes) and 425 relevant documents (observations) so that the numbers of the 
relevant documents of the topics were 27, 28, 29, 29, 34, 39, 44, 53, 55 and 87. 

The concept of relevance means here that the association of the documents to the 
topics had been manually ensured in advance by independent evaluators who had 
nothing to do with the present research. 

To transform pertinent document data into the input variable form for a self-
organising map, some preprocessing was required. At first, the German stemmer 
called SNOWBALL was run to detect word stems like ‘gegenteil’ from ‘Gegenteil’ or 
‘gegenteilig’ from all documents and topics chosen. In addition, a list of 1320 German 
stopwords was used to sieve semantically useless words from them. Stopwords are 
prepositions like ‘ab’, articles like ‘ein’ and ‘eine’ or pronouns like ‘alle’, adverbs or 
other uninteresting “small words”, which are mostly uninflected words. They were 
removed from the documents and topic texts. Thereafter, short words, shorter than 
four letters, were removed, because they are typically, after stemming, as word  



142 J. Saarikoski et al. 

prefices rather useless as term words. The last preprocessing phase included the com-
putation of the frequencies of remaining word stems. 

The documents and topics were of SGML format. In the following, the first exam-
ple presents an (abbreviated) SGML document and the second example depicts a 
topic connected to some other documents. Classification variables were formed on the 
basis of words occurring in the actual text parts of the documents and topics. 

 
A document: 
<DOC> 
<TITLE>Ahornblatt nach 33 Jahren vergoldet</TITLE> 
<TITLE>Zum 20. Mal Eishockey-Weltmeister</TITLE> 
<TITLE>Sieg im Penaltyschießen</TITLE> 
<TITLE>Finnland </TITLE> 
<TEXT>Das Eishockey-Mutterland Kanada ist nach 33 Jahren wieder die Nummer eins in der Welt. 
Durch einen 3:2-Erfolg im Penaltyschießen gegen Finnland lösten die Ahornblätter im WM-Finale in 
Mailand den einst übermächtigen Rivalen und Titelverteidiger Rußland ab, der bereits im Viertelfinale 
gegen die USA (1:3) ausgeschieden war. Nach regulärer Spielzeit und Verlängerung hatte es 1:1 (0:0, 
0:0, 1:1, 0:0) gestanden. Zuvor hatte Brind'Amour (56.) die Führung der Finnen durch Keskinen (47.) 
ausgeglichen. Im Penaltyschießen zeigten die Kanadier die besseren Nerven, die Finnen verschossen 
viermal in sechs Versuchen. Robitaille verwandelte den sechsten Penalty für Kanada. Die Kanadier, 
zuletzt 1961 bei der WM in Genf und Lausanne auf dem Thron, feierten bei den 58. Titelkämpfen ihren 
20. WM-Titel und machten damit... 
</TEXT> 
</DOC> 
 
A topic: 
<DE-title> Rechte des Kindes </DE-title> 
<DE-desc> Finde Informationen über die UN-Kinderrechtskonvention. </DE-desc> 
 
We computed document vectors for all documents by applying the common vector 

space model with tf·idf weighting for all remaining word stems. Thus, a document is 
presented in the following form 

),...,,,( 321 itiiii wwwwD =  (1) 

where wik is the weight of word k in document Di, 1 ≤ i ≤ n, 1 ≤ k ≤ t, where n is the 
number of the documents and t is the number of the remaining word stems in all 
documents. Weights are given in tf·idf form as the product of term frequency (tf) and 
inverse document frequency (idf). The former for word k in document Di is computed 
with 
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where freqik equals the number of the occurrences of word k  in document Di and l is 
for all words of Di, l=1,2,3,..., t-1, t. The latter is computed for word k in the docu-
ment set with 
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where N is equal to the number of the documents in the set and nk is the number of the 
documents, which contain word k at least once. Combining equations (2) and (3) we 
obtain a weight for word k in document Di 

kikik idftfw ⋅=  (4) 

Based on this computation all 425 documents were mapped as document vectors 
weighted with the tf·idf form. 

Finally, the length of each document vector was shortened only to include 500 or 
alternatively 1000 middle (around median) word stems from the total word frequency 
distribution increasingly sorted. Very often the most and least frequent words are 
pruned in information retrieval applications, because their capacity to distinguish 
relevant and non-relevant documents (to a topic) is known to be poor. We chose either 
500 or 1000 words, since from several values we found these as good choices for this 
data in our earlier research [11]. 

It is worth noticing that document vectors were only computed from a learning set 
in crossvalidation. Information about its corresponding test set was not used in order 
to create as a realistic situation as possible, where the system knows an existing learn-
ing set and its words in advance, but not those of a test set. Thus, each learning set in-
cluded its own word set, somewhat different from those of the other learning sets, and 
the document vectors of its corresponding test set were prepared according to the 
words of the learning set. 

3   Classification with Self-Organising Maps 

Kohonen self-organising maps are neural networks that apply unsupervised learning 
and they have been exploited for numerous visualisation and categorisation tasks [5]. 
We employed them to study their applicability to divide the test documents into dif-
ferent classes on the basis of document vectors computed. We used the SOM_PAK 
program written in C (http://www.cis.hut.fi/projects/somtoolbox/) in Helsinki Univer-
sity of Technology, Finland. 

In our previous research on the same German document collection [11], we ob-
served that random initialisation, bubble neighbourhood and up to 17×17 nodes were 
good choices. Different numbers of learning epochs were tested. Finally, as few as 3 
coarse and 15 tuning epochs were applied. 

The following procedure was implemented. 

1. Create a self-organising map using a learning data set. 
2. Form the model vector of a node during the learning process of the network. Its 

dimension is equal to that of the input vectors. 
3. Determine a class for a node of the map according the numbers of documents of 

different classes in the current node. The most frequent document class determines 
the class of the node. If there are more than one class with the same maximum, la-
bel the node according to the class of the document (from the maximum classes) 
closest to the model vector (learnt during the process) of the node. Consider all 
nodes in this manner. 
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After this procedure each node corresponded to some document class. Some node 
could also remain empty, which would be bypassed during the later process. 

Next the classification of a test document set was performed where a test document 
was compared to the model vector of each node to find which node was the closest 
(the best fit), on the basis of Euclidean distance, to the test document.  

After computing all document vectors of a test set, classification accuracy was 
computed by checking for every document of a test set j whether it was classified into 
its correct class. 

%100
j

j
j n

c
a =  (5) 

Here cj (j=1,..,10) is equal to the number of the correctly classified documents  in test 
set j and  nj is the number of all documents in that test set. Accuracy aj was obtained 
for each test set. Since a random element is involved in the initialisations of neural 
networks, we repeated 10 tests for every learning and test set pair. For each such 
crossvalidation pair about 90% of documents were put to a learning set and the rest 
10% to its corresponding test set. Documents were selected into learning sets and test 
sets so that the relative proportions of various kinds of documents were similar in 
both sets. Thus, 10-fold crossvalidation was applied, which produced 10 times 10 test 
runs for a test document set. Average classification accuracies were finally calculated 
from those 100 runs. 

4   Nearest Neighbour Searching and K-Means Clustering 

In order to compare results obtained by self-organising maps, we tested with nearest 
neighbour searching and k-means clustering by using exactly the same crossvalidation 
document selections as above for the documents. 

Classification with nearest neighbour searching was performed with the following 
procedure. 

1.  Search for k nearest neighbours of a test document from a learning set. 
2.  Compute the majority class from those k documents, i.e. the most frequent docu-

ment class among the neighbours. 
3.  Determine the class of the text document on the basis of the preceding step. If 

there are two or more classes including the same maximum number of documents, 
select the class randomly from those majority classes.  

4. Repeat the former steps for all documents of a test set. 

After the nearest neighbour searching, the classification results were assessed for 
correctness. Values of k were 1, 3, 5, 7 and 9. The Euclidean distance measure was 
applied. The procedure was run for all 10 pairs of the learning and test sets, for which 
average classification accuracies were calculated. We employed the Matlab program. 
Nearest neighbour searching included no such an initialisation property of random 
character as self-organising maps and clustering. Consequently, the nearest neighbour 
searching was run only once for every learning and test set pair. 
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Clustering was accomplished with the Matlab program according to the test proto-
col similar to that of nearest neighbour searching. The documents of a learning set 
were clustered into k clusters in the Euclidean space of the document vector variables, 
when k was equal to 2, 5, 10 and 20. The class of each cluster was determined simi-
larly to the above “voting” principle of nearest neighbour searching. A test set was 
then dealt with and results computed. This was done 10 times for all 10 learning and 
test sets to obtain the average results. 

5   Results 

We tested with the two input vector lengths, 500 and 1000 word stems, either 2, 5 or 
10 classes (topics), which respectively included 142, 278 or 425 relevant documents 
in total. Less than 10 classes (5 or 2 largest classes) were tested in order to see what 
may happen when we merely restricted ourselves to the largest document classes, i.e. 
discarded the classes smaller than with 39 or 55 documents. In the following, we pre-
sent the means and standard deviations of 100 crossvalidation test runs of the  
self-organising maps and k-means clustering and those of 10 crossvalidation runs of 
nearest neighbour searching. The crossvalidation division into test and learning sets 
was identical between all three machine learning methods used. 

Table 1 shows the results computed with the self-organising maps. The highest re-
sult at each row is written in bold in Tables 1-3. The best 2-class and 5-class situa-
tions in Table 1 were with the smallest network of the 25 nodes. Instead, the 10-class 
condition gave its best results with the networks of 7×7 nodes. The vector lengths 
used did not yield so unambiguous an outcome. For the self-organising maps, 4.8% of 
all nodes as minimum were empty with the size of 5×5 nodes and 5 classes. As 
maximum  66.9% were empty with the size of 13×13 and 2 classes. These empty 
nodes obtained hits (incorrect classifications) from 0.8% (10 classes) to 5.0% (2 
classes) both with the size of 5×5. 

Table 2 presents the results of nearest neighbour searching. Its results of all 2-class 
test alternatives were exceptionally high. This was at least partly due to very different 
topics of the two classes one being ‘children theme’ and the other ‘nuclear power 
theme’. The 5-class and 10-class situations were at their best with nearest neighbour 
searching of k equal to 1. For the 2-class alternatives the longer vector length of 1000 
word stems produced better results than the shorter length of 500, but for the 5-class 
and 10-class alternatives it was vice versa. 

The numbers of 2, 5, 10, 20, 40, 60, 80, 100 and 120 clusters were tested for clus-
tering. Table 3 describes most clustering results excluding those of 40, 60, 100 and 
120 clusters since these were poorer than the results of 80 clusters. The best results 
were gained by using the cluster number of 80, except for the 2-class condition. The 
shorter vectors were better than the longer ones. 

Running times of individual learning and test pairs were moderate while using a 
computer with a 1.6 GHz processor and 1 GB memory. They varied from 1.6 s to 13 s 
for the self-organising maps. The Matlab implementation of nearest neighbour search-
ing took from 0.4 s to 1.1 s and that of k-means clustering from 1.8 s to 34 s. These do 
not contain the short time of the preprocessing common to all three. 
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Table 1. Means and standard deviations of classification accuracies (%) of self-organising 
maps for 100 test runs 

Number
of classes

Vector
length

Number of nodes

5×5 7×7 9×9 11×11 13×13
2 500 93.2±8.2 88.4±10.2 77.4±11.1 68.8±11.5 60.6±13.8

1000 90.5±8.0 86.4±9.5 75.7±11.5 67.2±13.1 62.5±14.3
5 500 87.8±6.2 86.0±6.9 84.3±7.1 77.5±6.6 73.4±7.9

1000 89.0±6.8 87.0±5.9 83.2±7.3 78.1±7.5 72.2±8.2
10 500 79.2±7.3 88.1±5.6 86.7±5.8 82.6±6.6 79.6±6.3

1000 76.5±5.1 89.2±5.4 88.0±5.4 84.2±4.8 80.8±5.6  

Table 2.  Means and standard deviations of classification accuracies (%) of nearest neighbour 
searching for 10 test runs 

Number
of classes

Vector
length

Number k of nearest neighbours

1 3 5 7 9
2 500 95.1±4.6 97.1±3.7 95.8±3.6 97.9±3.4 99.2±2.4

1000 99.3±2.1 99.3±2.1 99.3±2.1 98.7±4.2 98.7±2.8
5 500 83.4±6.2 76.3±7.1 69.0±6.7 70.5±5.4 69.7±8.4

1000 74.4±5.5 60.8±7.7 56.5±9.9 59.0±7.7 59.4±10.9
10 500 83.3±7.0 81.8±6.1 80.2±6.8 78.9±5.7 78.5±5.7

1000 80.7±6.0 72.6±6.2 69.7±5.7 67.9±6.9 71.1±5.7  

Table 3. Means and standard deviations of classification accuracies (%) of k-means clustering 
for 100 test runs 

Number 
of 
classes 

Vector 
length 

Number k of clusters 

  2 5 10 20 80 
2 500 62.1±5.7 73.7±17.7 92.4±14.7 97.9±7.0 95.9±5.9 
 1000 61.3±1.6 65.0±11.2 76.9±18.3 83.6±17.7 91.9±9.7 
5 500  52.0±6.9 59.2±7.4 65.5±6.0 78.5±7.3 
 1000  44.6±9.8 54.4±7.1 58.8±6.6 72.3±6.9 
10 500   48.1±5.7 56.9±7.3 73.6±8.3 
 1000   42.7±5.7 52.1±5.7 71.9±6.2 

Fig. 1 shows an example of the self-organising maps. It includes 10 classes with 
383 documents of a learning set when the size of the map was 7×7, the input vector 
length was 1000 and a random test run was chosen. Its average classification accuracy 
was 88.8%. 
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Fig. 1. The numbers of relevant documents of a learning set hit each node are counted in the 
map. The darker the node, the more compact the concentration of the document group is. The 
larger the node, the greater the number of documents. The other 42 documents of all 425 docu-
ments were not here, but allocated to the test set. 

Fig. 2 depicts the same map as Fig. 1, but the nodes are marked with the class iden-
tifiers computed. The following list gives the class identifiers, numbers of documents 
and class titles occurring in Fig 2. 

#186 : 24 : Holländische Regierungskoalition  
#156 : 25 : Gewerkschaften in Europa  
#147 : 26 : Ölunfälle und Vögel  
#195 : 26 : Streik italienischer Flugbegleiter  
#193 : 31 : EU und baltische Länder  
#184 : 35 : Mutterschaftsurlaub in Europa  
#150 : 40 : AI gegen Todesstrafe  
#152 : 48 : Rechte des Kindes  
#190 : 50 : Kinderarbeit in Asien  
#187 : 78 : Atomtransporte in Deutschland 

To statistically compare the results, the Friedman test [3] was conducted. Since 
nearest neighbour searching included 10, but the others 100 test runs, the means of the 
10 crossvalidations of the latter two methods were first calculated. For the 2-class 
condition nearest neighbour searching and clustering obtained significantly (p = 
0.004) better results than the self-organising maps for the vector length of 500. For 
the length of 1000, nearest neighbour searching was significantly (p = 0.00005) bet-
ter.  For the 5-class and 10-class conditions, the self-organising maps outperformed 
significantly (p < 0.001) the other methods with both vector lengths. 
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Fig. 2. The class identifiers are attached to the nodes where they beat voting as “majority” 
classes. Notice that we cannot sum up the numbers of documents from this figure and the pre-
ceding list and to compare them directly to those of Fig.1, because the nodes also include some 
probably incorrect (non-relevant) classifications from “minority” classes. 

6   Conclusions 

We tested self-organising maps, nearest neighbour searching and k-means clustering 
with documents from a German newspaper article collection. Except the 2-class alter-
native which favoured nearest neighbour searching, self-organising maps gave the 
best results. Table 1 suggests that if more classes are involved, the number of the 
nodes in a network should increase. On the other hand, for nearest neighbour search-
ing the dispersion of documents to several classes supports the idea to keep to the 
number k of neighbours equal to 1. Table 3 (k-means) suggests that the number of the 
cluster is best to set high. Differences caused by the vector lengths were not consis-
tent, but the self-organising maps were mostly somewhat better with the length of 
1000 word stems, meanwhile nearest neighbour searching and k-means clustering fa-
voured the length of 500. Doubtless the self-organising maps were effective classifi-
ers for the current data. Excluding the 2-class condition, they outperformed the other 
two methods, when the self-organising maps gave the average classification accura-
cies of 88-89%, nearest neighbour searching reached 74-83% and clustering 72-79%.  
A 2-class condition is an extreme situation. A more realistic alternative contains a 
greater number of classes. Nearest neighbour searching was the fastest method. 

We can continue our research with the current document data and larger document 
sets. We are going to perform an extensive analysis with additional learning methods. 
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Dpto. Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes s/n
41012 Sevilla, Spain

{valvarez,mdfrau,aosuna}@us.es

Abstract. A genetic algorithm for constructing cocyclic Hadamard ma-
trices over a given group is described. The novelty of this algorithm is
the guided heuristic procedure for reproduction, instead of the classical
crossover and mutation operators. We include some runs of the algorithm
for dihedral groups, which are known to give rise to a large amount of
cocyclic Hadamard matrices.

1 Introduction

A Hadamard matrix is a n× n square (−1, 1) matrix Hn so that Hn ·HT
n = nI.

Equivalently, a Hadamard matrix is a square matrix over {1,−1} so that its
rows are pairwise orthogonal.

The knowledge of Hadamard matrices is a major question for applications in a
wide range of different disciplines, as in the design of good (even optimal) error-
correcting codes meeting the Plotkin bounds (see [15] for details). A classical
reference on Hadamard matrices and their uses is [9].

It may be easily proved that the size n of a Hadamard matrix Hn must be
1, 2 or a multiple of 4. It is conjectured that such a Hn exists for all n divisible
by 4. However, the proof of this conjecture remains an important problem in
Coding Theory, since there is no evidence of this fact until now.

In fact, there are infinitely many orders multiple of four for which uncertainty
about the existence of these matrices has not been removed at all. Furthermore,
even in the case that a Hadamard matrix is known to exist for a given order
n = 4t, there is no algorithm available which outputs a Hadamard matrix of this
order 4t in reasonable time, as it is pointed out in [14].

The cocyclic framework concerning Hadamard matrices was introduced in the
90s [12,13] as a promising context to solve the questions above.

A cocyclic matrix Mf over a finite group G = {g1, . . . , g4t} of order |G| = 4t
consists in a matrix M = (f(gi, gj)), f : G×G → {1,−1} being a 2-cocycle over
G with coefficients in {1,−1}, so that

f(gi, gj)f(gigj, gk) = f(gj, gk)f(gi, gjgk), ∀ gi, gj , gk ∈ G

� All authors are partially supported by the research projects FQM–296 and P07–
FQM–02980 from JJAA and MTM2008-06578 from MICINN (Spain).
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The link between cocyclic and Hadamard matrices was first noticed in [12].
A more recent reference is [11], in which many of the classical and more re-
cently discovered constructions of Hadamard matrices are shown to be cocyclic.
This support the idea that cocyclic construction is the most uniform construc-
tion technique for Hadamard matrices yet known. Consequently, the cocyclic
Hadamard Conjecture arises in turn.

The main advantages of working with cocyclic Hadamard matrices may be
resumed in the following facts:

– The cocyclic Hadamard test (which claims that it suffices to check whether
the summation of every row but the first is zero, see [13] for details) runs
in O(t2) time, better than the O(t3) algorithm for usual (not necessarily
cocyclic) Hadamard matrices.

– The search space is reduced to the set of cocyclic matrices over a given group
(that is, 2s matrices, provided that a basis for 2-cocycles over G consists of

s generators), instead of the whole set of

⎛⎝(
4t
2t

)
4t− 1

⎞⎠ matrices with entries

in {−1, 1} consisting of the row (1, t. . ., 1) and 4t − 3 vectors of length 4t
orthogonal to (1, t. . ., 1).

In particular, the work in [5] suggest that the cocyclic framework (c.f. in the
table below) may reduce significantly the size of the search space in the general
framework (g.f. for brevity) case, as the table below indicates:

t 1 2 3 4 5 6 7 8
c.f. O(100) O(101) O(102) O(103) O(105) O(106) O(107) O(108)
g.f. O(101) O(109) O(1024) O(1049) O(1082) O(10125) O(10177) O(10238)

Considerable effort has been devoted to the design of efficient algorithms for
constructing cocyclic Hadamard matrices. Exhaustive search is not feasible for
orders 4t greater than 20 (the search space grows exponentially on t, see [5] for
instance). Consequently, alternative methods are required. As far as we know,
two different heuristic methods have been proposed until now, in terms of image
restorations [6] and genetic algorithms [2].

We present here a new genetic algorithm for constructing cocyclic Hadamard
matrices. The main difference with respect to that of [2] is a novel heuristic for
reproduction: instead of the usual crossover and mutation operators we shall
better use a guided reproduction procedure. Calculations in Section 5 suggest
that this new feature improves the original algorithm. This heuristic involves the
notions of i-paths and intersections introduced in [5], to be described further in
Section 2.

As it is shown in [5], dihedral groups seems to be the most prolific familiy of
groups giving rise to cocyclic Hadamard matrices. We particularize the algorithm
to the case of these groups. We also include some runs of the algorithm, which
have been worked out in Mathematica 4.0, running on a Pentium IV 2.400
Mhz DIMM DDR266 512 MB.
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A deeper study on the way in which 2-coboundaries over G have to be com-
bined in order to give rise to cocyclic Hadamard matrices (attending to i-paths
and intersections, as described in [5]) would lead to an improvement of the per-
formance of the guided genetic algorithm in a straightforward manner.

We organize the paper as follows. Section 2 collects some general notions
and results about cocyclic Hadamard matrices. The algorithm looking for co-
cyclic Hadamard matrices equipped with the new heuristic for reproduction is
described in Section 3. Section 4 is devoted to particularize the algorithm to the
case of dihedral group.

2 Generalities about Cocyclic Hadamard Matrices

Consider a multiplicative group G={g1 = 1, g2, . . . , g4t}, not necessarily abelian.
A cocyclic matrix Mf over G consists in a binary matrix Mf = (f(gi, gj)) coming
from a 2-cocycle f over G, that is, a map f : G×G → {1,−1} such that

f(gi, gj)f(gigj , gk) = f(gj , gk)f(gi, gjgk), ∀ gi, gj, gk ∈ G.

We will only use normalized cocycles f (and hence normalized cocyclic matrices
Mf), so that f(1, gj) = f(gi, 1) = 1 for all gi, gj ∈ G (and correspondingly
Mf = (f(gi, gj)) consists of a first row and column all of 1s).

Effective methods for constructing a basis B for 2-cocycles over a given
group G are known ([12,13],[7],[4]). Such a basis consists of some representa-
tive 2-cocycles (coming from inflation and transgression) and some elementary
2-coboundaries ∂i, so that every cocyclic matrix admits a unique representation
as a Hadamard (pointwise) product M = M∂i1

. . . M∂iw
· R, in terms of some

coboundary matrices M∂ij
and a matrix R formed from representative cocycles.

Recall that every elementary coboundary ∂d is constructed from the charac-
teristic set map δd : G → {±1} associated to an element gd ∈ G, so that

∂d(gi, gj) = δd(gi)δd(gj)δd(gigj) for δd(gi) =
{−1 gd = gi

1 gd = gi
(1)

Although the elementary coboundaries generate the set of all coboundaries, they
might not be linearly independent (see [4] for instance). Moreover, since the ele-
mentary coboundary ∂g1 related to the identity element in G is not normalized,
we may assume that ∂g1 /∈ B.

The cocyclic Hadamard test asserts that a cocyclic matrix is Hadamard if and
only if the summation of each row (but the first) is zero [13]. In what follows,
the rows whose summation is zero are termed Hadamard rows.

We now reproduce the notions of generalized coboundary matrix, i-walk and
intersection introduced in Definition 2 of [5].

The generalized coboundary matrix M̄∂j related to a elementary coboundary
∂j consists in negating the jth-row of the matrix M∂j . Note that negating a row
of a matrix does not change its Hadamard character. As it is pointed out in [5],
every generalized coboundary matrix M̄∂j contains exactly two negative entries
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in each row s = 1, which are located at positions (s, i) and (s, e), for ge = g−1
s gi.

We will work with generalized coboundary matrices from now on.
A set {M̄∂ij

: 1 ≤ j ≤ w} of generalized coboundary matrices defines an
i-walk if these matrices may be ordered in a sequence (M̄l1 , . . . , M̄lw) so that
consecutive matrices share exactly one negative entry at the ith-row. Such a
walk is called an i-path if the initial and final matrices do not share a common
−1, and an i-cycle otherwise. As it is pointed out in [5], every set of generalized
coboundary matrices may be uniquely partitioned into disjoint maximal i-walks.

A characterization of Hadamard rows may be easily described attending to
i-paths.

Proposition 1. [5] The ith row of a cocyclic matrix M = M∂i1
. . .M∂iw

· R is
a Hadamard row if and only if

2ci − 2Ii = 2t− ri (2)

where ci denotes the number of maximal i-paths in {M̄∂i1
, . . . , M̄∂iw

}, ri counts
the number of −1s in the ith-row of R and Ii indicates the number of positions
in which R and M̄∂i1

. . . M̄∂iw
share a common −1 in their ith-row.

From now on, we will refer to the positions in which R and M̄∂i1
. . . M̄∂iw

share a common −1 in a given row simply as intersections, for brevity.
Equation (2) is the heart of the guided heuristic procedure for reproduction

which is applied in the genetic algorithm described in this paper.

3 The Algorithm

The genetic algorithm described in [2] and implemented in [3] is based upon the
natural evolution principles of Holland’s [10]:

– The population consists of a subset of 4t cocyclic matrices Mf over G, Mf =
(f(gi, gj)), which are identified to a binary tuple, the coordinates (f1, . . . , fs)
of the 2-cocycle f with regards to the basis B. Accordingly, the coordinates
fi are the genes of the individual f .

– The evaluation function counts the number of Hadamard rows in Mf :
the more Hadamard rows Mf posses, the fittest Mf is. In particular, an
individual ind gives rise to a cocyclic Hadamard matrix if and only if
evaluate(ind)= 4t− 1.

– Crossover combines the features of two parent chromosomes to form two
similar offspring by swapping corresponding segments of the parents.

– Mutation arbitrarily alters just one gene of a selected individual (the muta-
tion rate is fixed in 1%).

In the reproduction process, the individuals of the population are paired at
random, so that the application of the crossover operator gives rise to another 4t
individuals, which are added to the population. The generation i + 1 is formed
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from generation i by choosing the 4t fittest individuals after the reproduction
process.

We now propose a different approach. Instead of the usual crossover and
mutation operators described above, we shall better use another heuristic for
reproduction. With probability pr

1, an individual Mf randomly selected from
the population gives rise to 4t− 1 children, so that the (i + 1)th-row of the ith-
child is Hadamard. Otherwise the usual crossover operator is used, applied over
two individuals randomly selected. Generation Pw+1 is obtained from generation
Pw keeping the fittest individuals and replacing a set of less fit individuals with
the children just constructed, so that a population of 8t individuals is formed.
In this process duplicate copies of the same individual are not permitted.

Consequently, the blinded processes of crossover and mutation are now sub-
stituted by a completely oriented procedure for reproduction: this way it is guar-
anteed that anytime an individual exists such that its ith-row is Hadamard.

In order to generate these children, the genes of Mf have to be modified so
that equation (2) is satisfied. It is remarkable that the magnitudes ci and Ii

depends heavily on the subset of 2-coboundaries which gives rise to Mf . On
the contrary, the magnitude ri depends only on the representative 2-cocycles
implicated in the generation of Mf .

Attending to these facts, a heuristic procedure for reproduction may be
straightforwardly defined in the following way. The key idea is to modify the
genes of Mf corresponding to 2-coboundaries in such a manner that the magni-
tudes ci and Ii are also modified in turn, so that the difference 2ci−2Ii is closer
to the constant value 2t− ri.

Depending on whether 2ci − 2Ii > 2t− ri or 2ci − 2Ii < 2t − ri, we need to
increase or decrease Ii (resp. decrease or increase ci) so that the equality may
hold. More concretely:

1. If 2ci − 2Ii > 2t − ri, the algorithm randomly chooses one of the following
possibilities:
– Collapses two different i-paths into just one i-path, so that ci decreases

1 unit.
– Introduces a new negative sharing position between R and the product

of M∂j , so that Ii increases 1 unit.
2. If 2ci − 2Ii < 2t − ri, the algorithm randomly chooses one of the following

possibilities:

– Splits one i-path into two different i-paths, so that ci increases 1 unit.
– Adds a new i-path, introducing a new 2-coboundary generator, so that

ci increases 1 unit.
– Eliminates a negative sharing position between R and the product of

M∂j , so that Ii decreases 1 unit.

The way in which these procedures have to be implemented depends on the
group G over which 2-cocycles are considered. In the following section we will

1 Experimental results show that a good value for the parameter pr is 0.8.
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explicitly show a pseudo-code of the particular heuristic procedure for reproduc-
tion in the case of dihedral groups.

The population is expected to evolve generation through generation until an
optimum individual (i.e. a cocyclic Hadamard matrix) is located. This has been
the case in the examples showed in the last section.

We include now a pseudo-code of the algorithm.

Input: a group (G, ·) of order |G| = 4t
Output: some (eventually one) cocyclic Hadamard matrices over G

\\ the initial population is created
pob ← ∅
fit ← ∅
for i from 1 to 8t{

ind ← create new()
pob ← pob ∪ {ind}
fit ← fit ∪ {evaluate(ind)}

}
pr ← 0.8
while (max(fit)< 4t− 1){
\\ reproduction starts

if random(0, 1) ≤ pr then{
j ←random(1, 8t)
indj ← the jth-individual of pob
list ← guidedreproduction(indj)

else
i ←random(1, 8t)
j ←random(1, 8t) = i
(indi, indj) ← the (ith, jth)-individuals of pob
list ← usualreproduction(indi, indj)

}
remove in (pob, fit) those entries corresponding to the less
size(list) fit individuals
for i from 1 to size(list){

pob ← pob ∪ {list(i)}
fit ← fit ∪ {evaluate(list(i))}

}
}
List the individuals in pob meeting the optimal fitness, 4t− 1

Some auxiliar functions have been used, which we describe now:

– create new() outputs a binary tuple of length s (s being the dimension of
the basis B of 2-cocycles over G), each bit randomly generated as 0 or 1 with
the same probability. A deeper knowledge about the properties of the group
G might lead to improved versions of this procedure. As a matter of fact, in



156 V. Álvarez, M.D. Frau, and A. Osuna

the case of dihedral groups, the number of 1s should be forced to 2t, as the
tables in [5] suggest, since the density of cocyclic Hadamard matrices seems
to be maximum with this rate of 1s.

– evaluate(ind) measures the fitness of the individual ind, that is, counts the
number of the Hadamard rows (i.e. those whose summation is zero) in the
cocyclic matrix generated by the pointwise product of the matrices related to
the 2-cocycles of B corresponding to the 1s in ind. In particular, an individual
ind gives rise to a cocyclic Hadamard matrix if and only if evaluate(ind)=
4t− 1.

– random(min, max) outputs a integer in the range [min, max] randomly gen-
erated.

– guidedreproduction(ind) applies the heuristic procedure for reproduction on
the individual ind. The output consists in 4t−1 new individuals, the (i+1)th-
row of the ith-individual being Hadamard.

– usualreproduction(indi, indj) applies the usual crossover operator for repro-
duction on the individuals indi and indj . The output consists in 2 new
individuals.

4 Guided Reproduction on Dihedral Groups

Denote by D4t the dihedral group ZZ2t ×χ ZZ2 of order 4t, t ≥ 1, given by the
presentation

< a, b|a2t = b2 = (ab)2 = 1 >

and ordering

{1 = (0, 0), a = (1, 0), . . . , a2t−1 = (2t− 1, 0), b = (0, 1), . . . , a2t−1b = (2t− 1, 1)}

In [8] a representative 2-cocycle f of [f ] ∈ H2(D4t, ZZ2) ∼= ZZ3
2 is written inter-

changeably as a triple (A, B, K), where A and B are the inflation variables and
K is the transgression variable. All variables take values ±1. Explicitly,

f(ai, ajbk) =
{

Aij , i + j < 2t,
AijK, i + j ≥ 2t,

f(aib, ajbk) =
{

AijBk, i ≥ j,
AijBkK, i < j,

Let β1, β2 and γ denote the representative 2-cocycles related to (A, B, K) =
(−1, 1, 1), (1,−1, 1), (1, 1,−1) respectively.

A basis for 2-coboundaries is described in [5], and consists of the elementary
coboundaries {∂a, . . . , ∂a2t−3b}. This way, a basis for 2-cocycles over D4t is given
by B = {∂a, . . . , ∂a2t−3b, β1, β2, γ}.

We focus in the case (A, B, K) = (1,−1,−1) (that is, R = β2γ), since compu-
tational results in [8,5] suggest that this case contains a large density of cocyclic
Hadamard matrices.

Furthermore, as it is pointed out in Theorem 2 of [5], cocyclic matrices over
D4t using R are Hadamard matrices if and only if rows from 2 to t are Hadamard.
We have updated the genetic algorithm in turn, so that only rows from 2 to t
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are used in order to check whether their summations are zero. Accordingly, the
fitness of an individual runs through the range [0, t− 1].

In order to define the heuristic procedure for reproduction we need to know
how the 2-coboundaries in B have to be combined to form i-paths, 2 ≤ i ≤ t.
This information is given in Proposition 7 of [5].

Proposition 2. [5] For 1 ≤ i ≤ 2t, a maximal i-walk consists of a maximal
subset in

(M∂1 , . . . , M∂2t) or (M∂2t+1 , . . . , M∂4t)

formed from matrices (. . . , Mj, Mk, . . .) which are cyclically separated in i − 1
positions (that is j ± (i− 1) ≡ k mod 2t).

We now have enough information about how to combine 2-coboundaries in B in
order to modify the value of 2ci − 2Ii, so that 2ci − 2Ii = 2t − ri, that is, the
ith-row of our individual being Hadamard.

Notice that since ri = 2(i − 1) for 2 ≤ i ≤ t, the cocyclic Hadamard test
reduces to ci − Ii = t− i + 1, for 2 ≤ i ≤ t.

We include below a pseudo-code of the guidedreproduction procedure de-
scribed in the section before, particularized to the case of dihedral groups.

Input: an individual ind of the population
Output: a list newpob of 4t− 1 individuals, the (i + 1)th-row of the
ith-individual being Hadamard

newpob ← ∅
for i from 2 to t{

ipaths ← list with the maximal i-paths naturally related to ind
c ← size of ipaths
intersec ← intersecting positions of −1s in the ith-row of ind
I ← size of intersec
while c− I = t− i + 1{

if c− I > t− i + 1{
ind ← decrease(ipaths, intersec, i− 1, random(1, 2))

else{
ind ← increase(ipaths, intersec, i− 1, random(1, 3))

}
recompute the values ipaths, c, intersec and I related to ind

}
newpob ← newpob ∪ {ind}

}
newpob
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Some auxiliar functions have been used, which we describe now:

– decrease(ipaths, intersec, i− 1, j) tries to decrease the value c − I, that is,
size(ipaths)−size(intersec). This function acts in a different way, depending
on the value of 1 ≤ j ≤ 2:

• decrease(ipaths, intersec, i−1, 1) outputs an individual ind with exactly
size(ipaths) − 1 i-paths. More concretely, it extends one of the i-paths
(say p1, randomly selected) in ipath to the left, until this i-path is con-
nected to a previously existent i-path, say p2. There are two possibilities
now: if p1 = p2, then p1 and p2 have been merged into a solely path. On
the contrary, if p1 = p2, then p1 has been extended to form a i-cycle. In
both cases, we have effectively generated a new individual consisting of
size(ipaths)− 1 i-paths.

• decrease(ipaths, intersec, i − 1, 2) outputs an individual ind with ex-
actly size(intersec) + 1 intersections. It suffices to randomly choose a
2-coboundary sharing a negative entry with R in the ith-row, in case
that it exists. Otherwise the function

decrease(ipaths, intersec, i− 1, 1)
should be called.

– increase(ipaths, intersec, i− 1, j) tries to increase the value c − I, that is,
size(ipaths)−size(intersec). This function acts in a different way, depending
on the value of 1 ≤ j ≤ 3:

• increase(ipaths, intersec, i − 1, 1) tries to increase the number of the
i-paths in ipaths, by splitting an existent i-path into two different i-
paths. This is only possible for i-paths consisting of at least three 2-
coboundaries. If it is the case, it suffices to delete any 2-coboundary
different from the extremes of the i-path. If not, the function

increase(ipaths, intersec, i− 1, 1 + random(1, 2))
is called.

• increase(ipaths, intersec, i − 1, 2) tries to increase the number of the
i-paths in ipaths, by adding a new i-path in ipaths which does not
extend any of the previously existent i-paths. This is only possible if a
2-coboundary exists such that it is not adjacent to any of the i-paths in
ipaths. If it is not the case, the function

increase(ipaths, intersec, i− 1, 2 + (−1)random(1,2))
is called.

• increase(ipaths, intersec, i− 1, 3) tries to create an individual ind with
size(intersec)−1 intersections. It suffices to randomly delete a 2-coboun-
dary sharing a negative entry with R in the ith-row, in case that it exists.
Otherwise the function

increase(ipaths, intersec, i− 1, random(1, 2))
is called.
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5 Examples and Further Work

All the calculations of this section have been worked out in Mathematica 4.0,
running on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB.

The table below shows some cocyclic Hadamard matrices over D4t (under-
stood as the pointwise linear combinations of the corresponding 2-cocycles of
the basis B described in the preceding section), and the number of iterations
and time required (in seconds) as well. Notice that the number of generations
is not directly related to the size of the matrices, because of the randomness
inherent in any genetic algorithm.

t iter. time product of generators of 2-cocycles over D4t

2 0 0′′ (0, 1, 0, 0, 0, 0, 1, 1)
3 0 0′′ (0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1)
4 0 0′′ (0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1)
5 1 0.2′′ (1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1)
6 1 0.4′′ (1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1)
7 2 2.87′′ (0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1)
8 2 4.54′′ (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1,

0, 1, 1)
9 11 51.2′′ (1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0,

1, 0, 0, 0, 0, 1, 1)
10 8 65.11′′ (1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1)
11 93 21′ (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,

1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1)
12 44 18′44′′ (0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,

0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1)
13 40 22′12′′ (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,

0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1)

We have experimented 20 runs for each odd value of 3 ≤ t ≤ 13 and for each
of the values of the parameter pr over the range pr = i/10, 0 ≤ i ≤ 10, which
we can not reproduce here due to the page constraints. All of them found some
cocyclic Hadamard matrices. Experimentally, the average time and the average
number of required iterations suggest that the optimum value for pr is 0.8.

Unfortunately, the algorithm has not been able to find cocyclic Hadamard
matrices for t > 13 due to memory limitations: the computer breaks as soon as
5 hours (or equivalently 3000 generations) are reached.

The authors are convinced that improved versions of the algorithm are still to
be implemented (for instance, as soon as a method for simultaneously generating
a group of Hadamard rows is described). The work in [1] supports this idea.
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Abstract. Evolutionary computing is widely used to tune intelligent
systems which incorporate expert knowledge with data. The linguistic
equation (LE) approach is an efficient technique for developing truly
adaptive, yet understandable, systems for highly complex applications.
Process insight is maintained, while data-driven tuning relates the mea-
surements to the operating areas. Genetic algorithms are well suited
for LE models based on nonlinear scaling and linear interactions. New
parameter definitions have been developed for the scaling functions to
handle efficiently the parameter constraints of the monotonously increas-
ing second order polynomials. While identification approaches are used
to define the model structures of the dynamic models. Cascade models,
effective delays and working point models are also represented with LE
models, i.e. the whole system is configured with a set of parameters. Re-
sults show that the efficiency of the systems improves considerably after
the implementation of simultaneous tuning of all parameters.

Keywords: intelligent models, genetic algorithms, linguistic equations.

1 Introduction

Engineering simulators are usually constructed with phenomenological modelling
which is based on a thorough understanding of the system’s nature and behaviour
represented by a suitable mathematical treatment. Data-driven methodologies
have been introduced to steady-state modelling, and they can be extended to
dynamic systems by using special structures. The resulting black box models
are basically flexible surfaces defined by several parameters. In the control area,
these approaches are known under the term system identification. Statistical,
fuzzy, neural, and neurofuzzy methods are applied first separately, and later as
combined approaches in which cascaded models are based on decomposition. The
increased complexity creates additional challenges for development and tuning:
the number of parameters increases, and various constraints must be taken into
account. These problems cannot be solved with basic regression methods.
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The response surface methodology (RSM) is used for multiple regression be-
tween several variables: each output variable yi can be obtained from the input
variables x1, x2, . . . , xn by a quantitative quadratic relationship represented with
a multiple input, single output (MISO) model. Arbitrary nonlinear models can be
developed by using appropriate calculated variables as inputs, e.g. semi-physical
models of the inputs are important in linear modelling, see [1]. In data-driven ap-
proaches, principal component analysis (PCA) compresses the data by reducing
the number of dimensions with minor loss of information [2].

Fuzzy logic emerged from approximate reasoning, and the connection between
fuzzy rule-based systems and expert systems is obvious [3,4]. The most popular
neural network architecture is the multilayer perceptron (MLP) which is very
closely connected to backpropagation learning [5]. A function expansion

yi =
mf∑
k=1

wikFk(x) =
mf∑
k=1

wik f(βk · (x− γk)), (1)

with some basis functions Fk(x), k = 1, .. . . . , mf , provides a flexible way to
present several types of black box models [6]. These data-driven approaches
can handle fairly complex systems, but insight into the process is difficult to
maintain.

Complex data-based models can be tuned with genetic algorithms (GAs):
penalty functions can be used to reduce complexity, i.e. the number of neurons,
layers, rules, active coefficients etc. The main challenge is the efficient coding
of the alternatives, because formulating the constraints for the parameters is
difficult. Good solutions can be found for simple fuzzy models since the labels
have a clear sequence [7]. This idea can be extended into the nonlinear scaling
approach used in linguistic equation (LE) systems [8,9]. Fitness can be evalu-
ated efficiently with compact, parameterised LE models. In earlier applications,
monotonous scaling functions were forced by penalty functions [10]. This fa-
cilitates the detection of constraint violations, but in large scale systems the
approach is rather ineffective.

This paper presents a new method of selecting parameters for large-scale
linguistic equation (LE). The method has been especially adapted for models
using genetic algorithms for tuning.

2 Nonlinear Scaling in Modelling

Membership definitions provide nonlinear mappings from the operation area of
the (sub)system to the linguistic values represented inside a real-valued interval
[−2, 2], denoted as the linguistic range, see [9]. The concept of a feasible range
is defined as a trapezoidal membership function (Fig. 1), which is based on the
support and core areas defined in the fuzzy set theory [11]. The support area
is defined by the minimum and maximum values of the variable, min (xj) and
max (xj), respectively. The value range of xj is divided into two parts by the
central tendency value cj , and the core area, [(cl)j , (ch)j ], is limited by the
central tendency values of the lower and upper part.
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Fig. 1. Feasible range and membership definitions [9]

In current systems, the membership definitions consist of two second order
polynomials: one for negative values, X ∈ [−2, 0), and one for positive values,
X ∈ [0, 2]:

f−
j = a−

j X2
j + b−j Xj + cj , Xj ∈ [−2, 0),

f+
j = a+

j X2
j + b+

j Xj + cj , Xj ∈ [0, 2]. (2)

The values Xj are called linguistic values because the scaling idea is based on the
membership functions of fuzzy set systems. The coefficients of the polynomials
are defined by points {min (xj),−2), ((cl)j ,−1), (cj, 0), ((ch)j , 1), (max (xj), 2}.
As the membership definitions are used in a continuous form, the functions
f−

j (Xj) and f+
j (Xj) should be monotonous, increasing functions in order to

produce realisable systems. In order to keep the functions monotonous and in-
creasing, the derivatives of the functions f−

j and f+
j should always be positive

(Fig. 2).
The inequalities for the core and the support are satisfied with

(cl)j −min (xj) = α−
j (cj − (cl)j),

max (xj)− (ch)j = α+
j ((ch)j − cj)

(3)

if the coefficients α−
j and α+

j are both in the range 1
3 . . . 3. Corrections are done

by changing the borders of the core area, the borders of the support area or
the centre point. Additional constraints for derivatives can also be taken into
account. The coefficients of the polynomials can be represented by

a−
j = 1

2 (1− α−
j ) Δc−j ,

b−j = 1
2 (3− α−

j ) Δc−j ,

a+
j = 1

2 (α+
j − 1) Δc+

j ,

b+
j = 1

2 (3− α+
j ) Δc+

j ,

(4)

where Δc−j = cj − (cl)j and Δc+
j = (ch)j − cj . Membership definitions may

contain linear parts if some coefficients α−
j or α+

j equals to one (Fig. 2).
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Fig. 2. Feasible shapes of membership definitions fj and corresponding derivatives Dj :
coefficients adjusted with core (left) and support (right). Derivatives are presented in
three groups: (1) decreasing and increasing, (2) asymmetric linear, and (3) increasing
and decreasing.

The best way to tune the system is to first define the working point and the
core [(cl)j , (ch)j ], then the ratios α−

j and α+
j from the range 1

3 . . . 3, and finally to
calculate the support [min (xj), max (xj)]. The membership definitions of each
variable are configured with five parameters, including the centre point cj and
three consistent sets: the corner points {min (xj), (cl)j , (ch)j , max (xj)} are good
for visualisation; the parameters {α−

j , Δc−j , α+
j , Δc+

j } are suitable for tuning;
and the coefficients {a−

j , b−j , a+
j , b+

j } are used in the calculations. The upper and
the lower parts of the scaling functions can be convex or concave, independent of
each other. Simplified functions can also be used: a linear membership definition
only requires two parameters: cj and bj = b+

j = b−j or Δcj = Δc+
j = Δc−j ,

since α+
j = α−

j = 1 and a+
j = a−

j = 0; an asymmetrical linear definition has
Δc+

j = Δc−j and b+
j = b−j .

Nonlinear scaling transforms nonlinear models into linear problems [8]. The
basic element of a linguistic equation (LE) model is the compact equation

m∑
j=1

Aij Xj(t− nj) + Bi = 0, (5)

where Xj is a linguistic value of the variable j, j = 1...m. The interaction
coefficients Aij ∈ � and the bias term Bi ∈ � have a relative meaning, i.e.
the equation can be multiplied or divided by any non-zero real number without
changing the model. Each variable j has its own time delay nj compared to
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the variable with latest time label. Variable time delay is an important factor in
many applications, e.g. the time delay in a pipe line depends on the flow velocity.
The level of time delay is directly obtained from the level of the variable which
affects to the delay. A linguistic equation can be used in any direction.

A LE model with several equations is represented as a matrix equation. In
small systems, the directions are usually quite clear. For more complex systems, a
set of alternative variable groups is first developed, and all the selected combina-
tions are taken into account in generating the alternatives of the equations. The
variable selection and the grouping of variables into 3-5 variable combinations is
based on expert knowledge and gathered data [12].

3 Linguistic Equation Models

Nonlinear steady-state models can be constructed with linguistic equations and
extended to dynamic systems by dynamic structures. Case-based systems can
include both steady state and dynamic models.

3.1 Steady-State LE Models

In LE models, nonlinear scaling is performed twice: first scaling with inverse
functions f−1

j from real values to the interval [-2, 2] is performed before applying
linguistic equations, and then scaling with functions fj from the interval [-2, 2]
to real values after applying linguistic equations [9]. One variable can be solved
from each equation if the other variables with non-zero coefficients are known, i.e.

xout = fout

⎛⎝− 1
Ai out

(
m∑

j=1,j 
=out

Aij f−1
j (xj) + Bi)

⎞⎠ , (6)

where the functions fj and fout are membership definitions. This is a fairly
general expression, e.g. a function expansion (1) is a special case where αj =
−Aij/Ai out, fout = 1, and Bi = 0. The arguments of variable specific functions
f−1

j are defined with location parameters γj = cj and dilation parameters βj .
The scaling of LE models is normally asymmetrical in respect to the location cj .

Each fully nonlinear membership definition requires three parameters more
than is needed for normalisation, and each equation is defined by as many param-
eters as there are variables. LE models with full nonlinear scaling have slightly
more parameters than MLP networks if the number of inputs ni ≥ 3. General
quadratic models have less parameters than these LE models if the number of
inputs ni ≤ 6. In LE models, the number of parameters decreases drastically if
linear or asymmetric linear definitions are used for some variables. In cascade
models, intermediate variables can be handled as linguistic values, i.e. linguisti-
fication is only needed for the original inputs and delinguistification for the final
outputs.
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3.2 Dynamic LE Models

The basic form of a linguistic equation (LE) model is a static mapping, as in fuzzy
set systems and neural networks. Therefore, dynamic models include several
inputs and outputs originating from a single variable. Nonlinear scaling reduces
the number of input and output signals needed for modelling nonlinear systems.
For the default LE model, all the degrees of the polynomials of the parametric
models become very low. The model

Y (t) + a1Y (t− 1) = b1U(t− nk) + e(t) (7)

is a special case of (5) with three variables, Y (t), Y (t− 1) and U(t− nk), in the
linguistic range, the interaction matrix A = [1 a1 −b1], and the bias term B = 0.
The need for higher order models can be tested by applying classical identifica-
tion with different polynomial degrees to the data after scaling with membership
definitions. The membership definitions have captured the real meaning of the
variables if higher degrees do not improve the model considerably.

Linear state-space models can be used in LE models by including the coefficient
matrices AS , BS , CS and DS in the interaction matrix

A =
(

AS BS −Ix 0
CS DS 0 −Iy

)
(8)

to handle the state variables, X(t), and the inputs, U(t), in the linguistic range.
The identity matrices IX and IY introduce variables X(t+1) and Y (t) into the
model. The bias term B = 0. Equations can be used sequentially to solve one
variable per equation. Through nonlinear scaling LE models can combine several
linear local models. In addition, gradual changes can be taken into account in
membership definitions and interaction coefficients.

The membership definition of the variable y does not depend on time; the bias
term B = 0. An alternative approach is to also create membership definitions for
the change Δy and to obtain the derivative directly from the corresponding LE
model. The output, the derivative of the variable y, is integrated with numerical
integration methods. In addition, step size control is often needed to adapt the
simulation to changing operating conditions, since LE models are developed
for wide operating areas. An appropriate handling of time delays extends the
operating area of the model considerably. Delays should be assessed against
process knowledge, especially if normal on-line process data is used [8]. Effective
delays depend on working conditions (process case). In LE models, this extension
requires two to five additional parameters per modelled delay.

3.3 Case-Based LE Models

An effective approach to the data-based modelling of complex nonlinear sys-
tems is to partition the data set into subsets and to approximate each subset
with a special LE model. Decomposition can be based on expert knowledge or
data-based clustering methods applied on original data, scaled data, or principal
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components obtained from the data or the scaled data. Linguistic fuzzy cluster-
ing or linguistic neural networks based on nonlinear scaling detect clusters of
different geometrical shapes, and thus considerably reduce the number of sub-
models needed [13]. Takagi-Sugeno fuzzy models [14] can be extended linguistic
TS models, where the local linear models are LE models. The clustering vari-
ables are not necessarily used as inputs in the case models. Each case may even
have a completely different set of variables.

Case models are normal LE models: each equation has two to five variables,
membership definitions of which can be partly general and partly case specific.
In small dynamic models, a single equation includes all the interactions, i.e. vari-
ables affecting the working point of the model are included in the model. The
equation systems of larger models are sets of equations in which each equation
describes an interaction between two to five variables. Case models and fuzzy
reasoning are used for the detection of operating conditions, and hybrid sys-
tems can be constructed by introducing fuzzy decisions to selected submodels.
Transitions between the submodels are smooth if the LE models are nonlinear.

3.4 Tuning LE Models

Structural restrictions of the LE models are beneficial for tuning and adaptation.
Manual tuning consists two independent parts: scaling and interactions. Both
can be defined manually but the constraints must be taken into account when
defining the scaling functions. Neural tuning reduces the error between the model
and the training data [8]: membership definitions are tuned for one variable of the
equation at a time with a linear neural network. The centre point cj is obtained
by mean or median, and the linear network is used to obtain the coefficients a−

j ,
b−j , a+

j and b+
j . For matrix equations, only one variable from each equation can

be selected for tuning. Recursive implementations of the regression or the linear
network make on-line adaptation possible.

4 Genetic Tuning

Genetic algorithms can handle the whole system simultaneously by comparing
the effects of the parameters defined by the scaling functions, interactions, time
delays, and the weights of the models. The fitness values of the models are
obtained through simulation. Genetic tuning is controlled by population size,
number of bits, and probabilities of crossover and mutation.

4.1 Parameters

The main part of LE modelling is to tune the parameters of the scaling func-
tions. The centre points cj are the real values corresponding to the normal (or the
origin); the other parameters of the membership definitions are defined by the
differences {cj−(cl)j , (cl)j−min (xj), (ch)j−cj, max (xj)−(ch)j)}. Penalty func-
tions are needed to ensure monotonously increasing functions, i.e. inequalities
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Table 1. Ranges for the parameters of the scaling functions

Parameter Lower limit Upper limit
cj

1
4
(3xj + min(xj)) 1

4
(3xj + max(xj))

Δc−j
1
4
(xj − min(xj)) 3

4
(xj − max(xj))

Δc+
j

1
4
(max(xj) − xj) 3

4
(max(xj) − xj)

(3) are filled. No penalties are needed for the parameters {cj, Δc−j , Δc+
j , α−

j , α−
j }

if the coefficients α−
j and α+

j are restricted to the range 1
3 . . . 3. For asymmetric

linear functions, only three parameters are tuned since α−
j = α+

j = 1. For linear
definitions, the number of parameters is reduced to two because Δc−j = Δc+

j . In
dynamic models, the definitions of variables are time invariant.

Interaction coefficients Aij and bias terms Bi can be included in genetic tun-
ing the same way as the parameters of membership definitions. Variable time
delays are handled by introducing additional parameters corresponding to the
membership definitions of the time delays. Genetic tuning can be extended into
multimodel systems by introducing corresponding parameters. For example,
working point models contain scaling functions, interactions, and effective time
delays. In comparision to single models, cascade models also introduce additional
parameters.

4.2 Coding and Population

All the parameters are handled in the same way by genetic algorithms. In current
applications, real numbers are represented with binary coding, i.e. the population
of the solution is represented with chromosomes described as bits. Different parts
of the bit sequences define different parameters. The coded real values are then
used in simulation to obtain the fitness of the model. The initial population is
constructed by using limited value ranges: the ranges of the parameters used in
the scaling functions are shown in Table 1, and all the interaction coefficients and
bias terms have the same default range [−1, 1]. Outliers need to be removed when
defining the minimum and maximum values. Expert knowledge can be used to
modify the ranges. It is also possible to concentrate the initial population close
to the corner points obtained from data analysis (Fig. 1).

4.3 Fitness

The fitness values are obtained by simulating the alternatives defined by the
parameters. The fitness of each equation i, i = 1, . . . , n, is evaluated within
the linguistic range with the residual. To keep the solutions comparable, the
combined coefficient vector (Ai1 Ai2 . . . Aim Bi) is normalised. Additional selec-
tion rules are needed for the case-based systems aimed for the detection of the
operating conditions.

The objective function consists of a weighted average of several performance
measures and penalty terms. Since the residuals have a linguistic meaning, all
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the measures can be scaled into the linguistic range [−2, 2]: the mean absolute
error (MAE) is already in the range [0, 2], and the mean square error (MSE)
can also be scaled. The correlation coefficients and R2 values provide similar
fitness measures when scaled to the range [−2, 2] but the scaling functions can
be chosen in a more flexible way. Maximum error and relative error are scaled
into the range [0, 2]. Comparison of the calculated values and the measurements
in the scaled range provides two additional performance measures: the slope and
the base of the linear model. To avoid overfitting, penalties are defined for the
complexity of the model, e.g. number of inputs, equations and submodels.

5 Results

The genetic tuning approach has been successfully tested in various applications.
The dynamic model of a solar collector field consists of four submodels which
all have the same ARX structure: the outlet temperature as a state variable,
irradiation and oil flow as input variables, and effective time delay, which de-
pends on the oil flow [15]. A working point model, which relates the difference of
the outlet and inlet temperatures to the irradiation and ambient temperature,
provides smooth transitions between the submodels: start-up, low, normal, and
high operation. Also directions of these interactions are known for all the models.
The full nonlinear model with 105 parameters was tuned and tested with process
data obtained during four test campaigns. The data of 40 days collected with a
sample time of five seconds was divided into train and test data. The dynamic
models consists of three interactive submodels in two applications: temperature,
humidity, and granular size in fluidised bed granulation [16]; alkali, lignin and
dissolved solids in a batch cooking process [17]. The ARX structure with 41
parameters was used in the granulation models, but in the cooking models the
changes in outputs were calculated using LE models containing 43 parameters.

Genetic tuning is controlled by population size, number of bits, and proba-
bilities of crossover and mutation. A good solution has high correlation and R2

values, and small values for errors, base values, and penalties, and a slope value
close to one. The number of parameters is large making the real value coded
GAs an interesting area of future research.

6 Conclusions

The LE approach provides compact models in which all the parameters have
clear constraints, and the whole system can be assessed with expert knowl-
edge. This advantage becomes increasingly important in cascade and interactive
models. Genetic algorithms are well suited to LE systems: the tuning results
improved considerably when the new parameter definitions were used and all
the parameters were handled simultaneously.
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Abstract. A new evolutionary algorithm, Elitistic Evolution (termed
EEv), is proposed in this paper. EEv is an evolutionary method for nu-
merical optimization with adaptive behavior. EEv uses small populations
(smaller than 10 individuals). It have an adaptive parameter to adjust the
balance between global exploration and local exploitation. Elitism have
great influence in EEv’ proccess and that influence is also controlled by
the adaptive parameter. EEv’ crossover operator allows a recently gener-
ated offspring individual to be parent of other offspring individuals of its
generation. It requires the configuration of two user parameters (many
state-of-the-art approaches uses at least three). EEv is tested solving a
set of 16 benchmark functions and then compared with Differential Evo-
lution and also with some well-known Memetic Algorithms to show its
efficiency. Finally, EEv is tested solving a set of 10 benchmark functions
with very high dimensionality (50, 100 and 200 dimensions) to show its
robustness.

1 Introduction

The global optimization problem is unsolved because of its high level of com-
plexity. Many different scopes were generated in recent years. Evolutionary al-
gorithms is one of the many different approaches that have been used in recent
years. Evolutionary algorithms (EAs) are stochastic techniques based on the
Darwinian principle of the survival of the fittest. Most EAs offer important ad-
vantages such robustness, reliability, global search capability and low information
requirement. Some representative techniques of EAs are: Genetic Algorithms [5],
Evolutive Strategies [1] and Differential Evolution [2].

EAs are population-based techniques. Each individual of the population rep-
resent a candidate solution (commonly conformed at least by 30 individuals).
EAs generate offspring using a crossover operator. Normally, some population
individuals are selected to be parents of the offspring individuals. Then, sligth
alterations to some individuals are performed with a mutation operator. Finally,
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old solutions are replaced with some specific new solutions. Normally, EAs use
the number of generations as termination condition. A generation represent the
proccess of creating new solutions and replacing the old ones. Evaluations of the
objetive function (FEs) are performed in each iteration. Most of state-of-the-art
technique use at least three user parameters.

This paper describes a new EA called Elitistic Evolution (EEv). EEv has the
following major differences with a traditional EA:

1. Uses small populations (smaller than 10 individuals).
2. Uses an adaptive parameter to adjust the balance between global exploration

and local exploitation in all the processes.
3. Elitism have great influence in EEv’ proccess and that influence is also con-

trolled by the adaptive parameter.
4. Its mutation operator generate the offspring.
5. It uses a new crossover operator. EEv’ crossover operator allows a recently

generated offspring individual to be parent of other offspring individuals of
its generation.

6. It uses two replacement politics balanced by the adaptive parameter.
7. It requires the configuration of two user parameters.

The adaptive nature of EEv allows the algorithm to have precision and high
convergency speed, even in complex problems with very high dimensionality
(N > 50). The performance and features of this technique are shown by testing
it in a set of 16 well-known functions taken from the literature [4,8]. The paper
also presents a performance comparison with DE/rand/1/bin and some well-
known Memetic Algorithms. However, it is important to remember the No Free
Lunch Theorems for Search [3]. No Free Lunch Theorems state that an algorithm
which performs well on some test functions, will not necessarily be competitive
in a different set of problems.

The sections are organized as follows. The following section contains a de-
tailed description of EEv. Section 3 contains the experimental design and results.
Section 4 concludes this paper.

2 Elitistic Evolution

EEv is a population-based stochastic optimizer. The two main foundations of
EEv are:

1. Elitism. The best individual have special considerations in each EEv stage
the elite individual have special considerations.

2. Adaptive Behavior. An adaptive parameter control the behavior of all
stages of an EEv iterations. The two main behaviors affected by this pa-
rameter are: the effect of elitism and the balance of global vs local explo-
ration. The step size used by the mutation operator on each dimension is
also adaptive.
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Algorithm 1 describes an EEv iteration. The following differences are observed
between EEv and a common EA:

1. Each Xg individual became a parent.
2. Mutation is performed before crossover.
3. Crossover replaces offspring instead of generating new individuals.
4. Mutation, crossover and replacement are affected by an adaptive parameter

called Enviromental Pressure (C).

Algorithm 1. Algorithm for any g iteration of EEv
Recalculation of adaptive parameters;1

Copy each Xg individual in ng;2

Perform mutationrs(ng, C,
−→
b ) to each ng individual;3

Replace each ng with a new ng created by crossover(Xg, ng, C);4

Evaluate the new ng individuals;5

for the first C individuals of Xg+1 do6

Use the C best individuals of the union of Xg and ng ;7

for the remaining P − C individuals of Xg+1 do8

Select P − C random individuals from ng ;9

EEv needs the adjustment of two parameters which are:

– Population size (P ) which tells how many individuals will form the popula-
tion. P > 2.

– Base mutation (B) used as the initial step size for the mutation operator.
B ∈ [0.0, 1.0].

A large P or B value increase the diversity of possible solutions, promoting the
global exploration of the search space, and, consequently, demoting the exploita-
tion capacity. The balance between P and B is crucial for the efficiency of the
algorithm.

EEv uses two adaptive parameters which are:

– −→
b , the N step sizes for random step mutation operator, where N is the
number of decision variables in the problem. −→b have an initial value of B in
each N dimension.

– C. Indicates the number of individuals to be affected by local exploration
processes. It adjust the balance between global and local search. C ∈ [1, P ].
Lower C values promote global exploration; higher C values promote local
exploitation. C value depends on the success of the search of the better
solution. C have an initial value of 1. The specific effects of C are explained
in the description of each stage below.
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2.1 Recalculation of Parameters

C and −→
b values change depending on the search success of the last genera-

tion, determined by the comparison of the best fitness values of the current and
previous generations. Algorithm 2 shows the recalculation for C and −→

b . We
take F (X0

best) = F (X1
best), where Xg

best is the elite individual. If better results
are found, then C is decreased, encouraging global exploration, and −→

b values
are adaptively increased to provide a more precise exploration. Otherwise, C is
increased and −→b values are decreased to encourage local exploitation.

Algorithm 2. Recalculation of adaptive parameters
if F (Xg−1

best ) > F (Xg
best) then1

if C > 1 then2

C = C − 1;3
−→
b = |Xg−1

best −Xg
best/(upbound−lowbound)|×(1.0+rnd(0.0, 1.0)×(G−g)/G);4

if a
−→
b value is equal to 0 then5

Replace it with B × (1.0 − rnd(0.0, 1.0) × g/G) ;6

else7

if C < P then8

C = C + 1;9
−→
b = −→

b × (1.0 − rnd(0.0, 1.0) × g/G);10

2.2 Mutation

Mutation operator is very similar to Hill-climbing method. This operator gener-
ate the offspring individuals by performing a random number of sligth alterations
in some dimensions of each Xg individual. The steps stored in −→b represent the
maximum percent of search space that the mutation can perform. Algorithm 3
describes the mutation operator.

EEv mutation operator is based on the mutation technique proposed in [6].
It generates a new individual close to the original point. Due to the adaptive
behavior of EEv we have to consider the following facts:

1. The first C mutations represent local exploitation and the last P − C mu-
tationts represent global exploraitions. That is because the first C muta-
tions are affected in an sligther way due to the calculus of the M ratio (see
equation 1 below).

2. The operator tends to perform smaller changes at later stages of the process
due to decreasing of the values −→b .

3. The number of alterations depends on C value. .

M =
{−→

bk if i ≤ C
B × (1.0− rnd(0.0, 1.0)× g/G) if i > C

(1)
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Algorithm 3. Mutation algorithm for an i individual
alterations = rnd(�nv × (C/P ), N) ;1

for all alterations do2

k = rnd(1, N);3

Calculate M with equation 1 ;4

repeat5

aux = ng
k,i + (upboundk − lowboundk) × rnd(−M,M);6

until (aux > lowerboundk) and (aux < upperboundk) ;7

ng
k,i = aux;8

Algorithm 4. Crossover operator algorithm
for each ng

i offspring individual do1

k = rnd(0, P − C) + 1;2

l = rnd(0, P − C) + 1;3

m = rnd(1, P );4

c1 = rnd(0.0, 1.0);5

c2 = rnd(0.0, 1.0 − c1);6

c3 = 1.0 − c2 − c1;7

ng
i = c1 × ng

k + c2 × Xg
l + c3 × ng

m;8

2.3 Reproduction

The reproduction stage creates the final offspring individuals. Algorithm 4
illustrates the crossover operator. This crossover operator uses two offspring
individuals, k and m, and one population individual l. We have to consider the
following facts:

– The crossover operator allows each offspring individual to have a chance of
being selected as a parent of the following alterations to offspring individuals.

– Each offspring individual will be always at a point between its three parents.
– Any Xg and ng individual have the posibility of remain intact.
– The crossover can take into account only two individuals: two ng individuals

or one individual from Xg and ng.

C value controls the selection of l and k: when C = 1, any individual can
be selected; when C = P , elitism is ensured, promoting exploration around the
best individual. Evaluation of the offspring individuals is performed at the end
of this stage.

2.4 Replacement

EEv uses two replacement processes: non-generational replacement, borrowed
from (μ + λ)-ES [1], and random generational replacement. The first replace-
ment method provides convergence capabilities, while the second one provides
exploration capabilities.
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As in the previous stages, the balance between these two processes is controlled
by C: the first C individuals of the new generation population are selected by
non-generational replacement and the remaining ones are select randomly from
the offspring individuals. Elitism is ensured by non-generational replacement.

The first C individuals of the new generation are ordered by their fitness
values, and EEv replacement ensures that the first population individual always
be the elite; no search for the elite is required at any stage.

3 Experimental Setup

We followed the experimental setup similar to [7] with 6 tests:

1. Evaluation of performance;
2. Study of the adaptive behavior;
3. Evaluation of sensitivity to population size;
4. Evaluation of sensitivity to the B parameter;
5. Study of scalability;
6. Comparison with MAs.

The benchmark functions are specified in table 1. The functions f were taken
from [4], and functions F , from the test suite for CEC 2005 Special Session on
real-parameter optimization [8]. In each test, we conducted 50 trials with each
function. All the experiments were performed using a Pentium 4 PC with 512
MB of RAM, in C Linux environment.

3.1 Evaluation of Performance

It was based on the test proposed in [8]. The function error value ε for a solution
x is f(x) − f(x∗), where x∗ is the global optimum of f [7]. The maximum
number MAX of evaluations of f was 10, 000 N , where N is the dimension of
the problem. The fitness evaluation criteria were as follows:

1. Error is a compound value formed by all trials as AV G(−→ε )±STDDEV (−→ε ).
2. Evaluation is another compound value formed by all trials as AV G(−→α )±

STDDEV (−→α )(β), where α is the number of function evaluations (FEs)
required to reach certain error value before MAX value and β is the number
of trials with an α value. For all the functions, this value was 10−6 except
for F8, F9, and F10, where the accuracy was 10−2.

We compared the performance of EEv and DE/rand/1/bin. The tests were con-
ducted on a set of sixteen functions with N = 30. Error and evaluation values
are reported on Table 2. Best results are marked in boldface. We used P = 5
and B = 0.6 in this test. The error and evaluation values for DE/rand/1/bin
were calculated using a P = N , CR = 0.9 and F = 0.9 as suggested in [7].
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Table 1. Test functions

Unimodal functions

Separable

fsph Sphere model
F1 Shifted sphere function

Non-separable

F3 Shifted rotated high conditioned elliptic function
F4 Shifted Schwefel’s problem 1.2 w/ noise in fitness

Multimodal functions

Separable

fsch Generalized Schefel’s problem 2.26
fras Generalized Rastrigin’s function

F9 Shifted Rastrigin’s function
Non-separable

fros Generalized Rosenbrock’s function
fack Ackley’s function
fgrw Generalized Griewank’s function
fsal Salomon’s function
fwhi Whitley’s function

fpen1,2 Generalized penalized functions
F8 Shifted rotated Ackley’s function with global

optimum on bounds
F10 Shifted Rotated Rastrigin’s function

We observe that EEv:

– Has fast convergence: the reported evaluation values are small.
– Is consistent: the standard deviation is relatively small as compared with the

mean value on all the test problems.
– Is competitive: it overperforms DE/rand/1/bin on nine out of sixteen

functions.
– Is faster than DE/rand/1/bin. It reaches the accuracy value on ten out of

sixteen functions using less FEs than DE/rand/1/bin.

EEv’ success key features are:

1. Adaptive restart mechanism. EEv’ restart mechanism allows partial popu-
lation restart, accelerating convergence.

2. Mutation operator. The operator is very similar to a Hill-Climbing operator,
giving EEv a similar behavior to a memetic algorithm. The adaptive step size
vector allows a more efficient exploration for the current search situation.

3. Use of recently crossover’ generated offspring individuals.

3.2 Study of the Adaptive Behavior

Experiments with P = 5 and B = 0.6 were conducted to evaluate the adaptive
behavior of EEv. The tests were conducted on a set of sixteen functions with
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Table 2. Comparison between EEv and DE/rand/1/bin error and evaluations values
on problems with N = 30

Error EEv DE/Rand/1/Bin
fsph 4.35E − 22 ± 8.37E − 22 5.73E − 17 ± 2.03E − 16
F1 1.67E − 12 ± 4.37E − 12 3.58E − 81 ± 1.36E − 81

F3 9.21E + 05 ± 9.22E + 04 3.63E + 06 ± 9.22E + 05
F4 6.80E + 04 ± 1.62E + 04 5.54E + 01 ± 6.37E + 01

fras 4.32E − 12 ± 1.34E − 11 2.55E + 01 ± 8.14E + 00
F9 1.59E − 01 ± 2.59E − 01 2.43E + 01 ± 6.22E + 00
fsch 1.67E + 03 ± 6.41E + 01 4.90E + 02 ± 2.34E + 02

fros 1.42E + 01 ± 7.28E + 00 5.20E + 01 ± 8.56E + 01
fwhit 2.33E + 01 ± 1.94E + 01 3.10E + 02 ± 1.07E + 02
fpen1 5.82E − 25 ± 4.80E − 25 4.56E − 02 ± 1.31E − 01
F8 2.02E + 01 ± 2.65E − 02 2.09E + 01 ± 1.33E − 01
fpen2 9.01E − 24 ± 1.12E − 23 1.44E − 01 ± 7.19E − 01
fgrw 3.08E − 02 ± 1.57E − 02 2.66E − 03 ± 5.73E − 03
fack 1.04E − 07 ± 1.50E − 07 1.70E − 09 ± 1.32E − 09
fsal 1.04E + 00 ± 6.58E − 01 2.52E − 01 ± 8.14E + 00
F10 3.34E + 02 ± 3.24E + 01 7.33E + 01 ± 6.66E + 01

Evaluations

fsph 93827.6 ± 1157.87(50) 148650.8 ± 6977.7(50)
F1 97640.80 ± 1356.82(50) 153450.1 ± 5780.4(50)
fras 111151.8 ± 7367.1(50) –
F9 115550.8 ± 11845.2(43) –
fpen1 67299.5 ± 1279.93(50) 160955.2 ± 63176.3(43)
fpen2 78541.6 ± 1529.95(50) 156016.9 ± 31515.8(48)
fras 200743.1 ± 31447.5(8) –
fros 127230(1) –
fack 164930.0 ± 15637.1(49) 215456.1 ± 9721.4(50)
fgrw 104585.31 ± 17771.17(16) 190292.5 ± 63478.8(38)

N = 30. Frequencies and mean values of C parameters were taken from a random
test and reported in Table 3. The following observations can be obtained from
the experiments:

– Elitism is predominant in EEv’s optimization process. A statistic mode of P
for C parameter is present on all the problems. Additionally, the mean value
of C on the test is equal to 4.94 (very close to P ).

– C parameter is sensitive to the kind of search space EEv is working with.
Each problem needs a different amount of global and local exploration.

3.3 Sensitivity to Population Size

Experiments with different P values were conducted to evaluate the sensitivity
of EEv to variations of population size. The tests were conducted on a set of ten
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Table 3. C frequencies for a random test run with P = 5, B = 0.6 and N = 30

fsph F1 F3 F4 F9 fras Fsch fros fack fgrw

1 15 11 18 2 4 4 3 11 11 15
P − 3 84 71 247 4 46 46 27 128 61 61
P − 2 365 281 1366 4 289 315 161 598 306 301
P − 1 2258 1457 7094 13 1760 1960 1399 3556 1506 1550

P 57278 58180 51275 59977 57901 57675 58410 55707 58116 58073
μ 4.94 4.96 4.82 4.99 4.95 4.95 4.96 4.91 4.96 4.96

functions with N = 30. The P values used were 3, 10, and 30. Table 4 shows the
error values obtained in the test with 10 benchmark functions.

Performance of EEv is sensitive to population size in all the cases. EEv works
best with very small populations. EEv works better with smaller P values in 7
out of 10 test cases. It is important to observe that:

– A smaller P value increments the probability of elitism.
– Smaller P values amplify the effect of the C parameter: major changes in

the proportion of individuals involved in exploitation and exploration occur
between generations.

3.4 Sensitivity to the B Parameter

Experiments with different B values were conducted to evaluate the sensitivity
of EEv to variations of B parameter. The tests were conducted on a set of ten
functions with N = 30. The B values used were 0.1, 0.45, and 0.8.

B controls the initial and maximum step size for −→b – the adaptive parameter
that contains the step size to be used by the mutation operator. The mutation
operator is very similar to a hill-climbing algorithm. It allows the generation of
offspring individuals around a parent with a maximum step size specified by −→b .
Table 4 shows the error values obtained by using different B values in the test
with sixteen benchmark functions. That table shows that:

– Performance in EEv is more sensitive to the B parameter.
– B value is problem-dependent. However, EEv tends to have similar behavior

on problems with similar features.
– Greater B values encourage a more optimal exploration.
– EEv performs competitively without fine adjustment of B.

3.5 Scalability Test

Experiments with different N dimensions values were conducted to evaluate the
robustness of EEv. The tests were conducted on a set of ten functions. The N
values used were 100, and 200. The error values obtained are reported in Table 5.
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Table 4. EEv Error values obtained for different P and B values on problems with
N = 30

B = 0.6 P = 3 P = 10 P = 30
fsph 6.15E − 27 ± 8.24E − 27 4.50E − 18 ± 5.51E − 18 1.68E − 12 ± 1.69E − 12
F1 1.90E − 14 ± 1.02E − 14 1.40E − 10 ± 2.56E − 10 3.23E − 07 ± 1.69E − 06
F3 7.37E + 05 ± 8.16E + 04 1.30E + 06 ± 1.31E + 05 3.08E + 06 ± 1.88E + 05
F4 3.96E + 04 ± 1.04E + 04 7.14E + 04 ± 1.46E + 04 4.08E + 04 ± 2.69E + 03
fras 6.63E − 02 ± 1.69E − 01 2.91E − 08 ± 8.33E − 08 3.32E − 02 ± 1.75E − 01
fsch 1.61E + 03 ± 9.52E + 01 1.68E + 03 ± 1.24E + 02 1.66E + 03 ± 1.02E + 02
fgrw 4.03E − 02 ± 2.30E − 02 2.69E − 02 ± 1.79E − 02 1.00E − 02 ± 5.79E − 03
fpen1 1.77E − 29 ± 1.24E − 29 2.11E − 19 ± 5.45E − 19 1.33E − 10 ± 6.18E − 10
fack 2.24E − 10 ± 1.60E − 10 2.41E − 03 ± 6.97E − 03 5.13E − 01 ± 2.93E − 01
fros 1.52E + 01 ± 9.89E + 00 1.76E + 01 ± 9.64E + 00 7.23E + 00 ± 1.10E + 01

P = 5 B = 0.1 B = 0.45 B = 0.8
fsph 1.53E − 23 ± 7.16E − 23 1.11E − 22 ± 9.36E − 23 2.46E − 22 ± 2.97E − 22
F1 1.03E − 12 ± 2.03E − 12 2.17E − 12 ± 8.33E − 12 2.12E − 12 ± 8.33E − 12
F3 9.47E + 05 ± 1.52E + 05 9.00E + 05 ± 7.33E + 04 9.27E + 05 ± 1.29E + 05
F4 1.57E + 05 ± 5.38E + 04 8.16E + 04 ± 2.26E + 04 5.94E + 04 ± 6.83E + 03

fras 3.67E + 01 ± 4.22E + 00 3.31E − 02 ± 1.75E − 01 1.70E − 12 ± 2.51E − 12
fsch 5.67E + 03 ± 2.42E + 02 1.83E + 03 ± 1.40E + 02 1.61E + 03 ± 9.44E + 01

fpen1 1.74E − 25 ± 7.85E − 25 1.31E − 24 ± 2.71E − 24 9.81E − 25 ± 4.31E − 25
fack 1.13E − 07 ± 2.43E − 07 1.80E − 07 ± 4.28E − 07 9.21E − 08 ± 1.13E − 07
fros 2.08E + 01 ± 5.19E + 01 3.87E + 01 ± 2.29E + 01 1.46E + 01 ± 2.02E + 01

This table also show a comparison between EEv, DE/rand/1/bin, and DEahc-
SPX. DEahcSPX is a Memetic Algorithm which overcomes DE/rand/1/bin per-
formance and was proposed in [7]. The error values from this technique were
taken also from [7]. We obtain the following conclusions:

– EEv is a robust algorithm.
– EEv mantains its performance on problems with very high dimensionality.
– EEv is highly competitive on problems with N ≥ 100. It overperforms the

other two techniques on all test problems.

3.6 Comparison with Memetic Algorithms

A comparison with two well-knowm memetic algorithms was conducted. We
select two techniques: minimal generation gap (MGG) [9] and generalized gen-
eration gap (G3) [10]. Two crossover operators were selected for this paper:
unimodal normal distribution crossover (UNDX) and parent centric crossover
(PCX). The selected combinations were MGG+UNDX and G3+PCX. The tests
were conducted on a set of ten functions with N = 30. Error values are reported
in Table 6. Best results are marked in boldface. The error values for both algo-
rithms were taken from [7]. We reach the following conclusions:
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Table 5. Comparison between EEv, DE/rand/1/bin and DEahcSPX error values in
ten problems with N = 100 and N = 200

N = 100 EEv DEahcSPX DE/Rand/1/Bin
Fsph 1.39E − 21 ± 5.66E − 22 5.01E + 01 ± 8.94E + 01 4.28E + 03 ± 1.27E + 03
Fras 6.635E − 02 ± 1.69E − 01 4.75E + 02 ± 6.55E + 01 8.30E + 02 ± 6.51E + 01
Fsch 5.79E + 03 ± 2.36E + 02 2.48E + 04 ± 2.71E + 03 2.54E + 04 ± 2.15E + 03
Fros 3.66E + 01 ± 1.77E + 01 1.45E + 05 ± 1.11E + 05 3.33E + 08 ± 1.67E + 08
Fack 9.30E − 09 ± 1.12E − 08 1.91E + 00 ± 3.44E − 01 8.81E + 00 ± 8.07E − 01
Fsal 2.39E + 00 ± 2.39E − 01 3.11E + 00 ± 5.79E − 01 1.02E + 01 ± 7.91E − 01
Fwhit 5.67E + 02 ± 1.95E + 02 4.06E + 10 ± 6.57E + 10 5.44E + 15 ± 5.07E + 15
Fpen1 1.13E − 23 ± 7.33E − 24 4.33E + 00 ± 1.75E + 00 6.20E + 06 ± 7.38E + 05
N = 200 EEv DEahcSPX DE/Rand/1/Bin
Fsph 6.58E − 21 ± 1.87E − 21 7.01E + 03 ± 1.07E + 03 1.26E + 05 ± 1.06E + 04
Fras 3.64E − 01 ± 2.96E − 01 1.53E + 03 ± 8.31E + 01 2.37E + 03 ± 7.24E + 01
Fsch 1.18E + 04 ± 3.71E + 02 6.61E + 04 ± 1.44E + 03 6.66E + 04 ± 1.32E + 03
Fros 3.61E + 01 ± 2.91E + 01 1.11E + 08 ± 2.63E + 07 2.97E + 10 ± 3.81E + 09
Fack 3.02E − 09 ± 7.34E − 10 8.45E + 00 ± 4.13E − 01 1.81E + 01 ± 2.26E − 01
Fsal 4.54E + 00 ± 2.09E − 01 1.10E + 01 ± 4.38E − 01 3.69E + 01 ± 1.80E + 00
Fwhit 4.09E + 03 ± 1.14E + 03 4.21E + 13 ± 1.74E + 13 3.13E + 18 ± 9.48E + 17
Fpen1 5.98E − 23 ± 1.26E − 23 2.27E + 01 ± 5.73E + 00 3.49E + 08 ± 7.60E + 07

Table 6. Comparison between EEv error values and two MAs in problems with N=30

EEv MGG+UNDX G3+PCX
Fsph 4.35E − 22 ± 8.37E − 22 1.37E − 11 ± 1.94E − 11 3.58E − 81 ± 1.36E − 81

Fras 4.32E − 12 ± 1.34E − 11 1.35E + 00 ± 1.03E + 00 1.75E + 02 ± 3.37E + 01
Fsch 1.67E + 03 ± 6.41E + 01 4.12E + 03 ± 1.72E + 03 4.04E + 03 ± 1.09E + 03
Fwhit 2.33E + 01 ± 1.94E + 01 4.28E + 02 ± 3.82E + 01 3.44E + 02 ± 2.97E + 00
Fpen1 5.82E − 25 ± 4.80E − 25 4.93E − 02 ± 3.50E − 02 4.35E + 00 ± 6.94E + 00
Fack 1.04E − 07 ± 1.50E − 07 8.23E − 07 ± 4.64E − 07 1.48E + 01 ± 4.17E + 00
Fpen2 9.01E − 24 ± 1.12E − 23 4.39E − 04 ± 2.20E − 03 1.50E + 01 ± 1.58E + 01
Fsal 1.04E + 00 ± 6.58E − 01 1.50E − 01 ± 4.95E − 02 4.64E + 00 ± 4.74E + 00
Fgrw 3.08E − 02 ± 1.57E − 02 2.96E − 04 ± 1.48E − 03 1.07E − 02 ± 1.30E − 02
Fros 1.42E + 01 ± 7.28E + 00 2.81E + 01 ± 1.23E + 01 4.18E + 00 ± 9.68E + 01

1. EEv is a competitive technique. It overperforms the other two techniques on
six out of ten functions.

2. Uses one less parameter than the other two techniques: MGG and G3 require
the adjustment of P , μ, and λ.

3. The algorithm is simplier than the two memetic algorithms.

4 Conclusions and Future Work

The paper describes a new evolutionary method called EEv. EEv is a population-
based technique that uses only two user-defined parameters (one less than the
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majority of the state-of-the-art techniques). The adaptive parameter C allows
EEv to reach an effective balance between local exploitation and global
exploration.

The tests show that EEv is a competitive approach: it performs well in most
test cases and have great efficiency on problems with high dimensionality. In
addition to that, it is very fast and precise in some cases: it reach the target
accuracy value faster than DE/rand/1/bin. However, it has difficulty solving
unimodal non-separable functions. We conclude that EEv performs better with
small populations EEV is sensitive to B parameter value. B value depends on
the problem features.

More comparative work and further studies should be carried out to provide
a more detailed analysis and refinement. Future work with constrained functions
should be performed to observe the behavior of EEv. New mechanisms should
be tested to improve EEv’s performance on shifted functions.
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Abstract. This paper deals with a Multiple Sequence Alignment prob-
lem, for which an implementation of the Prototype Optimization with
Evolved Improvement Steps (POEMS) algorithm has been proposed. The
key feature of the POEMS is that it takes some initial solution, which is
then iteratively improved by means of what we call evolved hypermuta-
tions. In this work, the POEMS is seeded with a solution provided by the
Clustal X algorithm. Major result of the presented experiments was that
the proposed POEMS implementation performs significantly better than
the other two compared algorithms, which rely on random hypermutations
only. Based on the carried out analyses we proposed two modifications of
the POEMS algorithm that might further improve its performance.

Keywords: sequence alignment, optimization, evolutionary algorithms.

1 Introduction

Sequence alignment (SA) plays an important role in molecular sequence analysis.
SA is a way of arranging the primary sequences of DNA, RNA, or protein to
identify regions of similarity that may be a consequence of functional, structural,
or evolutionary relationships between the sequences. All of those 3 types of
sequences are referred to as domains. In case of more than two sequences the
problem is called Multiple Sequence Alignment (MSA).

The sequence of a DNA molecule can be modelled as a string over a 4-character
alphabet, each character representing one of the four nucleotides that make up
DNA. RNA can be modelled in a similar way. Proteins are chains of amino
acids and can be represented as strings over a 20-character alphabet. Both the
amino acids and the nucleotides are commonly referred to as residues. Gaps are
inserted between the amino acid residues so that residues with identical or similar
characters are aligned in successive columns. Aligned sequences of nucleotide or
amino acid residues are typically represented as rows of letters within a matrix.
In this paper we focused onto alignment of proteins.

The MSA problem is strongly NP-hard [10] thus there does not exist any
exact algorithm that solves larger instances of this problem optimally. Hence,
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heuristic algorithms are an option for finding at least approximate solutions
to the optimal ones. The widely-used representative of this class of algorithms
is Clustal algorithm. It gradually builds an alignment by first estimating the
evolutionary distance between all sequences to be aligned and then aligns the
sequences in order of decreasing similarity using dynamic programming method.
Although the dynamic programming is a globally optimal algorithm, the Clustal
itself does not guarantee finding the global optimum as it optimizes the alignment
in a pair-wise manner taking just two sequences into account at a time.

Very often metaheuristics such as evolutionary algorithms (EAs) were adapted
to this problem to find solutions of high quality in reasonable time. The best
known work of evolutionary algorithms used for MSA problem was introduced by
Notredame and Higgins in [6] in 1996. Their Sequence Alignment by Genetic Al-
gorithm (SAGA) follows the general principles of a standard genetic algorithm.
The main focus of SAGA was put onto evolutionary operators – crossover and
mutation. There are in total 22 operators implemented in SAGA. In Horng’s
et al. implementation of an evolutionary algorithm for protein alignment be-
fore dynamic programming is applied onto sequences they are ”prepared” using
evolutionary algorithm with 1-point crossover and four mutation operators [2].
GASP proposed in [5] uses segment profiles to generate the diversified initial pop-
ulation and tries to prevent the destruction of conserved regions by crossover and
mutation operations. Additionally, the highest-scoring individual of each gener-
ation is optimized using progressive method. Thomsen et al. proposed a simple
evolutionary algorithm called MSAEA in [9]. Instead of evolving the alignments
from randomly generated initial alignments, they investigated the effects of seed-
ing an EA with already well-fit solution. The MSAEA starts with a population
of identical seed alignments derived from the well-known alignment program
Clustal X [7]. MSAEA was then used to further improve the initial solution.
Five mutation operators were used to alter the candidate alignment solutions
during the evolutionary run, for details see [9]. They also experimented with dif-
ferent crossover operators and concluded that the recombination operators were
not able to improve the candidate solutions.

In this paper we propose an implementation of the POEMS algorithm for
solving the MSA problem. POEMS is an iterative optimization algorithm that
searches in each iteration for such a modification of current solution, called pro-
totype, that improves its quality. If an improving modification is found then the
modified prototype is considered a prototype for the subsequent iteration. Mod-
ifications are represented as sequences of elementary actions (simple mutations
in standard EAs), defined specifically for the problem at hand. An evolutionary
algorithm is used to search for the best action sequences. Thus, the transition
steps taken between two subsequent prototype states can be viewed as evolved
hypermutations. First results show, that POEMS performs significantly better
than evolutionary algorithms that rely on just randomly generated mutations,
like the MSAEA does.

The rest of this paper is structured as follows. The considered MSA prob-
lem and alignment quality score are described in section 2. In section 3, the



Solving the Multiple Sequence Alignment Problem Using POEMS 185

adaptation of POEMS to MSA problem is proposed. Section 4 describes the
used test data sets and configuration of the POEMS and other two compared
algorithms. Results achieved with our approach are analysed in section 5. Sec-
tion 6 concludes and suggests directions for further analyses and improvements
of the proposed approach.

2 Problem Formulation

In this work we assume a set of n sequences S = S1, S2, . . . , Sn to be aligned.
Each sequence consists of characters over the alphabet of 20 amino acids plus
symbol ’-’, which stands for a single gap. Originally, the sequences are of different
length l1, l2, . . . , ln. We equalized the length of all sequences to the value of l′

calculated as l′ = 1.2× lmax, where lmax = max(l1, l2, . . . , ln). So, the sequences
were filled in with gaps up to the length l′. Initially, all the gaps added to the
alignment are placed to the far right hand side of corresponding sequence. The
same length alignment scheme was used in [9].

In order to solve the sequence alignment problem, we need a measure to deter-
mine how good an alignment is. The most widely-used scoring scheme employs
sum of pairs (SOP) scoring function together with a gap penalty (GP). The SOP
score rewards matches and penalizes mismatches between two amino acids at a
particular location calculated over all pairs of amino acids si,k and sj,k in the
alignment according to the following formula

SOP (S) =
n−1∑
i=1

n∑
j=i+1

l′∑
k=1

M(si,k, sj,k) (1)

where M is a symmetric matrix containing scores for substituting a residue with
another one (or a gap). The symmetric matrix is referred to as a substitution
matrix and is derived from statistical analysis of residue substitution data from
sets of reliable alignments of highly related sequences. In this work we consider
widely-used BLOSUM62 matrix [1].

We used an affine gap penalty (AGP) calculated for each sequence in the
alignment and every gap in the sequence according to the following formula:

AGP (S) = γ + δ × (k − 1), (2)

where γ is the gap opening penalty, δ is the gap extension penalty, and k is the
length of the gap. Gaps at the sequences terminal regions are treated with no
penalty. In this paper we used γ = 10 and δ = 1.

The optimization task of MSA is then to achieve the alignment by introduc-
ing gaps into sequences such that the SOP score of two aligned sequences is
maximized and the GP is minimized at the same time. The two objectives are
combined in the following final maximization criterion

AlignmentScore = SOP −GPS. (3)
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3 POEMS

Prototype Optimization with Evolved iMprovement Steps (POEMS) [3] is an it-
erative optimization approach that employs an EA for finding the best modifica-
tion of the current solution, called prototype, in each iteration. Modifications are
represented as a sequence of fixed length of primitive actions defined specifically
for the problem at hand. Action sequences are assessed based on how well/badly
they modify the current prototype, which is passed as an input parameter to the
EA. After the EA finishes, it is checked to determine whether the best evolved
sequence improves the current prototype or not. If an improvement is achieved,
then the modified prototype is considered as a new prototype for the next itera-
tion. Otherwise the current prototype remains unchanged. The iterative process
stops after a specified number of iterations. In other words, the POEMS can be
considered as an iterative algorithm with evolved hypermutations. An outline of
the POEMS algorithm is shown in Algorithm 1.

Prototype initialization. POEMS is an iterative algorithm and as such its
performance strongly depends on the initial prototype from which the iterative
optimization starts. Here, the prototype is initialized with a solution obtained by
Clustal X algorithm, similarly to the seeding of the first population in MSAEA.

Actions. The EA employed in POEMS evolves linear chromosomes of length
MaxGenes, where each gene represents an instance of a certain action chosen
from a set of elementary actions defined for the given problem. Each gene is
represented by a record, with an attribute action type followed by parameters of
the action. Besides actions that truly modify the prototype, there is also a special
type of action called nop (no operation). Any action with action type = nop
is interpreted as a void action with no effect on the prototype, regardless of
the values of its parameters. Chromosomes can contain one or more instances
of the nop operation. This way a variable effective length of chromosomes is
implemented. However, sequences that do not change the prototype at all (they

Algorithm 1. Prototype Optimization with Evolved Improvement Steps
begin1

Prototype ← InitializePrototype()2

i ← 13

while not TerminationCondition() do4

BestSequence ← RunEA(Prototype)5

Candidate ← ApplyTo(BestSequence, Prototype)6

if IsBetterThan(Candidate, Prototype) then7

Prototype ← Candidate8

i ← i + 19

return Prototype10

end11
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Algorithm 2. Iterative Evolutionary Algorithm Used in POEMS
begin1

Population(0) ← InitializeActionSequences()2

Evaluate(Population(0))3

i ← 14

while not TerminationCondition() do5

Parents ← Select(Population(i−1))6

if Rand()< Pcross then7

Children ← Crossover(Parents)8

else9

Children ← Mutation(Parents)10

Evaluate(Children)11

Replacement ← FindReplacement(Population(i−1))12

Population(i) ← Replace(Population(i−1), Replacement, Children)13

i ← i + 114

BestSequence ← BestOf(Population(i−1))15

return BestSequence16

end17

are composed entirely of nop actions) are fatally penalized in order to avoid a
convergence to useless trivial modifications.

There are the following four types of active actions1 used in this work:

– PassGaps(sequenceId, aminoId). This action is an analogy of the PassGaps
operator used in [9]. First, it finds in sequence sequenceId an amino acid
with the particular identifier aminoId. If the amino acid is placed directly
next to a gap then the amino acid is moved to the other end of the gap.

– MoveBlock(sequenceId, aminoId, direction). First, a contiguous block of
amino acids that contains given amino acid aminoId is found in sequence
sequenceId. Then the block is moved one position to the left or right ac-
cording to the value of direction.

– InsertGap(sequenceId, aminoId). First, amino acid aminoId is found in
sequence sequenceId. Then a single gap is inserted right before the amino
acid, if there are still some terminal gaps left at the right hand side end of
that sequence.

– RemoveGap(sequenceId, aminoId). First, amino acid aminoId is found in
sequence sequenceId. Then, if there is a gap right in front of the amino acid
a single gap is removed from the gap and put to the far right hand side of
that sequence.

Operators. At the beginning of each EA, the chromosomes (action sequences)
are initialized by random. Then the chromosomes are varied by means of crossover
1 Note, that the actions can only operate with gaps that are present in each sequence.

No gaps can be either introduced or removed to/from any sequence, since the length
of sequences l′ is invariant.
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and mutation operators. A generalized uniform crossover introduced in [3] and
mutation operator that changes either the action type or action parameters are
used in this work.

Niching replacement strategy. In order to prevent EA from converging to-
wards action sequences with a minimal number of active actions a niching re-
placement strategy is proposed for the used iterative EA, see Algorithm 2. A
population of size N is split into niches {niche1, niche2,. . . ,nicheMaxGenes}
of equal size N/MaxGenes and each niche nichei can contain only sequences
with the number of active actions greater or equal than i. This is achieved
so that each newly generated action sequence is inserted into the population
only if an admissible replacement is found in the current population by func-
tion FindReplacement(). An action sequence ASold can be replaced by the new
one ASnew with i active actions iff fitness(ASnew) is better than or equal to
fitness(ASold) and ASold is in nichej such that j ≤ i. This way both the quality
and diversity of action sequences in the population are ensured.

4 Experimental Setup

4.1 Used Test Data Sets

Table 1 shows the protein sequence data sets that we used in our experiments.
All six data sets were selected from the first reference set from the BAliBASE
database (version 2, http://bess.u-strasbg.fr/BioInfo/BAliBASE2/) [8], which is
a publicly available suite of alignment benchmarks.

4.2 Configuration of Compared Algorithms

Parameters of POEMS were set the same for all data sets as follows

– MaxGenes = 5,
– NicheSize = 20,
– PopulationSize = 100,
– Number of fitness evaluations in each iteration: 1000,
– Number of iterations: 100 (100.000 fitness evaluations in total),
– PCross = 0.5, PMutate = 0.5,
– Tournament selection with N = 2.

The proposed POEMS implementation was compared to two other mutation-
based algorithms. The first one denoted EA is an analogy of MSAEA algorithm.
The evolutionary model is the same as in MSAEA. From a population of λ
individuals μ new individuals are created by applying mutations to parental in-
dividuals. (λ+μ)-selection is then used to select the best λ number of individuals
as parents in the new population. Contrary to MSAEA, individuals are not var-
ied by simple mutations. Instead individuals are subjected to hypermutations of
the form of action sequences of length 1 to MaxGenes. In this paper, EA with
λ = 15 and μ = 30 that run for 3333 generations was considered.
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Table 1. BAliBASE data sets used in MSAEA experiments. NSEQ is the number of
sequences. LSEQ are length parameters of original sequences. MAL is the maximal
alignment length calculated as MAL = 1.2 × LClustal, where LClustal is a length of
the alignment obtained by Clustal X for the original sequences. SEQID is the percent
residue identity.

Data set NSEQ LSEQ (min,max,avg) MAL SEQID

1aboA ref 5 (49,80,63.6) 96 < 25%
1hfh ref 5 (116,132,121.2) 164 20 − 40%
1amk ref 5 (242,254,248.2) 308 > 35%
1gtr ref 5 (419,436,428.2) 539 > 35%
1gpb ref 5 (796,828,809.8) 1020 > 35%
1taq ref 5 (806,928,865.2) 1128 > 35%

Second approach denoted BestImprovementSearch (BIS) is the POEMS vari-
ant where just the starting population of action sequences is generated in each
EA. BIS run for 100 iterations with 1000 random action sequences generated in
each iteration. Hence, no evolution of the action sequences took place in BIS.

5 Results

We run 500 independent runs with each of the compared algorithms. Table 2
provides statistics calculated from 500 results produced by each of the compared
algorithms. We can see that POEMS achieves the best average and median
value on all data sets. Figure 1 illustrates that the median values obtained with
POEMS are significantly higher than medians of the other two algorithms at
the 5% significance level since the notches in boxplots do not overlap2. The
differences between the means are also confirmed by Wilcoxon rank-sum test as
it rejects the null hypothesis that the means are equal at the 1% significance level
for all data sets. Histograms drawn from the top 100 results also show that the
best distribution of high quality results is achieved with the POEMS algorithm;
the histograms are not presented in the paper due to limited space. Moreover,
POEMS finds the best ever solution on all data sets but the 1gpb ref data set.

If we take a closer look at boxplots for 1amk ref data set we observe unusual
boxplot parameters obtained for EA and POEMS. In both cases the median
matches or is very close to the lower bound of a boxplot. Detailed analyses
revealed this is due to a large number of copies of the same result. EA got
trapped 284 times at solution(s) of alignment score of 6107 while POEMS got
stuck 131 times at solution(s) of final alignment score of 6114. We analyzed
the results obtained by POEMS on 1amk ref data set and found out that there
were two modifications of one alignment that have the same score of 6114 and
differed in just one amino acid position. In particular, there was one sequence
in the alignment with a gap and one amino acid that if placed on either side of
the gap yield the same final alignment score. Thus, once the POEMS algorithm
2 Though, they are very close to each other in case of the 1aboA ref data set.
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Fig. 1. Boxplots calculated from the set of 500 results obtained by each algorithm
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Table 2. Average, median and standard deviation values calculated from 500 results
produced by the compared algorithms

1aboA ref 1amk ref 1gpb ref 1gtr ref 1hfh ref 1taq ref

Clustal X -4 5898 18943 8333 688 12981

E
A

best 159 6136 19145 8554 1211 13336
avg 80.0 6108.5 19073.7 8475.1 1011.1 13223.9
median 72 6107 19072 8475 1003 13224
stdev 16.7 8.0 18.2 21.0 50.6 41.7

B
IS

best 162 6137 19120 8580 1210 13328
avg 80.1 6108.9 19065.1 8489.9 1025.1 13213.9
median 73 6107 19067 8489 1022 13208
stdev 18.1 13.0 14.4 31.1 47.2 41.9

P
O

E
M

S best 192 6141 19182 8587 1244 13364
avg 87.3 6118.8 19105.0 8511.0 1068.3 13261.9
median 77 6114 19103 8511 1059 13250
stdev 20.2 15.8 20.7 31.4 150.6 34.3

arrived at one of these two variants of that alignment, it was strongly attracted
by the other variant as it causes minimal deterioration in quality of the current
prototype among all the hypermutations that effectively change it. This suggests,
that POEMS can systematically get trapped under certain circumstances. There
are two possible remedies of this problem

– Population based variant of POEMS. A population of fixed size with best-
so-far solutions could be maintained such that only unique solutions can be
stored there. In each iteration a prototype would be chosen by random. Thus,
the possibility of getting stuck between several equally-fit optima would be
eliminated.

– Using a tabu list of winning action sequences generated in recent iterations.
In the current version of POEMS, action sequences that do not change the
prototype are fatally penalized. This modification suggest that also action
sequences that appear in the tabu list will be fatally penalized. This way,
the chance that solutions would oscillate between several equally-fit optima
would be eliminated reduced.

6 Conclusions and Future Work

This paper deals with well-known multiple sequence alignment problem, for
which an implementation of the Prototype Optimization with Evolved Improve-
ment Steps algorithm has been proposed. This algorithm is seeded with a solution
provided by the Clustal X algorithm and the solution is then further improved
by means of what we call evolved hypermutations.
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We presented promising results that show that the concept of evolved hyper-
mutations is a viable way to utilize EA for problems where it is hard to design
an effective recombination operator. We observed that POEMS outperformed
two other approaches - an EA with (λ + μ) evolutionary model and the best
improvement search - both relying on randomly generated hypermutations.

However, POEMS is an iterative algorithm and as such it can get stuck in a
local optimum or can get trapped by a couple of local optima of the same quality.
We proposed two modifications of POEMS algorithm that might further improve
its performance. These modifications will be subject of our future research.
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Abstract. Scatter search (SS) is an evolutionary algorithm (EA) be-
coming more important in current researches as the increasing number
of publications shows. It is a very promising method for solving combi-
natorial and nonlinear optimisation problems. This algorithm is being
widely implemented for solving problems not taking long, but in case of
processes requiring of high execution times likely to be executed using
grid computing there is not an implementation for it. Some problems
arise when we try to execute this algorithm using the grid, but once they
are solved, the obtained results are really promising for many complex
and scientific applications like, for example, applications for optimising
nuclear fusion devices. Using concurrent programming and distributed
techniques associated to the grid, the algorithm works as it could do it
in a single computer.

Keywords: Scatter Search, Distributed Programming, Concurrent Pro-
gramming, Grid Computing.

1 Introduction

Scatter search is a metaheuristic process using formulations based back to the
1960s for combining decision rules and problem constraints. SS works over a
set of solutions, combining them to get new ones that improve the original set.
As main difference with other evolutionary methods, such as genetic algorithms
(GA), SS is not based on large random populations but in strategic selections
among small populations. While GAs usually work with populations of hundreds
or thousands of individuals, SS uses a set of around 10 different solutions.

The algorithm can be divided into three different phases:

– Generation of an initial set of solution vectors by heuristic processes and
selection of a subset of best solutions called reference solutions.

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 193–202, 2009.
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– Creation of new individuals based on linear combinations of subsets of the
current reference solutions.

– Extraction of the best solutions generated to be used as starting points for
a new application of the first step. These steps are repeated until reaching
a specified iteration limit.

The scatter search template [9] has served as main reference for many im-
plementations up to date, as long as the dispersion patterns created by these
designs have been found useful in several application areas. But this template
does not work when the fitness function evaluation takes long to get the value
because the delays included and the waiting time make impossible to evaluate a
long number of solutions.

In case of optimisation problems related to many scientific areas, the required
time to get a fitness value is extremely high, so traditional computation cannot
be used to perform a full optimisation process. Modern paradigms like grid offer
the computational resources and capabilities to carry out these optimisation
problems but they are not easy to use [5][7]. The development of the grid has
created a way that could lead to an increase in the performance of this kind
of algorithms in terms of execution time and problem size. But a high level
of expertise is required to develop and execute grid applications because many
problems can arise because of the special behaviour of the grid [11][12]. Up to
now, many investigations have been carried out using parallel architectures and
GAs [2][6], but grid has not yet been deeply used with complex EA. Here we
propose a generic implementation and show an example of SS algorithm using
grid capabilities without human supervision. Our goal consists of getting a new
SS template which could be used by scientists and developers without problems
with the grid because of a transparent interaction with this paradigm.

The rest of the paper is organised as follows: section 2 gives a description of the
elements and methods of SS algorithm based on the proposed implementation
in [13]. Following this, section 3 is devoted to the distributed fitness calculation
using the grid. Section 4 describes an example implementation developed fol-
lowing the previous explanations. Finally, section 5 shows some conclusions and
future work.

2 Scatter Search Algorithm

Fig. 1 shows the basic scheme of SS algorithm. All the stages are deeply explained
in many related works [9][13]. The design of these stages is very wide and general,
with the aim of anyone can implement other techniques for any of them (as shown
in this paper).

2.1 Concurrent Implementation

The implementation traditionally proposed for this algorithm [9] lacks of getting
solutions for fitness functions when these functions take long. For many prob-
lems we can get a new generation after a few seconds, but when each fitness
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Fig. 1. SS algorithm scheme

value requires of several minutes or even hours working out its evaluation, this
template does not offer a good result. Furthermore, we could have a scenario
where the researchers involved in a specific problem could not have access to
all the computational power required but they could have access to the grid,
especially when this access is very easy to obtain.

For these reasons we have developed a new version for this template which
can run concurrently as many fitness evaluations as needed. To do this we are
using Unix threads within C++ code and child processes [16]. Once a thread has
been created, we create a child process which will interact with the grid while
the parent process waits for the child to finish. This parent process also looks
for the time that the child process is taken to finish its tasks. This is important
considering that sometimes grid jobs take longer than foreseen, to finish being
better to finish these jobs and resend them again.

3 Grid Based SS Implementation

Grid cannot be compared with supercomputers or special parallel machines
which can offer excellent results in term of efficiency. Nevertheless the distributed
paradigm of the grid as well as the number of computational resources available
makes this a very promising alternative to use SS with complex optimisation
problems.

To automate the execution of the SS algorithm using the grid without chang-
ing the source code we have developed a method that reads the entire configura-
tion used by the algorithm from a set of XML files which can be easily modified
by the user.
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But, if we want to interact with the command line in the User Interface (UI),
trying to perform complex operations, such as proxy management, calling off
any job or resending failed jobs, it is challenging to invoke all these commands
from C++ code. For this reason, we have developed a set of python scripts which
are invoked just once from C++ code and they manage jobs interacting with
the metascheduler.

Our goal within this development is to get a system which can interact
with the grid, implementing all the required functionalities to work with this
paradigm, ending up a simple template or skeleton that can be easily modified
to get a different configuration of the algorithm without worrying about the grid
component. For this reason, we have introduced a set of new procedures as well
as python scripts which do not need to be modified in future developments. De-
velopers will only need to modify the selection and combination methods, to get
a new implementation of the algorithm without knowing anything about grid
computing.

3.1 Python Scripts

To get a non-supervised system we have developed a set of python scripts which
interact with the metascheduler and the proxy to manage all the required pro-
cesses in a proper way.

These scripts do not only provide functionalities related to the management
of jobs, but also with the whole grid environment: loading the metascheduler,
detecting some failures of the grid infrastructure or proxy management.

3.2 Job Submission

Job submission consists of the generation of the JDL (Job Description Language)
file, and also of the generation of the input information associated to each in-
dividual. This generation will depend on the problem we are solving. Thereby,
the developer will have to implement a method to create the input information
based on the structure used within the template, being a simple task.

Once this input information (consisting of several configuration files, or a
folder structure, or any kind of information required for the job to run) has been
created, the thread which is managing the individual will create the JDL and
submit it.

4 Real Application Implementation

In this section we consider the optimisation of a nuclear fusion device (TJ-II,
located in Madrid, Spain) by means of SS and a complex fitness function which
tries to improve the equilibrium of this device by minimising the value given by
the eq. 1. In a device with a good equilibrium in the confined particles we have
fewer particles leaving the desired trajectories so the possibilities to get fusion
reactions increase.
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Nowadays there is a global concern about the problem of global warming and
the use of fossil fuels like our main energy supply. Several possibilities are growing
as future energy sources, being the nuclear fusion among the most promising
ones.

Nuclear fusion is the process by which multiple atomic nucleus join together
to form a heavier nucleus. The fusion of two light nuclei generally releases energy
while the fusion of heavy nuclei absorbs energy [14].

Ftargetfunction =
N∑

i=1

〈∣∣∣∣∣
−→
B ×−→∇ |B|

B3

∣∣∣∣∣
〉

i

(1)

In this equation, i represents the different magnetic surfaces within a magnetic
confinement nuclear fusion device and B is the magnetic field. The computational
cost of this equation is really high due to the number of operations to perform
and the number of iterations i.

There are some modelling tools which can simulate the behaviour of nuclear
fusion devices. The computational resources needed for these tools are not only
extremely high, but also take long to finish a single simulation. The number of
possible configurations for these devices is also high, so the number of different
tests to perform can require a long execution time.

The workflow we need to execute to measure the equilibrium in the TJ-II, by
solving the expression 1, is widely explained in the related work [10]. Here we
introduce the most important components of this workflow. Furthermore, there
are many dependencies among these programs related to the kind of information
which they need to exchange as well as some checks which must be performed
to assure that the final result is correct.

– MGRID: it generates a file with the current of the coils and the magnetic
fields generated by the coils.

– VMEC (Variational Moments Equilibrium Code), a three-dimensional mag-
netohydrodynamic (MHD) equilibrium solver [4][8] is used to calculate the
configuration of the magnetic surfaces in a stellarator.

– wout2flx: it transforms the original output given by VMEC into a compre-
hensible format containing only the useful information we need.

– Fitness Calculation: with the output of wout2flx, this application solves the
eq. 1. This method takes long to work out the fitness value because of the
high number of iterations to perform.

This workflow is executed on a Worker Node (WN) of the grid. The way this
workflow is managed is via a python script which extracts all the required files
from a compressed file, generates the executables, removes unnecessary files and
controls the execution order.

The time required by this workflow to get the fitness value varies from a
few minutes up to some hours. For this reason it is impossible to optimise this
problem by means of a single computer.

This workflow, running on the grid, could be defined as Parameter Sweep
Applications (PSAs), because it can be executed many times with different input
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parameters [5]. This kind of problems are structured as sets of computational
tasks mostly independent: there are few task-synchronization requirements, or
data dependencies, among tasks. For this reason, these applications (workflow in
our case) are perfect for becoming the fitness function in our SS algorithm. These
PSAs applications are commonly executed on clusters, but they can benefit by
means of grid computing due to the number of computational resources and its
distributed paradigm, with is suitable for a parallel execution model.

4.1 SS Implementation

Here we summarize the changes introduced to the template to adapt the algo-
rithm to our requirements. As said, the configuration of the algorithm is indicated
by means of XML configuration files. Our requirements are related to how we
perform the combination and how to measure the diversity among the elements
of the population.

Diversification Method. We are using a diversification method based on
Greedy Randomized Adaptive Search Procedure (GRASP) constructions [15].
This method uses a local search procedure [1] to improve the generated solu-
tions. The evaluation function given for this GRASP method is the fitness value
obtained for the solution when a value is added to one of the elements within
the solution. The resulting solution is the best overall solution found with this
local search. This process requires of the evaluation of many solutions, so it can
be deactivated in order to work with no so good configurations but, at least, the
number of iterations which can be calculated in the same time increases.

Combination. To show an implementation of the algorithm we have chosen
a mutation-based procedure to mix individuals and obtain a new one. This
mutation-based procedure uses the sample standard deviation of each chromo-
some in the whole population to perform the mutation.

This function assures some level of convergence in the values of the chro-
mosomes even though this convergence is only noticed after a long number of
generations. Each selected chromosome is added or subtracted (randomly) with
a value between 0 and the standard deviation for that value. The mutation us-
ing the standard deviation value could be also used. The quality of solutions
becomes better, because of the convergence obtained with this function using
elite configurations as base elements to get new solutions.

Diversity Measure. In our case, to measure the diversity among the elements
in the population we use the normalised value of each chromosome of any in-
dividual. This normalisation is calculated using the eq. 2. In other cases this
normalisation is not needed, but for this problem the difference among the pos-
sible values of the chromosomes (some of them take values in the range {0− 1}
while others in the range {0− 1011}) makes impossible to use the current value
of each chromosome.

Norm valuei =
valuei −Mini

Maxi −Mini
(2)
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Finally, with the following expression (eq. 3) we can obtain the distance be-
tween two individuals, p and q by:

d(p, q) =
n∑

i=1

|pi − qi| (3)

Using this expression we can get some levels of diversity within the elements
in the population which is also one of the objectives of the SS algorithm. This
expression has been also implemented within the template we have developed
because it can be used in any kind of problem with a real representation of
chromosomes. It is also very insightful so any developer could easily understand
this function in case of any change would be required.

Improvement Method. The improvement method we have to use cannot
perform many evaluations because of the high execution time required for each of
thiese evaluations. For this reason, we have developed a method that introduces
small variations in the values of the solution and checks is the solution is better
than the original one. The result is not as optimal as it could be, in cases of using
algorithmgs such as the one proposed by Nelder and Mead [3], but the execution
time reduces drastically. Anyway, for problems suitable of using Nelder and Mead
method, we allow the possibility of use it just by choosing the appropiate option
in the configuration file.

4.2 Managing the Grid

As previously mentioned, there are some problems related to the overload of the
UI when the number of waiting processes becomes high. To show the different
alternatives we have, the program looks for the number of threads to be launched
at any time (this has been also added to the template):

1. If the number of threads is lower than 10, each thread launches a wait com-
mand, after sending the job the grid, to wait for its job to finish. Thus, once
the job has finished, immediately the master process knows it.

2. If the number of threads is equal or higher than 10, each thread only launches
the job. Once all the threads have ended, the master process launches a child
process which will look every 30 seconds for the jobs to finish.

4.3 Results

Here we present some results obtained running our example in the grid. During
this run, some problems appeared in the grid infrastructure, but the system
could recover from these failures. Firstly we show some results related to the
time required to evaluate some iterations in the SS. After it, we present some
results focused on the evolution of the fitness function within the population
along the generations.



200 A. Gómez-Iglesias et al.

Table 1. Configuration of the SS algorithm

Parameter Value

Number of iterations 40
Number of chromosomes 90
Size of population 100
Size of RefSet 10
Local Search Deactivated

Table 2. Execution Times for 40 Generations

Test Scatter Search Algorithm

Total Wall Clock Time 535:36:25
Cumulative CPU Time of Workers 9,095:41:07

The configuration for SS is as shown in Table 1:
With this configuration, the execution time required for these evaluations are

as shown in Table 2. The results show the execution time, not the time waiting
in queues. This time depends on the number of jobs submitted by other users
or the number of resources available, so it can change. This table also shows the
aggregated execution time required by of all the processes.

All the times are in the hh:mm:ss format. The required time to obtain these
results, was 535:36:25 (more than 22 days). Considering the total execution time
being more than 9,095 hours, which is almost 379 days, the advantage of using
grid computing becomes clear. The required time to get these results depends on
the number of computational resources available as well as the number of jobs
submitted by other users. In the ideal case of having at least the same number
of WN as number of maximum jobs at the same time and no more users, this
time will be lower, but this is just an ideal case which is difficult to reach in real
environments.

After an iteration, the elements in the population and in the RefSet are stored
in XML files, so it becomes easier to analyse the results and see how the fit-
ness value evolves. Besides, the execution times of all the jobs are also stored,
being this useful to get results as previously shown. With this configuration,
the best value found for the expression 1 is 7.056280E + 03 which represents
a great improvement compared to the configurations used up to now in this
devices, where the values for this function are over 6.0E + 16. The resulting
design allows getting a better confinement of particles within this device, so the
probabilities to obtain fusion reactions increase, improving the efficiency of the
device.

The speedup was 16.98, while the efficiency, 0.33. In terms of speedup is
difficult, or even impossible, to compare these results with those obtained using
supercomputers, because of the special paradigm of the grid, where the number
of jobs waiting in the queues produces that the waiting time could be high. But
in terms of productivity the results are very encouraging.
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4.4 Conclusions about the Implementation of This Example

All the developments needed to implement all the functionalities for this exam-
ple have been carried out easily by means of the template previously explained.
The only difficulties arise from the own functionalities we could think of imple-
menting. The approach shown only uses a set of functions which can be easily
understood and implemented once the template works properly within a grid
environment.

One of the problems that appeared was related to the use of XML files. UI does
not have installed by default the libxml library. To solve this we have included
the source files of this library in a compressed file which is uncompressed and
compiled before compiling the SS algorithm. This library has been added to the
template so future developments will not need to worry about this issue. An
overload of the UI was found during the development of this example, and the
solution has been added to our template in order to avoid this problem in the
future.

The results obtained with this algorithm for the problem of optimisation of
nuclear fusion devices are really encouraging and aim to perform different tests
with different configurations of the algorithm to look for better configurations.

5 Conclusions and Future Work

In this paper we have shown a template to use SS algorithm and the grid. It can
be easily modified to accept any kind of combination or selection methods as well
as different configurations of the algorithm. This template will allow us to solve
different problems, most of them related to nuclear fusion devices optimisation
using SS and all the capabilities of the grid. The example shown in this paper
will be the starting point for a set of different tests we are willing to carry out
in order to get optimal configurations for this kind of devices.

Grid computing appears to be an appropriate environment to make possible
bringing results from computationally intensive tasks. In the results obtained
in the implementation proposed we can see how the execution time has been
reduced thanks to this paradigm.

This new template can be easily modified to work with parallel architectures,
just developing some parts of the code but keeping the threads implementation.

Some problems related to the template, specially focused on the UI overload,
were found along the implementation of the example, but after solving them for
this example, the solutions were added to the template. Thereby future develop-
ments can be carried out focusing only on the problem itself but nothing related
to the general topics of SS and the grid.

Finally, as future work we think of:

1. Developing a web service oriented version via WSRF services.
2. Developing new replacement and selection methods instead of the proposed

in this paper in order to see how this affects the results.
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3. Performing a deep study of the results obtained with different configura-
tion of the algorithm for the example proposed to get a set of optimised
configurations of the nuclear fusion device.

4. As long as with the VMEC output many functions can be calculated, a multi-
objective implementation of the SS using the grid is a promising approach
to improve a fusion device considering a longer number of functions.
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Abstract. The paper proposes combining a multi-agent system
paradigm with the gene expression programming (GEP) to obtain so-
lutions to the resource constrained project scheduling problem with time
lags. The idea is to increase efficiency of the GEP algorithm through
parallelization and distribution of the computational effort. The paper
includes the problem formulation, the description of the proposed GEP
algorithm and details of its implementation using the JABAT platform.
To validate the approach computational experiment has been carried out.
Its results confirm that the agent based gene expression programming
can be considered as a promising tool for solving difficult combinatorial
optimization problems.

1 Introduction

The paper proposes combining a multi-agent system paradigm with the gene
expression programming (GEP) to obtain solutions to the resource constrained
project scheduling problem with time lags (RCPSP/max). In recent years the
RCPSP/max problem has attracted a lot of attention and many exact and heuris-
tic algorithms have been proposed for solving it [2], [12], [16]. There have been
several multi-agent approaches proposed to solve different types of optimization
problems. One of them is the concept of an asynchronous team (A-Team), orig-
inally introduced in [15]. On the other hand the gene expression programming
proposed in [6] as a method for solving different kinds of optimization problems
seems to be a population-based approach, which can easily yield to paralleliza-
tion and decentralization. GEP is a kind of evolutionary algorithm that evolves
computer programs, which can take many forms: mathematical expressions, neu-
ral networks, decision trees, polynomial constructs, logical expressions, etc. GEP
has been successfully used for solving many optimization and especially combi-
natorial optimization problems ([8], [14]).

In this paper we propose a JABAT-based implementation of GEP algorithm
intended for solving instances of the RCPSP/max problem. JABAT is a multi-
agent platform which has been designed as a tool enabling design of the A-Team
solutions [10], [3]. The algorithm based on GEP was implemented as optimization
agent in JABAT. The approach has been validated experimentally. Section 2
of the paper contains the RCPSP/max problem formulation. Section 3 gives
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some details on gene expression programing. Section 4 provides details of the
GEP implementation for solving the RCPSP/max problem and describes fine-
tuning phase of the proposed algorithm. Section 5 provides a brief description
of the platform used to implement GEP algorithm as an A-Team. Section 6
describes computational experiment carried-out. Section 7 contains conclusions
and suggestions for future research.

2 Problem Formulation

The resource-constrained project scheduling problem with minimal and maximal
time lags (RCPSP/max) consists of a set of n+2 activities V={0, 1, . . . , n, n + 1},
where each activity has to be processed without interruption to complete the
project. The dummy activities 0 and n + 1 represent the beginning and the end
of the project. The duration of an activity j, j = 1, . . . , n is denoted by dj

where d0 = dn+1 = 0. There are r renewable resource types. The availability
of each resource type k in each time period is rk units, k = 1, . . . , r. Each
activity j requires rjk units of resource k during each period of its duration
where r1k = rnk = 0, k = 1, ..., r. Each activity j ∈ V has a start time sj

which is a decision variable. There are generalised precedence relations (temporal
constraints) of the start-to-start type with time lags sj−si ≥ δij , δij ∈ Z, defined
between the activities.

The structure of a project can be represented by an activity-on-node net-
work G = (V, A), where V is the set of activities and A is the set of precedence
relationships. The objective is to find a schedule of activities starting times
S = [s0, . . . , sn+1], where s0 = 0 (project always begins at time zero) and re-
source constraints are satisfied, such that the schedule duration T (S) = sn + 1
is minimized.

The RCPSP/max as an extension of the RCPSP belongs to the class of NP-
hard optimization problems [1], [5]. The objective is to find a makespan minimal
schedule that meets the constraints imposed by the precedence relations and the
limited resource availabilities.

3 Gene Expression Programming

Gene expression programming (GEP) as a kind of the genetic programming al-
gorithm was proposed by Candida Ferreira in [6]. The fundamental difference
between gene expression programming (GEP), genetic algorithms (GAs) and
genetic programming (GP) resides in the nature of the individuals. In GAs the
individuals are linear strings of fixed length (chromosomes); in GP the individu-
als are nonlinear entities of different sizes and shapes (parse trees); and in GEP
the individuals are encoded as linear strings of fixed length (the genome or chro-
mosomes) which are afterwords expressed as nonlinear entities of different sizes
and shapes (i.e., simple diagram representations or expression trees).

The genes in GEP have a special structure. The genome or chromosome con-
sists of a linear, symbolic string of fixed length composed of one or more genes.
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Each gene may be composed of two parts: the head and the tail or one part:
the tail only. The head contains symbols that represent both functions and ter-
minals, whereas the tail contains only terminals. GEP chromosomes are usually
composed of more than one gene of equal length but different classes (multigenic
chromosomes). For each problem, the number of genes, as well as the length
of the head, are chosen a priori. It is important, that the genes must be built
such that any modification made in them always results in a structurally correct
genes. There are several special gene operators proposed for GEP.

Using GEP for solving different combinatorial optimization problems was dis-
cussed in [6] and [7], also for scheduling problems: traveling salesperson problem
and task assignment problem. The main components of the GEP algorithm used
for solving combinatorial optimization problems include:

– gene structure,
– population of individuals,
– fitness function and selection rules,
– reproduction operators.

In the combinatorial optimization problems the multigenic chromosomes are
considered where each gene are composed of the tail only. In one chromosome
different classes of genes may be used. Genes are not subject to any additional
restrictions - a gene may be created as a set of any terminals combination from
the set fixed for the class to which the gene belongs.

The chromosomes which are parts of individuals from the initial population
are generated randomly. Most of them or even all may not represent correct
solutions. The next generation is formed basing on a simple elitism rule - the
best individual (or one of the best) from each generation is cloned into the next
generation.

In GEP it is important to use suitable fitness function to control the fitness
of solutions. To make the evolution efficient some different fitness functions were
proposed in [7]. In most cases they are based on the absolute or relative error.
For the scheduling problems, where minimal solution is the best, the function
fx = Tg − tx + 1 was proposed, where x is the individual, tx is the length
of the schedule and Tg is the the length of the largest schedule encoded in
the chromosomes of the current population. Individuals in GEP are selected
according to fitness by the roulette-wheel sampling [9].

To reproduce generations of individuals in GEP except a simple elitism and
the roulette-wheel sampling several class of operators are used. They are named
as: insertion, transposition, recombination and mutation. For combinatorial op-
timization problems two additional classes of operators were proposed: dele-
tion/insertion and permutation [7].

4 Using GEP for Solving RCPSP/max

The foundations of gene expression programming have been used to construct the
algorithm for solving RCPSP/max. A high level pseudocode of this algorithm,
denoted as GEP4RCPSPmax is presented in figure 1.
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GEP4RCPSPmax(GenerationNumber, PopulationSize)

{

Create initial population Pop of size PopulationSize

for(i=1; i<GenerationNumber; i++)

{

Pop.mutationConstruct(0.02)

Pop.mutationLC(0.08)

Pop.geneDelIns(0.04)

Pop.inversion(0.04)

Pop.inversion2g(0.02)

Pop.restrictedPermutation(0.06)

Pop.onePointRecombination(0.6)

Pop.twoPointRecombination(0.8)

Pop.nPointRecombination(0.8)

Pop.geneRecombination(0.5)

Remember the best individual

Create next generation

}

}

Fig. 1. The pseudocode of GEP4RCPSPmax algorithm

Each chromosome representing the schedule consists of n+2 genes. Genes rep-
resent project activities in sequence from 0 to n+1. In each gene the information
of activity starting time is coded as a non negative integer value. In each gene
values from the same interval cgep

j ∈ [0, h], j = 0, . . . , n + 1 are stored. To
calculate the real starting time for each activity the following formula is used:
cj = ce

j + cgep
j %(cl

j − ce
j), where ce

j is the earliest, and cl
j is the latest possible

starting time for the activity j.
To calculate the fitness the function described in section 3 is used. The initial

population of solution is generated randomly. Each individual is used to produce
a solution and for each individual the fitness function value is calculated. In
case of failure the fitness function is decreased by the duration of these activities
which caused the failure.

Individuals for the next generation are selected by the roulette-wheel sam-
pling with fitness as the criterion. The best individual from each generation is
cloned to the next. To evolve population some classic GEP operators are used
together with several of their modifications. The considered GEP operators are:
gene deletion/insertion (geneDelIns), inversion, restricted permutation, one and
two point recombination and gene recombination. The modified ones include:
two genes inversion, n point recombination and mutation. All considered op-
erators except mutationConstruct and mutationLC are used only once for one
chromosome in one generation. Descriptions of these operators follows:

– mutationConstruct - the RCPSP/max SGSU (serial generation scheme with
unscheduling) [11] algorithm is used for the randomly chosen individual;
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Fig. 2. Percentage of the maximum fitness for different probability values for operators
from the crossover class (on the left) and the mutation class (on the right)

– mutationLC - the new gene value is randomly selected from the fixed set of
values;

– geneDelIns - one individual is randomly selected from the population, the
gene from chromosome is selected randomly and moved in the new randomly
chosen place in the chromosome, the genes between the two selected places
are moved as well;

– inversion - one individual is randomly selected from the population, two
points from the chromosome are selected randomly and the sequence of genes
between them is inverted;

– inversion2g - inversion where the sequences of only two genes are used;
– restrictedPermutation - one individual is randomly selected from the popula-

tion, two genes from randomly selected positions of chromosome are replaced;
– onePointRecombination - in the considered case it is equivalent to the one

point crossover operator;
– twoPointRecombination - in the considered case it is equivalent to the two

point crossover operator;
– nPointRecombination - two individuals are randomly selected from the pop-

ulation, and the two childes are created in such a way that for each gene
position the gene from one randomly selected parent is allowed to the first
child and the gene from the other parent is allocated to the second child;

– geneRecombination - two genes from randomly selected position are swapped
between two randomly selected individuals from the population.

To evaluate the effectiveness of the approach several fine-tuning computational
experiments have been carried out. In the experiments three factors have been
investigated:

– effectiveness of the different operators,
– relationships between different operators,
– number of generations needed.
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Fig. 3. Percentage of mean fitness for different probability values for all operators from
the crossover class

In the fine-tuning experiments the considered operators have been divided
into two broad classes: the mutation class and the crossover class. The percent-
age of maximum fitness obtained for different values of probability of applying
various operators are shown in figure 2. The maximum fitness is understood as
fitness value achived by the best solution. The experiment results suggest that
the most effective operators for RCPSP/max are: nPointRecombination, two-
PointRecombination, mutationLC and restrictedPermutation. In the final com-
putational experiments higher probabilities for applying these operators have
been used.

The next experiment investigates relationships between operators. Actually,
relationships between the two considered classes have been considered, where
each operator from the same class has the same probability value. The operators
from mutation class have been investigated for probability values from 0.02 to
0.14, and operators from crossover class for probability values from 0.05 to 1.
Results as the mean and maximum percentage fitness are presented in figure 3
and 4. As it is shown in these figures, probability values that maximize the mean
fitness do not necessarily maximize the maximum fitness and vice versa. In the
final experiment probability values have been set at the level in the middle of
interval given by values maximizing the maximum fitness and the mean fitness
respectively. The values used in the proposed GEP4RCPSPmax algorithm are
shown in figure 1.

The last experiment within the fine-tuning stage aimed at investigating the
influence of the number of generation evolved. In most cases to produce the
best individual it has been enough to evolve 20 generations. However in case of
inversion, restrictedPermutation and mutationLC the best individuals have been
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Fig. 4. Percentage of maximal fitness for different probability values for all operators
from the crossover class

found after having evolved 80–90 generation. Thus in the final experiment the
number of generations has been set to 100.

5 Implementing GEP4RCPSPmax Algorithm as an
A-Team

To implement the proposed GEP algorithm as a team of agents the JABAT
platform described in details in [10] [3], and [4] has been used. JABAT is a
middleware allowing to design and implement A-Team architectures for solving
various combinatorial optimization problems. The problem-solving paradigm on
which the proposed system is based can be best defined as the population-based
approach.

JABAT produces solutions to combinatorial optimization problems using a set
of optimization agents, each representing a, so called, improvement algorithm.
Each improvement algorithm when supplied with a potential solution to the
problem at hand, tries to improve this solution. To escape getting trapped into
the local optimum an initial population of solutions (individuals) is generated
or constructed. Individuals forming an initial population are, at the following
computation stages, improved by independently acting agents, thus increasing
chances for reaching the global optimum.

JABAT may be used to implement the GEP4RCPSPmax algorithm in several
ways. In case described in this paper the GEP4RCPSPmax algorithm has been
implemented as an improvement algorithm embedded within the dedicated op-
timization agent. During computation several instances of this agent are used in
parallel to speed up the process of improving individuals stored in the common
memory.
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6 Computational Experiment Results

To validate the proposed approach computational experiment has been carried
out using benchmark instances of the RCPSP/max from PSPLIB [13]. The ex-
periment involved computation with a fixed number of optimization agents used
by the GEP4RCPSPmax algorithm. The respectie results are shown in table 1.
The discussed results have been obtained using 5 optimization agents. At the be-
ginning the population of solutions in the common memory of JABAT has been
generated randomly. During computation solutions from common memory are
drawn by optimization agents which try to improve their fitness through tun-
ing the GEP4RCPSPmax algorithm. Each solution drawn by an optimization
agent is incorporated into the population of 49 solutions generated internally
by this agent. Such population is then evolved in 100 generations. If the best

Table 1. Experiment results for agent-based GEP4RCPSPmax

Number of activities Mean RE % FS Mean CT

10 0.8 % 97.33 % 0.48 s
20 4.94 % 94.02 % 0.63 s
30 9.57 % 83.91 % 0.89 s

Table 2. Experiment results for ISES [2]

Number of activities Mean RE % FS Mean CT

10 0.99 % 100.00 % 0.71 s
20 4.99 % 100.00 % 4.48 s
30 10.37 % 100.00 % 22.68 s

Table 3. Experiment results for B&B [2]

Number of activities Mean RE % FS Mean CT

10 0.00 % 100.00 % –
20 4.29 % 100.00 % –
30 9.56 % 98.92 % –

Table 4. Experiment results for C-BEST [2]

Number of activities Mean RE % FS Mean CT

10 0.00 % 100.00 % –
20 3.97 % 100.00 % –
30 8.91 % 100.00 % –
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individual thus produced is an improvement as compared with the solution orig-
inally drown from the common memory then the improved solution replaces the
worst individual in the JABAT common memory.

The computation results have been evaluated in terms of the mean relative
error (Mean RE) calculated as the deviation from the lower bound, percent of
feasible solutions (% FS) and mean computation time (Mean CT). The maximum
computational time for one instance of the problem has, in all cases been not
longer then 1 second during computations on 2 PC’s with 2.0 GHz processors.

The results obtained by the proposed agent-based implementation of the
GEP4RCPSPmax algorithm can be compared with these reported in the litera-
ture. Such a comparison are presented in tables 2, 3, and 4. It can be observed
that the presented algorithm is efficient and the results are comparable. The
advantege of the presented approach seems to be computation times, although
they are not always easy to identify and there are some difficulties in compar-
ing them precisely. The disadvantege is rather low percent of feasible solutions
produced, which should be improved in future.

7 Conclusions

Experiment results show that the proposed agent-based GEP implementation
is an effective tool for solving resource-constrained project scheduling problems
with time lags. Presented results are comparable with the others known from
the literature. It is worth noticing that the computation times are very short,
even for more complex problem instances. Implementing such algorithm is quite
simple, but some effort is needed to select GEP operators during the fine-tuning
stage. The most important disadvantage of this algorithm is possible lack of
solutions in some cases. This can be partly eliminated by using more then one
instance of the algorithm.

Future research will concentrate on finding and testing more effective oper-
ators and eliminating a possibility of not finding a feasible solution at all. The
other direction of research would be to using GEP algorithm in cooperation
with other algorithms, like for instance local search, tabu search or simulated
annealing in one agent-based system.
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Abstract. Barkhausen noise is used in non-destructive testing of ferromagnetic 
materials. It has been shown to be sensitive to material properties but the 
reported results are more or less qualitative. The quantitative prediction of the 
material properties from the Barkhausen noise signal is challenging. In order to 
develop reliable models, the feature selection is critical. The feature selection 
method applied in this study utilizes genetic algorithms with cross-validation 
based objective function. Cross-validation is used because the amount of data is 
limited. The results show that genetic algorithms can be successfully applied to 
feature selection. The obtained results are reliable and rather consistent with the 
results obtained earlier. 

Keywords: Barkhausen noise, feature selection, genetic algorithms, cross-
validation. 

1   Introduction 

The Barkhausen noise (BN) measurement is an intriguing technique for non-
destructive testing of ferromagnetic materials. That is due to the fast response, low 
costs and rather simple equipment. The origin of the BN is in the movements of 
magnetic domain walls when the material is placed in a varying external magnetic 
field. As the walls move, they get trapped behind the pinning sites. The walls break 
away from the pinning sites when the external field strength exceeds a certain limit 
leading to a fast change in the magnetization of the material. [1] A typical BN signal 
is presented in Figure 1. 

BN has been studied widely and it has been noticed to be very sensitive to different 
material properties such as microstructure [2], residual stress [3],[4] and hardness [2]. 
However, the results from the studies are more or less qualitative and thus there is a 
need for quantitative prediction of material properties. A typical approach in the 
studies is that a single feature calculated from the BN signal is compared to the 
studied material property. Often the calculated feature is either the root mean square 
value (RMS) [1] or the BN energy [3], which is obtained by integrating the BN signal 
over one BN envelope (Figure 1). A more recent approach considers the BN signal as 
a function of the applied magnetic field [2],[4]. The resulting BN profile can be used 
to calculate features such as peak height, position and width.  
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Fig. 1. A typical BN signal in scaled units (above) and the applied magnetic field (below). The 
BN envelope is illustrated for the descending magnetic field. 

The quantitative prediction of the material properties from the BN signal is 
challenging due to the random nature of the phenomenon [4]. Also, some material 
properties are not measured which leads to unexplained variations in the calculated 
features. Furthermore, the reliable feature selection is essential concerning the 
prediction of material properties from the BN signal. Thus, this study concentrates on 
the automatic feature selection with genetic algorithms. Cross-validation is used in the 
objective function because only a limited amount of data is available and thus the 
probability of chance correlations is high [6]. The probability can be decreased by 
using cross-validation [6].  

The present authors have studied the quantitative prediction of residual stress from 
the BN signal [5]. The algorithm was separated into four steps: feature generation, 
grouping and selection and the model parameter identification. Most of the features 
were obtained from the BN profile. Also, some features were readily obtained from the 
measuring device and some were calculated directly from the signal. The feature 
generation resulted in a group of features from which the significant features were 
selected based on the correlations. The same set of features is used also in this study. [5]  

2   Methodology 

2.1   Feature Selection 

The feature selection requires three components: the search algorithm, the 
mathematical modelling procedure and the objective function [6]. The mathematical 
modelling procedure can be for example multivariable linear regression (MLR) [7],[8], 
partial least squares regression (PLSR) [9], principal component regression (PCR) 
[10],[11] or artificial neural networks (ANN) [12].  
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The objective function is critical to obtain solutions with desired properties such as 
high predictivity [6]. The objective function is also critical in avoiding the overfitting 
of the model. Traditionally, either correlation or prediction error based objective 
functions have been used. However, they have been shown to be biased and thus are 
not to be used in variable selection. A better objective function is based on cross-
validation. [8] 

The simplest method for cross-validation is data splitting, where the data is split 
into training and validation sets. The data can be split chronologically or randomly. 
Data splitting is a good option for cross-validation if there is an excess amount of data 
available. However, if the amount of data is limited, the data splitting reduces the 
amount of data greatly for both the training and the validation purposes. In such cases, 
it is advantageous to use resampling methods for cross-validation. [13] 

In resampling methods, all the data is used for training and validation of the model. 
Leave-one-out cross-validation (LOO CV) extracts one data point for validation and 
uses the rest of the data for training. The same procedure is repeated until all the data 
points are used for validation to obtain an estimate of the averaged prediction error. 
[8] In k-fold cross-validation, the data is separated randomly to K subsets of almost 
equal sizes. One of the subsets is extracted for validation and the others are used for 
training. The procedure is repeated K times to obtain an estimate of the average 
prediction error. The k-fold cross-validation is considered to give better results in 
variable selection than the LOO CV method. [8] For example, [9] used k-fold cross-
validation method for variable selection with good results. 

There are many reported search algorithms for the feature selection. Stepwise 
forward and backward selections are simple methods available for the feature 
selection. In the forward selection, one variable is added to the model at a time. 
Similarly, one variable at a time is removed from the model in the backward 
selection. [12] The procedure is continued until the addition or removal of features 
does not result in an increase in the prediction accuracy. [12] used the forward 
selection followed by the backward elimination to select the variables for the ANN 
model. In [10], they used the backward selection as a part of their algorithm aiming 
for robust variable selection for the PLSR model. However, the drawback of these 
simple methods is that the search ends when the algorithm finds a minimum being it 
local or global [6]. 

Instead of the simple search methods, some more advanced methods have been 
proposed, such as genetic algorithms. Genetic algorithms was used by [10] and [11] 
for selecting the significant components for the PCR model. In [11], they used an 
internal validation set as a part of the objective function to avoid overfitting. The 
Durbin-Watson criterion and the penalty constant for the number of components were 
used by [10] to obtain robust feature sets for the modelling. Cross-validation was used 
in the objective function by [7] to find the significant variables for an MLR model.  

2.2   Multivariable Linear Regression Models 

The multivariable linear regression model is used in this study. The equation of the 
MLR model is [13] 

.eXby +=  (1) 
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Above, y is the output variable matrix (N×M), X is the input variable matrix (N×P), b 
is the matrix of the regression coefficients (parameters) of the model (P×M) and e is 
the matrix of the modelling residuals (N×M). N is the number of data points, M is the 
number of output variables and P is the number of features. The model equation given 
above is linear but the model may also include nonlinear terms. The parameters are 
typically defined with the ordinary least squares method if the model is linear 
concerning the fitting parameters [13].  

2.3   Genetic Algorithms 

Genetic algorithm is an optimization method inspired by the evolution where genetic 
operators steer the population towards the global optimum. The solution to the 
optimization problem is coded into the chromosomes which compose the population. 
Binary or real-valued coding can be used. In the binary coding, the information is 
stored as binary digits, while real values are used with the real-valued coding. The 
information in the chromosomes is decoded and passed through an objective function 
to obtain the fitness values for each chromosome. The fitness value determines the 
suitability of the solution to the problem. [14] 

Genetic operators, reproduction and mutation, regulate the evolution of the 
population. In reproduction, selected parents are crossed to create offspring having 
properties from both parents. The parent selection methods favor the chromosomes 
with better fitness values and thus the better chromosomes are more likely to 
reproduce. Such a procedure steers the population towards the better solutions. Typical 
parent selection methods are tournament and roulette wheel methods. Random changes 
are generated to the population through mutation, which prevents the population from 
converging to local optima. To obtain desired characteristics for the evolution of the 
population, probabilities are defined for crossing and mutation. Many methods are 
available for crossing and mutation but those are not reported here. Along with the 
above mentioned mechanisms, also elitism can be used in generating the new 
population. In elitism, a fraction of the best chromosomes are directly moved to the 
new population. Thus the best solutions never disappear from the population. [14] 

3   Feature Selection Algorithm 

3.1   Applied Genetic Algorithm 

The applied genetic algorithm uses binary coding with one bit per each variable. The 
information in the chromosomes is interpreted as follows: if the bit is 0, the feature is 
not selected and if the bit is 1, the feature is selected. The evolution of the population 
is regulated by the probabilities defined for crossing (pc) and mutation (pm). New 
populations are generated until the predefined number of generations (ngen) is reached. 
It is also possible to stop the algorithm when the solution have converged [14]. 

The parents for the crossing are determined by the tournament selection method 
with the number of candidates being 2 in each tournament as suggested in [14]. The 
winner of the tournament (the most suitable chromosome) is selected as a parent. 
After the parent selection, a random number is generated and if it is higher than the 
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crossing probability, the selected parents are crossed and the generated offspring are 
placed into the new population. Otherwise the parents are placed into the new 
population. The crossing utilizes the one-splitting point method where the splitting 
point is defined randomly and the parents' chromosome segments after the splitting 
point are switched. [14] The crossing procedure is continued until the predefined 
population size (npop) is reached. In the mutation, each bit in the population is 
subjected to a possible mutation. A random number is generated for each of the bits 
and if it is higher than the mutation probability the bit is changed. The final step in 
generating the new population is to apply elitism as the worst chromosome of the new 
population is replaced by the best chromosome of the previous population. This 
prevents the best solution from disappearing from the population through the genetic 
operations. The parameters for the applied genetic algorithm in this study are: npop = 
200, ngen = 20, pc = 0.9 and pm = 0.02. 

Even though a genetic algorithm is likely to find the global optimum, there is a 
chance that the algorithm finds only a local optimum during the predefined number of 
generations (ngen). That is because the evolution of the population depends on the 
initial population which is generated randomly. Thus the optimization with the 
genetic algorithm is repeated 50 times in this study. Based on the previous study by 
the present authors, we expect that the suitable number of features is rather small [5]. 
Thus the initial population is generated so that 90 % of the bits are 0 and only 10 % 
are 1. 

3.2   The Objective Function 

The objective function utilizes the MLR model which predicts the output variable 
based on the calculated features from the BN signal. The MLR model and its least 
squares solution is presented in Section 2.1. The prediction error of the MLR model is 
evaluated through the k-fold cross-validation procedure. The subset extracted for 
validation is denoted by Xk while the remaining training set is denoted by X-k. In the k-
fold procedure, each of the subsets is used for the validation resulting in K submodels 
with their parameter vectors denoted by b-1, …, b-k, … b-K. The prediction errors for 
the validation sets are computed from [9] 

.b̂Xyê kkkk −−=  (2) 

After all the subsets are used for the validation, the prediction errors are collected in 
one vector, ê. Then, the sum of the squared error of prediction (SSEP) is given by 

.êêSSEP T=  (3) 

As mentioned earlier, equation 3 is not a good objective function for the variable 
selection. Thus an additional penalty term is added to form the final objective 
function [8] 

.pSSEPJ λ×=  (4) 

Above, λ is the penalty constant and p is the number of input variables in the model. 
In this study, 10-fold cross-validation is used (K = 10) and the penalty constant is set 
to one (λ = 1). Even though the identification/validation procedure is repeated K times 
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with different validation sets, the value of the objective function still depends strongly 
on the randomly created subsets [15]. To decrease the significance of the subset 
generation, the k-fold algorithm is repeated 11 times and the median of the SSEP 
values is calculated and used in the objective function. 

4   Results and Discussion 

4.1   Used Data Sets 

The data used in this study is the same as used before by the present authors. Thus the 
data acquisition and the feature generation are not reported here but can be found 
from [5]. The data set includes 51 features and 115 data points. Before the feature 
selection, the features are normalized. 

4.2   The Suitable Number of Features 

As described in the previous section, the optimizations with the genetic algorithm are 
repeated 50 times. The number of features in the best solutions varies between 4 and 
7. The majority of the best results include 4 variables as shown in Figure 2a. This 
indicates that the suitable number of features is 4. Figure 2b shows the average value 
of the objective function and the average SSEP as a function of the number of 
features. The values of the objective function tend to increase and the values of the 
SSEP tend to decrease with increasing number of features. The decrease of the 
prediction error is expected based on the reported results [11]. The question is that if 
the additional features are significant or insignificant. The addition of insignificant 
features to the model decreases the prediction accuracy for the future observations [6]. 
In other words, the overfitted models predict the data set used for the model 
identification well but fail in predictions with new data sets.  
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Fig. 2. a) The number of features obtained in 50 optimizations with the genetic algorithm. The 
majority of the optimizations resulted in a set including 4 features. b) The average SSEP and J 
as a function of the number of features in the best solution. The average SSEP tends to decrease 
and the average J tends to increase with increasing number of features.  
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4.3   The Most Significant Features 

The examination of the significance of the features is started by finding the best 
feature sets corresponding to each number of features (p = 4-7). For each set, p 
models are identified by removing one feature at a time from the feature set. The 
identified models are then evaluated by calculating the value of the objective function 
and the relative change in the SSEP. The relative changes in the SSEP for the 
identified models are presented in Table 1. Table 1 shows that with the feature set 
including 4 features, all the features are significant, because removing any of the 
features leads to at least a 15 % increase in the SSEP. Table 1 shows also that the 
feature sets having more than 4 features all include at least one feature that is not very 
significant. This indicates that the suitable number of features is 4 as already indicated 
by the results given in Figure 2. 

Table 1. The significance of single variables to the sum of squared error of prediction 

Removed feature x1 x13 x16 x37    
Change of SSEP (%) 22.5 24.2 32.2 15.4    
Removed feature x15 x22 x33 x37 x45   
Change of SSEP (%) 28.3 4.3 12.7 20.5 28.3   
Removed feature x1 x13 x16 x26 x46 x47  
Change of SSEP(%) 28.8 26.9 40.6 7.4 9.8 11.5  
Removed feature x1 x13 x16 x22 x33 x37 x45 
Change of SSEP (%) 5.6 8.0 11.7 1.9 3.9 8.9 5.6 

 

The feature set with 4 features given in Table 1 is the set including the most 
significant features. From the 33 optimizations giving the 4 feature set as the best 
solution, 32 give that set as the solution. Based on this and the evidence given in 
Figure 2 and Table 1, it can be concluded that in this case, the features x1, x13, x16 and 
x37 are to be used as the input variables in the modelling of the residual stress. 

4.4   Comparison of the Results with the Earlier Results 

To our knowledge, there exist no similar studies concerning the data-based modelling 
of residual stress from the BN measurements. Thus the obtained results are only 
compared to the results presented in [5] by the present authors. The comparison 
shows that the selection algorithm discussed in this paper gives more reliable results. 
The algorithm utilized in the previous study used only correlations to determine the 
significant features and resulted in the feature set having 6 features. As showed in this 
study, the set of 6 features includes insignificant features which decreases the 
prediction accuracy for the future predictions. Furthermore, it has been stated that 
correlation-based feature selection with no cross-validation gives biased results [8]. 

The results of the earlier and this study are somewhat consistent. Feature x1 was 
also selected in the earlier study and is the RMS value of the BN signal corresponding 
to the overall Barkhausen activity [5]. Feature x13  is the coercivity which can be 
related to the peak position of the BN profile [4]. The peak position was selected in 
the earlier study and corresponds to the field strength leading to the maximum 
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Barkhausen activity [5]. Feature x37 is a fitting parameter of the trapezoidal function 
and was also used in the earlier study [5]. A new feature found by the selection 
algorithm used in this study is feature x13 which is the loop area obtained directly 
from the measuring device. In this study, no features corresponding to the BN profile 
are selected, while the earlier study used two such features [5].  

4.5   The Suitability of the Objective Function 

The objective function used in this study utilizes k-fold cross-validation and the 
penalty constant for the number of features. Considering the obtained results (Figure 2 
and Table 1), it can be said that the used objective function is suitable for the feature 
selection. Similar results have been reported also earlier with similar objective 
functions [8]. The use of k-fold cross-validation ensures that the results are reliable 
and that the features with possible chance correlations are not included in the model. 
Also, the possible influence of the training/validation data generation [15] is 
minimized by using the median value from the 11 repetitions of the k-fold algorithm. 
The need for cross-validation when applying the squared error based objective 
functions has also been shown by other studies [8],[9]. Furthermore, the penalty 
added for the number of features regulates the optimization in the way that only 
significant features are obtained from the feature selection. 

4.6   The Applicability of Genetic Algorithms to Variable Selection 

This study shows that genetic algorithms can be successfully applied to the feature 
selection problem. However, Figure 2 shows that the formulation of the objective 
function is critical considering the results. With no penalty constant, there would have 
been a much bigger set of suitable features. Probably the variation in the results would 
have also been greater, because the prediction accuracy depends not only on the 
significance of the features but also on the number of features as shown in Figure 2. 
Thus it is possible to obtain the same prediction accuracy with a few significant 
features or with a greater amount of insignificant features.  

The drawback of genetic algorithms is that the calculations are rather time-
consuming. However, the results from genetic algorithms have been compared to the 
results obtained through the exhaustive search [10]. In the exhaustive search 
procedure, all the possible feature combinations are tested. The results are thus very 
good but the method is computationally very expensive. It has been shown that the 
results obtained with genetic algorithms are in good agreement with the results from 
the exhaustive search [10]. Furthermore, the time-consumption of the calculations can 
be decreased by, for example, an early stopping criterion, which has been used by 
[11]. Also, the objective function may utilize the stepwise search algorithms to 
accelerate the convergence of the results [7]. In such an approach, the solution in the 
chromosome is considered as an initial guess for the simple search algorithms. 
Another possible way to decrease the computational burden is to generate the initial 
population through the stepwise search procedures. In such a case, different data sets 
must be used in the initialization of population to guarantee the diversity of the 
population. 
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5   Conclusions 

Barkhausen noise is used in the non-destructive testing of ferromagnetic materials. 
The quantitative prediction of material properties from the BN signal is challenging 
and thus the reliable feature selection methods are required to develop robust models. 
In this study, the binary-coded genetic algorithm with the cross-validation based 
objective function is used in the feature selection from the data set obtained through 
the BN measurements. The k-fold cross-validation procedure is used in the objective 
function to avoid misleading results originating from the chance correlations due to 
the limited amount of data. The objective function also utilizes a MLR model. The 
cross-validation procedure is repeated several times to avoid the influence of the 
training/validation data generation to the results. Even though genetic algorithms are 
likely to find the global optimum, the optimizations are repeated 50 times. The results 
from the optimizations clearly showed that the suitable number of features in this 
study is 4. The most significant features were also found with high confidence. Those 
features were the RMS value of the BN signal, coercivity, the fitting parameter of the 
trapezoidal function and the loop area obtained from the measuring device. The 
results obtained in this study are somewhat consistent with the results obtained earlier 
by the present authors.  

As a conclusion, it can be said that the used objective function performed well. All 
the selected features were significant according to the validation carried out by 
identifying the models without each of the selected features. Also, similar models 
were identified for the feature sets with more features convincing that 4 features are to 
be used. This study also showed that genetic algorithms can be applied successfully to 
the feature selection problem. However, the results depend strongly on the used 
objective function. 
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Abstract. We propose a statistical methodology for comparing the per-
formance of evolutionary algorithms that iteratively generate candidate
optima over the course of many generations. Performance data are an-
alyzed using multiple hypothesis testing to compare competing algo-
rithms. Such comparisons may be drawn for general performance metrics
of any iterative evolutionary algorithm with any data distribution. We
also propose a data reduction technique to reduce computational costs.

Keywords: Bootstrap, evolutionary algorithms, multiple hypothesis
testing, optimization, performance comparison, statistics, time series.

1 Introduction

Many optimization procedures iteratively estimate a function’s global optimum
via a stochastic process over the course of many generations. The algorithm’s
quality may be summarized in terms of a performance curve such as the average
or median result as a function of generation. [11] establish a general frame-
work for the statistical performance comparison of EAs at a single generation.
We seek to extend this methodology to compare EAs’ performance curves over
a range of generations. The proposed comparison establishes an experimental
framework that analyzes sampled data using multiple hypothesis testing. Previ-
ous research into the design and comparison of EAs has considered a variety of
approaches. Because [13] have shown that no single optimization algorithm can
best solve all problems, we typically select among a number of candidate algo-
rithms in particular settings. [2] compares EAs through an analysis of variance
(ANOVA) study of computational parameters such as the mutation probability
and their effect on performance. Similarly, [10] and [1] apply ANOVA and [7]
a generalized linear model to aid in the design of effective EAs in particular con-
texts. However, these techniques may only be applied to the study of particular
measures of performance under specific distributional assumptions. By contrast,
[11] establish a general procedure for the performance comparison of evolution-
ary algorithms without these assumptions. Within this framework, statistical
sampling is used to collect performance data for each algorithm, and a multiple
hypothesis testing procedure [3, 4] based on bootstrap resampling [5] of the data
is used to identify significant performance differences. This approach allows the
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user to compare the performance of two algorithms at a single generation for
general data generating distributions [9] and performance measures. Here, we
seek to adapt the procedure of [11] to compare EA performance over the course
of many generations. Additionally, we present a data reduction technique that
estimates the test results in a more computationally feasible manner. We also
provide an illustrative case study that seeks to compare the mean performance
of four candidate EAs.

2 Time Series Data

An iterative optimization algorithm a produces at each generation an estimate
of the global optimum for a function f : RD → R with D ∈ Z+. If we allow a to
run for G ∈ Z+ generations, then at each generation g ∈ {1, . . . , G}, the algo-
rithm produces a point estimate Xag = (Xag1, . . . , XagD) of the global optimum
and a corresponding fitness value f(Xag). The point estimate may be considered
cumulatively optimal at generation g if it better optimizes f than all previous
estimates. Many EAs employ an elitist selection mechanism [6] that retains the
cumulatively optimal estimate until it is improved upon at a later generation.
For algorithms that employ an elitist selection mechanism, the algorithm’s iter-
ative estimate of the function f ’s global optimum at generation g +1 fundamen-
tally depends upon that obtained at generation g; indeed, if the optimization
procedure cannot improve upon the previous estimate, both quantities are the
same. Because each generational result depends upon the previous generation’s
estimate, the fitness values may be viewed as a highly dependent G-dimensional
time series data structure Ya = (Ya1, . . . , YaG) = (f(Xa1), . . . , f(XaG)). Suppose
we wish to study the performance of EAs in an algorithm set A, each of which
will run for G generations. In order to compare these competing procedures, the
researcher must designate a performance curve μ (Ya) for each algorithm a ∈ A
at each generation g ∈ {1, . . . , G}. This G-dimensional parameter is a function
of the a’s data generating distribution and may be selected according to the
researcher’s preferences. While parameters such as the trimmed mean, median,
or percentiles are all salient in particular contexts, a typical choice for the per-
formance curve is the G-dimensional vector-wise expected (mean) value of the
algorithm’s estimate of the global optimum as a function of generation:

μa ≡ μ (Ya) ≡ E [Yag] ; a ∈ A; g ∈ {1, . . . , G}. (1)

Because EAs follow a complex stochastic process, we seek to estimate the perfor-
mance curve based on sampled data. Collecting data from na ∈ Z+ independent,
identically distributed trials of algorithm a results in na time series observations
Yia = (Yia1, . . . , YiaG), i ∈ {1, . . . , na}. Using the data collected, we can esti-
mate a’s performance according to a statistic μ̂ (Ya). For the parameter (1), the
sample (empirical) mean is used:

μ̂a ≡ μ̂ (Ya) =

(
1
na

na∑
i=1

Yia1, . . . ,
1
na

na∑
i=1

YiaG

)
; a ∈ A. (2)
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[11] establish a general framework for performance comparison that may consider
either an algorithm’s relative improvement of its initial performance given an
initial candidate solution or the absolute performance obtained from sampling an
initial value on each trial. In the latter setting, a performance comparison of two
algorithms at a single generation is determined in the test of a single hypothesis.
In this work, we will adopt the convention of testing a single hypothesis per
generation.

3 Performance Comparison

The performance curve μa (1) can be estimated according to μ̂a (2), and com-
peting algorithms may be ranked at each generation. As in [11], a multiple
hypothesis testing procedure [3] is appropriate for performance comparison. For
each pair of algorithms a, b ∈ A, the researcher must establish null hypothe-
ses that define a difference in performance curves at each generation. Though
other parameters may be employed, a typical set of hypotheses is the equality
of means (1):

H : [μ (Ya1)− μ (Yb1) = 0; . . . , μ (YaG)− μ (YbG) = 0] ; a, b ∈ A; a = b. (3)

Depending upon the researcher’s preferences, asymptotic performance (e.g. the
performance in the last 100 generations) may be the most meaningful measure.
In this case, the structure of (3) may be altered to include only the salient
generation intervals. In order to test the null hypotheses, we need to estimate
the standard error of the observed performance difference at each generation,
which relies upon the following estimate of the variance vector σ2(Ya):

σ̂2 (Ya) =

(
1
na

na∑
i=1

[Yia1 − μ̂(Ya1)]
2
, . . . ,

1
na

na∑
i=1

[YiaG − μ̂(YaG)]2
)

; a ∈ A. (4)

It should be noted that the bootstrap estimate of variance in (4) divides by
the sample size na [5], whereas others prefer the unbiased estimate that instead
divides by na−1. This latter estimate may be substituted at the user’s discretion
for large sample sizes because these quantities differ by only a small amount.
Using the statistics (2) and the estimated variances (4), the hypotheses (3) may
be tested using two sample t -statistics:

t =

⎛⎝ μ̂ (Ya1)− μ̂ (Yb1)√
σ̂2(Ya1)

na
+ σ̂2(Yb1)

nb

, . . . ,
μ̂ (YaG)− μ̂ (YbG)√

σ̂2(YaG)
na

+ σ̂2(YbG)
nb

⎞⎠ ; a, b ∈ A, a = b. (5)

If other performance curves are used in place of the expected value, the above
test statistics may be modified with only small changes. In particular, μa and
μb may be estimated with empirical estimates μ̂a and μ̂b, which are obtained
by applying the specified performance function to the observed data. Similarly,
the denominator is given by the standard error of the performance difference
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μ̂a− μ̂b, which may be derived analytically or estimated using the bootstrap [5].
The utility of the general framework of [11] is that the comparison methodology
is otherwise identical once the test statistics are specified.

The remainder of the hypothesis testing procedure is otherwise identical to
that proposed in [11]. A bootstrap method is used to estimate the joint distribu-
tion of the test statistics (5), and a multiple testing procedure (MTP) is selected
to control a desired Type I Error Rate at level α ∈ (0, 1). Because time series
data structures produce a highly dependent null hypothesis structure, a joint
MTP is necessary; a marginal MTP that tests each hypothesis independently of
all others is not appropriate in this case [3]. Although the choice of the Type
I Error Rate is left to the researcher, using the False Discovery Rate (FDR)
may provide results that can be easily interpreted within a scientific context.
The FDR Type I Error Rate is defined as the mean proportion of false posi-
tives among the rejected hypotheses. By controlling an MTP at FDR level α, we
can ensure with probability 1 − α that the average proportion of false positives
is α, which provides the user with a measure of reliability for the results. An
MTP that controls the FDR at level α ensures that an average proportion of
1− α of the rejected hypotheses reflect true performance differences. Addition-
ally, if FDR results were collected for a larger number of generations G∗, then we
could also expect a proportion of 1 − α of the rejected hypotheses in the range
[G + 1, . . . , G∗] to be reliable.

MTPs may be summarized in terms of adjusted p-values and confidence region
plots. For each hypothesis, the adjusted p-value is the minimum value of α
necessary to reject the hypothesis. Confidence regions depict a plausible range of
values for the true performance difference. At each generation, we reject the null
hypothesis (3) if and only if the confidence region does not contain zero. Because
confidence regions are a function of the data, they either contain or do not contain
the true performance difference at each generation; however, if the comparison
experiment is repeated a large number of times, a proportion of 1 − α of all
confidence regions produced would contain the true performance difference curve.
Estimated confidence regions are currently available for bootstrap-based MTPs
controlling the Family-Wise Error Rate (FWER), which is defined as P (V > 0),
and the generalized Family-Wise Error Rate (gFWER) P (V > k), k ∈ Z+ [12].
However, deriving FDR confidence regions is currently an active area of research.

Although the bootstrap is an effective tool in hypothesis testing applications,
this technique is computationally intensive and may require many resamplings
(i.e. B ≥ 10000) to produce accurate results. Because of the inherent dependence
of time series data structures, we propose limiting the testing to data collected
at regular generational intervals. Although less comprehensive than testing at
every generation, the computational savings will typically outweigh the small
loss in accuracy. In this setting, confidence regions would be interpolated from
the limited test results. In the case of a performance curve comparison based on
interval sampling, the main question of interest is how large to set the interval
size h. In practice, the researcher may choose among candidate values of h in
terms of the relative improvement in a metric such as the mean squared error.
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4 Example: A Performance Curve Comparison

To illustrate the proposed methodology, we analyzed performance curve data
from several competing EAs [6] for the following variant of Ackley’s function:

f = −c1 exp

⎛⎝−c2

√√√√ 1
D

D∑
d=1

X2
d

⎞⎠− exp

(
1
D

D∑
d=1

cos (c3Xd)

)
+ c1 + exp(1) (6)

with the following parameters supplied for this example:

c1 = 20; c2 = 0.2; c3 = 2π; D = 10; Xd ∈ (−20, 20), d ∈ {1, . . . , D}.
Minimizing Ackley’s function (6) is a canonical optimization problem because
it has a large number of local optima and a known solution. An EA described
in [11] was applied to this problem in a study to select among four candidate
mutation rates. The four corresponding algorithms will be indexed by the set
A = {2, 4, 6, 8} whose elements respectively denote the gene-wise percentage
mutation rate. These EAs were identical in all other aspects. We chose the
expected value μ(Ya) as our performance curve (1). A total of na = 100 trials
of each algorithm a ∈ A were conducted to collect time series data and estimate
μ(Ya) with (2). Each trial was conducted for a total of G = 10000 generations
with data recorded at each generation. The sample mean performance curve for
each algorithm is plotted in Figure 1. On average, it appears that EA 4 best
minimizes the Ackley function (6) for approximately the first 2000 generations,
and it is thereafter eclipsed by EA 6, which appears to outperform all other
procedures for the duration of the trials. In order to substantiate the validity
of these claims, we conducted pairwise comparisons of the algorithms using the
procedure of Section 3.

We tested each pair of algorithms a, b ∈ A; a = b for a difference in mean
performance at each generation. The null hypothesis (3) states that there exists
no difference in expected performance between EAs a and b at each generation.
We tested this null hypothesis using the boostrap based SSMaxT [3] FWER-
controlling MTP and also using the FDR Conservative MTP, both of which
controlled their respective Type I Error Rates at level α = 0.05 with B = 10000
bootstrap re-samplings. The results of these tests are contained in Table 1. The
Rejections column of Table 1 shows the number of rejected hypotheses in the
pairwise test. Because the null hypothesis (3) has a two-sided alternative, a re-
jection may correspond to a significant performance difference in either direction
and may be determined by examining the sample mean performance curve plot
of Figure 1. The pairwise FDR Conservative tests of μ2−μ4, μ4−μ8, and μ6−μ8
all result in significant performance differences at all G = 10000 generations. As
shown in Figure 1, EA 4 appears to better optimize (6) compared with EAs 2
and 8, and because all G hypotheses were rejected, we conclude that EA 4 per-
forms significantly better than EAs 2 and 8 for the duration of this experiment.
Likewise, we also conclude that EA 6 significantly outperforms EA 8 across all
generations studied.



228 D. Shilane, J. Martikainen, and S.J. Ovaska

0 2000 4000 6000 8000 10000

10
8

6
4

2
0

2

Generation

F
itn

es
s 

(lo
g 

sc
al

e)

Estimated Performance Curve of Ackley EAs, Log Scale

EA 8

EA 2

EA 4

EA 6

EA 2
EA 4
EA 6
EA 8

Fig. 1. Sample mean fitness (log scale) as a function of generation in 4 EAs seeking to
optimize the Ackley function (6). Each plot is an estimate of the EA’s expected value
performance curve at each generation based upon na = 100 trials.

Table 1. Summary results for pairwise performance curve comparisons of four EAs
seeking to optimize the Ackley function (6) based upon multiple hypothesis testing of
the null hypothesis (3) at each generation g ∈ {1, . . . , G}

Null TI Error MTP Rejections MIG Max Adjp Preferred EA

μ2 − μ4 = 0 FWER SSMaxT 9952 261 - 4
μ2 − μ4 = 0 FDR Conserv. 10000 0 0.0256 4
μ2 − μ6 = 0 FWER SSMaxT 8707 1394 - 6
μ2 − μ6 = 0 FDR Conserv. 8824 1243 - 6
μ2 − μ8 = 0 FWER SSMaxT 8159 10000 - 2
μ2 − μ8 = 0 FDR Conserv. 8272 10000 - 2
μ4 − μ6 = 0 FWER SSMaxT 8960 2285 - 6
μ4 − μ6 = 0 FDR Conserv. 9004 2285 - 6
μ4 − μ8 = 0 FWER SSMaxT 9984 29 - 4
μ4 − μ8 = 0 FDR Conserv. 10000 0 0.005 4
μ6 − μ8 = 0 FWER SSMaxT 9989 22 - 6
μ6 − μ8 = 0 FDR Conserv. 10000 0 0.005 6

For each pairwise comparison, the maximum insignificant generation (MIG)
column of Table 1 indicates that last generation at which the null hypothesis is
not rejected. Using these values and the mean performance plot in Figure 1, we
can draw conclusions about the range at which particular algorithms outperform
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others. For instance, EA 2 outperforms EA 8 over much of the observed spec-
trum, which results in 8159 rejections for the FWER SSMaxT test. However,
the null hypothesis is not rejected at the 10000th generation, meaning that these
EAs’s performances do not differ significantly at the final generation. Moreover,
we see that EA 6 creates significant separation in performance from EA 2 for all
generations after the 1394th generation in the FWER SSMaxT test, and like-
wise EA 6 significantly outperforms EA 4 at all generations after 2285. For the
three pairwise performance comparisons that resulted in rejections of all G null
hypotheses, we have displayed the maximum adjusted p-value (Max Adjp) in
Table 1 of the G simultaneous tests. In the case of the FDR Conservative tests
of μ4 − μ8 and μ6 − μ8, all hypotheses were rejected with p ≤ 0.005. Finally,
the Preferred EA column of Table 1 displays a qualitative overall judgment
of the preferred algorithm. As a heuristic standard, we choose to prefer an algo-
rithm if it performs significantly better than another for at least 75 percent of
the generations sampled. The comparisons of EAs 2 and 4 to EA 6 are also of
interest. In both tests, EA 6 performs significantly worse than the others at early
generations but later overtakes both algorithms. In each of these comparisons,
EA 6 significantly outperforms the competing algorithm for the duration of the
final 7500 generations.

These observations may be further substantiated in the depiction of FWER
0.95 confidence regions for each of the pairwise SSMaxT tests. In each of the
comparisons, the null hypothesis is rejected at generation g if and only if the
confidence region does not contain the value zero at that generation. When sig-
nificant performance differences exist, the confidence region will lie below zero
if the first algorithm better minimizes (6), and this region will lie above zero if
the second algorithm performs significantly better. For a maximization problem,
the situation is reversed. As an example, the 95% confidence region for the test
of μ4 − μ6 = 0 is depicted in Figure 2 with attention restricted to generations
greater than 1000 in order to provide a magnified view. These results indicate
that EA 4 significantly outperforms EA 6 in the early generations. Somewhat
before the 2000th generation, the upper bound of the confidence region crosses
the line y = 0, and the performance difference between the two algorithms is
insignificant until the lower bound crosses this line somewhat after the 2000th
generation. EA 6 significantly outperforms EA 4 for the remainder of the gen-
erations considered because the entire confidence region is above the line y = 0.
Figure 2 also contains estimated confidence regions produced by restricting com-
parison to data collected at every 100th generation. The full confidence region
was estimated using a linear interpolation at the missing generational values.
Qualitatively, the estimated confidence regions approximate the full data re-
gions reasonably well. Furthermore, the computational time required to perform
all six pairwise tests of the 4 algorithms studied was reduced from approximately
two days to 15 minutes using the multtest package [8] of the R statistical pro-
gramming language on a server with a 2.4 GHz processor and approximately 3.4
GB of RAM. In this application, it is reasonable to conclude that the remarkable
computational savings justifies the small loss in accuracy of the confidence region
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Fig. 2. 0.95 confidence region for the test of μ4 − μ6 with attention restricted to gen-
erations after 1000 to provide enhanced magnification

plots and test results. The pairwise comparisons suggest clear performance dif-
ferences between the EAs over many of the G = 10000 generations studied. EA
4 significantly outperforms EAs 2 and 8 at nearly all generations. EA 4 initially
outperforms EA 6 by a significant margin but is eventually overtaken. Table
2 displays conclusions drawn from a closer inspection of the FDR comparison
between EAs 4 and 6 at a variety of generational intervals. After frequent lead
changes in the first 68 generations, EA 4 outperformed EA 6 through generation
1862. However, this performance difference became insignificant at generation
1548. Likewise, EA 6 insignificantly outperformed EA 4 from generation 1863
to generation 2285 and significantly outperformed EA 4 thereafter. We conclude
that EA 4 is preferred in most of the first 1547 generations, EA 6 performs best
after generation 2285, and the EAs are approximately equal in between.

The proposed methodology offers a convenient and flexible framework for
evaluating algorithmic performance and designing adaptive optimization strate-
gies. The researcher may choose any desired performance curve and does not
need to rely upon distributional assumptions for the data collected. These tech-
niques may be applied to compare arbitrary sets of stochastic algorithms in any
optimization setting. Stochastic algorithms may be compared to deterministic
procedures with only small changes to the hypothesis structure (3) and test
statistics (5). Furthermore, the proposed data reduction technique provides an
avenue for researchers to estimate the results of a full generational analysis in
a more computationally tractable manner. Performance comparison is largely a
retrospective procedure for validating experimental results. As such, it is not de-
signed to seek out the best candidate optimum for the problem at hand; indeed,
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Table 2. A comparison of EAs 4 and 6 at a variety of generational intervals in the
Ackley function case study. The preferred EA is selected by mean performance at each
generation, and this performance is classified as either significant or insignificant based
upon the results of the FDR multiple hypothesis test of equality in means.

Generation Interval Preferred EA Difference

1 − 68 Either Insignificant
69 − 127 4 Insignificant

128 − 1128 4 Significant
1129 − 1466 4 Mixed
1467 − 1547 4 Significant
1548 − 1862 4 Insignificant
1863 − 2285 6 Insignificant
2286 − 10000 6 Significant

running any one of the four candidates of Section 4 for all the computational time
allotted to our comparison would certainly have produced a better result than
any obtained in our study. However, statistical performance comparison may
be especially helpful in applications that are sufficiently similar to well-studied
examples and may aid the design of heuristic procedures in many settings.
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Abstract. The paper presents a novel identification method, which makes use 
of genetic programming for concomitant flexible selection of models structure 
and parameters. The case of nonlinear models, linear in parameters is 
addressed. To increase the convergence speed, the proposed algorithm 
considers customized genetic operators and a local optimization procedure, 
based on QR decomposition, able to efficiently exploit the linearity of the 
model subject to its parameters. Both the model accuracy and parsimony are 
improved via a multiobjective optimization, considering different priority levels 
for the involved objectives. An enhanced Pareto loop is implemented, by means 
of a special fitness assignment technique and a migration mechanism, in order 
to evolve accurate and compact representations of dynamic nonlinear systems. 
The experimental results reveal the benefits of the proposed methodology 
within the framework of an industrial system identification. 

Keywords: genetic programming, multiobjective optimisation, nonlinear 
system identification. 

1   Introduction 

Creating mathematical descriptions for dynamic systems using measurements of plant 
input - output variables remains a difficult task, especially because, in almost all 
industrial applications, poor a priori information about the model structure is 
available [1]. Usually, the identification methodologies select optimal models using a 
set of predefined structures. Though, the multitude of computational models 
illustrates that no model architecture can be uniformly better than the others. As 
consequence, advanced approaches have to ensure the adaptation of the model 
topology subject to the problem to solve [2].  

In that context, genetic programming techniques become attractive, as they can 
efficiently breed a population of possible models working simultaneously on the model 
parameters and structure [3], [4]. Within the framework of system identification, the 
efficiency of genetic programming techniques could also be related to the inherent benefits 
of evolutionary algorithms (the ability to cope with ill - behaved problem domains, 
multimodality, discontinuity, time - variance, noise) [5]. 
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The present approach addresses nonlinear models, linear in parameters, which may 
provide the approximation of any dynamic nonlinear bounded function with any 
desired degree of accuracy [6]. Most of the other identification approaches configure 
the structure of these models using a large set of regressors and/or deterministic rules 
for adding or excluding the model terms. On the other hand, the suggested 
evolutionary design procedure permits a flexible configuration of possible linear 
combinations of regressors, encoded in tree - based individuals. Each potential model 
may include any combination of lagged plant variables, subject to the use of {+, *} 
operators. 

The quality of the nonlinear potential models is evaluated with respect to their 
accuracy and complexity order. The multiobjective optimisation favours the selection 
of accurate and simple tree - based individuals, with expected good generalisation 
capabilities. The technique is able to reduce the risk of producing over fitted models, 
frequently encountered within the context of genetic programming. Given the specific 
context of system identification, the accuracy objective is assigned with a higher 
priority. To fit that end, special mechanisms are used, such as a customised fitness 
assignment procedure and a migration – based evolution. 

Moreover, the convergence speed of the algorithm is improved by means of 
hybridisation with QR decomposition, acting as a local optimisation procedure. Also, 
enhanced genetic operators have been implemented to encourage the production of 
fitter individuals.  

The paper is organised as follows. Section 2 briefly describes the mathematical basis in 
relation to the nonlinear identification problem to solve. The main steps of the classic 
multiobjective evolutionary loop are discussed in section 3, whilst section 4 browses 
through the enhancements implemented to improve the algorithm performances. Section 5 
is devoted to experimental results and addresses the identification of an industrial system. 
Conclusions are outlined in section 6. 

2   Nonlinear Model 

The suggested approach evolves input - output nonlinear models, linear in parameters, 
which have been proved to be universal approximators of nonlinear dynamics [6]. For 
the sake of simplicity, the case of single input - single output systems is addressed:  
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Here, k stands for the current time instant, the system input and output are denoted 
with u and y respectively, ŷ indicates the estimated output provided by the designed 
model, x is a vector containing the current and the lagged values of plant input and 
output, nu and ny are the maximum permitted input and output lags.  

Nonlinear functions Fi are called regressors and represent atomic combinations 
(products) of terminals, namely x vector elements, considered to any exponent. The 
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potential models result as polynomial (linear) combinations of regressors. The model 
can be rewritten in matrix-based formalism: 
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The regressor matrix F encodes the structure of the model and vector c contains its 
parameters. During the evolutionary loop, the algorithm maintains the variety of the 
regressors Fi by means of genetic operators. QR decomposition has been deployed as 
a local optimisation procedure, acting in Lamarckian sense, in order to provide 
convenient numerical computation of vector c. 

The performances of the models are evaluated subject to accuracy and parsimony. 
That means the genetic programming aims to produce a compact model, having few 
Fi regressors, for which good approximation capabilities are expected to be obtained 
even on data different than that used for evaluation during the evolutionary loop.  

3   Multiobjective Evolutionary Design Procedure 

The approach demands the maximum input and output lags, along with a 
representative training data set )},{( ii yuS = , pi ,..,1= , including output and input 

plant variables measurements, able to illustrate the behaviour of the dynamic system. 
Having no other a priori information about the model structure, the algorithm starts 
the exploration of the search space with a random initial population of tree-encrypted 
potential models.  

The individuals are built by means of recursive combinations between the elements 
of vector x (terminal nodes) and function/operator nodes [3], [7], [8]. According to 
(1), any allowed structure could be obtained using the set of operators ,*}{+=O . 

Examples of tree-encrypted individuals are indicated in Fig. 1. 
The terminal and operator sets have to comply with closure and sufficiency 

requirements in order to be able to produce a valid model [3]. Firstly, the closure 
propriety is met, because every operator of O accepts as input parameter any value 
and type returned by any element of O, as well as any value and type of any terminal 
of set x. Secondly, the sufficiency property states that the terminal and operator sets 
should be complex enough to properly encode the desired solution. In that case O is 
minimally sufficient and the absence of extraneous functions/operators may bring 
important benefits related to the exploration capabilities of the algorithm. As 
consequence, the sufficiency propriety is satisfied if an appropriate number of lagged 
values are included in vector x. Adequate maximum lags (nu and ny) could be chosen 
by trial and error, without involving rich expertise and/or extensive tuning effort, as it 
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is not mandatory to configure a minimally sufficient x set. The algorithm has the 
ability to build the model structures selecting only a convenient subset of elements 
from x. 

At each generation of the evolutionary loop, the lot of the current batch of trees is 
sent to the reproduction pool. Here, the genetic operators – crossover and mutation – 
work for producing new potential models, called offspring. The resulted offspring are 
afterwards reunited with their parents in an intermediary population out of which the 
survivors are chosen by means of a dominance analysis, as described in the following.  

The performances of the tree-encrypted individuals are evaluated subject to their 
accuracy and parsimony, via a multiobjective approach. One objective guarantees the 
achievement of accurate models in terms of S, as it demands the minimisation of the 
total squared output error (SEF) computed over the whole training data set. Another 
objective encourages the selection of simple models and it requests the minimisation 
of the Complexity Function (CF), which indicates the number n of regressors, 
existing inside the model M:  
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These objectives are conflicting, meaning that they have different optimum points. As 
consequence, the problem admits an infinite set of Pareto - optimal solutions. For any 
Pareto-optimal solution no improvement could be achieved towards an objective 
direction without performances degradation subject to at least one of the remaining 
objectives. In that context, the multiobjective optimisation procedure has not only to 
generate solutions close to the Pareto-optimal front, but it also has to preserve the 
population diversity, as each Pareto-optimal solution may illustrate another possible 
trade-off between the considered objectives.  

To solve the multiobjective optimisation, Deb’s algorithm based on dominance 
analysis could be used [9]. Within a population P of individuals, a solution is 
considered nondominated if, compared with any other solution of the population P, it 
is fitter with respect to at least one objective function. At insertion, the intermediary 
extended population of offspring and parents is separated in several Pareto sets of 
different orders. All nondominated individuals describe the first order Pareto front. If 
the solutions included in first Pareto front are eliminated, the nondominated solutions 
determined on the rest of the population represent the second order Pareto front, and 
so on. Within each front, the individuals furthest away from the rest get to keep their 
raw fitness value, whilst the others receive a slightly diminished fitness, according to 
the proximity of their neighbours [9]. The fitness values scaled between 0 and 1 
represent the selection probabilities during insertion. 

4   Genetic Loop Enhancements  

The suggested Enhanced Multi Objective Optimisation genetic programming procedure 
(EMOO) implements several special mechanisms, able to provide increased convergence 
speed and improved exploration capabilities. 

Trees are built from randomly selected elements of vector x connected by means of 
operators from set O, therefore they encode terminals, not regressors, as the desired 
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model (1) requires. To remedy the setback, all trees are transformed from their raw 
terminal based form to a regressive based form, exploiting the equation: 

cabacba ⋅+⋅=+⋅ )( . (6) 

All “+” nodes, successors of “*” nodes, are “lifted” from the leaf level towards the 
root level, so that in the end, no “+” nodes would be situated on levels lower than “*” 
nodes. This adjustment facilitates the hybridisation with the QR decomposition, 
which aids the genetic programming in rapidly finding proper model parameters. 

In order to support the genetic operators in effectively optimising the model 
structure without spoiling the effects of QR decomposition, several customisations 
have been proposed. The crossover operator randomly selects one cut point in each of 
the two parents and then swaps the resulting sub-trees, thus obtaining the two 
offspring. If the selected sub-trees encode the same regressor with similar parameter 
values, the interchange would be pointless as it would bring no improvement relative 
to the parents’ performances. Even if the parameters of two similar sub-trees are not 
the same, that is most likely a sign that QR decomposition needs “more time” to 
adjust their values and swapping the sub-trees would delay that effect. In Fig. 1, nodes 
5, 6 and 7 of the first parent, as well as nodes 4, 5 and 6 of the second parent store  
the same regressor. Therefore, the regressor root along with all the other nodes on the 
path to the tree root will be eliminated from the potential cut-point list. Thus, the 
potential cut-point list is drastically reduced, saving the time and computational effort 
of redundant or harmful sub-tree swaps. Even so, not all flaws of the crossover – QR 
decomposition collaboration have been removed. In the late stages of the algorithm 
the phenomenon of compensation may emerge, meaning that well adapted individuals 
may contain several regressors with low coefficients, while the same performances 
may be achieved by only one regressor with a higher coefficient value or a greater 
exponent. That is why mutation has been improved to handle not only the alteration of 
terminal names, but also to change their exponents. 

Several enhancements have been implemented to deal with the multiobjective 
optimisation, during the evolutionary loop. From the application standpoint it is more 
important to produce accurate models than simple ones. In that context, the suggested 
design procedure associates a higher priority to SEF minimisation. To increase the  
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selection pressure in favour of SEF compliant trees, the initial population has been 
split into two subpopulations. The first one is evolved via a single objective procedure 
based solely on SEF, while the second subpopulation is evolved subject to a 
multiobjective optimisation. Once at No_m generations the migration is permitted, the 
two populations exchange their best trees, thus increasing the weight of the SEF 
minimisation objective, without completely ignoring the lowest priority objective. 

The subpopulation which evolves subject to multiobjective optimisation undergoes 
a dominance-based procedure. At each generation, the goal values are updated 
according to the mean performances of the population, each goal being associated to 
an objective. All the trees that comply with both goals are assigned with fitness values 
based only on their SEF related performances. The rest of the trees, situated outside 
the boundaries set by the considered goals, are evaluated according to the classic 
Pareto procedure. The maximum fitness value receivable by the individuals in the 
second group is lower than the smallest of fitness values assigned to the first group. In 
Fig. 2, the solid curve represents the desired optimal front. The assignment of the 
trees in group 1 with the highest fitness values encourages the individuals to “shift” 
during the evolutionary loop towards a convenient zone of the Pareto optimal front 
(see individuals marked with “o” in Fig. 2). 

5   Application 

The EMOO algorithm was used to build a nonlinear model for the steam subsystem of 
the Evaporation Station (ES) from the sugar factory of Lublin, Poland. The ES increases 
the concentration of the sucrose juice by running it through five consecutive heating 
units. The steam subsystem has one input (steam temperature) and one output (steam 
pressure) [10]. The model is designed using real data collected from the sugar factory 
during one month of plant exploitation, using the sample period of 10 sec. The selected 
learning data set corresponds to a production shift. It illustrates the maximum possible 
excitation of the process and it includes a reduced number of missing or uncertain 
values. The data have been filtered with 4th order Butterworth filters and, then, 
decimated using each 10th sampled value. The validation of the model is done with 
respect to the testing data set, which includes measurements acquired from the previous 
month of plant exploitation. No analytical model of the nonlinear plant is available. 
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The experimental comparative study calls in sequel the suggested evolutionary 
method already described (EMOO) and two other genetic programming procedures. 
The upgraded elitist Simple Objective Optimisation (SOO) procedure evolves the 
tree-based individuals only subject to SEF minimisation. The Multi Objective 
Optimisation (MOO) procedure considers the same level of priority for the involved 
objectives and does not make use of the migration mechanism and of the fitness 
computation algorithm described in Section 4.  

Establishing adequate values for the algorithm parameters is a context dependent 
issue which could be addressed by trial and error. As indicated in Table 1, the 
experiments were done using different values of training data set length (p), 
maximum input lag (nu), maximum output lag (ny), number of individuals per 
generation and maximum number of training generations. 

Firstly, the performances of SOO have been analysed and compared against 
EMOO. The experimental conclusions are summarised in Table 2. The SOO 
algorithm assesses the performances of the current population’s individuals only with 
respect to their accuracy, completely ignoring the complexity criterion. As a direct 
consequence, higher maximum lags lead to increased number of regressors. That 
behaviour may tend to become disturbing, as the solution’s generalisation capabilities 
decreases. Models M1 through M3 show poorer SEF values over the validation data 
set, caused by overfitting. Another factor that leads to unsatisfactory generalisation 
behaviour is the length and content of the training data set. The third important 
setback of SOO procedures has to do with their elitist nature. Eliminating the 
offspring that show worse performances than their parents has a good impact on the 
algorithm’s convergence speed, but toward the end of the evolutionary loop, the 
diversity of the population is severely diminished, as the final generations get 
saturated with fairly identical trees. At this point, no matter how many training steps 
are considered, the SEF value stops improving (M4 M6). 

The same experiments were carried out using MOO procedure. The MOO algorithm 
considers the insertion based on a dominance analysis described in Section 3. This 
strategy reduces the risk of low population diversity towards the end of the 
evolutionary loop and facilitates a better coverage of the problem search space, with a 
noticeable improvement in model accuracy. Though, the convergence speed is lower 
than in the case of the SOO alternative. The first order front generated by the MOO 
procedure in M1 case (Table 1) is depicted in Fig. 3. The figure also contains the first 
order front selected from the population of the last generation produced by EMOO. 

Table 1. Algoritm parameters sets used for experimental trials 

Model ID p Lags 
individuals number/ 
generations number 

M1 197 nu=3, ny=3 50/50 
M2 197 nu=5, ny=4 50/50 
M3 197 nu=7, ny=6 50/50 
M4 200 nu=3, ny=2 60/80 
M5 297 nu=3, ny=2 60/100 
M6 350 nu=3, ny=2 80/200 
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Table 2. SOO vs EMOO algorithm performances 

MSEF (SEF/p) CF 
Training Validation 

Model 
 

SOO EMOO SOO EMOO SOO EMOO 
M1 7 4 0.736 0.700 0.740 0.720 
M2 9 5 0.700 0.650 0.875 0.670 
M3 12 4 0.650 0.630 0.890 0.700 
M4 8 5 0.740 0.700 0.710 0.715 
M5 9 4 0.735 0.650 0.750 0.780 
M6 8 5 0.745 0.635 0.730 0.750 
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Fig. 3. EMOO advantages over MOO 

Supplementary results achieved for EMOO are listed in Table 2 and Table 3. The 
EMOO yields substantially better results. As revealed in Fig. 3, the EMOO is focused 
on a convenient zone of the Pareto front, as it considers high priority for SEF 
minimisation. Moreover, EMOO preserves a reduced number of regressors, even for 
larger maximum lags (M1 M3). Accurate models are obtained relatively fast, 
without altering the diversity of populations.  

The EMOO procedure is more flexible than the standard MOO as it features two 
extra refined tuning mechanisms. The first one refers to the special fitness assignment 
mechanism. As a general rule, too simple trees cannot encrypt accurate models. 
Therefore, if the CF goal value is just as restrictive as the SEF goal value, the 
population will rapidly be taken over by rudimentary models, unable to provide good 
accuracy. Results are better, as the CF goal laxity is increased (M7 M9). The second 
tuning mechanism refers to the migration technique. Once every No_m generations 
the two subpopulations exchange genetic material. If the migration rate is too high, 
the selection pressure imposed by the individuals with low SEF values from the SOO 
subpopulation will counterbalance the efforts of the MOO complementary procedure 
(M10), leading to results similar to the standard elitist SOO (accurate, but complex). 
A rare migration produces results which resemble the classic MOO case (M11). All 
the results in Table 3 were obtained using the following parameters: 197 training data 
points (p), 3 input lags, 2 output lags, 50 individuals per generation and 50 training  
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Table 3. EMOO algorithm performances 

Goals MSEF (SEF/p) Model no 
SEF CF 

No_m CF 
Training Validation 

M7 average average 10 1 7.535 12.35 
M8 average 1.5*average 10 4 0.732 0.750 
M9 average 2*average 10 5 0.625 0.680 

M10 average 2*average 3 8 0.725 0.750 
M11 average 2*average 25 3 0.890 0.900 
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Fig. 4. Model validation 

generations. In M9 case, the model with the lowest SEF value achieved at the last 
generation was evaluated over the validation data set (Fig. 4). The selected model is 
accurate and simple (8 regressors), featuring good generalisation capacity (at 
validation, the mean squared error value is 0.705 and the absolute relative error is 
achieved between [8.198*10-5, 0.0254]). 

6   Conclusions 

The enhanced multiobjective optimisation genetic programming algorithm described 
in this paper is a new instrument in system identification. Its ability to provide 
flexible yet compact models with good performances both on training and validation 
sets, without any prerequisites other than training/ testing data, makes it compatible 
with the special requirements of complex systems featuring dynamic nonlinearities. 
The search procedure is unsupervised and improves simultaneously the model 
structure and parameters, excluding the need of any off-line term reduction 
mechanisms.  

Due to the linear in parameters formalism that the generated models are compliant 
with, a hybridisation with a local optimisation procedure is facilitated. Along with the 
random distribution of the initial population, the enhanced genetic operators 
guarantee a speedy convergence and a good variety of the population at any 
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generation. By assessing the generated models with respect to multiple objectives, the 
genetic search becomes more refined. Isolating the individuals compliant with 
adjustable objective goals enforces the priority of the accuracy requirement over the 
complexity one. Moreover, the separation in two subpopulations, evolved 
simultaneously, one according to a simple objective technique (accuracy) and the 
other to a multiobjective technique (accuracy and complexity) allows the generated 
models to embody the advantages of both evolutionary procedures. 

The proposed method is time and resource consuming, therefore it is 
recommended for complex nonlinear systems where no rich a priori data is available 
and high accuracy models are required. Though, the automatic generation of potential 
solutions could bring important benefits to the total design time, if compared with the 
case of “trial and error” model configuration.  
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Abstract. In this paper we present application of genetic programming
(GP) [1] to evolution of indirect encoding of neural network weights. We
compare usage of original HyperNEAT algorithm with our implementa-
tion, in which we replaced the underlying NEAT with genetic program-
ming. The algorithm was named HyperGP. The evolved neural networks
were used as controllers of autonomous mobile agents (robots) in simu-
lation. The agents were trained to drive with maximum average speed.
This forces them to learn how to drive on roads and avoid collisions. The
genetic programming lacking the NEAT complexification property shows
better exploration ability and tends to generate more complex solutions
in fewer generations. On the other hand, the basic genetic program-
ming generates quite complex functions for weights generation. Both
approaches generate neural controllers with similar abilities.

1 Introduction

In training of artificial neural networks using evolutionary algorithms a method
of encoding the neural networks into individuals in the evolution is needed.
Basically, there are two types of encodings. Direct encoding of either connection
weights or a network structure causes individuals and therefore the search space
complexity growth. Indirect encoding that utilizes a system, which develops the
neural network from information encoded by the individual can overcome such
drawback of direct encoding.

One of the most perspective algorithm of neural network weights and struc-
ture encoding is the hypercube encoding invented by Ken Stanley [2,3] as Hy-
perNEAT algorithm. The HyperNEAT algorithm consists of a function or a set
of functions, which generates weights for neural network. The neural network
consist of neurons placed in a rectangular mesh called substrate. The substrate
coordinates serve as inputs for the function. The function output is the weight
of connection between two neurons. In the original HyperNEAT algorithm, the
function is called CPPN (Compositional Pattern Production Network) and is
constructed from a set of nodes with scalar product on their inputs and non-
linear function at their outputs. The network structure reminds a neural network

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 243–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(therefore, it is named network rather than a function). The CPPN in the Hy-
perNEAT is generated using the NEAT (NeuroEvolution of Augmenting Topolo-
gies) [3] algorithm. NEAT is a type of evolutionary algorithm, which evolves the
network from a simple form featuring complexification and niching.

The NEAT algorithm is the component that we decided to replace with a
different style of weights encoding and generation in our approach. Rather, we
use genetic programming, which generates functions that compute weights for
connections among neurons in the substrate.

The application domain is a control of autonomous agents in simulated envi-
ronment. The agents are equipped with sensors with scalable resolution. Encod-
ing of neurons weights allows the resolution of the sensory input to be changed
independently of the size of the individual that contains the weight generating
function. The previous experiments presented in [4] show that the NEAT can
produce recurrent neural network, which can control the agent to move through
the simulated environment with maximum average speed. The fitness of the
evolved neural network is the average speed of the controlled agent. Our goal
is to replace the NEAT algorithm with genetic programming and compare it to
the original HyperNEAT algorithm.

1.1 Related Work

Many techniques for evolution of either weights or structure of neural networks
were already developed such as Analog Genetic Encoding [5,6,7], Continual
Evolution Algorithm [8], GNARL [9], Evolino [10] and NeuroEvolution of Aug-
menting Topologies (NEAT) [11]. The NEAT algorithm became a part of the
HyperNEAT algorithm as a tool for evolution of CPPNs.

HyperNEAT algorithm was already applied to control artificial agents in food
gathering problem [2]. It was shown that HyperNEAT is capable of large scale
networks evolution (> 8 · 106 connections). The simulated agent was equipped
with concentric sensors for food in particular directions linked with effector,
which drives the agent to the direction. In our approach, the sensors are organized
in polar rays with particular angular and distance resolution. The sensors are
sensitive to the surface color.

The agents can share portion of one substrate together [12]. The substrate
splits to local but linked areas. The agents can exploit cooperative behavior
afterwards.

Agents can complete common goals also with a minimum information from
the sensors with evolutionary trained feed forward networks as well [13]. In the
case, the agents exhibit reactive behavior.

This paper is organized as follows. Section 2 describes the HyperGP algorithm.
Section 3 describes the simulation environment and the agent setup. Section 4
describes the experimental results, performance of HyperGP is compared with
HyperNEAT. Final section concludes the paper.
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2 HyperGP Algorithm

2.1 Genetic Programming

Our implementation of GP uses recombination and mutation operators and di-
rect representation of mathematical expressions. The final expression is a func-
tion of up to 4 variables (x1, y1, x1, y2), which was named CPPF (Compositional
Pattern Production Function). During the evolution the expressions are gener-
ated from the sets of elementary functions and atoms (variables and constants).
The operators are:

– Random expression generator generates expressions with defined depth.
The functions list (patterns) defines the set of basic function that the final
expressions will be composed of. The atoms list contains the variables (input
variables for the final expressions/functions) and constants. At the beginning
the first function is randomly chosen from the list and then the generator
is applied recursively on this expression - in this case not only functions
but also the atoms are used in random selection. The maximal depth of
the expression can be specified, so this value is decremented whenever the
generator is recursively run on some subexpression.

– Mutation selects random place/subexpression in the given expression and
replaces the subexpression by some randomly generated one (with respect to
the maximum depth of the expression). It splits the expression into particular
subexpressions, then randomly chooses one of them, and using the random ex-
pression generator replaces it by some random expression. The depth param-
eter is also used, so the final (mutated) expression fulfills the maximal depth
condition.

– Recombination combines two expressions. Crossover position is selected
randomly in both expressions. It generates the positions of all subexpressions
in two given parent expressions (individuals). Then it replaces the subexpres-
sion in the first individual by the subexpression from the second individual.
So it keeps the positions and swaps the subexpressions. The maximal depth
condition is still fulfilled.

2.2 Evolution

We are working with the fixed size population of individuals (expressions). The
GP algorithm generates in each iteration the set of offsprings (the number of the
offsprings does not depend on the size of the population) using the mutation and
recombination operators. The parent population and the offspring population is
then joined into one set (pool) and using the selection function (based on the
fitness value of the individuals) the new population is created (all the unused
individuals are deleted).
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3 Experimental Setup

3.1 Simulation Environment

Experiments with the agents were performed in simulation environment called
ViVAE (Visual Vector Agent Environment) featuring easy design of simulation
scenarios in SVG vector format [4]. There are two types of surfaces in the sim-
ulation (road and grass) with different frictions. The grass has friction 5 times
higher than the road.

ViVAE supports number of different agents equipped with various sensors for
surfaces and other objects in the scenario. In the current experiment, scenario
with one agent was user, see Figure 1.

3.2 Agent Setup

The agent in the simulation is controlled by neural network controller con-
structed by the HyperGP or HyperNEAT. The agent is driven by two simulated
wheels and is equipped with a number of sensors. The controlling neural net-
work is organized in a single layer of possibly fully interconnected perceptron
(global) type neurons (neurons compute biased scalar product, which is trans-
formed by bipolar logistic sigmoidal function). Steering angle is proportional to
inverse actual speed of the robot.

The sensors as well as the neural network are spread in a substrate. Neurons
and sensors are addressed with polar coordinates, see Figure 2. Two of the
neurons in the output substrate are dedicated to control acceleration of the
wheels. The neurons are marked with the red color in Figure 5.

Each individual in the evolution contains three different CPPFs, see Figure 2.
Function fi generates weights between input sensors an the neurons, function fb

(a) (b)

Fig. 1. Experimental scenario with an agent placed in starting positions (a). The agent
has 3x5 sensors array. The color of the sensor represents a surface friction mapped to
0 and 1 for the neural network input. Track of the trained agent is depicted in (b).
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(a) (b)

Fig. 2. Organization of the HyperGP substrate. There were two distinct substrates used
(a) and three different GP function trees (CPPF) were evolved. Function fi is weight
between input substrate (sensors) and substrate with the neurons. Second function
fb generates bias for neurons in the upper substrate. For bias calculation third and
fourth CPPF inputs are set to 0. Last function fo represents connection weights among
neurons in the upper substrate.

computes biases of the neurons and function fo expresses connection weights
among the neurons in the upper layer. Since the bias is a property of a neuron
in the output substrate, inputs x2 and y2 are setup to 0 for fb computation.

3.3 HyperGP Setup

The HyperGP algorithm described in Section 2 was executed with the following
set of functions, from which the functions are selected.

x + y, x · y, sin x, cosx, tan−1 x,
√
|x|, |x|, e−x2

, e−(x−y)2 (1)

The list of atoms used in the functions is the following one:

x1, x2, x3, x4, −1, RandomReal(-5,5) (2)

Besides the CPPF inputs, there is extra negative multiplier and random constant
between −5 and 5. Depth of the expression was set up to 3.

3.4 HyperNEAT Setup

We have used our own implementation of the HyperNEAT algorithm. The NEAT
part resembles Stanley’s original implementation. The HyperNEAT extension
is inspired mainly by the David D’Ambrosio’s HyperSharpNEAT1. Following
function have been used as output function of the NEAT nodes:
1 Both Stanley’s original NEAT implementation and D’Ambrosio’s HyperSharpNEAT

can be found on http://www.cs.ucf.edu/~kstanley

http://www.cs.ucf.edu/~kstanley
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2
1 + e−4.9 x

− 1, x, e−2.5 x2
, |x|, sin(x), cos(x) (3)

The parameter settings are summarized in Table 1. Note, that we have extended
the original set of constants which determine the genotype distance between two
individuals (C1, C2 and C3) by the new constant CACT . The constant CACT was
added due to the fact that, unlike in classic NEAT, we evolve networks (CPPNs)
with heterogeneous nodes. CACT multiplies the number of not matching output
nodes of aligned link genes. The CPPN output nodes were limited to bipolar
sigmoidal functions in order to constrain the output.

Table 1. HyperNEAT parameters

Parameter Value

population size 100
CPPN weights amplitude 3.0
CPPN output amplitude 1.0
controller network weights amplitude 3.0
distance threshold 15.0
distance C1 2.0
distance C2 2.0
distance C3 0.5
distance CACT 1.0
mating probability 0.75
add link mutation probability 0.3
add node mutation probability 0.1
elitism per species 5%

4 Experimental Results

4.1 HyperGP with Mutation Only

All experimental results are collected from 10 runs of each algorithm. The Hy-
perGP was executed 2 × 10 times. In the first set, the mutation only was used
as the genetic operator. The convergence of the HyperGP algorithm is plotted
in Figures 3. Sub-figure (a) contains convergence plots for the 10 experiment
runs. Sub-figure (b) contains plot of the whole population in one experiment run
(50 iterations). The individuals are sorted according to their fitness (from left
to right). We consider the fitness of 0.83 to be enough for the robot to follow
the road. HyperGP with mutation only reaches that fitness in 20 generations
(median). Mean fitness reached in the 10 runs is 0.875.

Following set of functions is the one generated in one of the experiment run:

fb = e
−
(

e− 1
2 (x2−x3)2−x2

)2

(4)
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Fig. 3. Convergence of HyperGP algorithm with mutations only. Plot (a) contains
linearly interpolated convergence of 10 independent experimental runs. Figure (b) dis-
plays how the genomes with the fitness approaching the local optimum are growing in
the population. All 50 individuals are sorted by their fitness. Solution with fitness of
0.65 is very common in the initial population. In the populations after 30 generations
solution with fitness close to 0.88 spreads in the population.

fo = sin x1(x3 + sin x4) (5)

fi = exp

⎛⎜⎜⎜⎝
⎛⎜⎜⎝e

−
⎛⎝e−e

−2(x2−tan−1(x4))2

+x3+x4

⎞⎠2

− |x1|

⎞⎟⎟⎠
2
⎞⎟⎟⎟⎠ (6)

4.2 HyperGP with Crossover

In the second set of runs, the crossover operator was added (see Figure 4). Proba-
bility of the crossover is 0.75, probability of the mutation is 0.25. We can see that
the performance of the algorithm has decreased. The target fitness (0.83) was
reached in 7 out of 10 runs only. Algorithm convergence is slowed down. Average
fitness reached after 50 evolution generations is of 0.82. Additional increasing of
the crossover probability decreased the performance of the algorithm.

4.3 HyperNEAT

The HyperNEAT was setup according to Table 1. The algorithm was executed
10 times. Convergence of the algorithm is plotted in Figure 6. The red line in
the figure appears in 50th generation, in which the HyperGP was stopped. The
target fitness of 0.83 was reached in 92th generation (median). We can observe
that the HyperGP algorithm outperforms the HyperNEAT in the speed of the
convergence.
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Fig. 4. Convergence of HyperGP algorithm with crossover probability of 0.75 and
mutation probability of 0.25. Plot (a) contains linearly interpolated convergence of 10
independent experimental runs. Figure (b) displays how the genomes with the fitness
approaching the local optimum are growing in the population. All 50 individuals are
sorted by their fitness.

(a) (b)

Fig. 5. Visualization of the evolved neural network controlling the agents. Figure (a)
displays the complete network including inputs. Layer of 3×3 neurons is depicted in
figure (b). The network consists of two layers. The bottom layer represents input sensors
in a grid of 3x5 inputs. The upper layer contains 9 (3 × 3) neurons. The neurons are
mapped into a substrate in polar coordinates to match shape of the input substrate.
Red spheres represent neurons (numbers 19 and 21) that steer the agent wheels. The
most upper sphere represents bias for the neurons. Connections are displayed with
lines. The most visible lines represent connections with stronger synaptic values. The
neurons in the neuron layer are emphasized in figure (b). The weights of connections
between the neurons are represented by a thickness of arrows. Recurrent weight of a
neuron is represented by a color of the disk representing the neuron. Darker neuron
has a stronger recurrent self-connection.
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Fig. 6. Convergence of HyperNEAT algorithm in 300 generations performed. The Hy-
perGP algorithm was stopped after 50 generations (dashed line - B) and reached target
fitness (0.83) in after 20 generations (median, dotted line - A). The HyperNEAT algo-
rithm reached the fitness of 0.83 after 92 generations (median, solid line - C).

5 Conclusion and Future Work

In this paper we present results of experiment with generation of recurrent neu-
ral network weights using hyper-cubic encoding and multidimensional functions
generated by genetic programming. We have replaced the authentic NEAT algo-
rithm in the original HyperNEAT by genetic programming, the algorithm was
named HyperGP. The neural networks were used as controllers for mobile agents
in simulated environment. Fitness function of the particular agents is the average
speed of the agent, which forces it to drive on road.

Both HyperNEAT and HyperGP generate suitable solution with agents mov-
ing with possibly maximum speed through the scenario, following the roads.
HyperNEAT algorithm utilizes it’s complexification feature and the resulting
CPPNs are simple but the evolution reaches the desired fitness after 92 genera-
tions. HyperGP algorithm with same size of population reaches the same fitness
in 20 generations.

The HyperGP algorithm has a better explorative property and generates more
complex functions in early state of the evolution. The HyperNEAT algorithm
sets up the weights in the CPPN in the early evolution phase. More CPPN nodes
are added in the latter evolution phase. Both algorithms require more testing
and some tuning is required as well.

Both mutation and crossover operators were tested. The best results were
reached with mutation operator only. The crossover operation causes major
changes in the function. The mutation operator is more tender to the func-
tion structure than the crossover. Besides, the problem is sensitive to the CPPF
structure and combination of two functions together can completely change the
function output within the desired range.

The future work will involve experiments with different presets of both
approaches to generation of the weights functions as well testing on different
scenarios and goals in the mobile agents.
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4. Drchal, J., Koutńık, J., Šnorek, M.: Hyperneat controlled robots learn to drive on
roads in simulated environment. In: Submitted to IEEE Congress on Evolutionary
Computation (CEC 2009) (2009)

5. Mattiussi, C.: Evolutionary synthesis of analog networks. Ph.D thesis, EPFL, Lau-
sanne (2005)
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Abstract. Results of simulation studies on the application of genetic
algorithms (GA) for solving an inverse problem, tomographic reconstruc-
tion, using time-of-flight (TOF) data from ultrasound transmission to-
mography are presented. The TOF data is simulated without taking into
consideration the diffraction effects of ultrasound which is reasonably
valid when the impedance mismatch in the specimen under consideration
is small. The proposed GA based reconstruction algorithm is described
and the results for a number of cases are discussed. The sensitivity of
the proposed algorithm is studied for various GA parameters viz. the
population size, maximum number of generations, crossover probability,
and mutation probability. A time complexity analysis of the proposed
algorithm shows that the reconstruction times and number of unknowns
bears a near quadratic relation enabling the prediction of reconstruction
times when dealing with higher resolutions. The performance of proposed
algorithm to the reconstruction when TOF data is contaminated with
noise is also analyzed and presented. The results obtained are found to
be consistent for a wide range of resolutions, type, size, and shape of
inclusions.

Keywords: Tomography, Reconstruction, Genetic Algorithms, Inverse
Problems.

1 Introduction

Ultrasonic tomography (UT) has been in use for a long period [1] and when
the material of test specimen and inclusions are known to have approximately
uniform characteristics, UT provides an easy and cost effective way of repro-
ducing the shape, size and location of the inclusion. Acoustic wave attenuation
and TOF are two reconstruction parameters which can be used for this purpose.
TOF data without considering ray bending is used in the present work.
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Popular reconstruction methods for projection data obtained from UT in-
clude transform methods like convolution back projection (CBP) [7] and series
expansion methods represented by algebraic reconstruction technique (ART)
[8]. The tomogram obtained gives a gradation of the physical property being
reconstructed over the material-inclusion boundary rather than a clear cut edge.
Further transform methods require complete set of projection data for recon-
struction which may not be available in a number of practical problems and
here lies the motivation for using GA.

GA’s are search and optimization techniques based on the dynamics of natural
selection and genetics. First proposed by John Holland in 1975, GA’s are now
being put to use in a wide range of applications [5]. Their versatility is due to the
fact that they can handle continuous as well as discrete problems in almost the
same way. Also since they work with a population rather than a single initial
point global convergence is most certainly ensured. ART on the other hand,
suffers from the inherent possibility of getting entrapped in a local optimum.

The principles of various tomographic techniques and their fields of appli-
cation are described in [6]. The mathematical basis for transmission computed
tomographic imaging using straight line reconstruction equations is discussed in
[9]. The applicability of GA to ultrasound tomography using simulated TOF is
demonstrated in [2] and [10]. Comparative studies on the performance of differ-
ent reconstruction algorithms applied to non-destructive evaluation with limited
data are presented in [3]. The present work is an extension to our earlier one [10].

The process of reconstruction consists of two major steps, the first is acquisi-
tion of TOF data and the second is using the acquired data to reconstruct the
specimen under consideration. The following sections convey the adopted ap-
proach; in section 2 we explain the simulation procedure adopted for acquiring
TOF data, in section 3 we discuss the GA based reconstruction algorithm devel-
oped, in section 4 we present our results and finally we present our conclusions
in section 5.

2 Simulation of Time-of-Flight Data

To simulate the TOF of ultrasound rays, the specimen under consideration is
represented as a grid of certain integer values corresponding to different materi-
als. A number of ultrasound sources(S) and detectors(D) are positioned around
the specimen in what is termed as modified cross-hole geometry [4]. For any
configuration, the sources are actuated in sequence one at a time, and from each
of these ultrasound rays travel to each of the detectors, giving us TOF data
equal to the product of the number of sources and the number of detectors. For
example, considering S=6 sources, D=6 detectors and C=6 configurations we get
SxDxC=216 readings [10], which is essentially the input to our reconstruction
algorithm. The ray coverage for this case is shown in Fig. 1(a). The TOF is taken
to be the arrival time corresponding to the first peak of the signal sensed by the
detector as shown in Fig. 1(b). If experimental data is available for these set of
sources and detectors, the same can be used in our study. Else, we simulate the
TOF by using the following procedure.
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Fig. 1. (a) Ray coverage, (b) Ultrasound signal indicating TOF, (c) Visual display of
a member from the initial population with 3 materials

The simulation of TOF assumes that the ultrasound rays follow straight paths
from source to the detector. This assumption is reasonable when the impedance
mismatch within the specimen is small. The simulated TOF for a ray originat-
ing from j-th source and terminating at the k-th detector is estimated using
equation (1):

tof(r) =
M∑
m

l
(r)
m (j, k)

vm
, (1)

where,

M = number of cells intercepted by the ray,
l
(r)
m (j, k) = length of ray intercepted by m-th cell along the ray path,
vm = velocity of propagation of ultrasound through the m-th cell.

3 Proposed GA Based Reconstruction Algorithm

The flowchart of the proposed reconstruction algorithm is shown in Fig. 2. We
describe the salient features of this algorithm here. Specifically, we are looking for
a particular distribution of the inclusion(s) which best agrees with the simulated
data obtained.

To begin with, a population of solutions with random distributions of three
materials with different velocity of propagation of ultrasound through them, is
created. Fig. 1(c) shows the visual representation of one of the members from the
initial population of solutions created when reconstructing a specimen of resolu-
tion 8x8. It can be seen that the algorithm starts its search with a population of
such solutions having random distributions of three materials considered to be
present in the specimen to be reconstructed. The three materials are coded using
integers 0, 1, and 2, and are shown with colors black, peach, and white respec-
tively in the visual displays shown in this paper. The initial population members
have a coarse grid-size and are refined during the reconstruction process. The
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Fig. 2. Flowchart of the GA based reconstruction algorithm

idea is to proceed in steps towards the final solution of required resolution. The
best possible solution with a relatively coarser initial grid serves as a seed for
the next finer grid. The initial coarse grid is so chosen that its repeated dou-
bling gives a value near, preferably equal to the final resolution required. Each
population member is now evaluated for its fitness as defined by equation (2):

φ(i) =
C∑

l=1

S∑
j=1

D∑
k=1

(GA Pop tof (i)(l, j, k)− Specimen tof(l, j, k))2, (2)

where,

φ(i) = fitness of the i-th member of GA population,
S = number of sources,
D = number of detectors,
C = number of configurations(usually

(4
2

)
=6),

GA Pop tof(i)(l, j, k) = TOF considering the i-th member of GA population,
Specimen tof(l, j, k) = TOF considering specimen to be reconstructed.
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Next, selection operation is performed to emphasize good population mem-
bers in mating pool, from which child population is created. It is observed that
tournament selection operator [5] performs better than roulette wheel selection
operator [5].

To create new solutions, crossover operation is performed on the population
members of the mating pool created by selection operation. A block-crossover op-
erator is employed wherein new solutions (children) are created by swapping cor-
responding portions of the grid between two mating pool members (parents). The
parents from mating pool, the location and the size of portions to be swapped
are picked randomly. Fig. 3 illustrates the block-crossover operation.

Fig. 3. Illustration of block-crossover operation

Next a few randomly chosen children are subjected to mutation operation,
two variations are studied. The first bitwise-mutation, where cells of the member
eligible for mutation are randomly assigned values other than the current value in
the selected cell. The second termed block-mutation finds the value that appears
most number of times in the selected cell itself and its eight surrounding cells and
mutates the values in all nine cells to this value. Bitwise and block-mutations
are illustrated in Fig. 4.

Fig. 4. Illustration of mutation operations

To ensure good solutions propagate through subsequent generations, the chil-
dren population obtained after mutation and the initial population are combined
and the best of these equal to the initial population size, are picked as elites.
After this the initial population is reset with elites and the GA steps repeated
for a certain number of generations. The best member from the elites is reported
as the reconstructed solution.

The resulting solution with a coarse grid is now used to generate a new initial
population with a higher grid size, say double the current grid-size. For this each
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cell is divided into four and given the same value as in the parent cell. The next
step is to freeze cells which would no more be treated as variables. To identify
such cells, each cell is compared with surrounding eight cells. If they all match,
the cell under consideration is frozen. After refinement and freezing, the base-
population member obtained serves as a seed for creating new initial population
of larger grid size. The new initial population is created by randomly assigning
values to the unfrozen cells leaving the frozen cell values unaltered. The GA
procedure is repeated till the required resolution is obtained. The termination
criteria used is the number of generations per step and whether quality of so-
lutions obtained with two successive grid sizes. For larger resolutions estimated
time using equation (3) could also be used.

4 Reconstruction Results

4.1 Reconstructed Images with Noise Free Data

To demonstrate the robustness of the algorithm more than 250 different con-
figurations in terms of material, shape, size, and location of the inclusions with
required resolutions from 6x6 to 64x64 were reconstructed. Reconstruction re-
sults are observed to be fairly consistent for a majority of the cases analyzed.
Some representative results of successful reconstructions are illustrated in Fig. 5.
In each of the figures shown, the left part is the visual display of the specimen to
be reconstructed (used for simulating the TOF data) while the right part is the
reconstructed image. Different colors in these correspond to different materials.

From the results obtained, it is observed that a crossover probability of 0.8,
mutation probability of 0.2, number of generations per step of 1000, and a popu-
lation size equal to three times the resolution required yield consistent results for

(a) R=10, SGS=10, S=3, D=3, GEN=1000 (b) R=10, SGS=10, S=3, D=3, GEN=1000

(c) R=20, SGS=10, S=7, D=7, GEN=1000 (d) R=40, SGS=10, S=13, D=13, GEN=1500

Fig. 5. Few successful reconstruction results (R: resolution required, SGS: starting grid
size, S: number of sources, D: number of detectors, GEN: generations per step)
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different configurations. The minimum number of sources and detectors required
is such that simulated TOF data is roughly 55–65% of number of unknowns.
Although reconstructing coarser grids required much smaller number of gener-
ations and smaller population size the goal is to estimate a common set of GA
parameters that are robust.

The algorithm failed to capture the exact image in some cases with the param-
eter settings described above. This is the case when wave-propagation velocities
through the materials considered are very close and when the inclusions are
present at many locations arbitrarily. For such situations the fitness of differ-
ent population members is very close and the algorithm cannot make definite
decisions in picking up the best population members. However even for these
cases the algorithm shows a trend towards correct solution with some parame-
ter tuning. In Fig. 6 we present a few unsuccessful cases and the corresponding
improved results with parameter tuning.

(a) R=10, SGS=10, S=3, D=3, GEN=1000 (b) R=10, SGS=10, S=3, D=3, GEN=2500

(c) R=40, SGS=10, S=13, D=13, GEN=1000 (d) R=40, SGS=5, S=13, D=13, GEN=1000

Fig. 6. Representative unsuccessful and corresponding improved reconstruction results

4.2 Fitness History

Fig. 7(a) shows how the best fitness and mean fitness values of a population
vary with generation number for the result shown in Fig. 5(d). The high values
of error at the beginning is due to the fact that initially we start with a smaller
grid size (10 in this case) and the TOF data against which the error is evaluated
is that of the final required grid size (40 in this case). Also, it can be observed
that for each of the grid sizes both the best fitness and mean fitness values reach
a peak and decrease rapidly followed by an almost asymptotic decrease in these
values. This means that if we were to start with SGS=R, it would have taken
much larger number of generations to achieve the desired solution or the solution
would get stuck at a local optima with fewer generations. Also observe that, it is



260 S.P. Kodali et al.

(a)
(b)

Fig. 7. (a) Fitness history for the reconstructed image in Fig. 5 (d), (b) Log-Log plot
of number of unknowns versus reconstruction time (noise free TOF data)

at every point of refining the grid that, the new population of solutions created
is driving the algorithm towards approaching the desired solution faster

4.3 Reconstruction Time-Complexity

A logarithmic plot of number of unknowns versus reconstruction times for noise
free data and the least squares straight line fitted through the data is shown
in Fig. 7(b). The reconstruction times are averages of ten similar runs with a
single inclusion of square shape covering roughly 9–10% of the specimen area
and located in the centre of the specimen. In each of the runs, a population size
equal to three times the resolution required, number of generations for each of
the steps equal to 1000, a crossover probability of 0.8, and a mutation probability
of 0.2 was used. The regression equation between the number of unknowns (x)
and the reconstruction time (y) is estimated to be

y = 0.009(x)1.8057. (3)

The regression equation (3) is nearly quadratic; using which reconstruction times
for higher resolutions could be estimated and used as termination criteria.

4.4 Reconstructed Images with Noisy Data

The data from experiments in real world always differs from that simulated under
ideal conditions due to presence of noise. To assess the suitability of the proposed
algorithm to noisy data, the simulated TOF is modified by adding randomly up
to a maximum percentage of noise and is then used as input. Fig. 8(a) shows
the variation of average root mean square error (RMS) in reconstruction with
respect to the percentage noise level added for two different configurations. The
averages are based on ten runs for each of the maximum percentage noise level.
In Fig. 8(b) and (c), we show the actual and reconstructed images for the GA run
having median performance. It is observed that as the noise level is increased,
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(a) Variation of average RMS error

(b) 5% Maximum noise level

(c) 6% Maximum noise level

Fig. 8. Reconstruction results with noisy data

the number of times an image is reconstructed with an error increases. For the
case of 1%, 2% and 3% noise level this is only one out of ten runs, whereas for
4% and more this is five to ten out of ten runs.

5 Conclusions

The proposed algorithm is tested for a wide range of configurations and yields
satisfactory results. It is observed that for a majority of cases, a population size
three times the final required grid size and 1000 generations are suitable for
reconstruction.

A study of the reconstruction times revealed polynomial variation with num-
ber of unknowns, enabling one to estimate the reconstruction times for larger
grid sizes.

A preliminary study on the effect of crossover and mutation probabilities
shows no consistent patterns. However further investigation into the role of these
operators is encouraged. One variation of the mutation operator, block-mutation
is found to be effective for large grid sizes.
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From the studies on reconstructions using noisy data it is observed that the
proposed algorithm gives good results up to a maximum noise of 3% added
randomly to the simulated TOF data for a number of configurations.

The authors are currently working on enhancing the algorithm’s capability
and performance in reconstructing specimen’s of higher resolutions, thus en-
abling detection of finer defects like cracks etc. Also for the algorithm to be of
more practical relevance, consideration of ray bending is recommended. Paral-
lelization of the code is expected to reduce the reconstruction times substantially.

Acknowledgements. Authors appreciate support by the Academy of Finland
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Abstract. We propose a method for estimating sensor network topology using
only time-series sensor data without prior knowledge of the locations of sen-
sors. Along with the advances in computer equipment and sensor devices, various
sensor network applications have been proposed. Topology information is often
mandatory for predicting and assisting human activities in these systems. How-
ever, it is not easy to configure and maintain this information for applications in
which many sensors are used. The proposed method estimates the topology ac-
curately and efficiently using ant colony optimization (ACO). Our basic premise
is to integrate ACO with the reliability of acquired sensor data for the adjacency
to construct the accurate topology. We evaluated our method using actual sensor
data and showed that it is superior to previous methods.

1 Introduction

Recently, computer technology has been miniaturized, and the costs of computing
equipment are decreasing. This has enabled the development of sensors with communi-
cation capabilities. In line with this progress, various applications have been proposed
in the field of sensor networks. Therefore, a huge number of sensors are deployed in
different environments to detect events and gather real-world data. Then the sensor data
are transmitted via wired and wireless LAN to providers of context-aware services to
support human activities.

However, one serious problem in this kind of application is the arrangement of sen-
sors. In particular, the topological relationships between the sensors, or the sensor net-
work topology, reflect the physical connectivity of the real-world environment. They are
usually mandatory for sensor network applications that assist human activities. How-
ever, labor required for manual configuration and maintenance of topological relation-
ship information, or the adjacencies of sensors, increases in proportion to the number
of sensors, and mis-configurations tend to occur. In addition, sensors may fail to oper-
ate, or new ones may need to be added in the environment. As a result, the topology
changes. These facts clearly indicate a need for automatic configuration of sensor net-
work topological relationships.
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Our objective in this research is to automatically identify the sensor network topol-
ogy in accordance with human activities. Topology required for our target applications
differs from that based on distances between sensors. For example, although the nearest
sensor from sensor A is B in Fig. 1, these are separated by a wall, and it is possible that
sensor C rather than sensor B will react after sensor A due to a human’s movement. Ad-
jacency in this paper means the neighboring relationship in terms of human activities.
This kind of information reflecting human activities plays an important role in a number
of applications such as tracking a person’s movement by using coordinated sensors (or
sensor agents) [1], assigning missions (tasks) to the appropriate sensor agents [2], and
carrying out services for human assistance by foreseeing persons’ activities [3].

A number of studies have been done on localization and topological structures of sen-
sors. In the domain of ad hoc networks, methods that can determine the sensor structure
by using the received strengths of their radio transmissions have been proposed, such
as [4]. The received signal strength can be used to identify directly transmittable local
sensors, but the derived topology structure may not be identical to that derived from
the actual time-series sensor data that reflect human activities. In addition, we cannot
assume that all sensors have wireless transmission capability. [5] proposed an algorithm
to estimate the adjacent sensors only from time-series sensor data in their environments.
However, that study assumed that the number of people in the environment is known
and that they walk at almost the same speed, we believe that such assumptions are
implausible in real-world applications. On the contrary, [6] proposed a method that es-
timates sensor network topology from time-series data using a pheromonal model [7].
This method does not require these implausible assumptions and, in this sense, it is
a promising approach for actual sensor network systems. However, its convergence is
quite slow; it requires a huge amount of time-series sensor reaction data to acquire the
acceptable results. [8] also proposed a method to estimate adjacency relationships be-
tween sensors using only time-series sensor reaction data without making implausible
assumptions. This is more efficient, and the resulting topology is more accurate than
that in [6]. We found that, however, the accuracy of the estimated topology depends on
the environments.

In this paper, we propose a new method by improving the method in [8] to more ac-
curately estimate adjacency relationships between sensors from time-series sensor data.
The proposed method is also based on the ant colony optimization (ACO), a kind of
pheromonal model like that in [6]. A key idea of this method is to use the estimated

Fig. 1. Example of sensor network topology
derived from human activities

Fig. 2. Depiction of sensor network structure
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reliability of sensor data for topology estimation; that is, the amount of pheromone is
controlled by the reliability. This considerably improves the accuracy of the resulting
topology. ACO was inspired by the behavior of ants in finding paths from their colony
to a food source. ACO is robust and adaptable to dynamic changes in the environment,
and various kinds of optimization problems has been solved by using ACO-based ap-
proaches. For example, [9] proposed a routing protocol in wireless sensor networks
using ACO. Thus, ACO is very attractive for our needs because the sensor network
topology in our application may also dynamically change due to the failure or addition
of sensors.

This paper is organized as follows: We first describe the issues addressed in this
paper. Next, we explain how the reliability of sensor data is estimated; this estimation
method is based on the analysis of actual sensor data in different environments. After
that, we explain the details of our proposed method of adjacency estimation. Finally, we
experimentally evaluate the proposed method using actual datasets acquired from three
environments, and show that our method can generate a more accurate sensor network
topology than conventional methods.

2 Problem Description

2.1 Sensor Network Topology

We express the topology of a sensor network as a weighted directed graph G = (V, E),
where a vertex vi ∈ V represents a sensor in the environment, and an edge ei,j ∈ E
represents a direct path from the position of sensor vi to that of sensor vj . The weight
of ei,j is expressed as τi,j , where τi,j expresses the adjacency likelihood of vi being
adjacent to vj . Figure 2 shows an example of a directed graph for three sensors.

In this study, the graph G = (V, E) is initially assumed to be a complete graph in
which every pair of vertices is connected by an edge. This graph is called the main
graph.

2.2 Sensor Data

Our sensors are infrared wired sensors that react when a person walks in front of them.
Data from sensors are the set of sensor identifiers that react at time t. Thus, they are
expressed as Ot = {v1

t , v2
t , . . . , vn

t }, vj
t ∈ [1, N ], where N = |V |, the number of

sensors in the environment, and vj
t is the sensor identifier. For example, O1 = {1, 3, 5}

means that sensor identifiers 1, 3, and 5 react at t = 1. Our method analyzes data
gathered by dividing every time-interval T , that is, Ot to Ot+T−1, at every turn.

2.3 Target Problem and Issues

Suppose that a number of sensors are deployed in an environment, as shown in
Fig. 3. When a person walks in the direction of the arrow, v1, v2, and v3 react in turn
at time t1, t2, and t3. Therefore, the sensor data are O = {Ot1 = {v1}, Ot2 = {v2},
and Ot3 = {v3}}. We can expect that sensors in an adjacency relationship react in a
serial manner according to the human’s movement. Our method aims to estimate the
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v v v v

Fig. 3. A route example

local sensor network topologies expressed by the subgraph of the main graph derived
from the time-series data, and this indicates the local adjacency of sensors. Then the
global sensor network topology is built by combining the subgraphs. For example, in
Fig. 3, the subgraph, G′ = {V = {v1, v2, v3} , and E = {e1,2, e2,3}}, was created from
O = {Ot1 , Ot2 , Ot3}. The edges of the main graph, which correspond to the edges of
the subgraph, are weighted. However, the following challenging issues arise.

1. When multiple people walk in an environment at almost the same time, sensors that
are not adjacent can react in a serial manner.

2. Sensors may incorrectly react by a misreaction of sensors and noise data.

Because issue 1 is more frequently observed proportional to the number of people in
the environment, it more strongly affects the sensor network estimation.

Our proposed method to deal with these issues consists of two phases, a dataset
generation phase and an adjacency estimation phase. In the dataset generation phase,
the reliability of sensor data estimated from actual sensor data is used to calculate the
weights of edges, and these weights are used to control the agents’ movements. In this
paper, reliability refers to the degree that sensors that react in a serial manner are really
adjacent. The details are described in the following section. The adjacency estimation
phase estimates the adjacencies of sensors using the data generated in the dataset gen-
eration phase based on a pheromonal model [7] like [6]. Unlike [6] however, we intro-
duce the weight according to both adjacency and non-adjacency of edges in the sensor
network.

3 Reliability of Sensor Data for Adjacency

It is probable that the reliability of sensor data for adjacency estimation depends on the
sensor reaction frequency during a certain time interval T : if more people walk in the
environment at the same time, the accuracy of the adjacency acquired from the sensor
data decreases. Because we cannot determine the number of people in the environment,
we assume that if the sensor reaction frequency during T is high, the more people there
are moving simultaneously in the environment. Thus, we have to investigate how low
the reliability gets according to the sensor reaction frequency.

First, let us define the reliability of sensor data, reliability(n), as follows:

reliability(n) def= 100× |Esub(n) ∩Ecorrect|
|Esub(n)| , (1)

where Esub(n) is the set of edges in the subgraph generated by OT (n−1) to OTn−1,
and Ecorrect is the set of actual adjacent edges. Ecorrect is derived from the actual
layout map.
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We defined the sensor reaction frequency, freq(n), as follows:

freq(n) def= 100×
∑Tn−1

t=T (n−1) |Ot|
T ×N

, (2)

where N is the number of sensors in the environment.
We investigated the relationships between the sensor reaction frequencies and the

reliability by comparing the sensor data and actual sensor location information in three
different environments. The results are plotted in Fig. 4. Even though the data were ac-
quired from different environments, this figure shows a similar pattern: the relationship
between the sensor reaction frequencies and the accuracy seems to be approximated by
a power law. Figure 4 indicates that the reliability of the dataset for adjacency estima-
tion drastically decreases. This feature is used to control the amount of pheromone in
the dataset generation phase.

Fig. 4. Relationship between sensor reaction frequencies and adjacencies

4 Estimation of Topology

4.1 Dataset Generation Phase

The purpose of the dataset generation phase is to reduce the impact of incorrect sensor
data in accordance with the estimated reliability of the sensor data, where incorrect
refers to successive time-series reaction data generated by non-adjacent sensors.

First, in this phase, the subgraphs that correspond to local sensor-network topology
are generated from the n-th sensor data OT (n−1) to OTn−1. Although the method in
[8] focused on the sensor reaction time intervals, our method generates subgraphs by
investigating whether or not any two sensors reacted in a series. For example, suppose
that the sensor data are O = {On1 = {v1}, On2 = {v2}, On3 = {v3}, On3+α+1 =
{v10}, and On3+α+2 = {v11}}. Two subgraphs, G1 = {{v1, v2, v3}, {e1,2, e2,3}} ,
and G2 = {{v10, v11}, {e10,11}}, can be generated. Note that α is an interval time that
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determines whether or not a new subgraph is generated. In the above example, because
the reaction interval time between v3 and v10 is larger than α, two subgraphs were
generated. We called nodes such as v1 and v10 start nodes and nodes such as v3 and
v11 end nodes. Even if the reaction time intervals between any two sensors are short,
our method identifies that these are not adjacent if one of them reacts right after another
sensor.

Next, the weight of each edge of the generated subgraph is calculated. As discussed
in Section 3, the relationship between the reaction frequency and the reliability can be
characterized by a power law. Therefore, w(n), the weight of each edge of the subgraph
at n turns of the simulation, is defined using the reaction frequency freq(n) as follows:

w(n) def= a× freq(n)−b, (3)

This weight can reduce the impact of the sensor data if the reliability of the data is low,
and it can increase the impact of the sensor data if the reliability of the data is high.

In equation (3), a and b are constants whose values are determined from the inves-
tigation described in the previous sections. These constant values may depend on the
environmental structure, but we believe that the structure’s basic features (power law)
must be invariant. These constants’ values are used to calculate the weights of edges.
The relative values of weights are important so the value is more effective. Therefore,
we use the average values of a and b derived from three different environments. Of
course, estimating automatically the optimal value of these constant values from known
information (e.g. the size of an environment and the number of sensors) is important,
and this is something to be investigated in the future.

4.2 Adjacency Estimation Phase

The purpose of the adjacency estimation phase is to estimate the global sensor net-
work topology by calculating the weight τi,j(n), which is also the amount of remaining
pheromone on edge ei,j calculated by ACO.

First, N agents are placed on the start node, where N is the number of sensors in the
environment. Then, each agent moves toward the end node. Each agent selects the next
node stochastically based on the values of {τi,j(n)}. Each agent prefers the edge where
a lot of τi,j(n) remains. Therefore, the algorithm can focus the search on the edges that
have a high adjacency likelihood determined by a previous search. Two types of agents
are used in this phase. The first type of agent at node vi selects the edge ei,j with the
probability pk

i,j , which is calculated as follows:

pk
i,j(n) =

τi,j(n)∑
k,k 
=i τi,k(n)

. (4)

The second type of agent selects the next node not based on its dependence on τi,j(n),
but due to a certain constant probability. The second type of agent can prevent the
algorithm from falling into a local optimal solution. The ratio of first to second type
agents is seven to three in this paper.

Each edge of the main graph is deposited with pheromone depending on the number
of agents that move to each edge of the subgraph. Limiting the amount of pheromone by
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setting a maximal value prevents the search from diverging. The amount of pheromone
on the edges of main graph {τi,j(n)} evaporates at a constant rate. As a result, the latest
search information is reflected relatively strongly. Suppose that the number of agents
that move to the edge ei,j is Ai,j(n), the rate of decrease is ρ, and the maximal value of
the pheromone is τmax. Each edge is deposited with pheromone following equation (5).

τ ′
i,j(n) = (Ai,j(n)× w(n)) + (1− ρ)τi,j(n)

τi,j(n + 1) =

{
τmax if τ ′

i,j(n) > τmax

τ ′
i,j(n) otherwise

, (5)

where τmax = 500, and ρ = 0.3 were used in this paper.
We also focused on the non-adjacency. The set of nodes of each subgraph is the set

of sensors that react in turn. We assumed that the adjacent likelihood was high. On the
other hand, the difference in the main graph and a subgraph is assumed to be the set
of non-adjacency. Then, suppose that the set of edges in a subgraph is Esub(n), that in

the main graph it is Emain, and the difference between them is Enot(n) def= Emain −
Esub(n). Therefore, Enot(n) is the set of non-adjacent edges. Then, the amount of
pheromone τi,j(t) of ei,j ∈ Enot(n) decreases following equation (6). Limiting the
amount of pheromone by setting a minimal value of the pheromone τmin prevents the
search from diverging.

τ ′
i,j(n) = (1 − ρ)τi,j(n)− w(n)

τi,j(n + 1) =

{
τmin if τ ′

i,j(n) < τmin

τ ′
i,j(n) otherwise

, (6)

where τmin = 0 was used in this paper.

4.3 Determination of Adjacency Relationships

We determine the sensors’ adjacency from the values of {τi,j(n)}, which are deter-
mined from the two phases mentioned above. A normal cumulative distribution function
generated from the mean μ(n) and variance σ2(n) of {τi,j(n)} is used to estimate the
adjacencies of sensors. The normal cumulative distribution function f(x) are calculated
as follows:

f(x) =
1
2

(
1 +

2√
π

∫ (x−μ(n))√
2σ2(n)

0
exp(−t2)dt

)
.

The adjacency of edges ei,j is determined by the following conditional equation (7) and
is expressed by the adjacency matrix A = {ai,j}, where if ei,j is adjacent, ai,j = 1;
otherwise, ai,j = 0.

ai,j =

{
0 if f(τi,j(n) + τj,i(n)) < prob

1 otherwise
, (7)

where prob = 0.6 was used in this paper.
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5 Evaluation

5.1 Experimental Environment

We evaluated our algorithm using actual sensor data and compared it with the results in-
duced using the methods in [6,8]. The sensor data used in this evaluation were collected
in three different environments.

(a) Twenty-one days of sensor data were collected in environment E1. Figure 5 shows
the correct topological relationships of the sensor network in the E1 environment,
which had 14 sensors.

(b) Nine days of sensor data were collected in environment E2. Figure 6 shows the cor-
rect topological relationships of the sensor network in the E2 environment, which
had 49 sensors.

(c) Six days of sensor data were collected in environment E3, which had 45 sensors.

Note that the sensors we used were infrared reflection sensors.
Our method uses the error rate err, which is defined as follows:

err
def= 100×

(
1

N2 −N

) ∑
i,j,i
=j

(
ai,j − a′

i,j

)2
, (8)

where N is the number of sensors in the environment, the matrix A = {ai,j} is the
estimated adjacency matrix, and A′ = {a′

i,j} is the correct adjacency matrix according
to the actual layout map.

Fig. 5. Correct topological map of sensor
network of environment E1

Fig. 6. Correct topological map of sensor
network of environment E2

Fig. 7. Estimated topological map of
environment E1 using our method

Fig. 8. Estimated topological map of
environment E2 using our method
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5.2 Experimental Result

Figures 7 and 8 show the estimated topological maps generated using our proposed
method. Figure 9 plots the improvement in error rates over time. A comparison of the
error rates is in Table 1. It indicates that our method can reduce the error rates to ap-
proximately 1/8 to 1/2 that of the other methods.

Fig. 9. Changes in error rates over time in environment E2

Table 1. Comparison of error rates

Environment Proposed method Method in [6] Method in [8]

E1 9.18% 31.6% 31.6%
E2 4.16% 34.0% 6.25%
E3 10.9% 21.0% 25.3%

Although our proposed method achieves a lower error rate of estimated adjacency
relationships in environment E3, it is not quite as good as that of environments E1 and
E2. The possible reasons for this are:

1. A sensor reacts frequently in places where movement of people occurs frequently
(e.g. a room entrance), and a reaction in a serial manner with a non-adjacent sensor
confuses the algorithm.
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2. Because the experimental environment was a laboratory in a university, people of-
ten move around simultaneously (e.g. when a lecture starts, they go to lunch).

Thus, we intend to this kind of environment is the future.

6 Conclusion

We proposed a method for estimating sensor network topology using only time-series
sensor data. This method enables us to estimate the reliability of sensor data and weight
each edge depending on the reliability. Therefore, with this method, we can reduce the
impact of incorrect sensor data that are acquired when multiple people move around at
nearly the same time, causing a mis-reaction of the sensors. This method also makes
it possible to estimate the adjacency using ACO. Therefore, we can use this method
to analyze sensor data that reflect the previous results. Then, by searching randomly
with constant probability, the method does not fall into a local optimal solution. This
method can reflect the latest search information relatively strongly by decreasing the
result with the constant rate. As a result, with this method, we can improve the error rate
of estimated adjacency compared to conventional methods such as those in ref. [6,8].
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Abstract. The impact of problem extents and network sizes on learning
in recurrent neural networks is analysed in terms of structural param-
eters of related graphs. In previous work the influence of learning on
the changes of the typical parameters such as characteristic path length,
clustering coefficient, degree distribution and entropy, was investigated.
In the present work the focus is enlarged to the scaling problem of the
learning paradigm. The results prove the scalability of learning proce-
dures due to the retained dynamics of the parameters during learning
with different problem extents and network sizes.

Keywords: recurrent neural networks, structural parameters, scalabil-
ity, problem extent, network size, learning automata.

1 Introduction

Since the first studies of random graphs by Erdos and Renyi [1], complex net-
works from the real world became a target of numerous investigations [2,3,4,5,6].
It was recognized that the evolution of real networks and their topologies are
governed by certain robust organizing principles [3]. Though systems like the
World Wide Web and Internet are indeed changing with their exploitation, neu-
ral networks as complex systems normally modify their parameters (weights)
through learning procedures. The structural properties of complex networks, or
their related graphs, are usually quantified by characteristic path lengths (L),
clustering coefficients (C) and degree distributions (P ), [3,5]. In our previous
work [7] we added entropy (H) as a new structural parameter, based on the
degree distribution, because it clarifies the difference between different proper-
ties of complex systems. In that work we showed that the clustering coefficient
increases with the learning procedure of the recurrent neural network (RNN),
the average length is not changing significantly, while the maximal degree and
entropy of the related graph are again increasing with the training iterations. Ac-
cording to the standard classification of complex systems we determined that the
trained RNNs are neither typical small-world (SW) nor typical scale-free (SF),
but possess properties of both. Besides, the degree distributions consistently
exhibit increased entropy. It was argued that the learning of neural networks
(RNN) is one of many robust organizing principles, observed in nature, that
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changes complex structures into a special type of networks, which may indicate
a new class of complex and biologically inspired systems with low L, high C and
different degree distribution P with increased entropy H .

The temporal complexity of learning algorithms creates serious limitations
in terms of practical neural network sizes and/or problem extents. This implies
the relevance of scalability of the learning paradigm and explains our focus on
learning procedures with different network sizes and different problem extents
and their impact on structural parameters. We discovered that a simple, learn-
ing automata based learning algorithm works faster than the standard RTRL
algorithm when dealing with large network sizes (above 100 neurons), and thus
enables experiments with sizes above 100 neurons.

The paper is organized as follows. After s short presentation of the background
theory of complex systems and RNNs, the graphs related to RNNs and the
transformation of RNNs to graphs is shown. It is followed by a description of
entropy as a new feature parameter of complex systems. The experimental work
is explained next with emphasis on different problem extents and RNN sizes.
The results are given in terms of the dynamics of the structural parameters,
provided with the corresponding explanations. In conclusion, some comments
and ideas for future work are outlined.

2 Background Theory

2.1 Complex Systems

Complex systems can usually be viewed as networks, with typical examples
being the Internet, WWW, neural networks, etc., where the nodes are routers,
documents, neurons, and links between them communication links, hyperlinks
(URLs) and weights, respectively. Complexity is the study of the behaviour of
macroscopic collections of units that are endowed with the potential to evolve
over time [5].

To represent complex networks, graphs are usually used. A graph is described
by a pair G = (V, E), where V is a set of N nodes or vertices and E is a set of e
edges, where each edge connects two nodes. The structural properties of graphs
are quantified by the characteristic path length L (also the average shortest path
length), the clustering coefficient C and the degree distribution P [3].

Characteristic path length L is defined as:

L =
N∑

i=1

N∑
j=1,j 
=i

d(i, j) . (1)

where d(i, j) is the distance between nodes i and j, defined as the number of
edges along the shortest path connecting them, and each edge connects two
nodes.

Clustering coefficient C shows the cliquishness of a typical neighbourhood,
or average fraction of existing connections between the nearest neighbours of a
vertex, which is a local property. For a node i it is defined by the expression:
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Ci =
2Ni

ki(ki − 1)
, (2)

where ki is the degree of node i or the number of nodes connected to it by edges
and Ni is the actual number of neighbours of the node i, and the number of
all possible edges between the neighbours is

(
ki

2

)
= ki(ki − 1)/2. The clustering

coefficient of a graph is the average over all vertices: C = 1
N

∑N
i=1 Ci.

P (k) is the probability that a randomly selected node has exactly k edges
(degree k). The mean degree is k̄ = 1

N

∑N
i=1 ki.

Besides regular networks or graphs, there are three main groups of networks
(graphs), differing in their structural properties or topologies: random networks
(R), small-world networks (SW) and scale-free networks (SF). There are topo-
logical differences between graphs corresponding to regular, partially random or
completely random connections. SW networks can be constructed from ordered
lattices by random rewiring of edges or by the addition of connections between
randomly selected vertices, in both cases with probability p (0.1-0.3).

SW networks have small L, just like R networks, but much greater C. SW
networks fall between regular and random graphs. The shape of the degree dis-
tribution is similar to that of random graphs. It has a peak at k̄ and decays
exponentially for large and small k.

SF networks have degree distributions with power-law tails:

P (k) ∼ k−γ . (3)

This sort of distribution typically occurs when a random network grows with the
preferential attachment. Many large networks from the real world (WWW, In-
ternet, scientific literature, metabolic networks, etc.) exhibit a power-law degree
distribution and therefore belong to the SF type of networks.

It has been of great interest recently [8,9,10] to investigate the complex fea-
tures of biologically inspired models, such as neural networks. In [7], a new
structural parameter, entropy (H), was introduced in order to make the dif-
ference between recurrent neural networks (RNNs) with random weights and
trained RNNs clearer. It was proved that trained RNNs have neither typical SW
nor typical SF features. However, they do exhibit increased entropy.

We already mentioned the two important attributes that greatly influence the
learning procedures of neural networks, problem extents or loads and network
sizes or the number of neurons. The natural question that arises is whether the
learning procedure retains the dynamics of structural parameters for different
attribute values (fulfills the scalability feature) or not. This will be the main
issue dealt with in the rest of the paper.

2.2 Fully Connected Recurrent Neural Networks

Only fully connected RNNs are considered in this paper because they have the
most general topology, where each unit (neuron) is connected with every other
unit. Because we intended to model dynamical systems, we initially used the
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RTRL (real-time recurrent learning) algorithm, which is gradient-based and en-
sures good learning convergence. Unfortunately, the training of large RNNs with
RTRL is very time-consuming, which is the reason we looked for a more efficient
algorithm. We found that a learning automata based algorithm (LR−P ) works
faster on large RNNs than RTRL. It enabled us to extend network size above
100 neurons, i.e. up to 250 neurons.

The outputs of certain units in RNNs represent outputs of the network, while
the other units are called context-units because they provide information relevant
to sequence-processing problems. Inputs to the network are fed to each unit. Such
an RNN can be trained to simulate a dynamic system. The RNN is trained to
produce the sequence of desired outputs if fed with the input sequence. The
real-time learning gets its input from a source which produces a non-periodic
sequence that is long enough.

For the purposes of the experimental work, much larger RNNs are applied
than actually needed for the selected tasks. This can be biologically justified by
the manner in which living organisms also use a larger number of neurons for
simple functions performed at a particular moment.

2.3 The LR−P Algorithm

Learning automata [11] are simple mathematical models, acting in an interaction
with a stochastic environment, which can be presented in the form of a stochastic
model. Learning automata perform actions and the environment responds with
more or less favourable responses. They are capable of modifying their proper-
ties or parameters in such a way as to maximize favourable responses from the
environment. One of their key properties is the ability to act immediately or
on-line, not requiring a time-consuming collecting of statistics of environment
responses. Thus they provide an on-line adaptation to the environment.

The correction schemes of learning automata update the probabilities of per-
forming individual actions according to environment responses. In the simplest
case the environment responds in a binary manner: reward or punishment. When
an action is rewarded (a favourable response from the environment), its prob-
ability should consequently increase, while, when the action is punished, its
probability should consequently decrease. To preserve the total probabilities of
all actions, in the first case the probabilities of other actions should decrease,
and in the second case the probabilities of other actions should increase.

Correction schemes of learning automata may also be applied for training
neural networks [12]. In this case an action corresponds to a small perturbation
of an individual weight: one action corresponds to an increase in the weight for
a fixed value Δw, while the other action corresponds to a decrease in the same
weight for Δw. The number of actions NA of the LA equals 2NW , where NW

is the total number of weights in the RNN. A decrease in error Etotal along a
specified sequence due to a change in an individual weight represents a favourable
response, or reward; an increase, on the other hand, represents an unfavourable
response, or punishment.
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Let NW be the number of free parameters of the RNN (weights and biases).
The correction scheme LR−P (linear reward-penalty) updates NA = 2NW per-
turbation probabilities after the i-th perturbation in the following manner. If
the i-th action is rewarded in the m-th step, its probability increases as

pi(m + 1) = pi(m) + λ[1− pi(m)] , (4)

while probabilities of other NA − 1 actions decrease as

pj 
=i(m + 1) = (1 − λ)pj(m) . (5)

On the other hand, if the i-th action is punished, its probability decreases as

pi(m + 1) = (1 − λ)pi(m) , (6)

and probabilities of other actions increase as

pj 
=i(m + 1) =
λ

NA − 1
+ (1− λ)pj(m) . (7)

λ is a correction parameter, with 0 < λ < 1. In this case the change in weight is
abolished subsequently.

In the beginning, all action probabilities are equal, pj(0)=1/NA, j = 1, .., NA,
and later they are continuously updated. In this way the probability vector ap-
proximates the gradient in a stochastic manner. While moving in the weight
space, this algorithm adaptively updates the direction of the approximate
gradient.

2.4 Transformation of an RNN to Graph

In order to comply with the fundamental theory of complex networks, we convert
RNNs to undirected graphs. It would also be possible to use directed and/or
weighted graphs, with appropriately redefined parameters L and C.

The transformation from the RNN to an undirected graph was performed
as follows. Nodes i and j are considered connected when either |wij | ≥ Θ OR
|wji| ≥ Θ, Θ being the threshold value. It is also possible to use the AND
operator, instead of OR. OR and AND are binary logical operators, supremal
and infimal, respectively. Θ is defined from the trained RNN as follows: when
all the weights with absolute values lower than Θ are neglected in the network
(replaced with 0), the performance of the RNN on the task should not decrease
substantially. In order to better comply with undirected graphs, self-links were
disallowed, so wii = 0 for all neurons i. Another modification was the non-
application of biases in neurons, again to better comply with undirected graphs.
Using these restrictions, the training of the RNN was rendered more difficult,
but nevertheless, the RNN was able to learn its tasks.

For each RNN, we first calculated the connectivity of the trained network and
then set the thresholds for earlier RNNs (during the same training process) such
that they have the same connectivity, i.e. the number of edges e must remain
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constant. The reason for this procedure is that final weights are typically larger
than initial ones (between −0.5 and 0.5) and if a constant threshold were ap-
plied, graphs corresponding to trained RNNs would have more edges than graphs
corresponding to initial RNNs. In this way some of the structural parameters
would be changed not because of the structure, but solely because of larger e.
We want, however, that the amount of connectivity does not influence the graph
parameters. The possible difference in structural parameters should therefore
depend only on the inner structure of the graph. In this way the RNNs recorded
during training are in fact normalized, and it is easier to compare the RNNs at
different stages during training, despite different connectivities, also caused by
the final weights being larger than the initial ones.

3 Entropy as a Feature Parameter of Complex Systems

Preliminary experiments showed that during training the binomial degree distri-
bution of the initial random network tends to approach the degree distribution
of SF networks. Some hubs regularly occur and the rest of the distribution is
moved towards smaller degrees, as in SF networks, except that it stops sooner,
so the final distribution does not reach a power-law distribution.

Since this is not a usual distribution, we considered a well known property of
probability distributions, Shannon’s entropy. We found that entropy of a bino-
mial distribution is increased when random links are prewired to hubs. As this
process induces the same type of transformation, it will be explained next.

Shannon’s entropy of the binomial distribution gives:

H = −
N−1∑
k=0

P (k) log
(

N − 1
k

)
+ (N − 1) log 2 , (8)

where we take p = 0.5 to simplify the equation. If a random edge is prewired
to a node with a large degree l (hub), then the degree of the hub becomes
l + 1, and thus frequencies f for degrees l and l + 1 change as Δf(l + 1) = 1
and Δf(l) = −1. At the same time a random node with degree k + 1 loses a
connection, Δf(k + 1) = −1, and the frequency of degree k gets incremented:
Δf(k) = 1. Since P (k) = f(k)/F , where F denotes

∑N−1
k=0 f(k), probabilities

change as:

ΔP (k + 1) = P ′(k + 1)− P (k + 1) = −1/F with probability P (k + 1) (9)
ΔP (k) = P ′(k)− P (k) = 1/F with probability P (k + 1) , (10)

where P ′ denotes the new, updated values. It is more convenient to observe what
happens to each degree k, i.e. to calculate ΔP (k) - due to both effects: −1/F
and 1/F . The probability of each degree k is changed by −1/F with probability
P (k) and by 1/F with P (k + 1). The expected change of ΔP (k) is therefore:

E[ΔP (k)] =
P (k + 1)− P (k)

F
. (11)
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The term (N−1) log 2 from Eq. 8 cancels out and the expected change in entropy
due to disconnecting an edge (change in degrees k and k + 1) is distributed over
all nodes but the hub and can be written as:

E[ΔH1] = −
N−2∑
k=0

log
(

N − 1
k

)
E[ΔP (k)] (12)

= − 1
F

N−2∑
k=0

log
(

N − 1
k

)
(P (k + 1)− P (k))

≈ 1
F

N−2∑
k=0

[
log

(
N − 1
k + 1

)
− log

(
N − 1

k

)]
P (k + 1) .

On the other hand, the change in entropy due to the hub getting connected is

ΔH2 = − log
(

N − 1
l

)
(P ′(l)− P (l))− log

(
N − 1
l + 1

)
(P ′(l + 1)− P (l + 1))

= log
(

N − 1
l

)
1
F
− log

(
N − 1
l + 1

)
1
F

. (13)

Since both terms are positive, their sum as the expected change of the total
entropy of the network is also positive, which proves the incrementation of the
network’s entropy with the number of learning iterations.

There is another possible explanation, an intuitive one. As learning usually
means acquiring new knowledge or a certain amount of new information, it
seems appropriate to consider that entropy as average information is increased
with learning.

4 Experimental Work

The influence of the training of RNNs on the structural parameters of the related
graphs was studied on the task of dynamic identification of unknown finite state
machines, performing the time-delayed XOR(d) function of two subsequent in-
puts, delayed by d. For the purpose of scalability of learning, network sizes from
50 to 250 (by 50) neurons and problem extents from XOR(2)to XOR(5), Δd = 1,
were tested.

Typical results of the structural parameters during training are depicted in
Fig. 1. It is notable that, instead of training iterations, the x-axis contains the
mean squared error (MSE) on the training set. The reason is that training times
for such large networks vary greatly. It would be difficult to calculate the statis-
tics of runs of different lengths. This is why we decided to measure the progress
of training by the MSE. All RNNs were trained until the MSE dropped below
0.001. In this way different training lengths can be normalized.

As mentioned before, the clustering coefficient is increasing with the progress
of training and the average length is not changing significantly, while entropy of
the related graph is again increasing with the progress of training.
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Fig. 1. Delayed XOR(3) with a 200-neuron RNN: (a) characteristic path length L, (b)
clustering coefficient C, and (c) entropy H , all versus training iterations. Mean values
and standard deviations over 10 runs are indicated.

As the main issue of the paper is the scalability feature of the learning impact
on the structural parameters, the experiments of RNN learning (one of which is
described in Fig. 1) are repeated with different network sizes and various problem
extents, as explained before. The results are depicted in Fig. 2. Only initial and
final values of parameters C, L and H are given. C is increased during training in
all settings (Fig. 2a), i.e. in all sizes N and task parameters d. It is also obvious
that C is smaller in larger RNNs. On the other hand, in larger networks (above
150 neurons) C is more increased relatively regarding its initial value than in
smaller ones (below 150 neurons). The task size d has no major influence on the
results.

Parameter L does not change significantly during training, which is obvious
from Fig. 1b. This is the reason why in Fig. 2b its initial and final values are
practically equal. However, L is larger in large networks.

Entropy H is increased during the training process, in accordance with Fig. 1c.
This is the reason that the final surface is above the initial one. Besides, H also
increases with the number of neurons N , while the task size seems to have no
major impact on H .

5 Conclusion

This paper deals with the special learning algorithm of recurrent neural networks,
based on the learning automata theory. The emphasis is on the scaling feature of
the learning paradigm. Thus we investigate the influence of problem extent and
network size on the structural parameters of the neural network related graphs.
It is shown that the main characteristics of the learning process are preserved
for all combinations of the attributes (extent, size) under investigation, which
means that the average shortest path is practically unchanged with learning, and
that the clustering coefficient and entropy increase along with it. In addition,
we show that the clustering coefficient is decreased with the number of neurons,
and is nearly unchanged with the problem size. The average path length and
entropy are increased, also due only to the network size. The problem size plays
no important role.
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Fig. 2. Initial and final a) clustering coefficient C, b) mean shortest path L, and c)
entropy H for different sizes of the RNN (number of neurons N) on different delayed
XOR tasks (delay d)
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Our plans for future work are related to the study of very large neural net-
works, efficient learning algorithms and their parallel implementation.
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Abstract. A novel architecture for a hierarchical classifier (HC) is de-
fined. The objective is to combine several weak classifiers to form a strong
one, but a different approach from those known, e.g. AdaBoost, is taken:
the training set is split on the basis of previous classifier misclassification
between output classes. The problem is split into overlapping subprob-
lems, each classifying into a different set of output classes. This allows for
a task size reduction as each sub-problem is smaller in the sense of lower
number of output classes, and for higher accuracy. The HC proposes a
different approach to the boosting approach.

The groups of output classes overlap, thus examples from a single
class may end up in several subproblems. It is shown, that this approach
ensures that such hierarchical classifier achieves better accuracy. A notion
of generalized accuracy is introduced.

The sub-problems generation is simple as it is performed with a clus-
tering algorithm operating on classifier outputs. We propose to use the
Growing Neural Gas [1] algorithm, because of its good adaptiveness.

1 Introduction

A classifier is a model which assigns an example attribute vector to one of pre-
defined classes [2,3]. In machine learning several methods are known for training
model architectures, among them hierarchical. Training a single architecture to
achieve a set accuracy, e.g. a single neural network, can take a long time. On the
other hand, it is possible to combine several weak models to obtain a hierarchical
model giving good training and generalization rate, i.e. correct classification of
examples not used in training, e.g. boosting methods like AdaBoost [4,5,6].

The proposed approach of Hierarchical Classifier (HC) defines methodology
for building a hierarchical classifier automatically. In short, first a simple weak
classifier is built for the whole problem, then sub-problems are built by grouping
together examples from classes that were mistaken frequently. This step is done
by means of clustering in the results space, not the input space. Each of the
clusters, which may overlap, forms a new sub-problem for which a new weak
classifier is built, and the process is repeated recursively until a set accuracy is
reached. HC is especially suited for problems with several output classes, which
was the main motivation. HC model was first introduced in [7,8,9].

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 283–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The HC approach differs substantially from an AdaBoost like approaches,
where several simple classifiers are built by modifying the probability density
function for choosing the examples for training. HC, assumes that if a classifier
assigns examples from different true classes to some common subset, then these
classes are similar, and these classes can form subproblems. I.e. the HC splits
the input space on the base of classes recognized.

One of the problems in HC is the choice of a clustering algorithm. The aim
of one used in an HC is to group frequently mistaken classes into overlapping
clusters. This greatly enhances the accuracy of the whole HC, as will be shown.
The HC architecture found reflects the inabilities of individual node classifiers
to cope with the problem. The Growing Neural Gas (GNG) [1] algorithm is
proposed for this tasks because of its good adaptation ability.

The paper presents the classifier design, then the clustering approach and
adaptation of GNG. Finally, experiments are described and a discussion on
results is given.

2 Definition of the Problem and Model

Definition 1. Let D = {(xk, Ck)} � X ×Q, where xk ∈ X is an input attribute
vector, and true class Ck ∈ Q = {Ck, k = 1, . . . , K}, be a finite set of training
pairs. A classifier Cl is a mapping

Cl : X �−→ Q . (1)

A multilayer perceptron (MLP) may generalize well, but it may be hard and
costly to find the optimum architecture, i.e. the number of hidden layers and
the number of neurons [10,11,12].

2.1 Hierarchical Classifier Structure

The proposed hierarchical classifier (HC) has a tree-like structure with classifiers
Cli : X i �−→ Qi at nodes, which map examples from X i ⊂ X into a subset of
classes Qi � Q. The set of classes Q0 for the root classifier is the set of all classes
Q, i.e. Q0 ≡ Q, while the class sets for all the classifiers at other nodes are the
proper subsets of the whole class set, i.e. Qi � Q.

The idea is to train all node classifiers only to the point when their accuracy
is only a little better than that of a random classifier. These shall be called weak :

Definition 2. Let D = {(x(n), C(n))|n = 1, . . . , N} be a training set of N for a
problem of classification of input vectors x into a finite set of K classes {Ci|i =
1, . . . , K}, with prior probability P (Ci) such that

∑K
k=1 P (Ci) = 1.

We say that classifier Cl is weak if there exists a constant 0 < ε < 1/2 such,
that the risk function

R(Cl) =
N∑

n=1

K∑
k=1

�(x(n), C(n) , Cl(x(n)) = Ck)P (Ck)P (x(n)) < 1/2− ε , (2)
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where C(n) is the the true class for the input vector of attributes x(n), i.e. C(n) =
Ck, and �() is a 0− 1 loss function, equal to 1 if Cl(x(n)) = Ck.

The whole HC classifier is constructed as follows:

1. Build the root classifier Cl0 using the whole set D,
2. find frequently mistaken classes and group them in clusters Qi = {Ci

k}Ki

k=1
(Qi’s may overlap)

3. select Di such, that ∀(Qi,Di � D)∀x ∈ Di : true class(x) ∈ Qi,
4. for each Di build a subclassifier Cl repeating steps (1)-(3) recursively until

R[Cl] < target risk value.

After training, the posterior probability that a class C is the correct prediction
given input vector X is computed using a Bayesian approach according to

P (C|X) =
∑
Qi

PQ0(Qi|X)PQi(C|X) , (3)

where PQ0 (Qi|X) is the (predicted by the root classifier Cl0 with output classes
from Q0) probability that the correct class for example X belongs to Qi, and
PQi(C|X) is the probability of class C computed by a subclassifier Cli with train-
ing examples from cluster Di. This can be accomplished by the so called modified
classifier described below, constructed by an independent clustering algorithm.

2.2 The Modified Classifier

After the clusters are found, Cl is transformed into a modified classifier Clmod

Climod : X �−→ Qi , (4)

whose task is now to predict a cluster from the set Qi = {Qij , j = 1, . . . , Ji},
Qij = {Cij

k , k = 1, . . . , Kij}, where Ji is the number of clusters, and Kij the
number of individual classes in cluster Qij . An example is shown in Fig. 1.
The clusters are found by inspecting the inaccuracies of the parent classifier
composing classes that are frequently mistaken together. This follows from the
hypothesis, that if the parent classifier Cl is able to correctly discern most exam-
ples from some two given classes Ci and Cj , then there is no need to dwell on this
problem anymore. If, on the other hand, Cl frequently mistakes classes Ci and
Cj , then a new cluster Q = {Ci, Cj} should be constructed and a new classifier
Cl(i, j) trained to discriminate these classes.

If the original cluster of classes Q recognized by classifier Cl were divided into
non-overlapping clusters Qi, i = 1, . . . , K,

⋂Qi = ∅, then

Fig. 1. An example original classifier Cl and a modified one Clmod
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– if an example x with true class Ct was classified by Clmod into Qa, Ct ∈ Qa,
then subclassifier Cla could enhance the overall accuracy with true class,

– if, on the other hand, x ∈ Ct was classified into Qb, Ct ∈ Qb, then subclassifier
Clb would not have the chance to correct the current classification of Cl.

A solution is to find overlapping clusters to minimize generalized risk :

Definition 3. The generalized risk GR(Cli) of a classifier Cli is the ratio of the
number of examples classified to clusters that do not include their true classes
to the total number of examples:

GR(Cli) =
N∑

n=1

P (x(n))�(x(n), C(n), Climod(x
(n)) = Qij) , (5)

where C(n) is the true class of example x(n) and the Clmod selects Qij , and �()
is a 0− 1 loss function

�(x(n), C(n), Climod(x
(n)) = Qij) =

{
1 if C(n) ∈ Climod(x(n)) = Qij ,
0 otherwise

. (6)

Climod is constructed by clustering the output classes from Qi:

Definition 4. For a given classifier Cli : X �−→ Qi, trained with a set of pairs
Di, the clustering algorithm for HC

Clust : Qi �−→ Qi , (7)

partitions the set of classes into a set of overlapping clusters Qi = {Qij , j =
1, . . . , Ji}. Clustering is based on Cl classification.

The aim of Clust is to minimize GR(Cli). Climod may be called a δ-strong classifier

Definition 5. Let δ > 0. A classifier Cl is δ-strong if the risk function

R(Cl) < δ . (8)

The modified version Climod for a classifier Cli is constructed as follows

1. Using Di = {(x(n) : C(n) = Ci)} train a weak Cli : ∀x ∈ DiCli(x) =
[P (C1), . . . , P (CK)] so that ∀x

∑Ki

k=1 P (Ck|x) = 1,
2. perform clustering Qi = {Qij , j = 1, . . . , Ji}, Qij = {Cij

k , k = 1, . . . , Kij} so
that GR(Cli) < δ for some δ,

3. now Climod = [P (Qi1), P (Qi2), . . . , P (QiJi)], where

P (Qij) =
∑

Ck∈Qij

P (Ck|x)/
∑

j

∑
Ck∈Qij

P (Ck|x) , (9)

and
∑

j P (Qij |x) = 1.
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2.3 Clustering Algorithm

Final classification of an example x is computed according to formula

P (Cj |x) =
∑

i

P (Qi|x)P (Cj |Qi, x) , (10)

where P (Qi|x) is the probability of cluster Qi (computed by the parent classifier)
and P (Cj |Qi, x) is the Cj class probability computed by the subclassifier that
recognizes examples from classes in Qi.

Let Clusti select a cluster set Qi = {Qij , j = 1, . . . , Ji} for classifier Cli recog-
nizing Ki classes. A number of conditions and objectives should be met:

1. J < Ki , (11)
2. ∀k∃jCk ∈ Qij (12)
3. ¬∃ l, m Qil ⊆ Qim , (13)
4. ∀ j |Qij | > 1 ∧ |Qij | < Ki , (14)
5. ¬∃ k ∀ j Ck ∈ Qij . (15)

The objectives of Clust may be contradictory: the GR(Cl) value has to be min-
imized, which may result in clusters’ heavy overlap while, for computation effi-
ciency reasons, the number of clusters needs to be kept low with small cluster
overlap. In the paper HC is implemented with a multilayer perceptron, although
classifier type that returns a class probability distribution vector may be used.

2.4 Growing Neural Gas for Clustering

GNG, proposed by Fritzke [1], develops clusters that describe well a given dis-
tribution of points. It builds connected groups of neurons starting with 2 neu-
rons connected with an edge. At a given moment there are t neurons N =
{n1, n2, . . . , nt} connected with edges from E = {{ni, nj}, ni, nj ∈ N ∧ni = nj}.

Each neuron is associated with a vector w ∈ RK , where K is the number of
possible classes. Each edge describes the neighborhood of a neuron and has an
age value. For each example x, the GNG finds the nearest (winning) neuron to
the classification of x by Cl, a [0, 1]K vector

nwin ← arg min
n∈N

‖Cl(x)− w(n)‖ , (16)

and the second nearest neuron, and if those neurons are not connected, an edge
is added with zero age. The neuron associated with the winning one is moved
towards the point Cl(x), and the distance ‖n−nwin‖ is added to the accumulated
error of the winning neuron. All edges from the winning neuron have their age
incremented and all that exceed a maximum age, are removed.

Every given number of iterations, a neuron nerr with the highest accumulated
error is found, then another with the highest error nserr from its neighbors (i.e.
connected with nerr), and a new neuron nnew is added in between (connected
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with new edges) with an associated weights wnnew = (wnerr + wnserr )/2. Error
of nnew is set to the mean of nerr and nserr errors. This procedure results in
forming groups of connected neurons that represent GNG clusters.

Each x ∈ D is presented to classifier Cl resulting in a class distribution vector,
which is presented in turn to GNG. The winning neuron n is found, and the true
class of x is added to the cluster that n belongs to. For each GNG cluster G a
histogram HG is defined as HG : Q −→ N∪{0} such that HG(Ci) is the number
of times an example from class Ci activated a neuron from G. Each GNG cluster
corresponds to an HC cluster of classes QG

QG = {Ci : HG(Ci) > dG} , (17)

where dG is a threshold. The set of dG values are adapted so that the clustering
constraints (11)-(15) are met, selecting ∀xdG = 2

3 max
C

HG(C). If there exists

Ci : ¬∃ j : Ci ∈ Qj , then select k = arg max
G

HG(Ci) and QG = QG ∪ {Ci}.

Fig. 2. GNG generated clusters and their associated labels (top) and a final HC for
the vowel problem [13]

3 HC Accuracy

For simplicity we study a two–level HC with risk function

R(Cl) =
N∑

n=1

K∑
k=1

|Q|∑
i=1

�(x(n),Q(n), Cl0mod(x
(n)))�(x(n), C(n), Cli(x(n))) , (18)

where Q(n) ∈ Q is a cluster of classes where the true class C(n) of x(n) belongs
to. Since the modified root classifier Cl0mod is δ-strong, it is possible to show that
a two level HC with weak classifiers at nodes performs better than the root Cl0.
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Proposition 1. A two level HC, with a weak root classifier Cl0 with risk less
than 1/2− ε for some 0 < ε ≤ 1/2, which has a generalized risk less than some
δ, is at least weak classifier if the children classifiers Cli have the expected risk

E[R(Cli)] < 1/2− ε− μ , (19)

where the μ has to be greater than

μ >
δ(1/2 + ε)

1− δ
, (20)

Proof. Take the expected value of the risk for a two-level HC, and split it into
two terms: first, where the modified classifier Cl0mod classifies an example into a
correct cluster, and a second one responsible for incorrect cluster assignments.

E[R(Cl)] =
∑N

n=1
∑K

k=1
∑

Qi E( [arg max
i

PCl0(Qi|x) == Q(n) ∧ Q(n) ! C(n)]

∧ [argmax
m

PCli(Cm|X) = C(n)])P (Ck)P (x(n))

+
∑N

n=1
∑K

k=1
∑

Qi E( [arg max
i

PCl0(Qi|x) == Q(n) ∧ Q(n) ! C(n)]

∧ [argmax
m

PCli(Cm|x) = C(n)])P (Ck)P (x(n)) ,

where Q(n) is a cluster that contains the true class C(n) of example x(n) and the
argmax is used to select the class (or cluster) that maximizes the given value.

This separation is possible, since sums for pairs of examples n and class k are
counted once. Therefore each can be classified to more than one cluster, some
classifications may be incorrect, but each cluster Qi is counted only once.

The first term applies to all correct classifications of Cl0 to clusters, which is
equivalent to the Cl0mod operation, and which has a risk value less than δ, and
a fraction of at least 1− δ examples are expected to be correctly classified. The
second term are the incorrect cluster classifications with risk δ, so

E[R(Cl)] =(1− δ)
N∑

n=1

K∑
k=1

E([arg max
m

∑
i:C(n)∈Qi

P 0
Clmod

(Qi|x(n))PCli(Cm|x(n))=C(n)])P (Ck)P (x(n))

+δ

N∑
n=1

K∑
k=1

∑
i:C(n) 
∈Qi

E([arg max
m

PCli(Cm|x(n)) = C(n)])P (Ck)P (x(n)) .

Since in the second term the true class does not belong to the selected cluster,
therefore the subclassifiers cannot recognize it, and the value for this part of E[]
sums up to 1 as all examples are incorrectly classified. Thus



290 I.T. Podolak and K. Bartocha

E[R(Cl)] =(1− δ)
N∑

n=1

K∑
k=1

E([arg max
m

∑
i:C(n)∈Qi

P 0
Clmod

(Qi|x(n))PCli(Cm|x(n))=CU(n)])P (Ck)P (x(n))

+δ .

As the weak classifiers left are to have expected risk less then 1/2− ε− μ, and
all other terms sum up to 1, it follows that

E[R(Cl)] = (1− δ)(1/2− ε− μ) + δ , (21)

Since HC classifier Cl is to be at least weak, it must be that

E[R(Cl)] < E[R(Cl0)] < 1/2− ε , (22)

Substituting (22) in (21) we get

μ >
δ(1/2 + ε)

1− δ
. (23)

This is easily accomplished, because the subclassifiers are to solve tasks with a
smaller number of classes, therefore simpler. "#

4 Experiments

Several experiments were done with data sets from the UCI repository [13,14].
The results were compared with results obtained by Setiono with his hidden
neuron number optimized networks N2CS2 [15] as can be seen in Tab. 1.

Each network in a node classifier was a simple feed-forward network with 1 hid-
den layer, where the number of neurons is given columns of Tab. 1. Column “for-
mula hidden” had the number of neurons computed according to $√in + out%,
with in – number of input attributes, and out – number of subproblem’s classes.

The impact of the HC architecture on the classification accuracy for the
primary-tumor problem can be seen in Tab. 1, with sample accuracies presented
for the whole HC and for the root classifier. It is clear that the proposed archi-
tecture manages not only to increase the accuracy of the classification process,
but also achieves a more stable result on the training set. It can be seen that
the small size of single networks makes them very weak. Though, starting from
2 hidden neurons, the hierarchical classifier begins to achieve good results.

The accuracy for the primary-tumour problem is worse, but this is also the
case for other networks (e.g the results of Setiono in Tab. 1) as it is a hard
problem for machine learning. Since the individual networks are small, it is pos-
sible to train them fast obtaining good results. Since each level of the classifiers’
tree is built of independent networks, it is easy to parallelize the task. The GNG
algorithm proved to be fast and obtaining a stable clusterization with a high gen-
eralization rate. Compared to the original algorithm (a simple SAHN clustering
approach), it is easier to obtain a correct hierarchical architecture automatically.
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Table 1. The impact of HC architecture on accuracy (top). Cross validation training
and test accuracy rates for some training sets from the UCI Repository [13,14] (bottom
part)

trial no. 3 hidden 7 hidden
train test train test

Cl0 HC Cl0 HC Cl0 HC Cl0 HC

run no. 1 .41 .64 .29 .31 .59 .79 .34 .41
run no. 2 .39 .67 .24 .34 .58 .78 .36 .39
run no. 3 .40 .64 .34 .41 .60 .79 .36 .39
run no. 4 .47 .66 .39 .41 .60 .76 .43 .48
run no. 5 .45 .67 .31 .46 .61 .82 .43 .43

1 hidden 2 hidden 3 hidden
train test train test train test

audiology .32 ± .01 .24 ± .02 .89 ± .00 .67 ± .01 .97 ± .00 .78 ± .01
primary-tumour .25 ± .00 .25 ± .01 .47 ± .00 .36 ± .01 .59 ± .00 .39 pm.00
vowel .0.9 ± .00 .07 ± .00 .71 ± .01 .62 ± .01 .84 ± .01 .76 ± .01
zoo .67 ± .03 .66 ± .05 .96 ± .00 .87 ± .02 1.0 ± .00 .92 ± .01
soybean .18 ± ..00 .09 ± .00 .95 ± .00 .90 ± .00 .97 ± .00 .92 ± .00

4 hidden 5 hidden 6 hidden
train test train test train test

audiology 98. ± .00 .73 ± .02 .99 ± .00 .71 ± .00 1.0 ± .00 .72 ± .01
primary-tumour 63. ± .00 .44 ± .01 .69 ± .00 .43 ± .01 .70 ± .01 .42 ± .02
vowel .96 ± .00 .87 ± .00 .96 ± .00 .89 ± .00 .97 ± .00 .89 ± .00
zoo 1.0 ± .00 .95 ± .01 1.0 ± .00 .95 ± .00 1.0 ± .00 .93 ± .01
soybean .98 ± .00 .91 ± .00 .98 ± .00 .92 ± .00 .99 ± .00 .93 ± .00

7 hidden formula hidden Setiono
train test train test train test

audiology .99 ± .00 .73 ± .01 1.0 ± .00 .78 ± .00 .95 ± .01 .79 ± .01
primary-tumour .74 ± .00 .42 ± .01 .81 ± .00 .42 ± .00 .62 ± .01 .46 ± .01
vowel .97 ± .00 .88 ± .00 .99 ± .00 .93 ± .00 .94 ± .01 .89 ± .01
zoo 1.0 ± .00 .94 ± .01 1.0 ± .00 .94 ± .00 1.0 ± .00 .94 ± .01
soybean .99 ± .00 .93 ± .00 .99 ± .00 .93 ± .00 .96 ± .01 .93 ± .01

5 Discussion

This paper presented the HC hierarchical classifier architecture, together with
it’s enhancement by the use of a Growing Neural Gas (GNG) algorithm. The
classifier is composed of several simple classifiers, which are defined to be weak.
The composition of such classifiers gives a strong hierarchical classifier. At each
node the original problem is split into sub-problems, and a new sub-classifier is
built for each of them. A notion of generalized risk was introduced. Previously
the authors have used a simple clustering algorithm adapted for extraction of
overlapping clusters. The adoption of GNG was spurred by its reported good
approximation of input environment together with clear forming of connected
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GNG clusters. These clusters were adapted to correspond well with the HC
cluster structure. The histogram based method was introduced for overlapping
clustering. GNG proved to be a good solution.

Experimental results presented compare well with other optimum architecture
methods, and HC structure is built automatically. Only some rule needs to be
used for the selection of node classifiers size, but these can be kept very simple,
as can be seen in Tab. 1. Proposed HC is rather a scheme since any type of
classifier can be used for a node classifier.

Work is continuing to further integrate the GNG clustering with the HC
scheme, so that clustering process may continue alongside node classifiers train-
ing. This would be especially helpful in a changing environment and enable node
training parallelizing training a classifier and a clustering scheme.
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Abstract. A statistical model is presented as an alternative to nega-
tive selection in anomaly detection of discrete data. We extend the use
of probabilistic generative models from fixed-length binary strings into
variable-length strings from a finite symbol alphabet using a mixture
model of multinomial distributions for the frequency of adjacent symbols
in a sliding window over a string. Robust and localized change analysis
of text corpora is viewed as an application area.

1 Introduction

Finding anomalies in a collection of data has been one of the most important
research areas in the field of artificial immune systems (AIS), i.e., computational
methods inspired by the information processing of biological immune systems.
The negative selection algorithm (NSA) by Forrest et al. [1] was originally pre-
sented as an immunology-inspired method for classifying bit strings into self or
non-self when training samples are available only from the self class. This is
achieved by producing an initial detector collection which is pruned according
to negative selection based on the available self samples–that is: any detector
that matches a self sample is rejected. The remaining collection of detectors are
then used as an instance-based description of non-self data.

Recently, statistical methods have been shown to have good performance in
anomaly detection tasks [2]. Among these, the one-class support vector machine
[3] and probabilistic generative models [4] have been used as an alternative to
NSA-based learning. In the following sections, a generative model based on multi-
nomial distributions is presented for anomaly detection in variable-length strings
from an arbitrary symbol vocabulary.

In Section 2 we review the principle of negative selection based self/non-
self discrimination, and in Section 3 we review a generative model for fixed-
length binary strings and a related model for character frequencies. In Section
4 we present a generative model using multinomial distributions which can be
seen as a hybrid of the models of [4] and [5]. Section 5 discusses the properties
of natural language in terms of applying the developed model. Experimental
results using a simplified example and a natural language corpus are presented in

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 293–302, 2009.
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Section 6. Topics for further research are outlined discussion in Section 7 with
some conclusions in Section 8.

2 Anomaly Detection Using Negative Selection

The negative selection approach to anomaly detection [6] employs an instance-
based representation of the unseen data (non-self). The set of all data vectors
U contains the self set S ⊂ U from which a set of self samples s ∈ S are
available in the training phase. The self samples are used to prune an initial
(often stochastically generated) set D0 of detector strings such that all detectors
d ∈ D0 which have high affinity (similarity) with samples from S are removed.
The affinity function u(s,d) → R maps the similarity of two vectors into a real
value and can be customized to suit the application at hand.

In the pruning phase all self-matching detector candidates are removed from
the initial set of detectors according to the discrimination rule

mτ =

{
u(s,d) ≥ τ, self
u(s,d) < τ, non-self

∀s ∈ S, ∀d ∈ D0 (1)

After the censoring phase, any new sample x can be classified into non-self if a
match between x and a detector d ∈ D is found according to (1).

Compared to simply classifying according to a thresholded similarity with self
samples (positive selection), the NSA has the benefit of being able to make the
classification decision to non-self based on a single match between a detector
and a data sample, whereas positive selection would require matching with each
self sample before assigning x to the non-self class.

Originally, the NSA was used for fixed-length binary strings and affinity was
measured using bitwise-similarity metrics such as the Hamming distance or the
related r-contiguous and r-chunk matching rules [7]. Since then, the NSA has
been extended with various matching rules and data representation schemes from
binary data into multidimensional real-valued vector data [8].

However, as an instance-based learning scheme the NSA suffers from the curse
of dimensionality problem. Stibor et al. [9,10,11] have shown that in the case
of matching bit strings using the r-contiguous bit rule there is no method to
generate detectors efficiently as the problem can be reformulated as a k-CNF
satisfiability problem. While the unique properties of NSA can be useful in some
application domains, the process of searching for non-self matching detectors has
limitations in scaling for high-dimensional data. This result motivates the use of
statistical affinity measures over negative selection for strings from a non-binary
alphabet.

3 Related Work

3.1 Finite Bernoulli Mixture Models

Stibor [4] presented the use of finite multivariate Bernoulli mixtures as a gener-
ative model for detecting anomalies in l-dimensional bit strings. In this model, a
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bit string x ∈ {0, 1}l is considered to be generated by an l-dimensional Bernoulli
distribution. In this discrete distribution the outcome of each bit can be either 1
with probability P (x = 1) = Θ or 0 with probability P (x = 0) = 1−Θ. The one
dimensional probability distribution P (x|Θ) = Θx(1 − Θ)1−x can be extended
for l-dimensional bit strings into

P (x|Θ) =
l∏

i=1

Θxi

i (1−Θi)1−xi , xi ∈ {0, 1} (2)

where the parameter vector Θ = (Θ1, Θ2, ..., Θl) contains the probabilities for
each bit position.

To take into consideration the internal correlations in the data set X =
{x1, ...,x|X |}, a linear mixture of M distributions can be used such that the mix-
ture proportions of each component is defined by a parameter
α ∈ RM ,

∑M
m=1 αm = 1 and the probability of the mixture model generating

the string x is thus

P (x|Θ, α) =
M∑

m=1

αmP (x|Θm) (3)

where the matrix Θ = (Θ1,Θ2, ...,ΘM ) contains the parameter vectors of each
mixture component.

To find the maximum likelihood estimates for parameters for α and Θ the
EM algorithm [12] can be used to iteratively switch between computing the
posterior probabilities P (m|x, α,Θ) (E step) and re-estimating α and Θ (M
step). In the resulting mixture model, discrimination between self and non-self
is done according to the thresholded probability (3) such that any string x for
which P (x|Θ, α) ≥ τ is classified as self and all other for which P (x|Θ, α) < τ
are classified as non-self.

3.2 Negative Representation of Character Statistics

In [11] Stibor et al. have shown that the use of the r-chunk matching rule be-
comes infeasible when the binary alphabet Σ = {0, 1} is changed into a larger
symbol vocabulary. In specific, to generate a sufficient amount of detectors the
r parameter needs to be close to the string length which results in an infeasi-
ble space complexity. Applying the r-chunk matching rule directly to text data
where the size of the symbol vocabulary is typically above 20 is thus considered
of little use.

Recently, Pöllä and Honkela [5] have used a probabilistic model to generate a
negative description of a text document by examining the frequencies of individ-
ual characters in a sliding window of w characters. Using a character unigram
model, the frequency xi (0 ≤ xi ≤ w) of a specific character i ∈ Σ in a multiset
of w character has a Binomial distribution

P (xi = k|p) =
(

w

k

)
pk(1− p)w−k (4)
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where p is the unigram probability of the character. This property is then used
to produce a description of all character frequencies xi = k in a window of w
adjacent characters which are not observed in the available data. This approach
can be considered as a compromise between a negative selection algorithm and
a probabilistic self-model since the idea of non-self detectors is used but without
the need for inefficient negative selection of detectors since the size of the initial
detector collection is limited to |D0| = |Σ|(w + 1).

4 Multinomial Mixture Model

By combining the ideas of modeling self using a parameterized distribution and
the sliding window of characters approach, the two can be combined into a
generative model using a multinomial distribution and define non-self as any
string for which the probability of being generated by the statistical model does
not reach a selected threshold frequency.

Let Σ be a symbol alphabet and let D be a string from Σ. The size (car-
dinality) of the alphabet is denoted as |Σ| and the length of the document as
|D|. Further, let x be a |Σ|-dimensional categorical random variable counting
the frequency of each symbol i ∈ Σ in a window of w adjacent symbols in D.
Assuming an independent probability Θi for each symbol in Σ, the probability
of x has a multinomial distribution

P (x|Θ) =
w!∏|Σ|

i=1 xi!

|Σ|∏
i=1

Θxi

i (5)

where
∑|Σ|

i=1 Θi = 1 and
∑|Σ|

i=1 xi = w. To fit this model for a specific dataset
X = {x1,x2, ...,x|D|−w+1} we can find the maximum likelihood estimate for
parameters Θ by maximizing the likelihood function

L(Θ|X ) =
|X |∏
j=1

P (xj |Θ) =
|X |∏
j=1

⎛⎝ w!∏|Σ|
i=1 xji!

|Σ|∏
i=1

Θ
xji

i

⎞⎠ (6)

where xji is the frequency of character i in the jth training sample resulting in

ΘML =
1
|X |

|X |∑
j=1

xj (7)

where |X | is the number of available training samples.
Depending on the data set X at hand, a single multinomial model can be

insufficient to capture the internal correlations in the data and a finite mixture
model is justified. For a mixture of M multinomials, the probability of x is

P (x|α,Θ) =
M∑

m=1

αmP (x|Θm) =
M∑

m=1

αm
w!∏|Σ|

i=1 xi!

|Σ|∏
i=1

Θxi

mi (8)
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where the coefficients αm define the mixture proportions of the multinomials
parameterized by Θ = (Θ1,Θ2, ...,ΘM ). However, for the mixture model, the
optimal values for α and Θ cannot be solved analytically. As in [4] the EM algo-
rithm can be used to alternate between determining the posterior probabilities
and computing new parameter values. The E- and M-steps for a multinomial
mixture model (as presented in [13]) are as follows:

– E-step: use the current parameters Θ and α to compute the posterior prob-
ability of each sample xj being generated by mixture component m

P (m|xj ,Θ, α) =
P (xj |m,Θ, α)P (m)

P (xj)

=
αm

∏|Σ|
i=1 Θxi

mi∑M
m′=1 αm′

∏|Σ|
i=1 Θxi

m′i

(9)

– M-step: compute new parameters Θ
(t+1)

and α(t+1) according to the new
posterior probabilities

α(t+1)
m =

1
|X |

|X |∑
j=1

P (m|xj ,Θ
(t)

, α(t)) (10)

Θ
(t+1)
mi =

∑|X |
j=1 xjiP (m|xj ,Θ

(t)
, α(t))∑|Σ|

r=1
∑|X |

j=1 xjrP (m|xj ,Θ
(t)

, α(t))
(11)

where xji is the frequency of character i in the jth training vector and Θmi

is the parameter Θi of the mth component of the mixture.

After computing the parameters Θ and α for a dataset X , the discrimination
between self and non-self can be made by setting a threshold probability τ such
that any x for which P (x|Θ, α) ≥ τ is classified as self and P (x|Θ, α) < τ as
non-self.

To correctly classify all samples s ∈ S into self, the threshold probability
should be set to

τ = min{P (s|Θ, α)}, ∀s ∈ S (12)

in order to have the threshold probability as high as possible while still classifying
the self samples correctly.

5 Applying Multinomials for Textual Data

Difficulties in statistical modeling of language are often related to the problem of
data sparsity (i.e., insufficient amount of available training data in relation to the
dimensionality of the data). Analyzing documents using a “bag-of-words” model
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is a common approach to gain information about the content though losing much
information in ignoring word order. A bag-of-characters representation of text
extends this tradeoff even further as only a fraction of the entropy in the text is
preserved. Thus the character-based analysis is limited to simpler tasks such as
anomaly detection, language identification [14] and authorship attribution [15].

Anomaly detection in textual data is closely related to the problem of doc-
ument classification in information retrieval where document membership in a
category is often viewed as a posterior probability using a statistical model. The
one-class support vector machine has been applied in document classification [16]
tasks with various document representation schemes [17]. A bag-of-words based
multinomial model has been used by Novovičová and Maĺık [13] in document
classification with improved results compared to a näıve Bayesian classifier. Blei
et al. [18] have also used mixture models based on latent Dirichlet allocation
(LDA) where the mixture components represent document topics.

6 Experiments

6.1 Mixture Model for a 4-Symbol Vocabulary

A simple training set consisting of four-character strings from the vocabulary
Σ = {a,b,c,d} is used to fit a multinomial mixture of two components for
self/non-self discrimination. The training data set consists of strings where the
characters have a strong correlation such that each string in the training data set
consists of an equal amount of ’a’ and ’b’ or alternatively ’c’ and ’d’ (e.g. ’baab’,
’bbaa’, ’dccd’, or ’cdcd’). The multinomial parameters Θ are initialized randomly
in [0, 1]4 and the mixture coefficients are initially set to α = (0.5, 0.5). After 30
iteration rounds using EM, the mixture model has learned the parameters[

α1
α2

]
=

[
0.475
0.525

] [
Θ1
Θ2

]
=

[
0.07 0.07 0.43 0.43
0.41 0.41 0.09 0.09

]
A conditional probability distribution for this mixture model is shown in

Figure 1a with various probability contours for selecting the threshold prob-
ability τ in Figure 1b. Classification regions are shown for a threshold frequency
of τ = 0.1129 in Figure 1c.

Table 1 presents a listing of all
(4+4−1

4

)
= 35 possible 4 character multisets in

a descending order of probability according to the mixture model. For example,
by setting τ = 0.09 the model classifies each permutation of strings “aabb” and
“ccdd” as self and everything else as non-self.

6.2 Anomaly Detection in Written English

Anomaly detection in written natural language was simulated by using short
segments from the Reuters corpus1 and modifying a part of the string to test

1 http://about.reuters.com/researchandstandards/corpus/
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Fig. 1. Conditional probability distributions P (x1, x3|x2 = 7, x4 = 8) for strings (a),
contour lines for various threshold probabilities τ (b) and decision regions for self
(white) and non-self (black) for a given τ (c)

Table 1. List of all 35 possible 4-character multisets in a descending order of probability

x D example P (x|α,Θ) x D example P (x|α,Θ)
(0 0 2 2) “cdcd” 0.098831 (0 4 0 0) “bbbb” 0.015445
(2 2 0 0) “abab” 0.092671 (3 0 1 0) “aaac” 0.013075
(0 0 3 1) “cccd” 0.065887 (3 0 0 1) “aaad” 0.013075
(0 0 1 3) “dddc” 0.065887 (0 3 1 0) “bbbc” 0.013075
(3 1 0 0) “aaab” 0.061781 (0 3 0 1) “bbbd” 0.013075
(1 3 0 0) “bbba” 0.061781 (2 0 1 1) “aacd” 0.012973
(2 1 1 0) “aabc” 0.039224 (1 1 2 0) “abcc” 0.012973
(2 1 0 1) “aabd” 0.039224 (1 1 0 2) “abdd” 0.012973
(1 2 1 0) “abbc” 0.039224 (0 2 1 1) “bbcd” 0.012973
(1 2 0 1) “abbd” 0.039224 (1 0 3 0) “accc” 0.011022
(1 0 2 1) “accd” 0.033065 (1 0 0 3) “addd” 0.011022
(1 0 1 2) “acdd” 0.033065 (0 1 3 0) “bccc” 0.011022
(0 1 2 1) “bccd” 0.033065 (0 1 0 3) “bddd” 0.011022
(0 1 1 2) “bcdd” 0.033065 (2 0 2 0) “aacc” 0.006487
(1 1 1 1) “abcd” 0.025946 (2 0 0 2) “aadd” 0.006487
(0 0 4 0) “cccc” 0.016472 (0 2 2 0) “bbcc” 0.006487
(0 0 0 4) “dddd” 0.016472 (0 2 0 2) “bbdd” 0.006487
(4 0 0 0) “aaaa” 0.015445

the sensitivity of detection. As a preprocessing stage, a lowercase conversion
was made and all punctuation was removed from the data to limit the symbol
vocabulary into 26 characters (’a’ to ’z’). A 20-character string form the corpus
was selected at random and a single multinomial model was computed from the
string by setting w = 20. A random segment was then replaced to simulate
an edit in the original string and the probability of the model generating the
modified string was used to detect the anomaly.
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Figure 2a shows the detection rate (proportion of successful detections) for var-
ious window lengths and sizes of the modified segment when a substring of 1 to 5
characters was replaced with a random character. Figure 2b shows the same result
when a substring was swapped with another substring of the Reuters corpus.
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Fig. 2. Detection rate of replacing a substring of 1 to 5 characters with a random
string (a) and another segment of the Reuters corpus (b) into the original string D
(|D| = 20). Window length on the vertical axis. Mean result of 1000 trials.

In Figure 3 the probability (5) of the multiset of characters is shown for each
|D|−w +1 window positions for |D| = 200 and w = 100. An edit in the original
string has resulted in probability values which are lower than the threshold
τ = 4 · 10−17 and the change is thus detected.
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Fig. 3. Probability of each character window in a document. The changed part in the
document is detected in the region where the probability is below the threshold τ (black
dots).
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7 Discussion and Future Work

There are several open questions related to applying the multinomial mixture
model for anomaly detection in natural language. Using mixture models involves
making a compromise between the model complexity and the approximation ac-
curacy by selecting an appropriate number of mixtures. In the confined example
of Section 6.1 the number of components could be easily defined a priori using
information on the correlation structure of the data. However, the problem of
selecting an appropriate model complexity (i.e., using the Akaike information
criterion) is a relevant topic for further research. Also, as the method was pre-
sented as a general tool for discrete data, the same analysis could be used for
word or morpheme level analysis of corpora.

8 Conclusions

Biologically inspired anomaly detection based on negative selection suffers from
the curse of dimensionality when extending standard NSA algorithms to non-
binary strings. Recent work on statistical models for self/non-self discrimination
are thus expected to be more successful for textual data. A generative model
for variable-length strings from a general finite symbol alphabet was presented
for the application of change detection in textual data. The use of multinomial
models on the character and word level was discussed.

Our experiments on artificial data showed that the use of a probability based
similarity measure in binary classification is justified especially if there are strong
correlations in the data and if information on the symbol order in a set of w
adjacent symbols can be omitted for anomaly detection. A large scale experiment
on natural language was considered necessary to evaluate the performance of the
proposed model in practical settings.
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Abstract. Random swap-based clustering is very simple to implement and 
guaranteed to find the correct clustering if iterated long enough. However, its 
quadratic dependency on the number of clusters can be too slow in case of some 
data sets. Deterministic selection of the swapped prototype can speed-up the 
algorithm but only if the swap can be performed fast enough. In this work, we 
introduce an efficient implementation of the swap-based heuristic and compare 
its time-distortion efficiency against random and deterministic variants of the 
swap-based clustering, and repeated k-means. 

Keywords: Clustering, prototype swap, probabilistic method, k-means, 
efficiency. 

1   Introduction 

The clustering can be found by a sequence of prototype swaps and by fine-tuning 
their exact location by k-means as demonstrated in Fig. 1. A simple but effective 
approach is to select the swap randomly: select the prototype to be swapped randomly 
and replace it to the location of a randomly selected data vector. Despite being simple 
to implement and efficient in practice, the quadratic dependency on the number of 
clusters can be a limiting factor in cases when there are a large number of clusters.  

Several deterministic swap-based methods have been considered in literature by 
selecting the prototype to be swapped as the one that increases the cost function value 
least [1], [2], or by merging two existing clusters [3], [4], [5] following the spirit of 
agglomerative clustering. The new location of the prototype can be chosen either by 
considering locations of all possible data vectors [3], splitting an existing cluster 
[3], [6], or by using some heuristic such as selecting the cluster with the largest 
variance [1]. The swap-based approach has also been used for solving in a related 
p-median problem [7]. 

The main drawback of the above mentioned approaches is their computational 
complexity. Even though the correct clustering can be obtained by much fewer 
iterations in comparison to random swap, the time spent for the selecting the best 
prototype can easily overweigh the efficiency of the random swap heuristic. Another 
drawback is that the deterministic swap may get stuck into a locally optimal solution 
if randomness is completely eliminated in the process. In terms of time-distortion 
efficiency, a good compromise uses deterministic prototype selection and random 
relocation [8]. 

In this paper, we propose a faster implementation for the deterministic selection of 
the prototype, and compare it to the existing swap-based variants: random swap, 
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Current solution Centroid swapping

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Local repartition Fine-tuning by K-means

Swap is made from
centroid rich area to
centroid poor area..

 

Fig. 1. Demonstration of the swap-based clustering for a sample initial solution for N=5000 
data points from M=15 clusters 

deterministic swap, hybrid of these two, and repeated k-means. We give time 
complexity analysis of the proposed method and show that it is as fast as the random 
heuristic in a single iteration, and is capable of finding the same clustering result in 
a fewer iterations. We compare experimentally in which cases the proposed approach 
is more favorable than the random swap. 

2   Swap-Based Clustering 

The efficiency of a swap-based clustering depends on how many iterations (swaps) 
are needed, and how much time each iteration takes. In a recent study, it was shown 
that for a given probability of success, the efficiency of the random swap [9], [10] has 
linear dependency on the number of data vectors, quadratic dependency on the 
number of clusters, and inverse dependency on dimensionality [11]. This is good in 
most cases but potentially faster method could be implemented if the swap could be 
found calculated more efficiently.  

Another advantage of the random swap method is that it is extremely simple to 
implement. In comparison to k-means consisting of two steps (centroid step and 
partition step), it has only one additional step: prototype swap. In most cases, this step 
is independent on the metric used and it is trivial to implement, which makes it highly 
useful for practical purposes. Pseudo code of the algorithm is sketched in Fig. 2, 
which produces for a given input data set (X), a set of prototypes (C), and the partition 
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Swap-based clustering (X) → C, P 

C ← Select random representatives (X); 
P ← Optimal partition(X, C); 

REPEAT T times 

     (Cnew,j) ← Swap(X, C); 
     Pnew ← Local repartition(X, Cnew, P, j); 
     Cnew, Pnew ← K-means(X, Cnew, Pnew); 
     IF f(Cnew, Pnew) < f(C, P) THEN 
        (C, P) ← Cnew, Pnew; 

 RETURN (C, P); 

Fig. 2. Structure of the general swap-based clustering 
     (For details and source code: http://cs.joensuu.fi/sipu/soft) 

 

of the clustering (P) as the output. Here f is the optimization function to be 
minimized; typically mean square error (MSE). 

2.1   Number of Iterations 

At first sight, the probability for a successful swap seems to be rather small and a long 
number of iterations would therefore be needed. However, it is not necessary to find 
exactly the correct prototype for removal but selecting a neighbor cluster is sufficient. 
In practice, the number of iterations (T) needed depends on the probability of failure 
(q), number of clusters (M), and the size of neighborhood (α) as follows [11]: 

⎟
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The clustering, however, can be found by much fewer swaps if the algorithm 
knows which prototype should be swapped and where it should be re-located. The 
motivation of this paper is to develop a fast deterministic swapping technique that 
would be more efficient than the random swap, but at the same time, avoid the 
problem of getting stuck into a local minimum, which can easily happen when 
heuristic algorithms are designed.  

The task seems to be straightforward but is far from trivial to implement in 
practice. Methods for prototype selection and replacement can be analytically 
constructed by considering all possible prototypes for the swap and selecting the 
locally optimal choice at each step. However, the challenge is to make this without 
excessive computation. Otherwise the method would be outperformed by the random 
swap technique since it can performed much faster, and significantly larger number of 
candidate swaps can be tested in a much shorter time. 

2.2   Selecting the Prototype to Be Swapped 

Swapping the prototype involves two design questions: which prototype will be 
swapped and where it should be relocated. The swapping makes one cluster to 
disappear and creates a new cluster elsewhere in the data space.  
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Several simple heuristic criteria have been considered for the selection: cluster 
with smallest size or smallest variance but these are too naïve to work in practice. 
Another approach is to merge two existing clusters as in agglomerative clustering [2], 
or applying split-and-merge strategy as in [4], [5]. These are possible but operating 
the clusters as entity can restrict the clustering too much and is subject to the problem 
of getting stuck into local minimum.  

Considering the clustering as an optimization problem (e.g. minimizing mean 
square error), the most logical approach is to swap the prototype whose removal from 
its current location increases the cost function least. This kind of local optimization 
strategy has been successfully applied in several clustering algorithms [1], [2], [3], 
[4], [8], and also used in p-median problem [7], which differs from the clustering 
problems in the sense that the prototypes (facilities) are restricted to a predefined set 
and not free parameters as in clustering. 

2.3   Efficient Implementation of the Selection 

To implement the above approach, a so-called removal cost must be calculated for 
each cluster as follows. First, for a given data vector (xi) associated in a cluster (pi), its 
second nearest prototype (qi) is solved:  
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The removal cost for cluster (j) can now be estimated by summing up the 
differences if the vectors in the cluster are repartitioned to their second nearest one 
(qi):  
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where c denotes the prototypes, and d the distance function. A more accurate 
estimation in [6] takes into account that the prototypes will be updated after the 
repartition, and should therefore be calculated as follows: 
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Here nqi refers to the size of the secondary cluster. The drawback of these 
approaches is that they take N distance calculations for each of the M clusters. Thus, 
the overall time complexity of the swap step becomes O(NM). This can be 
significantly larger than that of the random swap, which takes only O(αN) time per 
swap [11] where α is the number of neighbors. 

However, since only a few prototypes will change after the swap, it is more 
efficient to maintain both data structures (p and q indices) after each swap as in [2, 7]. 
When a prototype is swapped, all vectors in the old cluster will be repartitioned from 
the primary partition (p) to their secondary partition (q). The changes in the secondary 
partition (q) can be updated as described in [2]. New secondary partitions must be 
resolved for all affected vector by a full search. This causes the following necessary 
updates: 
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Secondly, the same information must also be updated after the cluster addition. The 
new prototype attracts vectors from the neighboring clusters. Partition of every vector 
that is closer to the new prototype (cj) than the one of its current cluster, must be be 
updated as follows: 

jpi ←  (7) 

ii pq ←  (8) 

The full search involved in the argmin operation requires O(M) time. The cluster 
removed and the cluster added both have α neighbors, each consisting of N/M vectors, 
on average. The total time complexity of the swap step therefore reduces to 
O(2α⋅M⋅N/M) = O(αN), which is the same complexity as that of the random swap. 

2.4   Adding New Prototype 

We consider every possible data vector as the potential new location for the swapped 
prototype. Calculating the cost of each of them is possible [3] but this would be very 
inefficient taking O(αN2) time as there are N possible locations, and each of them 
would require O(αN) time to perform the local repartition. To relax the time 
requirements, we divide the problem into two sub tasks, which will be considered 
independently of each other: 

1. Select an existing cluster. 
2. Select the location within this cluster. 

It is expected that the choice of the cluster is more important, and the exact 
location within the cluster is less significant since k-means will be applied to take care 
of the local fine-tuning of the prototype. Thus, the idea is to first select the cluster, 
and then add the prototype somewhere inside this cluster. This reduces the number of 
choices down to M and the corresponding time complexity to O(αNM). However, this 
is still too much. 

Heuristic selection can also be considered. The most natural is to choose the cluster 
having the highest distortion [1]. This would reduce the time complexity of this step 
to O(M+N) = O(N), where the first term originates from the selection and the second 
from the repartition. The cost (actually benefit) of adding the prototype cj can be 
calculated as follows: 
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We consider the following heuristics: 

- Current centroid + ε [1]. 
- Furthest vector. 
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- Halfway of current centroid and furthest vector. 
- Random. 

These heuristics can be performed in O(1)-O(N/M) time plus O(αN) time due to 
the repartition, which can be performed independently on the selection. The main 
alternatives for selecting the new location of the prototype are summarized in Table 1. 
On the basis of this analysis, we select the heuristic variant for the deterministic swap. 

Table 1. Main variants for creating a new cluster 

Variant 
Which 
cluster 

Which 
location 

Time 
complexity 

Full search Try all Try all O(αN2) 
Optimal cluster Try all Any heuristic O(αNM) 
Heuristic Largest distortion Any heuristic O(αN) 
Random Random Random O(αN) 

2.5   Demonstration of the Deterministic Swap 

The deterministic swap is demonstrated in Fig. 3 for a random initial solution. The 
removal and addition cost for each cluster are listed in Table 2. For the removal, 

 

Current solution (MSE ≈ 1.73*109) Centroid swapping (MSE ≈ 4.89*109)

Local repartition (MSE ≈ 1.59*109) Fine-tuning by K-means
(MSE ≈ 1.33*109)
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7
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8
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2

3

9

Two centroids, but
only one cluster.

One centroid, but
two clusters.

 

Fig. 3. Demonstration of deterministic swap for a given initial solution using MSE as the cost 
function 
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Table 2. Removal and addition cost each cluster presented in Fig. 3 

j 
Removal 
cost (Dj) 

Addition 
cost (Ej) 

1 0.80 0.39 
 2 1.04 0.64 
 3 5.48 1.09 
 4 5.66 0.92 
5 6.50 0.76 
6 7.67 1.01 
7 8.47 0.45 
8 9.10 0.75  

j 
Removal 
cost (Dj) 

Addition 
cost (Ej) 

 9 9.90 1.42 
10 11.09 1.26 
11 11.47 0.61 
12 12.17 4.70 
13 14.61 0.94 
14 16.41 0.93 
15 16.68 1.41  

 
 
clusters 1 and 2 are the best choices. Their absence would increase the distortion 
much less than the removal of any other cluster; the algorithm will choose the 
cluster 1. For relocation, cluster 12 causes currently the highest distortion by a large 
margin, and will be chosen. In this example, the furthest vector heuristic was  
applied. 

2.6   Combinations of Random and Deterministic Swap 

The main problem of the deterministic variant is that it ends up in sub-optimal local 
optima, and certain amount of randomness is still needed in order to optimize the 
clustering beyond this limit. The following combinations of random and deterministic 
techniques are therefore considered: 

- RR = random removal, random addition (=random swap). 
- RD = random removal, deterministic addition. 
- DR = deterministic removal, random addition. 
- DD = deterministic removal, deterministic addition. 

Time complexities of these variants are summarized in Table 3. From the 
deterministic removal, the proposed faster implementation of DR and DD are denoted 
here as D2R and D2D, respectively.  

The bottleneck of the deterministic swap is the removal, which dominates the 
processing time. Considering the analysis in [11], the deterministic removal is more 
efficient than its random counter part if M < αT, assuming that it always selects the 
correct cluster in 1 iteration, and random removal within T iterations. With the data 
set shown in Fig.3, this is the case (M=15, α≈4, T=20). The deterministic removal 
also stabilizes the solution faster than random removal, which is shown by the 
decreased time required by the k-means iterations. 

The increased (theoretical) time complexity required by the deterministic addition, 
on the other hand, is insignificant in comparison to its random counter-part. It is 
therefore possible that the RD variant might be a good compromise between the 
random swap (RR) and deterministic swap (DD). However, the results even with the 
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Table 3. Summary of the time complexities of the main variants 

Random removal Deterministic removal Deterministic removal
with updating data

RR RD DR DD D2R D2D
Removal O(1) O(1) O(MN) O(MN) O(αN) O(αN)
Addition O(1) O(N) O(1) O(N) O(1) O(N)
Local repartition+ O(αN) O(αN) O(αN) O(αN) O(αN) O(αN)
K-means
Algorithm in total O(αN) O(αN) O(MN) O(MN) O(αN) O(αN)  

 

 
slower method in [8] revealed the opposite: the deterministic removal and random 
addition (DR) provides better time-distortion performance than either DD or RD 
variants despite its higher time complexity of single iteration. This is also the reason 
why the D2R variant is worth considering and is proposed here. 

For the k-means component, we use the fast variant [12] that utilizes the 
information of the prototype activity from previous iteration. Since most of the 
prototypes stabilize fast, it achieves a remarkable speed-up (both in theory and 
practice) in comparison to full search with rather simple algorithm. Potentially further 
speed-up could be potentially obtained by joining it with kd-tree as in [13], or with 
triangular inequality rule as in [14]. 

3   Experiments 

In the following, we cluster four image data sets [2] by Hewlett-Packard Pavilion with 
2.20 GHz ADM Athlon XP 3200+ processor and 512 MB memory. The vectors in 
Bridge are 4×4 non-overlapping blocks, in Miss America 4×4 difference blocks of two 
subsequent frames in a video sequence. The set House consists of RGB color values, 
and Europe consists of differential coordinates.  

Time-distortion performance of the selected methods is compared in Figure 4 and 
Table 4. The following variants are compared: repeated k-means (RKM), random 
swap (RS), deterministic swap with random addition (DR) and its time-efficient 
implementation (D2R). K-means results are obtained by the fast exact variant as 
proposed in [12].  

The proposed algorithm (D2R) outperforms its straightforward counterpart (DR) 
[8] and provides the same clustering quality than the random swap (RS) [9] with 
a similar or faster speed in case of all data sets except the 2-dimensional set Europe. 
This is also the only set for which the swap-based clustering does not provide any 
benefit over the repeated k-means at all. With the higher dimensional data sets, the 
method works better.  
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Fig. 4. Time-distortion efficiency of the different swap variants 

Table 4. Summary of the clustering quality within a given time constraint 

Clustering quality (10s) Clustering quality (100s) Data  
Set RKM RS DR D2R RKM RS DR D2R 

Bridge 179.93 174.88 176.66 172.89 175.18 167.06 166.43 165.45 

House 6.66 6.44 6.73   6.44 6.48 6.03 6.16 6.06 

Miss 
America 

5.91 5.88 6.01 5.87 5.84 5.47 5.68 5.40 

Europe 17.89 20.01 31.63 31.63 6.17 6.27 8.83 13.46 

4   Conclusions 

Random swap method is very simple to implement and finds the correct clustering 
when iterated long enough. However, its quadratic dependency on the number of 
clusters motivated us to develop a faster method for selecting the prototype to be 
swapped deterministically. We have compared several random and deterministic 
variants. The methods also generalize for the case of unknown number of clusters by 
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replacing the cost function by a suitable cluster validity index, and by having three 
operations: cluster removal, cluster addition and random swap. 
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Abstract. Different clustering algorithms achieve different results with certain 
data sets because most clustering algorithms are sensitive to the input 
parameters and the structure of data sets. The way of evaluating the result of the 
clustering algorithms, cluster validity, is one of the problems in cluster analysis. 
In this paper, we build a framework for cluster validity process, while 
proposing a sum-of-squares based index for purpose of cluster validity. We use 
the resampling method in the framework to analyze the stability of the 
clustering algorithm, and the certainty of the cluster validity index. For 
homogeneous data based on independent variables, the proposed clustering 
validity index is effective in comparison to some other commonly used indexes.  

1   Introduction 

Clustering is an unsupervised process which intends to discover the unknown 
structure of data sets accurately. There are a number of clustering algorithms [1] 
based on different strategies and they are developed to satisfy with different needs 
from the data sets. The common sense is that there is no general algorithm applicable 
to all kinds of data sets. The problem comes up that how to evaluate the effect of 
clustering algorithms on different data sets. Cluster validity provides the way of 
validating the quality of clustering algorithms and the means of discovering the 
natural structure of the data sets. If cluster analysis is to make a significant 
contribution, much more attention must be paid to the cluster validity issues. Cluster 
validity measures are the methods, which can not only compare the results of two 
different sets of clustering algorithms to determine the better one, but determine the 
“correct” number of clusters in the data set. 

Amounts of cluster validity indexes have been proposed. Milligan and Cooper [2] 
have presented a comparison study over thirty validity indexes for hierarchical 
clustering algorithms whereas Dimitriadou et al [3] conducted their comparison study 
over fifteen validity indexes for the case of binary data. Different indexes under 
different situations achieve different results. We introduce several indexes mentioned 
in these two literatures for purpose of comparison.  

                                                           
* Thanks to Nokia Foundation for financial support. 
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We separate the indexes in this paper into two types, one is sum-of-squares based 
type, and the other is classical type. The methods in the first type measure the 
dispersion of the data points within a cluster and between the clusters respectively. 
The indexes are: 

• Ball and Hall [4], the maximum value of the successive difference is 
determined as the optimal number of clusters. 

• Calinski and Harabasz [5], the minimum value of the successive difference is 
determined as the optimal number of clusters. 

• Hartigan [6], the minimum value of the successive difference is determined as 
the optimal number of clusters. 

• Xu [7], the maximum value can be determined as the optimal number of 
clusters, the successive difference is applicable but not necessary. 

The classical measures are mostly proposed in different area and perform well to 
some extend. These measures share the advantage of using the maximum or minimum 
value as the optimal number of clusters.  

• Dunn’s index [8], the maximum of the index value is determined as the 
optimal number of clusters. 

• Davies-Bouldin index [9], the minimum of the index value is determined as 
the optimal number of clusters. 

• Xie-Beni’s separation index [10], the minimum of the index value is 
determined as the optimal number of clusters. 

• Bayesian Information Criterion [11], which is a model selection criteria. The 
first local maximum is determined as the optimal number of clusters. 

• Silhouette Coefficient [12], the maximum of the index value is determined as 
the optimal number of clusters. 

Applications of resampling method, such as bootstrapping, subsampling, or cross 
validation to cluster validity are not new in the cluster validity. Peck et al. [13] 
developed a bootstrap-based procedure to obtain approximate confidence bounds on 
the number of clusters in the “best” clustering. Ben-Hur et al. [14] presented a method 
that exploited measurements of the stability of clustering solutions obtained by 
perturbing the data set. Cluster validation by prediction strength [15] considered 
clustering as a classification problem, which used the way of cross validation 
technique. Dudoit and Fridlyand [16] introduced a prediction-based sampling method, 
CLEST, in which, the data was first split into two non-overlapping sets. Then the 
learning set was clustered and a classifier was built using the obtained labels; the test 
set was also clustered and the obtained labels were compared using an external index.  

We establish a framework of cluster validity process with resampling methods to 
validate the clustering algorithm and the validity index. Moreover, a sum-of-squares 
based index is proposed. The rest of the paper is organized as follows. We introduce 
the framework of the cluster validity in Section 2. The proposed index is formulated 
in Section 3. Experiments on the proposed method are presented in Section 4, in 
which the results on both artificial generated and real data sets are also displayed. 
Two clustering algorithms are applied in the experiment. A further step on variability 
and certainty analysis is introduced in Section 5. Conclusions and future work are 
drawn in Section 6. 
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2   Related Work 

Cluster validity relates to the clustering algorithms. The fundamental clustering 
problem is to partition a given data set into groups, so that the points in the same 
group are more similar to each other than the points in different groups. Thus, one 
way of the cluster validity is to analyze within-between group variance.  

Let X = {x1, x2 … xn} be a set of data with n samples. Suppose the samples in X 
have hard labels that mark them as representatives of m non-overlapping clusters, says 
C = {C1, C2 … Cm}. The clustering algorithm is to find the optimal partition P = {P1, 
P2 … Pm}. The most important parameter among them is the parameter m, the number 
of clusters, because most of the clustering algorithms require the parameter m as the 
input and thus the clustering result is also affected by it.  

Given the data set X, a specific clustering algorithm, and a fixed range of number 
of clusters, the basic procedure of the cluster validity involves the following steps:  

• Fix the data sets with external information. 
• Repeat the clustering algorithm successively for the number of clusters, m 

from a predefined minimum mmin, to a predefined maximum mmax. 
• Get the clustering results: partitions and codebooks. Calculate the index 

value of each number of clusters. 
• Plot the “number of clusters vs. index metric” graph and select the m at 

which the partition appears to be the “best” according to how the index is 
optimized.  

• Compare the detected number of clusters (m*) with the “external 
information” to prove the effectiveness of the index. 

 

m*

({P*, C*})({X})

Resampling

INPUT:
DataSet(X)

Clustering
Algorithm

Validity
Index

Resampling'

Parameters
m

Partitions P
Codebook C

 

Fig. 1. Scheme diagram of cluster validity process 

The clustering algorithm can be any of the existing algorithms. We use the 
Random Local Search algorithm (RLS) [17] in the validity procedure. The RLS 
clustering algorithm shares the advantage of both the k-means and the local search. 
To eliminate the effect on index from the clustering algorithm, K-means clustering, 
the most typical clustering algorithm is also tested in this paper.  

Based on this procedure, we can easily have the scheme diagram of cluster validity 
in Fig.1. To estimate the stability of the clustering algorithm, we could use resampling 
method as is shown in the resampling part. Furthermore, in order to exclude the effect 
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of data sets and clustering algorithm, another resampling method is employed, as the 
resampling’ part shows. This part will be shown in section 4 in detail. 

Basically, comparison is essential to prove the effectiveness. The two types’ 
indexes mentioned above are compared to the proposed index in the experiments 
section. 

3   Proposed Method 

In cluster analysis, the within group variance and between group variance can be 
calculated by sum-of-squares within cluster (SSW) and sum-of-squares between 
clusters (SSB) respectively. We analysis the existing index based on SSW and SSB, 
and then propose a sum-of-squares based method, so-called WB-index. 

The value of SSW is defined as:  

( )
1

1
( , ) || ||

i

m

j P j
i j C

SSW C m x C
n = ∈

= −∑∑  (1) 

which is minimized over all m-partitions C in the clustering procedure. According to 
ANOVA, the total sum-of-squares (SST) can be decomposed into two parts that are 
SSW and SSB for any partition C.  

1

1
( , ) || ||

m

i i
i

SSB C m n C x
n =

= −∑  (2) 

where ni is the number of elements in each cluster, and x  is the mean value of the 
whole data set, m is the number of clusters. Hence, we can now define a generalized 
within-between cluster type (SSWB) in Eq.3, which is a function of the SSW or SSB:  

( ( , ), ( , ))SSWB function SSW C m SSB C m=  (3) 

Table 1. Sum-of-squares based indexes 

No. Index Name Formula 
1 Ball & Hall SSW/m 

2 Calinski&Harabasz 
/( 1)

/( )

SSB m
CH

SSW n m

−=
−

 

3 Hartigan log( / )H index SSW SSB− = −  

4 Xu 2log( /( )) log( )Xu d SSW dn m= +  
 
 
The sum-of-squares based methods above (table.1) are all based on the property of 

the SSW and SSB. We study these indexes in Fig.1. As in Fig1.(a) shows, the trends of 
normalized SSW and SSW/SSB are almost same, indicating that the factor of the SSW 
has a more important effect in the ratio of SSW/SSB. In other WB-type indexes except 
for Xu’s index, we find that they either monotonously increase/decrease or need 
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additional knee point detection method, such as successive difference in order to get the 
optimal number of clusters. Xu’s index has clear minimum knee point; however, our 
experiments in section 4 will show it doesn’t work well on real data sets.  

Thus, we propose a simpler sum-of-square method, WB-index as: 

/WB m SSW SSB=  (4) 

We emphasize the effect of SSW with multiplying the number of clusters. The 
advantages of the proposed method are that it determines the number of clusters by 
minimal value of it without any knee point detection method, and it is easy to be 
implemented. 

 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. (a). Comparison of SSW and SSW/SSB; (b)-(f). Comparison of several sum-of-square 
based indexes with four artificial data sets (s1-s4).  
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4   Experimental Results 

In this paper, we test the methods with the data sets in table.2. The data sets s1 to s4 
are generated with varying complexity in terms of spatial data distributions, which 
have 5000 vectors scattered around 15 predefined clusters with a varying degrees of 
overlap. The datasets a1 and R15 are generated in 2-dimensional Gaussian 
distribution. Iris and Breast are the real data sets obtained from the UCI Machine 
Learning Repository. Iris is a four-dimensional data set, containing three classes of 50 
instances each, in which each class refers to a type of iris plant. The second real data 
set is the Wisconsin breast cancer data set (Wolberg and Mangasarian, 1990). 

For purpose of comparison, we test five other classic measures:  

• Dunn's index (DI)  
• Davies-Bouldin's Index (DBI)  
• Xie-Beni (XB)  
• Bayes Information Criterion (BIC)  
• Silhouette Coefficient (SC) 

In the special case of m=1, SSW equals to SST. Clustering algorithm is therefore 
performed by m=[2,30] in the case of S1-S4, and m=[2,10] in the case of the real data 
sets.  

Table 2. Information of the data sets in the experiments 

DataSet Size Dimension
# of 

clusters 
Generated

s1-s4 5000 2 15 artificial 

a1 3000 2 20 artificial 

R15 600 2 15 artificial 

Breast 699 11 2 real 

iris/Iris 150 4 3 real 

Table 3. Results using the RLS (with 5000 RLS iterations and 2 K-means iterations) 

DataSet BH* CH* Har* Xu DI DBI XB SC BIC*
WB-

INDEX
3 15 15 15 15 15 15 15 15 15
3 15 4 15 7 15 15 15 4 15
4 15 4 15 16 8 4 15 4 15

s1-s4

3 15 3 15 25 13 13 15 5 15
a1 3 20 3 20 34 20 20 20 3 20

R15 3 15 15 15 2 15 15 15 8 15
Breast 3 3 3 NA 14 2 2 2 2 2

Iris 3 3 3 NA 2 2 2 9 6 3  
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Fig. 3. The results with different validity indexes and data sets. The results of Xu’s index and 
the proposed index on real data set Iris are on the last row. It is unable to find the minimum 
value of Xu’s index as the optimal number of clusters as it is monotonously decreasing.  
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4   Significance Analysis 

The results of the experiments with different clustering algorithms and data sets 
demonstrate that the proposed index can provide an accurate estimation of the number 
of clusters, which also shows the effectiveness of the cluster validity. Fundamentally, 
we can demonstrate the proposed index as it shows in the experiments. Moreover, we 
want to confirm the results in this section by further significance analysis.  

4.1   Variability Analysis 

With an uncertain distribution of the results, resampling method can be employed as a 
natural approach for the variability estimation associated with each index value. As in 
the process shows (Fig.1), we could resample on the original data set (X), get a new 
data set (X*) and apply the new data set for the validation procedure again. Repeat the 
resampling B times, deal with the B times index values to get the statistical 
significance. However, the RLS clustering algorithm is designed with randomization, 
in which there is random swapping of the code vectors. Hence, we keep the data set 
unchanged and utilize the randomization of the clustering algorithm by running B 
times to analyze the results. 
 
 

 

Fig. 4. 90% probability interval of the WB-index with the RLS and KMeans clustering on the 
data set Iris 

Quartile range is one of the measures used to estimate variability. We use it into 
our scheme to analyze the variability of each index value. With the same setting of 
input parameters, fix the number of clusters, and run the clustering algorithm B times 
to get B values on the same number of clusters. Then the 5th and 95th percentiles of the 
B index values are calculated to get 90% probability range.  

Iris data as a real data set is a representative to be tested. According to the results, 
only the proposed method and the BIC with knee detection get the correct number on 
Iris. In this case, both of the clustering algorithms with the same data set and index 
are tested. We run B = 100 times of the clustering algorithm with the same input 
parameters setting. The 90% probability interval with the RLS and K-means is shown 
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respectively in Fig.4, and the dash line is the boundary of the range. It is clear that the 
range m = [2, 3] strongly indicates the optimal number of clusters with the RLS 
clustering; and m = [2, 5] with the K-means clustering. The range of m is wider with 
the K-means clustering than the RLS clustering. Thus we can conclude that RLS 
clustering is more stable than the K-means and the variability of the K-means on m = 
3 is convincingly larger than that of the RLS on the Iris. 

4.2   Certainty Analysis 

We develop another way to prove the certainty of the proposed index, which employs 
the resampling method. As Fig.1 shows, the effect of the validity index is affected by 
the data set and the clustering algorithm. In this case, resampling the data set cannot 
prevent the effect coming from the clustering algorithm. Hence, we process the 
resampling method on the partitions getting from the clustering to avoid this problem. 

In the first run of the validity procedure, a set of partitions (P) is generated. 
Basically, this set of partitions is the optimal one according to the clustering 
algorithm. A WB-index value (WBI) is obtained on P. We permute the original 
partitions (P) by B times, get {P*}, and recalculate the index values {WBI*}. As the 
optimal value of the WB-index should be as small as possible, we can estimate the 
certainty by counting the probability that WBI*≤ WBI. 

.( * )

.( *)

No WBI WBI
P

TotalNo WBI

≤=  (5) 

The smaller the probability P is, the more certainty the method obtains. It is not 
practical to calculate all possible permutations due to the involved time. Generally, at 
least B =1000 times permutations should be done. In this paper, 1000 random 
permutations were performed on the partitions (Fig.5). It indicates the certainty of the 
index, as the observed optimal value is much smaller than any of the values obtained 
under permutation. 

 
 
Fig. 5. Distribution of the WB-index on Iris data set (m=3) for 1000 permutations of the 
partitions with the RLS clustering. The “optimal” value of the WBI is very extreme by 
reference to this distribution (WBI = 0.032653).  
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5   Conclusions 

We represented a framework with the resampling step for the estimation on the 
stability of the clustering algorithm and the variability of the validity index in cluster 
validity process. In addition, we proposed a new sum-of-squares based index which 
indicates simplicity and good prospect compared to other indexes. Based on the 
proposed index, we completed the whole process of the cluster validity.  
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Abstract. We propose a generalized model with configurable discretizer 
actuators as a solution to the problem of the discretization of massive numerical 
datasets.  Our solution is based on a concurrent distribution of the actuators and 
uses dynamic memory management schemes to provide a complete scalable 
basis for the optimization strategy. This prevents the limited memory from 
halting while minimizing the discretization time and adapting new observations 
without re-scanning the entire old data. Using different discretization 
algorithms on publicly available massive datasets, we conducted a number of 
experiments which showed that using our discretizer actuators with the 
Hellinger’s algorithm results in better performance compared to using 
conventional discretization algorithms implemented in the Hugin and Weka in 
terms of memory and computational resources. By showing that massive 
numerical datasets can be discretized within limited memory and time, these 
results suggest the integration of our configurable actuators into the learning 
process to reduce the computational complexity of modeling Bayesian networks 
to a minimum acceptable level.  

Keywords: Intelligent Systems, Massive datasets, Bayesian Networks, 
Discretization, Scalability. 

1   Introduction 

Bayesian network models often formulate the core reasoning component of some 
intelligent systems because of their suitability in handling complex problems [1]. 
Researchers and practitioners have stressed that learning such models from 
environments captured as massive datasets is computationally intensive [2] [3]. In 
practice, it is convenient to say that massive datasets are relatively defined based on 
the capacity of the machine used for learning and are also dependent on users’ 
execution urgency. For example 50,000 records of dataset may be massive for a 
machine and moderate or small for another. The intensity on the datasets implies that 
too much of computational time is expended and limited memory space may crash 
during these operations. This affects business and research deliveries, and may hinder 
the growing usage of Bayesian networks in industries that keep massive datasets to 
build intelligent systems. From our practical knowledge, improving the performance 
of discretization is obviously a sound basis for optimizing Bayesian networks’ 



324 I.O. Osunmakinde and A. Bagula 

learning. Intelligent system engineers do not want to wait too long to make the 
reasoning component ready for use. 

Most of the existing conventional algorithms load entire massive datasets onto the 
limited memory for discretizations and a column is processed one at a time. Time is 
expended for loading, discretizing and probably saving back, which could otherwise 
have been minimized. Carrying out the discretization process on massive datasets 
whose size is more than the available allocated memory may currently not be 
practically feasible. Achieving this requires scalability of discretization methods 
which is very challenging.  

A number of fairly recent studies have developed good conventional algorithms to 
discretize datasets but they fall short in considering the scalability of their approaches 
[4] [5]. Among the rationales in this scalability research is studying how massive are 
the datasets used in the existing discretization approaches. For examples, Li et al.[4] 
suggested feature selection heuristics for discretizing bio-medical data where they 
evaluated it on a notable lung-cancer dataset of 10,000 records. Lee’s supervised 
algorithm [6] is similar to Li et al. but he used the entropy of intervals for 
discretization. Also, Lee used a maximum of 3,163 records of hypothyroid dataset to 
evaluate his work. Out of the 16 datasets used by Dougherty et al. [5], the maximum 
size is Australian dataset with 6,650 records.  

The computational times and memory usages of the methods described above are 
not known though these are two important parameters upon which the scalability of 
discretizing massive datasets for learning networks depends. In an attempt to address 
scalability of discretizations for the core component of intelligent systems, the 
available open source network learning applications (e.g. Weka [7] and Hugin [8]) 
force users to discretize all numeric values of the attributes present in the datasets. 
However, certain numeric attributes in real life are not necessarily required to be 
discretized. In this research, we proposed configurable discretizer agent actuators 
which dynamically scale limited memory and improve computational time efficiency. 
In a number of comparative evaluations, the actuators outperform the conventional 
discretization approaches in speed and memory management respectively. Our major 
contributions are:  

 
• The development of a new generalized configurable discretizer actuators and its 

system model to optimize the core intelligent system component through 
discretization processes. 

• The evaluation of this configurable actuator on publicly massive datasets using 
different discretization algorithms implemented in Weka and Hugin systems.   

 
The rest of this paper is arranged as follows: in section 2, we introduce the 

background of Bayesian networks, discretization algorithms, dynamic memory 
management scheme and the agent architecture as the theoretical foundations of our 
configurable discretizer actuators. Section 3 presents the system model and the 
configuration of the discretizer agent actuators. Section 4 presents the experimental 
evaluations of the discretization time and memory scalability using publicly available 
datasets from UCI [9] (University of California Irvine) repository used by intelligent 
systems researchers. We conclude the paper in section 5.  
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2   Theoretical Background 

2.1   Bayesian Network Models 

A Bayesian network model is formally defined as a directed acyclic graph (DAG) 
represented as G = {X(G), A(G)}, where X(G) = {X1,…,Xn}, vertices (variables) of 
the graph G and )()()( GXGXGA ×⊆ , set of arcs of G. The network requires 

discrete random values such that if there exists random variables X1, . . ., Xn with each 
having a set of some values x1, . . ., xn then, their joint probability density distribution 
is defined in equation 1;  

))(|
0

(),...,1( iX
n

i
iXprnXXpr π∏

=
=  (1) 

where )( iXπ  represents a set of probabilistic parent(s) of child Xi [1]. A parent 

variable otherwise refers to as cause has a dependency with a child variable known as 
effect. Every variable X with a combination of parent(s) values on the graph G 
captures probabilistic knowledge as conditional probability table (CPT). A variable 
without a parent encodes a marginal probability. Learning the suitable networks from 
massive datasets is computationally intensive as stated above.  

2.2   Discretization Algorithms 

Discretization algorithms are techniques which are used as preprocessing key 
operations in learning Bayesian models [5] [6]. They classify numerical data into their 
corresponding interval values relatively to the patterns in the data attributes. Weka 
and the Hugin systems use discretization algorithms which are built around the simple 
binning and minimum description length (MDL) methods [1]. Simple binning include 
an equal-width method using an unsupervised discretization approach which divides 
attribute values into k equal sizes. The seed k is supplied by users while equal-width 
finds maximum and minimum attribute values and they are used to determine data 
intervals. The Hellinger-based algorithm uses interval entropy function E(.) as a 
justification for quality discretization to accommodate any datasets. The entropy of 
any interval between a and b is shown in equation 2 [6]. 

E([a, b]) ≡  ∑ −
i

abixprixpr 2))|()((                        (2) 

As a basis of the algorithm, the values ix of the target attribute being discretized are 

sorted accordingly and they form a column of intervals. The probability distribution 
of ix is represented as )( ixpr . The scheme in the next subsection is therefore adopted 

to prevent the out-of-memory problems in the learning processes. 

2.3   Dynamic Memory Management Scheme 

The dynamic memory management scheme used in the Loci framework [10] is an 
economical solution which manages the memory by allocation and de-allocation of 
data structures based on the lifetime of data structures. Thus, in order to accommodate 
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discretization of large datasets within a limited memory, we extracted and interpreted 
the scheme from [10] as follows: (i) pre-allocation of memory to data structures, (ii) 
incorporate relevant memory management operations, (iii) invoke loop scheduling 
techniques, and (iv) recycle memory from data structures. 

Pre-allocation with partitioning of the entire memory alone in scheme i does not 
benefit space saving until the others in the sequence are involved. Many parallel 
algorithms exploit scheme i as a trade-off to optimize speed but suffer from peak 
memory requirement. A possible relevant management operation in ii is the use of 
remote memory or secondary storage devices, for example. These management 
operations are generalized concepts of virtual memory. A virtual memory is a 
multilevel store which gives a large process an impression that it has more primary 
memory to itself, while it actually uses external disk devices as a supplement [11]. In 
iii, examples of loop scheduling techniques are multiple nested iterations, recursions, 
synchronizations, etc. Also in iv, at the end of every schedule or lifetime, memory is 
recovered from data structures after its execution. Thus, this scheme empowers a 
system to accommodate massive datasets within a limited memory without a halting 
problem. The next subsection also describes the basic agent architecture as 
fundamentals of our configurable actuators. 

2.4   A Basic Agent Architecture 

Among the classes of agents used in intelligent systems, the software agent as related 
to this work perceives from the components of environments through sensors and 
acting upon the environment through actuators [1]. According to Russell [1], a 
software agent can sense its environment using file content or network packets and 
also uses writing files or packets as actuators to act on the environment. From 
Russell’s illustration, when environment is perceived, some forms of machine 
learning algorithms are used to interpret the percepts. They consequently generate the 
instructions required by the actuators to carry out actions on the environment.  

The positions of the agent and the environment are often far apart which possess 
distributed properties. It illustrates that agents can be sent over a network to carry out 
specific tasks and can also provide services to other components on a given machine. 
It is deduced from here that agent actuators can be characterized with mobility as they 
include their required information in their description. Their independence influences 
the design of components for distributed agents which motivate the development of 
the configurable discretizer agent actuators in this study. Section 3 now describes the 
proposed configurable actuators.  

3   The Generalized Configurable Discretizer Actuators 

3.1   The System Model for the Actuators 

Figure 1 depicts the system model that we used to accomplish complete scalable 
discretization. If either space or time is optimized, it is an incomplete scalability as a 
trade off is not beneficial to the networks used in intelligent systems. Our strategy 
combines the memory management scheme in subsection 2.3 and the architecture in 
subsection 2.4. In this strategy, an actuator is dedicated and sent to discretize values 
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of one or more attributes. For balancing purposes, a number of actuators, rather than 
all, are heuristically set by users and concurrently distributed at a time. Discretization 
time is faster as the actuators act on more than one attributes at a time. As the 
actuators complete discretization of some attributes in a pass, they are returned to the 
symmetric processors that reschedule them for subsequent attributes. With this, 
memory is continually and dynamically allocated which then recycles each time there 
is scheduling of actuators for discretization. 

We now define the major components of Figure 1 as follows: discretizer agent 
actuators described in the previous paragraph, discretization algorithm, massive 
environment (or datasets), storage of previous discretized parameters and subsequent 
observations made after discretizing the massive datasets. The algorithm which 
resides on the limited memory of a machine generates tuples of intervals for the 
actuators to discretize values of the attributes remotely. We adopted the Hellinger-
based algorithm in Lee’s work [6] as a proof of concept since this research focuses on 
supporting the optimization of the core reasoning component of intelligent systems 
through scalable discretizations. The component of the massive dataset (or 
environment) is kept away from the limited memory and its attributes’ values are 
acted upon concurrently in a secondary storage or across a network. This provides a 
competitive advantage in developing countries where discretization process can be 
accidentally suspended probably due to electricity power failure but modeling 
continues where the process stops.  

Also, the previous parameters are used adaptively to discretize subsequent 
observations instead of re-scanning the entire old massive dataset. The last tuples of 
intervals if the data patterns remain the same, the data types for all attributes, etc are 
examples of previous parameters. The configuration used by the discretizer actuators 
is designed and described in the next subsection.  

 
 

                   

Ξ

2α≥
3β≅

≤ γ

New
Observations

Previous 
Parameters

≤ ±
I

Ξ

×

D
D

D Massive
Environment

 
 

Fig. 1. System Model for Discretizer Agent Actuators  
 

 

Discretizer 
Actuators 



328 I.O. Osunmakinde and A. Bagula 

3.2   The Configurable Discretizer Actuators 

We designed and configured these actuators as shown in Figure 2 with dynamic 
packets of information to act upon the environments. The content of the packet 
consists of the control information and the environments. The control information 
provides dynamic set of instructions that the actuators need to use to act upon the 
environments.  

The constituents of the control information depicted in Figure 2 are as follows: 
source-address (e.g. agent-actuator-id), destination is any universal resource locator 
of the data (e.g. secondary storage or network machine address), node-ids (or attribute 
names) and actions (e.g. advance discretization scripts using the interval bins) taken 
by the actuators. The constituents retain their usual meanings as described. The 
environment acted upon is the schema table (or dataset) at various destinations. The 
configuration of the actuators can be expanded or modified as new functionalities are 
provided. Thus, our discretizer actuators are concurrently distributed because they are 
lightweight, mobile and independent which are suitable on single user machine and 
distributed architecture. Section Four brings our theory to practice. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Configuration of the discretizer actuators convert numerical to discrete datasets 

4   Experimental Evaluations 

One of the objectives of our proposed discretizer actuators is to bring theory to 
practice with an emphasis on applications and practical work. The algorithms 
compared are Hellinger’s algorithm using our actuators, Weka and Hugin algorithms. 

<Agent-actuator: = id-0  Destination: = URL   
Environment: = schema-name>  

  <Node Id: = id-1; Bins: = Interval-Tuples> 
</Node>   

        <Node Id: = id-n; Bins: = Interval-Tuples > 
</Node>  

<Action: = Advance-Disc-scripts> </Action>  
</Agent-actuator >   

<Agent-actuator: = id-n  Destination: = URL   
Environment: = schema-name>  

  <Node Id: = id-1; Bins: = Interval-Tuples > 
</Node>   

        <Node Id: = id-n; Bins: = Interval-Tuples > 
</Node>  

<Action: = Advance-Disc-scripts> </Action>  
</Agent-actuator >   
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They are experimented on three public [9] massive datasets including (1) El-Nino, (2) 
Census-Income (KDD) and (3) Pseudo periodic synthetic time series. The El-Nino 
data set contains oceanographic and surface meteorological readings. The Census-
Income (KDD) contains weighted census dataset. Finally, the pseudo dataset is 
designed for testing indexing schemes in time series.  

In practice, the major contributing factors that affect discretizations and modeling 
performances are the number of instances, columns and number of states (distinct 
values) in each column of the datasets. The three datasets have varying sizes with 
over 178,080, 200,000, and 100,000 instances respectively. They include 11, 9 and 10 
numeric columns respectively. The pseudo dataset has the worst scenario because its 
number of instances is equal to the number of its distinct 100,000 states.  

4.1   Experiment 1: Comparing Algorithms   

The objective here is to find the impact of our configurable actuators on the 
algorithms. The results depicted by Table 1 are a summary of the average 
performance of the three algorithms on the three datasets in terms of speed and 
memory used by the configurable actuators. For each experiment, the speed includes 
the time to save back into the secondary memory other than leaving the results on the 
volatile RAM. In all the cases, the results revealed that our configurable actuators 
using Hellinger’s algorithm discretized successfully and was ready to proceed to 
modelling while the other algorithms (Weka and Hugin) suffered from  memory 
problems by exhibiting an “out of memory” or a “towards memory failure” states. 
Observe in Table 1 that the Hellinger algorithm performed tremendously better than 
the other algorithms when we consider the results provided by the highest (or best) 
number of actuators in each dataset. These results suggest that using our configurable 
discretizer agent actuators with the Hellinger’s algorithm is an economically scalable 
solution which supports the optimization of Bayesian intelligent modeling.   

4.2   Experiment 2: Comparing Execution Speed 

From the results in Table 1, we specifically compared the discretization speeds of 
configurable actuators using Hellinger, Weka and Hugin on the El-Nino dataset stored 
remotely on a secondary storage. In the same vein with Weka and Hugin which use a 
processor, we discretized the massive datasets with one symmetric processor (or 
actuator). This set of experiments was successfully repeated by distributing and 
concurrently increasing the number of configurable actuators while recording the 
discretization time as shown in Figure 3. The results show that using the Hellinger’s 
algorithm, an increase in the number of actuators makes the discretization process faster.  

In contrast, when looking at the Weka and Hugin discretizations in Figure 3, one 
can observe that varying the number of actuators did not improved the discretization 
time. By comparing the discretization time of the highest (best) number of actuators 
used to the usual one processor of Weka and Hugin, within the allocated limited 
memory, our configurable actuator using Hellinger’s algorithm is faster than Weka and 
Hugin by 83% in Figure 3. A similar performance pattern is revealed like Figure 3 
when we adapted new observations to the previous discretization parameters (intervals 
used for the old datasets). By cross validation [1], 15% each of the datasets 
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Table 1. Comparing Configurable Actuators using Hellinger, Weka and Hugin algorithms 
 

Data
Sets

Methods Number of
Actuators

Speed
(secs)

Mem-usage
    (MB) Status

El-Nino
(178,080)

Configurable
actuators
using
Hellinger

1
2
3
4
5
11

264
148
105
  71
  69
  33

17.3
17.6
17.8
17.9
18.0
18.2

Ready
to

Model

Weka
1 201 59.0

Out of
Memory

Hugin
1 200 66.8

Towards
Memory

      failure
Census-
Income-
KDD
(200,000)

Configurable
actuators
using
Hellinger

1
2
3
4
9

177
  96
  78
  54
  29

17.4
18.1
20.2
20.8
22.6

Ready
to

Model

Weka
1 173 39.2

Out of
Memory

Hugin 1 176 39.6
Towards
 Memory

    failure
Pseudo
(100,000)

Configurable
actuators
using
Hellinger

1
2
3
4
5
10

174
104
  79
  66
  64
  54

23.4
23.9
25.1
26.5
26.9
29.0

Ready
to

Model

Weka
1 169 51.2

Out of
Memory

Hugin
1 165 67.2

Out of
Memory

 
 

           
Fig. 3. Increasing number of actuators on El-Nino dataset minimizes (or speeds up) 
discretization time better than Weka and Hugin discretizations  
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were selected at random as new observations and were discretized using the previous 
parameters. Minimization of the discretization time results was also recorded by 
increasing the actuators similarly to Figure 3.  

4.3   Experiment 3: Comparing Memory Usage  

The results described in experiments 1 and 2 above show that users who are not 
opportune to be in a networking environment or who cannot afford a suitable one, can 
safely discretize massive data on a machine with limited memory by distributing our 
configurable actuators. One can observe in Figure 4 from the Weka and Hugin 
discretizations that varying the number of actuators does not improve on memory 
usage because all the records are loaded onto the memory at a time. The details of 
occupied megabytes of memory can be seen in Table 1 which reveals halt states. 

 

Fig. 4. Concurrent distribution of actuators on El-Nino dataset minimizes memory usage better 
than Weka and Hugin discretizations 

From the results in Figure 4, our configurable actuators using Hellinger’s 
algorithm successfully managed the same limited memory by concurrently exploiting 
secondary storage resources on remote locations (e.g. hard disk on a machine or on 
workstations). Though there are slight increases in memory usage as the number of 
actuators increases, one can observe in Figure 4 that our actuators reduce the memory 
usage to a minimum acceptable level. For example, this shows that the configurable 
actuators save 69.2% and 72.8% of the limited memory from crashing as compared to 
Weka and Hugin discretizations in Figure 4. This once again supports our claim that 
users cannot afford to trade off between time and space in real life Bayesian learning 
via discretization.  

5   Concluding Remarks and Future Work 

We have proposed in this paper the development of configurable actuators for the 
discretization of massive datasets as a supportive optimization solution to the 
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computational problems arising in intelligent systems. Experimental results revealed 
that the use of the configurable actuator is an economically scalable solution to the 
problem which does not require purchasing expensive hardware. The results support 
the claim that using our configurable actuators with the Hellinger’s algorithm leads to 
better memory usage and faster discretization of massive datasets compared to 
conventional algorithms such as Weka and Hugin discretizations.  

This study shows that the configurable discretizer actuators can potentially become 
a more powerful scalable solution that puts an end to the computational problems 
raised by the learning of network models.  
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References 

1. Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach, 2nd edn., p. 07458. 
Prentice Hall Series Inc., New Jersey (2003) 

2. Chickering, D., Heckerman, D., Meek, C.: Large-Sample Learning of Bayesian Networks 
is NP-Hard. The Journal of Machine Learning Research 5, 1287–1330 (2004) 

3. William, H., Haipeng, G., Benjamin, P., Julie, S.: A Permutation Genetic Algorithm For 
Variable Ordering In Learning Bayesian Networks From Data. In: Proceedings of Genetic 
and Evolutionary Computation Conference, pp. 383–390. Morgan Kaufmann Publishers 
Inc., San Francisco (2002) 

4. Li, J., Liu, H., Wong, L.: Mean-entropy Discretized Features are Effective for Classifying 
High-dimensional Biomedical data. In: Proceedings of the 3rd ACM SIGKDD Workshop 
on Data Mining in Bioinformatics, Washington, DC (2003) 

5. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of 
continuous features. In: 12th International Conference on Machine Learning (1995) 

6. Lee, C.: A Hellinger-based discretization method for numeric attributes in classification 
learning. Knowledge-Based Systems 20, 419–425 (2007) 

7. Witten, I.H., Eibe, F.: Data Mining Practical Machine Learning Techniques and Tools, 
University of Waikato - WEKA. Morgan Kaufmann, San Francisco (1999), 

  http://www.cs.waikato.ac.nz/~ml/weka/ 
8. Olesen, K.G., Lauritzen, S.L., Jensen, F.V.: aHugin: A system creating adaptive causal 

probabilistic networks. In: Dubois, D., Wellman, M.P., D’Ambrosio, B., Smets, P. (eds.) 
Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, 
pp. 223–229. Morgan Kaufmann, San Mateo (1992), 

  http://hugin.sourceforge.net/download/ 
9. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of Machine Learning 

Databases (University of California, Department of Information and Computer Science, 
Irvine,CA) (1998), 

  http://www.ics.uci.edu/~mlearn/MLRepository.html 
10. Zhang, Y., Luke, E.A.: Dynamic Memory Management in the Loci Framework. In: 

Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, 
vol. 3515, pp. 790–797. Springer, Heidelberg (2005) 

11. Graham, R.M.: Principles of Systems Programming. John Wiley & sons Inc., New York 
(1975) 

 



String Distances and Uniformities

David W. Pearson and Jean-Christophe Janodet

University of Saint-Etienne, 18 r. Pr. Lauras, F-42000 St-Etienne
{david.pearson,janodet}@univ-st-etienne.fr

Abstract. The Levenstein or edit distance was developed as a metric for calculat-
ing distances between character strings. We are looking at weighting the different
edit operations (insertion, deletion, substitution) to obtain different types of clas-
sifications of sets of strings. As a more general and less constrained approach we
introduce topological notions and in particular uniformities.

Keywords: edit distance, classification, topology, uniformities.

1 Introduction

The Levenstein (or edit) distance was introduced in the paper [1]. It has been used in
various applications concerning textual data. One particular application is linked with
linguistics and natural language processing where we want to find words that are in
some way “close” to a given word or sets of words. This is the initial motivation for our
research. We decided to use the Levenstein metric as a starting point for our work, with
the understanding that it would not satisfy all of our needs. In particular, we believe that
trying to place a metric structure on a natural language may be too strong a condition.
This meant that we needed to look for a structure that is less rigid and rigourous than a
metric. This paper is the result of our preliminary investigations.

Metric spaces are nice to work with because the idea of distance between objects is
well defined, straight forward and in most cases easy to compute. However, sometimes
a metric is too strong a condition to require for certain problems. At the other end of the
scale we have topological spaces, where the only thing that you can say about points in
the space is that they are neighbours of each other. So, a topological space can be too
general for certain problems.

A uniform space (or a uniformity) lies somewhere between the two [2,3,4,5]. In a
uniformity we have a notion of closeness rather than distance and we can make state-
ments like point a is as close to point b as point c is to point d. We believe that uni-
formities present potentially interesting properties for text processing and, in particular,
we would like to define a uniformity for strings for classification purposes.

For our initial investigations we have used the edit distance to define our uniformi-
ties. Also called the Levenshtein distance, this distance measures the minimum number
of deletion, insertion and substitution operations needed to transform one string into
another [1,6,7]. This distance, and its variants where each operation has a weight, has
been used in many fields including Computational Biology [8,9], Language Modelling
[10,11], Pattern Recognition [12,13] and Machine Learning [14,15].

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 333–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We think of a classification problem of strings as defining a topology (and unifor-
mity) for the strings, i.e., strings in the same class are neighbours. We must add at this
point that we refer to classification in a somewhat unrigourous fashion in that the re-
sulting classes may overlap due to the uniform structure. A true classification would
result in disjoint classes. Therefore we consider that the weights of the edit distance pa-
rameterize the uniformity. When we change the weights the uniformity may or may not
change. We are interested in finding the critical parameter values where the uniformity
changes.

This paper is composed of three main sections. In the following section we present
the relevant theoretical background on uniformities. Then, in the next section we show
how we can define uniformities for sets of strings. An example is developed in the last
section before finally concluding.

2 Covering Uniformities

There are at least two ways of defining a uniformity: entourage uniformities and cov-
ering uniformities. It can be shown that they provide equivalent structures and that the
choice of entourage or covering is governed by the application. The entourage approach
is very popular nowadays [2,3], but we have found the covering approach to be better
adapted to our needs [4,5].

Let X be any fixed space. A covering for X is a collection C of sets Ci ⊆ X such
that

⋃
i Ci = X , for Ci ∈ C. Given two coverings U and V , U is said to refine V ,

denoted U < V , if for all Ui ∈ U , there exists Vj ∈ V such that Ui ⊆ Vj .
For a covering C and a subset A ⊆ X , the star of A is defined as follows:

∗(A, C) =
⋃
{Ci ∈ C : Ci ∩A = ∅}.

Given two coverings U and V , we say that U star refines V , denoted U <∗ V , if for all
U ∈ U , there exists V ∈ V such that ∗(U,U) ⊆ V . In this case, the sets in V can be
thought of as twice as big as those of U [5].

We now introduce the following definition for a covering uniformity. A family μ of
coverings is called a uniformity if it satisfies the following conditions:

1. if U ,V ∈ μ, then there exists W ∈ μ such that W < U and W < V ,
2. if U ∈ μ and U < V then V ∈ μ and
3. every element of μ has a star refinement in μ.

Some texts refer to this definition as a preuniformity or a non-separating uniformity, we
shall simply use the term uniformity. A separation condition can be added and some au-
thors refer to that as a uniformity, but other authors refer to it as a Hausdorff uniformity.
The separation condition is not necessary in our case.

The notion of a normal sequence of coverings in a uniformity is simply a sequence
Un such that · · · Un+1 <∗ Un <∗ Un−1 · · · .

If U ∈ μ and y ∈ X then a point x ∈ X is said to be U-close to y, denoted
|y − x| < U , if there exists U ∈ U such that {x, y} ⊆ U .
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Finally, let d be a distance over X . For any x ∈ X , we define the ε-sphere around
x as S(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Clearly, if S(x, ε) ⊆ U ∈ μ, then every
y ∈ S(x, ε) is U-close to x.

3 Strings and Uniformities

An alphabet Σ is a finite nonempty set of symbols called letters. For the sake of clarity,
we shall use Σ = {a, b} as a fixed alphabet throughout the rest of this paper. A string
w = x1 . . . xn is any finite sequence of letters. We write Σ∗ for the set of all strings
over Σ. Let |w| denote the length of w and λ the empty string.

Following [1], we consider three sorts of edit operations:

– a pair (x : y) ∈ Σ ×Σ is called a substitution of letter x by letter y,
– a pair (x : λ) with x ∈ Σ is called a deletion of letter x, and
– a pair (λ : y) with y ∈ Σ is called an insertion of letter y.

Moreover, we assume that a matrix C assignes a weight to every operation. E.g.,

C λ a b
λ 0 1 2
a 1 0 1.5
b 2 1.5 0

The edit distance between two strings w1 and w2, denoted d(w1, w2), is the mini-
mum weight of every sequence of substitutions, deletions and insertions that allows one
to transform w1 into w2. More formally, d is recursively defined as follows:

d(w1, w2) = min

⎧⎪⎪⎨⎪⎪⎩
0 if w1 = w2 = λ

C(x : λ) + d(w′
1, w2) if w1 = xw′

1
C(λ : y) + d(w1, w

′
2) if w2 = yw′

2
C(x : y) + d(w′

1, w
′
2) if w1 = xw′

1, w2 = yw′
2

It is well-known [7] that if C defines a metric over (Σ ∪ {λ}), then d(w1, w2) can
be efficiently computed in timeO (|w1| · |w2|) by means of dynamic programming [6].
Assuming that C defines a metric means that the matrix C has a null diagonal, is posi-
tive, symmetric and for all x, y, z ∈ Σ ∪ {λ},

C(x : y) ≤ C(x : z) + C(z : y). (1)

In such a case, the edit distance is determined by only three weights: C(a : b),

C(a : λ) and C(b : λ). We group these values together into a vector p =

⎡⎣C(a : b)
C(a : λ)
C(b : λ)

⎤⎦.

Thus, using any fixed p that satifies Eq.(1), we can compute the edit distance between
any two strings.

Our main interest is in string classification and so we assume that we have a set of
strings, W of cardinality m, and some idea of which strings are together in classes. Let
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us consider for any w ∈ W , the ε-sphere around w: S(w, ε) = {w′ ∈ W : d(w, w′) ≤
ε}. Using the edit distance and the ε-spheres, we can now calculate uniformities for sets
of strings.

To begin with, we compute the distances between all the strings in W using the edit
distance with some fixed value of the parameter vector p. If we list all the strings in W
in some order horizontally and vertically then the result is simply a symmetric m×m
matrix D with zeros along the diagonal. We take all the elements above the diagonal of
this matrix and list them in lexicographical order. Thus if

D =

⎡⎢⎢⎢⎣
0 d12 d13 · · · d1m

d21 0 d23 · · · d2m

...
... · · · . . .

...
dm1 dm2 · · · · · · 0

⎤⎥⎥⎥⎦
where dij = d(wi, wj), then we define the vector

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d12
d13

...
dij

...
dm−1m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We want to adjust the parameter vector p to give the required classification. As the
vector x above is dependent on p, we indicate this by x(p) and thus consider x to be a
mapping x : R3 → Rn where n = m2−m

2 is the number of elements of D above the
diagonal. Due to the condition on the values of the three parameters, p is restricted to

certain areas of R3. The standard edit distance uses p =
[
1 1 1

]T
and so we will define

the admissible values of p based on this point. Define the following vectors p0 =

⎡⎣1
1
1

⎤⎦,

p1 =

⎡⎣0.5
1
1

⎤⎦, p2 =

⎡⎣ 1
0.5
1

⎤⎦ and p3 =

⎡⎣ 1
1

0.5

⎤⎦. Then, for our purposes, we can say that the

admissible values of p can be defined by the simplex P = t0p0 + t1p1 + t2p2 + t3p3
where ti ≥ 0 and

∑3
i=0 ti = 1.

Once a value of p has been chosen, the uniformity is defined by varying x and ε in
S(x, ε). Clearly different uniformities can be defined for the same value of p, depending
on the chosen values of x and ε. Another point to mention is that certain choices of x
and ε will not lead to correct uniformities simply because of the star refinement property
that is required. These points are best illustrated by an example, which we present in
the following section.
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4 Example

Let the set of strings be the following W = {aaab, abab, bba, baba, bbaab}. Applying
the classical edit distance we have the following table:

W aaab abab bba baba bbaab
aaab 0 1 3 3 2
abab 1 0 2 2 2
bba 3 2 0 1 2
baba 3 2 1 0 3
bbaab 2 2 2 3 0

We can find 3 coverings from this. First of all S(aaab, 1), S(bba, 1) and S(bbaab, 1)
supply us with

U2 = {aaab, abab}, {bba, baba}, {bbaab},
then S(aaab, 2) and S(bba, 2) give us

U1 = {aaab, abab, bbaab}, {abab, bba, baba, bbaab},

then finally S(aaab, 3) gives us

U0 = {aaab, abab, bba, baba, bbaab}.

It can be verified that U2 <∗ U1 <∗ U0. So, with this choice of p all the strings
are U0-close, {aaab, abab, bbaab} and {abab, bba, baba, bbaab} are U1-close and finally
{aaab, abab}, {bba, baba} and {bbaab} are U2-close.

To see how the uniformity changes when p changes we carry out the same exercise
but with p = p1 as described above. With this value for p the distances are the following

W aaab abab bba baba bbaab
aaab 0 0.5 2 1.5 1.5
abab 0.5 0 1.5 2 1.5
bba 2 1.5 0 1 2
baba 1.5 2 1 0 2
bbaab 1.5 1.5 2 2 0

Using these distances we can now define the following covers:

V3 = S(aaab, 0.5), S(bba, 0.5), S(baba, 0.5), S(bbaab, 0.5)
= {aaab, abab}, {bba}, {baba}, {bbaab}

V2 = S(aaab, 1), S(bba, 1), S(bbaab, 1)
= {aaab, abab}, {bba, baba}, {bbaab}

V1 = S(bbaab, 1.5), S(bba, 1.5)
= {aaab, abab, bbaab}, {abab, bba, baba}

V0 = S(aaab, 2)
= {aaab, abab, bba, baba, bbaab}
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and it can be verified that V3 <∗ V2 <∗ V1 <∗ V0. Here we see that U0 = V0, but
the other sets in the different levels are not the same and so the U-uniformity and the
V-uniformity are not the same.

Changing p once again and using p = p2 as defined above, leaving the details out we
have the following uniformity

W3 = {aaab}, {abab}, {bba, baba}, {bbaab}
W2 = {aaab, abab}, {bba, baba, bbaab}
W1 = {aaab, abab, bbaab}, {abab, bba, baba, bbaab}
W0 = {aaab, abab, bba, baba, bbaab}

with W3 <∗ W2 <∗ W1 <∗ W0.
These three uniformities are clearly different. To see how the changes occur we

traced out the vector x at various points between p1 and p2 by setting p = (1−t)p1+tp2
with t ranging from 0 to 1 in increments of 0.1. The individual components of the vector
x can be seen in figure 1. The uniformity actually changes between the values t = 0.5

and t = 0.6, i.e., for values of p between p =

⎡⎣0.75
0.75
1

⎤⎦ and p =

⎡⎣0.8
0.7
1

⎤⎦.

We notice that with the V-uniformity the two strings aaab and abab are always to-
gether but bba and baba are separated in the V3-uniformity. Whilst for theW-uniformity
bba and baba remain together but aaab and abab get separated in W3.
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Fig. 1. The distances for the strings aaab (top left), abab (top right), bba (bottom left) and baba
(bottom right)
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5 Conclusion

We have introduced an approach to string classification based on uniformities. We be-
lieve that this approach has potential because it falls between one which is too general
based on a topology and one which is too rigorous based on a metric.

We are fully aware of the fact that we need a metric to actually calculate the ε-
spheres and thus the uniformity, but we wanted to test our ideas in the first instance and
so we used the Levenstein distance to advance more quickly. We believe that the results
obtained so far are promising and so we are continuing along these lines. Our work is
now concentrating on how to define a uniformity and carry out calculations without the
need of a metric.
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Abstract. Dynamic Bayesian networks (DBNs) are temporal probabilistic 
models for reasoning over time which are rapidly gaining popularity in modern 
Artificial Intelligence (AI) for planning. A number of Hidden Markov Model 
(HMM) representations of dynamic Bayesian networks with different 
characteristics have been developed. However, the varieties of DBNs have 
obviously opened up challenging problems of how to choose the most suitable 
model for specific real life applications especially by non-expert practitioners. 
Problem of convergence over wider time steps is also challenging. Finding 
solutions to these challenges is difficult. In this paper, we propose a new 
probabilistic modeling called Emergent Future Situation Awareness (EFSA) 
which predicts trends over future time steps to mitigate the worries of choosing 
a DBN model type and avoid convergence problems when predicting over 
wider time steps. Its prediction strategy is based on the automatic emergence of 
temporal models over two dimensional (2D) time steps from historical 
Multivariate Time Series (MTS). Using real life publicly available MTS data on 
a number of comparative evaluations, our experimental results show that EFSA 
outperforms popular HMM and logistic regression models. This excellent 
performance suggests its wider application in research and industries.   

Keywords: Dynamic Bayesian Networks, Situation Awareness, Prediction, 
Multivariate Time Series. 

1   Introduction 

Industrial practitioners and researchers observe multivariate time series (MTS) from 
their daily business activities or dynamical systems (e.g. medical systems, retail, 
sensor networks, etc). Complex hidden relationships (or patterns) are often embedded 
among the variables that describe such activities within and across the time steps. 
Some classical methods such as neural networks and statistical logistic regression 
models have been applied to predict such hidden patterns but they fall short of 
proving their prediction capabilities [1]. Using more sophisticated approaches, these 
hidden patterns can be revealed from the historical MTS to predict risks, or guide 
actions to be taken at particular future times. Any retail business may for instance 
intend to know which products require declaration of discounts among selected 
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outlets in specific months for next year. This is an example of prediction over time 
within a multitude of complex situations and dynamic Bayesian networks are well 
suited for reasoning over time in complex environments [2] [3].  

The Hidden Markov Model (HMM) is a common and most simple form of DBNs 
which has gained its wide applicability in speech recognition [3] [4]. Recently, 
researchers have developed many HMM representations of dynamic Bayesian 
networks with different characteristics. Murphy [2] proposed some variants of HMM 
as explicit representations of DBN such as: hierarchical HMM, coupled HMM and 
factorial HMM. Shenoy [5] presented another DBN model for Brain-Computer 
Interfaces. As experts, they explicitly modeled the hidden network structure and 
dependencies between different brain states.     

However, the varieties of DBNs have obviously opened up challenging problems 
of how to choose the most suitable model for various real life applications. Some 
prediction models also suffer from convergence or exponential problems over wider 
time steps [3]. That is, the prediction steps get stuck towards zero or tend towards 
infinity. To complicate the situation further, the challenges have made technologies 
such as the DBNs too complex for non-experts including practitioners [6] (seasoned 
software programmers, managers, etc).  

In an attempt to address some of these challenges, Deviren [4] presented Structural 
learning of DBN and also applied it to speech recognition. Their DBN was learnt 
under a number of assumptions from experts. For instance, they observed stationary 
assumption which made their DBN leads to a repeated network structure at each time 
step. In reality, situations in some time steps may change. This is evident that most of 
these existing DBNs approximate their models. That is, they do not truly (or 
completely) emerge the network structures and probability distributions but the basis 
of DBN requires modeling both [2] [3]. Murphy [2] confirms that the HMM, which is 
the basis of most of these representations of the existing DBNs, are limited in their 
expressive power. Finding solutions to these challenges is difficult.  

In this paper, we propose a new probabilistic modeling called Emergent future 
Situation Awareness (EFSA) technology which predicts trends over finite future time 
steps. The EFSA eliminates the worries of choosing a good DBN model and avoids 
convergence problems. Its automatic and complete emergence of temporal models 
(network structure and probability distributions) over time from historical MTS is the 
strategy of the prediction. Our major contributions are as follows: 

 

• The derivation of a temporal probabilistic theory for the new EFSA technology 
which predicts trends over future time steps in the absence of domain experts.  

• The development of the EFSA algorithm which facilitates the mitigation of the 
worries of practitioners and researchers for choosing a DBN model from the 
multitude of varieties for specific applications. 

• Using a 2D strategy to avoid convergence problems when predicting longer time 
steps, our EFSA model supports wider applicability for all users: experts and non 
experts. 

 

The rest of the paper is organized as follows. In section 2, we present the 
theoretical backgrounds of the dynamic Bayesian networks and our previous ESA 
(emergent situation awareness) technology. The details of the proposed EFSA 
technology are presented in section 3. In section 4, we evaluate the performance of 
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the EFSA’s consistency and accuracy, and benchmark it with the HMM and the 
logistic regression models. This paper concludes in section 5. 

2   Theoretical Background 

2.1   Dynamic Bayesian Networks (DBNs) 

Dynamic Bayesian networks are temporal probabilistic models which are often 
referred to as an extension of the Bayesian network (BN) models in artificial 
intelligence [2] [3]. A Bayesian belief network is formally defined as a directed 
acyclic graph (DAG) represented as G = {X(G), A(G)}, where X(G) = {X1,…,Xn}, 
vertices (variables) of the graph G and )()()( GXGXGA ×⊆ , set of arcs of G. The 

network requires discrete random values such that if there exists random variables X1, 
. . ., Xn with each having a set of some values x1, . . ., xn then, their joint probability 
density distribution is defined in equation 1;  
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where )( iXπ  represents a set of probabilistic parent(s) of child Xi [3]. A parent 

variable otherwise referred to as cause has a dependency with a child variable known 
as effect. Every variable X with a combination of parent(s) values on the graph G 
captures probabilistic knowledge (distribution) as a conditional probability table 
(CPT). A variable without a parent encodes a marginal probability.  

However, the inability of the BNs to capture time as temporal dependencies 
facilitated the developments of various ways of modelling the dynamic Bayesian 
networks presented at the introduction. The variables and the CPTs of the BNs are 
similar to the states and the probabilities used in the temporal dependencies of the 
DBNs. According to [3], a DBN is suitable for modelling environment that emerges 
(changes) over time and has the capability to predict future behaviour of the 
environment. Any DBN observes the first-order of Markov model which states that, 
future event Vt+1 is independent of the past given the present Vt [3]. Since DBN 
handles complex situations of multiple dependent events of Markov model over time, 
researchers [2] [3] present the following three parameters required to construct a DBN 
model: prior matrix, Pr (V0); transition matrix, Pr (Vt | Vt-1); and sensor matrix,  
Pr (Et | Vt). The prior matrix defines the initial probability distribution of states V0 at 
the start of emergence of DBNs. The transition matrix describes time dependencies 
for the transitions of DBN states Vt. Also, the sensor matrix captures the probabilistic 
distributions from the relationships of observation variables Et at any time step.  

In conjunction with the DBN matrices, equation 2 shows the combined joint 
probability distribution for any temporal model up to a finite time t. 
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The emergence of our DBN technology is based on the theoretical principles 
underpinning situation awareness [9] in order to make anticipatory planning. 
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2.2   The ESA Technology 

The ESA [11] is an innovative technology, which completely emerges temporal 
models and reveals the hidden behavior of what is currently happening over time in 
any domain of interest. Formally, let {V t, E t} represent the set of state and observed 
DBN variables in ESA at time t. The DBNs are emerged over all the non-negative 
current time steps t є T, such that T = {t1, t2… tn} and the interlinked probabilistic 
relationships at each time step t is represented in equation 3. Equation 3 represents the 
interconnections of changing networks (or frames) and probability distributions over 
the time steps. 
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 implies equivalence is not true generally. The attractive performance of the 

ESA encourages its successful applications in many areas, most notably in project 
management [11]. On the other hand, the ESA falls short of predicting into the future. 
We therefore conjecture that a variant of the ESA called the EFSA is required to 
efficiently predict into the future based on the historical time steps.  

3   The Proposed EFSA Technology 

3.1   Theoretical Derivations of the EFSA 

Researchers [3] assert that prediction too far (wider time lag) into the future 
converges to a fixed point (i.e. remains constant for all time). In order to minimize the 
convergence problem, the EFSA predicts future trends using the strategy of a two 
dimensional (2D) time steps. The first dimensional space of time steps {t1, t2… tn} 
monitors the behavioural current patterns as used in the ESA. The second dimensional 
time steps {T1,…,Tm} observes the historical patterns for each of the time steps {t1, t2… 
tn}. This is an extension of any period T in the ESA. Therefore in practice, at the end 
of the tn of Tm, the EFSA updates further future trends to ensure accuracy. Let the 
DBN variables V t span the space of 2D time steps represented in the system of 
equations 4.  
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l is the length of the DBN variables and m is the length of the history. All the 
changing parameterizations (the DAGs and the probability distributions) of the DBN 
in the EFSA are now carried out across the historical time steps T1…Tm. That is, the 
emergence (or learning of the temporal models) takes place across the links:  
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Once the temporal probabilistic model emerges, prediction with reasoning now 
acts on the model. From Markovian principle [3] which states that next states of a 
system depend on the finite history of the previous states, we can now have multiple n 
predictions from the space of 2D time steps in equation 4 into the future time steps 
λ as follows in equation 5. 
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In equation 5, Ei, Ej,…E α are the set of evidences or observations of Vi, 

Vj,…V α respectively made so far within the space of time steps. Equation 5 is 
therefore the set of predictions that can be computed by the Bayesian inference 
algorithms such as Variable elimination, etc [3]. The variable elimination 
implemented in [10] was integrated as the inference engine in the EFSA due to its 
efficiency. Therefore, the EFSA performs a multiple future predictions from the space 
of time.  

3.2   The Description of the EFSA 

The emergence of DBN or temporal probabilistic model of the EFSA is often a task of 
BN learning algorithms provided it can learn across the time steps. Therefore, the 
outlines of learning DBNs automatically from EFSA algorithm are now refined from 
[11] as follows:  

INPUT (Ds : Multivariate Time Series - MTS)

1.     While Ds = MTS,
 [i] Set t, the frame count, to 1.
[ii] Set T, the historical time step, to 1, 2, …, m
[iii] Let dt Ds, t = 1, 2, . . ., n.
[iv] For each t <= n,
[v]      For each T <= m,

Select frame dt into { dt }
               [vi]    Increment T by 1.

Invoke Learning_Algorithms ({dt}).
Store the emerged frame in n by m matrix B.

[vii] Increment t by 1.
2.     Return the DBN in B
3.     Predict the next n time steps using inference engine,
        then exit.

 

Fig. 1. Emergent Future Situation Awareness Algorithm 
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In Figure 1, all parameters retain their usual meanings and dt is a frame dataset at 
time t. It is selected into set {dt} over T for learning frames of the DBN. Any 
Bayesian learning algorithms such as [7] [8] can be used as a subroutine. The 
algorithms carry out the intra-slice and inter-slice learning over time. Each variable in 
step T must have parents in step T-1. We integrated the genetic algorithm [8] to learn 
the DBNs due to its efficiency.  

4   Performance Evaluation  

One of the objectives of our proposed EFSA technology is to bring theory to practice 
(implementation) with an emphasis on applications and practical work. The HMM 
and logistic regression models have been used in our experiments as a baseline of 
comparison with our EFSA model. The logistic regression model is a function of 
dependent variable over the independent variables [1].  

4.1   Experiment 1: Comparing EFSA Consistency with Other Popular Models 

Our intention here was to determine whether the EFSA can predict multiple n-time 
steps consistently. As a proof of concept, we carried out the evaluations of the three 
models on three MTS datasets - DIABETES and SENSOR datasets from UCI 
repository [12], and a real life RAINFALL dataset obtained from a Southern African 
country (Botswana). The treatment records from the behavior of a diabetes patient 
were captured electronically as MTS. It contains several treatment measurement 
codes such as 33 (regular insulin dose), 48 (unspecified blood glucose), etc. It is 
expected here to predict treatment measurements required in future for the patient 
based on the historical behavioral patterns. For instance, equation 6 below is a 
situation which predicts how much of the minimum (about 7 units) measurement of 
regular insulin dose will be required for the next 12 months in the year 1991. 

 
Pr(Measurement t+ λ <= 7 units | Code t = 33)                    (6)    

  
for all t ⊂  T, where in diabetes MTS, t = {Jan…Dec} and T = {1988, 1989, 1990}.  

A common empirical technique to evaluate the performance of Bayesian network 
technologies is to use a basic cross validation [3]. We adopted the cross validation 
approach by setting 1991 time step as actual test data and learnt (or trained) the DBN 
model across 1988 to 1990 time steps. The EFSA reasons with the temporal model 
and acts by predicting over time as described in equation 6. This experiment was 
repeated using basic HMM constructed dynamically on the fly using GeNle Bayesian 
software [13]. Similarly, equation 6 was also repeated using the logistic regression 
model implemented in R statistical software [14]. The actual and the predicted results 
were recorded in each experiment and are shown in Table 1. 

The sensor dataset captures the traffic of people flowing in and out of main door of 
a CalIt2 building at UCI. Our objective here is to be able to predict counts of people 
for every half an hour over future weeks based on the historical behavioural patterns 
of traffic. For instance in equation 7, we want to predict the possibility of counting 
average number (between 8 and 17) of people that flows out of the building for the 
next 5 weeks.  
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Pr(Count t+ λ = ‘8<=17’ people | Flow t = ‘outflow’)          (7)    
  

for all t ⊂  T, where in Sensor MTS, t = {Week-1…Week-5} and T = {July, Aug, 
Sept}. We also adopted the cross validation approach by setting October time step as 
actual test data and learnt (or trained) the DBN model across 15 weeks of July to Sept 
time steps. The EFSA reasons with the temporal model and acts by predicting over 
time as described in equation 7. This experiment was also repeated using other 
models. The actual and the predicted results were recorded in each experiment and are 
shown in Table 1. 

The real life rainfall dataset was obtained from a Southern African country 
(Botswana) to access onsets of rainfall for Farmers to understand their varying 
planting dates. Our objective here is to be able to predict normal onset at any station 
over future months in every coming year. For instance, equation 8 predicts the normal 

 
Table 1. Performance Comparison of Future Predictions on Three Situations Among EFSA,  
HMM and Logistic Regression Model  

 

Data
Sets

Time
Steps

Actual
(%)

EFSA
(%)

HMM
(%)

Logistic(%)
Regression

Jan 40.15 73.26 70.43 87.30
Feb 50.79 58.7 72.45 87.31
Mar 74.64 90.99 79.45 87.41
Apr 65.42 80.44 89.69 87.42
May 72.51 69.08 89.07 87.46
Jun 60.14 59.69 90.16 87.48
July 69.43 76.54 93.28 87.51
Aug 61.09 75.69 95.31 87.53
Sept 55.17 85.48 95.36 87.56
Wk-1 19.55 12.46 24.13 25.29
Wk-2 20.88 13.39 23.07 26.18
Wk-3 24.44 18.69 33.17 37.07
Wk-4 27.11 18.81 33.41 37.95
Wk-5 3.11 2.76 21.01 38.01
Jan 70.22 53.57 58.24 45.88
Feb 72.75 56.67 51.12 45.62
Mar 72.39 55.48 44.09 45.33
Apr 61.95 55.29 41.20 45.04
May 62.34 56.67 40.02 44.72
Jun 78.21 62.67 39.59 44.38
Jul 85.73 59.81 38.90 44.03
Aug 78.85 58.38 38.89 43.65
Sept 83.45 58.00 36.87 43.25
Oct 80.30 60.05 25.65 42.82
Nov 89.21 62.31 25.14 42.38
Dec 91.26 65.05 24.69 41.90

R
ainfall

D
iabetes

Sensor
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onset of rainfall over future months for a given station number 2. This may include 
more complex conditions, like considering how sea anomalies affect the onset and 
wind, as shown in equation 9 which other methods such as regression model struggle 
to handle [2]. For the purpose of comparison, we keep it simpler as equation 8. 

  
Pr(Onset t+ λ = ‘normal’ | Station t = 2)                                  (8)    
Pr(Onset t+ λ = ‘normal’ | Station t = 2, Sea_Anom > 0.5, wind < 7.7units )         (9)    
 

for all t ⊂  T, where in Rainfall MTS, t = {Jan…Dec} and T = {1971,…2000}. 
We also adopted the cross validation approach by setting year 2001 time step as 

actual test data and learnt (or trained) the DBN model across 1971 to 2000 time steps. 
The EFSA also reasons with the temporal model and acts by predicting over time as 
described in equation 8. This experiment was also repeated using HMM and logistic 
regression models. The actual and the predicted results were recorded in each 
experiment and are shown in Table 1.  

The Table reveals the consistencies or how each model captures the direction of 
predictive patterns. That is, increase or decrease in predictions from one time step to 
the next when compared with the actual results. For instance, one can see sensor 
results in Table 1 as the EFSA prediction increases from 12.46 in week-1 to 13.39 in 
week-2 and this corresponds to a rise in the actual results.  In view of this, one can see 
generally in Table 1 that the EFSA has the best prediction directions (consistency) of 
50%, 100% and 70% for the Diabetes, Sensor and the Rainfall datasets respectively. 
This results from the fact that the EFSA truly evolves its network and probability 
distribution with the aid of its 2D strategy of the predictions. 

4.2   Experiment 2: Comparing EFSA Accuracy with Other Popular Models 

We conducted another set of experiments to measure how accurate are the predictions 
of the models compared to the actual results. The accuracy is simply computed as the 
difference between a 100% and the percentage error deviation, where the error is the 
absolute difference between actual value from the test data and the predicted value 
from the models, divided by the actual value [3]. The prediction accuracies on all 
datasets are computed from Table 1 and for instance only the accuracy results of 
diabetes are specifically recorded in Table 2 accordingly. Figure 2 therefore compares 
the performance accuracies of the EFSA with other models on Diabetes results in 
Table 2. The objective here is to improve the prediction accuracy. Observe the 
predictions of the regression model on diabetes and rainfall in Table 1 as it tends 
towards a convergence problem.  

Over the time steps, the average accuracies of the EFSA, HMM and the regression 
models on sensor predictions are 72.49%, 62.38% and 50.74% respectively. Also, the 
average accuracies of the three techniques on rainfall predictions are 76.76%, 51.79% 
and 57.87% respectively. This shows that the overall accuracy of the EFSA as 
improved than others is 74.3%. Thus, the EFSA is more consistent and performs 
better with future predictions within the multivariate time series.  
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Fig. 2. Temporal probabilistic reasoning of the EFSA improves performance of prediction 
accuracies on Diabetes better than the HMM and the logistic regression model 

Table 2. Evaluation of Accuracy for Future Predictions on Diabetes Situations Among EFSA, 
HMM and Logistic Regression Models  

 

Dataset Time
Steps

EFSA
(%)

HMM
(%)

Logistic(%)
Regression

Diabetes

Jan 17.53 24.58 17.90
Feb 84.43 57.35 28.11
Mar 78.09 93.56 82.89
Apr 77.04 62.90 66.37
May 95.27 77.16 79.38
Jun 99.25 50.08 54.54
July 89.76 65.65 73.96
Aug 76.10 43.98 56.72
Sept 45.45 27.15 41.29

Average
Accuracy

73.65 55.82 55.68

 

5   Concluding Remarks and Future Work 

In this paper, we developed and presented the EFSA technology as a new temporal 
probabilistic reasoning for consistent multiple predictions into the future in the 
absence of domain experts. This shows that non experts now have fewer worries in 
choosing from the multitude of DBN types for real life applications. 

This study shows that the EFSA can potentially become a powerful temporal 
probabilistic model used by both experts and non-experts to predict future trends in 
anticipatory planning. This technology simply emerges from environments and 
predicts in any domain of interest. The improved overall 74.3% accuracy of the EFSA 
over the 56.66% of HMM and 54.76% of logistic regression model when evaluated on 
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the domains of the three datasets guarantees the reliability of the EFSA in many 
diverse areas. The relative efficiency of the EFSA suggests its wide application to 
make DBNs much simpler for use by researchers and in industries. We are currently 
developing an economic scalable model for handling massive MTS for the EFSA. 
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References 

1. Wong, M.L., Leung, K.S.: An efficient data mining method for learning Bayesian 
networks using an evolutionary algorithm-based hybrid approach. IEEE Transactions on 
Evolutionary Computation 8, 378–404 (2004) 

2. Murphy, K.: Dynamic Bayesian networks representation, inference and learning, Ph.D 
thesis, UC Berkeley, Computer Science Division (2002) 

3. Russell, S., Norvig, P.: Artificial Intelligence (A Modern Approach), 2nd edn., p. 07458. 
Prentice Hall Series Inc., New Jersey (2003) 

4. Deviren, M., Daoudi, K.: Structural Learning of Dynamic Bayesian Networks in Speech 
Recognition. In: Proceedings of Eurospeech, Aalborg, Denmark (2001) 

5. Shenoy, P., Rao, R.P.N.: Dynamic Bayesian Networks for Brain-Computer Interfaces. In: 
Advances in NIPS, vol. 17. MIT Press, Cambridge (2005) 

6. Silva, E., Plazaola, L., Ekstedt, M.: Strategic Business and IT Alignment: A Prioritized 
Theory Diagram. In: Proceedings of PICMET, Turkey (2006) 

7. Larranaga, P., Kuijpers, C., Murga, R., Yurramendi, Y.: Learning Bayesian Network 
Structures by Searching for the Best Ordering with Genetic Algorithms. IEEE Transactions 
on Systems, Man, and Cybernetics, 487–493 (1996) 

8. Osunmakinde, I.O., Potgieter, A.: Emergence of Optimal Bayesian Networks from 
Datasets without Backtracking using an Evolutionary Algorithm. In: Proceedings of the 
Third IASTED International Conference on Computational Intelligence, Banff, Alberta, 
Canada, pp. 46–51. ACTA Press (2007) ISBN: 978-0-88986-672-0 

9. Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review. In: 
Situation Awareness Analysis and measurement, pp. 3–32. Lawrence Erlbaum Associates, 
Mahwah (2000) 

10. Cozman, F.: JavaBayes, Bayesian Networks in Java, University of Sao Paulo (2001), 
http://www.cs.cmu.edu/~javabayes/Home/  

11. Balikuddembe, J.K., Osunmakinde, I.O., Potgieter, A.E.: Software Project Profitability 
Analysis Using Temporal Probabilistic Reasoning. In: IEEE CS proceedings of the 
International Conference on Advanced Software Engineering & Its Applications, 
Washington, pp. 99–102 (2008) ISBN:978-0-7695-3432-9 

12. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of Machine Learning 
Databases (University of California, Department of Information and Computer Science, 
Irvine, CA, (1998), 
http://www.ics.uci.edu/~mlearn/MLRepository.html 

13. GeNle 2.0, Decision Systems Laboratory, University of Pittsburgh (2006), 
http://genie.sis.pitt.edu 

14. R Development Core Team: A Language and Environment for Statistical Computing, R 
Foundation for Statistical Computing, Vienna, Austria (2008) ISBN 3-900051-07-0, 
http://www.R-project.org  



Efficient Hold-Out for Subset of Regressors

Tapio Pahikkala, Hanna Suominen, Jorma Boberg, and Tapio Salakoski

Turku Centre for Computer Science (TUCS)
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
firstname.lastname@utu.fi

Abstract. Hold-out and cross-validation are among the most useful
methods for model selection and performance assessment of machine
learning algorithms. In this paper, we present a computationally efficient
algorithm for calculating the hold-out performance for sparse regularized
least-squares (RLS) in case the method is already trained with the whole
training set. The computational complexity of performing the hold-out
is O(|H |3 + |H |2n), where |H | is the size of the hold-out set and n is
the number of basis vectors. The algorithm can thus be used to calculate
various types of cross-validation estimates effectively. For example, when
m is the number of training examples, the complexities of N-fold and
leave-one-out cross-validations are O(m3/N2 + (m2n)/N) and O(mn),
respectively. Further, since sparse RLS can be trained in O(mn2) time
for several regularization parameter values in parallel, the fast hold-out
algorithm enables efficient selection of the optimal parameter value.

1 Introduction

In this paper, we consider the regularized least-squares (RLS) algorithm (see,
e.g., [1]), a kernel-based learning method that is also known as the kernel ridge
regression [2], least-squares support vector machine [3], and Gaussian process
regression (see, e.g., [4]). RLS has been shown to have a state-of-the-art perfor-
mance regression and classification and it has been applied in various practical
tasks in which kernel based learning algorithms are needed (see e.g. [5]). It has
also been modified for other problems such as ranking [6,7].

This popular machine learning method has, however, an inefficiency limitation
in large-scale problems; the computational complexity of training an RLS learner
together with a nonlinear kernel function is O(m3), where m is the number
of training examples. This may be too tedious when the number of training
examples is large.

To make the RLS algorithm more efficient, sparse versions have been consid-
ered. In these only a subset of training examples, often called the basis vectors,
are used as regressors while the whole set is still used in the training process.
This decreases the training complexity to O(mn2), where n << m is the number
of basis vectors (see, e.g., [1,8]). Here, we use the term sparse RLS when referring
to RLS with the subset of regressors approach.

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 350–359, 2009.
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In addition to deriving faster machine learning algorithms, it is essential to
develop computationally efficient methods for the related performance estima-
tion and model selection. In particular, fast cross-validation (CV) algorithms
and their approximations have been proposed (see, e.g., [7,9,10,11,12]) for the
RLS-based learning algorithms. In CV, a part of the training data is held out
from training to be used for testing and this hold-out procedure is repeated
several times. For more thorough discussion about the CV methods and their
critical points, we refer to [13].

But how to perform CV efficiently with sparse RLS? Firstly, sparse RLS
regression can also be considered as a standard RLS regression using a certain
type of modified kernel function [14]. This allows the use of the efficient hold-out
algorithms for standard RLS proposed by [10,11]. The computational complexity
of these are O(|H |2m), where |H | is the size of the hold-out set. However, the
presence of the coefficient m may make the algorithms too expensive in practice,
especially if it is used to calculate CV estimates. For example, the computational
complexity of leave-one-out CV (LOOCV) using this approach would be O(m2),
which is more expensive than the training process of sparse RLS if m > n2.

The second approach is to design CV algorithms especially for sparse RLS. Re-
cently, [9] proposed this kind of LOOCV algorithm. Its computational complexity
is O(mn2) which makes it much more practical than the LOOCV algorithm of
standard RLS used together with the modified kernel function.

In this paper, we propose an even faster algorithm for computing hold-out
estimates for sparse RLS. Its computational complexity is O(|H |3+ |H |2n). Con-
sequently, our algorithm can be used to calculate various types of CV estimates
efficiently. For example, when the sizes of the hold-out sets are sufficiently small,
the computational complexity of N -fold CV is no larger than that of training
sparse RLS. This is the case especially for LOOCV, whose computational com-
plexity is only O(mn). Further, our hold-out algorithm can be used to efficiently
select the optimal regularization parameter value, because it can be combined
with the fast method for training sparse RLS with several parameter values in
parallel.

2 Sparse Regularized Least-Squares

We first formalize the methods of RLS and the subset of regressors method.
We start by considering the hypothesis space H. For this purpose we define so-
called kernel functions. Let X denote the input space, which can be any set, and
F denote an inner product space we call the feature space. For any mapping
Φ : X → F , the inner product k(x, x′) = 〈Φ(x), Φ(x′)〉 of the images of the data
points x, x′ ∈ X is called a kernel function.

Using k, we define for a set X = {x1, . . . , xm} of data points a symmetric
kernel matrix K ∈ Rm×m, whose entries are given by Ki,j = k(xi, xj) and
Rm×m denotes the set of real m × m -matrices. For simplicity, we assume that
K is strictly positive definite, that is, ATKA > 0 for all A ∈ Rm, A �= 0. The
strict positive definiteness of K can be ensured, for example, by adding εI to K,
where I ∈ Rm×m is the identity matrix and ε is a small positive real number.
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We consider the RLS algorithm as a variational problem (for a more compre-
hensive introduction, see, e.g., [1])

h = argmin
h∈H

(
m∑

i=1

(h(xi) − yi)2 + λ‖h‖2
k

)
, (1)

where yi are the output labels corresponding to the training inputs xi, ‖ · ‖k

is the norm in the reproducing kernel Hilbert space (RKHS) H determined by
the kernel function k (see, e.g., [15]). The first and the second term of the right
hand side of (1) are called the cost function and the regularizer, respectively,
and λ ∈ R+ is a regularization parameter.

The solution of (1) has, by the representer theorem (see, e.g., [15]), the form

h(x) =
m∑

i=1

aik(x, xi), (2)

where coefficients ai ∈ R. Accordingly, we only need to solve a regulariza-
tion problem with respect to a finite number of ai, 1 ≤ i ≤ m. Let A =
(a1, . . . , am)T ∈ Rm be a vector determining the minimizer of h.

To express (1) in a matrix form, we overload our notation and write h(X) =
KA ∈ Rm. This column vector contains the label predictions of the training
data points obtained with the function h. Further, according to the properties of
the RKHS determined by k, the regularizer can be written as λ‖h‖2

k = λATKA.
Now, we can rewrite the algorithm (1) as

A = argmin
A∈Rm

(
(Y − KA)T(Y − KA) + λATKA

)
.

Its solution

A = (KK + λK)−1KY = (K + λI)−1Y (3)

is found by first differentiating (Y −KA)T(Y −KA) + λATKA with respect to
A, setting the derivative to be zero, and solving it with respect to A.

The computation complexity of calculating the coefficient vector A from (3)
is dominated by the inversion of a m×m -matrix, and hence it can be performed
in O(m3) time. This may be too tedious when the number of training examples
is large. However, several authors have considered sparse versions of RLS, where
only a part of the training examples, called basis vectors, have a nonzero co-
efficient in (2). This means that when the training is complete, only the basis
vectors are needed when predicting the outputs of the new data points, which
makes the prediction more efficient than it is with the standard kernel RLS
regression. Another advantage of sparse RLS is that its training complexity is
only O(mn2), where n is the number of basis vectors. Further, as we will show
below, there are efficient CV and regularization parameter selection algorithms
for sparse RLS that are analogous to the ones for standard RLS.
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In this paper, we do not pay attention to the approach that is used to select
the set of basis vectors. The only detail we point out is related to the compu-
tation of the hold-out or CV performance, since this is our main topic. Namely,
the selection of the basis vectors should not change if a part of the training
examples is held out and sparse RLS is trained with the rest of the examples.
One suitable selection method is, for example, a random sub-sampling when the
hold-out sets are also selected randomly. In fact, it was found in [1] that simply
selecting the basis vectors randomly has no worse learning performance than
more sophisticated methods.

Before continuing to the definition of sparse RLS, we introduce some notation.
Let MΞ×Ψ denote the set of matrices whose rows and columns are indexed by the
index sets Ξ and Ψ , respectively. Below, with any matrix M ∈ MΞ×Ψ and index
set Υ ⊆ Ξ, we use the subscript Υ so that a matrix MΥ ∈ MΥ×Ψ contains only
the rows that are indexed by Υ . For M ∈ MΞ×Ψ , we also use MΥΩ ∈ MΥ×Ω to
denote a matrix that contains only the rows and the columns that are indexed
by any index sets Υ ⊆ Ξ and Ω ⊆ Ψ , respectively.

We now follow [8,1,14] and define the sparse RLS algorithm using the above
defined notation. Let F = {1, . . . , m}. Instead of allowing functions like in (2),
we only allow

h(x) =
∑
i∈B

aik(x, xi),

where the set indexing the n basis vectors B ⊂ F is selected in advance. In this
case, the coefficient vector A ∈ Rn is a vector whose entries are indexed by B.
The label predictions for the training data points can be obtained from

h(X) = (KB)TA (4)

and the regularizer can be rewritten as λATKBBA. Therefore, the coefficient
vector A is the minimizer of

(Y − (KB)TA)T(Y − (KB)TA) + λATKBBA. (5)

The minimizer of (5) is found by setting its derivative with respect to A to
zero. It is

A = P−1KBY, (6)

where

P = KB(KB)T + λKBB ∈ MB×B. (7)

The matrices KBB and KB(KB)T = (KK)BB are principal sub-matrices of the
positive definite matrices K and KK, respectively, and hence the matrix P is
also positive definite and invertible (see e.g. [16, p. 397]). In contrast to (3), the
matrix inversion involved in (6) can be performed in O(n3) time. Since n << m,
the overall computational complexity of (6) is dominated by the complexity of
calculating KB(KB)T which is O(mn2).
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We now reformulate sparse RLS so that its coefficient matrix can be efficiently
calculated for different values of the regularization parameter. Note that this
reformulation is already known in the machine learning community. Let

KBB = CCT (8)

be the Cholesky factorization of KBB, where C ∈ MB×B is a lower triangular
matrix with strictly positive diagonal entries. Moreover, let

C−1KB(KB)T(C−1)T = V ΛV T (9)

be the eigen decomposition of C−1KB(KB)T(C−1)T, where V ∈ MB×B is the
matrix containing the eigenvectors, and Λ ∈ MB×B is a diagonal matrix con-
taining the eigenvalues of the decomposition. Further, let

Λ̃ = (Λ + λI)−1

and

Q = (C−1)TV ∈ MB×B. (10)

Then, the matrix P−1 can be expressed as

P−1 = (KB(KB)T + λKBB)−1

= (KB(KB)T + λCCT)−1

= (C−1)T(C−1KB(KB)T(C−1)T + λI)−1C−1

= (C−1)T(V ΛV T + λI)−1C−1

= (C−1)TV Λ̃V TC−1

= QΛ̃QT. (11)

The computational complexities of calculating (8), (9) and (10) are O(n3).
Now, let us first calculate QTKBY (in O(nm) time) and store it in memory.

Then, the solution (6) can be computed for different values of the regularization
parameter from

A = QΛ̃QTKBY,

with a complexity O(n2). This is because the multiplication of the shifted and
inverted eigenvalues Λ̃ with QTKBY can be performed in O(n) time and the
multiplication of the resulting matrix from left by Q can be performed in O(n2)
time.

3 Fast Computation of Hold-Out Error Estimates for
Sparse RLS

We note (see, e.g., [14]) that the sparse approach can also be considered as
performing a standard RLS regression using the following type of modified kernel
function

k̃(x, x′) = k(x, X)(KBB)−1k(X, x), (12)
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Therefore, a straightforward way to construct hold-out estimates for sparse RLS
would be to use the hold-out algorithms proposed by [10,11] for the standard RLS
regression using the modified kernel function (12). The computational complex-
ity of this approach is O(|H |2m), where m is the number of training examples
and |H | is the size of the hold-out set. The presence of the coefficient m may make
it computationally too expensive in practice, especially if it is used to calculate
CV estimates. Further, it can be shown that if a data point in the hold-out set
is a basis vector, its effect is not completely removed from the training process,
because the kernel (12) depends on it.

We now introduce a faster algorithm for calculating a hold-out performance
estimates, whose computational complexity is O(|H |2(|H |+ n)), where n << m
is the number of basis vectors. Consequently, our algorithm can be used to
calculate various types of CV estimates efficiently. For example, when the sizes
of the hold-out sets are sufficiently small, the computational complexity of N -
fold CV is no larger than that of training sparse RLS. This is the case especially
for LOOCV.

As previously, F = {1, . . . , m} and B ⊂ F are the index set for the whole
training data set and the set indexing the basis vectors, respectively. Let H ⊂ F
denote the set of indices of the hold-out data points, and let H = F \ H , E =
H ∩B, and L = H ∩B. Further, let hH be the function obtained by training the
sparse RLS algorithm without using the training examples indexed by H . Then,
hH(XH) consists of the output values for the hold-out data points XH that are
predicted by hH . According to (6), the coefficient vector corresponding to hH is

G−1KLHYH ,

where

G = KLHKHL + λKLL.

The entries of this coefficient vector are indexed by L. Therefore, according to
(4), the output values corresponding to the hold-out set H can be obtained from

hH(XH) = KHLG−1KLHYH . (13)

This is, of course, computationally too expensive to be used in CV, but for-
tunately, it is possible to calculate the outputs more efficiently when we have
trained in advance a sparse RLS learner with the whole data set.

Proposition 1. Suppose that we have trained sparse RLS by calculating (8),
(9), and (10), and we have the following matrices stored in memory:

KB ∈ MB×F (14)
Λ ∈ MB×B (15)
Q ∈ MB×B (16)

(KB)TQ ∈ MF×B (17)
KBY ∈ MB×1 (18)

QTKBY ∈ MB×1. (19)
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Then, the hold-out predictions for a set H can be calculated from

hH(XH) = −(J − I)−1R, (20)

where

J = UΛ̃UT − UΛ̃(QE)T(QEΛ̃(QE)T)−1QEΛ̃UT, (21)

R = UΛ̃Z − UΛ̃(QE)T(QEΛ̃(QE)T)−1QEΛ̃Z, (22)

U = ((KB)TQ)H − KHEQE , and (23)
Z = QTKBY − (QE)T(KBY )E − (QTKB)BHYH + (QE)TKEHYH . (24)

The computational complexity of this calculation is O(|H |2(|H | + n)).

Proof. We start by showing the tenability of (20) and continue by considering
the computational complexities. Recall from (13) that the output matrix for the
hold-out set can be obtained from

hH(XH) = KHLG−1KLHYH , (25)

where

G = KLHKHL + λKLL

= KL(KL)T − KLHKHL + λKLL

= PLL − KLHKHL

and P is defined in (7). Now, due to the positive definiteness of K, both G and
PLL are always invertible (see e.g. [16]). Let

W = (PLL)−1.

Using the block inverse formula (see, e.g., [16, p. 18–19]), we get

W = (P−1)LL − (P−1)LE((P−1)EE)−1(P−1)EL. (26)

Now, we observe that

G−1 = (W−1 − KLHKHL)−1,

and using the Sherman-Morrison-Woodbury formula (see, e.g., [16, p. 18–19]),
we obtain

G−1 = W − WKLH(−I + KHLWKLH)−1KHLW. (27)

The invertibility of the matrix −I + KHLWKLH can be shown by considering
the matrix [

I −KHL

−KLH W−1

]
. (28)

Since G = W−1 − KLHKHL, and I are invertible, the invertibility of the ma-
trix (28) follows from the Schur’s determinantal formula (see, e.g., [16, p. 21]).
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Therefore, also the matrix I−KHLWKLH is invertible, again due to the Schur’s
determinantal formula.

We continue by observing that

U = ((KB)TQ)H − KHEQE

= KHLQL and (29)
Z = QTKBY − (QE)T(KBY )E − (QTKB)BHYH + (QE)TKEHYH

= (QL)TKLY − (QL)TKLHYH

= (QL)TKLHYH . (30)

According to (26), (11), and (29), we get

KHLWKLH = KHL(P−1)LLKLH − KHL(P−1)LE((P−1)EE)−1(P−1)ELKLH

= KHL(QΛ̃QT)LLKLH

−KHL(QΛ̃QT)LE((QΛ̃QT)EE)−1(QΛ̃QT)ELKLH

= UΛ̃UT − UΛ̃(QE)T(QEΛ̃(QE)T)−1QEΛ̃UT

= J.

Analogously, according to (26), (11), and (30), we get KHLWKLHYH = R.
Finally, by substituting (27) into (25), we get

hH(XH) = KHL(W − WKLH(J − I)−1KHLW )KLHYH

= (I − J(J − I)−1)R
= ((J − I)(J − I)−1 − J(J − I)−1)R
= −(J − I)−1R.

We now consider the computational complexity of using (20). The matrix
U can be calculated from (14), (16), and (17) using (23) in O(|H |2n) time.
Moreover, the matrix Z can be calculated from (14), (16), (17), (18), and (19)
using (24) in O(|H |n) time. The computational complexity of calculating J and
R using (21) and (22) is O(|H |2(|H | + n)). This is because multiplication of an
|H | × n -matrix with a diagonal matrix Λ̃ can be computed in O(|H |n) time,
the matrix inversion involved in the calculations needs O(|H |3) time, and all
the other matrix products need at most in O(|H |2n) time when performed in
the optimal order. Finally, we substitute these matrices in (20) from which the
solution is obtained by inverting a matrix in O(|H |3) time. �
The calculation of the matrices (14) – (19) needs O(mn2) time, and hence the
computational complexity of training sparse RLS as in Proposition 1 is the same
as that of training sparse RLS in the ordinary way. When we have trained sparse
RLS as in Proposition 1, we can use the efficient hold-out method for calculating
various types of CV estimates. We can, for example, to perform N -fold CV by
partitioning the training set into N approximately equally sized folds and average
the results of the individual hold-out estimates. The number of training examples
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in each fold is then |H | ≈ m/N . According to Proposition 1, the computational
complexity of each hold-out calculation is O(|H |2(|H |+n)), and hence the overall
computational complexity of N -fold CV is

O
(
m|H |2 + mn|H |) = O

(
m3

N2 +
m2n

N

)
.

We observe that when |H | ≈ n, the computational complexity of CV is equal
to that of the sparse RLS training. If we consider this as the largest tolerable
computational complexity, the proposed hold-out method is too expensive for
larger hold-out sets.

On the other hand, the method is less complex for smaller hold-out sets,
like O(mn) for the extreme case of LOOCV. Therefore, it can be used, for
example, to select the value of the regularization parameter λ efficiently from
a set of candidate values. The computational complexity of the regularization
parameter selection is equal to the complexity of CV times the size of the set of
candidate values, since the initialization phase of Proposition 1 does not have to
be repeated for different candidate values.

4 Conclusion

Hold-out and CV are among the most important methods for model selection
and performance evaluation of machine learning algorithms, and therefore their
computationally efficient implementations are sought after. In this paper, we
presented a computationally efficient algorithm for calculating hold-out perfor-
mance estimates for sparse RLS when it has been trained in advance with the
whole data set.

The computational complexity of training sparse RLS is O(mn2), where
m is the size of the training set and n is the number of basis vectors. We
showed that the hold-out estimates for trained sparse RLS can be computed in
O(|H |2(|H |+n)) time, where |H | is the size of the hold-out set. Consequently, the
algorithm can be used to calculate various types of CV estimates effectively. For
example, the complexities of N -fold CV and LOOCV for m training examples
are O(m3/N2 + (m2n)/N) and O(mn), respectively.

Sparse RLS can be trained in O(mn2) time for several regularization param-
eter values in parallel, and this property can also be combined with the fast
hold-out calculation. Therefore, cross-validation can be used to efficiently select
the optimal value of the regularization parameter.
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Abstract. The key problem in reinforcement learning is the exploration-
exploitation tradeoff. An optimistic initialisation of the value function is
a popular RL strategy. The problem of this approach is that the algo-
rithm may have relatively low performance after many episodes of learn-
ing. In this paper, two extensions to standard optimistic exploration are
proposed. The first one is based on different initialisation of the value
function of goal states. The second one which builds on the previous
idea explicitly separates propagation of low and high values in the state
space. Proposed extensions show improvement in empirical comparisons
with basic optimistic initialisation. Additionally, they improve anytime
performance and help on domains where learning takes place on the sub-
space of the large state space, that is, where the standard optimistic
approach faces more difficulties.

1 Introduction

The main feature of reinforcement learning is that it can deal with stochastic
control when the system is hard to model but easy to simulate. The process of
building an explicit, mathematical model of the environment may be as difficult
as the control problem itself. If, however, the system can be observed either in
real time or through a software simulator, the reinforcement learning approach
can be used to approximate the value function, or the optimal policy to control
such a system [1]. The key problem in reinforcement learning (RL), either when
learning takes place in a real (situated) or simulated system, is the exploration-
exploitation tradeoff. It is a problem of action selection which leads to a constant
dilemma of two contradicting objectives. The first one is exploitation, that is,
maximisation of the reward based on the current policy. And, the second one
concerns exploration of the environment in order to improve approximation of
the policy in order to perform better in the future [2]. There exist solutions
for the small class of bandit problems for which formal correctness was proved.
They do not apply, however, to the multi-state case. For this reason heuristic
approaches are necessary to deal with exploration-exploitation tradeoff in general
RL [3]. Thrun [4] has surveyed and proposed commonly used categorisation of
such techniques.
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One of the simplest, albeit effective, approaches to the problem of exploration
in RL is a straightforward, optimistic initialisation of the value function [2]. The
value function of all states is in this case initialised to the highest possible value.
The learning algorithm is in this way encouraged to go to unexplored parts of
the state space whereas the value function is modified according to received
payoff. This can be applied in the most straightforward form as an undirected
[4], that is based only on the current content of the Q-table, exploration, but this
is also the key element of some other exploration strategies for both model-free,
IEQL+ [5], and model-based, R-max [6,7], reinforcement learning. The formal
justification for optimism under uncertainty is, for example, due to Brafman and
Tannenholtz [6].

An essential advantage of optimistic initialisation is that it provides broad
exploration, and as a result of this, it is difficult to miss highly rewarded final
states. The current policy which is being learned with optimistic initialisation is
either optimal or leads to efficient learning. The disadvantage of this approach is
that it may take a lot of time for the algorithm to get rid of optimism, propagate
actual costs of actions, and converge to a final policy. In this case exploration
can be seen rather as a process of constant reduction of optimism based on a
real payoff from the simulation. It leads to situations when the learning agent
can go through relatively long trajectories even after many episodes of learning
because it is constantly driven by its optimism. In this paper we investigate
how to truncate this optimistic wandering in order to converge faster to optimal
solution, and also to be able to obtain a reasonable policy as soon as possible,
that is, to improve anytime properties [8] which are in fact weak in case of basic
optimistic exploration. The first straightforward solution is to simply initialise
the value of the final state to a higher value than all other states. In this way pos-
itive information can be backpropagated from the goal state, and the algorithm
starts exploiting earlier. Another solution which is build on the previous obser-
vation leads to a new algorithm in which the propagation of the value function
is divided into two stages: learning with standard optimistic initialisation, and
backpropagation of the higher positive value of the final state with an explicit
border line between low and high values.

Specifically, in this paper we investigate how to improve learning of SARSA
[2], model-free reinforcement learning algorithm, with optimistic initialisation of
the value function. The contribution of this paper can be summarised as follows:

– we show and empirically evaluate how small changes to the initialisation of
the value function can improve the obtained exploration,

– following reasoning from the first contribution a new algorithm to improve
optimistic exploration in model-free RL is proposed and evaluated,

– additional applicability of our algorithm to special requirements is also ex-
plained or evaluated: learning on the unknown limited area of the state space,
and anytime requirements [8].

It is worth noting that optimistic initialisation can be seen as a high level
paradigm which can be used with more specific exploration strategies which
determine how actions are selected. In our analysis ε-greedy action selection is
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used [2]. It allows to control the ratio of greedy actions (i.e., with highest Q-
values) chosen during learning. Generally optimistic initialisation and ε-greedy
can be seen as orthogonal, complementary techniques.

Optimistic exploration together with our improvements are discussed in
Sections 2 and 3. Experimental evaluation is contained in Sections 4, 5 and 6.
Concluding discussion is in Section 7.

2 Optimistic Exploration

For the ease of presentation our discussion throughout the paper is based on
the family of stochastic shortest path problems where there is a cost (negative
reward) given for actions executed in the system, and the objective is to learn
how to reach the goal state with a minimum cost (maximal reward) [1]. The
generalisation beyond this assumption is discussed in the final part of this sec-
tion. When learning in this setting, the optimistic exploration is achieved in a
natural way. When:

∀
s
∀
a
Q(s, a) = 0

and the action cost is a negative scalar, R, this represents the optimism un-
der uncertainly principle [2]. The key observation, which according to our best
knowledge has been never explicitly discussed in the literature, is that different
initialisation of the value function of the goal state changes the character of ob-
tained exploration, when it is based on the current content of the Q-table (so
called undirected exploration [4]), and, for example, ε-greedy action selection.
Specifically, when:

∀
s/∈G

∀
a
Q(s, a) = −I, ∀

g∈G
∀
a
Q(g, a) = 0, (1)

or
∀

s/∈G
∀
a
Q(s, a) = 0, ∀

g∈G
∀
a
Q(g, a) = I, (2)

where I is a positive scalar and G the set of goal states, this is not any more
a truly optimistic initialisation. In this case the learning process is unchanged
only until the higher value from the final state (in Equations 1 and 2 the value
of goal states is always higher) is backpropagated to the given areas of the state
space. Once this higher value reaches given entries in the Q-table, it has impact
on the exploration, and in particular the agent is encouraged to follow directions
from which higher values are propagated.

The question remains of what the ratio I/R should be. The first heuristic
choice is to set I to the value approximately equal (in terms of the order of
magnitude) to the absolute value of the cost of the longest path to the goal.
According to our empirical tests this approach works well in practice. Addition-
ally, a more detailed analysis of the impact of the value of I is in Section 6.

It is worth highlighting that the reinitialisation proposed in this section can be
done without any additional knowledge about the domain. Even the knowledge
about the goal state is not required. When the goal state is reached for the first
time, its value function can be simply initialised to a new value.
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Another important observation is that with the type of reward which is con-
sidered here, the same effect can be achieved with a straightforward modification
of the reward which is given upon entering the goal state. An artificial high posi-
tive value can be used instead of the negative action cost. This relation does not
hold, however, with another common type of reward where all rewards are zero
except the positive reward upon entering the goal state. In this case optimistic
initialisation is achieved by assigning to all Q-entries the value equal or higher
than the final reward. The property which we discuss at the beginning of this
section can be in this case achieved by assigning a higher value to the goal state
than to all remaining states, that is, in the same way as with rewards based on
the action cost.

3 Improving Optimistic Exploration

Here, a novel algorithm is proposed which builds on the observation described
in the previous section. Our principal heuristic guess is that propagation of the
high value of the value function from goal states can improve convergence as
the agent will be encouraged to exploit towards higher values. In the basic form,
described in Section 2, those higher values, when backpropagated, interact with
lower values of non-goal states through standard temporal-difference learning
of SARSA. The idea of the algorithm proposed in this section is to treat in a
different way transitions from lower to higher values. The concept presented here
can be easily explained through Algorithm 1. which is named IOE which stands
for improved optimistic exploration. The first property of our algorithm is in
lines 7 − 9 where the Q-values of the goal state are reinitialised to the value
of zero. The same properties of the algorithm can be obtained by replacing −I
with 0 in line 1, and 0 with I in line 8, and modifying inequalities appropriately
(see Equations 1 and 2). This shows how the idea which is discussed in Section 2
can be implemented in the SARSA algorithm. A more challenging situation
is considered here where the goal state is not known. If knowledge about the
goal state is available, lines 7 − 9 can be removed, and Q(g, ·), where g ∈ G,
initialised to the value of 0 directly in line 1. The extension to this framework,
which represents the essence of this section, is in lines 10 − 18 of Algorithm 1..
In this part, the algorithm deals with transitions from lower (initialised to −I)
to higher (backpropagated from Q(g, ·) = 0, where g ∈ G) values in the Q-table.
In line 11, Q(s, a) is shifted to the domain of high values by a direct assignment
of the sum of the step penalty, and the value function of the next state.

For better presentation of the concept which is discussed here, an exemplary
content of the Q-table when learning with Algorithm 1. is placed in Figure 1. It
is a random walk domain in which there is a chain of ten states. There are two
stochastic actions (90% of success) left and right, and the goal is to navigate
from state 0 (the leftmost state) to state 9 (the rightmost state). The cost of
each action is −1. The figure shows the content of the Q-table at the beginning
of the fourth learning episode. It can be easily observed that high and low values
are propagated. States 6 − 9 in Figure 1 were reached by higher values which



364 M. Grześ and D. Kudenko

Algorithm 1. The IOE algorithm
1: Initialise Q(s, a) = −I for all s, a
2: repeat {for each episode}
3: Initialise s, choose a from s using policy derived form Q
4: repeat {for each step of episode}
5: Take action a, observe reward r, s′

6: Choose a′ from s′ using policy derived form Q
7: if s′ ∈ G then
8: Q(s′, a′) = 0
9: end if

10: if Q(s′, a′) > −I and Q(s, a) ≤ −I then {from lower to higher values}
11: Q(s, a) = Q(s′, a′) + r
12: if s′ ∈ G then
13: break {end of the episode}
14: else
15: s ← s′, a ← a′

16: continue {go to the next step}
17: end if
18: end if
19: δ = r + γQ(s′, a′) − Q(s, a), Q(s, a) = Q(s, a) + αδ
20: s ← s′, a ← a′

21: until state s is terminal
22: until

State 0 1 2 3 4 5 6 7 8 9

Action
Left -101.74 -101.69 -101.52 -101.37 -100.98 -100.69 -100.4 -100.2 -100.1 -100
Right -101.75 -101.67 -101.56 -101.31 -100.94 -100.74 -3.02 -2.18 -1 0

Fig. 1. The content of the Q-table of a 10-state random walk at the beginning of the
fourth learning episode

encourage the agent to move towards the goal. The remaining states have lower
values, but these values are optimistic with a given model of reward, and the
agent is encouraged to explore following standard optimistic exploration strategy.

4 Experimental Design

The second part of the paper contains empirical study of the proposed algo-
rithm. Specifically, three RL algorithms are compared: standard SARSA with
optimistic initialisation (Optimistic), SARSA with modified initialisation of the
value function for the goal state (Semi-optimistic), and Algorithm 1. (IOE).
The following values of relevant parameters were applied. The learning rate α
is 0.1 in the first episode and is linearly decreased to the value of 0.01 in the
last episode (property required by the convergence proofs of the SARSA algo-
rithm). The ε-greedy action selection is used. For brevity we selected the value
of ε which yielded the best performance of the basic Optimistic version. On all
problems the value of ε was either not significant, or values 0 and 0.01 were the
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best. For this reason the value of 0 is used with the Optimistic algorithm, that
is, the algorithm greedily always selects the best action. Both Semi-optimistic
and IOE require some randomness in the selection of actions. After initial ex-
perimentation, ε = 0.05 was selected and used with Semi-optimistic and IOE in
experiments reported in this paper. The order of magnitude of the value of I in
the IOE algorithm was 6.

Our analysis is based on stochastic shortest path problems [1]. Detailed de-
scription of used domains is in Section 5. In all these domains the value -1 was
used as an action cost. In this way initialisation of all Q-entries with the value
of zero naturally yields an optimistic initialisation. Since domains are episodic
and actions have non-zero cost, the discount factor, γ = 1, can be used.

Results presented in all figures in Section 6 represent the average of 10 runs.
Statistical analysis with two sample t test, and the level of significance at P <
0.05, was used to evaluate differences in performance [9].

5 Domains

For better understanding of the problem discussed in this paper and more exten-
sive evaluation of the algorithm which is proposed, four RL domains are used.

Random walk. The chain of states constitutes the state space in this envi-
ronment which has been often used in the RL literature [10,11]. In our design
there are 128 states and the task is to learn how to get to the rightmost state
when starting from the leftmost state. There are two actions: left and right. The
environment is stochastic. Each action may fail with probability 0.1, and in such
case another action is chosen. The value of I was 128 in the Semi-optimistic
configuration.

S-maze. This is an instance of the navigation maze problems. This particular
design comes from [12]. In our case a scaled larger version was used. Each grid
position from the original task (see, e.g., [2, pp. 235]) was uniformly divided into
64 squares which yields 72× 48 states. There are eight actions which lead to an
adjacent cell if it is not the border nor an obstacle. In such situations actions
do not have any effect. Actions are stochastic. With probability 0.1 an action
can fail in which case one of the remaining actions is chosen with a uniform
probability. The value of I was 200 in the Semi-optimistic configuration.

Mountain Car. The Mountain Car problem has been commonly used in the
literature to test new reinforcement learning algorithms. It is a two-dimensional
world consisting of a U-shaped valley and a car placed at the bottom of the
valley. The car must move back and forth to gain enough momentum to escape
the valley [2]. An experiment was terminated and the agent placed in a random
position after reaching the goal state. Two different discretisations were used
with 11×21 (these smallest values were taken from [13]), and 100×100 intervals
on correspondingly the position and velocity of the car. The value of I was 100
in the Semi-optimistic configuration.
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Fig. 3. Results for the S-maze task

Maze. The last domain is a variant of the maze used by Wiering [14]. It is in
our case a 100× 100 maze where the start state is located in the position (0, 0).
Every non-start and non-goal state can be an obstacle with probability 0.2. For
each run a new set of obstacles was drawn according to this rule. The goal is
to reach the terminal state. To gain better insight into compared algorithms we
test two different configurations which differ in the location of the goal state.
The following positions of the goal state were used: (99, 99), and (49, 49). The
value of I was 200 in the Semi-optimistic configuration.

6 Results

The first experiment was performed on the random walk task (RW). Results are
shown in Figure 2. It is easy to notice that the IOE algorithm worked much bet-
ter in the initial phase of learning than two remaining algorithms. The difference
between IOE and Semi-optimistic is statistically significant from approximately
episode 35 to 600. The difference between Optimistic and Semi-optimistic is,
however, not statistically significant even though some improvement of Semi-
optimistic can be observed in the figure. This task is easier than remaining
domains and Semi-optimistic approach was not able to yield significant improve-
ment to the basic optimistic exploration.

The S-maze is two dimensional, and in this case it is more difficult to balance
exploration/exploitation tradeoff than in RW. Results reported in Figure 3 show
that extensions to basic optimistic exploration improve convergenceof the learning
algorithm. IOE is better than Semi-optimistic with statistical significance between
episodes 120 and 4.5×103. Semi-optimistic is in turn better than Optimistic after
approximately 600 episodes. The advantage of simple modifications to the algo-
rithm which we propose in this paper are evident in this experiment.

In the next experiment the Mountain Car (MC) domain is evaluated. Two
versions are reported. Results for discretisaiton 11 × 21 are in Figure 4, and
discretisation 100 × 100 in Figure 5. In the first case the state space is signifi-
cantly smaller, and the Optimistic version performs relatively well compared to
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Fig. 5. Results for the Mountain Car
task with discretisation 100 × 100

other algorithms (approximately between episodes 350 and 500 Semi-optimistic
is better than Optimistic with statistical significance). There is no statistically
significant difference between Semi-optimistic and IOE on this smaller state
space. The influence of different learning strategies is however more evident on
the bigger state space (see Figure 5). After 500 episodes the difference between
IOE and Semi-optimistic becomes statistically significant. There is no statistical
significance between Semi-optimistic and Optimistic. This result shows that IOE
is a successful algorithm and can yield better improvement than straightforward
reinitialisation implemented in Semi-optimistic.

The main contribution of this paper is the improvement of standard optimistic
exploration. In results discussed in previous paragraphs it was shown that the
proposed extension can yield significant improvement to this learning strategy.
The aim of the next study was to check our extensions to optimistic exploration
in situations when basic optimistic exploration may encounter problems. For this
experiment the last domain, Maze, was used. By placing the goal state in differ-
ent locations we want to change the ratio between the likely (the environment is
stochastic) distance to the goal and the overall number of states. When the goal
state is placed closer to the start state, the agent can focus its learning on the
limited area of the state space. This poses problems to optimistic exploration
since it leads to exhaustive exploration of the state space, and many states are
unnecessary visited many times [15]. Following this way of reasoning, in Figure 6
results with the goal state in the most distant position, (99, 99), are reported.
In the second version, the goal state is placed in position (49,49) (the centre of
the state space). Here, there are more opportunities for unnecessary exploration
behind the goal state. Results of this run are in Figure 7. Illuminating conclu-
sions can be drawn from the comparison of Figures 6 and 7. To compare these
two runs we compute the ratio of the episode number when Semi-optimistic
reaches the horizontal line in the graph and the corresponding value for Opti-
mistic. For results in Figure 6 this ratio for Semi-optimistic/Optimistc is 0.21.
For results in Figure 7 this value is 0.13. When comparing these two ratios, it
can be observed that Semi-optimistic yielded better improvement when the goal
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Fig. 7. Results for the 100 × 100 maze
with the goal state at position 49 × 49

state was in position (49,49). It shows that Semi-optimistic can better deal with
the growing significance of the domain property studied in this paragraph. IOE
has approximately the same low ratio in both cases.

In the IOE algorithm, there is an explicit border between low and high val-
ues, and the algorithm was not sensitive to the ratio I/R in our experiments.
The Semi-optimistic algorithm propagates both types of values using standard
updates, and this ratio is of higher importance. In our additional experiments
to check sensitivity of Semi-optimistic to the value of I, it was observed that
values with similar order of magnitude, as those mentioned in Section 5, lead
to the same results. Differences are observed when the order of magnitude of I
is significantly higher (e.g., I = 106). In this case the first phase of learning is
similar as with low values of I and Semi-optimistic is better than Optimistic.
The difference is in the latter periods of learning, when the learning curve shows
unstable performance.

7 Conclusion

There is an interest in optimism under uncertainty in both model-free [5] and
model-based [6,7] RL. In this paper methods to improve optimistic exploration
in the model-free SARSA algorithm are studied. The first contribution of this
paper is an explicit analysis of the impact of different initialisation of the goal
state, or equivalently modification of the final reward (in domains with a non-
zero cost of actions) on the optimistic exploration. The improvement to standard
optimistic initialisation was shown. According to our best knowledge this prob-
lem has never been explicitly studied with this regard. The next contribution
constitutes the IOE algorithm in which there is an explicit border between high
and low values. Additionally, both extensions are shown to yield an improvement
when the optimistic agent learns on the limited area of the state space. Anytime
properties of our solutions are also very good, since the reasonable performance
is achieved very early. This is the main problem of basic optimistic initialisation.
When high values reach the goal state in Semi-optimistic or IOE, the policy has
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already good anytime properties (according to our empirical results even very
close to optimal) and the learning process can be stopped if a reasonable solution
is required quickly.

Our results are based on the tabular representation of the state space with
a distinct value for each state-action pair. The idea of different initialisation
of the value function of goal states can be easily implemented with function
approximation with local basis functions (e.g., tile coding [16]). This would be
an interesting topic for future research.
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Abstract. We propose a learning framework to address multiclass chal-
lenges, namely visualization, scalability and performance. We focus on
supervised problems by presenting an approach that uses prior informa-
tion about training labels, manifold learning and support vector
machines (SVMs).

We employ manifold learning as a feature reduction step, nonlinearly
embedding data in a low dimensional space using Isomap (Isometric Map-
ping), enhancing geometric characteristics and preserving the geodesic
distance within the manifold. Structured SVMs are used in a multiclass
setting with benefits for final multiclass classification in this reduced
space. Results on a text classification toy example and on ISOLET, an
isolated letter speech recognition problem, demonstrate the remarkable
visualization capabilities of the method for multiclass problems in the
severely reduced space, whilst improving SVMs baseline performance.

1 Introduction

Multiclass learning is the problem of assigning labels to instances where the
labels are drawn from a finite set of elements and is being increasingly required
by modern applications, such as text classification, protein function classification,
speech recognition, music categorization and semantic scene classification. The
most common approach to such problems is to build upon classification learning
algorithms for binary problems, i.e. problems in which the set of possible labels
is of size two. Among these algorithms, support vector machines (SVMs) are
accepted as one of the best performing methods in many domains [1,2]. When
applied to multiclass classification, SVMs are mostly used in their binary version,
by reducing a single multiclass problems into multiple binary problems. For
instance, a common method is to build a set of binary classifiers where each
classifier distinguishes between one of the labels to the rest [3].

The alternative explored in this work is to make use of structured SVMs [4]
and cast them to solve multiclass classification problems. The rationale is that
having a tool that handles structured outputs, such as graphs or trees, it is
possible to build a multiclass classifier [5].

In multiclass classification the challenges are numerous. Feature selection and
dimensionality reduction methods must take into account the relevance of fea-
tures not only to a particular class, as in the binary setting, but to their impact

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 370–379, 2009.
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on all classes. Initial feature selection and dimensionality reduction are usually
carried out in the feature space as a pre-processing step. Several supervised
and unsupervised techniques can be applied. Manifold learning strategies, like
Isomap (Isometric Mapping) [6], are effective for extracting nonlinear structures
from high-dimensional data in pattern recognition [7]. Finding the structure
behind the data may be important for a number of reasons, such as data visual-
ization and performance improvement. Graphical depiction of the training and
testing sets can potentially be crucial in multiclass applications, since it makes
possible to quickly give large amounts of information to a human operator [8].
To this purpose it is appropriately assumed that the data lies on a statistical
manifold, or a manifold of probabilistic generative models [9]. It can be regarded
as a supervised learning method, where the training labels play a central role.
In such a scenario, manifold learning can be used not only with the tradition-
ally associated algorithms, such as K-Nearest Neighbors (K-NN), but also with
state-of-the-art kernel-based machines like support vector machines (SVMs) [1].

In this contribution we extend previous work by the authors [10], general-
izing its application to multiclass problems. Specifically, we propose the use of
manifold learning, with a Isomap based nonlinear algorithm that uses training
label information in the dimensionality reduction step, combined with structured
multiclass SVMs based on structured SVMs.

The rest of the paper is organized as follows. In the next section, we set the
foundations and background for multiclass problems and for the multiclass sup-
port vector machines (SVMs) approach. In Section 3, we introduce manifold
learning as a supervised dimensionality reduction method. In Section 4, we in-
troduce our approach for the use of manifold learning in multiclass problems,
with an Isomap-based nonlinear dimensionality reduction algorithm combined
with multiclass SVMs. Experiments and results are described and analyzed in
Section 5. Finally, Section 6 addresses conclusions and future work.

2 SVM Multiclass Classification

SVMs are inherently two-class classifiers. The most common technique to im-
plement SVM multiclass classification with |C| classes in practice has been to
build |C| one-versus-rest classifiers (commonly referred to as one-versus-all),
and to choose the class that classifies the test datum with greatest margin. An-
other strategy is to build a set of one-versus-one classifiers, and to choose the
class that is selected by the most classifiers. Although this involves building
|C|(|C| − 1)/2 classifiers, the time for training classifiers may actually decrease,
because the training data set for each classifier is much smaller.

However, these are not very elegant approaches to solving multiclass problems.
A better alternative is provided by the construction of multiclass SVMs, where
we build a two-class classifier over a feature vector Φ(x, y), derived from the pair
consisting of the input features (x) and the class of the datum (y). At test time,
the classifier chooses the class

y = arg maxy′wT Φ(x, y). (1)

where w represents the set of weights that defines the learning machine. The
margin during training is the gap between this value for the correct class and for
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the nearest other class, and so the quadratic program formulation will require
that

∀i∀y 
=yiwΦ(xi, yi) − wΦ(xi, y) ≥ 1 − ξi, (2)

This general method can be extended to give a multiclass formulation of vari-
ous kinds of linear classifiers. It is also a simple instance of a generalization of
classification where the classes are not just a set of independent, categorical la-
bels, but may be arbitrary structured objects with relationships defined between
them, usually referred to as structured SVMs.

The algorithm used in this contribution, described in [4], is based on Struc-
tured SVMs [5]. It can implement the conventional winner-takes-all (WTA)
multiclass classification described in [3]. It learns mappings involving complex
structures in polynomial time. A possible application, pertinent to our work is
multiclass classification. The multiclass task is tackled by generalizing large mar-
gin methods to the broader problem of learning structured responses. The naive
approach of treating each structure as a separate class is often intractable, since
it leads to a multiclass problem with a very large number of classes. This prob-
lem is surpassed specifying discriminant functions that exploit the structure and
dependencies within the set of classes C. SVM multiclass uses an algorithm that
is different from the one in [3]. It follows the work of Collins [11] on perceptron
learning with a similar class of discriminant functions.

Let C = {y1, . . . , yK} be the set of classes and w = (v′
1, . . . ,v

′
k)′ be a stack of

vectors, where vk is a weight vector associated with the kth class yk. Following
Crammer and Singer [3], one can then define F (x, yk;w) =< vk, Φ(x) >, where
Φ(x) denotes an arbitrary input representation. These discriminant functions can
be equivalently represented by defining a joint feature map as follows Ψ(x,y) ≡
Φ(x) ⊗ Λc(y). Here Λc refers to the orthogonal (binary) encoding of the label y
and ⊗ is the tensor product which forms all products between coefficients of the
two argument vectors.

3 Manifold Learning

Many approaches have been proposed for dimensionality reduction, such as the
well-known methods of principal component analysis (PCA) [12], independent
component analysis (ICA) [13] and multidimensional scaling (MDS) [14]. All
these methods are well understood and efficient and have thus been widely used
in visualization and classification. Unfortunately, they share a common inherent
limitation: they are all linear methods while the distributions of most real-world
multiclass data problems are nonlinear.

An emerging nonlinear dimensionality reduction technique is manifold lear-
ning, which is the process of estimating a low-dimensional structure which un-
derlies a collection of high-dimensional data. Manifold learning can be viewed as
implicitly inverting a generative model for a given set of observations [15]. Let Y

be a d dimensional domain contained in a Euclidean space IRd. Let f : Y → IRD

be a smooth embedding for some D > d. The goal of manifold learning is to
recover Y and f given N points in IRD. Isomap [6] provides an implicit de-
scription of the mapping f (or f−1). Given X = {xi ∈ IRD|i = 1 . . .N} find
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Y = {yi ∈ IRd|i = 1 . . .N} such that {xi = f(yi)|i = 1 . . . N}. Without impos-
ing any restrictions of f , the problem is ill-posed. The simplest case is a linear
isometry, i.e. f is a linear mapping from IRd → IRD, where D > d.

In Isomap [6] the local neighborhood of each example is preserved, while trying
to obtain highly nonlinear embeddings with manifold learning. For data lying on
a nonlinear manifold, the true distance between two data points is the geodesic
distance on the manifold, i.e. the distance along the surface of the manifold,
rather than the straight-line Euclidean distance. The main purpose of Isomap
is to find the intrinsic geometry of the data, as captured in the geodesic man-
ifold distances between all pairs of data points. The approximation of geodesic
distance is divided into two cases. In the case of neighboring points, Euclidean
distance in the input space provides a good approximation to geodesic distance.
In the case of faraway points, geodesic distance can be approximated by adding
up a sequence of short hops between neighboring points. Isomap shares some
advantages with PCA and MDS, such as computational efficiency and asymp-
totic convergence guarantees, but with more flexibility to learn a broad class of
nonlinear manifolds. The Isomap algorithm takes as input the distances d(xi,xj)
between all pairs xi and xj from N data points in the high-dimensional input
space. The algorithm outputs coordinate vectors yi in a d-dimensional Euclidean
space that best represent the intrinsic geometry of the data. Isomap is accom-
plished following these steps:

Step 1. Construct neighborhood graph: Define the graph G over all data points
by connecting points xi and xj if they are closer than a certain distance
ε, or if xi is one of the K nearest neighbors of xj . Set edge lengths equal
to d(xi,xj).

Step 2. Compute shortest paths: Initialize dG(xi,xj) = d(xi,xj) if xi and xj are
linked by an edge; dG(xi,xj) = +∞ otherwise. Then for each value of
k = 1, 2, . . . , N in turn, replace all entries dG(xi,xj) by min{dG(xi,xj),
dG(xi,xk) + dG(xk,xj)}. The matrix of final values DG = {dG(xi,xj)}
will contain the shortest path distances between all pairs of points in G.

Step 3. Apply MDS to the resulting geodesic distance matrix to find a
d-dimensional embedding.

This is an unsupervised procedure and constitutes a preprocessing step for classi-
fication. Basically it performs a transformation from a high dimensional input
data space into a lower dimensional feature space. Then a classifier, for instance,
K-NN can be applied to the resulting data. However, the mapping function given
by Isomap is only implicitly defined. Therefore, it should be learned by nonlinear
interpolation techniques, such as generalized regression neural networks, which
can then transform the new test data into the reduced feature space before
prediction.

3.1 Supervised Isomap

In the supervised version of Isomap [16], the information provided by the train-
ing class labels is used to guide the procedure of dimensionality reduction. The
training labels are used to refine the distances between inputs. The rationale is
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that both classification and visualization can benefit when the inter-class dissim-
ilarity is larger than the intra-class dissimilarity. However, this can also make
the algorithm overfit the training set and can often make the neighborhood
graph of the input data disconnected. To achieve this purpose, the Euclidean
distance d(xi,xj) between two given observations xi and xj , labeled yi and yj

respectively, is replaced by a dissimilarity measure [16]:

D(xi,xj) =

⎧⎪⎨⎪⎩
√

1 − e
−d2(xi,xj)

γ yi = yj ,√
e

−d2(xi,xj)
γ − α yi �= yj .

(3)

Note that the Euclidean distance d(xi,xj) is in the exponent and the parameter
γ is used to avoid that D(xi,xj) increases too rapidly when d(xi,xj) is relatively
large. Hence, γ depends on the density of the data set and is usually set to the
average Euclidean distance between all pairs of data points. On the other hand,
α gives a certain possibility to points in different classes to be closer, i.e. to
be more similar, than those in the same class. This procedure allows a better
determination of the relevant features and will definitely improve visualization.

4 Proposed Approach

In this section, we propose a learning framework to address multiclass prob-
lems. We propose the combination of manifold learning as a feature reduction
step, that increasing scalability, also promotes visualization and performance
potentialities.

We start by using manifold learning to construct a reduced representation of
the input space. As detailed in Section 3, we use a nonlinear embedding of data
in a low dimensional space constructed with the supervised version of Isomap
(Isometric Mapping) [16], enhancing geometric characteristics and preserving the
geodesic distance within the manifold. Therefore, we use the multiclass training
labels in the datasets to provide a better construction of features. We further
apply the dissimilarity measure (3) to enhance the baseline Isomap Euclidean
distance using label information, with α taking the value of 0.65 and γ the
average Euclidean distance between all pairs of training data points.

When a reduced space is reached, our aim is to learn a linear-kernel structured
multicass SVM [5] that can be applied in unseen examples. For testing, however,
Isomap does not provide an explicit mapping of documents. Therefore we can not
generate the test set directly, since we would need to use the labels. Hence, we use
a generalized regression neural network (GRNN) [17] with a 0.95 spread to learn
the mapping and apply it to each test document, before the SVM prediction
phase, as can be gleaned from Figure 1 that summarizes the proposed approach.
In the training phase the supervised Isomap procedure, that runs on features
and label training instances, is captured by the GRNN using only the features.
Furthermore, the reduced featured space (IRd) is the place for the SVM multiclass
modeling. When a new testing instance is to be classified, the GRNN maps it
from IRD to IRd and the SVM multiclass linear-kernel model predicts the class.
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Fig. 1. Proposed approach: SIsomap+SVM

5 Experimental Setup

This section presents the conducted experiments and obtained results. First
datasets and performance criteria are defined, then experiments and results are
presented and analyzed.

5.1 Datasets

We have used two different multiclass datasets: a text classification toy example1

and ISOLET, an isolated letter speech recognition problem form UCI2.
The toy example consists of 7 classes and 2300 examples, divided in 300

training examples and 2,000 testing examples.
ISOLET task is to predict which letter-name was spoken, resulting in a 26-

class problem. To generate this dataset, 150 subjects spoke the name of each
letter of the alphabet twice. Hence, there are 52 training examples from each
speaker. The 617 features are described in [18] and include spectral coefficients,
contour features, sonorant features, pre-sonorant features, and post-sonorant
features. The examples are split into 6,238 training examples and 1,559 testing
examples, both with balanced class cardinality.

5.2 Performance Metrics

In multiclass problems the common performance metric is the global error, given
by the percentage of wrongly classified testing instances, regardless of the incor-
rectly classified category or magnitude of the error.

However, the independent performance of each class is also very important.
Therefore, in addition to the global error measure, we also present the error rate
and F1 performances per class. To evaluate each class performance, we first define
1 http://www.cs.cornell.edu/People/tj/svm light/svm multiclass.html
2 http://archive.ics.uci.edu/ml/datasets/ISOLET
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Table 1. Contingency table for binary classification

Class Positive Class Negative
Assigned Positive a b

(True Positives) (False Positives)
Assigned Negative c d

(False Negatives) (True Negatives)

a contingency matrix representing the possible outcomes of the classification, as
shown in Table 1.

Several measures have been defined based on this contingency table, such
as, error rate ( b+c

a+b+c+d), recall (R = a
a+b ), and precision (P = a

a+c ), as well as
combined measures, such as, the van Rijsbergen Fβ measure [19], which combines
recall and precision in a single score, Fβ = (β2+1)P×R

β2P+R . The F1 measure was
chosen since it permits the identification of misclassifications even when a class
has few positive examples, detecting deceiving low error rates situations.

5.3 Results and Analysis

Table 2 presents the comparison of global error measures between the baseline
multiclass SVM and the proposed approach for both datasets. The feature re-
duction was from 47 to 10 features for Toy dataset and from 617 to 200 for
ISOLET dataset. In the case of ISOLET, to speed the training procedure, of
the 6,238 training examples, only 2,500 were used, maintaining balanced class
cardinality.

The overall trend is that the proposed manifold multiclass SVM approach
surpasses the baseline setting by around 10% and 7% for the Toy dataset and
ISOLET dataset respectively (see Table 2).

Figure 2 represents the error rate and F1 measures for each individual class of
the two datasets. The error rates are seamlessly low, while the F1 performances
are more diverse. Nevertheless, the averaged values for error rates for the pro-
posed approach improve the baseline measures: from 13.90% to 10.67% for the
Toy dataset and from 1.51% to 0.96% for the ISOLET dataset. Regarding F1
performance the values vary between the different classes, but the tendency is
similar, i.e. the averaged performance values also present an improvement when
using the proposed approach: from 11.49% to 34.46% for the Toy dataset and
from 79.15% to 87.44% for the ISOLET dataset.

The most impressive result is achieved in visualization properties of the pro-
posed method. As can be gleaned from Figs. 3 and 4, in the initial representation
the first ten classes of ISOLET (letters a to j) are not distinguishable, while in

Table 2. Global multiclass error

SVM Proposed approach
Toy 48.65% 38.55%

ISOLET 19.63% 12.44%
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Fig. 2. Performance measures per class for: (a) Toy dataset; (b) ISOLET dataset
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Fig. 3. Training examples of ISOLET 10 first letters
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Fig. 4. Testing examples of ISOLET 10 first letters

the manifold representation the ten letters are almost perfectly distinct. Illustra-
tion of the 26 classes was attainable with similar results, but the outcome was
not graphically clear due to plotting limitations.

6 Conclusions

In this paper we proposed a framework to tackle multiclass problems. We use a
combination of a nonlinear dimensionality reduction preprocessing method and
structured multiclass SVMs.

We concluded that manifold learning, namely the supervised ISOMAP tech-
nique, efficiently captures the underlying structure of the data, preserving the
distances among data points in the original dimensional space. One of the main
achievements was the impressive graphical class separation that was possible in
the manifold. This result can prove to be very useful to transmit information and
confidence to a human user. Moreover, the use of structured multiclass SVMs
permitted a significant improvement in the performance of the final classifier in
the new reduced feature space.

Future work is foreseen in the refinement of the learning abilities and on the
exploitation of inter-class relationships in the dimensionality reduction step.
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A Cat-Like Robot Real-Time Learning to Run

Pawe�l Wawrzyński

Warsaw University of Technology, Poland

Abstract. Actor-Critics constitute an important class of reinforcement
learning algorithms that can deal with continuous actions and states in
an easy and natural way. In their original, sequential form, these algo-
rithms are usually to slow to be applicable to real-life problems. However,
they can be augmented by the technique of experience replay to obtain a
satisfactory of learning without degrading their convergence properties.
In this paper experimental results are presented that show that the com-
bination of experience replay and Actor-Critics yields very fast learning
algorithms that achieve successful policies for nontrivial control tasks in
considerably short time. Namely, a policy for a model of 6-degree-of-
freedom walking robot is obtained after 4 hours of the robot’s time.

Keywords: reinforcement learining, actor-critics, experience replay,
neural networks.

1 Introduction

Reinforcement learning (RL) addresses the problem of an agent that optimizes
its reactive policy in a poorly structured and initially unknown environment [9].
Algorithms developed in this area can be viewed as computational processes
that transform observations of states, actions and rewards into policy parame-
ters. Several important RL algorithms, such as Q-Learning [10] and Actor-Critic
methods [2,5,6,3], process the data sequentially. Each single observation is used
for adjusting the algorithms’ parameters and then becomes unavailable for fur-
ther use. We shall call such methods sequential. They are based on a common
assumption that RL applications to real-world learning control problems require
large amounts of data which cannot be kept in a limited amount of memory
assigned to the algorithm.

Sequential algorithms do not exploit all the information contained in the data
and are known to require a large number of environment steps to obtain a sat-
isfactory. Usually, this number is large enough to make the learning process
detrimental to any real device whose control policy we would hope to optimize
by means of RL. However, there are other, non-sequential methods that require
much fewer environment steps to obtain a policy of the same quality. They
achieve this at the cost of collecting data and some extensive processing thereof.
This distinction between sequential and non-sequential algorithms should not
be confused with the distinction between online and offline algorithms. Here,
we are interested only in online algorithms which improve the policy as the

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 380–390, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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agent-environment interaction proceeds. Online sequential and non-sequential
algorithms differ in the way of using the available computational power during
the interaction.

One of the approaches to design of non-sequential algorithms consists in
adding some non-sequential data processing to a sequential algorithm. The mod-
ified algorithm collects historical experiences (observations of states, actions and
rewards) and applies to them the operations of the original sequential algorithm
as if they have just taken place. This idea of repeating many similar operations
to the same event, called experience replay [8,7,4], was popular a few years ago
but has received little attention recently. Unfortunately, experience replay is not
automatically applicable to an arbitrary RL algorithm. In particular, it cannot
be directly combined with on-policy methods, i.e., those based on the assump-
tion that the actions producing data for policy improvements are drawn from
the current policy. Consequently, the same experience cannot be applied many
times to adjust a continuously changing policy.

In this paper we present an experimental study on experience replay and an
Actor-Critic-type learning algorithm combined in a fashion introduced in [12]. In
the study we obtain a policy of an emulated cat-like robot called Half-Cheetah
[11]. The robot is a kinematic string with 6-degrees of freedom. Its state space
is 31 dimensional. The learning goal is to make Half-Cheetah run as fast as
possible. The objective is obtained within 4 hours of Half-Cheetah time.

The paper is organized as follows. In Sec. 2 the problem of our interest is
defined along with the class of algorithms that encompasses sequential Actor-
Critics. Section 3 shows how to estimate improvement directions in the policy
parameters’ space using the data from the preceding state transition and to
accelerate a sequential algorithm by combining these estimators with experience
replay. The experimental study is presented in Sec. 4.

2 Problem Formulation

We will consider the standard RL setup [9]. A Markov Decision Process (MDP)
defines a problem of an agent that observes its state st in discrete time t =
1, 2, 3, . . . , performs actions at, receives rewards rt and moves to other states
st+1. A particular MDP is a tuple 〈S,A, Ps, r〉 where S and A are the state and
action spaces, respectively; {Ps(·|s, a) : s ∈ S, a ∈ A} is a set of state transition
distributions; we write st+1 ∼ Ps(·|st, at) and assume that each Ps is a density.
Each state transition generates a reward, rt ∈ R. Here we assume that each
reward is depends deterministically on the current action and the next state,
rt = r(at, st+1).

Actions are generated according to a policy, π, which is a family of dis-
tributions parameterized by the state and a policy vector θ ∈ Rnθ , namely
at ∼ π(· ; st, θ). The objective of reinforcement learning is to optimize θ to make
the policy maximize future rewards. This goal may be strictly specified in various
ways. We may require the policy to maximize the average reward or to maximize
the sum of future discounted rewards expected in each state.
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Below we analyze a large class of the existing sequential RL methods suitable
for policy determination in simulations and propose a way of their acceleration
based on a more extensive data processing. Our intention is to design methods
that obtain a satisfactory after a much smaller amount of agent time but not
necessarily after a smaller amount of computation. The control efficiency should
be maximized within short period of learning to keep the controlled machine
from being damaged by too many wrong actions.

Algorithm 1. The Basic Actor-Critic. γ∈(0, 1)
is a discount factor, λ∈ [0, 1], V̄ is the value func-
tion approximator (the critic) parameterized by
vector υ. βθ

t and βυ
t are the step-sizes.

0: Set yυ = 0, yθ = 0, t := 1. Initialize θ and υ.
1: Draw the action, at ∼ π(· ; st, θ).
2: Execute at, evaluate the next state st+1 and

the reward rt.
3: Calculate the temporal difference of the

form
4: dt(υ) = rt + γV̄ (st+1;υ) − V̄ (st;υ).
5: Adjust the actor:
6: yθ := (γλ)yθ + βθ

t ∇θ lnπ(at; st, θ)
7: θ := θ + yθdt(υ)
8: Adjust the critic:
9: yυ := (γλ)yυ + βυ

t ∇υV̄ (st; υ)
10: υ := υ + yυdt(υ).
11: Set t := t + 1 and repeat from Point 1.

Sequential Actor-Critics. Actor-
Critics [2,5,6,3] constitute probably
the most efficient and the most the-
oretically developed class of rein-
forcement learning algorithms. Let
us analyze an example of methods
that will be of interest for us: the
algorithm presented in [5], quoted
in the table beside, and called here
the Basic Actor-Critic. The actor is
represented here, as usually, by the
parameterized policy π. The critic
is represented by the approximator
V̄ (s; υ) parameterized by the critic
vector υ ∈ Rnυ . The critic approx-
imates the value function V π, that
is for a given policy, π, equal to the
sum of future discounted rewards
expected in a given state, namely
V π(s) = E

(∑
i≥0 γirt+i

∣∣st = s, π
)

, where γ ∈ (0, 1) is a discount factor. The

values βθ
t and βυ

t are the step-sizes: they are positive reals decreasing with grow-
ing t. Also, they should satisfy the standard stochastic approximation conditions:∑

t≥1 βt = ∞,
∑

t≥1 β2
t < ∞.

Below, we provide a simplistic, appealing to intuition, analysis of this algo-
rithm. We show it as working in the following way: It increases the probability of
a given action at if it turns out to lead to higher rewards than expected in state
st. If the action turns out to lead to smaller rewards, its probability is decreased.
Namely, let us consider the total adjustment of the policy vector θ during the
work of the algorithm. To this end, we analyze the value of yθ by the end of the
algorithm’s loop. It can be seen that yθ is then equal to

yθ =
t−1∑
k=0

(γλ)kβθ
t−k∇θ ln π(at−k; st−k, θ).

Therefore, the total adjustment is equal to

Δθ =
∑
t>0

dt(υ)
t−1∑
k=0

(γλ)kβθ
t−k∇θ ln π(at−k; st−k, θ)
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By changing the summation order we obtain

Δθ =
∑
t>0

βθ
t ∇θ ln π(at; st, θ)

∑
k≥0

(γλ)kdt+k(υ). (1)

We can see that an element of the above sum attributes to the state st the total
adjustment of the policy vector that the visit in this state induces. The adjust-
ment is equal to the product of a vector and a sum of scalars. The vector, ∇θ ln π,
defines the direction in which θ must be modified to change the probability of
action at in state st. The sum,

∑
k≥0, determines whether the action at leads

to higher rewards than expected in state st (then the sum is positive and the
probability of at is increased) or at leads to smaller rewards than expected in st

(the sum is negative and the probability of at is decreased).

The critic training. A similar analysis reveals the compact form of the total ad-
justment of the critic vector. Namely, at the end of the algorithm’s loop, the
vector yυ is equal to

yυ =
t−1∑
k=0

(γλ)k∇θ ln π(at−k; st−k, θ).

Therefore, the total adjustment of the critic vector is equal to

Δυ =
∑
t>0

βυ
t dt(υ)

t−1∑
k=0

(γλ)k∇υV̄ (st−k; υ)

By changing the summation order we obtain

Δυ =
∑
t>0

βυ
t ∇υV̄ (st; υ)

∑
k≥0

(γλ)kdt+k(υ). (2)

We can see that an element of the above sum attributes to the state st the total
adjustment of the critic vector that the visit in this state induces. In order to
understand the character of this adjustment, one may notice that the inner sum
in Eq. (2) is the same as the inner sum in Eq. (1) expressing how large future
turned out to be in comparison to expected in state st. Hence, the critic training
consists in increasing V̄ (st; υ) when actural rewards turned to be higher than
this value, and decreasing otherwise.

Generalization. In general, we will consider sequential actor-critic-type algo-
rithms characterized by the following features:

1. Actions are generated by a stationary policy (actor) i.e., a distribution π
parameterized by state st and the policy vector θ ∈ Rnθ : at ∼ π(· ; st, θ).

2. A visit in state st causes a modification of the policy vector θ by a product
βθ

t φ̂t, where φ̂t on average indicates the direction in which θ assures larger
future rewards expected in state st whereas (βθ

t , t = 1, 2, . . . ) is a vanishing
sequence of step-sizes.
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3. The algorithm may compute φ̂t with the use of an auxiliary parameters
υ ∈ Rnυ . A visit in state st results in a modification of υ by a vector βυ

t ψ̂t,

where ψ̂t on average points into the direction where υ assures better quality
of φ̂t whereas (βυ

t , t = 1, 2, . . . ) is a vanishing sequence of step-sizes.
4. The vectors φ̂t and ψ̂t, different from one another, are of the same form

Gt(θ, υ)
∑
k≥0

(αρ)kzt,k(θ, υ) (3)

where Gt is a vector defined by st and at, α ∈ [0, 1), ρ ∈ [0, 1), and zt,k ∈ R
is defined by st+k, at+k, rt+k, st+k+1, and possibly at+k+1.

In the Basic Actor-Critic algorithm mentioned above we have

φ̂t = ∇θ ln π(at; st, θ)
∑
k≥0

(γλ)kdt+k(υ), ψ̂t = ∇υV̄ (st; υ)
∑
k≥0

(γλ)kdt+k(υ),

which means that both φ̂t and ψ̂t are of the form (3) with γλ = αρ, and

Gt(θ, υ) = ∇θ ln π(at; st, θ), zt,k(θ, υ) = dt+k(υ)

for the actor, while for the critic those are equal to

Gt(θ, υ) = ∇υV̄ (st; υ), zt,k(θ, υ) = dt+k(υ).

Important algorithms that also fit into the discussed schema are the actor-
critics presented in [6,3] and OLPOMDP [1].

Let us analyze the average direction of φ̂t and ψ̂t. Namely, let φ be a function
defined as

φ(s, θ, υ) = Eθ,υ,β

(
φ̂t

∣∣st = s
)

. (4)

The definition of φ is based on the assumption that θ, υ, and the step-sizes
remain constant when φ̂t is calculated. In fact, they slightly vary and each φ̂t is
in fact a biased estimator of φ(st, θ, υ) for θ and υ used at time t. However, this
bias is small and since the dynamics of the parameters decreases in time, the
bias asymptotically vanishes. The average φ(s, θ, υ) weighed by the steady-state
distribution defines the direction of the drift of the policy vector.

The drift of υ may be analyzed in a similar way. Namely, let ψ be a function
defined as

ψ(s, θ, υ) = Eθ,υ,β

(
ψ̂t

∣∣st = s
)

. (5)

As above, the definition of ψ requires that θ, υ, and the step-sizes remain constant
during the time when ψ̂t is computed. The drift of υ is defined by the average
ψ(s, θ, υ) weighed by the steady-state distribution. The usual role of the drift
of the auxiliary parameter is to move it toward the point υ∗(θ) such that the
average φ(s, θ, υ∗(θ)) approximates either a policy gradient or a natural policy
gradient. Hence, adjustments of θ ultimately lead to policy improvement.
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3 Experience Replay

The main idea analyzed in this paper is to apply to the agent’s experience
the same processing as a sequential actor-critic-type algorithm would, yet more
intensively. A generic algorithm augmented by experience replay is presented in
the table below.

After each instant t, the original sequential algorithm estimates φ(st, θ, υ) i.e.,
the direction of policy improvement, and adjusts the policy vector θ along the
estimate. Within each instant t, the modified algorithm repeatedly draws one of
the recently visited states, si, estimates φ(si, θ, υ), and modifies the policy vector
along the estimate. Essentially both algorithms achieve the same goal but (i) the
modified one does it more intensively and (ii) it employs experience gathered
after visiting state si to adjust various policies characterized by different policy
vectors. The auxiliary vector υ undergoes similar operations in both algorithms.

Algorithm 2. Actor-Critic with Experience Re-
play. Estimators mentioned in Steps 6 and 7 are
based on the data in a database.

0: t := 1. Initialize θ and υ.
1: Draw and execute an action, at ∼ π(· ; st, θ).
2: Register the tuple 〈st, at, θ, rt, st+1〉 in the

database.
3: Make sure onlyN most recent tuples remain

in the database.
4: Repeat ν(t) times:
5: Draw i ∈ {t −N + 1, t−N + 2, . . . , t}.
6: Adjust θ along an estimator of φ(si, θ, υ):
7: θ := θ + βθ

t φ̂
r
i (θ, υ).

8: Adjust υ along an estimator of ψ(si, θ, υ):
9: υ := υ + βυ

t ψ̂
r
i (θ, υ).

10: Assign t := t+ 1 and repeat from Step 1.

Because the policy vector is con-
stantly changing, each time its
adjustment is performed, it is com-
puted on the basis of the new val-
ues of θ and υ. The intensity of
replaying, ν(t), must be bounded
for the sake of correctness of the
algorithm. It is also limited by the
computation power available dur-
ing the agent–environment inter-
action. ν(t) should be additionally
limited for small t to prevent many
recalculations of few tuples in the
database and to avoid overtraining.

Designing the estimators of φ
and ψ for Steps 7 and 9 of Algo-
rithm 3 we have to guarantee that
their variance is bounded and their
bias asymptotically vanishes. This is the only way for the algorithm to preserve
the limit properties of the original sequential method.

Let b > 1, θi+j be the policy vector applied to generate ai+j , and K be
drawn independently from Geom(ρ), the geometric distribution1 with parameter
ρ ∈ [0, 1). Also, let χ be equal to 0 if zt,k is not explicitly defined by at+k+1
(as in the basic AC), and to 1 otherwise (as in AC of [6]). We introduce the
randomized-truncated estimators φ̂r

i (θ, υ) and ψ̂r
i (θ, υ) of the same generic form

K∑
k=0

Gi(θ, υ)αkzi,k(θ, υ)min

⎧⎨⎩
k+χ∏
j=0

π(ai+j ; si+j , θ)
π(ai+j ; si+j , θi+j)

, b

⎫⎬⎭ . (6)

1 That is, random variable K of values in {0, 1, 2, . . . } has distribution Geom(ρ), iff
P (K = m) = (1 − ρ)ρm for nonnegative integer m.
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where φ̂r
i is defined by those G and z defining φ̂t, and ψ̂r

i is defined by those G

and z that define ψ̂t. We can see that (6) closely resembles the original form (3)
of φ̂t and ψ̂t with two important differences. First, the infinite sum is replaced by
the finite one with the appropriately designed random limit. Second, truncated
density ratios are introduced in order to compensate for the fact that the current
policy is different than the one that generated the actions at, at−1, . . . contained
in the database. The bias of the truncated estimator (6) is small for θ close to
θi+j for all i, j, if only g is regular in a certain sense. Properties of estimator,
bounded variance and asymptotic unbiaseness, (6) are analyzed in [12].

4 Experimental Study

We are interested in applications of the MDP framework to learning reactive
policies of machines. In this section we analyze a challenging problem of this
type, namely learning to run an emulated planar model of a large cat. The cat
robot, called Half-Cheetah [11], is presented in Fig. 1. It is a planar kinematic
string of 9 links, 8 joints, and 2 “paws”. Because 5-th joint is fixed at 180o, and
its adjacent links have the same length, joints 4-th and 6-th are always at the
same position; therefore, the object does not look like a string. The angles of
4-th and 5-th joint are fixed, all the the others are controllable. Consequently,
Half-Cheetah is a model of a 6-degree-of-freedom walking robot.

In all the experiments the controlled system is emulated i.e., simulated in real
time. A quantum of system’s real time is equal to a quantum of the corresponding
computer time, which means that the computer has a lot of spare time that can
be devoted to parallel computations. The setup of our experiments is designed to
closely resemble a situation when control of a physical machine is to be optimized
in real time by means of learning.

Fig. 1. The initial position of Half-
Cheetah. It consists of 9 links, 8
joints among which 2 are fixed (4,
5), and 2 paws (0, 9)

The torque τi applied at i-th joint
is calculated as

τi = Ti min
{
max{−1, τ0

i + a0
i }, 1

}
where τ0

i is a “spontaneous” torque
at i-th joint, a0

i is the output of the
learning controller, and Ti expresses
“strength” of i-th joint. The spon-
taneous torque τ0

i is implemented as
a PD-controller with saturation. It
roughly stabilizes the i-th joint at its
initial angle. We follow a typical set-
ting of control system design: While it is usually relatively easy to provide a
controller that stabilizes a system around a certain state (e.g. by using PD-
controllers), it is much more difficult to design a controller that makes the sys-
tem perform a certain nontrivial activity. In our paper, the controller is to learn
to make Half-Cheetah run.
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An interested reader may find a detailed description of Half-Cheetah in [11].
The discussion here will be limited to the main facts: Half-Cheetah is about 1
meter long, weighs 10kg, and the ,,strengths” of its joints vary from 30 to 120Nm.
It is designed to be a realistic model (as far as a planar model can be realistic)
of a large, yet light cat.

In order to apply the reinforcement learning to Half-Cheetah, we must define
the states and the rewards the learning algorithm has access to. Both are de-
scribed in detail in [11]. Here we only mention that state is 31-dimensional and
the main part of reward is speed measured in meters per second. There are also
other parts that play various roles in early stages of learning: (i) a penalty for an
attempt to apply torque from outside of the permissible interval, (ii) a penalty
for the internal force that keeps the joint angle within its bounds (if i-th joint
angle is equal to either of its bounds, then i-th ,,tendon” hurts the cat), (iii) a
penalty for not moving the trunk up and keeping the paws on the ground when
the animal is not moving forward, (iv) penalties for touching the ground with
the heel, the knee, and the head.

The learning algorithm. In order to make Half-Cheetah run, we combine the
Basic Actor-Critic and the idea of experience replay. The algorithm we apply
(Replaying BAC, in short) is specified below.

Algorithm 3. The Basic Actor-Critic with Experience
Replay (Replaying BAC).

0: t := 1. Initialize θ and υ.
1: Draw and execute an action, at ∼ π(· ; st, θ).
2: Register the tuple 〈st, at, θ, rt, st+1〉 in the

database.
3: Make sure only N most recent tuples remain in

the database.
4: Repeat ν(t) = min{c0, c1t} times:
5: Draw i ∈ {t−N + 1, t−N + 2, . . . , t}.

Draw K ∼ Geom(ρ).
Calculate SUM equal to∑K

k=0 α
kdi+k min

{∏k
j=0

π(ai+j ;si+j ,θ)

π(ai+j ;si+j ,θi+j)
, b
}

for di+k =ri+k+γV̄ (si+k+1; υ)−V̄ (si+k;υ).
6: Adjust θ along an estimator of φ(si, θ, υ):
7: θ := θ + βθ

t ∇θ lnπ(ai; si, θ)SUM .
8: Adjust υ along an estimator of ψ(si, θ, υ):
9: υ := υ + βυ

t ∇υV̄ (si;υ)SUM .
10: Assign t := t+ 1 and repeat from Step 1.

The policy applied to Half-
Cheetah is comprised of two
parts: a neural network and a
normal distribution. The input
of the network is the state. The
output becomes a mean value
of the normal distribution with
covariance matrix C = 52I.
The distribution generates ac-
tions. The elements of the
6-dimensional action a are
transformed into the con-
trol stimuli a0 as a0

i =
aj/30, where the indexes i =
1, 2, 3, 6, 7, 8 correspond to j =
1, 2, 3, 4, 5, 6, respectively.

The second approximator
used by the learning algorithm
is the critic, V̄ , i.e. the neu-
ral approximation of the value
function. Both the critic net-
work and the actor network have the form of two layer perceptron with linear
output layer. Their hidden layers consist of MA (the actor) and MC (the critic)
sigmoidal (arctan) elements. Each neuron has a constant input (bias). The initial
weights of the hidden layers are drawn randomly from the normal distribution
N(0, 1) and the initial weights of the output layers are set to zero.
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Fig. 2. Actor-Critics for Half-Cheetah: The average reward vs. trial number. Left: The
Basic Actor-Critic. Each point averages 1000 consecutive trials. The curve averages
10 runs. The one-sigma limits are calculated to assess run-to-run variability of trial
averages. Middle: The Basic AC with Experience Replay (Replaying BAC). Note that
the number of trials in this figure is about 10 times smaller than that of the top figure
for the basic method. The curve averages 5 runs and each point averages only 100
consecutive trials. Right: The Replaying BAC for various replaying intensity, c0. Each
curve averages 5 runs.

The parameters of the Basic Actor-Critic are as follows: (the actor) MA = 80,
C = 52I, (the critic) MC = 160, (step-sizes) βθ

t ≡ βυ
t ≡ 5.10−5, (estimation)

γ = 0.99, λ = 0.9. The resulting learning curves are depicted on the left-hand
part of Fig. 2. The parameters of the replaying BAC are as follows: (the actor)
MA = 80, C = 52I, (the critic) MC = 160, (step-sizes) βθ

t ≡ βυ
t ≡ 2.10−5,

(database) N = 3.104, (estimation) γ = α = 0.99, λ = ρ = 0.9, (computational
effort) c0 = 30, c1 = 0.3. With a computer equipped with Intel QuadTMQ9300,
the simulations were carried on in real time of Half-Cheetah.

Experiments. Learning curves for the setting discussed above are shown in Fig. 2.
A single trial lasts, on the average, for 5 sec. The left-hand part of Fig. 2 reports
experiments with the Basic Actor-Critic applied to Half-Cheetah. It is seen, that
the algorithm learns to control Half-Cheetah in about 3000 trials, which is about
42 hours of Half-Cheetah. The middle, and the right-hand part of Fig. 2 presents
the averaged learning curve for the Replaying BAC applied to the same problem.
The curve reports about 7 hours of learning. The algorithm learns to control
Half-Cheetah in about 4500 trials, which is about 6 hours of Half-Cheetah time.
It is interesting to observe the Half-Cheetah learned policy at various stages of
learning (Fig. 3).

Fig. 3. Typical sequences of
Half-Cheetah states at various
stages of learning by the Ba-
sic Actor-Critic with Experience
Replay (Replaying BAC).
Left: Awkward walk after 1 hour
of training.
Middle: Trot after 2.5 hours of
training.
Right: Nimble run after 7 hours
of training.
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Let us now analyze whether the concepts introduced in the paper indeed im-
prove the quality and the speed of learning. The right part of Fig. 2 demonstrates
how the intensity of the computation process translates into the speed of learn-
ing. It is seen that the larger intensity, the faster convergence. Plausibly for a
certain large c0, further increase of this parameter does not yield learning speed
improvement. However, it is quite time-consuming to investigate high values of
c0. In fact, for n > 30 the computations are too slow to take place in real time
of Half-Cheetah. The computer time of a single run is then proportional to c0
and for c0 = 100 it is around 31 hours. Obviously, it is only a matter of com-
puter power. With a fast enough computer, the processing for c0 = 100 could be
performed in real time of Half-Cheetah. A satisfactory could be then obtained
after 3200 trails, which is about 4 hours of Half-Cheetah time.

5 Conclusions

In this paper we combined the technique of experience replay with a sequential
Actor-Critic algorithm. Algorithms of this type deserve serious attention since
they represent the most successful approach to applying reinforcement learning
to realistic control tasks with continuous state and action spaces. As it has been
verified experimentally, experience replay gives a radical learning speedup. The
required number of interactions with the environment, which is critical for the
applicability of reinforcement learning to real-world tasks, can be considerably
reduced. For the fairly difficult Half-Cheetah task we observed a speedup factor of
10, allowing a satisfactory to be reached after as little as 4 hours of Half-Cheetah
time (assuming availability of very large computation power), compared to about
42 hours required by the Basic Actor-Critic.
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Abstract. In this study, the previously proposed Support Vector Ma-
chines Based Generalized Predictive Control (SVM-Based GPC) method
[1] has been applied in controlling the experimental three-tank system.
The SVM regression algorithms have been successfully employed in mod-
eling nonlinear systems due to their advantageous peculiarities such as as-
surance of the global minima and higher generalization capability. Thus,
the fact that better modeling accuracy yields better control performance
has motivated us to use an SVM model in the GPC loop [1]. In the
method, the SVM model of the unknown plant is used to predict future
behavior of the plant and also to extract the gradient information which
is used in the Cost Function Minimization (CFM) block. The experi-
mental results have revealed that SVM-Based GPC provides very high
performance in controlling the system, i.e., the liquid level of the system
can track the different types of reference inputs with very small transient-
and steady-state errors even in a noisy environment when it is controlled
by SVM-Based GPC.

1 Introduction

The generalized predictive control [2,3] method belongs to the class of Model-
Based Predictive Control (MPC) techniques, which have been proven to be suc-
cessful in controlling systems from a wide range of application area for several
decades. Among other MPC techniques [4,5], which have been proposed after
the first MPC technique [6] in the literature, the most widely employed one has
been the GPC method [2,3]. Yet, all MPC techniques share the same idea of
utilizing the model in both prediction and finding optimal control action. In the
MPC techniques, the accuracy of the model of the plant plays very critical role,
and consequently, many linear and nonlinear modeling techniques have been
investigated in the literature. Recently, with the developments in the computa-
tional intelligence area of research, several soft computing tools namely artificial
neural networks [7,8], fuzzy systems [9,10], hybrid systems [11,12] and genetic
algorithms [13] have been employed to obtain the model of the unknown plant
to be used in the GPC loop. Another computationally intelligent method, which
can be an alternative to the soft computing tools for modeling nonlinear plants,
is the so-called support vector machines [14,15,16]. The SVM algorithms rely on

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 391–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the statistical learning theory and the principle of structural risk minimization,
and can solve classification and regression problems without getting stuck in
local minima. They achieve global minima by transforming the problem into a
quadratic programming (QP) problem. Owing to such an advantageous property,
the SVM algorithms have found many application areas [17,18].

The aim of this study is to show the applicability of the previously proposed
SVM-Based GPC method [1] to a real system. This paper is organized as follows:
in the next section, the GPC loop is investigated. Section 3 gives some brief
information about the SVM regression algorithm adopted in this study. Section
4 introduces the proposed method by giving details about the extraction of
the gradient information from the SVM model and the application steps of the
method. Finally, the experimental results are given in Section 5.

2 Generalized Predictive Control

Consider a non-linear system, dynamics of which can be represented by the
Nonlinear AutoRegressive with eXogenous inputs (NARX) model,

yn = f(un, ..., un−nu , yn−1, ..., yn−ny), (1)

where un is the control input applied to the plant at the time index n, yn is the
output of the plant, and nu and ny stand for the number of past control inputs
and the number of past plant outputs involved in the model, respectively. It is
assumed that the non-linear function f is unknown. Fig. 1 illustrates the control
loop of the GPC scheme, where ŷn is the output of the SVM model at the time
index n and ỹ is the reference input which is desired to be followed by the plant.
One component of the GPC scheme is the SVM model of the plant that accounts
for prediction of the future trajectory of the plant in response to the candidate
control vector u. In addition, it is used to obtain necessary gradient information

ny~

reference  
input 

Cost Function 
Minimization

J
u

min

SVM Model 

byyuuy
N

i
i

T
nnnnnnin yu

1
1 ),]......([ˆ x

ny

nŷ
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Fig. 1. The GPC architecture
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that will be used in the cost function minimization (CFM) block, which is the
other component of GPC. The aim of CFM is to minimize the performance index
J given by (2) with respect to u.

J =
N2∑

j=N1

(ỹn+j − ŷn+j)2 +
Nu∑
j=1

λj(Δun+j)2, (2)

where N1 is the minimum costing horizon, N2 is the maximum costing hori-
zon, Nu is the control horizon, λ is the weighting factor and Δun+j = un+j −
un+j−1. In the CFM algorithm, each entry of the candidate control vector
u = [un+1 un+2 . . . un+Nu ]T , is altered within the allowable control input
range by the general update rule, u ← u + sp, where p is the search direction
and s is the step-length. During each sampling period, first, the optimum p is
determined by taking the constraints on the control signal and the output of
the plant into consideration, then, the optimum s is computed, and finally, the
control vector u is updated and its first element is applied to the plant. In order
to find the optimum p, one can employ one of the numerical optimization tech-
niques existing in the literature [19]. Depending on the optimization technique
adopted in the CFM algorithm, it may be necessary to compute the derivatives
by up to second-order terms in the Taylor expansion. The first-order search algo-
rithms, such as Gradient Descent (p = −g), need the calculation of the gradient
vector,

g =
∂J
∂u

=
[

∂J
∂un+1

∂J
∂un+2

. . . ∂J
∂un+Nu

]T

, (3)

while the second-order algorithms, like Modified Newton
(
p = −H−1g

)
, require

additionally the computation of the Hessian matrix,

H =
∂2J
∂u2 =

⎡⎢⎢⎢⎢⎢⎣
∂2J

∂un+1un+1

∂2J
∂un+1un+2

· · · ∂2J
∂un+1un+Nu

∂2J
∂un+2un+1

∂2J
∂un+2un+2

· · · ∂2J
∂un+2un+Nu

...
... · · · ...

∂2J
∂un+Nuun+1

∂2J
∂un+Nuun+2

· · · ∂2J
∂un+Nuun+Nu

⎤⎥⎥⎥⎥⎥⎦ . (4)

In the gradient vector g, the hth element is given by (5) for h = 1, . . . , Nu,

∂J
∂un+h

= −2
N2∑

j=N1

(ỹn+j − ŷn+j)
∂ŷn+j

∂un+h
+ 2

Nu∑
j=1

λjΔun+j(δh,j − δh,j−1), (5)

where δi,j is the Kronecker Delta function. Similarly, the mth, hth element of the
Hessian matrix H, for m = 1, . . . , Nu and h = 1, . . . , Nu, is given by,

∂2J
∂un+mun+h

= 2
N2∑

j=N1

(
∂ŷn+j

∂un+m

∂ŷn+j

∂un+h
− ∂2ŷn+j

∂un+mun+h
(ỹn+j − ŷn+j)

)

+
Nu∑
j=1

λj(δm,j − δm,j−1)(δh,j − δh,j−1).

(6)
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3 Modeling with ε-Support Vector Regression (ε-SVR)

Consider a data set related to the NARX model of the plant in the form below,

T =
{
uk, ..., uk−nu , yk−1, ..., yk−ny ; yk

}k=n+N

k=n
, (7)

which is to be used to obtain a model of the plant dynamics. In this subsection,
the ε-SVR algorithm is examined to solve the regression problem defined as
follows: given a data set T = {xk, yk}k=N

k=1 , where xk ∈ X ⊆ Rnu+ny+1 is the kth

input and yk ∈ Y ⊆ R is the corresponding output value, it is desired to find a
model representing the relationship between the input and output data points.
This is achieved by an SVM model as ŷ(x) = 〈w,Φ(x)〉+ b, which is linear in a
higher dimensional feature space F, where w is a vector in F , Φ(x) is a mapping
from the input space to F and b is the bias term. The ε-SVR algorithm regards
this problem as an optimization problem in dual space with the model given by,

ŷ(x) =
N∑

i=1

αiK(x,xi) + b, (8)

where αi’s are the coefficients of each training data and K(xi,xj) is a kernel
function given by K(xi,xj) = Φ(xi)T Φ(xj) = Kij . In the dual model (8), a
training point xi corresponding to a non-zero αi is named as the support vector.
In this work, we determine the support vectors, the coefficients and the bias term
by the ε-SVR algorithm. It employs the Vapnik’s ε-insensitive loss function,

L(ε, y, ŷ) =

{
0, yi − ŷi ≤ ε

yi − ŷi, yi − ŷi > ε
(9)

and formulates the primal form of the problem as follows:

min
w,b,ξ,ξ∗

Pε =
1
2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i ) (10)

subject to the constraints,

yi − 〈w,Φ(xi)〉 − b ≤ ε + ξi; 〈w,Φ(xi)〉 + b − yi ≤ ε + ξ∗i ; ξi, ξ
∗
i ≥ 0, (11)

for i = 1, 2, . . . , N , where ε is the magnitude of the maximum tolerable error,
ξi’s and ξ∗i ’s are slack variables and C is a regularization parameter. Thus, the
dual form of the problem becomes a quadratic programming (QP) problem as,

min
β,β∗

Dε =
1
2

N∑
i=1

N∑
j=1

Kij(βi −β∗
i )(βj −β∗

j )+ε

N∑
i=1

(βi +β∗
i )−

N∑
i=1

yi(βi −β∗
i ) (12)

subject to the constraints, 0 ≤ βi, β
∗
i ≤ C,

∑N
i=1(βi − β∗

i ) = 0, i = 1, 2, . . . , N.
Solution of this QP problem gives the optimum values of βi’s and β∗

i ’s. If αj
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is defined to be the new coefficient of xj for j = 1, 2, . . . , N as αj = βj − β∗
j ,

then we obtain an SVM model as given by (8). Moreover, if we consider only the
support vectors, the model becomes,

ŷ(x) =
#SV∑
j=1

j∈SV

αjK(x,xj) + b, (13)

where #SV stands for the number of support vectors in the model [17,18].

4 The SVM-Based GPC Method

Once the SVM model is obtained, the gradient information can be extracted
from the model. In what follows, the formulations for finding the gradient vector
and the Hessian matrix are introduced as given in [1]. If the current state vector
is formed as cn = [un un−1 . . . un−nu yn−1 yn−2 . . . yn−ny ]T , then the
corresponding output of the SVM model becomes, ŷn =

∑#SV
j=1 αjK(cn,xj)+ b.

In this study, we adopted the radial basis function (RBF), Kij = K(xi,xj) =

exp
(
− (xi−xj)T (xi−xj)

2σ2

)
, as the kernel function with the width parameter σ. If

djn is defined as the Euclidean distance between xj and cn as,

djn = (cn−xj)T (cn−xj) =
nu∑
i=0

(xj,i+1−un−i)2 +
ny∑
i=1

(xj,nu+i+1−yn−i)2, (14)

then the kernel function can be rewritten as, K(cn,xj) = exp
(
− djn

2σ2

)
and thus

the SVM model becomes, ŷn =
∑#SV

j=1 αj exp
(
− djn

2σ2

)
+ b. Now, the model can

be used to predict future trajectory of the plant in response to u as follows:

ŷn+k =
#SV∑
j=1

αj exp
(
−dj,n+k

2σ2

)
+ b, k = N1, N1 + 1, . . . , N2, (15)

where

dj,n+k =
min(k,ny)∑

i=1

(xj,nu+i+1 − ŷn+k−i)2 +
ny∑

i=k+1

(xj,nu+i+1 − yn+k−i)2

+
nu∑
i=0

{
(xj,i+1 − un+k−i)2, k − Nu < i

(xj,i+1 − un+Nu)2, k − Nu ≥ i

(16)

Thus, the first-order derivatives can be written as,

∂ŷn+k

∂un+h
=

#SV∑
j=1

αj

∂ exp(− dj,n+k

2σ2 )
∂un+h

(17)
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where

∂ exp(− dj,n+k

2σ2 )
∂un+h

=
∂ exp(− dj,n+k

2σ2 )
∂dj,n+k

∂dj,n+k

∂un+h
= − 1

2σ2 exp(
−dj,n+k

2σ2 )
∂dj,n+k

∂un+h
(18)

and

∂dj,n+k

∂un+h
= −2

min(k,ny)∑
i=1

(xj,nu+i+1 − ŷn+k−i)
∂ŷn+k−i

∂un+h
δ1(k − i − 1)

− 2
nu∑
i=0

{
(xj,i+1 − un+k−i)δk−i,h, k − Nu < i

(xj,i+1 − un+Nu)δNu,h, k − Nu ≥ i

(19)

where δ1(·) stands for the unit step function. The second-order derivatives are

∂2ŷn+k

∂un+h∂un+m
=

#SV∑
j=1

αj

∂2 exp(− dj,n+k

2σ2 )
∂un+h∂un+m

, (20)

where

∂2 exp(− dj,n+k

2σ2 )
∂un+h∂un+m

=
∂ exp(− dj,n+k

2σ2 )
∂dj,n+k

∂2dj,n+k

∂un+h∂un+m

+
∂2 exp(− dj,n+k

2σ2 )
∂d2

j,n+k

∂dj,n+k

∂un+h

∂dj,n+k

∂un+m

(21)

and

∂2dj,n+k

∂un+h∂un+m
= −2

min(k,ny)∑
i=1

∂ŷn+k−i

∂un+h

∂ŷn+k−i

∂un+m
δ1(k − i − 1)

− 2
min(k,ny)∑

i=1

(xj,nu+i+1 − ŷn+k−i)
∂2ŷn+k−i

∂un+h∂un+m
δ1(k − i − 1).

(22)

Now, the SVM-Based GPC algorithm can be itemized as follows:

– In order to gather training data, first, the parameters umin, umax, τmin and
τmax are determined, and then the plant is run for a certain period, during
which the input signal is composed of a series of pulses of random magnitudes
within [umin, umax] and random durations within [τmin, τmax].

– Proper values of nu and ny are determined, and a set of training data is
formed. Then, all input/output variables are normalized to [0,1].

– SVM model is obtained with ε-SVR by using N data pairs randomly selected
out of the gathered data set, remaining of which are spared for validation.

– The gradient vector and the Hessian matrix are calculated based on the SVM
model by using the formulations.

– The GPC algorithm is applied: at each iteration, the candidate control vector
u is formed by taking its previous elements, and then based on the future
predictions of the SVM model in response to the control vector, u is updated
so as to minimize J. Finally, the first element of u is applied to the plant.



Controlling the Experimental Three-Tank System 397

5 Application to the Experimental Three-Tank System

The three-tank liquid system is a well-known three-dimensional nonlinear system
in the literature. In this study we have tested our proposed controller on a real
experimental system by assuming that its underlying dynamics is not known.
Yet, it will be useful to give its dynamics which is expressed by a set of differential
equations,

ḣ1(t) =
1
A

[q1(t) − Q13(t)], ḣ2(t) =
1
A

[q2(t) + Q32(t) − Q20(t)],

ḣ3(t) =
1
A

[Q13(t) − Q32(t)],
(23)

where

Q13(t) = az13Snsgn(h1(t) − h3(t))
√

2g|h1(t) − h3(t)|, Q20(t) = az20Sn

√
2gh2(t)

Q32(t) = az32Snsgn(h3(t) − h2(t))
√

2g|h3(t) − h2(t)|
The explanations and the values regarding to the variables and the constants

in the equations are given in Table 1 [20]. In this work, the aim is to control the

Table 1. The system parameters

Parameter Value/Description

hi(t): liquid level of the tanki [m ] output
qi(t): supplying flow rate of the pumpi [m3/sec] input
az13: outflow coefficient between tank1 and tank3 0.5
az32: outflow coefficient between tank3 and tank2 1.0
az10: outflow coefficient from tank1 to reservoir 0.0
az20: outflow coefficient from tank2 to reservoir 1.0
az30: outflow coefficient from tank3 to reservoir 0.0
A: cross section of the cylinders [m2] 0.0154
Sn: section of connection pipe n [m2] 5 × 10−5

g: gravitation coefficient [m/sec2] 9.81

liquid level of the tank1 as the output (y(t) = h1(t)) by manipulating the flow
rate of the pump1 as the input (u(t) = q1(t)) of the system. In the experi-
ments, magnitude of the control signal is altered between umin=0 m3/sec and
umax=10−4 m3/sec, duration of the control signal is kept constant as
τmin=τmax=1.0 sec and sampling period is 1.0 sec. The parameters in the perfor-
mance index are selected as N1=1, N2=30, Nu=2 and λj=2.0 for j = 1, . . . , Nu.
We have adopted the Modified Newton method for finding p and the Golden-
Section method for finding s. The data gathered from the system can be seen
from Fig. 2. In order to eliminate the high-frequency noise components from
the data, a low-pass filter,

H(z) =
0.02483z−1 + 0.02224z−2

1 − 1.6720z−1 + 0.7190z−2 . (24)
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Fig. 2. Collected data
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Fig. 3. Experimental results for staircase reference

is employed. The half of the 4800 data points have been used to obtain the SVM
model and the remaining ones have been spared for validation of the model. The
NARX parameters are selected as nu=5 and ny=5, while the SVM parameters
are σ=2, ε = 0.002 and C=1000. Thus, the SVM model of the three-tank system
is obtained with 81 support vectors. The experimental results for the staircase
reference input are given in Fig. 3, while Fig. 4 illustrates the results for the
sinusoidal reference input as ỹ(t) = 0.25 + 0.15sin0.004πt.

As can be seen from the figures, liquid level of the tank1 can follow the
reference trajectories with small transient- and steady-state tracking errors. It
should be noted that the control of the system has been maintained when we
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Fig. 4. Experimental results for sinusoidal reference

continue the experiments in the long run. To sum up, the results have shown that
the SVM-Based GPC method provides an acceptable performance for control of
the investigated system.

6 Conclusions

In this work, liquid level control of an experimental three-tank system has been
carried out by the SVM-Based GPC method. First, the SVM model of the un-
known system has been obtained by the ε-SVR algorithm and then it has been
utilized in the GPC loop. Since the accuracy of the model play crucial role in
the GPC loop, we have adopted the SVM structure due to its higher gener-
alization potential and assurance of global minima. The experimental results
have shown that the output of the three-tank system, when controlled by SVM-
Based GPC, can track the staircase and sinusoidal reference trajectories with
very small transient- and steady-state errors, which has proven the applicabil-
ity of the proposed controller to real time systems. On the other hand, the
choice of the SVM and kernel parameters is still an open problem in the ma-
chine learning area of research. Moreover, training time of the ε-SVR algorithm
grows up with the number of training patterns. Yet, this drawback can be over-
come by online training methods or faster training algorithms. In fact, the major
advantage of the method is that it can exploit the developments in the SVM re-
gression algorithms. In conclusion, it can be stated that the previously proposed
SVM-Based GPC method has been successfully applied to the control of an ex-
perimental system and that it can be an alternative to other model-based GPC
techniques.
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Abstract. Time series clustering has been shown effective in providing useful 
information in various applications. This paper presents an efficient 
computational method for time series clustering and its application focusing 
creation of more accurate electricity use load curves for small customers. 
Presented approach was based on extraction of statistical features and their use 
in feature-based clustering of customer specific hourly measured electricity use 
data. The feature-based clustering was able to cluster time series using just a set 
of derive statistical features. The main advantages of this method were; ability 
to reduce the dimensionality of original time series, it is less sensitive to 
missing values and it can handle different lengths of time series. The 
performance of the approach was evaluated using real hourly measured data for 
1035 customers during 84 days testing time period. After all, clustering resulted 
into more accurate load curves for this set of customers than present load curves 
used earlier. This kind of approach helps energy companies to take advantage of 
new hourly information for example in electricity distribution network 
planning, load management, customer service and billing. 

Keywords: time series clustering, feature-based clustering, feature extraction, 
electricity use data, load curves, electricity distribution. 

1   Introduction 

Data mining of multivariate time series is a well known research area where feature 
extraction as a data reduction technique, plays an important role in pattern recognition 
and data analysis [1]. There are several real world situations where large amount of 
data has to be reduced, variables of multivariate time-series are not timely 
synchronized to each other or there is lot of missing values in data. These are the main 
reasons for use of a feature-based method for clustering of time series [2]. Besides 
these problems, clustering of original time series data is more computationally 
demanding than feature-based approaches. Moreover, recent studies have proven that 
pattern recognition methodologies, such as the k-means, self-organized maps, fuzzy 
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k-means and hierarchical methods, can be applied for the study of the customer 
electricity behavior, where problems mentioned above are typically occurring [3][4].  

The analysis of customer loads and load estimation is a traditional area of 
electricity distribution technology because electricity distribution utilities need 
accurate load data for pricing and tariff planning, distribution network planning and 
operation, power production planning, load management, customer service and billing 
and also for providing information to customers and public authorities [5]. Recently, 
there has been major technological progress in small customer energy use metering 
and consequently hourly measured information is available in near future for great 
majority of customers. Furthermore, current European Union legislation has brought 
new requirements to energy distributors and retail energy sales companies ordering 
them to provide information about consumer’s energy consumption in more detailed 
level [6].  

The electricity load curve describes the amount of electrical energy customer uses 
over the course of time and it is used to plan how much electricity retailer or 
distribution Company will need to make electricity available at any given time. 
Furthermore, end-use load curves (i.e. load profiles) show how the load of a particular 
customer varies throughout the day and week and gives understanding of peak 
demand [7]. The most important load information is how a customer or a group of 
customers uses electricity at different hours of the day, different days of the week and 
seasons of the year and what their share of the utility's total load is and how loads of 
different customers aggregate in different locations of a distribution network [5]. The 
factors affecting to the customer or customer groups load are 1) customer 
consumption behavior and residence characteristics, 2) time of day, week or year and 
3) local climate factors like temperature, humidity or solar radiation [8][5].  

Typically the energy companies have classified customers into groups concerning 
their characteristics and annual demand for electricity. Based on this classification 
each customer has load curve estimate which is used for billing and distribution 
management. However, it is typical that changes in customers life and electricity use 
doesn't mediate to the energy company and the needed load curve update cannot be 
done. Another problem is that given load curve can be wrong in the first place 
because customer has similar characteristics but electricity consumption behavior is 
different than proposed typical customer group. As a result of these problems, 
demand side management and distribution planning deals with misinformation 
causing extra costs.  

The purpose of this study was to develop efficient computational approach to 
handle complex and large time series datasets in the context of electricity load 
research. Moreover, in the presented application, the main aim was to utilize large 
amounts of hourly measured electricity use data in order to validate and improve 
customer specific load curves. In this paper, we compared given load curves to real 
measured electricity use and investigated how well they are correlating. Furthermore, 
we present here computationally efficient data-based approach to create more accurate 
up-to-date customer specific load curves using real measurement information. 
Proposed methods were tested using hourly measured electricity use data from 1035 
customers locating Northern-Savo, Finland. The returns showed that original load 
curves were not very accurate and they can be improved using data based clustering. 
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2   Materials and Methods 

2.1   Data Used 

In this study, we used data describing 1035 small customer's hourly measured 
electricity use (kWh) during the winter 2007. The data contained 84 days (2016 
hours) starting the first of January 2007. The customers were located in Pohjois-Savo 
region, which is an area in eastern Finland. The region has two major cities called 
Kuopio and Iisalmi but major part of customer where located outside of cities in the 
sparsely populated area.  

The energy company classifies the customer's according their characteristics when 
customer joins to company's distribution network. Each customer is attached to 
specific load curve which is used as a base of billing and distribution planning. These 
1035 customers were divided to use 18 different load curves describing best each 
customer's electricity use and behavior.  For example, house (detached house, terraced 
house, etc.) and heating type (use of electric heating) or type of activity of the 
residence (spare time cottage, agriculture residence, etc.) had been used as a 
classifying characters.  

Used data set contained hourly energy use time series for 1035 customers and we 
had also original load curves for each customer. With this data we solved how 
customer's real electricity use corresponds to the original load curve. Furthermore, 
data where used to create new load curves based on each customer electricity use 
behavior and characteristic based clustering. 

2.2    Feature Extraction 

Transforming the raw time-series data into the set of features is called feature 
extraction. Despite of the length of the time series and missing values, a finite set of 
statistical measures can be used to capture the global nature of the time series [2]. 
Furthermore, feature extraction is used to compress large data sets by the means of 
dimensionality reduction. In this way, computational efficiency can be increased and 
use of more sophisticated algorithms is possible. Nevertheless, the majority of feature 
extraction methods are generic in nature, the extracted features are usually application 
dependent. Thus one set of features that work well on one application might not be 
relevant to another [9]. 

In this study, features were extracted from the raw hourly measured electricity use 
data using window of one week i.e. 168 data rows (hours). We extracted 7 features 
from each customer's data. The features extracted were; mean, standard deviation, 
skewness, kurtosis, chaos, energy and periodicity.  

Mean and standard deviation (Eq. 1) are simple but useful features. Skewness (Eq. 
2) is the degree of symmetry in the distribution of energy consumption data and 
kurtosis (Eq. 3) measures how much a distribution is peaked at the center of a 
distribution [10].  

Many real world systems may contain chaotic behavior and especially nonlinear 
dynamical systems often exhibit chaos, which is characterized by sensitive 
dependence on initial values, or more precisely by a positive Lyapunov Exponent 
(LE). LE, as a measure of the divergence of nearby trajectories has been used to 
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qualifying chaos by giving a quantitative value. It is common to just refer to the 
largest one, i.e. to the Maximal Lyapunov exponent (MLE), because it determines the 
predictability of a dynamical system. A positive MLE is usually taken as an indication 
that the system is chaotic. The maximal Lyapunov exponent (λ) can be defined using 
Eq. 4 [11].  
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The periodicity is important for determining the seasonality and examining the cyclic 
pattern of the time series [2]. In this case, length of occurring period was solved using 
Discrete Power Spectrum (periodogram), which describes the distribution of the 
signal strength into different frequency values. The spectrum generally enlightens the 
nature of the data [12]. The most powerful frequency value was transformed into hour 
form and it was taken into feature data set and used as a periodicity feature. 
Additionally, to capture data periodicity, the energy feature was calculated which is 
the sum of the squared discrete FFT component magnitudes of the signal. This sum 
was divided by the window length for normalization. Energy feature was calculated 
using Eq. 5, where x1, x2, ... are the FFT components of the window [13].   

Finally, after the feature extraction, data set contained 84 variables (7 features for 
each week) and 1035 rows (amount of customers) which was used in creation of new 
load curves using K-means clustering method. 

2.3    K-Means Clustering 

The number of clusters in the case specific application may not be known a priori. 
However, in the K-means algorithm the number of clusters has to be predefined. 
Therefore, it is common that the algorithm is applied with different number of clusters 
and then the best solution among them is selected using a validity index like the 
Davies-Bouldin (DB) Index [14]. It is calculated as follows, 
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where N is the number of clusters. The within (Si) and between (dij) cluster distances 
are calculated using the cluster centroids as follows: 
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where mi is the centre of cluster Ci, with | Ci | the number of points belonging to 
cluster Ci. The objective is to find the set of clusters that minimizes the Eq. 8. 

The Davies-Bouldin index was used to solve optimal number of clusters. The DB 
index varies slightly between calculations because initial starting point is set 
randomly. In this case, indexes were calculated 20 times and mean value of the index 
using different numbers of clusters was used when the optimal number of clusters was 
selected. After that K-means algorithm was used to cluster feature data set in order to 
create reasonable number of comparing groups. 

The K-means algorithm was applied to the clustering of the feature vectors which 
were created using raw time series data. The K-means is a well-known non-
hierarchical cluster algorithm [15]. The basic version begins by choosing number of 
clusters and randomly picking K cluster centers. After that each point is assigned to 
the cluster whose mean is closest in a Euclidean distances sense. Finally, the mean 
vectors of the points assigned to each cluster are computed, and those are used as new 
centers in an iterative approach until convergence criterion is met. 

2.4   Estimating Goodness of Clustering 

The difference between customer's electricity use and clustered load curve was 
calculated using Index-of-Agreement (IA). It is a dimensionless measure, limited to 
the range 0...1, giving a relative size of the difference [16]. It is easily understandable 
and ideal for making cross-comparisons between time series or models. The values 
range from 0 to 1, with a value of 1 indicating perfect fit between the observed and 
predicted data. IA is calculated as follows: 
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In this equation, n is the number of observations, Oi is the observed variable at time i, 
Pi is the predicted variable at time i, Õ is the mean value of the observed variable over 
n observations. 

3   Results 

The aim of the study was to (1) evaluate correspondence of customers measured real 
electricity use and load curve set by the energy company and (2) use feature-based 
clustering in order to create new more accurate load curves. First, the mean of index-
of-agreement was calculated between present load curves and electricity use of 
customers belonging to each curve. The values of index-of-agreement, standard 
deviation and number of customers using each load curve are illustrated in Table 1. 

Table 1. The results of comparison between measured electricity use and original load curves 

Load Curve Mean IA Mean Std Number of customers 
LC1 0.31 0.08 426 
LC2 0.33 0.10 189 
LC3 0.35 0.08 76 
LC4 0.51 0.04 6 
LC5 0.16 0.00 1 
LC6 0.30 0.06 48 
LC7 0.35 0.00 1 
LC8 0.26 0.08 3 
LC9 0.35 0.00 1 

LC10 0.22 0.08 2 
LC11 0.28 0.07 6 
LC12 0.30 0.11 15 
LC13 0.27 0.15 6 
LC14 0.35 0.17 8 
LC15 0.38 0.05 7 
LC16 0.07 0.00 1 
LC17 0.39 0.07 15 
LC18 0.16 0.17 4 

Unknown   220 
Mean 0.30 0.07 1035 

 
Next, the feature data set was created and raw time series data (1035 rows by 2016 

columns matrix) were transformed into more compact format (1035 rows by 84 
columns matrix). Before clustering of feature data set the Davies-Bouldin index was 
used to solve optimal number of clusters. In this case, there were two clear options 
according DB-index and 16 clusters were selected because final comparison results 
were better than using 32 clusters. The values of DB-index for different clusters 
amounts are illustrated in Figure 1. 
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Fig. 1. The values of Davies-Bouldin index for different number of clusters. The optimum 
number of clusters is where index is lowest (in this case options were 32 clusters or 16 
clusters). 

Table 2. The results of comparison between measured electricity use and new data-based load 
curves 

New Load Curve Mean IA Mean Std Number of customers 
NLC1 0.50 0.12 21 
NLC2 0.68 0.10 166 
NLC3 0.68 0.13 25 
NLC4 0.46 0.12 20 
NLC5 0.77 0.09 209 
NLC6 0.83 0.09 181 
NLC7 0.63 0.21 11 
NLC8 0.57 0.14 25 
NLC9 0.62 0.17 17 

NLC10 0.69 0.14 24 
NLC11 0.70 0.16 16 
NLC12 0.66 0.10 91 
NLC13 0.73 0.11 76 
NLC14 0.55 0.20 100 
NLC15 0.68 0.13 26 
NLC16 0.65 0.14 27 
Mean 0.65 0.13 1035 
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The K-means algorithm was used to cluster feature data set and as a result of that 
16 new customer groups were created. The actual new load curves were calculated 
from original data according to each customers cluster id. In other words, the mean of 
electricity use of each cluster customers was calculated and used as a new load curve. 
Furthermore, the comparison between measured electricity use and new data-based 
load curves was carried out by calculating mean index-of-agreement values for each 
load curve. The results of comparison are described in Table 2. 

200 400 600 800 1000 1200 1400 1600 1800 2000

-2

0

2

4

6

8

10

12

 Mean IA: 0.82847, Customers:181

Time (hours)

 

 

Measured

Load Curve (cluster center)

 

Fig. 2. An example of one of the created data-based load curves (black) and variation of 
customer electricity use (grey), containing all 181 customers electricity use figures during 84 
days test period.  Values were variance-scaled. 

An example of new load curve and variation of customer electricity use is illustrated 
in Figure 2. In this example, mean index-of-agreement was 0.83 and 181 customers 
were classified to use this load curve. Additionally, the IA values were calculated for 
all customers in both two comparison cases; using original load curve and new data-
based load curves. Results of this is shown in Figure 3, where comparison between 
each customer electricity use and original load curve (dash dot line) or new data based 
load curve (solid line) are presented using histogram.  
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Fig. 3. The histogram of Index-Of-Agreement values for all customers in comparison between 
each customer electricity use and original load curve (dash dot line) or new data based load 
curve (solid line) 

4   Discussion 

The objective of this study was to apply feature-based clustering into creation of more 
accurate load curves for energy companies and present efficient way to take 
advantage of new hourly measured electricity use data. Moreover, the aim was 
evaluate correlation between customer real electricity use and original load curves set 
by energy companies.  

The results of this comparison showed clearly that these present load curves do not 
correspond properly customer real electricity use. Mean index-of agreement for all 
load curves was only 0.30 (highest was 0.51) meaning almost that random values 
would result the same accuracy. This was actually an expected result because the 
energy company has already notified that there might be some problems concerning 
present load curves caused by changes of customer characteristics and behavior.  

New hourly measured data gives whole a new view point of creation more accurate 
load curves. The size of the available data is huge and that is the reason why efficient 
computational methods are needed. Grouping customers using time series data can be 
done using feature-based clustering. In this case, set of statistical features were 
calculated and used in clustering with k-means algorithm. Features were calculated 
using time window of one week (168 hours). Optimal number of clusters was solved 
using Davies-Bouldin index resulting 16 clusters. The new data-based load curves 
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were calculated using raw electricity use data according to each customers cluster id. 
Finally, the goodness of clustering was evaluated using Index-of-Agreement measure 
between customers and each load curve. The results in this phase were satisfactory 
but further development is still needed. Despite of that, the created data-based new 
load curves where more accurate than present load curves set by the energy company. 
Mean IA for all new load curves was 0.65 (highest was 0.83) showing clearly the 
improvement achieved by feature-based clustering.  

After all, feature-based clustering worked well in time-series clustering, at least in 
this kind of application, but selecting proper features and setting best time-window for 
feature calculation has to be done carefully. Moreover, in applications concerning 
electricity use, data should cover time period of one year or several years. In this case, 
data was covering only winter season of the year and it was suitable for testing 
performance of used computational methods. Longer period of data is needed for 
deeper understanding of customer electricity use, seasonality or consuming behavior. 
Furthermore, only the K-means was used in clustering but comparisons using 
different clustering algorithms may result some improvements in clustering accuracy. 

The electric load in electricity distribution varies with time and place and the 
power production and distribution system must respond to the customers load demand 
at any time. This is the mean reason why energy companies need accurate load 
information for pricing and tariff planning, distribution network planning and 
operation, power production planning, load management, customer service and billing 
and also providing information to customers and public authorities [5]. The methods 
presented in this paper, feature extraction and feature-based clustering, are suitable for 
creation of more accurate load curves using new hourly measured electricity use data 
concerning small customers. It is obvious that large number of customers and amount 
of raw data raises new challenges but in opposite to that, it gives great opportunity to 
use thousands of customers as a base of a load curve creation. 

In this study we presented approach capable to cluster large and complex time-
series data using feature-based clustering. The features were selected so that main 
characteristics, like periodicity, average, standard deviation and chaotic behavior, of 
electricity use data were captured. Furthermore, performance of approach was tested 
using real world data for over one thousand electricity customers.   

5   Conclusions 

This paper presents an efficient computational method for time series clustering and 
application concerning creation of electricity use load curves for small customers. 
Presented approach was based on extraction of statistical features from time series 
and their use in feature-based clustering of hourly measured electricity use data. The 
performance of approach was evaluated using data of 1035 real customers.  

The feature-based clustering was able to cluster time series using just a set of 
derive statistical features. There were three advantages of the approach; (1) its ability 
to reduce the dimensionality of original time series, (2) it is less sensitive to missing 
values and (3) it can handle different lengths of time series. In addition, the presented 
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approach resulted into more accurate load curves for this set of customers than present 
load curves set by the energy company. 
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Abstract. Many cerebellar learning theories assume that long-term
depression (LTD) of synapses between parallel fibres (PFs) and Purkinje
cells (PCs) provides the basis for pattern recognition in the cerebellum.
Previous work has suggested that PCs can use a novel neural code
based on the duration of silent periods. These simulations have used
a simplified learning rule, where the synaptic conductance was halved
each time a pattern was learned. However, experimental studies in
cerebellar slices show that the synaptic conductance saturates and is
rarely reduced to less than 50% of its baseline value. Moreover, the
previous simulations did not include plasticity of the synapses between
inhibitory interneurons and PCs. Here we study the effect of LTD
saturation and inhibitory synaptic plasticity on pattern recognition in a
complex PC model. We find that the PC model is very sensitive to the
value at which LTD saturates, but is unaffected by inhibitory synaptic
plasticity.

Keywords: Associative memory, Long-term depression, Purkinje cell,
Cerebellum.

1 Introduction

The cerebellum is a part of the brain involved in a multitude of tasks, including
motor control, and its functioning is responsible for the smoothness and preci-
sion of movements. These skills are improved by a process called motor learn-
ing, which is often assumed to be implemented by a form of synaptic plasticity
known as long-term depression (LTD). LTD is a long-lasting decrease in synaptic
strength due to a loss of AMPA receptors in the postsynaptic membrane[1]. In
the cerebellum, LTD has been shown to occur at the synapses between Purk-
inje cells (PCs) and their excitatory inputs: climbing fibres (CFs) and parallel
fibres (PFs). More specifically, cerebellar LTD is an associative process in which
the strength of a PF synapse onto a PC is depressed when the CF and PF are
activated at the same time.

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 413–422, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Schematic diagram of the cerebellar circuitry. Purkinje cells (PCs) receive exci-
tatory inputs (+) from 150,000 parallel fibres (PFs) and a single climbing fibre (CF),
and inhibitory inputs (-) from inhibitory interneurons (II), and in turn inhibit the deep
cerebellar nuclei (DCN). Also shown are: mossy fibres (MFs), granule cells (GCs) and
the inferior olive (IO).

Classical cerebellar learning theories suggest that a PC can learn to discrim-
inate between different activity patterns presented by its thousands of afferent
PFs, due to LTD of the PF synapses [2]. It is assumed that as a result of LTD,
the PC firing rate will be reduced when a learned pattern is presented again,
and the PC will exert less inhibition on the deep cerebellar nuclei (Fig. 1). As a
consequence, the cerebellar output should be increased, which could implement
motor learning[1,3].

Recent work on cerebellar pattern recognition has demonstrated that this view
is too simple. A combined theoretical and experimental study suggested that PCs
can use a novel neural code based on the duration of their silent periods, where
shorter pauses are produced in response to learned patterns [4] (Fig. 2A). This
form of neural coding diverges from the classical view that uses the number or
timing of individual spikes to distinguish between novel and learned patterns. In
the computer simulations and experiments, the pause was compared with other
spike response features like the number of spikes in a fixed time window after
pattern presentation and the latency of the first spike in the response, and it
was shown that the length of the pause was the best criterion for cerebellar PCs
to identify learned patterns (Fig. 2B).

The previous simulations (see Methods) applied a simplified learning rule,
where the AMPA receptor conductance was decreased by 50% each time a pat-
tern was learned. After having stored a number of PF patterns, this could result
in very small AMPA receptor conductances. However, experiments with LTD
induction in cerebellar slices hardly ever result in mean AMPA receptor conduc-
tances of less than 50% of the pre-induction baseline [5,6]. We have therefore
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Fig. 2. Responses of a model Purkinje cell to novel and learned patterns of PF input.
(A) Upper: The pause evoked by a novel pattern is longer than that for a learned
pattern. Lower: Raster plot showing the responses to 75 learned and 75 novel patterns.
(B) Response distribution for three different spike features. Upper: Latency of first
spike after pattern presentation. Middle: Number of spikes in the first 25ms. Lower:
Length of pause (modified with permission from [4]).

investigated a different learning rule with AMPA receptor conductances that
saturate at varying values and have studied the effect of this learning rule in
pattern recognition simulations.

Another contribution of the present work is to study the effect of LTD at the
inhibitory synapses made by interneurons onto PCs (Fig. 1). It has recently been
described that this inhibitory synaptic plasticity results in a mean depression of
inhibitory inputs down to 75% of their original values [5]. We have run computer
simulations to investigate the effect of different amounts of inhibitory synaptic
plasticity on pattern recognition.
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2 Methods

2.1 Purkinje Cell Model

The simulations were performed using the GENESIS neural simulator [7], with
additional routines implemented in C++ and MATLAB. We simulated a multi-
compartmental PC model with active dendrites and soma, as described in detail
in references [8,9]. The model morphology was based on a reconstruction of a
guinea-pig Purkinje cell [10]. Ten different types of voltage-dependent channels
were modelled using Hodgkin-Huxley-like equations. The soma compartment had
a fast and persistent Na+ conductance, a delayed rectifier, a transient A-type K+

conductance, a non-inactivating M-type K+ conductance, an anomalous rectifier
and a low-threshold T-type Ca2+ conductance. The dendritic compartments con-
tained a Purkinje-cell specific high-threshold P-type and a low-threshold T-type
Ca2+ conductance, two different types of Ca2+-activated K+ (KCa) conduc-
tances and an M-type K+ conductance. Each cell was originally modelled with
147,400 dendritic spines, which were activated randomly by a sequence of PF
inputs at an average frequency of 0.28 Hz. The background excitation was bal-
anced by tonic inhibition, which made the model fire simple spikes at an average
frequency of 48 Hz. Due to the large number of dendritic spines, which made
the simulations computationally expensive, a simplified version of the model was
constructed by decreasing the number of spines to 1% of the original number.
To compensate for this reduction, the rate of PF excitation was increased to an
average frequency of 28 Hz. As this simplified model gave identical results as the
full model, it was used in the simulations presented here.

To study the effect of plasticity at inhibitory synapses, the model was pro-
vided with feed-forward inhibitory input by activating a variable number of
inhibitory synapses onto the soma and main dendrite. The inhibitory input fol-
lowed the synchronous activation of excitatory PFs synapses with a delay of 1.4
ms. Inhibition/excitation ratios were measured as ratios of the mean inhibitory
postsynaptic current (IPSC) peak to the mean excitatory postsynaptic current
(EPSC) peak when the model was voltage clamped to -40 mV.

2.2 Pattern Recognition

The pattern recognition simulations were performed in two steps. First, a num-
ber of random binary input patterns were generated, initially 200, and half of
these patterns were learned by a corresponding artificial neural network (ANN).
The ANN used was a modified version of an associative net with feed-forward
connections between its inputs and output [11] and was trained by applying a
modified version of the LTD learning rule [12](see below). The simulations of
the ANN consisted of two phases: learning and recall.

In the learning phase, the weights of all synapses that received a positive
input during the presentation of a pattern were set to a constant value. This
LTD saturation value was kept constant and unaffected by further pattern pre-
sentations, different from the learning rule that had been used in the previous
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Fig. 3. Simplified schematic of the ANN model. Left side: during learning, three exam-
ple PF patterns are stored by changing the synaptic weights that are associated with
active input lines from their initial value of 1 to an LTD saturation value of 0.5 (this
value is varied between different simulations). Right side: during recall, the responses
to a stored and a novel pattern are calculated as dot product of input vector and weight
vector, resulting in values of 1 and 1.5, respectively (note the difference to the original
diagram in [12]).

simulations [4]. During the recall phase, the response of the ANN was given by
the sum of the weights of all synapses that were associated with active inputs,
which resulted in responses of the ANN to stored patterns that were lower than
those to novel patterns (Fig. 3).

In the second phase of the pattern recognition simulations, the vector of synap-
tic weights was transferred from the ANN onto AMPA receptor conductances in
the multi-compartmental PC model. This represents learning the PF patterns
by depressing the corresponding AMPA receptor conductances during LTD in-
duction. To test the recall of learned patterns, the PC model was then presented
with a corresponding pattern of synchronous AMPA receptor activation at the
PF synapses.

The discrimination between novel and learned pattern in the two models was
evaluated by calculating a signal-to-noise ratio [13,14]:

s/n =
(μs − μn)2

0.5(σ2
s + σ2

n)
(1)

where μs and μn represent the mean values and σ2
s and σ2

n represent the variances
of the responses to stored and novel patterns, respectively. In the PC model, three
different features of the spike response were tested as criteria to distinguish stored
from novel patterns: the latency of the first spike fired after pattern presentation,
the number of spikes in a 25ms time window after pattern presentation, and the
duration of a silent period that followed the pattern presentation (see response
distributions for these three different metrics in Fig. 2B). In all cases studied,
the pause duration was the best criterion, and only pause based signal-to-noise
ratios are presented here.
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3 Results

3.1 LTD Saturation and the Number of Active PF Inputs

We initially investigated the effect of varying two parameters that were expected
to affect the pattern recognition performance: the value at which LTD saturated
and the number of active PFs for each pattern.

To study the effect of LTD saturation, we varied the LTD saturation value
over a range from zero to 0.8, while keeping the same numbers of active PFs
(1000) and PF patterns (100 novel and 100 stored) as in previous work [4]. We
found that the ANN was insensitive to the amount of LTD induced (Fig. 4A).
In contrast, the pattern recognition capacity based on the duration of silent
periods in the PC model improved when the LTD saturation value decreased,
with an optimal performance when the synaptic weights of active PFs were set
to zero (Fig. 4B). The relative sensitivities of the ANN and the PC model to the
amount of LTD induced are compared in Fig. 4C. While the ANN was unaffected
by varying the amount of LTD, increasing the LTD saturation value to 0.8 in
the PC model reduced the signal-to-noise ratio down to 0.4 ± 0.4% (n = 10) of
the optimal value obtained by switching off the synapses completely. For LTD
saturation values below 0.5, the PC model performed as well as or better than
the previous model with a non-saturating learning rule [4].

Fig. 4. Pattern recognition performance of the two models for a range of LTD values.
The performance was evaluated by calculating s/n ratios for the ANN (A) and the
PC model (B). The relative decreases in s/n ratio are compared in (C), showing that
the PC model is more sensitive to LTD saturation than the ANN. Error bars indicate
standard deviation (SD).
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Fig. 5. Relationship between the LTD saturation value and the mean responses to stored
and novel patterns in the ANN and the PC model. Although the difference between the
mean responses to stored and novel patterns decreases with increasing LTD saturation
values in both cases, in the ANN the variance of responses to novel patterns also de-
creases. This results in s/n ratios in the ANN that are independent of the LTD saturation
value. Same simulation parameters as in Fig. 4. Error bars indicate SD.

Fig. 6. Pattern recognition performance of the ANN (A) and PC model (B). The colour
represents the resulting s/n ratio for each combination of a number of active PFs for
each pattern (indicated on the x-axis) and an LTD saturation value (y-axis).
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The reason for the difference in sensitivity of the ANN and the PC model to
varying amounts of LTD became apparent when the mean responses of the two
models to stored and novel patterns were plotted against the LTD saturation
value (Fig. 5). In the PC model, increasing LTD saturation values reduced the
difference in pause duration between stored and novel patterns, with standard
deviations that were affected to a much lesser extent (Fig. 5B). This led to the
drastic reduction in s/n ratio for weak LTD shown in Figure 4. In the ANN,
the difference between the mean responses to stored and novel patterns was
affected much less by the LTD saturation value, while the standard deviation
of responses to novel patterns decreased with increasing LTD saturation values
(Fig. 5A). Based on Equation (1), the constant signal-to-noise ratio of the ANN
in the presence of varying amounts of LTD can be explained by a linear relation-
ship between the squared difference of the mean responses to stored and novel
patterns (μs − μn)2 and the variance of the responses to novel patterns σ2

n.
In a second set of simulations, we measured the effect of varying the number

of active PFs in each pattern for a range of LTD values. As expected, the perfor-
mance of the ANN deteriorated for larger numbers of activated PFs, while being
independent of the amount of LTD induced over the whole range of numbers of
active PFs tested (500-5000, Fig. 6A). In contrast, the PC model showed the

Fig. 7. Depression at inhibitory synapses. Three different inhibitory synaptic plasticity
rules were applied for varying numbers of patterns. The first bar of each graph shows
the s/n ratio when no inhibition is applied for both stored and novel patterns, result-
ing in the best pattern recognition performance. The other bars represent cases with
inhibition present, with from left to right: plasticity for both stored and novel patterns,
plasticity for stored patterns only and no plasticity for either type of patterns, using
the original inhibitory conductances. Error bars indicate SD.
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best pattern recognition capacity for a range between 1000 and 2000 active PFs
and performed consistently worse for higher LTD saturation values (Fig. 6B).

3.2 Inhibitory Synaptic Plasticity

To investigate the effect of plasticity at the synapses between inhibitory in-
terneurons and PCs, we initially used an inhibition/excitation ratio of one (see
Methods), which is in the range of experimentally observed data from cerebellar
slices [5]. We then introduced LTD at the inhibitory synapses and evaluated the
pattern recognition performance of the PC for different numbers of patterns.
The effect of inhibitory LTD was examined by depressing the inhibitory conduc-
tance to values between 25% and 75% of their pre-depression baseline. We used
four different simulation setups (Fig. 7): no inhibition, plasticity at inhibitory
synapse for stored and novel PF patterns, plasticity for stored patterns only and
no plasticity for both patterns, that is, maintaining the baseline amplitude value
for the original inhibition/excitation ratio [5].

We found that the pattern recognition performance of the PC model was
unaffected by the presence of inhibitory LTD, even in the extreme case where
the inhibitory plasticity was restricted to learned PFs patterns.

4 Conclusion

Previous computer simulations and experiments in cerebellar slices and awake
behaving rats suggested that the cerebellum can use a novel neural code that is
based on the duration of silent periods in neuronal activity [4]. These simulations
used a complex multi-compartmental model of a cerebellar Purkinje cell that
had been tuned to replicate a wide range of behaviours in vitro and in vivo [8,9],
but they applied a simplified LTD learning rule, which involved dividing the
synaptic weights of active PF inputs by two every time a PF pattern was learned.
This could result in very small synaptic weights and does not fit experimental
data on LTD induction in cerebellar slices, where the mean AMPA receptor
conductances saturate and are hardly ever depressed to less than 50% of their
pre-depression baseline values [5,6].Moreover, the previous simulations did not
include the plasticity at synapses between inhibitory interneurons and PCs that
has recently been characterised [5].

We have studied the effect of inhibitory synaptic plasticity and saturating
LTD in the complex PC model. We found that the ability of the PC model to
discriminate between learned and novel PF input patterns was unaffected by the
presence of inhibitory plasticity for a wide range of parameter values.

However, the pattern recognition performance of the PC model was very sen-
sitive to the value at which LTD saturated. In contrast to a corresponding ANN,
which was unaffected by the amount of LTD induced, the performance of the
PC model was improved by lower LTD saturation values. The best performance
resulted from LTD saturation values of zero, which corresponds to silencing the
PF synapses completely. Interestingly, large numbers of silent PF synapses have
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been observed by monitoring microscopically identified PF-PC connections in
cerebellar slices [15]. Our simulation results indicate that the discrepancy be-
tween the existence of these silent synapses and the apparent saturation of LTD
in induction experiments needs to be resolved to understand the connection
between LTD and cerebellar learning.
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The identification of two-phase flow regimes that occur in heated pipes is of 
paramount importance for monitoring nuclear installations such as boiling water 
reactors. A Sugeno-type fuzzy inference system is put forward for non-invasive, 
on-line flow regime identification. The proposed system is particularly efficient 
in that it employs a single directly computable input, four outputs calculated via 
subtractive clustering - each corresponding to one flow regime –, and four fuzzy 
inference rules. Despite its simplicity, the system accomplishes accurate 
identification of the flow regime of sequences of images from neutron 
radiography videos.  

1   Introduction 

Knowledge and control of the prevailing flow regime in a two-phase flow is crucial in 
energy producing installations, especially in BWRs. The ability of thermal hydraulic 
codes to predict flow regimes and parameters needs validating against measurements 
under well defined circumstances. Non-invasive identification methods are 
particularly attractive for such purposes as they avoid the need for the instrumentation 
to be immersed in the flow, a configuration that may not only be difficult to install but 
– once fitted - may disturb the flow. Statistical analysis of radiation attenuation 
measurements - e.g. X-rays [1] and gamma-rays [2-4] - has also been employed for 
investigating the two-phase flow in coolant pipes.   

An interesting alternative is dynamic neutron radiography [5], which yields a two-
dimensional projection of the flow structure topology in a time-resolved manner. The 
luminosity distribution of images has been exploited for two-phase flow identification 
via a number of computational intelligence approaches including  

• artificial neural networks (ANNs) in [6-8], 
• fuzzy inference systems (FIS’s) in [9],  
• neuro-fuzzy methodologies in [10]. 

Further to the non-invasive nature of the image capture process, these approaches 
promote on-line operation whereby the evolution of two-phase flow can be followed. 
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Along the same principles, a novel Sugeno-type FIS [11] is put forward here for 
non-invasive, on-line two-phase flow regime identification. The proposed system is 
particularly efficient; it employs (a) a single directly computable input per frame, 
namely the mean image intensity, (b) four outputs - each corresponding to one flow 
regime (bubbly, slug, churn and annular) – which are calculated via subtractive 
clustering [12] for the automatic generation of image-intensity flow regime-related 
clusters, and (c) four fuzzy inference rules. Despite its simplicity, the system 
accomplishes accurate identification of the flow regime of sequences of images from 
neutron radiography videos.  

This paper is organized as follows: section 2 introduces two-phase flow; section 3 
presents data pre-processing; section 4 describes the structure of the FIS employed for 
the flow regime identification task and details the results of five-fold cross-validation; 
finally, section 5 concludes the paper.  

2   Two-Phase Flow Regime 

As the coolant flows upwards within a heated pipe, the exchange of heat results in 
part of the coolant changing into its gas phase whereby two-phase flow of the coolant 
occurs. Depending on the proportion of liquid and gas phase in the coolant pipe and 
the topology of the vapour-liquid interfacial surface, a number of flow regime patterns 
are observed, e.g. liquid-only, bubbly, slug, churn, annular and mist, with the 
proportion of gas phase of the coolant progressively increasing from liquid-only to 
mist flow. Fig. 1 illustrates the Govier & Aziz flow-regime map [13] of vertical 
gas/liquid velocity at standard temperature and pressure, thus demonstrating the 
relationship that exists between the two phases of the coolant. 
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Fig. 1. Govier & Aziz flow-regime map 
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3   Data 

3.1   Input 

The dynamic neutron radiography video recorded at the Kyoto University Research 
Reactor Institute (KURRI) and capturing the two-phase flow in metal water loops has 
been employed. This video was collected during a gradual increase of the coolant 
temperature in the loop, whereby the four principal flow regimes (bubbly, slug, churn 
and annular) were recorded. The video was divided – through expert judgement - into 
four segments, each corresponding to one flow regime. Every video segment 
comprises 249 frames of size 154 x 412 pixels each; due to the image size and capture 
conditions, the frames are not of especially high quality. Furthermore, some frames 
from one flow regime may look more like those from another flow regime, a fact that 
was not taken into account during video segmentation. 

 

           
                              (a)                                                                  (b) 
 

             
                               (c)                                                                  (d) 

Fig. 2. KURRI video frames for progressively increasing coolant temperatures; bubbly (a), slug 
(b), churn (c) and annular (d) flow regimes 
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As can be seen in Fig. 2, the bubbly flow frames appear quite dark (liquid phase) 
with sporadic lighter (gas phase) small circular bubbles. The frames corresponding to 
slug flow are also dark but are interrupted by lighter medium-sized irregularly-shaped 
blobs. The churn flow frames appear roughly equally dark and light due to the lighter 
continuous snake-like areas of gas appearing within the dark area. Finally, the frames 
corresponding to annular flow appear quite light due to a unified lighter column 
appearing in practically the entire frame and leaving some dark areas along the two 
vertical edges of the frames (steam taking up most of the frame and pushing any 
coolant that remains in its liquid phase at the edges of the coolant pipe). In all cases, 
the lighter parts of the frame – or the darker parts in mist and annular flow - move 
upwards at subsequent frames while also gradually changing shape. 

3.2   Pre-processing 

Of the three simple, directly computable and most discriminating statistical operators 
used in [8], namely: 

(A) the mean intensity of the image, which gives a measure of bubble quantity in 
the frame,   

(B) the mean value (computed over the 412 rows of the image) of the maximum 
number of neighbouring pixels per row that are of intensity higher than the 
mean intensity of the image, which gives an indication of the bubble/blob 
sizes within each frame across the flow, and 

(C) the mean value (computed over the 154 columns of the image) of the 
maximum number of neighbouring pixels per column that are of intensity 
higher than the mean intensity of the image, which gives an indication of the 
bubble/blob sizes within each frame along the flow, 

only operator (A) has been utilized here.   

4   Flow Regime Identification via Sugeno-Type FIS’s 

4.1   Training/Test Pattern Presentation 

The Fuzzy Logic Toolbox [14] has been utilized for performing subtractive clustering 
and implementing the FIS; Sugeno-type FIS’s have been used as they constitute ideal 
interpolating tools that can both coordinate different decision systems that are 
oriented towards different operating conditions and model nonlinear systems by 
interpolating between multiple linear models. 

The FIS involves a single numerical input variable (mean image intensity) and a 
single categorical antecedent (flow regime). Subtractive clustering automatically 
generates four image-intensity clusters, where each cluster identifies one flow regime. 
The cluster centres (corresponding to image intensity values around 0.17, 0.3, 0.51 
and 0.82) have been used as the FIS outputs representing the bubbly, slug, churn and 
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annular flow, respectively1. The number of fuzzy rules equals the number of input 
clusters. The final output is determined by applying weights of 1 to all rule outputs. 
Owing to the fact that the FIS final output is continuous, the three mean values of 
pairs of ordered cluster centres have been used as thresholds (e.g. approximate values 
below 0.235 correspond to a bubbly flow regime decision, between 0.235 and 0.405 
to a slug flow regime decision, between 0.405 and 0.665 to a churn flow regime 
decision and above 0.665 to an annular flow regime decision).  

Five-fold cross-validation (CV) has been implemented for training and testing the 
FIS; both random and piece-wise CV have been investigated. In random CV, the 
frames from each video segment (flow regime) have been randomly partitioned into 
training and test sets such that each training set contains 199 or 200 frames of the four 
video segments and the corresponding test set contains the remaining 50 or 49 frames 
of the four video segments, respectively. More specifically, frames 1, 6, 11,…, 241 
and 246 constitute the test patterns from each flow regime for the first fold, with the 
remaining patterns constituting the training patterns; frames 2, 7, 12,…, 242 and 247 
constitute the test patterns from each flow regime for the second fold, with the 
remaining patterns constituting the training patterns, and so on for the third, fourth 
and fifth folds.  

 

Table 1. Frames of the four video segments employed for FIS training and testing during piece-
wise cross-validation 

 
Folds Training patterns Test patterns 
1 50-249 1-49 
2 1-50 & 100-249 51-99 
3 1-100 & 150-249 101-149 
4 1-150 & 200-249 151-199 
5 1-200 201-249 

 
 

Piece-wise CV aims at simulating real situations, where data is not only limited, 
but - furthermore - may become available in batches and at different times. The 
operating conditions and data capture process may vary in such situations, whereby 
the identification task becomes more challenging. Table 1 illustrates the frames used 
in the five folds of the piece-wise CV procedure; it can be seen that the patterns of the 
test set are derived from consecutive frames from each flow regime, while those of 
the training set are derived from (partly) consecutive frames. Owing to the gradual 
increase of the coolant temperature in the loop during video capture (section 3.1), it is 
expected that the test patterns of fold 1 will tend to be underestimated, whereas those 
of fold 5 will tend to be overestimated.   

Some extrapolation has been found necessary in all folds for both random and 
piece-wise CV; it is common in real situations for the training patterns not to fully 
capture the extremes of the phenomenon under observation.   
                                                           
1 Although other values have been found to produce more accurate results (by up to 2%), the 

cluster centres have been preferred as they provide a systematic way of setting up the FIS’s.  
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4.2   FIS Performance 

Table 2 demonstrates FIS performance in terms of the mean, maximum and standard 
deviation of the absolute difference between predicted and actual flow regime value 
as well as in terms of flow-regime identification accuracy (%); the latter is further 
broken down into overestimations and underestimations, overall as well as per flow 
regime. The pooled results over the five folds of random and piece-wise CV are 
presented here. 

Both CV procedures are satisfactory in terms of accuracy and the nature of 
misclassifications, which involve exclusively highly similar inputs from neighbouring 
flow regimes2. The overall accuracy of the proposed FIS is higher than that of the 
existing fuzzy and neuro-fuzzy approaches but slightly lower than the ANN approach 
of [8]; however, the latter is significantly more complex in terms of construction and 
computational complexity. 

As expected, random CV produces more accurate results than piece-wise CV. This 
superiority is further expressed in the lower proportion of misclassifications, which 
concern only the first three flow regimes for random CV (10.04% slug-as-bubbly, 
8.43% slug-to-churn and 9.64% churn-as-slug misclassifications)3 but extend to all 
flow regimes for piece-wise CV (1.61% bubbly-as-slug, 11.24% slug-as-bubbly, 
8.83% slug-as-churn, 10.04% churn-as-slug, 0.4% churn-as-annular and 0.4% 
annular-as-churn misclassifications).  

 
Table 2. FIS accuracy over the five folds of the cross-validation process 

 
 random CV piece-wise CV 

Mean deviation 0.0313 0.0327 
maximum deviation 0.0358 0.0364 
std deviation 0.2068 0.2048 
accuracy (%) of which 
overestimations 
underestimations 

92.97 
  4.92 
   2.11 

91.57 
 5.52 
  2.91 

5   Conclusions 

A novel Sugeno-type fuzzy inference system has been put forward for the non-
invasive identification of two-phase flow in boiling water reactors.  The proposed 
system is particularly efficient in that it employs (a) a single directly computable input 
per frame, namely the mean image intensity, (b) four outputs calculated via 
subtractive clustering - each corresponding to one flow regime (bubbly, slug, churn 
and annular) –, and (c) four fuzzy inference rules. Despite its simplicity, the system 
has been found capable of accomplishing successful as well as consistent 
identification of the flow regime of sequences of images from neutron radiography 
                                                           
2 A non-negligible overlap between mean intensity values is observed for frames from 

neighbouring flow regimes. 
3 Thus causing no misclassifications of annular flow regime which is the most crucial to 

identify. 
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videos. Further to its non-invasive nature, the proposed approach promotes on-line 
operation and monitoring; both image pre-processing and flow identification can be 
performed in real-time for each successive frame. 

The proposed FIS method has been found superior to the previous on-line 
approaches in terms of efficiency, and comparable in terms of accuracy.  
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Abstract. Analytical fuzzy predictive controllers are composed of a few
local controllers grouped in the fuzzy Takagi–Sugeno model. Usually,
they are designed using the PDC method. Stability of the resulting sys-
tem (controller + control plant) may be checked using variants of Lya-
punov stability criterion. One of the first such variants was the criterion
developed by Tanaka and Sugeno. It is rather conservative criterion be-
cause, in its basic form, it does not take into consideration the shape of
the membership functions. However, this drawback can be exploited in
the proposed approach. After finding the Lyapunov matrix for the sys-
tem with the analytical fuzzy predictive controller, using e.g. LMIs, it is
possible to change the membership functions of the controller without
sacrificing stability. It is done using the heuristic method. Thus, practi-
cally any shape of membership functions may be assumed.

Keywords: fuzzy control, fuzzy systems, predictive control, nonlinear
control.

1 Introduction

The model predictive control (MPC) algorithms are widely used in practice
[2,8,12,17] because they can be successfully applied to control plants with difficult
dynamics (inverse response, time delays) and to MIMO processes. Their success
is caused by the way they are designed. During this process all information about
control system operation and on conditions in which it operates can be taken
into consideration.

Standard formulations of the MPC algorithms are based on linear control
plant models. However, operation of the control system of a nonlinear control
plant may be usually improved using the nonlinear controller. Algorithms us-
ing the approach based on Takagi–Sugeno (TS) fuzzy models [14] are relatively
easy to synthesize. The idea of the fuzzy MPC algorithms is to design a few
analytical MPC controllers for a few operating points and then compose them
into one TS–type fuzzy controller. Once the controller is designed stability of
the resulting control system may be checked using some criteria, usually based
on the Lyapunov approach [3,5,6,7,13,15,16].

One of the first criteria was presented in [16]. Its basic version is, however,
conservative. It does not take into consideration the membership functions used
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in the controller. It is the drawback of the criterion which is creatively exploited
in the paper. The idea is to first apply this criterion to the designed control
system. (It can be done relatively easy using the LMI solvers, e.g. the Matlab
LMI toolbox.) If the Lyapunov matrix is found, stability of the system is proven.
It is in fact proven for a class of controllers (with different premises). Thus, the
membership functions can be tuned and, at the same time, stability maintained.
In order to tune the membership functions an optimization problem is solved.
Due to the complicated form of the objective function to be minimized a heuristic
tuning strategy is proposed.

In the next section fuzzy analytical MPC algorithms are described. In Sect. 3
stability criterion for fuzzy control systems is reminded. Section 4 contains de-
scription of the algorithm designed for tuning the stable fuzzy controllers. Ex-
ample results obtained using the proposed tuning mechanism illustrating its
usefulness are presented in Sect. 5. The paper is summarized in Sect. 6.

2 Analytical Fuzzy Predictive Controllers

In the MPC algorithms future control values are derived using a control plant
model to predict future behavior of the control system. Then control signal is
generated in such a way that some criteria should be maintained. Typically,
minimization of the following performance function is demanded:

J =
p∑

i=1

(
yk − yk+i|k

)2 +
s−1∑
i=0

λ
(
Δuk+i|k

)2
, (1)

where yk is a set–point value, yk+i|k is an output value for the (k+i)th sampling
instant predicted at the k th sampling instant using control plant model, Δuk+i|k
are future changes in the manipulated variables, λ ≥ 0 is a weighting coefficient,
p and s denote prediction and control horizons, respectively. The unconstrained
optimization problem with the performance function (1) is a quadratic problem
provided a linear model is used for prediction. Moreover, this problem has an
analytical solution.

2.1 Standard Analytical Predictive Control Algorithms

Standard predictive control algorithms are based on linear process models, see
e.g. [2,4,8,12,17], therefore the vector of predicted output values y can be de-
scribed by the following formula:

y = ỹ + A · Δu , (2)

where y =
[
yk+1|k, . . . , yk+p|k

]T , Δu =
[
Δuk|k, . . . , Δuk+s−1|k

]T ,

ỹ =
[
ỹk+1|k, . . . , ỹk+p|k

]T is called a free response of the plant. It is because it
contains future output values calculated assuming that the control signal does
not change in the prediction horizon, i.e. describes influence of the manipulated
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variable values from the past and its form depends on the model used for pre-
diction. Differences between MPC algorithms are caused by this fact.

A is a matrix composed of the control plant step response coefficients, called
the dynamic matrix (it can be shown that it is the same in different types of
MPC algorithms)

A =

⎡⎢⎢⎢⎣
a1 0 . . . 0 0
a2 a1 . . . 0 0
...

...
. . .

...
...

ap ap−1 . . . ap−s+2 ap−s+1

⎤⎥⎥⎥⎦ . (3)

The prediction (2) is used to formulate the performance function (1) which
can be rewritten in the following form:

J = (y − y)T · (y − y) + λ · ΔuT · Δu , (4)

where y = [yk, . . . , yk] is a vector of length p. The solution to the minimization
problem with the performance function (4), in the case without constraints, can
be expressed as:

Δu =
(
AT · A + λ · I

)−1
· AT · (y − ỹ) . (5)

From the vector Δu, the Δuk|k element is applied in the control system at each
iteration. Therefore, a control law of a controller can be obtained.

The DMC algorithm is based on step responses [2,4,8,17]:

ŷk =
pd−1∑
n=1

an · Δuk−n + apd
· uk−pd

, (6)

where ŷk is the output of the control plant model at the kth sampling instant,
Δuk is a change of the manipulated variable at the kth sampling instant, an

(n = 1, . . . , pd) are step response coefficients of the control plant, pd is equal to
the number of sampling instants after which the coefficients of the step response
can be assumed as settled, uk−pd

is a value of the manipulated variable at the
(k − pd)th sampling instant. The control law of the DMC controller is thus as
follows, see e.g. [17]:

uk = uk−1 − r0 · ek +
pd−1∑
i=1

ri · Δuk−i , (7)

where ek = yk − yk is a value of the control error at the kth sampling instant,
r0 =

∑p
j=1 K1j, [r1, . . . , rpd

] = K1 · Ã, K1 = [K11, . . . , K1p] is the first row of

the matrix K =
(
AT · A + λ · I

)−1
· AT ,

Ã =

⎡⎢⎢⎢⎣
a2 − a1 a3 − a2 . . . apd−1 − apd−2 apd

− apd−1
a3 − a1 a4 − a2 . . . apd

− apd−2 apd
− apd−1

...
...

. . .
...

...
ap+1 − a1 ap+2 − a2 . . . apd

− apd−2 apd
− apd−1

⎤⎥⎥⎥⎦ .
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Many MPC algorithms are based on a difference equation:

ŷk =
nB∑
i=1

bi · yk−i +
mC∑
i=1

ci · uk−i, (8)

where bi, ci are parameters of the model. In such a case the following control
law is obtained:

uk = uk−1 + re · ek +
mC−1∑

i=1

ri
u · Δuk−i +

nB+1∑
i=1

ri
y · yk−i+1, (9)

where re, ri
u, ri

y – coefficients obtained after the transformation.

2.2 Fuzzy Analytical Predictive Control Algorithms

Fuzzy analytical algorithms discussed in the paper are the combination of stan-
dard analytical MPC controllers. They are sets of the following rules [11,17] (for
the case of the Fuzzy DMC controller):

Rule j: (10)

if yk is Bj
1 and . . . and yk−n+1 is Bj

n and uk is Cj
1 and . . . and uk−m+1 is Cj

m

then uj
k = uk−1 − rj

0 · ek +
pd−1∑
i=1

rj
i · Δuk−i ,

where yk is an output variable value at the kth sampling instant, uk is a ma-
nipulated variable value at the kth sampling instant, Bj

1, . . . , B
j
n, Cj

1 , . . . , Cj
m are

fuzzy sets, rj
i are the coefficients of the jth local controller, j = 1, . . . , l, l is

number of rules.
The output value of the FDMC controller is calculated using the following

formula:

uk = uk−1 − r̃0 · ek +
pd−1∑
i=1

r̃i · Δuk−i , (11)

where r̃i =
∑l

j=1 w̃j · rj
i , w̃j are normalized weights calculated using standard

fuzzy reasoning, see e.g. [14].
In the case of the MPC controller based on a difference equation only the

consequences change in (10) and the output value can be calculated using the
formula:

uk = uk−1 + r̃e · ek +
mC−1∑

i=1

r̃i
u · Δuk−i +

nB+1∑
i=1

r̃i
y · yk−i+1 . (12)

The design process of the fuzzy analytical predictive controller can be very
simple:
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1. A few linear models of the control plant are collected.
2. Each linear model is then used to calculate coefficients of an analytical MPC

controller (e.g. (7) or (9)). These controllers will be the local controllers of
the fuzzy analytical MPC controller.

3. The premise part of the fuzzy analytical MPC controller (10) is designed
using expert knowledge, simulation experiments or machine tuning.

3 Stability Criterion

This section contains reminder of the stability criterion. It was developed for the
systems described by the following Takagi–Sugeno fuzzy models:

Rule i: if xk is F i
1 and . . . and xk−n+1 is F i

n, then

xi
k+1 = gi

1 · xk + . . . + gi
n · xk−n+1, (13)

where xk, . . . , xk−n+1 are state variables, F i
1 , . . . , F

i
n are fuzzy sets, i = 1, . . . , l,

l is the number of rules.
The i–th local model (13) can be thus written as:

xi
k+1 = Gi · xk, (14)

where

Gi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

gi
1 ... gi

n−1 gi
n

1 ... 0 0
0 ... 0 0
...

. . .
...

...
0 ... 0 0
0 ... 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk

xk−1
xk−2

...
xk−n+2
xk−n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The output of the TS fuzzy model is given by the following formula:

xk+1 =

l∑
i=1

wi · Gi · xk

l∑
i=1

wi

, (15)

where wi =
n∏

j=1
F i

j (x(k − j + 1)) is the i–th rule activation level (firing strength).

Tanaka and Sugeno formulated the following sufficient stability condition,
arising from the direct Lyapunov method [16].

Theorem: The fuzzy system (14) is asymptotically stable if there is a positive
definite matrix P such that for all matrices Gi the following inequalities are
fulfilled:

GT
i ·P ·Gi − P < 0, i = 1, . . . , l. (16)

�
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To find the matrix P one can solve the set of linear matrix inequalities (16)
[15,18], e.g. using the Matlab LMI toolbox. The Tanaka–Sugeno criterion can be
adopted for systems with delays and predictive controllers, see e.g. [10,11]. The
drawback of the Tanaka–Sugeno criterion is its conservativeness. In its basic
form, it does not take into consideration shape of the membership functions.
However, this drawback is exploited by the proposed approach and in some sense
becomes an advantage. It is because the membership functions may be changed
(also their character) without sacrificing the stability which, once proven, will
be maintained as long as the consequences do not change.

4 Algorithm for Machine Tuning of Fuzzy Controllers

The performance function of the control system to be minimized during the
process of controller tuning can be of any standard form, e.g. the quadratic
function can be used:

min
v

⎧⎨⎩
n∑

j=1

tl∑
i=1

(
yj

k+i − yj
k+i

)2

⎫⎬⎭ , (17)

where v is a vector composed of the parameters of membership functions, tl
is a simulation horizon, n is the number of ’scenarios’ taken into consideration
during the learning process. It is advisable to prepare a few such ’scenarios’ for
different conditions of the control system operation (different set–point values,
different disturbances). Thanks to such an approach the system may be tuned
as well as possible to the conditions it will probably, according to knowledge of
a designer, operate in in the future.

The other form of the performance function, also often used, is the sum of the
absolute values of the control error:

min
v

⎧⎨⎩
n∑

j=1

tl∑
i=1

∣∣∣yj
k+i − yj

k+i

∣∣∣
⎫⎬⎭ . (18)

It is possible, using the method of tuning described in this section, to minimize
also other typically used performance criteria (like e.g. overshoot or control time)
or even combinations of them.

Due to the complicated nature of the problem and fact that the reasonable
performance functions, e.g. those relied on future values of control error, depend
on the parameters of membership functions in a complicated way, the following
machine tuning algorithm is proposed:

1. Calculate the value J = Jb of the performance function for current values of
parameters of the membership functions.

2. Choose the first parameter from the vector v.
3. Using the current minimum and maximum values for the chosen parameter,

generate grid of points.
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4. Calculate the values of the minimized function in the grid points.
5. Pick up the point with the smallest value of the performance function.
6. If the best point (for which the value of the function is minimal) is on the

boundary of the assumed range of values of the chosen parameter, then
extended the range of values of the chosen parameter (if it is still possible)
and pass to the step no. 4. Otherwise, pass to the next step.

7. If necessary, near the best point generate the next, more dense grid between
points from the previous grid that are neighbors of the best point (to find
a better solution) and pass to the step no. 4. Otherwise, pass to the next
step.

8. Calculate the new value Jn of the performance function for the new value
of the changed membership function parameter and compare it with J . If
Jn < J change the value of the parameter and assume J := Jn else do not
change the value of the parameter and pass to the next step.

9. Choose the next variable from the vector v. If there is no next element of
the vector v then check if the value of the performance index J improved
sufficiently comparing to the value from the last test Jb (|Jb − J | > ε, where
ε is the parameter of the algorithm; during the tests it was assumed that
ε = 10−8). If yes then Jb := J and return to step no. 2. If no, then stop.

In step no. 4 calculation of the values of the minimized function means the
necessity to simulate operation of the control system and to derive the value of
the chosen performance function, e.g. (17) or (18). It is thus advisable to choose
not too dense grid of points.

Step no. 7 may be repeated a few times if needed, but during the tests it was
not necessary. It should be noticed that the exact search is not crucial for the
algorithm because in the next algorithm iteration the ’candidate’ for the optimal
point will probably change anyway.

For the search in the chosen direction the heuristic method was developed. It
is because the standard golden section search technique found out to fail because
of the character of the minimized function.

The first point of the algorithm resembles choice of improvement direction in
the well known Gauss–Seidel optimization algorithm (directions chosen parallel
to the axes). During the experiment the proposed technique found out to be
sufficient. However, in the case of problems with convergence one may use an
improved method of direction generation, e.g. with rotation of the axes as in the
Rosenbrock method.

5 Simulation Experiments

The control plant under consideration is the ethylene distillation column. It is
a highly nonlinear plant with a large time delay. The discrete–time TS plant
model for sampling time Tp = 40min is as follows:



Machine Tuning of Stable Analytical Fuzzy Predictive Controllers 437

Rule 1: if uk−2 is P1, then

y1
k+1 = 0.7659 · yk − 520.2638 · uk−2 + 2220.9067; (19)

Rule 2: if uk−2 is P2, then

y2
k+1 = 0.7659 · yk − 253.5771 · uk−2 + 1102.4471;

Rule 3: if uk−2 is P3, then

y3
k+1 = 0.7659 · yk − 125.1030 · uk−2 + 563.8767;

with membership functions shown in Fig. 1. More information about the control
plant and profits obtained after application of a fuzzy predictive controllers in a
control system of the distillation column one may find in [9].

To the control plant, the analytical fuzzy DMC controller was designed and the
tuning coefficient λ = 8e + 6 was assumed. Then, utilizing procedure presented
in [11], a Lyapunov matrix of the control system with this controller was found
using Matlab LMI toolbox. In the next step the membership functions were
tuned using the procedure described in Sect. 4.

At the beginning of experiments trapezoid membership functions were used,
as in the model of the control plant. In such a case, formulation of the proper

Fig. 1. Membership functions of the control plant model

Fig. 2. Membership functions of the controller a) initial ones b) after tuning
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Fig. 3. Responses of the control systems to changes of the set–point value from
y0 = 200 ppm: before tuning – dashed line, after tuning – solid line; left – output
variable, right – manipulated variable

conditions for parameters of the membership functions to guarantee their rea-
sonable values is not a trivial task. In order to simplify the procedure it is thus
advisable to use such functions that the mentioned problem will not occur. It
was done during the experiments as the change of shape of the membership func-
tions does not influence stability of the system. Therefore, membership functions
shown in Fig. 2a were initially chosen.

The result obtained after tuning was surprising – the tuning algorithm elim-
inated the middle local controller. Thus, the membership functions depicted
in Fig. 2b were obtained and structure of the fuzzy controller was simplified.
Despite elimination of one of the local controllers, responses of the control sys-
tem changed only slightly (Fig. 3). The tunned controller generated a little bit
smaller overshoot. The value of the performance function (as in (18)) improved
from J0 = 1394.4 to Jf = 1337.4.

6 Summary

The algorithm of machine tuning of the fuzzy predictive controllers was proposed
in the paper. It is simple but effective. Moreover, it is formulated in such a
way that the choice of membership functions is not limited by anything but the
employed stability criterion; the membership functions need not be differentiable,
i.e. trapezoid and triangular functions may be also used. The proposed method
found out to be satisfactory for design of control systems with fuzzy predictive
controllers, but also control systems with other fuzzy controllers may be tuned
using this method.

Acknowledgment. This work was supported by the Polish national budget
funds for science 2007–2009 as a research project.
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Abstract. A study is made of whether there is a significant statistical
difference in performance between crisp and fuzzy rule-based classifica-
tion. To do that, 12 datasets were chosen from the UCI repository that
are widely used in the literature, and use was made of four different al-
gorithms for rule induction —two crisp and two fuzzy— to classify them.
Then a non-parametric statistical test was used for measuring the signif-
icance of the results, which indicated that both paradigms —crisp and
fuzzy classification— are not different in the statistical meaning.

1 Introduction

We often hear about the use of fuzzy logic in applications that require managing
uncertainty. Its main feature is that it allows linguistic labels that humans use to
communicate —such as tall, short, not so cold, etc.— to be represented through
simple mathematical functions. These kinds of linguistic labels are not handled
naturally in crisp logic because a threshold is needed for making the rules. For
example, if we want to classify people as tall or short in crisp logic, we have
to fix a threshold height so that people shorter than this height will always be
considered short and people taller than this height will always be considered tall.
But it does not matter how close to the threshold a person is, if he/she is below
the height chosen, he/she will be considered short. Hence a person who is 1 mm
shorter than the threshold height will be considered short, which makes little
sense in the way humans classify objects. In fuzzy classification, such a person
might be considered —for example— 90% tall and 10% short. Generally, objects
belong to some degree to all the classes when the fuzzy approach is used.

The contribution of fuzzy logic and fuzzy classification in solving real-world
problems is undeniable. In the field of automatic control, fuzzy logic seems to of-
fer useful simplifications of complex realities, making them more manageable [1].
Many successful applications of fuzzy classification can be found in remote sens-
ing [2, 3, 4], where every pixel in a digital image representing a landscape must
be classified —e.g., into different types of vegetation. This image is normally
obtained from a satellite and therefore each pixel might represent several kilo-
meters of land. A crisp classifier would assign only one class to each pixel, which
does not feel natural. In this sense, fuzzy classification would represent more
naturally mixtures and transition zones [2].

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 440–447, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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It is only natural to wonder whether fuzzy logic is able to improve crisp
classification. Nowadays the statistical evaluation of classifiers has become an
important task in machine learning research. Despite this fact, the “correct way”
to carry out this task is not completely clear and, to our knowledge, there is
no study that confirms or rejects whether fuzzy logic yields an improvement in
classification. Nevertheless, there seems to be a common consent that fuzzy logic
cannot drastically improve the performance of crisp classification. In this work
we try to test this hypothesis in a more rigorous way.

The document is organised as follows: section 2 briefly describes the four
learning algorithms used in the study. Section 3 explains the efficiency measure
and the nonparametric statistical test utilized, as well as the experiments con-
ducted. Section 4 presents the results in terms of both the efficiency obtained
by the classifiers and the statistical comparison. Some related work is shown in
section 5. Finally, section 6 contains the conclusions of this work and some ideas
for future work.

2 Fuzzy and Crisp Algorithms

In this work two paradigms for classification are studied: fuzzy rules and crisp
rules. We choose two representative algorithms of each paradigm in order to
compare them. In general, fuzzy classification is understood as those learning
algorithms that after the training process have learned a set of fuzzy rules —
i.e., rules that use fuzzy logic. Crisp classifiers are those that learn rules which
do not use fuzzy logic.

The two crisp algorithms selected for this study are Ripper and C4.5. Rip-
per [5] is an improvement of the IREP algorithm that efficiently learns propo-
sitional decision rules. It uses the minimum description length principle in the
pruning mechanism to optimize the set of rules obtained. C4.5 [6] is a machine
learning algorithm that builds decision trees. It uses an application of entropy for
measuring how much information can be obtained with a particular split of the
hypothesis space by one or more attributes to guide the tree building process.

The two fuzzy approaches selected for this work are based on evolutionary
algorithms and clustering. For the former, we use 2Slave [7], which transforms
the classification problem into an optimization problem which is then solved
using a genetic algorithm. Thus, a population of rules mutate and reproduce,
and the one that covers more examples from the training dataset is selected in
each generation. The examples covered by this rule are then removed from the
dataset and the process is repeated until a set of rules that covers the whole
training dataset is obtained.

Clustering is an unsupervised learning technique that separates data into an
arbitrary or user-defined number of clusters. The most popular clustering algo-
rithm is the K-means Algorithm, which splits data into k clusters. In the crisp
version, each data point belongs to exactly one of the clusters identified. In the
fuzzy version each data point belongs to all clusters with a different membership
degree. For testing this approach we use the algorithm proposed by Klawonn
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and Krusse [8], which can find membership functions for each dimension of any
cluster. Considering that each cluster corresponds to a class, the conjunction of
these membership functions constitutes a fuzzy rule that can be used for fuzzy
classification.

3 Materials and Methods

In the majority of machine learning studies, two or more algorithms are com-
pared by applying them to a particular problem and assessing the performance
they achieve in the task. Although this is a valid approach when trying to solve
a particular problem, these results cannot be extrapolated to another problem
or domain. To be able to draw more general conclusions about two algorithms
it is necessary to establish a difference in their performance which is statisti-
cally significant. Many studies report performance differences, but they do not
normally apply a suitable hypothesis test to validate these conclusions.

In this work we explain and apply a procedure to establish whether the classi-
fication quality obtained by crisp and fuzzy rule inducers, two algorithms of each
type, is significantly different, with statistical support. The elements involved in
this procedure are detailed in the following sections.

3.1 Hypothesis Test

We use the Friedman test, which is a non-parametric version of the ANOVA
test [9]. The Friedman test seems to be the best choice when evaluating more than
two classifiers on different classification tasks (independent datasets), because
there is no assumption about data or error distribution, as there exists with
parametric tests. Moreover, good statistical tests designed for comparing two
classifiers —e.g. Wilcoxon’s signed rank test— might result in an increase of the
family-wise error when used on more than two classifiers by evaluating repeatedly
different combinations of two of them.

The Friedman test reports whether the difference in the average ranking of
two or more algorithms is statistically significant, where the null hypothesis in
that all algorithms have the same performance. Let rj

i be the ranking of the
jth of k algorithms on the ith of N datasets. The Friedman test compares the
average ranks of the algorithms, where each average rank Rj is given by

Rj =
1
N

∑
j

rj
i j = 1, . . . , k . (1)

Under the null hypothesis, the Friedman statistic has distribution χ2
F with

k − 1 degrees of freedom (Eq. 2) when comparing four or more classifiers on ten
or more datasets.

χ2
F =

12N

k(k + 1)

⎡⎣∑
j

R2
j − k(k + 1)2

4

⎤⎦ . (2)
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Friedman statistic has been criticised as being too conservative, so we actually
use the improvement proposed by Iman and Davenport [10]. This statistic (Eq. 3)
is distributed according to an F distribution with k−1 and (k−1)(N−1) degrees
of freedom. We will accept the null hypothesis with critical values p < 0.05 with
a confidence of 95%, as this is the most frequent value found in the literature.

FF =
(N − 1)χ2

F

N(k − 1) − χ2
F

. (3)

It must be noted that the Friedman test reports only whether there is a
significant difference between all algorithms, but it does not tell which algorithm
is better than the others. To do that, post hoc tests such as critical distance over
the average ranks should be applied. If we want all classifiers to be compared
with each other, then the Nemenyi test can sort the algorithms. If we want a
control classifier to be compared to the others, the Bonferroni-Dunn test can be
used [11].

To apply the analysis described above we first have to build a ranking of
the algorithms studied according to their performance in different classification
tasks. For this we need a way to measure the performance of each algorithm and
several —at least ten— datasets to test them.

3.2 Datasets

We chose 12 UCI repository datasets for training and testing every algorithm.
Table 1 shows the selected datasets as well as some of their main features: number
of instances, number of attributes and number of classes. Instances containing
missing values were filtered out from each dataset before splitting it into training
and test datasets.

Table 1. UCI datasets selected for the experiments and their main features

Dataset Number of Number of Number of
Name instances attributes classes

Lung Cancer 32 56 3
Musk 476 168 2
Sonar 208 60 2
Breast Cancer (Prognostic) 198 34 2
SPECTF Heart 267 44 2
Wine 178 13 3
Breast Cancer (Diagnostic) 569 32 2
Glass 214 10 6
New Thyroid 215 5 3
Iris 150 4 3
Ecoli 336 8 8
Credit Approval 690 14 2
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3.3 Efficiency Measure

Efficiency here has nothing to do with the computational complexity, but is a
descriptive measure of how well the classification process was performed by a
particular algorithm. There are several efficiency measures, but many of them are
designed for measuring the efficiency of binary classification (two class datasets).
Since we use some datasets with more than two classes, such measures are not
suitable. We have chosen the Cohen’s Kappa statistic [12] —just kappa in what
follows— because it measures the agreement of the class distribution over the
instances, and not only the percentage of correct classified instances [13].

3.4 Experimental Design

The experiments in this work follow the 5x2 cross validation setting proposed
in [14]. In this scheme each dataset is randomly split into two sets: one is used
for training and the other for testing. Both sets contain approximately half of
the data and keep the original class proportion. This process is repeated five
times —each one is a fold— generating five pairs of training and test data.

In each fold, we register the performance of a learning algorithm on the test
data —trained with the corresponding training data— as a confusion matrix.
When the five folds are completed, a global confusion matrix for the algorithm
is obtained by summing the individual matrices. With this global matrix we
compute the kappa value for the algorithm in the task. Figure 1 shows this
general experimental design.

With the kappa values collected for each algorithm, we build a ranking of the
different approaches for that classification task. Repeating this procedure for
each dataset in Table 1 (classification tasks), we are able to calculate an average
ranking for each algorithm. Then we used the Friedman and Iman-Davenport
statistics on these averages to determine whether the differences in performance
are statistically significant or not.

Fig. 1. 5x2 cross validation scheme for our experiments
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For the clustering approach, it was necessary to apply a gain ratio filter on
the original datasets, because —unlike the other three algorithms studied— this
approach cannot discriminate irrelevant attributes during training.

4 Results

Table 2 shows the kappa values obtained by each algorithm for each dataset. In
each case the parameters of the algorithms were individually tuned to obtain
optimal results. With these efficiency measures, we can rank the algorithms for
each classification tasks, as shown in Table 3.

Table 2. Performance of each algorithm for each dataset in Table 1

Dataset Ripper C4.5 2Slave Clustering

Lung Cancer 0.315 0.423 0.263 0.306
Musk 0.441 0.532 0.515 0.755
Sonar 0.453 0.435 0.454 0.462
Breast Cancer (Prognostic) 0.320 0.271 0.043 0.235
SPECTF Heart 0.240 0.267 0.112 0.519
Wine 0.841 0.872 0.966 0.863
Breast Cancer (Diagnostic) 0.870 0.865 0.859 0.744
Glass 0.474 0.466 0.512 0.000
New Thyroid 0.847 0.819 0.806 0.447
Iris 0.864 0.888 0.936 0.931
Ecoli 0.726 0.722 0.733 0.106
Credit Approval 0.703 0.726 0.422 0.000

In this case the number of algorithms is k = 4 and the number of datasets is
N = 12, so the Friedman statistic is calculated as follows:

χ2
F =

12 · 12
4 · (4 + 1)

[
2.4172 + 2.2502 + 2.5002 + 2.8332 + −4 · (4 + 1)2

4

]
= 1.3 .

(4)
Considering the Iman-Davenport modification, the statistic takes the value:

FF =
(12 − 1) · 1.3

12 · (4 − 1) − 1.3
= 0.412 . (5)

Using the F distribution tables, we determined that the value in Eq. 5 yields a
p-value p = 0.75. Therefore, the null hypothesis is accepted and we can conclude
that there is no statistically significant difference between the crisp and fuzzy
classifiers studied.
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Table 3. Ranking of algorithms. Each row shows the relative ranking of the different
approaches for the given classification task.

Dataset Ripper C4.5 2Slave Clustering

Lung Cancer 2 1 4 3
Musk 4 2 3 1
Sonar 3 4 2 1
Breast Cancer (Prognostic) 1 2 4 3
SPECTF Heart 3 2 4 1
Wine 4 2 1 3
Breast Cancer (Diagnostic) 1 2 3 4
Glass 2 3 1 4
New Thyroid 1 2 3 4
Iris 4 3 1 2
Ecoli 2 3 1 4
Credit Approval 2 1 3 4

Avarage rank (Rj) 2.417 2.250 2.500 2.833

5 Related Work

A theoretical and empirical study of the current practice for comparing two
or more learning algorithms on multiple data sets is presented in [11], where
several recommendations are made to conduct this kind of comparison which
are tested experimentally with a set of (crisp) C4.5 classifiers. We have followed
these recommendations in the work presented here, particularly the use of the
Friedman test.

In [14], the benefit of using non-parametric tests for comparing (crisp) evolu-
tionary-based machine learning algorithms is confirmed. This piece of work also
suggests the use of the Friedman and Iman-Davenport tests as well as measuring
the performance of the approaches in term of kappa. Their guidelines are closely
followed in this paper.

6 Conclusions and Future Work

In this work we raise the question of whether there really exists a difference be-
tween rule-based crisp and fuzzy classifiers. Although there seems to be common
agreement that the crisp and fuzzy approaches are not different for classifica-
tion, we could not find a statistical demonstration of that. We have developed a
valid scheme for a statistical study using 12 UCI repository datasets and a non-
parametric test for comparing two crisp and two fuzzy rule learning algorithms.
The results obtained confirm that the difference between both paradigms is not
statistically significant.

Current work has focused on studying rule-based learning algorithms. Future
work should aim at incorporating other approaches for generating crisp and
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fuzzy classifiers, such as probabilistic models or support vector machine, that
are popular in the pattern recognition community.

It would also be interesting to look for characteristics in the datasets that
might link the performance of a paradigm to the features or the nature of the
datasets. This could be particularly interesting for fuzzy classifiers, since they
simulate linguistic labels that are often associated with the problem’s nature.
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Abstract. Model predictive control (MPC) algorithms are widely used
in practical applications. They are usually formulated as optimization
problems. If the model used for prediction is linear (or linearized on–line)
then the optimization problem is standard, quadratic one. Otherwise, it
is a nonlinear, in general, non–convex optimization problem. In the lat-
ter case the numerical problems may occur and time needed to calculate
the control signals cannot be determined. Therefore approaches based
on linear or linearized models are preferred in practical applications. In
the paper a new algorithm is proposed, with prediction which employs
heuristic fuzzy modeling. The algorithm is formulated as quadratic op-
timization problem but offers performance very close to that of MPC
algorithm with nonlinear optimization. The efficiency of the proposed
algorithm is demonstrated in the control system of the nonlinear control
plant with inverse response – a chemical CSTR reactor.

Keywords: fuzzy control, fuzzy systems, predictive control, nonlinear
control.

1 Introduction

The MPC algorithms offer a few advantages resulting from the way they are for-
mulated. Therefore they can be successfully used in control systems of processes
with difficult dynamics, constraints and for MIMO processes, see e.g. [3,7,11,13].
It is because during generation of the control signals a model of the control plant
is used to predict behavior of the control system.

Standard formulations of the MPC algorithms are based on linear control
plant models. However, operation of the control system of a nonlinear control
plant may be usually improved using the MPC algorithm based on a nonlinear
model. It is especially important if the MPC algorithm should operate for differ-
ent operating points as in control system structures with steady–state set–point
optimization, see e.g. [2,8,13].

If a nonlinear process model is used for prediction then the optimization prob-
lem solved at each iteration by the algorithm may be in general non–convex, non-
linear optimization problem – hard to solve and with unpredictable time needed
to find the solution. Therefore, in practice, usually on–line linearization at each
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algorithm iteration is used [9,13]. The approach proposed in the paper is in fact
a hybrid one. It consists in using two models in the algorithm: a nonlinear model
and its, easy to obtain, fuzzy approximation. Thanks to such an approach the
proposed algorithm is formulated as the standard quadratic programming prob-
lem (as in the algorithm based on a linear process model) but it offers almost
the same performance as the algorithm with nonlinear optimization.

The next section contains description of MPC algorithms. In Sect. 3 the pro-
posed approach based on fuzzy and nonlinear models is proposed. Example
results illustrating efficacy of the proposed approach are presented in Sect. 4.
The paper is summarized in the last section.

2 Model Predictive Control Algorithms

The Model Predictive Control (MPC) algorithms derive future values of manip-
ulated variables predicting future behavior of the control plant many sampling
instants ahead. The values of manipulated variables are calculated in such a
way that the prediction fulfills assumed criteria. Usually, the minimization of a
performance function is demanded subject to the constraints put on values of
manipulated and output variables [3,7,11,13]:

min
Δu

⎧⎨⎩JMPC =
ny∑
j=1

p∑
i=1

κj

(
yj

k − yj
k+j|k

)2
+

nu∑
m=1

s−1∑
i=0

λm

(
Δum

k+i|k
)2

⎫⎬⎭ (1)

subject to:
Δumin ≤ Δu ≤ Δumax , (2)

umin ≤ u ≤ umax , (3)

ymin ≤ y ≤ ymax , (4)

where yj
k is a set–point value for the jth output, yj

k+j|k is a value of the jth output
for the (k + i)th sampling instant predicted at the kth sampling instant using a
control plant model, Δum

k+i|k are future changes in manipulated variables, κj ≥ 0
and λm ≥ 0 are weighting coefficients for the predicted control errors of the jth

output and for the changes of the mth manipulated variable, respectively; p and
s denote prediction and control horizons, respectively; ny, nu denote number of
output and manipulated variables, respectively;

y =
[
y1, . . . , yny

]T
, yj =

[
yj

k+1|k, . . . , yj
k+p|k

]
, (5)

Δu =
[
Δu1, . . . , Δunu

]T
, Δum =

[
Δum

k+1|k, . . . , Δum
k+s−1|k

]
, (6)

u =
[
u1, . . . , unu

]T
, um =

[
um

k+1|k, . . . , um
k+s−1|k

]
, (7)
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Δumin, Δumax, umin, umax, ymin, ymax are vectors of lower and upper bounds
of changes and values of the control signals and of the values of output variables,
respectively. As a solution to the optimization problem (1–4) the optimal vector
of changes in the manipulated variables is obtained. From this vector, the Δum

k|k
elements are applied in the control system and the algorithm passes to the next
iteration.

The way the predicted values of output variables yj
k+j|k are derived depends

on the dynamic control plant model the predictive algorithm is based on. If it
is a nonlinear process model then the optimization problem (1–4) is, in general,
non–convex nonlinear optimization problem, examples of such algorithms are
described e.g. in [1,5,6]. In such an algorithm, different kinds of process models
can be used but they are exploited in similar way, therefore an algorithm of this
kind will be later referred to, in general, as Nonlinear MPC (NMPC).

2.1 MPC Algorithms Based on Linear Models

If the linear model is used for prediction then the optimization problem (1–4) is
a standard quadratic programming problem [3,7,11,13]. It is because the vector
of predicted output values y, after application of the superposition principle, can
be described by the following formula:

y = ỹ + A · Δu , (8)

ỹ =
[
ỹ1, . . . , ỹny

]T

, ỹj =
[
ỹj

k+1|k, . . . , ỹj
k+p|k

]
, (9)

where ỹ is called a free response of the plant. It is because it contains future
values of output variables calculated assuming that the control signal does not
change in the prediction horizon, i.e. describes influence of the values of manip-
ulated variables from the past. Form of the free response depends on the model
used for prediction;

A =

⎡⎢⎢⎢⎣
A11 A12 . . . A1nu

A21 A22 . . . A2nu

...
...

. . .
...

Any1 Any2 . . . Anynu

⎤⎥⎥⎥⎦ , Ajm =

⎡⎢⎢⎢⎣
aj,m
1 0 . . . 0 0

aj,m
2 aj,m

1 . . . 0 0
...

...
. . .

...
...

aj,m
p aj,m

p−1 . . . aj,m
p−s+2 aj,m

p−s+1

⎤⎥⎥⎥⎦ (10)

is a matrix, called the dynamic matrix, composed of the control plant step
response coefficients aj,m

i describing influence of the mth input on the jth output.
It can be shown that the dynamic matrix has the same form in different types
of MPC algorithms (using different types of linear models) [13].

Let us introduce the following vectors:

y =
[
y1, . . . , yny

]T
, yj =

[
yj

k, . . . , yj
k

]
, (11)

where yj are vectors of length p.
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The performance function from (1) rewritten in the matrix–vector form is
then as follows:

JMPC = (y − y)T · K · (y − y) + ΔuT · Λ · Δu , (12)

where K =
[
K1, . . . , Kny

] · I; Ki = [κi, . . . , κi] have p elements,
Λ = [Λ1, . . . , Λnu ] · I; Λi = [λi, . . . , λi] have s elements.

After applying the prediction (8) the performance function (12) can be trans-
formed to:

JLMPC = (y − ỹ − A · Δu)T · K · (y − ỹ − A · Δu) + ΔuT · Λ · Δu . (13)

The performance function (13) depends quadratically on decision variables Δu
and after using prediction (8) in the constraints (3) all constraints depend lin-
early on decision variables. Thus, one obtains a standard linear–quadratic opti-
mization problem which is easy to solve by means of standard numerical routines.

3 MPC Algorithm Based on Fuzzy and Nonlinear Models

Application of the MPC algorithm based on the linear model (LMPC) to a
nonlinear process may result in unsatisfactory control performance, especially
if operation in different operating points is demanded. Therefore, the following
fuzzy MPC (FMPC) algorithm being a combination of the LMPC and NMPC
algorithms is proposed. Two models are used in this algorithm. The original,
nonlinear one is used to calculate the free response, whereas the fuzzy one, being
a set of a few step responses, is used to calculate the dynamic matrix, updated
at each algorithm iteration. The proposed FMPC algorithm will be described
now.

Let us suppose that we have the nonlinear process model (it can be practically
any type of model usable in the NMPC algorithm):

ŷk+1|k = f(yk, yk−1, . . . , yk−na
, uk−1, uk−2, . . . , uk−nb

) , (14)

where yk−i =
[
y1

k−i, . . . , y
ny

k−i

]T
is the vector of measured values of output

variables at the (k − i)th sampling instant, uk−i =
[
u1

k−i, . . . , u
nu

k−i

]T
is the

vector of values of manipulated variables at the (k − i)th sampling instant;
let us also denote outputs of the model at the (k + i)th sampling instant as
ŷk+i|k =

[
ŷ1

k+i|k, . . . , ŷ
ny

k+i|k
]
, na, nb determine, how long the history of signals

used by the model is.
The model (14) is then employed to obtain the free response, for the whole

prediction horizon, in an iterative way, i.e.:

– First, the process model is used to obtain ŷk+1|k (formula (14)).
– Then the values ŷk+1|k are used, as the output values for the (k + 1)st sam-

pling instant, to obtain output values ŷk+2|k, for the next sampling instant.
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Moreover, the assumption that control signal does not change (the free re-
sponse is calculated) is utilized:

ŷk+2|k = f(ŷk+1|k, yk, . . . , yk−na+1, uk−1, uk−1, . . . , uk−nb+1) ; (15)

– Thus, in general, in the ith iteration, using the values ŷk+1|k, . . . , ŷk+i−1|k
and assuming that the control signal does not change, one obtains:

ŷk+i|k = f (ŷk+i−1|k, ŷk+i−2|k, . . . , yk−na+i−1, uk−1, uk−1, . . . , uk−nb+i−1) .
(16)

– Then the free response is calculated taking into consideration the estimated
disturbances (containing also influence of modeling errors). Thus, the final
formula describing the elements of the free response is as follows:

ỹk+i|k = ŷk+i|k + dk , (17)

where ỹk+i|k =
[
ỹ1

k+i|k, . . . , ỹ
ny

k+i|k
]

and dk is the DMC–type disturbance
model, i.e. it is assumed that it is the same for all instants in the prediction
horizon and

dk = yk − ŷk|k−1 . (18)

After calculating the free response in the way described above, the dynamic
matrix, needed to predict the influence of the future control changes (generated
by the algorithm) is derived using an easy to obtain Takagi–Sugeno fuzzy model.
The fuzzy model has local models in the form of step responses. Therefore, its
design process is very simple. It is sufficient to collect a few sets of step responses
(around a few operating points). Then, using expert knowledge, the premises
can be formulated and, subsequently, they can be tuned using, e.g. fuzzy neural
network. The fuzzy model is composed of the following rules:

Rule f : (19)

if y
jy

k is B
f,jy

1 and . . . and y
jy

k−n+1 is Bf,jy
n and

uju

k is Cf,ju

1 and . . . and uju

k−m+1 is Cf,ju
m

then ŷj,f
k =

nu∑
m=1

pd−1∑
n=1

aj,m,f
n · Δum

k−n + aj,m,f
pd

· um
k−pd

,

where y
jy

k is the jy
th output variable value at the kth sampling instant, uju

k is
the ju

th manipulated variable value at the kth sampling instant, B
f,jy

1 , . . . , B
f,jy
n ,

Cf,ju

1 , . . . , Cf,ju
m are fuzzy sets, aj,m,f

n are the coefficients of step responses in the
f th local model, jy = 1, . . . , ny, ju = 1, . . . , nu, f = 1, . . . , l, l is number of rules.

The output value of the fuzzy model (19) is calculated at each iteration using
the following formula:

ŷj
k =

nu∑
m=1

pd−1∑
n=1

ãj,m
n · Δum

k−n + ãj,m
pd

· um
k−pd

, (20)
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where ãj,m
n =

∑l
f=1 w̃f · aj,m,f

n , w̃f are the normalized weights calculated using
fuzzy reasoning, see e.g. [10,12].

The model (20) may be interpreted as the step response describing behavior
of the control plant near the current operating point. This model may be used to
obtain the dynamic matrix the same way as in the LMPC algorithm, i.e. at each
sampling instant of the FMPC algorithm a new dynamic matrix is generated:

Ak =

⎡⎢⎢⎢⎣
A11

k A12
k . . . A1nu

k

A21
k A22

k . . . A2nu

k
...

...
. . .

...
A

ny1
k A

ny2
k . . . A

nynu

k

⎤⎥⎥⎥⎦ , Ajm
k =

⎡⎢⎢⎢⎣
ãj,m
1 0 . . . 0 0

ãj,m
2 ãj,m

1 . . . 0 0
...

...
. . .

...
...

ãj,m
p ãj,m

p−1 . . . ãj,m
p−s+2 ãj,m

p−s+1

⎤⎥⎥⎥⎦ .

(21)
Then, the free response (17) and the dynamic matrix (21) are used to obtain

the prediction:
y = ỹ + Ak · Δu . (22)

Summing up, at each iteration of the FDMC algorithm, the following actions
are done:

1. The nonlinear control plant model is used to generate free response of the
control plant (17).

2. A linear model, for current sampling instant, is derived using current values
of process variables, the TS fuzzy model (19) and fuzzy reasoning.

3. The obtained step response coefficients are used to generate the dynamic
matrix.

4. The free response and the dynamic matrix are used to formulate the
quadratic optimization problem in which the following performance func-
tion is used:

JFMPC = (y− ỹ−Ak ·Δu)T ·K · (y− ỹ−Ak ·Δu)+ΔuT ·Λ ·Δu . (23)

5. The optimization problem is solved and, using the obtained solution, control
signals are generated. Then the controller passes to the next iteration.

The approach described above is an approximate one, however, as it will be
demonstrated using an example control system, it gives results comparable to
those obtained with the NMPC algorithm. At the same time, it usually gives
better results than the standard LMPC algorithm (based on a linear model). The
proposed algorithm may be used not only as the stand–alone algorithm but also
in control systems with NMPC algorithms, to improve their numerical properties.
It is because it can be employed to generate the starting control trajectory for
a nonlinear optimization routine. If this routine is able to improve the initial
trajectory in the presumed time (during one sampling instant) then the newly
derived control action can be applied to the process. Otherwise, the control signal
generated by the FMPC algorithm can be used (it offers performance very close
to the optimal one, anyway).
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4 Simulation Experiments

4.1 Control Plant

The control plant under consideration is an isothermal CSTR in which a van
de Vusse reaction carries out (Fig. 1a) [4]. Steady–state characteristics of the
control plant are shown in Fig. 1b.

Fig. 1. Isothermal CSTR with van de Vusse reaction a) diagram of the control plant;
b) steady–state characteristics

The process model of the reactor contains two composition balance equations

dCA
dt = −k1 · CA − k3 · C2

A + F
V (CAf − CA) ,

dCB
dt = k1 · CA − k2 · CB − F

V CB ,
(24)

where CA, CB are the concentrations of components A and B, respectively, F is
the inlet flow rate (equal to the outlet flow rate), V is the volume in which the re-
action takes place (it is assumed constant and V = 1 l), CAf is the concentration
of component A in the inlet flow stream (it is assumed that CAf = 10 mol/l).
The values of parameters are: k1 = 50 1/h, k2 = 100 1/h, k3 = 10 l/(h · mol).

The output variable is the concentration CB of substance B, the manipulated
variable is the inlet flow rate F of the raw substance, CAf concentration is the
disturbance variable.

4.2 Experiments

For the considered control plant three MPC algorithms were designed: an NMPC
one (with nonlinear optimization), an LMPC one (with a linear model) and an
FMPC one (proposed in the paper, exploiting a fuzzy model). The sampling
period was assumed equal to Ts = 3.6 s; tuning parameters of all three algorithms
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were as follows: prediction horizon p = 70, control horizon s = 35, weighting
coefficient λ = 0.001. The fuzzy model used in the FMPC algorithm is composed
of step responses taken in environs of the following operating points:

P1) CB0 = 0.91 mol/l, CA0 = 2.18 mol/l, F = 20 l/h;
P2) CB0 = 1.12 mol/l, CA0 = 3 mol/l, F = 34.3 l/h;
P3) CB0 = 1.22 mol/l, CA0 = 3.66 mol/l, F = 50 l/h.

The model used for derivation of the dynamic matrix is thus composed of three
rules. The membership functions, assumed after analysis of the steady–state
characteristics of the control plant, are shown in Fig. 2.

Fig. 2. Membership functions of the fuzzy model used in the FDMC controller

During the experiments operation of control systems with NMPC, LMPC
and FMPC algorithms was compared. The responses obtained after the change
of set–point value to CB = 1.02 are shown in Fig. 3. The responses obtained in
the control system with FMPC algorithm (solid lines in Fig. 3) are very close to
that obtained in the NMPC algorithm with full nonlinear optimization (dashed
lines in Fig. 3). In both cases there is practically no overshoot. However, the
FDMC algorithm is based on the reliable quadratic programming routine. Both
algorithms outperform the standard LMPC algorithm (dotted lines in Fig. 3).
In the latter case there is significant overshoot and control time is longer than
in the case of NMPC and FMPC algorithms.

There was also made an experiment with disturbance change by 10% from
CAf0 = 10 mol/l to CAf1 = 11 mol/l (Fig. 4). The disturbance changed at the
6th minute of simulation. The responses obtained in control systems with NMPC
and FMPC algorithms are almost the same, the output variable does not de-
crease below the set–point value. In the case of control system with LMPC
algorithm the model inaccuracy results in more aggressive control action than in
the previous cases. Ranges of values achieved by both: manipulated and output
variables are wider than in the case of NMPC and FMPC algorithms.

5 Summary

The numerically efficient FDMC algorithm was proposed in the paper. It uses
the nonlinear model to derive the free response of the control plant and the
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Fig. 3. Responses of the control systems to the change of the set–point value to
CB = 1.02; NMPC – dashed lines, LMPC – dotted lines and FMPC – solid lines

Fig. 4. Responses of the control systems to the change of the disturbance by 10% to
CAf1 = 11 mol/l ; NMPC – dashed lines, LMPC – dotted lines and FMPC – solid lines

approximate, easy to obtain, fuzzy model to calculate the influence of future
control action. Thanks to such an approach the algorithm offers control perfor-
mance very close to that offered by the algorithm with nonlinear optimization.
The FDMC algorithm, however, is formulated as the quadratic optimization
problem. Thus, time needed for calculation of the control signals can be foreseen
which is an important feature in control systems with determined sampling pe-
riod. The FDMC algorithm can be used either as the stand–alone algorithm or
in the control systems with NMPC algorithms, to improve numerical properties
of the latter ones.
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David Štefka and Martin Holeňa
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Abstract. Classifier combining is a popular method for improving qual-
ity of classification – instead of using one classifier, several classifiers are
organized into a classifier system and their results are aggregated into a
final prediction. However, most of the commonly used aggregation meth-
ods are static, i.e., they do not adapt to the currently classified pattern.
In this paper, we provide a general framework for dynamic classifier sys-
tems, which use dynamic confidence measures to adapt to a particular
pattern. Our experiments with random forests on 5 artificial and 11 real-
world benchmark datasets show that dynamic classifier systems can sig-
nificantly outperform both confidence-free and static classifier systems.

Keywords: classifier combining, dynamic classifier aggregation, random
forests, classification.

1 Introduction

Classification is a process of dividing objects (called patterns) into disjoint sets
called classes [1]. One comonly used technique for improving classification quality
is classifier combining [2] – instead of using just one classifier, a team of classifiers
is created and trained; each classifier in the team predicts independently, and
the classifier outputs are aggregated into a final prediction. It can be shown that
such a team of classifiers can perform better than any of the individual classifiers.

A common drawback of classifier aggregation methods is that they are static,
i.e., they are not adapted to the particular pattern submitted for classification.
However, if we use the concept of dynamic classification confidence (i.e., the
extent to which we can “trust” the output of a particular classifier for the cur-
rently classified pattern), the aggregation algorithms can take into account the
fact that “this classifier is/is not good for this particular pattern”.

There has already been some research done in the field of dynamic classifier
aggregation [3,4,5,6,7,8]. It is although common that the concept of dynamic

� The research presented in this paper was partially supported by the Program “In-
formation Society” under project 1ET100300517 (D. Štefka) and by the grant No.
201/08/0802 of the Grant Agency of the Czech Republic and by the Institutional
Research Plan AV0Z10300504 (M. Holeňa).

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 458–468, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Dynamic Classifier Systems and Their Applications to RF Ensembles 459

classification confidence is tightly bound with the aggregation method or with the
particular classifier type used. However, the way a classifier classifies a pattern,
the way we measure confidence of a classifier, and the way we aggregate a team
of classifiers are independent on each other.

The goal of this paper is to provide a general framework of dynamic classifier
systems based on three independent aspects – the classifiers in the team, the
measures of confidence of the individual classifiers, and the aggregation strat-
egy. The confidence measures and the aggregation strategy will give us three
important classes of classifier systems – confidence-free (i.e., systems that do
not utilize classification confidence at all), static (i.e., systems that use only
“global” confidence of a classifier), and dynamic (i.e., systems that adapt to
the particular pattern submitted for classification). We will then compare per-
formance of these classifier systems on several benchmark datasets – for this
purpose, we have chosen random forest [9] classifier systems.

The paper is structured as follows. Section 2 provides theoretical description
of a framework for dynamic classifier systems, including formalism of classifica-
tion (Sec. 2.1), classification confidence (Sec. 2.2), classifier teams (Sec 2.3) and
classifier systems (Sec. 2.4). Section 3 describes random forests and Section 4
contains results of our experiments with random forests on several benchmark
datasets. Section 5 then concludes the paper.

2 Dynamic Classifier Systems

2.1 Classification

Throughout the rest of the paper, we use the following notation. Let X ⊆ IRn be
a n-dimensional feature space, an element x ∈ X of this space is called a pattern,
and let C1, . . . , CN ⊆ X , N ≥ 2, be disjoint sets called classes. The index of the
class a pattern x belongs to will be denoted as c(x) (i.e., c(x) = i iff x ∈ Ci).
Let [0, 1] denote the unit interval. The goal of classification is to determine to
which class a given pattern belongs, i.e., to predict c(x) for unknown patterns.

Definition 1. We call a classifier every mapping φ : X → [0, 1]N , where φ(x) =
(μ1(x), . . . , μN (x)) are degrees of classification (d.o.c.) to each class.

The d.o.c. to class Cj expresses the extent to which the pattern belongs to class
Cj (if μi(x) > μj(x), it means that the pattern x belongs to class Ci rather
than to Cj). Depending on the classifier type, it can be modelled by probability,
fuzzy membership, etc.

Remark 1. This definition is of course not the only way how a classifier can be
defined, but in the theory of classifier combining, this one is used most often [2].

Definition 2. Classifier φ is called crisp, iff ∀x ∈ X ∃i, such that:

μi(x) = 1, and ∀j �= i μj(x) = 0, where φ(x) = (μ1(x), . . . , μN (x)).

Definition 3. Let φ be a classifier, x ∈ X , φ(x) = (μ1(x), . . . , μN (x)). Crisp
output of φ on x is defined as φcr(x) = arg maxi=1,...,N μi(x).
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2.2 Classification Confidence

Classification confidence expresses the degree of trust we can give to a classifier
φ when classifying a pattern x. It is modelled by a mapping κφ.

Definition 4. Let φ be a classifier. We call a confidence measure of classifier
φ every mapping κφ : X → [0, 1]. Let x ∈ X . κφ(x) is called classification
confidence of φ on x.

The higher the confidence, the higher the probability of correct classification.
κφ(x) = 0 means that the classification may not be correct, while κφ(x) = 1
means the classification is probably correct. However, κφ does not need to be
modelled by a probability measure.

A confidence measure can be either static, i.e., it is a constant of the classifier,
or dynamic, i.e., it adjusts itself to the currently classified pattern.

Definition 5. Let φ be a classifier and κφ its confidence measure. We call κφ

static, iff it is constant in x, we call κφ dynamic otherwise.

Remark 2. Since static confidence measures are constant, independent on the
currently classified pattern, we will omit the pattern x in the notation, i.e., we
will denote them just κφ.

Remark 3. In the rest of the paper, we will use the indicator operator I, defined
as I(true) = 1, I(false) = 0.

Static (global) confidence measures. After the classifier has been trained,
we can use a validation set (i.e., a set of patterns the classifier has not been
trained on; we could also use training patterns, but in that case, the results
would be biased) to assess its predictive power as a whole (from a global view).
These methods include accuracy, precision, sensitivity, resemblance, etc. [1,10],
and we can use these measures as static confidence measures. In this paper, we
will use the Global Accuracy measure.

Global Accuracy (GA) of a classifier φ is defined as the proportion of
correctly classified patterns from the validation set:

κ
(GA)
φ =

∑
y∈M I(φcr(y) ?= c(y))

|M| , (1)

where M is the validation set of φ and φcr(y) is the crisp output of φ on y.

Dynamic (local) confidence measures. An easy way how a dynamic confi-
dence measure can be defined is to compute some property on patterns neigh-
boring x. Let N(x) denote a set of neighboring patterns from the validation
set. In this paper, we define N(x) as the set of k patterns nearest to x under
Euclidean metric. Now we will define two dynamic confidence measures which
use N(x):
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Euclidean Local Accuracy (ELA), used in [5], measures the local accuracy
of φ in N(x):

κ
(ELA)
φ (x) =

∑
y∈N(x) I(φcr(y) ?= c(y))

|N(x)| , (2)

where φcr(y) is the crisp output of φ on y.
Euclidean Local Match (ELM), based on the ideas from [6], measures the

proportion of patterns in N(x) from the same class as φ is predicting for x:

κ
(ELM)
φ (x) =

∑
y∈N(x) I(φcr(x) ?= c(y))

|N(x)| , (3)

where φcr(x) is the crisp output of φ on x. The difference between 2 and 3
is that in the latter case, there is φcr(x) instead of φcr(y) in the indicator.

Remark 4. The dynamic confidence measures defined in this section have one
drawback – they need to compute neighboring patterns of x, which can be time-
consuming, and sensitive to the similarity measure used. There are also dynamic
confidence measures, which compute the classification confidence directly from
the degrees of classification [7,8]. However, our preliminary experiments with
such measures show that they give very poor results.

2.3 Classifier Teams

In classifier combining, instead of using just one classifier, a team of classifiers is
created, and the team is then aggregated into one final classifier. If we want to
utilize classification confidence in the aggregation process, each classifier must
have its own confidence measure defined.

Definition 6. Let r ∈ IN, r ≥ 2. Classifier team is a tuple (T ,K), where
T = (φ1, . . . , φr) is a set of classifiers, and K = (κφ1 , . . . , κφr) is a set of corre-
sponding confidence measures.

If a classifier team consists only of classifiers of the same type, which differ only
in their parameters, dimensionality, or training sets, the team is usually called
an ensemble of classifiers. The restriction to classifiers of the same type is not
essential, but it ensures that the outputs of the classifiers are consistent. Well-
known methods for ensemble creation are bagging [11], boosting [12], random
forests [9], or error correction codes [2].

If a pattern is submitted for classification, the team of classifiers gives us
information of two kinds – outputs of the individual classifiers (a decision profile),
and values of classification confidence of the classifiers (a confidence vector).
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Definition 7. Let (T = (φ1, . . . , φr),K = (κφ1 , . . . , κφr)) be a classifier team,
and let x ∈ X . Then we define decision profile T (x) ∈ [0, 1]r×N and confidence
vector K(x) ∈ [0, 1]r as

T (x) =

⎛⎜⎜⎜⎝
φ1(x)
φ2(x)

...
φr(x)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
μ1,1(x) μ1,2(x) . . . μ1,N (x)
μ2,1(x) μ2,2(x) . . . μ2,N (x)

. . .
μr,1(x) μr,2(x) . . . μr,N (x)

⎞⎟⎟⎟⎠ , K(x) =

⎛⎜⎜⎜⎝
κφ1(x)
κφ2(x)

...
κφr (x)

⎞⎟⎟⎟⎠ (4)

2.4 Classifier Systems

After the pattern x has been classified by all the classifiers in the team, and
the confidences have been computed, these outputs have to be aggregated using
a team aggregator, which takes the decision profile as its first argument, the
confidence vector as its second argument, and returns the aggregated degrees of
classification to all the classes.

Definition 8. Let r, N ∈ IN, r, N ≥ 2. A team aggregator of dimension (r, N)
is any mapping A : [0, 1]r,N × [0, 1]r → [0, 1]N .

A classifier team with an aggregator will be called a classifier system. Such
system can be also viewed as a single classifier.

Definition 9. Let (T ,K) be a classifier team, and let A be a team aggregator
of dimension (r, N), where r is the number of classifiers in the team, and N is
the number of classes. The triple S = (T ,K,A) is called a classifier system. We
define an induced classifier of S as a classifier Φ, defined as

Φ(x) = A(T (x),K(x)).

Depending on the way how a classifier system utilizes the classification confi-
dence, we can distinguish several kinds of classifier systems.

Definition 10. Let (T ,K) be a classifier team. (T ,K) is called static, iff ∀κ ∈
K : κ is a static confidence measure. (T ,K) is called dynamic, iff ∃κ ∈ K :
κ is a dynamic confidence measure.

Definition 11. Let A be a team aggregator of dimension (r, N). We call A
confidence-free, iff it is constant in the second argument.

Definition 12. Let S = (T ,K,A) be a classifier system. We call S confidence-
free, iff A is confidence-free. We call S static, iff (T ,K) is static, and A is
not confidence-free. We call S dynamic, iff (T ,K) is dynamic, and A is not
confidence-free.

Confidence-free systems do not utilize the classification confidence at all. Static
systems utilize classification confidence, but only as a global property (constant
for all patterns). Dynamic systems utilize classification confidence in a dynamic
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Fig. 1. Schematic comparison of confidence-free, static, and dynamic classifier systems

way, i.e. the aggregation is adapted to the particular pattern submitted for clas-
sification. The different approaches are shown in Fig. 1.

Many methods for aggregating a team of classifiers into one final classifier have
been proposed in the literature. These methods comprise simple arithmetic rules
(voting, sum, product, etc.), fuzzy integral, Dempster-Shafer fusion, second-level
classifiers, decision templates, and many others [2,13].

In this paper, we want to compare confidence free, static, and dynamic clas-
sifier systems. For that purpose, we define three simple aggregation algorithms,
each representing one of the approaches. We will use the notation from Def. 7
and Def. 9. Let Φ(x) = A(T (x),K(x)) = (μ1(x), . . . , μN (x)).

Mean value aggregation (MV) is the most common (confidence-free) aggre-
gation technique. Its aggregator is defined as

μj(x) =

∑
i=1,...,r μi,j(x)

r
, j = 1, . . . , N. (5)

If the classifiers in the team are crisp, MV coincides with simple voting.
Static weighted mean aggregation (SWM) computes aggregated d.o.c. as

weighted mean of d.o.c. given by the individual classifiers, where the weights
are static classification confidences:

μj(x) =

∑
i=1,...,r κφiμi,j(x)∑

i=1,...,r κφi

, j = 1, . . . , N. (6)

Dynamic weighted mean aggregation (DWM) has the same aggregator
as SWM, but the weights are dynamic classification confidences:

μj(x) =

∑
i=1,...,r κφi(x)μi,j(x)∑

i=1,...,r κφi(x)
, j = 1, . . . , N. (7)
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3 Random Forests

Random forests (RF), introduced by Breiman [9], is a popular method for com-
bining decision trees. RF is an ensemble of decision trees, which are created by
bagging [11], i.e., each tree is trained on a random sample of training patterns
of the same size as the training set, drawn uniformly with replacement. The in-
dividual decision trees in the ensemble are usually unpruned CART trees, with
one difference – when growing the tree, not all the features of the patterns are
used in each node. Only s randomly chosen features out of n possible features
are examined. These two different sources of randomness make RF a successfull
method for ensemble creation.

RFs are usually used as crisp classifiers, and therefore the most popular way to
aggregate the individual trees is simple voting. However, for classifier combining,
non-crisp outputs give us more information, and so we define non-crisp RF as
follows. During training, the growing of the tree (splitting of the current node) is
stopped if there are less than t training patterns in the node, and a leaf is made
from the node. If a pattern x is classified by such leaf, its degrees of classification
to each class are defined as the ratio of number of training patterns from that
class to the number of all training patterns in the leaf.

The three confidence measures described in Sec. 2.2 are model-indifferent, i.e.,
they could be used for any classifier. However, for RF, model-specific confidence
measures can be defined. Robnik-Šikonja [3] and Tsymbal et al. [4] use the set
of k neighbors of x under so-called Random Forest Similarity Measure (RFSM)
(we will denote the set as RF (x)) to compute the average value of the margin
[3,4,9] on RF (x). The margin is defined as:

mg(φ(y)) =

⎧⎪⎨⎪⎩
μc(y)(y) − max

i=1,...,N
i
=c(y)

μi(y) if φcr(y) = c(y),

0 otherwise.
, (8)

where φ(y) = (μ1(y), . . . , μN (y)), and φcr(y) is the crisp output of φ on y. The
RFSM is based on the idea that for a decision tree, patterns which are classified
by the same leaf of the tree are similar. Given two patterns, their RFSM is
defined as the number of trees in the forest in which the patterns are classified
by the same leaf. For details, we refer to [3,4,9].

Random Forest Average Margin (RFAM) confidence measure is defined
as the average value of the margin, computed on RF (x):

κ
(RFAM)
φ (x) =

∑
y∈RF (x) mg(φ(y))

|RF (x)| . (9)

4 Experiments

To compare confidence-free, static, and dynamic classifier systems with differ-
ent confidence measures, we implemented the random forest method and the
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aggregation methods described in the preceding sections (i.e., MV, SWM using
GA confidence measure, and DWM using ELA, ELM, and RFAM confidence
measures) in Java programming language and measured the error rate of the
classifier systems. We also measured performance of the so-called non-combined
(NC) classifier, which is simply a randomly chosen classifier from the ensemble,
i.e., a single random tree. The NC classifier serves only as a reference classifier,
since it does not make much sense to use it alone.

We tested the methods on 5 artificial and 11 real-world datasets from the
Elena database [14] and from the UCI repository [15]. We used 10-fold cross-
validation to measure the method performance (8 folds for training, 1 fold for
validation, 1 fold for testing set). The mean value and standard deviation of the
classifier error rate were measured. The size of the ensemble (number of trees)
was set to r = 20, the number of features to explore in each node varied between
s = 2 and s = 5 (depending on the dimensionality of the particular dataset), the
maximal size of a leaf was set to t = 10. The values of the parameters were set
based on some preliminary testing, no optimization or fine-tuning was done. All
the methods used the same values of the parameters.

A key parameter of the dynamic aggregation methods is the number of neigh-
bors k in the dynamic confidence measures. If k is small, the estimates of local
classification properties are not accurate. On the other hand, as k is increasing,
so is the computational complexity, and moreover, the values of the dynamic
confidences tend to one global value. For the datasets with small number of pat-
terns (Ecoli, Wine), we used k = 10 a priori. For the larger datasets, we set apart
10% of the data to select the best value of k ∈ {10, 20, 50}. The data which were
used to find out the best k were not used in the rest of the experiment.

The results of the testing are shown in Table 1. We also measured statistical
significance of the results (at 5% confidence level by the analysis of variance using
Tukey-Kramer method [by the ’multcomp’ function from the Matlab statistics
toolbox]).

The results on artificial datasets show that on 4 out of 5 datasets, DWM-ELM
obtains the best results. On 3 datasets, the result is a significant improvement to
MV or SWM. On the real-world datasets, DWM-ELM is the best 5 times, SWM 3
times, DWM-RFAM 2 times, and DWM-ELA once. All significant improvements
to MV or SWM are obtained by the DWM-ELM method only.

These results indicate that dynamic classifier systems can significantly outper-
form both confidence-free and static classifier systems, if the confidence measure
is chosen appropriately. ELA and RFAM usually give worse results than ELM,
but for some datasets, they are more feasible than ELM – this suggests that the
performance of the dynamic classifier system is highly influenced by the confi-
dence measure, and that the confidence measure should be chosen with respect
to the particular dataset.

The experimental results in this paper are valid for random forests only. How-
ever, our experiments with quadratic discriminant classifiers show similar re-
sults [16].
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Table 1. Mean value ± standard deviation of the classifier error rates from 10-fold
crossvalidation. The best method for each dataset is displayed in boldface. Statisti-
cally significant (at 5% level) improvements to NC, MV, SWM-GA, DWM-ELA, and
DWM-RFAM are marked by footnote signs (no significant improvement to DWM-ELM
occurred).

Non-Combined Conf.-free Static Dynamic
Artificial datasets NC MV κ SWM κ DWM
Clouds 13.6 ± 1.5 11.9 ± 1.3 GA 11.8 ± 1.1 ELA 11.9 ± 1.9

ELM 11.1± 1.8 1

RFAM 11.7 ± 1.0
Concentric 6.7 ± 2.0 2.7 ± 1.1 1 GA 3.0 ± 1.2 1 ELA 2.6 ± 0.6 1

ELM 1.9 ± 0.8 13

RFAM 2.5 ± 1.2 1

Gauss 3D 27.8 ± 2.2 23.7 ± 1.6 1 GA 23.2 ± 1.3 1 ELA 23.7 ± 2.2 1

ELM 21.3± 1.5 124

RFAM 22.8 ± 1.7
Gauss 8D 24.5 ± 1.9 14.0± 2.0 1 GA 14.6 ± 2.1 1 ELA 14.1 ± 1.5 1

ELM 16.1 ± 1.4 1

RFAM 14.1 ± 2.0 1

Waveform 26.8 ± 1.3 17.5 ± 1.4 1 GA 17.8 ± 1.8 1 ELA 17.7 ± 1.7 1

ELM 15.2± 1.8 12345

RFAM 17.8 ± 1.6 1

Non-Combined Conf.-free Static Dynamic
Real-world datasets NC MV κ SWM κ DWM
Balance 22.6 ± 4.3 16.4 ± 2.8 1 GA 14.6 ± 4.2 1 ELA 14.0 ± 5.1 1

ELM 10.7± 3.4 123

RFAM 13.1 ± 4.5 1

Breast 7.5 ± 3.9 3.6 ± 2.4 1 GA 2.9 ± 1.8 1 ELA 3.9 ± 1.6 1

ELM 3.7 ± 2.6 1

RFAM 3.1 ± 2.4 1

Ecoli 25.9 ± 6.3 20.5 ± 7.9 GA 18.8± 4.4 ELA 19.9 ± 6.0
ELM 20.3 ± 7.3
RFAM 19.8 ± 7.4

Phoneme 17.2 ± 2.3 12.8 ± 1.8 1 GA 13.1 ± 1.2 1 ELA 12.4± 1.4 1

ELM 13.2 ± 1.6 1

RFAM 13.1 ± 0.6 1

Pima 27.0 ± 5.2 27.8 ± 5.3 GA 24.6± 6.4 ELA 25.8 ± 5.6
ELM 25.5 ± 4.8
RFAM 25.6 ± 4.8

Poker 49.9 ± 2.8 46.6 ± 1.9 1 GA 46.2 ± 1.1 1 ELA 45.4 ± 1.6 1

ELM 43.8± 2.1 12

RFAM 46.1 ± 2.0 1

Satimage 16.2 ± 1.3 14.9 ± 0.9 GA 14.8 ± 1.5 ELA 14.6 ± 1.2
ELM 14.5± 1.2
RFAM 14.9 ± 1.8

Texture 15.2 ± 2.6 2.4 ± 0.5 1 GA 2.4 ± 0.9 1 ELA 1.9 ± 0.4 1

ELM 0.8 ± 0.3 123

RFAM 2.1 ± 0.6 1

Vowel 41.0 ± 5.4 12.2 ± 4.6 1 GA 14.4 ± 4.1 1 ELA 11.9 ± 2.9 1

ELM 13.0 ± 2.8 1

RFAM 11.6± 3.4 1

Wine 9.1 ± 7.5 3.1 ± 5.1 GA 3.3 ± 2.9 ELA 3.2 ± 3.7
ELM 4.3 ± 4.9
RFAM 2.1 ± 3.7 1

Yeast 53.6 ± 3.7 44.5 ± 2.7 1 GA 44.3 ± 4.2 1 ELA 40.9 ± 3.3 1

ELM 39.4± 3.7 123

RFAM 41.1 ± 3.5 1

1 Significant improvement to NC
2 Significant improvement to MV
3 Significant improvement to SWM-GA
4 Significant improvement to DWM-ELA
5 Significant improvement to DWM-RFAM
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5 Summary and Future Work

In this paper, we have introduced a general framework for dynamic classifier
combining, built on three main elements – the individual classifiers, their confi-
dence measures, and the aggregator of the system. We have defined one static
and three dynamic confidence measures which can be used in the framework,
but other confidence measures can be used as well.

In our experiments with random forests on 5 artificial and 11 real-world
benchmark datasets, we have shown that for several datasets, dynamic classifier
systems can significantly outperform both confidence-free and static classifier
systems. Furthermore, the results of the experiments suggest that the ELM dy-
namic confidence measure is more suitable for random forests than the RFAM
dynamic confidence measure used in [3,4].

In our future work, we would like to study dynamic classifier systems of
quadratic discriminant classifiers, k-NN classifiers, and support vector machines.
We would like to develop model-specific dynamic confidence measures for these
classifier types and to study dynamic classifier systems with state-of-the-art ag-
gregators, for example a fuzzy t-conorm integral [17].
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Abstract. Generalization of string languages describing shapes in order
to apply them to analyze a contour of bones in hand radiographs is pro-
posed in this paper. An algorithm to construct a fuzzy shape descriptor
is introduced. Next, basing on the fuzzy descriptor, a univocal descrip-
tion by fuzzy interference is realized. In prospects this method will be
used to erosion detection of hand bones visible in hand radiographs.

Keywords: contour, fuzzy shape descriptor, fuzzy parsing, hand
radiographs.

1 Introduction

Computer visual methods are used very often in medicine - see [17] in the context
of rheumatology. Therefore, fully automatic analyze of such pictures is needed.
Syntactic methods are ones of the most popular ([5], [18]). They are applied
both to contour analyze, taking advantage of string languages - see [11], [13],
[14], [15], as well to analysis of complex bones spatial relations including mutual
covering, for instance palm bones, using graph grammars - [1], [12], [16] can be
put as examples of pioneer papers concerning this topics.

Analysis of palm X-ray pictures is one of the streams in the medical pattern
analysis. It is extremely important to diagnose pathological rheumatoid changes
in early stage of a disease. This requires that differences of a rank about one
millimeter between contours of pathologically changed bones and proper ones
need to be noticed. It is difficult, because usually for majority of patients there
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a) b)

c) d)

e) f)

g) h)

i) j)

k) l) m)

n)

Fig. 1. Obtained contours for thumb (a, b), index finger (c, d, e), middle finger (f, g,
h), ring finger (i, j, k) and small finger (l, m, n)

are no X-ray pictures of their hands before pathological changes. Moreover, the
majority of experts claim that any illness progress can be noticed only when
the time period between two following X-ray examinations is larger than six
months, since changes proceed very slowly and cannot be diagnosed within a
shorter period. To economize on time and energy spent on that kind of analysis,
to make an X-ray examination more frequent and more precise, the process
should be automatized.
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In this paper a generalization of string languages describing shapes in order
to apply them to analyze a contour of bones in hand radiographs is proposed.
Fuzzy sets are used for aided of contour descriptor generalization. First, the
so called alternative fuzzy descriptor is created. Then, an unambiguous fuzzy
descriptor is obtained in the fuzzy inference process. The inference process is
based on the parallel parsing idea presented in [4], [19], [20], [21], [22] in the
context of probabilistic-aided graph languages and in [2] in the context of fuzzy-
aided graph languages. The presented method is based on string shape languages
[8] which has been so far applied in engineering, in particular in robotics and
manufacturing - [6], [7], [9], [10], where patterns are not distorted and shapes
and sizes are normalized. Introduction of fuzzy methods is needed in medical
applications because transition from norm to pathology in biological systems is
fluid and parameters, both in norm and in a given pathology, take values from an
interval. Therefore, fuzzyness is always at least implicite introduced in medical
applications - see [12].

This paper is a continuation of studies described in [3] and [23] where au-
tomatic preprocessing, including binarization, skeletization and contourization
was done - see Fig.1.

2 String Shape Language

Let us recall a formalism presented in [7], [8], [9]. The basic unit of the analyzed
pattern is a primitive. Jakubowski introduced sixteen primitives, constituting the
set PRIM, being line segments or quarters of a circle - see Fig.2. This means that
a primitive is a curve defined by an analytic formula describing corresponding
line or curve segment. The beginning and the end of the primitive p is denoted
by hd(p) and tl(p) respectively.

Fig. 2. The shape language primitives
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Definition 21. Let primitives u, v ∈ PRIM do not lie in a single straight line.
We say that u is joined to v if hd(u) = tl(v). We denote it by u� v. A sequence
of primitives such that pi � pi+1 is denoted by p1 � ... � pm.

Definition 22. A contour k composed of the primitives p1, p2, ..., pm can be ex-
pressed by p1�p2� ...�pm = k if k is a curve without multiple points. For such
a contour the following definitions are introduced:

– tl(k) = tl(p1); hd(k) = hd(pm).
– First(k) := p1, Last(k) := pm.
– A contour k is called a junction of contours k′, k′′ and is denoted by k′ � k′′

if Last(k′) = First(k′′).
– A contour pi � pi+1 � pn, i ≥ 1, m ≥ n is called a subcontour of k.
– If hd(pm) = tl(p1) then a contour is called closed.

Consider the contour k = p1 � ...� pm such that each pt is a primitive described
as sitpt , 1 ≤ t ≤ m.

Definition 23. The string s̄ := si1j1si2j2 ...simjm is termed the characterological
description of k and is denoted by Des(k).

Let us specify a few features in a contour defined as above.

Definition 24. A contour p1 � p2 � ...� pn is called an (l)-sinquad if all prim-
itives pi, 1 ≤ i ≤ n belong to the l-th quadrant of the Cartesian plane.

Definition 25. A contour k = k′ � k′′ creates a so-called (i,j)-biquad if both k′

and k′′ are sinquads. First(k′′) is called a switch of the biguad and Last(k′) is
called a precursor. If k′ or k′′ is an axial primitive (see Fig.2a) then k is called
an improper biquad.

Definitions of other complex syntactic features - grooves and cascades - can be
found in [7], [8] and [9].

3 Fuzzy Descriptor Creating

As it has already been mentioned, in medical practise parameters describing the
investigated object, for instance a bone, take values from an interval. Therefore,
it is insufficient to define single primitives as in robotic and manufacturing appli-
cations. Thus, let us introduce a fuzzy mechanism for aided the shape language.

Every one from sixteen defined primitives will be regarded as a fuzzy set. The
line or curvilinear segment differ slightly from a given primitive has a value of
membership function μ describing this primitive equal to 1 and its value of mem-
bership function describing other primitives is equal to 0. If the segment differs
significantly from each primitive, values of its all sixteen membership function is
less then 1 and is greater than 0 for this primitives to which it is most similar.
The example of membership functions describing dependence on its value from
the angle between a given primitive and the consider contour segment is shown
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Fig. 3. The membership functions for primitives s11, s12, s13 and s14

in Fig.3 for primitives s11, s12, s13 and s14. It should be stressed that it is only
the first component of a primitive fuzziness. The second one, ν, is connected with
accuracy of a contour fragment fitting to line segment or an circle quarter. The
all possibilities should be tested and all segments of which the membership func-
tion value is greater than zero are taken into consideration in an alternative fuzzy
contour descriptor. The single segment of the alternative fuzzy contour descrip-
tor is denoted as [...] and consists of primitives descriptors sij , i, j ∈ {1, 2, 3, 4}
and values of membership functions of the considered contour segment being a
given primitive - see Examples. Let us notice that the alternative fuzzy contour
descriptor segments can be nested, for instance [[...][...]] - see Example 2.

The algorithm of the alternative fuzzy contour descriptor creating has the
following form.

ALGORITHM 1

1. Consider the subsequent fragment of the given contour.
2. Fit line segments and quarters of circles to the considered fragment with an

assumed accuracy. If there are a few possibilities of such fitting, take all of
them into consideration. For each fitting calculate fuzziness ν ∈ (0, 1] of the
fitting using the given procedure computing ν.

3. Assign to each obtained line and curve segment values of sixteen membership
functions μ comparing them with all primitives.

4. Create the next segment of the alternative fuzzy contour descriptor writing
these triplets (sij , μk, νk) into square brackets for which μk > 0. Take into
consideration the alternative nesting implied by the fact that the same seg-
ment can be described both as a single primitive and a string of primitives
- see Fig.6.

5. Repeat steps 1-4 until the whole contour is described.

4 Fuzzy Parsing

Let us recall definition of T-norm, widely used in fuzzy inference.
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Definition 41. A function T : [0, 1] × [0, 1] → [0, 1] is called a T-norm if the
following conditions are satisfied:

– monotonicity: if a ≤ b and c ≤ d then T (a, c) ≤ T (b, d),
– commutativity: T (a, b) = T (b, a),
– associativity: T (T (a, b), c) = T (a, T (b, c)),
– boundary conditions: T (a, 0) = 0, T (a, 1) = a.

Given an unknown pattern represented by an alternative fuzzy contour descrip-
tor, say R, the problem is to obtain an outcome unique fuzzy contour descriptor
r, obtained from the complex fuzzy string R. In the proposed parallel and cut-off
strategy of alternative fuzzy contour descriptor parsing a number of simultane-
ously derived simple strings is equal to a certain number limit. In this case,
derived simple strings spread through the search tree, but only the best, that is
with maximum measure value, limit strings are expanded.

ALGORITHM 2

1. Choose two first elements of the alternative fuzzy contour descriptor and
compose all possible substrings. Each element is of the form (sij , μn, νn),
i, j ∈ {1, 2, 3, 4}.

2. For each substring obtained in the point 1, calculate values of their member-
ship functions using a given T -norm using formula T (T (μ1, μ2), T (ν1, ν2))
where μ1, ν1 are membership functions for the first element and μ2, ν2 for
the second element.

3. For further derivation choose a number (limit) of derived substrings with the
biggest values of the calculated membership function.

4. To the chosen substrings join elements from the next element of the alter-
native fuzzy contour descriptor and calculate values of their membership
functions using a given T -norm using formula T (T (μm, μm), T (νl, νl)) where
μm, νm are membership functions for the derived substring and μl, νl for the
next element. If the alternative fuzzy contour descriptor is finished then stop
the parsing algorithm.

5. Repeat the points 3 and 4 until a complete unique fuzzy contour descriptor
is obtained.

6. As a result take from the derived unique fuzzy contour descriptors the one
having the maximal value of the T-norm T. Take the mean value of its
membership functions as a measure of the obtained description credibility.

Example 1
Let as assume that the obtained alternative fuzzy contour descriptor is of the
following form:

R = [(s21, 0.7, 0.9), (s41, 0.8, 0.8)][(s14, 0.9, 0.3), (s240.7, 0.8), (s34, 0.6, 0.7)]
[(s14, 0.7, 0.4), (s24, 0.6, 0.9)](s33, 0.9, 0.6).

Let, furthermore, the T-norm be given as an arithmetic product, i.e. T (a, b) =
a · b and let limit = 2. The ALGORITHM 2 is executed as follows.
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Step 1

(s21, 0.7, 0.9)(s14, 0.9, 0.3) T (T (0.7, 0.9), T (0.9), 0.3)=T (0.63, 0.27)=0.1701

(s21, 0.7, 0.9)(s24, 0.7, 0.8) T (T (0.7, 0.7), T (0.9, 0.8))=T (0.49, 0.72)=0.3528

(s21, 0.7, 0.9)(s34, 0.6, 0.7) T (T (0.7, 0.6), T (0.9, 0.7))=T (0.63, 0.42)=0.2646

(s41, 0.8, 0.8)(s14, 0.8, 0.3) T (T (0.8, 0.9), T (0.8, 0.3))=T (0.64, 0.27)=0.1728

(s41, 0.8, 0.8)(s24, 0.7, 0.8) T (T (0.8, 0.7), T (0.8, 0.8))=T (0.56, 0.64)=0.2688

(s41, 0.8, 0.8)(s34, 0.6, 0.7) T (T (0.8, 0.6), T (0.8, 0.7))=T (0.64, 0.42)=0.2588

The strings s21s24 and s41s24 are taken for the second step of the parsing.
Step 2

(s21, s24, 0.49, 0.72)(s14, 0.7, 0.4) T (T (0.49, 0.7), T (0.72, 0.4)) =

= T (0.343, 0.288) ≈ 0.0988.

Calculating in the same way we obtain

(s21, s24, 0.49, 0.72)(s24, 0.6, 0.9) T (0.294, 0.648) ≈ 0.1905

(s41, s24, 0.56, 0.64)(s14, 0.7, 0.4) T (0.392, 0.256) ≈ 0.1004

(s41, s24, 0.56, 0.64)(s24, 0.6, 0.9) T (0.336, 0.576) ≈ 0.1935

The strings s21s24s24, and s41s24s24 are taken for the third step of the pars-
ing.

Step 3

(s21s24s24, 0.294, 0.648)(s33, 0.9, 0.6) T (0.2646, 0.3888) ≈ 0.1029

(s41s24s24, 0.336, 0.576)(s33, 0.9, 0.6) T (0.3024, 0.3456) ≈ 0.1045.

The descriptor s41s24s24s33 is chosen. STOP.

To sum up (s41, 0.8, 0.8)(s24, 0.7, 0.8)(s24, 0.6, 0.9)(s33, 0.9, 0.6) has been cho-
sen as the most credible simple fuzzy descriptor of the shape encoded by the
above fuzzy complex descriptor R. The mean value of its membership functions
0.8+0.8+0.7+0.8+0.6+0.9+0.9+0.6

8 = 0.7625 is a measure of the obtained description
credibility.

Example 2
Let us consider a bone contour with a central erosion - see Fig.4.

If only two first cases are taken into consideration then the alternative fuzzy
contour descriptor corresponding to this contour fragment would be the following
form:

[(s44, μ1, ν1)(s11, μ2), ν2](s34, μ3, ν3)(s31, μ4, ν4)[(s41μ5, ν5)(s11, μ6, ν6)].

If all three cases are taken into consideration then the alternative fuzzy con-
tour descriptor corresponding to this contour fragment would be far more com-
plicated - notice the nesting of square brackets corresponding to the nesting of
alternatives in the description:
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Fig. 4. The bone contour with central erosion

Fig. 5. The examples of central erosion possible structures description

[(s44, μ1, ν1)(s11, μ2), ν2]
[(s34, μ3, ν3)[(s24, μ4, ν4)[(s24, μ5, ν5)(s11, μ6, ν6)(s34, μ7, ν7)]]]
[(s31, μ8, ν8)[[(s21, μ9, ν9)(s11, μ10, ν10)(s31, μ11, ν11)](s21, μ12, ν12)]]
[(s41μ13, ν13)(s11, μ14, ν14)].

In both the cases the fuzzy inference algorithm (ALGORITHM 2) will create a
unique fuzzy contour descriptor. However in all the cases the central erosion
is a (4, 1)-biquad. Thus after creating a unique fuzzy contour descriptor it is
sufficient to find a (4, 1)-biquad - this problem is already solved (see [7]). The
derived description will allow to diagnose how the illness is advanced.

5 Concluding Remarks

The computer interpretation of palm X-ray images is extremely difficult because
of a complex palm structure. The results described by other authors seemed
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to be very partial. It also seems that results described in [3] and [23] signif-
icantly completes the mentioned ones. Summing up, the following have been
done effectively: preprocessing of the whole image, the image skeletization in
the phalangeal region, segmentation in the phalangeal region, joints localization
in the phalangeal region, contours description in the localized joints, computing
widths of the localized joints. All the mentioned items are done automatically.
The obtained contours and width description of the joints can be a basis for
diagnosis of a certain diseases. In this paper the theoretical foundations and
algorithmic aspect of the next stage of the problem study is presented. The pro-
posal of the contour three-step description is introduced. During the first step
the contour fragments are described by estimation using line segments or arcs.
Then the obtained encoded curvilinear fragments are compared with primitives
regarded as fuzzy sets. In such a way the alternative fuzzy contour description is
obtained. Then, using parallel fuzzy inference, a unique fuzzy contour descriptor
is created. It will be used as the starting point for inference basing on shape lan-
guages which will be applied to the detection of bone erosions. This is planned
as the next stage of our studies.
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Abstract. This paper presents a method of music tunes recognition
based on the Hough transform as well as its fuzzy version. One can also
find here experimental results showing the effectiveness of the presented
solutions. Perspectives of further work and quality improvements are also
stated as a base for subsequent research.

1 Introduction

In last decade we can observe a very dynamic grow in the number of cell phones
per person, especially in the so-called developing countries - new members of
the European Union. For example, in Poland there are nearly 36758 thousands
cell phones per 38157 thousands citizens and this number is still increasing [5].
The cell phone, besides the main function, which is voice communication at a
distance, is starting to be a sort of mini-centre of information. Many modern cell
phones have the ability of accessing the internet, exchanging data, many of them
heave photo-camera, MP3 decoder or a mini-dictaphone onboard. The compu-
tational power of cell phones per Watt is increasing what gives the opportunity
to threat them as a personal mini-computers with many useful features. This
features can be connected with work (business notes, meeting remainders), fun
(games, photo editing) or more dedicated solutions like e.g. telemedicine.

Most people like music and many of them listen to it in a car, home or even
during work. How many times one was wondering what is the title of the song one
is currently hearing and who is the performer, is hard to count. As most of people
have cell phones it would be interesting to have an operator supporting system
that would be able to recognize the played song. Such a system should include
facts that a given recording is short (nobody wants to hold a cell phone more
than a few seconds in front of a speaker), contains an additive noise generated
by surrounding (car engine, detuned radio, wind, voices of passers-by, etc.) and
its quality is limited to the capabilities of the microphone acquiring the audio
signal and losses in the lossy GSM compression.

According to authors’ knowledge there are currently two commercial music
recognition systems in the western EU countries, that is Shazam in United King-
dom and Musiwave in Spain [13]. Because this systems are fully commercial it
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is very hard to obtain the full information of how they work, what is their real
effectiveness and computation complexity. Nevertheless some researches were
conducted in this area and can be found in literature [4,6].

In this paper a method of music tunes recognition based on the Hough trans-
form as well as its fuzzy version is presented. One can also find here experimental
results collected during research and creation of a GSM based telephony simu-
lator. Perspectives of further work and quality improvements are also stated as
a base for subsequent researches.

2 System Assumptions

The main task of the system is to recognize and identify a music tune sample
with the use of a cell phone. A client calls a dedicated phone number and puts its
phone near sound source for a period of a few seconds. What the client expects
as a result is a short message containing the information about the tune like
e.g.: who is the performer, what is the title of the song and album it comes
from, when it was recorded/produced, etc. Namely, it is a query-by-example
problem. Unfortunately, the recognition task performed at the operators side is
not very easy because of cell phones’ hardware restrictions and the GSM lossy
compression.

A human voice contains sound waves with base frequencies varying from about
300 to 3500 Hz [12]. A human ear, on the other hand, plays the role of a biological
amplifier and is the most sensitive to frequencies characteristic to human voices
generated by vibrating vocal cords [15]. This facts are used with success in the
cell phone telephony. Thus, a given voice signal is passed through a band-pass
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Fig. 1. Schematic of the music tunes recognition system
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filter with the boundary frequencies characteristic to human voice. The signal
is then sampled with 7 ÷ 16 bits precision at 8 kHz frequency to satisfy the
Nyquist’s condition and lossy compressed by the GSM encoder [18].

The system schematic is given in Fig. 1.

3 Features Extraction

The presented solution is based on short-time frequency spectrum analysis. Ac-
cording to authors’ observations the frequency spectrum, next to i.e. autocorre-
lation, is barely sensitive to the impact of any external noise, is unique for every
music tune and valuably represents its nature and dynamics.

A given tune sample is at first decompressed by the GSM decoder and then
analyzed frame by frame with the overlaying and frequency leak stopping tech-
nique. For each frame a set of features is calculated. In our approach the S fea-
tures are these frequencies for those its amplitude estimated using the Fourier
transform creates a local maxima in a given milliseconds of the analyzed tune:

S =
{{

(t1, f1,1), (t1, f1,2), . . . , (t1, f1,n)
}
, (1){

(t2, f2,1), (t2, f2,2), . . . , (t2, f2,n)
}
,

. . . ,{
(tk, fk,1), (tk, fk,2), . . . , (tk, fk,n)

}}
,

where:
ft,1...n = argmax

n

(
peaks

(
A(m)

))
, (2)

A(m) = |F (m)|, (3)

F (m) =
N−1∑
n=0

x(n)e−j2πnm/M , (4)

Fig. 2. Example of detected frame features (marked with “∗”) for n = 3
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m = 1 . . .M, (5)

n is the number of features per frame, t is the time period and F is the frequency
spectrum. In situations where the number of features in a frame is less than n
the smaller group of features is also included in the S set. All empty frames
(silence) are omitted.

A graphical example of feature detection is given in Fig. 2.

4 Crisp Matching

The Hough transform, originally designed for line detection [7], was many times
used in literature to find a specific shape [1,9,10,11] or a group of features in a
larger set [8,14]. The transform is known for its quality in the presence of noise,
the ability to adopt it to the detection of a given shape [2] and the accumulator
based voting.

The accumulator in our approach is two-dimensional. The first dimension,
which is the time, is obvious because a given tune sample is a part of a much
longer music tune and the shift in time have to be detected to find the best match.
The second dimension, which is the frequency, is added because a research shown
that the same music tune can be played by a musician higher or lower in the
sense of sound timbre what can be observed mainly in classical music. What
was additionally assumed is that the tempo has to be the same to talk about
tunes equality. Thus, any tempo differences (i.e. an intentionally slowed down
by a disco DJ tune) are not included in the accumulator’s dimensionality but
are possible at the cost of calculation speed.

The task of music tune recognition is a problem of finding the shift parameters
(Δt, Δf) which added to the features of a tune sample send by a client will give
the higher level of fitness to the features of a template taken from an early
prepared database. Since the features of a tune create an irregular shape the
Hough transform have to be defined in an algorithmic form presented in Fig. 3.

For each pair of features: (tAi , fA
i ) ∈ SA and (tBj , fB

j ) ∈ SB the accumulator A
collects votes in those cells that the best shows the difference between considered
features. Thus, a given cell of the accumulator collects:

A(Δt, Δf) =
m∑

i=1

n∑
j=1

[
δ2
(
tBj − tAi , Δt

)
δ2
(
fB

j − fA
i , Δf

)]
, (6)

where:

δ2(x1, x2) =
{

x1 = x2, 1
x1 �= x2, 0 (7)

what gives the possibility to find the best shift parameters (Δt, Δf) in the ac-
cumulator by taking the argument of the maximal value of A (Fig. 4a).

As a measure of the final match (Fig. 4b) sum of Euclidian distances from
features of the send by a client sample to their nearest features from a template
is calculated:
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∀i∀jA(i, j) ← 0

FOR {tA
i , fA

i } ∈ SA, i = 1 . . . m
FOR {tB

j , fB
j } ∈ SB , j = 1 . . . n

{
Δtij = tB

j − tA
i

Δfij = fB
j − fA

i

Δtij , Δfij ← align(Δtij , Δfij)
A(Δtij , Δfij) ← A(Δtij , Δfij) + 1

}

Δt,Δf ← arg max(A)

Fig. 3. Algorithmic form of the crisp Hough transform

(a) (b)

Fig. 4. Exemplary: (a) accumulator’s slice for Δf = 0 Hz and low noise sample,
(b) fragment of the best match with template’s features marked with “×” and tested
sample’s features with “◦” (experiment for SNR = 0 dB)

E =
m∑

i=1

min
(‖ xi1 ‖, ‖ xi2 ‖, . . . , ‖ xij ‖), (8)

where:
xij =

[
(tAi + Δt) − tBj , (fA

i + Δf) − fB
j

]
, j = 1 . . . n. (9)

The E measure can be considered as a match error, so the smaller the value of
E the better fitness to the template.

5 Fuzzy Matching

The analysis of the features layout shows that they have a tendency to group
into local clusters (Fig. 5). This is caused by the fact that a note or singer’s
voice sustains through several dozen of milliseconds on a given frequency while
performing a given fragment of a song. Thus, one can suppose that all isolated
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(a) (b)

Fig. 5. Exemplary features layout: (a) thick and (b) thin clusters

(a) (b) (c) (d)

Fig. 6. Membership functions for R = 11: (a) gaussian, (b) triangle, (c) cosine, (d) peak

and standing out features that do not have a neighbor in its nearest neighborhood
are noisy while processing a sample with very low SNR ratio.

The fuzzification process [17] in our approach assigns each feature a w weight
which value depends on the membership function used and the number of neigh-
bors in the nearest neighborhood described by the R radius. The clusters of fea-
tures create some kind of “anchor” (the higher number of neighbors the higher
the features weights and the more important the whole cluster) and all isolated
features, which probably are noisy, get relatively small weights, thus they have
smaller impact on the information collected in the accumulator.

In our approach we have tested four membership functions which are illus-
trated in Fig. 6:

fgaussian(x) = exp
(
− x2

2σ2

)
, σ =

1
3
, (10)

ftriangle(x) = −x sign(x) + 1, (11)

fcosine(x) = cos(x
π

2
), (12)

fpeak(n) =
{

if n = 0, then 1
if n �= 0, then 1

|n|+1 ,
(13)

where values close to zero at the x-axis have to be interpreted as a high number
of neighboring features in the local neighborhood described by the R radius.
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The algorithm that implements the fuzzy Hough transform is very similar
to the one given in Fig. 3 and the main difference is the way of giving votes
in the appropriate accumulator’s cells. The A(Δtij , Δfij) ← A(Δtij , Δfij) + 1
fragment is exchanged with the A(Δtij , Δfij) ← A(Δtij , Δfij) + MIN(wA

i , wB
j )

one, where wA
i and wB

j are the features weights. The MIN function is dictated by
the assumption that a smaller weight has smaller impact on the accumulator’s
content. Thus the accumulator collects weights in its cells rather than crisp votes:

A(Δt, Δf) =
m∑

i=1

n∑
j=1

MIN(wA
i , wB

j )
[
δ2
(
tBj − tAi , Δt

)
δ2
(
fB

j − fA
i , Δf

)]
. (14)

with the δ2 defined as above.

6 Experimental Results

To test the quality of the presented solutions several experiments were performed
in the presence of additive white noise. The first one shows the influence of
tune sample length on the match quality. In this case tests were performed
for 5, 10 and 15 seconds samples with one feature per frame (Fig. 7a). The
second one shows the influence of the number of features used per frame with
the length of a send sample equal to 5 seconds (Fig. 7b). The third experiment
shows the influence of the GSM 6.10 compression with comparison to the same
experiment performed but with the compression switched off (Fig. 7c). The
fourth experiment shows which membership function should be used and what
local neighbor radius should be considered to get the best matching results
on the average (Fig. 8a). The impact of the fuzzy mechanism in the sense of
accumulator’s PSNR ratio defined as:

PSNR = 20 log10

(
MAX(A)√

1
TF

∑T
t=1

∑F
f=1 A(t, f)2

)
, (15)

where T and F are the number of time and frequency bins of the A accumulator
respectively, was also examined (Fig. 8b).

The database consisted of 1000 randomly selected music tunes of different
genres. The test set consisted of 100 randomly selected tune samples with noise
levels raging from -15 to 15 dB with 3 dB interval for crisp and with 1 dB inter-
val for fuzzy tests. All experiments were simulated with software, no telephony
hardware was used.

What we can observe is that the presented method tolerates frequency re-
strictions, losses in the GSM compression (8.72% on average) and noise well.
Additionally, experimental results illustrating the influence of the recording time
on the match quality are very similar to the ones showing the influence of the
number of features used. This gives the conclusion, that if a short sample is
recorded by a client a higher number of features per frame is desired for better
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(a) (b) (c)

Fig. 7. Experimental results showing the influence of: (a) recording time, (b) number
of features used, (c) GSM compression, on the match efficacy

(a) (b)

Fig. 8. Experimental results showing: (a) the quality of the recognition averaged
through all tests (from -15 to 15 dB with 1 dB interval), (b) corresponding accu-
mulator’s average PSNR ratio

efficacy and vice versa – if the recording is long the smaller number of features
per frame can be used to speed up the search.

The experimental results show that the fuzzy mechanism increases the match
efficacy and improves sharpness of the information collected in the accumulator
in the sense of the PSNR ratio (Fig. 9). This can be easily observed for very noisy
samples where the PSNR ratio is about 5 dB higher than for crisp results and the
match efficacy is almost two times higher in this case (see Fig. 9a and the −15
dB test). The highest match ratio and the sharpest accumulator was observed
for the gaussian membership function with R = 3 (Fig. 8). The average efficacy
through all experiments is about 2.9% higher and the PSNR ratio is about 3.1
dB higher for the Hough transform with the fuzzy mechanism than for crisp
ones.

The performed experiments show that the Hough transform adopted for sound
features localization can be effectively used in music tunes recognition systems.
The presented solution needs less then a quarter of second on today’s machines
(Athlon 64 3500+ 2.8 GHz, Pentium 4 2.2 GHz) per sample–template comparison
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(a) (b)

Fig. 9. Gaussian membership and crisp results comparison: (a) efficacy, (b) accumula-
tor’s PSNR ratio

depending on the hardware, the number of features and the length of sample
used. For an average 3 minute music tune the method needs about 50 MB of
memory for the accumulator with 7.8125 Hz and 20 milliseconds cell granularity
which is not much for todays computer systems. The computational complexity
of the fuzzy version of the Hough transform is very similar to the crisp one.
The only difference is that the w weights have to be calculated before the main
algorithm starts and the voting process is done using floating point arithmetic
rather then integer one. The size of the accumulator is the same in both versions
because 32-bit cell representation was used in all experiments.

7 Conclusions

In conclusion, performed experiments in the Hough transform as well as its fuzzy
version adaptation to the problem of music tunes recognition are promising. This
gives the base for further research in still open problems like e.g. global speed
up. The database search can be accelerated by a classifier that would be able to
decide what kind of music a sample represents [3] or a classifier that will create a
probability vector that will show what subset of the database should be checked
at first [16]. Performance and quality tests on much bigger database for mixed
as well as one genre music tunes should also be considered in the future works. A
real hardware (not only a software simulator) and a real user and environment
(with natural noise, equalization, reverbation and audio saturated compression
factors) would also be a great opportunity to test the proposed solution.
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Abstract. This paper investigates the feasibility of automated benthic
macro-invertebrate taxon identification based on support vector ma-
chines and a novel gradient based feature. Biomonitoring can efficiently
pinpoint subtle environmental changes and is therefore globally widely
used in ecological status assessment. However, all biomonitoring is cost-
intensive due to the expert work needed to identify organisms. To re-
lieve this problem an automated image recognition system for benthic
macro-invertebrate taxonomical analysis is proposed in this work. Using
a novel approach, we present high accuracy classification results, suggest-
ing that automated taxa recognition for benthic macro-invertebrates is
viable. Our study indicates that automated image recognition techniques
can match human taxonomic identification accuracy and greatly reduce
the costs of future taxonomic analysis.

Keywords: Benthic macro-invertebrate, Biomonitoring, Classification,
Machine vision, SVM, Multiple order gradient histograms.

1 Introduction

Aquatic ecosystems are facing a growing number of anthropogenic pressures
operating at several time and spatial scales (e.g. global warming, eutrophication).
Well planned biomonitoring is often essential to detect the cause-effect structure
between subtle anthropogenic pressures and their ecosystem consequences. The
growing global need to implement more biomonitoring is apparent but but due
mainly to the cost-intensive human expert taxonomic identification of samples,
that need cannot currently be adequately met.
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Automated image recognition techniques can match human taxa identifica-
tion accuracy at greatly reduced costs [1]. Despite their obvious potential, the
development of automated taxa identification techniques has long been ham-
pered by the reluctance of taxonomic experts to embrace alternative methods of
taxa identification [2].

In the following, we test the applicability of pattern recognition methods on
the problem of identifying a limited variety of benthic macro-invertebrate typi-
cally keyed in the biomonitoring of northern streams. To do so, we introduce a
MOGH feature which allows us to avoid object segmentation in the classification
process. The classification itself is done by means of Support Vector Machines.
SVMs have been used on a variety of classification problems, i.e. to correctly
identify shades in urban areas in [3] and for voice-based gender identification in
[4]. A multi class SVM classifier for the classification of eight different kinds of
alcohol is discussed in [5].

In Section 2 we introduce biomonitoring. Section 3 illustrates some basics
on the binary and multi class SVM classifier. Section 4 explains how the feature
vectors have been obtained. Section 5 depicts the experimental setup and results.
In Section 6 we present our conclusions.

2 Biomonitoring

In the past, freshwater monitoring has mainly focused on chemical parameters.
With the introduction of new environmental legislation (EU Water Framework
Directive and the US Clean Water Act), the need for biomonitoring has signifi-
cantly increased during the past two decades. Freshwater aquatic biomonitoring
encompasses a number of organisms such as e.g. fish, macrophytes, planktic algae,
and benthic macro-invertebrates. Where chemical samples provide the researcher
with a short snap-shot of the current situation, biological organisms integrate the
prevailing environmental conditions over the entire span of their life cycle.

Research on automated recognition of aquatic organisms has mainly concen-
trated on marine plankton [6], whereas automated benthic macro-invertebrate
identification has received very little attention (but see [7]). Benthic macro-
invertebrates are well suited for biomonitoring due to the intermediate length of
their life cycles (typically ranging from 1-2 years). In addition, there is an abun-
dance of studies documenting the unique responses of benthic macro-invertebrate
communities to a large variety of specific environmental pressures.

Well planned biomonitoring is often essential to detect the cause-effect struc-
ture between subtle anthropogenic pressures and their ecosystem consequences.
The growing global need to implement more biomonitoring is apparent but due
mainly to the cost-intensive human expert taxonomic identification of samples,
that need cannot curreently be adequately met.

3 Support Vector Machines

To automatically recognize benthic macro-invertebrate, an automatic classifica-
tion system based on Support Vector Machines theory was used. SVMs were
chosen for this task due to their excellent real-world performance(see [8]).
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(a)

(b)

Fig. 1. An example of a linearly separable (a) and linearly non-separable (b) training
set. In case (b), the domain space is mapped into the feature space in order to make it
linearly separable.

A Support Vector Machine (SVM) is a binary classifier able to divide a set of
data into different groups. In order for the SVM to successfully work, a training
procedure must be completed. A multi class SVM can be made up of several
binary class SVMs, so that its training can be reduced to the training of different
binary class SVMs. In the following, we describe both a simple binary SVM and
the strategy used to build the multi-class SVM.

SVMs were originally developed for pattern classification problems [9]. Ge-
ometrically an SVM creates an optimal separating hyperplane for the training
data, and this plane is then used to classify all other data. For the generic SVM,
let A and B be two different classes, let X := {x1, x2, . . . , xk} be a training
data set made up of k different training vectors xi ∈ Rn each of which is as-
sociated with a given binary code yi ∈ {−1, 1} so that if yi = −1 ⇒ xi ∈ A
and if yi = 1 ⇒ xi ∈ B. The training set X can be either linearly separable or
non-separable. The training of a SVM can be seen as an optimization problem
in which a particular dot product function, called Kernel function, is involved
(see [8])

When the training set is linearly separable, it is possible to find an optimal
separating hyperplane already present in the domain space Rn; this situation is
shown in figure 1(a). If the training set is linearly non-separable, we face the
situation shown in figure 1(b); in this case we need to map the domain space
Rn into a feature space RN , with N > n, in which the training set is linearly
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Fig. 2. An example of a tennis tournament strategy multi class SVM

separable. This can be implicitly done by applying the following kernel function
Φ : Rn → RN .

When the SVM is trained, we acquire a mathematical model that best fits
the given training data. This model can then be used to classify new unknown
data among classes A or B. More theory and examples on SVM can be found in
[9], [10], [11] and [8].

When the data can belong to more than two different classes, several binary
SVMs are trained and used in order to obtain a multi class SVM. In particular,
for ζ different classes, the number of all possible binary SVMs is given by:

ζ · (ζ − 1) /2 (1)

In this study an elimination strategy is used to build the multi class SVM clas-
sifier. Figure 2 shows an example of this: considering an element ξ belonging to
class D, at first classes A and B compete with each other; the winner of these (A
in the figure) competes with class C and, finally, the winning class (C) competes
with class D; in the end ξ is correctly classified as a member of class D.

4 Object Identification and Global Features

Classic models of object identification rely on segmenting the object from the
background, then applying feature extraction and classification methods; the
main problem is that segmentation is a difficult task in the presence of cluttered
backgrounds or complex objects [12].

Modern approaches to this problem often avoid the segmentation phase en-
tirely and use a more holistic approach. Instead of finding an exact location,
contour and properties of an object, the problem is seen on more general terms:
“Assuming that this region contains an object of this set, what class does it
belong to?”

A modern example of such thinking is Local Binary Patterns (LBP, [13]).
Although LBP is a simple texton histogram method, it has been successfully
applied to very difficult tasks such as facial expression recognition [14] and face
recognition [15]. Neither of these approaches rely on segmenting facial features;
instead a texture descriptor is calculated for whole facial regions and compared.
Regardless of this simplification the method has proven quite effective.
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Other popular methods include such examples as SIFT [16] which relies on
gradient based local features extracted around key-points, Bag-of-Features (sum-
marized in [17]) which creates ’code-books’ of textons found in images, and [18]
where a system randomly sampling sub-images from the original is used. All of
these methods search for salient points in the image, either by factual search, or
by relying on random discovery. Such points are durable when exposed to vari-
ous transformations and contain local features that can, hopefully, discriminate
the object.

As noted in [19], eliminating segmentation is not the only advantage of such
modern methods. Features taken from key-points have reached a level where
they are truly efficient and can be applied to sampling; in this work we use
a multiple order gradient histogram (MOGH) as a feature. Features based on
image gradients are often used in computer vision in various forms, such as
weighted orientation histograms of sift and gradients estimated steerable filters.
The novelty of our work is that we propose to use gradients of several orders to
capture not only edges, but also other texton features such as spots or ripples.
The dense feature approach was selected in order to complement the keypoint
methodology in [7]. Such a feature is promising due to the fact that, unlike LBP
or other dense textural features, it has a smoother response over different scales
and reacts to both edge-style and textural style features in the image.

To calculate gradients of the image let us denote the standard 3×3 sobel mask
by Sx when applied to calculate a horizontal gradient and by Sy when applied
to calculate a vertical one. Likewise G denotes a gaussian smoothing mask with
a standard deviation of 1.5 sampled to a mask of size 5 × 5. This mask is used
for low-pass filtering of the source image. Convolution is noted by ∗. See [20] for
complete definitions and practical theory of these constructs.

To calculate the MOGH feature, the source image is first decomposed into
feature images Fu,v = G

∗max(u,v)
s ∗ S∗u

x ∗ S∗v
y , where I∗n is defined as

I∗n =

n-times︷ ︸︸ ︷
I ∗ I ∗ I ∗ . . . ∗ I .

The source image is decomposed into 5 first feature images Fu,v, covering all
unique gradient combinations up to second order, disregarding F0,0. So as not
to focus on extraneous details, the scale is reduced as the order is increased.
Thus, the feature images represent all combinations of gradients up to sec-
ond order with the filters pictured in figure 3. For each of the feature images,
an 8-bin histogram is calculated and the concatenation of these histograms is

Fig. 3. Graphical representation of feature kernels
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denoted as M, or the MOGH-feature. Since this feature does not contain clear
representation of image intensity, the final feature vector is augmented to form
F = {μ, σ,M1,M2, . . . ,M40}, where μ denotes the image’s average and σ is
the standard deviation.

5 Experimental Setup and Results

The test data used consists of several pictures representing eight different taxo-
nomical groups of benthic macro-invertebrates: Baetis rhodani, Diura nanseni,
Heptagenia sulphurea, Hydropsyche pellucidulla, Hydropsyche siltalai, Isoperla
sp., Rhyacophila nubila and Taeniopteryx nebulosa. Members belonging to the
same taxonomical group were imaged through a flatbed scanner and the pictures
so obtained were normalized; eventually, each sample in each scan was saved as
an individual image; the final data set is made up of 1529 different pictures,
unequally distributed among all the taxonomical groups.

In figure 4 and 5 an example of the data available is shown: the specimens
are semi-rigid so that the actual shape can change from one sample to the other
(i. e. figures 5(a) and 5(c)). Furthermore different samples may partially overlap
or be mutilated (i. e. figures 4(b), 4(c)). These features in the data make the
problem of automatic identification particularly challenging.

Each macro-invertebrate species is depicted in more than one scan. Since the
authors cannot be confident that the image processing does not affect the features
used for the classification process (i.e. the luminance level of the background can
be different for each scan), all the samples were divided into two different sets

(a) (b) (c)

Fig. 4. Three samples of the Diura Nanseni group

(a) (b) (c)

Fig. 5. Three samples of the Heptageria Sulphurea group
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Table 1. Classification scores for the training data in percentage. See text for class
labels.

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 96.43 0.00 0.00 1.79 1.79 0.00 0.00 0.00
Class B 0.00 97.06 0.00 0.00 0.00 0.00 2.94 0.00
Class C 2.38 0.00 80.95 0.00 9.52 0.00 7.14 0.00
Class D 2.96 0.00 0.00 91.11 3.70 0.00 2.22 0.00
Class E 5,11 0.73 1.46 0.73 80.29 1.46 6.57 3.65
Class F 3.17 0.00 0.79 0.00 3.97 82.54 0.00 9.53
Class G 0.00 0.00 2.44 0.00 0.00 0.00 97.56 0.00
Class H 0.00 0.00 0.00 0.00 5.00 0.00 0.00 95.00

Table 2. Classification scores for the validation data in percentage. See text for class
labels.

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 77.59 0.00 0.00 0.00 8.62 8.62 0.00 5.17
Class B 0.00 95.08 0.00 1.64 0.00 0.00 1.64 1.64
Class C 2.27 0.00 70.45 0.00 14.77 1.14 1.14 10.23
Class D 10.13 1.35 1.35 77.70 4.05 0.67 4.73 0.00
Class E 8.21 0.00 8.21 0.75 69.40 1.49 10.45 1.49
Class F 5.41 0.00 1.08 0.00 2.16 78.92 0.54 11.89
Class G 2.38 0.00 2.38 2.38 7.14 2.38 80.95 2.38
Class H 3.49 0.00 18.60 0.00 3.49 10.46 4.65 59.30

and then used for the training and the validation of the SVMs. Both sets were
arranged so that they are composed of different scans, i.e. in the training set we
will find all pictures of the Baetis rhodani taken from the first and second scans,
while pictures coming from the third and fourth scans will appear only in the
validation set.

The SVMs use a soft margin constraint of 7.2 and Gaussian Radial Basis
function Kernel, with σ = 7.6. The Bioinformatic Toolbox of Matlab was used.

According to equation 1, for 8 different classes, we set up 28 binary SVMs,
all of which were trained with 41 samples. Normalization procedure was applied
separately to each binary classifier providing much more reliable binary SVMs.
The multi class classifier was realized using the binary classifiers in an elimina-
tion strategy. In order to check the performance of the system, the multi class
SVM was used to classify all samples from both the training and validation set.
In the following, classes A, B, C, D, E, F, G and H correspond respectively
to the taxonomic groups Baetis rhodani, Diura nanseni, Heptagenia sulphurea,
Hydropsyche pellucidulla, Hydropsyche siltalai, Isoperla sp., Rhyacophila nubila
and Taeniopteryx nebulosa. Table 1 and 2 show the performance of the multi
class SVM for the training and the validation data respectively. The intersection
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of rows and columns indicates the amount of classified items, thus the first cell in
table 1 indicates that Baetis rhodani was classified (correctly) as Baetis rhodani
in 96.43% of the cases. Please note that tables 1 and 2 cannot be symmetric,
since the SVMs offer a different sensitivity for different classes and because the
amount of data available varies for each species.

The performance on the training data is better than that on the validation
data, as shown in table 1 and 2. However, the multi class SVM correctly classified
88.17% of the training data and 75.31% of the validation data: dealing with eight
different classes, this system offers performances comparable to the classifier
described in [7], which had to deal with only four different species.

6 Conclusions

We have introduced a novel method for automatic taxa identification of benthic
macro-invertebrates. With the ever growing demand for increased biomonitor-
ing, automated taxa identification methods will become inevitable for meeting
with budgetary constraints. We introduced a MOGH feature and showed its ap-
plicability to taxa identification in conjunction with the use of support vector
machines.

The results indicate that this method is extremely successful. Given the fragile
nature of the benthic samples and a resulting high degree of distortion in the
data sets, our recall rate of 80% can be viewed as highly successful. We feel
that recall rates are likely to increase with more sophisticated computer vision
processing and less destructive field sampling methods.

We acknowledge that this study only handles a small subset of species. In-
creasing the number of species in future systems will lead to more challenging
classification problems. These results suggest, however, that automated macro
invertebrate classification is indeed possible.
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Abstract. High dimensionality, missing values, noise, and outliers are
standard problems in gene expression data and are usually dealt with
separately. In this paper, we propose an ideal point model that performs
feature extraction, imputes missing values, and is robust to noise and
outliers in a unified and unsupervised framework. We use the simplifying
assumption that genes are either expressed or not expressed in order to
obtain a parsimonious model. We present a fast Bayesian method for
estimating the large number of parameters in the ideal point model. We
apply the ideal point model to a leukemia data set, where it outperforms
independent component analysis (ICA), a state of the art unsupervised
feature extraction method.

1 Introduction

DNA microarrays can simultaneously measure the expression levels of thousands
of genes over different experiments and have been applied with great success to
problems such as cancer diagnosis [6]. However, the analysis of gene expression
data is complicated by several problems. First, measurements of gene expression
levels are highly contaminated with noise and outliers. As gene expression data
grows larger and more complex, robust data analysis methods must be used.
Second, there are often a significant number of missing gene expression levels.
Most data analysis methods require complete data, so the missing values must
be imputed. Finally, the number of genes is always several orders of magnitude
larger than the number of experiments. The high dimensionality of microarray
data makes the direct application of most data analysis methods impossible, so
a dimensionality reduction step is needed.

The issues of noise and outliers, missing data, and high dimensionality are
usually handled separately. Imputation is used for missing data, gene selection
or feature extraction is used for high dimensionality, and robust data analysis
methods are used to mitigate the effect of noise and outliers [3]. However, the
lack of integration amongst all of these steps can be problematic since different
methods at each step may make different assumptions. In this paper, we apply an
ideal point model to microarray data that is robust to noise and outliers, imputes
missing data, and performs feature extraction in a unified and unsupervised
framework. We use the simplifying assumption that gene expression levels are
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binary, that is, genes are either expressed or not expressed. Our approach is
inspired by the recent success of biclustering algorithms [14] that also discretize
microarray data. Although converting continuous data into binary data results
in a loss of information, we gain a parsimonious model.

Ideal point models are a class of latent variable models originally developed in
psychometrics [10] that estimate continuous latent variables called ideal points
for individuals given their binary responses to a set of items. In gene expression
data, the individuals are experiments, the items are genes, and the responses
are expression or no expression. Rasch models, a closely related class of latent
variable models, were applied to gene expression data with clustering in [12].
However, the Rasch model in [12] assumes a prohibitively simple structure for
the data, does not incorporate missing data, and cannot be applied to a large
number of genes. Our ideal point model can be seen as an extension of the Rasch
model in [12] along all of these directions.

The rest of the paper is organized as follows. In section 2, we present the ideal
point model motivated by a utility maximization approach. In section 3, we
present a fast Bayesian estimation method for the ideal point model. In section
4, we apply the ideal point model to a leukemia data set and compare it to other
unsupervised feature extraction methods. In section 5, we give our concluding
remarks.

2 Ideal Point Model

Gene expression data on m genes for n experiments can be summarized by an
n × m matrix Y = (yij), where yij denotes the expression level of gene j in
experiment i. For now, we will only consider values that are not missing. First,
we need to convert the continuous values to binary values. We use a simple global
threshold for gene expression from [14] based on a fold change, which was shown
in [13] to be biologically reproducible. We set

yij =

{
1 if yij ≥ a + (b − a)/2
0 otherwise

(1)

where a and b denote the minimum and maximum values in Y respectively. Note
that yij = 1 represents expression and yij = 0 represents no expression. Using
binary values inherently gives us robustness to noise and outliers.

Now, we derive an ideal point model for a d-dimensional latent space using
utility maximization as in [9]. For each gene j, experiment i chooses between
alternatives of expression ζj and no expression ψj in the latent space. We assume
that the experiments have quadratic utility functions with stochastic errors over
the latent space

Ui(ζj) = −‖xi − ζj‖2 + ηij (2)

Ui(ψj) = −‖xi − ψj‖2 + νij (3)
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where xi is the ideal point of experiment i, ‖·‖ denotes the Euclidean norm, and
ηij and νij are errors. By utility maximization, experiment i chooses ζj over ψj

such that yij = 1 if Ui(ζj) > Ui(ψj). Note that the ideal point of an experiment
is the location in the latent space that maximizes its utility.

Let y∗
ij denote the utility difference

y∗
ij = Ui(ζj) − Ui(ψj)

= 2xi(ζj − ψj)

= βT
j xi − αj + εij (4)

where εij = ηij − νij such that y∗
ij ≥ 0 if yij = 1. If we assume that the error εij

is independent over both experiments and genes and is normally distributed

εij ∼ N (0, σ2
j ), (5)

then

P (yij = 1) = P (y∗
ij ≥ 0)

= P (εij > βT
j xi − αj)

= Φ(βT
j xi − αj) (6)

where βj = 2(ζj−ψj)/σj , αj = (ζT
j ζj−ψT

j ψj)/σj , and Φ(·) denotes the normal
distribution function. It is common to set σj = 1 for simplicity. The coefficient
vector βj captures the differential expression of gene j, while the intercept αj

captures the baseline expression of gene j.
The likelihood function is

L(X,B, α|Y) =
n∏

i=1

m∏
j=1

Φ(xT
i βj − αj)yij (1 − Φ(xT

i βj − αj))1−yij (7)

where X is an n × d matrix with ith row xT
i , B is an m × d matrix with jth

row βT
j , and α = (α1, . . . , αm)T . The ideal point model is a hierarchical probit

model where the covariates are latent variables. However, the ideal point model
is not identified since the ideal points can be shifted and offset by the coefficient
vector and intercept. Therefore, we must place restrictions on the ideal points.
In one dimension, we can simply constrain the ideal points to have mean zero
and variance one. However, in multiple dimensions, we must fix the ideal points
of d + 1 experiments. Although fixing ideal points seems difficult, it has little
effect on the results in practice since the scale will automatically adjust [9]. We
recommend fixing ideal points on the unit hypercube.

3 Bayesian Estimation

There are nd + m(d + 1) parameters in the ideal point model. Even for a small
gene expression data set with n = 20 experiments and m = 1000 genes, a one
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dimensional ideal point model contains 2020 parameters. Maximimum likelihood
estimation of the parameters is computationally intractable since the likelihood
function becomes too complex. Therefore, we use Bayesian estimation to sample
the parameters from the posterior distribution and avoid exploring the likelihood
function. In order to derive the posterior distribution, we must first specify prior
distributions for the parameters. We use non-informative multivariate normal
distributions, which yield conjugate conditional posterior distrbiutions.

For i = 1, . . . , m, we use
xi ∼ N (v0,V0) (8)

with mean vector v0 = 0 and covariance matrix V0 = Id where Id denotes the
identity matrix of size d.

For j = 1, . . . , n, we use

(βj , αj)T ∼ N (t0,T0) (9)

with mean vector t0 = 0 and covariance matrix T0 = κ · Id+1. We set κ = 25.
We want to sample from the posterior distribution p(X,B, α|Y). We use a

Gibbs sampling algorithm to sample from the conditional posterior distributions
p(B, α|Y,X) and p(X|Y,B, α) with an additional data augmentation step [1]
for utility differences. The Gibbs sampling steps can be derived by treating the
parameters as missing data. If we know βj and αj , then we can impute xi by
the regression of y∗

ij + αj on βj using the m expression values of experiment i.
If we know xi, then we can impute βj and αj using the expression values of the
n experiments on gene j. If we know xi, βj , and αj , then we can impute y∗

ij

by drawing errors from a normal distribution subject to the constraints of the
binary expression levels.

At iteration t, the Gibbs sampling steps are:

1. Data augmentation

For i = 1, . . . , n and j = 1, . . . , m, we sample y
∗(t)
ij from the truncated normal

distributions

y
∗(t)
ij ∼

⎧⎪⎨⎪⎩
N (μ, 1)I(y∗(t)

ij ≥ 0) if yij = 1
N (μ, 1)I(y∗(t)

ij < 0) if yij = 0
N (μ, 1) if yij is missing

(10)

with means
μ = xT (t−1)

i β
(t−1)
j − α

(t−1)
j

where I denotes the indicator function evaluating to one if the argument is
true and zero otherwise.

2. Impute coefficients

For j = 1, . . . , m, we sample β
(t)
j and α

(t)
j from the multivariate normal

distribution
(βj , αj)T (t) ∼ N (μ,Σ) (11)



502 A.D. Shieh

with mean vector

μ =
(
X∗T X∗ + T−1

0

)−1
(
X∗T y∗(t)

j + T−1
0 t0

)
and covariance matrix

Σ =
(
X∗T X∗ + T−1

0

)−1

where X∗ is an n × (d + 1) matrix with ith row (xT (t−1)
i ,−1).

3. Impute ideal points

For i = 1, . . . , n, we sample x(t)
i from the multivariate normal distribution

x(t)
i ∼ N (μ,Σ) (12)

with mean vector

μ =
(
BT B + V−1

0

)−1 (
BT wj + V−1

0 v0
)

and covariance matrix
Σ =

(
BT B + V−1

0

)−1

where wij = y
∗(t)
ij + α

(t)
j and B is an m × d matrix with jth row β

T (t)
j .

At the end of iteration t, we have a Markov chain of parameters θ(1), . . . , θ(t)

where θ(t) = (X(t),B(t), α(t)). We initialize X(1) using an eigendecomposition
of Y and B(1) and α(1) using a probit regression of Y on X(1) as in [9]. We
recommend running 10,000 iterations, throwing away the first 5,000 iterations
as burn-in, and thinning the chain by keeping every 10th iteration to produce
500 samples from the posterior distribution. The small sample sizes of gene
expression data allow for good mixing and fast convergence of the chian. The
mean ideal points are used as the new features.

4 Leukemia Data Set

We tested the leukemia data set from [6], which contains 3572 genes and 72
experiments, of which 47 experiments were for acute lymphoblastic leukemia
(ALL), with 38 experiments on B-cells (ALL-B) and 9 experiments on T-cells
(ALL-T), and 25 experiments were for acute myeloid leukemia (AML). As in [3],
we preprocessed the data using thresholding, filtering, logarithm transformation,
and row standardization. It is common to perform gene selection before feature
extraction in order to eliminate non-informative genes [4]. We selected the top
20 genes using the original signal-to-noise ratio in [6]. A heatmap of the top
20 genes using hierarchical clustering is shown in Figure 1. The gradient from
orange to yellow represents expression to no expression. The heatmap easily
reveals two classes corresponding to the ALL/AML distinction, but a third class
corresponding to the ALL-B/ALL-T distinction is not clear.
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Fig. 1. Heatmap of the top 20 genes with experiments in rows and genes in columns

We consider the simplest problem of extracting one feature with the goal of
summarizing class distinctions. We applied the ideal point model and compared
it to independent component analysis (ICA), which is considered to be one of
the best unsupervised feature extraction methods for gene expression data [11].
ICA is also robust to noise and outliers, but does not incorporate missing data.
We used the R package MCMCpack to implement the ideal point model and
the R package fastICA to perform ICA using the popular FastICA algorithm
[8] with default parameters. Generating a chain of 10,000 samples for the ideal
point model took between 3 and 5 seconds on a standard personal computer. We
verified convergence by generating 5 separate chains with overdispersed initial
values for the parameters and computing potential scale reduction factors [5].
Examining trace plots of the parameters revealed that most of the ideal points
converged quickly within a few thousand iterations.

The features found using the ideal point model and ICA are shown in
Figure 2 and have been standardized to the same scale for comparison. The
ideal point model feature captures the ALL/AML distinction better than the
ICA feature. All of the ALL and AML experiments are linearly separable in the
ideal point model feature, while one AML experiment is mixed in with the ALL
experiments in the ICA feature. More importantly, the ideal point model feature
is able to capture the ALL-B/ALL-T distinction, where the ICA feature largely
fails. The ALL-T experiments are grouped closely together in the ideal point
model feature, while they are scattered amongst the ALL-B experiments in the
ICA feature. Therefore, we expect the ideal point model feature to distinguish
classes better than the ICA feature from visual examination.

We tested the ideal point model and ICA features on a classification problem
with the three classes ALL-B, ALL-T, and AML. We applied a support vector
machine (SVM) classifier, which is known to perform well on gene expression
data [4], in a one-against-all method with a radial basis function kernel and a
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Fig. 2. Features found using ICA (left) and the ideal point model (right)

grid search for parameter selection using the LIBSVM library. We estimated the
classification accuracy using a 5-fold cross validation as recommended by [7] for
gene expression data. The ideal point model feature achieved 90.3% accuracy,
while the ICA feature only achieved 86.1% accuracy. Therefore, the ideal point
model appears to outperform ICA at separating classes with one feature.

We tested the robustness of the ideal point model and ICA features to the
presence of missing values and additional noise. We introduced missing values at
random for 5% of the data by sampling row and column indices and added
normally distributed noise to each value from N (0, 0.01). Since ICA cannot
handle missing data, we imputed the missing values for the ICA feature using the
popular KNNImpute algorithm [15]. On the same classification problem with the
degraded data, the ideal point model feature maintained 90.3% accuracy, while
the ICA feature fell to 84.7% accuracy. Therefore, the ideal point model appears
to be more robust than ICA to missing values and noise.
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5 Conclusion

In this paper, we proposed an ideal point model to perform unsupervised feature
extraction of gene expression data that is robust to noise and outliers and easily
handles missing data. We used the simplifying assumption that genes are either
expressed or not expressed in order to obtain robustness and a parsimonious
model. Although the ideal point model contains a large number of parameters,
we presented a fast Bayesian estimation method based on Gibbs sampling and
data augmentation. When applied to a leukemia data set, the ideal point model
outperformed ICA at classification with one feature, demonstrating promise as
an unsupervised feature extraction method. Moreover, the performance of the
ideal point model was not sensitive to missing values and noise.

The performance of the ideal point model is striking considering that it relies
upon a reduction of gene expression levels to binary states. However, the binary
representation will fail if the gene expression mechanism is more complicated and
genes can be both underexpressed and overexpressed. Therefore, an important
extension of the ideal point model would be to incorporate multiple expression
states along the lines of [2]. The expression states could be determined using
sample quantiles or more complicated methods such as clustering with finite
mixture models. Incorporating more expression states will capture more of the
continuous nature of the gene expression, but will also reduce robustness to noise
and outliers.
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Abstract. The paper develops the methods of selection of the most important 
gene sequence on the basis of the gene expression microarray, corresponding to 
different types of cancer. Special two stage strategy of selection has been pro-
posed. In the first stage we apply few different methods of assessment of the 
importance of genes. Each method stresses different aspects of the problem. In 
the second stage the selected genes are compared and the genes chosen most 
frequently by all methods of selection are treated as the most important and rep-
resentative for the particular type of problem. The results of selection are ana-
lyzed using PCA and the selected genes form the input to the SVM classifier 
recognizing the classes of cancer. The numerical experiments confirm the effi-
ciency of the proposed approach. 

Keywords: gene expression array, feature selection, SVM classification. 

1   Introduction 

The microarray experiments produce data for tens of thousands of genes simultane-
ously. Comparing gene expression profiles of this scale at small number of experi-
ments (typically few hundreds) present a formidable challenge in a pattern recognition. 
On the other side the problem of selection of the most important genes, responsible for 
the development of the particular type of cancer is of great importance in diagnosis and 
prognosis of the illness [2].  

There are many different methods used for important genes recognition on the ba-
sis of DNA microarray. To the most important belong the measures combined with 
the correlation analysis, clusterization of data, SOM application, Bayesian formula-
tion, application of linear kernel Support Vector Machines, etc. [2],[3],[4],[5],[6], 
[7],[10],[11]. However, in spite of many existing techniques the gene selection is still 
an open problem, not solved in a satisfactory way. In this paper we will present the 
two stage procedure of the most important gene selection. In the first stage we apply 
few different methods of gene ranking. Each method stresses different aspect of the 
problem. In the second stage the selected genes are compared and the genes chosen 
most frequently by all methods of selection are treated as the most important and 
representative for the particular type of problem.  
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2   The Theoretical Basis of Gene Ranking Method 

In the first step of our approach we apply different methods of gene selection: the 
mean and variance measures applied to the clusters of data belonging to the same 
class, the correlation analysis of the data of gene expression array, Wilcoxon statis-
tics, three different forms of Kolmogorov-Smirnov statistical tests, and ranking of 
genes using linear Support Vector Machine, applied in either single-input or multi-
input mode. Each method of gene selection is run thousands of times using random 
set containing 90% of the available data. The genes selected repeatedly in all run are 
treated as the most important. The set of 100 best genes chosen in this way are chosen 
as the representative for the each applied method. This quantity was assumed as the 
representative number for the purpose of gene selection in our approach. Then in the 
second step we select the genes commonly chosen by all selection methods. These 
genes are treated as the most representative for the particular data. The short descrip-
tion of the selection methods used in the first stage of selection follows. 

2.1   The Statistical Measures Based on Clusterization 

In this method the gene belonging to each class is associated with one cluster. For 
good candidate gene the variance of the representatives belonging to one class should 
be as small as possible, and at the same time the positions of mean of two different 
classes should be separated as much as possible. We have combined the variance and 
mean together to form the single Fisher quality measure [2],[9] defining the discrimi-
nation coefficient of the feature g in the form  
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In this definition cA and cB are the mean values of the gene g in the class A and B, 
respectively. The variables σA and σB represent the standard deviations determined for 
both classes. The large value of SAB(g)  indicates good separation ability of the gene g 
for these two classes. We will refer to the results of this method by CSD. 

2.2   The Correlation of the Gene with Class 

The discriminative power of the gene g for the recognition of the particular class 
among K classes can be measured by the correlation of this gene with the class [9]. 
The discriminative power of g is defined in the form  
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where { }gEmc =  is the unconditional mean of the gene g for the whole set of  

data, { }kgEmck =  is the conditional mean of the gene characterizing only samples 
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belonging to kth class, var(g) is the variance and Pk is the probability of kth class. 
Calculating this measure for all genes we can arrange them according to their  
discriminative value. We will call this method of gene ranking as COR. 

2.3   The Wilcoxon Statistics 

This method of gene selection will use the Wilcoxon-Mann-Whitney (WMW) test [1]. 
This test assesses the similarity of the statistical distribution of two vectors. The 
WMW test checks whether two samples are drawn from the same population. The test 
is performed by ranking the combined data set, dividing the ranks into two sets ac-
cording to the group membership of the original observations, and calculating a two 
sample z-statistics using the pooled variance estimate. Take the paired observations, 
calculate the differences, and rank them from smallest to largest by the absolute value. 
Add all the ranks associated with the positive and with the negative differences. Fi-
nally, the P-value associated with this statistics is found. The higher its value, the 
more similar are the two populations. Small value of P means large differences be-
tween the populations. The ranking of genes is created on the basis of the numerical 
values of P. We will call this method as WIL. 

2.4   The Kolmogorov-Smirnov Tests 

In Kolmogorov-Smirnov (KS) test the gene g is treated as the statistical variable. The 
genes representing the patients belonging to the same class have similar distribution. 
Our aim is to compare the statistical distribution of the particular gene g correspond-
ing to two classes xA and xB. The KS test is performed for these two vectors to  
determine if they are drawn from the same population. It is a non-parametric and 
distribution free test. The Matlab function kstest2 [12] implementing this test delivers 
the maximum distance between the cumulative distribution functions of the data be-
longing to two compared classes. This distance forms the basis of the measure of 
difference between the distribution of both populations. Denoting the distribution of 
both populations as F(xA) and F(xB). we have defined three different discriminative 
measures. 

• Kolmogorov-Smirnov measure (KS) 
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• Additive Kolmogorov-Smirnov measure (AKS) 
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• Scaled Kolmogorov-Smirnov measure (SKS) 
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where the scaling coefficient α(g) is defined as follows 
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High values of these measures indicate that two distributions are different (don’t  
belong to the same population of samples).  

2.5   The Linear Multi-input SVM Method 

This method assesses the gene discriminative ability by considering all of them to-
gether. This is quite important since the cooperation of genes with the other may 
change significantly the importance of the genes. Our approach follows the idea of 
RFE-SVM [3]. The method is based on the idea, that the absolute values of the 
weights of a trained linear classifier produce a gene ranking. The gene associated with 
the larger weight is more important than that associated with the small one. The linear 
kernel SVM is used as the classifier, because this kernel does not deform the original 
impact of the gene on the result of the classification.  

The features connected with the output of SVM through the weights of highest ab-
solute values are regarded as the most important for recognition of these classes. All 
values of weights have been arranged in decreasing order and only the most important 
have been selected for each pair of classes. The results of this ranking will be referred 
by MSVM. 

2.6   The Linear Single-Input SVM 

The last method considered for gene selection is the application of the single-input 
Support Vector Machine [4],[8],[10]. The first step of this method is training the 
SVM network by using only one gene at a time. We train as many networks as is the 
number of genes. The predictive power of the single gene for a classification task is 
characterized by the value of the error function of the class recognition obtained by a 
one-dimensional linear SVM trained to classify learning samples on the basis of only 
one gene of interest. The smaller this error the better is the quality of the feature. 
Training many SVM networks by applying one feature at a time, selected in turn from 
the feature set, allows to create the ranking of the genes. The results of this ranking 
will be referred by 1SVM. 

3   The Results of Numerical Experiments 

The numerical experiments have been performed for the gene expression microarray 
data representing two problems: prostate tumour (PT) and neuroma (NR). We used 
the freely accessible data set concerning PT and NR [13]. 

3.1   The Data Base 

Table 1 depicts the most important details of the data of both problems. The PT data 
contained 102 rows of 10509 genes (columns). The first class corresponds to the pa-
tients suffering from B-cell lymphoma and the second class represents the reference 
data corresponding to healthy patients. The NR data contained 47 rows of 2308 genes. 
The first 29 rows represent the patients suffering from Ewing Sarcoma and the rest 18 
represent the malignant cancer of neuroblastoma [13]. The considered problems differ 
significantly with respect to the type of data. 
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Table 1. The most important data characterizing prostate tumour and neuroma  

Name of problem Number of genes Number of representa-
tives of class 1 

Number of representa-
tives of class 2 

Prostate tumour (PT) 10509 52 50 
Neuroma (NR) 2308 29 18  

 

 
The first step in pre-processing was the normalization of the data corresponding to 

each gene. Standard statistical normalization has been applied. For each column (gene 
g) we performed the transformation ( ) )(/)(: ggmgg σ−= , where m(g), σ(g) is respec-

tively the mean and standard deviation of the data corresponding to the gene g. These 
normalization was performed for PT and NR independently.  

3.2   The Results of Gene Selection 

The next step of experiment is the application of each of 8 mentioned selection meth-
ods of gene assessment for PT and NR independently. 10000 runs of each algorithm 
by using 90% of randomly selected data have been performed and only the first 100 
genes have been selected in each run. This number of genes was sufficient to get the 
idea of the most representative genes in each case. On the basis of this we have  
selected the genes which appeared most frequently in these runs. Using these histo-
grams we have selected the genes appearing with different ranges of repeatability in 
all runs (100%, >90%, >80%, >60%, etc.).  

Table 2. The number of genes for PT and NR selected by individual ranking method according 
to their repeatability in 10000 runs of experiment 

Prostate tumour (PT) Neuroma (NR) Ranking 
method >60% >80% >90% 100% >60% >80% >90% 100% 
CSD 76 62 51 32 76 60 58 48 
COR 73 60 50 31 77 58 52 37 
WIL 72 55 47 32 75 66 60 37 
KS 78 55 44 25 74 54 43 36 
AKS 71 53 45 32 76 64 60 38 
SKS 83 59 48 31 71 49 37 19 
MSVM 76 54 45 31 75 59 51 36 
1SVM 75 58 47 30 72 55 47 29 

 

 
Table 2 presents the numerical results of such ranking for PT and NR. The num-

bers in the table point the quantity of genes of the defined repeatability. 
In the next step we have analysed the number of the same genes selected simulta-

neously by different methods of ranking. Selecting the same gene as the most impor-
tant by different strategy confirms its objective significance and representativeness for 
the particular cancer problem. This time only small portion of genes have been se-
lected commonly. Once again we have selected the genes in different categories: 
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100% of repeatability, >90%, >80% of repeatability, etc. Table 3 presents the results 
of such selection for PT and NR.    

Table 3. The final aggregated results of gene selection by all methods for PT and NR   

Range of 
repeatability 

Number of selected 
genes for PT 

Number of selected 
genes for NR 

100% 7 8 
>90% 23 13 
>80% 42 28 
>70% 49 39 
>60% 57 51 
>50% 69 67 

 
 

As a result of all experiments we have selected very small number of genes associ-
ated with each cancer problem: 7 genes for prostate tumour and 8 genes for neuroma. 
In further analysis we will treat them as the most important for cancer recognition.  

To assess the correctness of this choice we have graphically illustrated the distribu-
tion of data at the existence of 100 randomly selected genes and at the specific num-
ber of the most important genes. Fig. 1 presents this comparison for the prostate  
tumour and Fig. 2 for neuroma problem in a graphical form. 

It is evident in both cases that the selected genes form specific patterns well differen-
tiating both classes of data. There is a visible border of the specific pattern of gene value 
distribution for both classes and this border is in a good agreement with the classes 
border. In the case of randomly selected gene representation this border was practically 
invisible.  
 
 

 
 
Fig. 1. The distribution of PT data at all (left) and 7 selected (right) genes representation. The 
horizontal axis represents genes and the vertical one – the patients: the first 52 patients from the 
top belong to the first class. 
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Fig. 2. The distribution of NR data at all (left) and 8 selected (right) genes representation. The 
horizontal axis represents genes and the vertical one – the patients: the first 29 patients from the 
top belong to the first class. 

   

 

Fig. 3. The PCA distribution of PT at representation of the data by the best 100 genes (left) and 
after removing 7 genes of 100% repeatability (right) 

The other aspect of assessment of the most important genes selection is the illustra-
tion of the distribution of data belonging to two classes using PCA analysis. PCA is a 
technique of mapping the N-dimensional data to K-dimensional space using the linear 
transformation y=Wx, where x represents the original N-dimensional vector, y – the 
K-dimensional vector and W is the transformation matrix [8]. We have mapped the 
multidimensional data represented by the most important 100 genes and the data  
deprived of the genes of 100% repeatability (7 genes for PT and 8 genes of NR) to  
2-dimensional space (K=2) and presented the mapped data y on these two most  
important principal components PCA1 and PCA2. To keep equal dimension of the 
original data x under transformation we have substituted the removed data by the 
genes of the worse repeatability. 

Fig. 3 and 4 depict the results for PT and NR. The left figure presents the distribu-
tion of data containing all 100 important genes and right figure represents the situa-
tion after removing from the set the most important genes of 100% repeatability. The 
sign × represents the first class and the circle – the second class. At the same time we 
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have made the clusterization of both classes of data using K-means algorithm and the 
proper positions of cluster centers are depicted using large symbols of x and circle, 
respectively. In clustering we have adapted strategy that 10 data points should form 
one cluster (on average). 

 

  

Fig. 4. The PCA distribution of NR at representation of the data by the best 100 genes (left) and 
after removing 8 genes of 100% repeatability (right) 

It is evident that elimination of the most important genes introduces a lot of 
changes in data distribution. First, after removing the best genes the dispersion of data 
increases a lot (compare the scale of PCA1 and PCA2 in both cases). Secondly the data 
points belonging to the same class are forming compact clusters close to each other 
for the set containing all best genes. After removing the best genes the same data are 
largely dispersed.  

To get the quantitative measure of both results we have calculated the mean distances 
of the data points to their winning cluster centers as well as the appropriate standard 
deviations of them. The results corresponding to PT and NR are presented in Table 4.  

It is evident that after removing the best genes (7 in PT and 8 in NR) the quality 
measures of the clusters have dramatically deteriorated: the mean distances of all 
points to their winning clusters have been increased more than 15 times for PT and 
more than 5 times for SR. Similar rates of deterioration has been observed for stan-
dard deviations. This confirms that the best genes are very good representatives of the 
appropriate classes of cancer. 

Table 4.  The mean distances and standard deviations of the distances of data points to their 
winning cluster centers for the best 100 genes and after removing the best genes of 100% re-
peatability for PT and NR problems  

PT NR  
All 100 best 

genes 
After removing 

7 best genes 
All 100 best 

genes 
After removing 

8 best genes 
Mean of  
distances 

0.15e3 0.23e4 1.37 7.33 

Std of distances 0.08e3 0.07e4 0.86 4.37 
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3.3   The Results of SVM Classification 

In the last step of checking the quality of the selected genes we have applied them in 
recognition of two different classes of data on the basis of the selected genes. As the 
classifier we have applied Support Vector Machine of Gaussian kernel. To get the 
reliable results of classification we have repeated the experiments 10000 times using 
each time 2/3 of the randomly selected data for learning and the other 1/3 of the data 
for testing the trained classifier. Each time different set of learning and testing data 
has been used in experiment. The average results of testing have been taken into ac-
count at the assessment of classification results. In the first set of experiments have 
used all 100 genes found as the best. Then we have removed the set of the best genes 
corresponding to their repeatability range extending from 90% to 100%, then 80%-
90%, 70%-80% and from 60% to 70%. After removing the appropriate set of genes in 
each trial their place has been taken by the other set of the less important genes, in 
order to keep the number of genes equal in all experiments. In this way we can ob-
serve how the best selected genes influence the statistical accuracy of classification. 
Table 5 presents the results of such experiments. 

It is evident that the reduction of the best genes (the range of repeatability from 
90% to 100%) significantly decreases the efficiency of classifier system. The error of 
recognition has increased from 7.6% to 10.8% for PT and from 0.06% to 0.79% for 
NR. To check the general philosophy of splitting the population of genes into the best 
and worst sets according to their recognition ability we have also performed the same 
experiments of classification using each time 100 least significant genes. In the case 
of PT we have got the relative error equal 47.3% and for NR this error was equal 
39.2%. These results confirm the effectiveness of our method of gene ranking.  

It is also interesting to compare our results of classification to the other reports on 
the similar data basis. Our result concerning prostate tumour error (7.6% of average 
error) belongs to the best. The PT average error reported in the publications change 
from 5-13% using SVM-RCE [11], 5-7% using SVM-RFE [3] and 6-10% using PDA-
RFE [11] depending on the number of genes taken into considerations. 

 

Table 5.  The statistical results of testing the SVM classifier at different composition of genes 
for PT and NR problems 

PT NR 
Reduced genes Number of 

reduced genes 
Average testing 

error [%] 
Number of 

reduced genes 
Average testing 

error 
No reduction 0 7.6±0.16 0 0.06±0.03 
60%-70% 7 8.1±0.16 12 0.10±0.04 
70%-80% 8 8.5±0.03 11 0.13±0.05 
80%-90% 19 9.3±0.02 15 0.16±0.03 
90%-100% 23 10.8±0.11 13 0.79±0.06 

4   Conclusions 

The paper has proposed the ensemble of methods for selection of the most important 
genes representing the microarray gene expression data for prostate tumour and  
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neuroma. We have applied different ranking methods relying on various basis: the 
correlation parameters, the clusterization measures, the statistical hypothesis and 
linear Support Vector Machine. The results of ranking have been compared to each 
other and the genes commonly selected by all methods have been treated as the most 
important and representative for the considered cancer problems. 

Application of the selected genes in recognition of the classes of cancer using 
SVM classifier has also confirmed the correctness of the proposed methodology of 
gene selection. The developed gene selection tools might be used in future research 
for predicting the potential danger of tumour on the basis of gene expression microar-
ray analysis.  
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Abstract. The geography which underpins the collection of Australian 
economic and social data is based on administrative areas, rather than having 
behavioural significance. Within most EU countries Coombes’ rules-based 
grouping algorithm [1] which uses commuting flow data has been employed to 
construct Travel to Work Areas, but other approaches including Intramax (a 
hierarchical technique) have also been utilised. Recent developments in fuzzy 
set theory have enabled the comparison of the local accuracy of the solutions 
associated with different grouping methods. This paper will utilise both the 
Intramax technique and the modified version of Coombes’ updated algorithm 
[2] to compare the properties of the solutions associated with grouping the 
Australian Statistical Local Areas using Journey to Work data from the 2006 
Census. 

Keywords: Closure, interaction, fuzzy sets, MAUP. 

1   Introduction 

The geography which underpins the collection of most economic and social data is 
typically based on administrative areas, rather than having any behavioural 
significance. Most spatially oriented research has been reluctant to acknowledge that 
the interpretation of these data can be compromised by the Modifiable Areal Unit 
Problem (MAUP), which has long been recognised by geographers. [3] notes that ‘the 
areal units (zonal objects) used in many geographical studies are arbitrary, modifiable, 
and subject to the whims and fancies of whoever is doing, or did, the aggregating’ so 
that the ensuing analysis is problematic. In addition, there has been a reluctance to 
adopt spatial econometric techniques, despite the likely spatial interdependence of 
contiguous areas. 

Using measures of closure and interaction based on commuting flow patterns, [1] 
developed a rules based algorithm to identify UK Travel to Work Areas (TTWAs) 
based on UK Census data. TTWAs are defined as geographical areas within which a 
high percentage of commuting by residents occurs. It is the site for the interplay 
between labour supply and demand and, in principle, should be the appropriate area 
over which labour market statistics can be defined [4]. So each TTWA is considered 
to be largely self-contained (closed) from the rest of the economy, even though some 
commuting flows do cross boundaries. The algorithm has been adopted with some 
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amendments in many international studies. Also a generalisation of the algorithm, 
known as the European Regionalisation Algorithm, was recommended by Eurostat [5] 
as the standard approach for grouping areas in European countries [6]. [7] used this 
algorithm to analyse Australian Bureau of Statistics Journey to Work data from the 
2001 Census defined across Statistical Local Areas (SLAs).  

[5] quoted in [4], argues that the principles for defining these spatial clusters 
should be in declining order of priority, (1) autonomy: maximised self-containment; 
(2) homogeneity: minimised geographical area; (3) coherence: recognisible 
boundaries; and (4) conformity: alignment with administrative boundaries. However 
large groups of areas with high levels of self-containment may be inconsistent with 
homogeneity, because they contain pockets of both high and low unemployment. 
Also, within the Australian context, if the physical areas of groups of SLAs are 
minimised, then the final number of groups will be maximised, which imposes 
significant sampling costs for the monthly Labour Force Survey on the cash-strapped 
Australian Bureau of Statistics (ABS).  

[10] has applied fuzzy set theory to the Coombes solution as a means of 
establishing its local properties. This entails comparing the values of a membership 
function (MF) across the different groups for each area. 

An alternative technique Intramax, which is hierarchical, was developed by [8] and 
employs a simple decision rule to group areas. The key question is when to stop the 
grouping process. Intramax has also been utilised in the international literature, 
including [9] for Australia.   

The absence of a formal mathematical approach to solve for the ‘optimal’ grouping 
reflects in part the idiosyncrasy of the problem, with different grouping techniques 
imposing different minimum criteria on the solution, including containment and levels 
of employment of residents. A global search procedure across all possible solutions is 
not feasible because of their huge number, since the following are undefined a priori  
a) the number of groups; and b) the size composition of the groups. and c) the 
allocation of areas between the groups. 

Earlier papers [7,9,11] found that the Australian Standard Geographical 
Classification which is used as the basis for data collection does not appear to accord 
with economic behaviour. This geography is being revised by the ABS for the 2011 
Census, using the principles of the Coombes algorithm. The creation of a more 
meaningful geography should enable a more sophisticated analysis of regional 
economic performance.   

This paper will utilise the Coombes’ updated algorithm [2] and the Intramax 
technique to generate two exhaustive and mutually exclusive groupings of Australian 
SLAs using Travel to Work (TTW) data from the 2006 Census. We then use the 
principles of FST, developed by [10] to explore the local properties of the two solutions. 
However the specification of the membership Function used by [10] imparts a bias to 
the calculations. Consequently we also compute an unbiased MF measure.  

We find that, using the biased measure reveals that both solutions yield very few 
misallocated areas, which suggests that both approaches to grouping have strong local 
optimisation properties. On the other hand, the amended MF yields a large number of 
misallocated areas for both techniques. However the modified Coombes algorithm has 
markedly more groups of areas than the Intramax technique, which implies that one or 
both approaches has weak global properties. Hence an alternative grouping procedure 
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should be considered, such as the use of Genetic Algorithms [12,13] or an algorithm 
employing the underlying principles of fuzzy set theory [14].  

2   Rules Based versus Hierarchical Techniques 

2.1   Coombes Algorithm 

The Coombes algorithm [1] was significantly simplified for the analysis of the 2001 
UK Census TTW data and here is used in the analysis of Australian commuting data 
defined across a much broader land mass and hence with some much lower densities 
of local employment and populations of employed residents. Assume that the areas 
have a fixed ordering according to a simple criterion such as their official ABS codes, 
or by actual area or the number of employed residents, etc.  

First, the number of employed residents in the kth group of SLAs, 
kgR can be 

written  
 

where T = [Tij] denotes the s*s TTW matrix. .kgT is the number of employees residing 

in SLA group k,  and there are G groups.  
The minimum closure (self containment) of grouping k can be written 

 

where Tij is the number of employees who live in SLA i and work in SLA j and 

kgT. denote total local employment in the kth group of SLAs.  

[2] impose a spline function which represents a tradeoff between the number of 
resident employees and minimum closure. The minimum number of resident 
employees was set at 1,000 (R1) with a corresponding minimum required rate of 
closure of 0.75, whereas 10,000 (R2) resident employees or more necessitated a rate 
of closure of at least 0.70. Following [2], the spline function took the form shown 
below for group k, with all groups being required to assume a spline value of at least 
Y. 1 

),,min(*)75.0,min( 3221 aRbaRbC
kkk ggg +  

 

Initially the SLA with the lowest spline value, say m is tentatively combined with 
say SLA n with which it has the highest rate of interaction defined as 

 

                                                           
1 The parameters of the spline function which are determined by the minimum closure and 

employment levels take the following values: 7.467 (b1); 7407 (a2); 0.0593 (b2); 5600 (Y) 
with a3 set at 0.8*R2.The specification of the spline does not strictly accord with a linear 
tradeoff between the specified levels of resident employees and closure. 
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where gk is initially a single SLA. The grouping is only consummated if the spline 
value for the combined SLAs exceeds the value of the spline function for SLA group 
n taken by itself.  

The grouping of SLAs can be represented by rows of a grouping matrix A, which 
commences as an s*s identity matrix (A0). One row corresponds to each grouping 
with unit values of the entries corresponding to the SLAs making up the particular 
group. The ordering of the groups, and hence rows of A, are determined by the 
ordering of the lowest SLA for each group. Thus the group represented in row 1, 
includes SLA1, while SLA2 belongs to group 1 or group 2. If m>n and combination 
takes place, then the grouping matrix after one iteration, A1 can be written as 

where [0]s is an s dimensional row vector of zeros and A(m,:) denotes the mth row of 
A. So when an SLA and a group are combined, the consolidated group is represented 
by the nth row of A with n assumed to denote the lowest group member and unit 
values correspond to each group member.  Then, after one iteration, the JTW matrix 
can be written as: 

 

which combines the mth and nth rows and columns, respectively of T.2  
If the spline value falls, SLA m is consigned to a reserve list, and is not 

reconsidered until later. The SLA with the next lowest spline value (assumed below 
Y) is now considered and the same steps are enacted. If this SLA is combined with 
another according to the principles outlined above, the spline functions are re-ranked 
to identify the lowest value. 

At some point, a group of 2 or more SLAs (say group m) with a spline value less 
than Y is selected, say at iteration t-1. It is dismembered and the individual SLAs are 
placed on a separate active list, so, at iteration t, the corresponding row of A is 
deleted. The SLA for possible grouping is the one from this active list which has the 
maximum flow into one of the extant (possibly singleton) groups, gi, ie SLA k such 
that 

.)(max
,

mjg
ij

kg gjTT
in

∈=  

Again SLA k is tentatively combined with group yielding the maximum interaction 
and is officially added to the group if the value of the group’s spline function 
increases. If the latter does not occur, SLA k is also consigned to the reserve list and 
the next SLA from the dismembered group (active list) is chosen according to its flow 
to the extant groups and the same process is followed. Once a member of the 
dismembered group is combined with another group, the remainder of the 

                                                           
2 In general, the grouped TTW matrix can be written as: 
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dismembered group (ie. except those already placed on the reserve list) is retained as 
a group, because the dismembered group can no longer be reformed.3  

Spline values can now be recalculated for the official groups with the reserve list 
SLAs only being reconsidered when all groups satisfy the spline constraint. Then the 
maximum flow requirement (with the extant groups) is imposed to identify an SLA 
from the reserve list, followed by the maximum interaction requirement, with the 
spline constraint being weakened, so that the group with the additional member must 
continue to satisfy the minimum spline constraint. Once all members of the reserve 
list are combined with groups, the algorithm ceases, because all groups still satisfy the 
spline constraint. Some SLAs from the reserve list may not be assigned, in which case 
the algorithm ceases (see below). 

The final version of the matrix, AF represents a unique representation of the 
groupings, and avoids degeneracy [15]. AF can be converted into a unique grouping 

vector, f where :),(iiAf
i

F∑= where f={f(i)} i=1,2,…s.  

2.2   Intramax Technique 

Hierarchical methods group the areas based on a criterion which is gradually lowered, 
until all areas satisfy the criterion [6]. Contiguity requirements can be imposed which 
make the grouping sub-optimal, but reduce the computational demands of the 
procedure, by reducing the number of permutations [16]. The hierarchical model 
gradually raises the internal flows of the consolidated areas and can impose the 
number of required regions, or minimum statistical requirements.  

Under the Intramax method the TTW matrix is considered to be a contingency 
table. The objective function is specified in terms of the differences between the 
‘observed and the expected probabilities that are associated with these marginal 
totals’ [8]. Considering the initial TTW table defined across all areas, then the 

expected value of each i,j commuting flow ijT  is derived as the product of the 

relevant row and column sums  divided by total interaction (commuting flows), N*.  
 

where the expected flows satisfy the column and row constraints, so that 

∑=
j

iji TT . and ∑=
j

jii TT. . 

The null hypothesis for independence between the row and column marginal totals 

of a contingency table is jiij TT = and the difference between the two terms measures 

the extent to which the ‘observed flow exceeds (or falls below) the flow that would 
have been expected simply on the basis of the size of the row and column marginal 
totals’ [8]. 

Treating i and j as singleton groups initially, the objective function to be 
maximised in this hierarchical clustering algorithm is    

                                                           
3 This procedure prevents the program getting into an endless loop with the dismembered group 

being continually reformed with all its member SLAs. 

.*/)( .. NTTT jiij =
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In the absence of a stopping rule, consolidation of areas would continue until there 
was one large grouping. There is no agreed stopping rule. [17] argues that a large 
increase in the within group (intrazonal) flow would not indicate ‘a merger of two 
rather homogenous zones’, so that the consolidation should cease in the previous 
iteration. Since it is impossible to make rigorous comparisons of the outcomes from 
the two grouping approaches, we choose to stop the consolidation process when total 
within group flows represented 75% of total commuting flows.  

Thus neither grouping technique can be viewed as an optimisation procedure, per 
se, since both stopping rules are based on an inequality being satisfied. The local 
accuracy of these two grouping methods can be established by reference to Fuzzy Set 
Theory to which we now turn. 

2.3   Fuzzy Set Theory (FST) 

Fuzzy set theory has been recently applied to TTWAs [10]. The underlying principle 
is that an element (area) can simultaneously belong to different groups of areas to 
different degrees, whereas in classical theory an element can only belong to one group 
[10]. However, since we are seeking to define an exhaustive, mutually exclusive set 
of relatively areal groupings, we do not apply FST to identify a group of overlapping 
regions, but rather to assist in examining the rigor of grouping approaches.  

The FST approach enables the identification of potential misallocations of areas 
across the groups by the measurement of a membership function, so that each area can 
be (partially) assigned to a (series of fuzzy) region(s) group(s). Commuting flow data 
measure both the number of residents of each area who are employed and also the 
level of employment in each area. These two features are combined together to 
construct a fuzzy group.  

We can define a membership function for area i with respect to fuzzy residential 
grouping m, as 

where area i belongs to group m on the basis of a grouping algorithm [10]. On the 
other hand, the membership function with respect to fuzzy local employment is: 

  

Each expression lies between 0 and 1. The membership function with respect to a 
fuzzy group, m, Mim, can be written as the average of these two expressions, so that 
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The membership function for area i can be defined for any fuzzy grouping but it 
would be expected to assume its highest value for the grouping to which it has been 
designated through the algorithm, [10]. 

If the constituent areas of a region have (say) low (residential) membership values 
for that region, then it would be expected that (residential) self-containment for the 
region would be low and hence the region would not be well defined [10]. Let M = 
[Mim] denote the s*G matrix of membership values. Then if area i belongs to group m, 
Mim should assume the greatest magnitude in the ith row of M, ie [Mi.].  

This comparison of row entries is biased, however, because included in the 
calculation of both components of Mim is necessarily, Tii, which typically dominates 
the corresponding row and column of the TTW matrix. On the other hand, for say a 
singleton group k, the numerators of the two components of Mik, are just Tik and Tki, 
respectively. 

There are two ways of addressing this issue. The first would be set the diagonal 
elements of [T] to zero in the calculation of the MF, but this would i) be inconsistent 
with the Intramax approach which is based on the consideration of gross Intrazonal 
flows which include intra-area flows; and ii) would undermine the use of the 
principles of FST to develop a new grouping algorithm, (see, for example, [14]) 
because each area would be combined with at least one other should any off-diagonal 
flows be positive. Alternatively all the numerators in the ith row should include Tii, so 
that the elements of [Mi.] represent the membership function corresponding to area i 
belonging to each of the G groups in turn.4 In the calculations below, we adopt this 
strategy. 

3   Data 

JTW data based on 1411 areas was provided by the ABS. Small remote areas with 
local employment or employed residents of less than 50 were removed. This left 1365 
areas. The ABS randomises low flows between SLAs to counter concerns about 
confidentiality. This can assume importance, given the form of the Intramax objective 
function, since one or both ratios can be large, despite a small numerator. 
Consequently all flows of 3 or less were set to zero. 

4   Results and Discussion 

Table 1 summarises the results for the two grouping approaches, based on both the 
biased and unbiased versions of the MF. First, the Coombes algorithm failed to absorb 
4 SLAs into the groups. None of these areas satisfied the spline constraint in its own 
right, but all lay within the range of 1,000 to 10,000 resident employees. This result 
points to a difficulty in choosing appropriate parameters for the spline function.  

Second, the Coombes algorithm which yielded 263 groups (plus the 4 exiled 
groups)  and the Intramax algorithm, with a much lower number of groups (143), both 
 

                                                           
4 The denominator, say for the first term of the MF of area i becomes T.i + (G-1)Tii to retain the 

condition that the summation remains unity. This means that that the FST principles would 
marginally change as the number of groups declined, [14]. 
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Table 1. Summary Statistics for Local Labour Markets 

Algorithm Self-Containment
Residential Employment

Group MAB MAU Max Min Mean SD Max Min Mean SD

Coombes 263 3 225 1.00 0.708 0.905 0.071 0.998 0.718 0.911 0.056

Intramax 143 1 145 1.00 0.373 0.906 0.153 1.000 0.275 0.912 0.137  

Source:  ABS 2006 Census Journey to Work data and author’s calculations. 
Notes:  MAB, MAU denotes the number of areas which were misallocated, using the biased 

and unbiased, measures based on FST, respectively. 
The groups recorded for the Coombes algorithm, exclude the 4 exiled SLAs. 

 
had relatively high average closure rates by residence and employment (0.905, 0.911 
for Coombes and 0.906, 0.912 for Intramax, respectively). The Coombes algorithm 
yielded 101 singleton groups, as compared to 27 under the Intramax technique. 43 of 
the Intramax groups did not satisfy the Coombes spline constraint.  

Third, the number of areas which are misallocated according to the biased FST 
membership function is very low for both techniques, putting aside the 4 exiled SLAs 
under the Coombes algorithm. On the other hand, using the corrected specification of 
the MF reveals major errors in the grouping techniques with 225 of the 1361 areas 
being misallocated using the Coombes algorithm, and 145 of the 1365 areas under the 
Intramax technique. It should be noted that this measure identifies the number of 
separate relocations of one area at a time which enhance overall closure. This 
suggests that neither algorithm is efficient in achieving a local optimum solution, as 
defined by grouping based on high rates of closure, which implies that the algorithms 
lack robust global properties. Any comparison of the results needs to be undertaken 
very cautiously, however, because the criteria being employed in the operation of the 
two algorithms differ, as well as differing from the closure characteristics of the MF.  

The operation of Coombes algorithm relies on the tradeoff between minimum 
closure and the residential employment level, but the consolidation of groups is based 
on an interaction function, which roughly speaking measures the sum of the product 
of two closure terms. The setting of the 4 key parameters assumes considerable 
importance, but, while it may be argued that the minimum level of residential 
employment can be set a priori, reflecting considerations of sample size and/or the 
number of groups, the rates of closure and the ‘maximum’ residential employment 
cannot be so easily determined to achieve a particular number of groups or minimum 
rate of closure. Relatedly, the impact of a given set of parameter values on the number 
and properties of the resulting groups is hard to anticipate. There are a huge number 
of permutations based on varying combinations of the magnitudes of the 4 
parameters. It is evident that the complete dismemberment of proto-groups, which do 
not satisfy the spline constraint has a major impact on the properties of the final 
solution, with a significantly larger number of singleton groups than under the 
Intramax algorithm. Also the mechanics of the algorithm are complex with both 
active and reserve lists. While it may be possible for small remote areas to constitute 
singleton groups, a large number of singleton groups is undesirable. 
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On the other hand, the Intramax algorithm does not allow for any dismemberment 
of proto-groups. Also the interaction function differs from that used in the Coombes 
algorithm.5 The low minimum rate of closure underlines the point however, that the 
grouping criterion under Intramax is quite different than those criteria characterising 
the Coombes algorithm. The number of groups in the final solution is more readily 
controlled under the Intramax technique, since the stopping rule can easily be adjusted 
to achieve a given form of final solution, which could be based on a minimum closure 
requirement, rather than the aggregate Intrazone flow. There may be limits as to the 
desirable rates of closure across groups. Otherwise convergence may be achieved 
with a singleton group, unless there is genuine geographical separation of the labour 
markets. 

5   Conclusion 

This paper has showed that neither the modified Coombes nor the Intramax 
algorithms appear to exhibit robust local properties, with respect to a criterion of 
closure, as defined by the revised MF specification. A major disadvantage of the 
rules-based Coombes algorithm is the difficulty in setting the underlying parameter 
values and also the proliferation of singleton groups, due, in part, to the 
dismemberment of groups when they do not satisfy the spline constraint. 
Dismemberment may detract from the optimal grouping process because it ensures 
that a group of areas which fails the spline constraint cannot be subsequently 
regrouped together. On the other hand, no dismembering occurs under a the 
hierarchical algorithm, but there is none of the uncertainty associated with setting 
parameter magnitudes. It can be argued, however, that, while the spline function 
explicitly incorporates closure, by group, this is not found in the Intramax algorithm, 
so that a harsh judgment of the Intramax procedure on the basis of the revised 
Membership Function is unwarranted. 

A number of alternative approaches can be considered. The adoption of an 
Evolutionary Algorithm with a well specified fitness function [13,15] is worthy of 
consideration. A new approach which appears to have some potential to address the 
shortcomings of the Coombes and Intramax algorithms is to design an algorithm with 
an objective function based on the application of the MF principle [14]. Marginal 
dismemberment can occur and the revised form of the MF ensures that the algorithm 
does not cycle. The simplicity of the iterations which are of a similar form to those of 
the Intramax procedure is also an advantage of such an approach. Thus a stopping rule 
can be readily imposed.   

In conversation with the author, an ABS official indicated that in the order of 70 
Functional Economic Areas (TTWAs) would be an appropriate basis for a new 
Australian geographical classification. This would tend to negate any behavioural 

                                                           
5 The respective first terms of the interaction expressions are ]*/[ ..

2

nmnm gggg TTT and 

]*/[ .. nmnm gggg TTT , for the Coombes and Intramax algorithms, where the common N*, 

which does not impact on which consolidation of groups is chosen has been removed from 
the second expression. 
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basis for the new classification, but would imply that adoption of one of the 
approaches outlined above, which can impose some control on the number of groups, 
would be appropriate.        
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Abstract. In this paper we present our original methodology, in which
Matching Pursuit is used for networks anomaly and intrusion detection.
The architecture of anomaly-based IDS based on signal processing is pre-
sented. We propose to use mean projection of the reconstructed network
signal to determine if the examined trace is normal or attacked. Exper-
imental results confirm the efficiency of our method in worm detection
scenario. The practical usability of the proposed approach in the intru-
sion detection tolerance system (IDTS) in the INTERSECTION project
is presented.

1 Introduction

Intrusion Detection Systems (IDS) are based on mathematical models, algo-
rithms and architectural solutions proposed for correctly detecting inappropri-
ate, incorrect or anomalous activity within a networked systems [1].

Intrusion Detection Systems can be classified as belonging to two main groups
depending on the detection technique employed:

1. anomaly detection
2. signature-based detection.

Anomaly detection techniques rely on the existence of a reliable characterization
of what is normal and what is not, in a particular networking scenario. More
precisely, anomaly detection techniques base their evaluations on a model of
what is normal, and classify as anomalous all the events that fall outside such a
model [2].

In this paper our original methodology for networks anomaly and intrusion
detection based on Matching Pursuit is presented. In Section 2 general overview
of the proposed architecture and decision block details are shown. Moreover,
the motivation for signal processing methodologies used in intrusion detection

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 527–536, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is given. In section 3 Matching Pursuit algorithm and base function of the pro-
posed dictionary design is shown. Experimental results and conclusion are given
thereafter.

The major contribution of this paper, is the intrusion/anomaly detection al-
gorithm based on the Matching Pursuit. As to our best knowledge, we have not
met any other IDS system based on matching pursuit.

Even though our Matching-Pursuit anomaly detection application is not work-
ing in a real time now, it is used in the off-network layer of INTERSECTION
Intrusion Detection Tolerance System (IDTS).

2 Signal Processing Based Network Anomaly Detection

By profiling the properties of normal network traffic and modeling intrusions
or unwanted traffic as anomalies, it is possible to detect the occurrence of such
events within reasonable time so to activate reaction and response procedures.
Determining the normal behavior model, however, is a difficult task due to the
presence of different trends in data, which might be influenced by the time of
day, the day of week and seasonal variations.

In our approach we store “normal” traces in a reference database. Normal
traces represent traffic from days, we are sure no attacks occurred. These ref-
erence traces are compared to current, examined traces. Current traces may be
either sniffed from traffic or for experimental purposes may represent old attacks
(so that the ground truth is known).

The general overview of our intrusion detection system is presented in Figure
1. The overview of a decision block is explained in Figure 2.

Signal processing techniques have found application in Network Intrusion De-
tection Systems because of their ability to detect novel intrusions and attacks,
which cannot be achieved by signature-based approaches. It has been shown that
network traffic presents several relevant statistical properties when analyzed at

Fig. 1. IDS system block diagram
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Fig. 2. IDS decision block diagram

different levels (e.g. self-similarity, long range dependence, entropy variations,
etc.) [3]. Approaches based on signal processing and on statistical analysis can
be powerful in decomposing the signals related to network traffic, giving the abil-
ity to distinguish between trends, noise, and actual anomalous events. Wavelet-
based approaches, maximum entropy estimation, principal component analysis
techniques, and spectral analysis, are examples in this regard which have been
investigated in the recent years by the research community [4]-[8].

A powerful analysis, synthesis, and detection tool in this field is represented by
the wavelets. Indeed, time- and scale-localization abilities of the wavelet trans-
form, make it ideally suited to detect irregular traffic patterns in traffic traces.
Recently many wavelet-based methods for detection of attacks have been tested
and documented. Some are based on the continuous wavelet transform analy-
sis, most of them however refer to the discrete wavelet transformation and the
multiresolution analysis [3].

However, Discrete Wavelet Transform provides a large amount of coefficients
which not necessarily reflect required features of the network signals.

Therefore, in this paper we propose another signal processing and decompo-
sition method for anomaly/intrusion detection in networked systems. We de-
veloped original Anomaly Detection Type IDS algorithm based on Matching
Pursuit.

3 Anomaly Detection Based on Matching Pursuit

Matching Pursuit signal decomposition was proposed by Mallat and Zhang [9].
Matching Pursuit is a greedy algorithm that decomposes any signal into a

linear expansion of waveforms which are taken from an overcomplete dictionary
D. The dictionary D is an overcomplete set of base functions called also atoms.

D = {αγ : γ ∈ Γ} (1)

where every atom αγ from dictionary has norm equal to 1:

‖αγ‖ = 1 (2)
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Γ represents set of indexes for atom transformation parameters such as transla-
tion, rotation and scaling.

Signal s has various representations for dictionary D. Signal can be approxi-
mated by set of atoms αk from dictionary and projection coefficients ck:

s =
|D|−1∑
n=0

ckαk (3)

To achieve best sparse decomposition of signal s (min) we have to find vector
ck with minimal norm but sufficient for proper signal reconstruction. Matching
Pursuit is a greedy algorithm that iteratively approximates signal to achieve
good sparse signal decomposition. Matching Pursuit finds set of atoms αγk

such
that projection of coefficients is maximal. At first step, residual R is equal to
the entire signal R0 = s.

R0 = 〈αγ0 , R0〉αγ0 + R1 (4)

If we want to minimize energy of residual R1 we have to maximize the projection
|〈αγ0 , R0〉|. At next step we must apply the same procedure to R1.

R1 = 〈αγ1 , R1〉αγ1 + R2 (5)

Residual of signal at step n can be written as follows:

Rns = Rn−1s − 〈
Rn−1s|αγk

〉
αγk

(6)

Signal s is decomposed by set of atoms:

s =
N−1∑
n=0

〈αγk
|Rns〉αγk

+ Rns (7)

Algorithm stops when residual Rns of signal is lower then acceptable limit.
In basic Matching Pursuit algorithm atoms are selected in every step from

entire dictionary which has flat structure. In this case algorithm causes significant
processor burden. In our coder dictionary with internal structure was used.

Dictionary is built from:

— Atoms,
— Centered atoms,

Centered atoms groups such atoms from D that are as more correlated as pos-
sible to each other. To calculate measure of correlation between atoms function
o(a, b) can be used [2] .
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o (a, b) =

√
1 −

( |〈a, b〉|
‖a‖2 ‖b‖2

)2

(8)

The quality of centered atom can be estimated according to (9):

Ok,l =
1

|LPk,l|
∑

i∈LPk,l

o
(
Ac(i), Wc(k,l)

)
(9)

LPk,l is a list of atoms grouped by centered atom. Ok,l is mean of local distances
from centered atom Wc(k,l) to the atoms Ac(i) which are strongly correlated with
Ac(i).

Centroid Wc(k,l) represents atoms Ac(i) which belongs to the set i ∈ LPk,l.
List of atoms LPk,l should be selected according to the Equation 10:

max
i∈LPk,l

o
(
Ac(i), Wc(k,l)

) ≤ min
t∈D\LPk,l

o
(
Ac(t), Wc(k,l)

)
(10)

In the proposed IDS solution 1D real Gabor base function (Equation 11) was
used to build dictionary [10]-[12].

αu,s,ξ,φ(t) = cu,s,ξ,φα(
t − u

s
) cos(2πξ(t − u) + φ) (11)

where:

α(t) =
1√
s
e−πt2 (12)

cu,s,ξ,φ - is a normalizing constant used to achieve atom unit energy,
In order to create overcomplete set of 1D base functions dictionary D was built

by varying subsequent atom parameters: Frequency ξ and phase φ, Position u,
Scale s.

Base functions dictionary D was created with using 10 different scales (dyadic
scales) and 50 different frequencies.
In Figure 3 example atoms from dictionary D are presented.

450 500 550 600

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

460 480 500 520 540 560

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 3. Example dictionary atoms
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4 Experiments and Results

In our experiments we decided to detect worm attacks. We tested our algorithms
on normal and attacked traces to evaluate if our method is capable of detecting
known worms.

Similarly to the work by Dainotti et al. [13] we tested the efficiency of our
algorithms on Slammer and Witty worms. Slammer worm spread in 2003, while
Witty spread in March 2004.

In our experiments we use TCP and UDP packets of Slammer and Witty
made available by the WIDE-MAWI and CAIDA projects [15][16].

In this paper we will show our algorithm tested on attacked and normal traces.
The attacked traces represent traffic (TCP and UDP packets) from March

20th (Witty) (Figure 4) and March 25th (Slammer) (Figure 5).
The normal traces represent traffic from March 6th and March 13th

(Figures 6 7).
The calculated values of Matching Pursuit Mean Projection for our test traces

(normal and attacked) are presented in Tables 1-2.
In tables 1 Matching Pursuit Mean Projection values for TCP packets are

presented. In tables 2 Matching Pursuit Mean Projection values for UDP packets
are given, respectively.

Table 1. Mean Projection values calculated for test TCP traces

TCP Trace MP
25.03.2004 (Slammer) 620
20.03.2004 (Witty) 667

6.03.2004 453
13.03.2004 373
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Fig. 4. Traces attacked by Witty worm from March 20th - TCP (left) and UDP (right)
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Table 2. Mean Projection values calculated for test UDP traces

UDP Trace MP
25.03.2004 (Slammer) 82
20.03.2004 (Witty) 127

6.03.2004 32
13.03.2004 40

Decision block of our system is based on the Matching Pursuit Mean Pro-
jection values. As presented in Figure 1 we calculate difference Diff between
examined and normal traces stored in a reference database. If the value Diff is
larger than a certain threshold t our application signalizes the attack/anomaly.

In the experiments shown here, in the case of Worm attacks, our application
was set to t = 30%, which means that if Matching Pursuit Mean Projection
differs more than 30% from the reference normal traces the attack should be
detected.

As presented in Tables 1-2 mean projection values differ significantly and our
IDS application successfully detects Witty and Slammer worms. In our exper-
iments we can report 100% worm detection for TCP and UDP packets with
no false alarms. However, so far we tested our method on a limited number of
traces. We decided to use known and benchmark traces and worms first. Now we
extensively test our method with a larger number of real-networks anonimized
traces as well as with the generated traffic traces.

Fig. 8. IDS decision block diagram
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5 Conclusion

In the article our developments in feature extraction for Intrusion Detection sys-
tems are presented. We showed that Matching Pursuit may be considered as
very promising methodology which can be used in networks security framework.
Upon experiments we may conclude that Matching Pursuit Mean Projection
differs significantly for normal and attacked traces. Therefore our system suc-
cessfully detects Slammer and Witty worms.

The major contributions of this paper is a novel algorithm for detecting
anomalies based on signal decomposition. In the classification/decision module
we proposed to use developed matching pursuit features such as mean projection.
We tested and evaluated the presented features and showed that experimental
results proved the effectiveness of our method.

The proposed Matching Pursuit signal based algorithm applied for anomaly
detection IDS will be used as detection/decision module in the INTERSECTION
Project security-resiliency framework for heterogeneous networks.

Signal-based anomaly detection type ADS/IDS will be used as the secondary
detection/decision module to support real-time IDS. Such approach is proposed
for off-network layer of the INTERSECTION framework.

The operator will have a chance to observe the results of signal-based IDS
in a near real-time in order to trigger or stop the reaction of real-time IDS.
Such approach will both increase the security (less detected anomalies/attacks)
and increase the tolerance (less false positives). The overview of the Matching
Pursuit IDS role in the INTERSECTION architecture is given in Figure 8.
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Abstract. In the recent financial crisis the incidence of important cases
of bankruptcy led to a growing interest in corporate bankruptcy predic-
tion models. In addition to building appropriate financial distress pre-
diction models, it is also of extreme importance to devise dimensionality
reduction methods able to extract the most discriminative features. Here
we show that Non-Negative Matrix Factorization (NMF) is a powerful
technique for successful extraction of features in this financial setting.
NMF is a technique that decomposes financial multivariate data into
a few basis functions and encodings using non-negative constraints. We
propose an approach that first performs proper initialization of NMF tak-
ing into account original data using K-means clustering. Second, builds a
bankruptcy prediction model using the discriminative financial ratios ex-
tracted by NMF decomposition. Model predictive accuracies evaluated in
real database of French companies with statuses belonging to two classes
(healthy and distressed) are illustrated showing the effectiveness of our
approach.

1 Introduction

The Non-Negative Matrix Factorization (NMF) [1] is an algorithm able to learn
a parts-based representation by imposing non-negativity constraints that allow
only non-subtractive combinations. Similarly to principal component analysis
(PCA) [2] that is based on finding a new representation (eigenspace) of the orig-
inal data, NMF is also a projection method, since the original data is projected
onto the new space. In contrast to PCA, the projected coefficients that are ob-
tained using the NMF method are only positive. Furthermore, some of the basis
components for PCA are distorted versions of the original data. The NMF basis
are radically different: it is possible to extract localized features that correspond
better with intuitive notions of the parts of the original data [1].

Although the concept is not new, since it has been investigated in linear
algebra [3] where it was called positive matrix factorization (PMF), the last

M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 537–547, 2009.
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ten years have witnessed a large amount of research on NMF since the seminal
work [1,4] was presented. Moreover, several variants of NMF have been proposed
by researchers. Hoyer [5] proposed a method of non-negative sparse coding which
minimizes a new cost function containing a positive regularization parameter.

NMF has also been applied to many areas such as bioinformatics [6,7,8] and
molecular pattern discovery [9], chemometrics [10], physics [11], multimedia data
[12], text mining [13,14], pattern recognition [1], document clustering [15], etc.

In the financial area, Non-negative Matrix Factorization was applied [16] to
the problem of identifying underlying trends in stock market data and it was
demonstrated how to impose appropriate sparsity and smoothness constraints
on the components of the decomposition. Also, in [17] parameterization of the
CreditRisk model for estimating credit portfolio risk is proposed. Therein, a
number of (non-negative) factor loadings, calculated by means of a non-negative
factorization of a positive semi-definite matrix, are used for model estimation.
The numerical optimization of the algorithm is also given.

In our work we apply NMF combined with KNN (K-Nearest Neighbor), FLD
(Fisher Linear Discriminant) Analysis and SVM (Support Vector Machines) to
a large financial database of French companies. This database is very detailed
containing information on a wide set of financial ratios spanning over a period
of five years. It contains three thousands distressed companies and about sixty
thousand healthy ones. In order to make predictions more accurate we tested
the models with data from three previous years priori to failure. The NMF
decomposition of the financial data is very useful to identify local components
of the data set. The representation of the financial statuses of the firms is a
linear combination of the basis functions weighted by the encoding factors. A
novel approach of NMF initialization is investigated using a K-means clustering
which minimizes the sum of squared distances between each data point and its
own cluster center and performs better than randomly.

The paper is organized as follows. In Section 2 a comment is given to dimen-
sionality reduction methods. In Section 3 a brief review of Non-Negative Matrix
Factorization is presented. The proposed approach for classification using NMF
is discussed in Section 4. The financial data base is described in Section 5. In
Section 6 results are presented and discussed. Finally in Section 7 we conclude
the paper along with further lines of future research.

2 Dimensionality Reduction

Dimension reduction is desirable in many real world problems. On the other
hand, we might expect that a great many number of features will result in
more information and potentially higher accuracy. However, a raising important
paradox is that the more features, the more difficult is the process of informa-
tion extraction. Consequently, the task of training the classifier is harder. This
problem is usually addressed as the curse of dimensionality which means that
the number of samples required per variable increases exponentially with the
number of variables.
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The financial data used in this work (and described in Section 5) are of high-
dimensionality, with redundant and possibly correlated features which might
obscure the application of learning algorithms. To avoid the curse of dimen-
sionality, the best practice is either to perform feature selection or to handle
dimension reduction techniques.

Feature selection methods abound and are quite desirable to select those fea-
tures that are more discriminant and can represent all the data [18]. Usually
they are based on a score which is calculated for all features individually and
the features with best scores are selected. However, interactions and correla-
tions between features are omitted during selection. Dimension reduction is an
alternative way, and unlike feature selection, projects the whole data into a
lower dimensional space and new dimensions (components) are constructed us-
ing statistical information contained in the data. Although dimension reduction
is pointed out by its lack of semantics, the new components often reflect the
intrinsic structure of the data.

Principal Component Analysis (PCA) is a well known method used to re-
duce the feature space multidimensionality [2]. PCA computes the eigenvectors
and the corresponding eigenvalues through an orthonormal transformation. By
projecting onto the first few principal directions of the data, new features are
obtained that are linear combinations of the original features. Principal Com-
ponents are thus a set of variables that define a projection encapsulating the
maximum amount of variation in a dataset and is orthogonal (and therefore
uncorrelated) to the previous principle component of the same dataset.

Another method is Non-Negative Matrix Factorization, which became very
popular recently due to its simplicity and impressive results in computer vision
and pattern recognition.

3 Background on Non-negative Matrix Factorization

Mathematically, Non-negative Matrix Factorization (NMF) can be described as
follows: given an n × m matrix V composed of non-negative elements Vij ≥ 0,
the task is to factorize V into a non-negative matrix W of size n×r and another
non-negative matrix H of size r×m such that V ≈ WH where r is a pre-specified
positive integer that should satisfy the principle r < nm/(n + m).

The constrained minimization problem can be put as minimizing the difference
between V and WH by [19]:

min
W,H

f(W, H) ≡ 1
2

n∑
i

m∑
j

(Vij − (WH)ij)2 (1)

subject to Wia ≥ 0, Hbj ≥ 0 ∀i, j (2)

If each column of V represents an object, NMF approximates it by a linear
combination of r basis columns in W . The most popular approach [1] to solve this
problem seeks to iteratively update the factorization based on a given objective
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function. This approach is similar to that used in Expectation-Maximization
(EM) algorithms and is known as the multiplicative algorithm given below:

NMF Algorithm [1]

input: V ∈ IRn×m and r = rank
Step 1. Randomize W and H with positive numbers in [0, 1].

Select a cost function to be minimized
Step 2. With W fixed, update H , then update W for the updated H .

Iterate until the process converges.
Return: W ∈ IRn×r and H ∈ IRr×m.

In the above algorithm, the cost function is either C1(V, WH) = ||V −WH ||2F
(where || · ||F is the Frobenius norm) or the generalized Kullback-Leibler (KL)
divergence C2(V, WH) =

∑
i,j(Vij log Vij/(WH)ij − Vij + (WH)ij). When cost

function C1 is used, the formulæ for updating of H and W are:

Wia := Wia
(V HT )ia

(WHHT )ia
, (3)

Hbj := Hbj
(WT V )bj

(WT WH)bj
(4)

whereas if cost function C2 is used, the updating formulæ for H and W are:

Wia := Wia

∑
j

Vij

(WH)ij
Hbj , (5)

Wia :=
Wia∑
j Wja

, (6)

Hbj := Hbj

∑
i

Wia
Vij

(WH)ij
. (7)

The above equations are obtained by minimization using non-linear program-
ming methods such as the gradient descent. Since factors W and H are non-
convex only local minimum is guaranteed to be obtained [4]. By replacing the
Frobenius norm by KL divergence, NMF is equivalent to Probabilistic Latent Se-
mantic Analysis [20]. This is intuitively reasonable since both techniques involve
minimizing the distance between the model and the training data. A convergence
proof of multiplicative update algorithms for nonnegative matrix factorization
is given in [21]. Several bound-constrained optimization techniques have been
used [5,22] to solve the problem. A simple implementation in MatLab is pro-
vided in [19] where a systematical experimentation of CPU times is exploited in
image benchmark data.

4 Proposed Approach

We illustrate in Figure 1 our proposed approach while the algorithm below
summarizes the main steps of the procedure. The application of the simple
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Fig. 1. NMF - FLD/SVM Approach

multiplicative NMF algorithm to the training data is straightforward. In or-
der to speed up convergence to a desired solution initializing or seeding the
algorithm is rather important. Initialization of W proceeds thus in either two
ways: i) randomly or ii) using the K-means clustering algorithm in the original
data. In the latter case, we choose the number of clusters K to be the rank of
the factorization matrix. Once the number of clusters has been determined, the
K-Means algorithm needs a centroid initialization for each cluster. One method
of initializing these centroids is to randomly choose each centroid to be a differ-
ent column vector from the data set. Cluster centers returned by K-means will
constitute the initial basis functions, i.e. the factor W .

NMF - SVM/FLD Approach

1) Split financial data set V into V Train and V Test
2) Initialization of Matrices WTrain and HTrain
2.1) If Init = 0 Perform Random initialization
2.2) else Initialize w/ K-Means clustering on matrix V Train with K = Rank
3) Perform NMF VTrain Decomposition: V Train = WTrain× HTrain
4) Take WBasis = WTrain
5) Perform NMF VTest Decomposition: V Test = WBasis × HTest starting
with positive random encoding vector HTest
6) Classifier Design: KNN, FLD, SVM models using HTrain
7) Classifier Evaluation: using HTest

Once the basis functions and the weight encodings for the training set are ob-
tained, the test set was projected to the models (KNN, FLD and SVM) and the
encodings of the new samples were calculated. In other words, to represent a new
test vector using a predefined set of basis functions, the same algorithm is iter-
ated without modifying the matrix W . Thus, fixing W and starting with positive
random encoding vector, a representation of a new data vector is obtained.
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5 Experimental Setup

We used a sample obtained from Diane, a database containing financial state-
ments of French companies. The initial sample consisted of financial ratios of
about 60 000 industrial French companies, for the years of 2002 to 2006, with at
least 10 employees. From these companies, about 3000 were declared bankrupted
in 2007 or presented a restructuring plan to the court for approval by the cred-
itors. The database includes information about 30 financial ratios (see Table 1)
which allow the description of firms in terms of the financial strength, liquid-
ity, solvability, productivity of labor and capital, margins, net profitability and
return on investment.

Upon appropriate treatment of the database to eliminate firms with missing
values, a final set of 600 default examples was obtained. In order to obtain a
balanced dataset we randomly selected 600 non-default examples resulting in a
set of 1200 examples. To accommodate historical information yearly variations of
important financial ratios reflecting the balance sheet were then evaluated. Thus
we included information from the past 3 years preceding the default. Therefore,
the number of inputs was increased from 30 to 90 ratios.

Table 1. DIANE DATA BASE

D
IA

N
A

D
at

a
B

as
e

FINANCIAL RATIOS
1. Number of employees 2. Financial Debt/Capital Employed %
3. Capital Employed / Fixed Assets 4. Depreciation of Tangible Assets (%)
5. Working capital / current assets 6. Current ratio
7. Liquidity ratio 8. Stock Turnover days
9. Collection period 10. Credit Period
11. Turnover per Employee (thousands euros) 12. Interest / Turnover
13. Debt Period days 14. Financial Debt / Equity (%)
15. Financial Debt / Cashflow 16. Cashflow / Turnover (%)
17. Working Capital / Turnover (days) 18. Net Current Assets/Turnover (days)
19. Working Capital Needs / Turnover (%) 20. Export (%)
21. Value added per employee 22. Total Assets / Turnover
23. Operating Profit Margin (%) 24. Net Profit Margin (%)
25. Added Value Margin (%) 26. Part of Employees (%)
27. Return on Capital Employed (%) 28. Return on Total Assets (%)
29. EBIT Margin (%) 30. EBITDA Margin (%)

6 Results and Discussion

In this section we present and discuss the results from the proposed approach.
First, we compare two ways of initialization of matrix W in the NMF algorithm.
Second, we compare three algorithms (KNN, FLD and SVM) performance on
the selective set of features extracted.

Experiments were carried out for various factorization ranks (rank = 1 · · · 81).
The highest rank corresponding to almost all features in the data set (see
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Table 2. NMF with Random Initialization of W

KNN FLD SVM
Rank Recall Precision Recall Precision Recall Precision
4 82.46 ± 2.61 85.23 ± 2.09 85.10 ± 2.87 84.33 ± 2.22 81.60 ± 3.50 84.47 ± 2.70
9 83.43 ± 3.33 88.34 ± 1.83 87.39 ± 2.28 87.83 ± 2.27 85.12 ± 2.75 87.18 ± 2.01
16 84.86 ± 3.44 89.93 ± 2.78 90.19 ± 2.07 89.77 ± 2.80 88.74 ± 2.44 89.31 ± 2.40
25 85.16 ± 3.06 91.10 ± 2.52 90.11 ± 2.10 92.10 ± 2.46 89.99 ± 2.14 91.27 ± 2.25
36 83.12 ± 3.64 91.07 ± 2.26 90.92 ± 2.01 92.00 ± 2.46 90.35 ± 2.44 92.16 ± 1.91
49 81.67 ± 2.74 91.38 ± 1.76 91.28 ± 1.96 92.32 ± 2.03 90.34 ± 2.17 92.56 ± 2.00
64 80.70 ± 3.51 91.18 ± 1.98 91.04 ± 2.11 92.36 ± 1.63 90.67 ± 1.89 92.54 ± 1.75
81 78.32 ± 3.80 92.75 ± 2.10 91.21 ± 2.22 92.14 ± 2.77 90.31 ± 2.08 92.40 ± 2.13

Table 3. NMF with K-Means Clustering Initialization

KNN FLD SVM
Rank Recall Precision Recall Precision Recall Precision
4 81.81 ± 3.12 85.13 ± 2.74 85.24 ± 3.63 83.34 ± 2.08 81.23 ± 3.66 83.84 ± 2.50
9 84.70 ± 3.07 88.45 ± 2.72 88.54 ± 2.88 88.09 ± 1.84 86.31 ± 2.62 86.71 ± 2.83
16 85.96 ± 2.76 90.06 ± 1.77 91.02 ± 2.42 90.27 ± 1.91 89.72 ± 2.50 89.71 ± 1.62
25 85.58 ± 2.93 90.82 ± 2.45 91.09 ± 1.87 91.73 ± 1.98 90.83 ± 2.17 90.76 ± 1.95
36 84.11 ± 3.59 91.33 ± 2.36 91.37 ± 1.82 91.97 ± 2.27 90.46 ± 2.00 92.12 ± 2.14
49 82.91 ± 2.70 91.57 ± 2.17 91.95 ± 1.76 92.32 ± 1.90 90.78 ± 1.76 92.85 ± 1.81
64 81.23 ± 3.51 92.09 ± 2.02 91.55 ± 2.30 92.07 ± 2.11 90.81 ± 2.35 92.67 ± 2.06
81 79.18 ± 3.74 93.19 ± 1.92 91.72 ± 2.48 92.18 ± 1.78 90.45 ± 2.29 92.87 ± 1.82

Section 5). In statistical hypothesis testing a “Type I hit” occurs when a dis-
tressed firm is correctly classified and a “Type II hit” is the correct classification
of a viable firm. A “Type I error” (or false positive rate) is the misclassification
of a healthy firm as distressed. Conversely, a “Type II error” (or false negative
rate) is one in which a distressed firm is misclassified by the predictor as viable.
An “overall hit” refers to the total correct classifications for the set, regardless
of type. Moreover, performance measures such as Recall and Precision defined,
respectively, as tp/(tp+ fn) and tp/(tp+ fp)1 were evaluated. We also illustrate
the results with F1-score which quantifies the tradeoff between Recall and Pre-
cision and is fairly indicative of the performance of the overall algorithm. All the
results represent mean values obtained by 10-fold validation in financial data.
For completion standard deviations are also indicated.

As said above, the NMF encodings of the training set were used to compute
the discriminant functions for the KNN, FLD and SVM models. Likewise, for
testing we used the test encodings obtained by the algorithm defined above. The
initial condition of the non-convex optimization method concerning the NMF
decomposition determines both its rate of convergence and the ‘quality’ of the
local minimum found. The only free parameter is the rank r. The tolerance
for the NMF factorization in the multiplicative update algorithm was setup to

1 tp, fp and fn denote, respectively, true positive, false positive and false negative.
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Fig. 2. F1-score for both types of initialization of W

Fig. 3. Visualization of Matrix W for rank r = 25

1.0E − 5. Tables 2 and 3 report the results obtained with random initialization
and using K-means clustering, respectively. In the latter case, K is fed to the
clustering algorithm as the factorization rank of the initial data matrix.

In Figure 2 F1-score is evaluated and depicted for both kinds of initialization of
W . We observe slightly better results with initialization by K-means as compared
to random. In particular, the performance of the KNN classifier improves by
around 5% with K-Means initialization of W while SVM is slightly better by
around 1%.

Figure 3 depicts the resultant NMF localized features which are compatible
with the intuitive idea of combining parts to form a whole. They are structured
according to very discriminative financial ratios in the basis matrix W . Moreover,
the intrinsic structure found by the method on the financial data is embedded
in the basis functions W .

Figure 4 illustrates Type I and Type II Errors obtained for all the factorization
ranks tested. We observe that for low ranks of the NMF decomposition FLD was
found to perform slightly better than SVM, while for higher values of the rank
SVM is preferable. The reason may be related to the capability of the Fisher
Linear discriminant analysis to find the best set of vectors that minimize the
intra cluster variability while maximizing the inter cluster distances particularly
if the problem dimension is not too high (case of lower ranks).
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In Figure 5 training and testing accuracy is depicted for the whole range of
ranks in all tested algorithms. By maximizing class separability defined as the
ratio of the between-class scatter matrix to the within-class scatter matrix FLD
discriminates better. In case of the SVM, it is observed model overfitting for low
ranks. Among the models tested, KNN presents worse results.

The ability of NMF to project financial data onto a subspace spanned by the
most discriminative features is shown by the good results yielded. Although,
there is clearly an optimum rank of 25 found experimentally, it is desirable that
the optimal rank can be obtained automatically.

7 Conclusion and Future Work

Nonnegative matrix factorization (NMF) is a feature extraction method that has
the property of intuitive parts-based representation of the original features. This
unique ability makes NMF a potentially promising method for financial analysis.
We developed a combined approach based on non-negative matrix decomposition
(NMF) and learning classifiers, namely, KNN, FLD and SVM which was success-
fully tested in a financial setting. The first part of NMF was able to learn local
features of the firms in distress or bankrupt and proper encoding factors useful
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for bankruptcy prediction. The model presents characteristics of robustness to
be used in a real environment such as Diane data base of French companies.
Further work along these lines will include a model to optimize the factorization
rank as well as a method to incorporate prior knowledge of bankruptcy risk in
the model.
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Abstract. Many complex, real world phenomena are difficult to study directly
using controlled experiments. Instead, the use of computer simulations has be-
come commonplace as a feasible alternative. However, due to the computational
cost of these high fidelity simulations, the use of neural networks, kernel meth-
ods, and other surrogate modeling techniques has become indispensable. Surro-
gate models are compact and cheap to evaluate, and have proven very useful for
tasks such as optimization, design space exploration, visualization, prototyping,
and sensitivity analysis. Consequently, there is great interest in techniques that
facilitate the construction of such regression models, while minimizing the com-
putational cost and maximizing model accuracy. The model calibration problem
in rainfall runoff modeling is an important problem from hydrology that can ben-
efit from advances in surrogate modeling and machine learning in general. This
paper presents a novel, fully automated approach to tackling this problem. Draw-
ing upon advances in machine learning, hyperparameter optimization, model type
selection, and sample selection (active learning) are all handled automatically.
Increasing the utility of such methods for the domain expert.

1 Introduction

For many problems from science and engineering it is impractical to perform experi-
ments on the physical world directly (e.g. airfoil design, earthquake propagation). In-
stead, complex, physics-based simulation codes are used to run experiments on
computer hardware. This allows scientists more flexibility to study phenomena under
controlled conditions. However computer experiments still require a substantial invest-
ment of computation time. This is especially evident for routine tasks such as prototyp-
ing, high dimensional visualization, optimization, sensitivity analysis and design space
exploration [1].

As a result researchers have turned to various approximation methods that mimic
the behavior of the simulation model as closely as possible while being computation-
ally cheap(er) to evaluate. Different types of approximation methods exist, each with
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their relative strengths. This work concentrates on the use of data-driven, global ap-
proximations using compact surrogate models (also known as emulators, metamodels
or response surface models (RSM)) in the context of computer experiments. Examples
of metamodels include: Artificial Neural Networks (ANN), rational functions, Gaus-
sian Process (GP) models, Radial Basis Function (RBF) models, and Support Vector
Machines (SVM).

It is important that we stress the difference between local and global surrogate mod-
els as the two are often confused. Local surrogates are by far the most popular and
involve building small, relatively low fidelity surrogates for use in optimization. Lo-
cal surrogates are used as rough approximators of the (costly) optimization surface and
guide the optimization algorithm towards good extrema while minimizing the number
of simulations. Once the optimum is found the surrogate is discarded. Many
advanced methods for constructing and managing these local surrogates have been de-
signed (e.g., [2]).

In contrast, with global surrogate modeling the surrogate model itself is the goal. The
objective is to construct a high fidelity approximation model that is as accurate as possi-
ble over the complete design space of interest using as few simulation points as possible.
Once constructed, the global surrogate model (also referred to as a replacement meta-
model1) is reused in other stages of the computational science and engineering pipeline.
So optimization is not the goal, but rather a useful post-processing step.

However, constructing accurate surrogate models as efficiently as possible is an en-
tire research domain in itself. In order to come to an acceptable approximation, numer-
ous problems and design choices need to be overcome: what data collection strategy
to use (active learning), what model type is most applicable (model selection), how
should model parameters be tuned (hyperparameter optimization), how to optimize the
accuracy vs. computational cost trade-off, etc. This work draws upon advances in these
domains, integrating them in a coherent platform in order to better tackle the model
calibration problem in hydrology.

2 Surrogate Modeling

As stated in the introduction, the principal reason driving the use of surrogate models is
that the simulator is too time consuming to run for a large number of simulations. One
model evaluation may take many minutes, hours, days or even weeks [1]. A simpler ap-
proximation of the simulator is needed to make optimization, design space exploration,
etc. feasible. A second reason is when simulating large scale systems [3].

There are many methods involved and various choices to be made when generating
surrogate models. Consequently, practical implementation leaves many options open to
the designer: different model types, different experimental designs, different model se-
lection criteria, different active learning strategies, etc. However, in practice it turns out
that the designer rarely tries out more than one subset of options. All too often, surro-
gate model construction is done in a one-shot manner. Iterative and adaptive methods,
on the other hand, have the potential of producing a much more accurate surrogate at a
considerably lower cost (less data points). E.g., by applying iterative sample selection

1 The terms surrogate model and metamodel are used interchangeably.



550 I. Couckuyt et al.

(also known as active learning and adaptive sampling) an accurate surrogate model can
be constructed while minimizing the computational cost. See [4] for a good discussion
on this issue. For the application in this paper we will utilize a fully featured toolbox
for adaptive surrogate model generation , the SUMO toolbox [5].

3 Application

A task which is often central to hydrological modeling is the identification of suit-
able parameters for a given set of modeling objectives, catchment characteristics and
data. However, this identification process is difficult because conceptual rainfall runoff
models generally have a large number of parameters and the accuracy of their calcula-
tions depends on how the relevant parameters are defined. Additionally, because of their
conceptual nature, these parameters cannot be measured directly and are therefore esti-
mated on the basis of a calibration process, i.e., minimizing an objective function (OF).

We illustrate the strength of global surrogate modeling in improving the process of
estimating the right parameters of a rainfall runoff model. The SWAT (Soil Water As-
sessment Tool) is an operational model that was developed to assist water resource man-
agers in assessing water supplies and non-point source pollution at river basin scale. The
model is able to assess the impact of changes in climate, landuse and management, and
to simulate the transport and fate of chemicals and water quality loadings. The model
is designed so that use can be made of readily available inputs. Upland components
include hydrology, weather, erosion/sedimentation, soil temperature, plant growth, nu-
trients, pesticides, and land and water management. Stream processes include channel
flood routing, channel sediment routing, nutrient and pesticide routing and transforma-
tion. The ponds and reservoirs component contains water balance, routing, sediment
settling, and simplified nutrient and pesticide transformation routines. Water diversions
into, out of, or within the basin can be simulated to represent irrigation and other with-
drawals from the system. However, one should be aware that every process in the model
is a simplification of reality.

In SWAT, a watershed is divided into multiple subwatersheds, which are then further
subdivided into hydrologic response units (HRUs) that consist of homogeneous landuse,
management, and soil characteristics. The HRUs represent percentages of the subwa-
tershed area and are not identified spatially. The model operates in a continuous mode
and has been widely used to estimate catchment runoff, nutrient and sediment loads.
The SWAT model development, operation, limitations, and assumptions are extensively
discussed by [6]. One of the practical problems in applying the SWAT is determining
proper values for the more than 30 parameters that control the fidelity of its predic-
tion. While many parameters can be estimated empirically a direct expensive optimiza-
tion procedure is still routinely used to determine optimal settings [7], requiring many
expensive simulations.

We propose to take global surrogate modeling methods routinely used in Electro-
Magnetics (EM) and engineering design, and apply them to the setting of rainfall runoff
modeling. Through the use of sequential modeling and active learning methods, a re-
placement metamodel can be generated that captures the relationship between the dif-
ferent SWAT parameters and provides insight in their influence on the prediction quality
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of the SWAT. While at the same time minimizing the number of computationally ex-
pensive simulations. Optimization can still be performed as a postprocessing step.

4 Related Work

A few studies have been reported in recent years in the field of water resources related to
surrogate modeling. Savic et al. [8] applied 2 data-driven models (genetic programming
and ANN) to flow prediction, results show that both are able to match up against con-
ceptual models. Khu et al. (2003) [9] reduced the number of simulation runs required by
Monte Carlo (MC). This was achieved by using an ANN and hybrid GA to respectively
approximate and explore the shape of the objective function. This significantly reduces
the computational effort involved in investigating hydrological model parameter uncer-
tainty. Later on, an evolutionary-based metamodel calibration methodology was devel-
oped using a coupled genetic algorithm-RBF ANN [10]. Regis and Shoemaker (2004)
[11] proposed an approach for costly black box optimization that uses space-filling ex-
perimental designs and k-nearest neighbor local function approximations to improve
the performance of an EA in twelve-dimensional groundwater bioremediation problem.
Broad et al., (2006) [12] evaluated six local search algorithms for purpose of improving
the performance of ANN surrogate model-based optimization of water distribution sys-
tems. The results show a significant improvement in the value of the objective function
by using a local search as a complementary stage of surrogate model-based optimiza-
tion of water distribution systems. Kamali et al. (2007) [13] evaluate the performance of
the design and analysis of computer experiments (DACE) surrogate function along with
Latin Hypercube Sampling (LHS) and MC Sampling for hydrological model calibra-
tion. The results indicate that DACE along with LHS reduced the computational cost of
calibration process. Recent research by Garote et al. [14] advocate the use of Bayesian
networks to learn the behaviour of a rainfall runoff model.

5 Experimental Setup

5.1 SWAT

The SWAT requires spatial information about topography, river/stream reaches, lan-
duse, soil and climate to accurately simulate the streamflow. The study basin is that
of the Grote Nete (383 km²), located in the north-eastern part of Belgium. A detailed
description of the study basin is given in [15]. Daily observations of precipitation, air
temperature, evaporation, and daily streamflow data were obtained from the Royal Me-
teorological Institute and the Flemish Administration for Land and Water, Belgium.
The soil map was available at a scale of 1:25.000; the soil physical data was derived
from the Aardewerk-SIBIS Soil Information System and land use was derived from the
multi-temporal LANDSAT 5 TM image of 18 July 1997.

The climatic inputs in SWAT include daily precipitation measured in 5 stations scat-
tered in and outside the study area, and the potential evapotranspiration and min/max
temperature collected in a station at the northern boundary of the catchment. Details of
input data are given in [15]. The catchment was subdivided in 8 subcatchments and 65
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HRUs. The flow separation program of [16] was used in this research as to determine the
relative contribution of surface runoff and groundwater to total streamflow. The latter
were created based on the various combinations of land use and soil types present in the
catchment. Climate data were assigned to each HRU using the centroid method. The
daily streamflows in the Varendonk outlet station were used for model calibration and
verification.

Parameter sensitivity analysis was applied to identify the parameters of the SWAT
model that contribute most to the variability of component flows. It is important to have
an understanding of catchment characteristics and the hydrological processes involved
before ‘blindly’ applying surrogate modeling to the available data. Based on a critical
analysis of the SWAT modules to the hydrology of the study area, the parameters to cali-
brate were reduced to 18. Although this number of parameters is considerably smaller, to
further reduce the number of parameters in the surrogate process, a sensitivity analysis
was conducted to determine the most sensitive parameters of the hydrological mod-
ule simulating streamflow. This analysis (through Latin Hypercube and One-factor-at-
a-time) yielded the 4 most sensitive parameters.

The first parameter is p, the percentage by which CN2 (the SCS curve number) is
changed from the initial values. Thus, p, a parameter in the approximation model,
is converted to CN2, the actual parameter of the SWAT, using the following formula:
CN2 = initialCN2 + initialCN2·p

100 . Secondly, RCHRG_DP stands for the deep aquifer per-
colation ratio and is a measure for the transfer between the shallow and deep aquifer
system. Thirdly, REVAPMN is the amount of water (mm) that must be present in the
shallow aquifer store before water can move to the unsaturated zone. Finally, ESCO is
the soil evaporation compensation coefficient. The domains of the 4 parameters are [-
40,40] (ensuring absolute bounds of [35 90] for CN2), [0 3], [0 1] and [0 1] respectively.
When the SWAT model is run it generates a time series of predicted flow during the pe-
riod 1998-2002. This time series is then separated into 3 components useful for runoff
prediction: low flow (values ≤2), high flow (values ≥5), and total flow (all values). On
each of these components the Mean Square Error (MSE) is then calculated with the
true observations during that period, and that is the final output of the simulation code.
Separating the total flow in more fine-grained components allows the SWAT to be cali-
brated for different types of flows. Thus, in sum, the SWAT simulator has 4 inputs (CN2,
RCHRG_DP, REVAPMN, ESCO), and 3 outputs (MSElow,MSEhigh,MSEtotal).

5.2 SUMO Toolbox

The active learning settings were set as follows: an initial optimized Latin hypercube
design of size 50 is used augmented with the corner points. Modeling is allowed to com-
mence once at least 20 of the initial samples are available. Each iteration a maximum
of 50 new samples (over all outputs) are selected using the gradient adaptive sampling
algorithm up to a maximum of 500. A full discussion of the algorithm is out of scope
for this paper, details can be found in [17].

There are many surrogate modeling methods available to fit the data and many
options implemented in the SUMO Toolbox. However, from the application it is not
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immediately clear which surrogate model type or hyperparameter optimization algo-
rithm should be used (ANN, SVM, RBF models, ...). For this reason we shall use
an automatic surrogate model type selection algorithm. The algorithm utilizes a ge-
netic algorithm (using the island model) to simultaneously select the model type and
model parameters (hyperparameter optimization). The surrogate model types included
in the evolution are: single layer feed forward ANNs (using [18]), Kriging models (us-
ing [19]), rational functions and LS-SVMs (using [20]). Together with hybrid models
(ensembles, that arise as a result of a crossover between two models of different type)
this means that 5 model types will compete to fit the data. The population size for each
model type is 10 and the maximum number of generations between each sampling it-
eration is 15. The final population of the previous model type selection run is used as
the initial population for the next run. An extinction prevention algorithm is used to en-
sure no model type goes completely extinct. A full description of the algorithm, model
types, and genetic operators is out of scope for this paper. Such settings can be found
in [5]. Given the correlation between the outputs, they are not modeled separately (by
separate models) but together in a single model with multiple outputs.

Note that this approach relieves the domain expert from technical choices related
to the model generation. Besides a few high level options (which model types are of
interest) and termination criteria (time limit, sample budget) no further input is required.
The hyperparameter optimization, model selection, and sample selection are performed
fully automatically, allowing the domain expert to concentrate on the application and
not have to deal with modeling technicalities.

In order to drive the hyperparameter optimization a max-min validation set of 20%
is used. Since not all data points are available at once but are chosen incrementally, the
validation set grows as more data arrives. Validation points are not selected randomly
but by maximizing the minimum distance between them, thus ensuring a good coverage
of the domain. Note, though, that models are always trained on all the data, it is only
when the error is calculated that they are temporarily re-trained on 80% of the available
data. The error function that is minimized is the Average Relative Error (ARE):

ARE(y, ỹ) = 1
n ∑n

i=1
|yi−ỹi|
|yi | ,

where yi, ỹi are the true and predicted response values respectively. Since we are dealing
with multiple outputs per model, a weighted sum over the ARE values for each output
is taken. Since we wish to treat all outputs equally, all weights were set to 12.

The SUMO Toolbox was configured to use the remote Sun Grid Engine (SGE) sam-
ple evaluation backend. This means that the toolbox will run simulations in parallel by
transparently submitting them to a remote cluster. The cluster in question is the CalcUA
cluster which consists of 256 nodes. Thus the SUMO Toolbox (v5.1) is running on a
local machine, while the SWAT simulations are scheduled on the cluster. The number
of data points selected each iteration is chosen dynamically (but never exceeding the
user defined limit of 50) based on the average time needed for modeling, the average
duration of a single simulation, and the number of compute nodes available at that point
in time. The average time for one simulation is quite short, 4-10 minutes depending on

2 Alternatively, a multiobjective approach as discussed in [21] could also have been used.
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cluster availability. Finally it should be noted that all the algorithms described here are
available for download at http://www.sumo.intec.ugent.be.

6 Results

Figure 1 shows the evolution of the population as the modeling progresses. Some
interesting dynamics can be observed. As soon as migration between the different sub-
populations is allowed to take place, Kriging models quickly take over the population
resulting in very smooth approximation surfaces. As the number of datapoints increases,
the quality of the rational functions increases and they overtake Kriging as the most
popular model type. However, the problem with the rational functions is that they are
very prone to producing asymptotes in their response due to the increasing existence of
poles. The implementation in the toolbox is best suited to low dimensional cases with
sufficient data per dimension, in other cases the orders of the polynomials involved grow
too quickly, increasing the risk of overfitting. Therefore, it is no surprise that they are
finally overtaken by ANN models that, thanks to the pruning functions implemented as
part of the mutation and crossover operators, are able to produce smoother responses.

Of course nothing prevents this process from recurring. The fact that the optimal
solution changes with time is not necessarily a bad thing and should actually be ex-
pected since the hyperparameter optimization landscape is dynamic (due to the active
learning). Note that it is the extinction prevention (EP) algorithm that makes these oscil-
lations possible (it ensures a model type never goes completely extinct but that at least 2
individuals of each type are preserved). Without EP these dynamics are impossible and
everything depends on the initial conditions. As a result the danger of converging to a
poor local optimum (poorly fitted regression model) is significantly larger. Ideally these
tests should be repeated many times to conclusively confirm the final outcome. How-
ever, naturally, in situations where simulations are costly such repetitions are impossi-
ble. In addition, previous work on a wide variety of benchmark problems has shown
that the algorithms used here are robust across many repetitions and always perform
better or equal than a set of single model type runs.
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Table 1. Errors of final ANN model (4-14-3 network)

|X | Output ARET R AREV CV minimum x∗ f (x∗)

500
MSElow 0.08320 0.1084 0.1036 (-39.9939, 0.6907, 0.9999, 0.6549) 0.8311
MSEhigh 0.02491 0.03570 0.02760 (-37.0391, 0.0000, 0.0000, 1.0000 ) 15.6302
MSEtotal 0.02336 0.03809 0.02790 (-39.6159, 0.3025, 0.9998, 0.6660) 10.3791

Fig. 2. Final ANN model for MSEtotal

Table 1 shows the final average relative errors (ARE) for each of the outputs on the
training (TR) and validation (V) data. In addition a 10-fold cross validation error (CV)
was calculated as well. |X | is the number of samples used to train the ANN model while
x∗ and f (x∗) denote the minimum and corresponding function value of the ANN model
respectively. For the MSEhigh and MSEtotal an error of less than 5% (acceptable for
the application) is easily reached. The MSElow output appears more difficult, reaching
only a final ARE of 10%. Thus future runs should take this into account, placing more
emphasis on the first output instead of treating all outputs equally. On the other hand,
this can also be an indication that the hydrologic model parameters selected are not
good enough to capture the trend to simulate base flow. Therefore incorporating more
parameters like available water capacity of soils (SOL_AWC) will improve not only
low flow simulated values but also high flow simulated values. This is the topic of a
follow-up publication.

For space considerations plots of the MSElow and MSEhighoutputs are omitted in
this paper. Figure 2 shows the plot of the final best model (a 4 − 14− 3 ANN) for
MSEtotal . In the figure REVAPMN and ESCO have been clamped at 3 values: 0, 1
and 3 for REVAPMN and 0, 0.5 and 1 for ESCO. The remaining 2 parameters, p and
RCHRG_DP, are shown along the x-axis and y-axis respectively.

From the figure it is immediately clear that the 3rd and 4th parameters have virtu-
ally no influence on the quality of the SWAT prediction: the three slices of each subplot
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coincide and the three subplots for each output show little or no differences. This was
confirmed by using the model browser of the SUMO Toolbox to browse through each
of the 4 dimensions. This is an unexpected result, a further study of the study basin
and HRU settings is underway to shed more light on this issue. Though, a preliminary
explanation can be given as follows. The 3rd variable, REVAPMN, affects when and
to what degree subsurface flow occurs, and therefore indirectly govern the contribution
of subsurface flow to the total stream flow of the watershed of interest. These two pa-
rameters (ESCO and REVAPMN) have more influence in evapotranspiration simulated
by the model. Since we just analyze flow simulated by the model, these values cause
a non-noticeable change in the water yield calculations, and therefore adjustments to
these values can be left out.

Interesting is also the breakpoint RCHRG_DP = 0, below which the quality of the
SWAT prediction markedly improves, reaching a minimum of 0.8 (MSElow), 16
(MSEhigh), and 10 (MSEtotal) respectively. The models also clearly show that the SWAT
has more trouble predicting high flows than low flows (as can be seen from the higher
MSEtotal value). Peak flow predictions were generally appreciable for low events and
poor for higher flow rates because SWAT uses a modified formulation of the Soil Con-
servation Service (SCS) curve number (CN) technique [22] to calculate surface runoff.
This result is consistent with earlier findings that the SWAT tends to overestimate peak
flows [23]. In sum, the model captures the relationships between the different parame-
ters in a smooth and intuitive manner.

7 Conclusion

Global surrogate modeling is a powerful approach to facilitate the analysis of computa-
tional expensive simulation codes. However, all too often the designer only tries out a
small set of techniques for a particular application.

In this paper the computationally expensive problem of parameter setting in rain-
fall runoff modeling was investigated (calibrating the SWAT). Therefore a replacement
metamodel is generated through the use of sequential modeling and active learning
methods requiring little or no knowledge about surrogate modeling. The model type
and complexity was determined automatically, data points were selected iteratively, and
simulations were transparently scheduled on a shared cluster. The final surrogate model
produced by the SUMO Toolbox provided insight into the relationship between the dif-
ferent parameters (including identification of the optima) and can be used to improve
the prediction quality in other settings (e.g., as part of a wider Geographic Information
System (GIS) tool).

Future work will consist of increasing the number of input parameters, generalizing
to other study basins, and further investigating the correlation between the different out-
puts. In addition the effect of applying a multiobjective optimization algorithm (such as
NSGA-II) to drive the hyperparameter selection will also be explored to further improve
the model quality.



Evolutionary Regression Modeling with Active Learning 557

References

1. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design
optimization. Journal of Mechanical Design 129(4), 370–380 (2007)

2. Ong, Y.S., Nair, P., Lum, K.: Max-min surrogate-assisted evolutionary algorithm for robust
design. IEEE Transactions on Evolutionary Computation 10(4), 392–404 (2006)

3. Barton, R.R.: Design of experiments for fitting subsystem metamodels. In: WSC 1997: Pro-
ceedings of the 29th conference on Winter simulation, pp. 303–310. ACM Press, New York
(1997)

4. Lin, Y.: An Efficient Robust Concept Exploration Method and Sequential Exploratory Ex-
perimental Design. Ph.D thesis, Georgia Institute of Technology (2004)

5. Gorissen, D., De Tommasi, L., Croon, J., Dhaene, T.: Automatic model type selection with
heterogeneous evolution: An application to rf circuit block modeling. In: Proceedings of the
IEEE Congress on Evolutionary Computation, WCCI 2008, Hong Kong (2008)

6. Arnold, J., Srinivasan, R., Muttiah, R., Williams, J.: Large area hydrologic modeling and
assessment - part 1: Model development. Journal of the American Water Resources Associ-
ation 34, 73–89 (1998)

7. Bekele, E., Nicklow, J.: Multi-objective automatic calibration of SWAT using NSGA-II. Jour-
nal of Hydrology 341, 165–176 (2007)

8. Savic, D.A., Walters, G.A., Davidson, J.W.: A genetic programming approach to rainfall-
runoff modelling. Water Resources Management 13(3), 219–231 (1999)

9. Khu, S., Werner, M.G.F.: Reduction of monte carlo simulation runs for uncertainty estimation
in hydrological modelling. Hydrology and Earth System Sciences 7(5), 680–692 (2003)

10. Khu, S., Savic, D., Liu, Y., Madsen, H.: A fast evolutionary-based meta-modelling approach
for the calibration of a rainfall-runoff model. In: Proceedings of the First Biennial Meeting
of the International Environmental Modelling and Software Society, Lugano (2004)

11. Regis, R., Shoemaker, C.: Local function approximation in evolutionary algorithms for the
optimization of costly functions. IEEE Trans. Evolutionary Computation 8(5), 490–505
(2004)

12. Broad, D., Dandy, G., Maier, H., Nixon, J.: Improving metamodel-based optimization of wa-
ter distribution systems with local search. In: IEEE Congress on Evolutionary Computation,
pp. 710–717 (2006)

13. Kamali, M., Ponnambalam, K., Soulis, E.: Computationally efficient calibration of watclass
hydrologic models using surrogate optimization. Hydrology and Earth System Sciences Dis-
cussions 4, 2307–2321 (2007)

14. Garrote, L., Molina, M., Mediero, L.: Learning Bayesian Networks from Determinis-
tic Rainfall-Runoff Models and Monte Carlo Simulation. In: Practical Hydroinformatics,
vol. 68, pp. 375–388. Springer, Heidelberg (2008)

15. Rouhani, H., Willems, P., Wyseure, G., Feyen, J.: Parameter estimation in semi-distributed
hydrological catchment modelling using a multi-criteria objective function. Hydrological
Processes 21(22), 2998–3008 (2007)

16. Arnold, J.G., Allen, P.M.: Automated Methods for Estimating Baseflow and Ground Water
Recharge From Streamflow Records. Journal of the American Water Resources Associa-
tion 35, 411–424 (1999)

17. Crombecq, K.: A gradient based approach to adaptive metamodeling. Technical report, Uni-
versity of Antwerp (2007)

18. Nørgaard, M., Ravn, O., Hansen, L., Poulsen, N.: The NNSYSID toolbox. In: IEEE In-
ternational Symposium on Computer-Aided Control Sysstems Design (CACSD), Dearborn,
Michigan, USA, pp. 374–379 (1996)



558 I. Couckuyt et al.

19. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: Aspects of the matlab toolbox DACE. Tech-
nical report, Informatics and Mathematical Modelling, Technical University of Denmark,
DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby (2002)

20. Suykens, J., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support
Vector Machines. World Scientific Publishing Co., Pte, Ltd., Singapore (2002)

21. Gorissen, D., Couckuyt, I., Dhaene, T.: Multiobjective global surrogate modeling. Technical
Report TR-08-08, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium (2008)

22. Wischmeier, W., Smith, D.: Predicting Rainfall Erosion Losses. A Guide to Conservation
Planning. Agriculture Handbook No. 537. U.S. Department of Agriculture, USDA, Wash-
ington (1978)

23. Rouhani, H., Gorissen, D., Willems, P., Feyen, J.: Improved rainfall-runoff modeling com-
bining a semi-distributed model with artificial neural networks. In: The 4th International
SWAT Conference, Delft, The Netherlands (2007)



Gene Trajectory Clustering for Learning the
Stock Market Sectors

Darie Moldovan and Gheorghe Cosmin Silaghi

Babes. Bolyai University
Business Information Systems Dept.

Str. Theodor Mihali 58-60, 400591, Cluj-Napoca, Romania
{Darie.Moldovan,Gheorghe.Silaghi}@econ.ubbcluj.ro

Abstract. Hybrid Gene Trajectory Clustering (GTC) algorithm [1,2]
proves to be a good candidate to cluster multi-dimensional noisy time
series. In this paper we apply the hybrid GTC to learn the structure
of the stock market and to infer interesting relationships out of closing
prices data. We conclude that hybrid GTC can successfully identify ho-
mogeneous and stable stock clusters and these clusters can further help
the investors.

1 Introduction

A stock market index is a method for measuring a section of the market. It gather
together various single stocks originating from the same economic activity or
geographical location. In the last few decades, building indexes and raising their
performance expectations was a strong preoccupation for every fund manager
[3]. Indexes can also help in portfolio management (performance estimation and
structuring) or in forecasting the price evolution of a single stock. Stock exchange
indexes represent an expert-based clustering method of the entire stock market.
Whether a particular stock belongs or not to a particular index is a decision
taken according with the interest of the potential investors. In this paper we will
focus our attention to business sector indexes.

Many financial news often refer globally to an entire business sector and are
closely accompanied with the performance change of the related index. But, do
those news affect or concern all the individual stocks gathered by the index? Or
if a rumor concerning a particular stock come out, how strong will affect it the
performance of the index, or which are the other stocks that will be affected in
a similar way?

In this paper we intend to learn a clustering of the stock exchange market in
the sense of identifying those shares that move together on various time frames.
Comparing the inferred clustering with the one supplied by the expert-created
sectoral indexes can show us how firm or weak are the financial decisions based
on the technical analysis pursued on those indexes. To perform the clustering,
we employ the Gene Trajectory Clustering method [1,2]. This method succeeds
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to cluster gene values represented by their evolution in time, even if the space
dimensionality is high and there are a lot of irregularities and noise in the time
series. Out of the clustering, we obtain the individual stocks grouped according
with the evolution of their closing prices time series and an aggregated trajectory
for each cluster. We perform the clustering procedure on the 65 stocks aggregated
in the Dow Jones Composite Average index and compare it with the clustering
produced by the index components: the industrial average, the transportation
average and the utilities average.

The paper develops as follows. In section 2 we brief the Gene Trajectory Clus-
tering method. Section 3 presents the stock exchange time series under study,
the required preprocessing and the experiment setup. Section 4 presents the
experiments and the results. Section 5 brief some related works and section 6
concludes the paper.

2 Gene Trajectory Clustering Methodology

In this section we describe the Hybrid Gene Trajectory Clustering method [1,2].
There are various alternatives for performing a clustering task, like non-

model-based methods (K-Means clustering, hierarchical clustering, tree-based
algorithms) or model-based ones: autoregressive models, B-splines or Multiple
Linear Regression models (MLR). Gene Trajectory Clustering (GTC) is based
on MLRs to account for temporal information of the in the clustering process.

The trajectory clustering problem [4] refers to clustering the set of measure-
ments Y which are measured as a function of time. Typically, we have data for
M individuals and the response variable y might be multi-dimensional. We want
to cluster the M individuals in K clusters. Each individual Yi is assigned to a
cluster k with the prior probability wk,

∑K
k wk = 1. The clustering model is a

mixture of K MLRs (one regression for each cluster), each regression represent-
ing a single trajectory cluster given by [2]:

Yi = S(μk + γi) + εi, γi ≈ N(0, Γ ), εi ≈ N(0, σ2I) (1)

Yi = [yi,1, yi,2, ..., yi,l]t is the ith trajectory of length l, S is the l × (p + 1)-basis
matrix, p is the regression order, μk is the p + 1 vector of regression coefficients
and γi and εi are uncorrelated Gaussian noises for the regression coefficients
and the trajectory. Each trajectory Yi has a cluster membership vector zi =
(zi,1, zi,2, ..., zi,K) with zi,k = 1 if the ith trajectory belongs to cluster k and
0 otherwise. The standard method for mixture model learning assume that zi

is missing and apply some Expectation Maximization algorithm [5] to estimate
the regression coefficients for maximizing the complete data log likelihood. We
refer the reader to [2] for a complete specification of the log likelihood iterative
maximization problem.

Because the search space is multi-modal and EM is a local optimizer, the
initial values of the iterative searching algorithm determines the local optima



Gene Trajectory Clustering for Learning the Stock Market Sectors 561

Fig. 1. The hybrid Gene Trajectory Clustering algorithm [2]

where EM will stop. Thus, hybrid Gene Trajectory Clustering [1,2] employs
a genetic algorithm to select the optimal subset of data as the initial cluster
centers. Figure 1 presents the steps of GTC for obtaining the final clusters.

In the genetic algorithm applied at the first level each solution is encoded as an
M -bit string with the ith bit corresponding to the ith individual. A ”1” in the ith
bit position indicates that the ith individual is selected and ”0” otherwise. For
selecting K optimal ”genes” Yi as the initial cluster centers, all feasible solutions
must have K numbers of 1 and M − K numbers of 0. Uniform crossover selects
two random parents with the crossover probability and swap the bits between
the parents at the same position with 50% probability. Mutation operator simply
inverts each bit of the offspring at the mutation probability and a repair operator
is applied to obtain only feasible solutions. After the offspring solutions are
created, they are translated as initial conditions for the mixture models and
the EM algorithm is applied. The maximum log likelihood values represent the
fitnesses of the corresponding offsprings. For offspring selection, GTC employs
the elitist scheme (μ + λ) for faster convergence. This search process stops until
some stopping criteria are reached. According to [1,2], this hybrid GA-based
approach is less sussceptible to getting trapped in local optima, because it uses
only genetic operators to create new offsprings and relies only on population
information.

The hybrid Gene Trajectory Clustering is implemented in the Gene Network
Explorer1 (GNetXP) at the KEDRI at the Auckland University of Technology,
New Zealand. GNetXP offers the possibility to adapt the execution of the clus-
tering algorithm to the problem specification. One can set the number of clusters,
the number of coefficients to control the smoothness of the curves, the stopping
threshold for the GA, the number of parents and offspring and the number of
generations.

1 http://www.aut.ac.nz/research/research institutes/kedri/research centres/centre
for bioinformatics/gene network.htm
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3 The Stock Exchange Data and Clustering Experiment

In this section we present the clustering application for which we applied GTC.
We selected 65 stocks2 from the NYSE, stocks collected under the Dow Jones

Composite Average (DJA) index. These stocks are divided in three sector-specific
sub-indexes: industry, transportation and utilities, as shown in table 1.

Table 1. DJA sub-indexes (as at the end of year 2007)

DJA sub-index Size Cluster components
industry 30 AA, AIG, AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM,

HD, HPQ, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK,
MSFT, PFE, PG, T, UTX, VZ, WMT, XOM

transportation 20 AMR, ALEX, BNI, CAL, CHRW, CNW, CSX, EXPD, FDX,
GMT, JBHT, JBLU, LSTR, LUV, NSC, OSG, R, UNP, UPS,
YRCW

utilities 15 AEP, AES, CNP, D, DUK, ED, EIX, EXC, FE, FPL, NI, PCG,
PEG, SO, WMB

For each stock we considered daily adjusted closing prices pi between years
2000 and 2007. To obtain a homogeneous image of the stocks’ evolution during
time, we computed the daily logarithmic returns log(pi/pi−1), as advised by the
financial investments literature [6]. To be able to project the data as trajectories,
we scaled it, considering a start point of 100 points for every stock at the begin-
ning of each year and next, applied the logarithmic returns on this 100 points
basis. Figure 2 depicts several stocks trajectories for one year.

Fig. 2. Stock scaled points trajectories to be clustered

We want to perform a clustering of the stock trajectories for each year, in
order to see which are the stocks that move together on a medium term and if
2 JBLU entered the DJA transportation subindex during 2002. We used this stock in

our experiments only from 2003.
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there is any sectoral or other business-related relationship that can be learned
from the stock movements.

We compared the standard EM algorithm for generating the mixture models,
the hybrid genetic algorithm based GTC described in section 2 with the expert-
baseddivisionof theDJAstocks in the three categories of the index: industry, trans-
portation and utilities. Because the hybrid GTC is based on randomization, each
experiment was run 10 times and we report the results averaged over the runs. The
maximum log likelihood value represents the fitness of each clustering experiment.

4 Results

First, we want to show that hybrid GTC performs better than the standard
EM algorithm. In figure 3 we plot the performance of the hybrid GTC against
the standard EM. We considered the clustering tasks with 3 to 8 clusters for
all stocks of the DJA during year 2000. Similar results were obtained for the
remaining years.

Fig. 3. Hybrid GTC against the standard EM algorithm for clusterization

We can note that the hybrid GTC algorithm leads toward higher values of the
maximum likelihood measure. More, the outcomes of the hybrid GTC algorithm
are more stable and homogeneous in sense of the cluster components. For example,
running 30 times the hybrid GTC algorithm for learning three clusters, we obtain
the same structural division of the stocks, with very few examples which will be
discussed later on the paper. But, when running the standard EM algorithm, the
stocks distribution on the clusters changes from run to run. This is a clear sign that
the hybrid GTC succeeds to avoid local optima and there is some intrinsic linkage
in the data under analysis that force the stocks to distribute well into clusters.
This outcome remains valid even when we run the clusterization algorithms for
more than 3 clusters and for any of the considered years.

Out of figure 3 we note that the slope of the curve for the relevant hybrid GTC
clustering decreases when the number of clusters exceeds 5. Figure 4 depicts the
outcomes of the hybrid GTC algorithm for 3 to 8 clusters. Each subfigure plots
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(a) 3 clusters (b) 4 clusters

(c) 5 clusters (d) 6 clusters

(e) 7 clusters (f) 8 clusters

Fig. 4. Cluster trajectories obtained with hybrid GTC algorithm for various number
of clusters

the cluster trajectories. Further, we note that for the experiments with more that
5 clusters, there are some clusters with very few individuals and the trajectories
of those clusters are similar with the ones of the remaining clusters. Thus, we
conclude that clustering experiments up generating up to 5 clusters are relevant.

In table 2 we show the clusters obtained when searching for a 5-bins clus-
terization. In table 3 we show how well maps the 5-bins clusterization on the
sectoral DJA subindexes. We note that clusters 1 and 3 map well to the industry
sector, cluster 5 goes to utilities while cluster 2 is a mixture of transportation
and utilities and cluster 4 a mixture of industry and transportation. Also, we can
note that the transportation sector is highly heterogeneous and utilities is the
most homogeneous. As clusters 2 and 5 reports the highest performances (see
figure 4c), we can learn that year 2000 was a good one for the utilities sector.
The only stocks that exhibited another behavior are ED (Consolidated Edison)
and D (Dominion Resources), both on the electricity business.
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Table 2. Clusters’ components for the 5-bins clustering task

Cluster
no.

No. of
stocks

Cluster components

1 11 AA, CAT, CSX, DD, EIX, HD, MCD, MSFT, NSC, PG, WMT
2 14 AES, C, CHRW, CNP, D, DUK, EXC, GMT, LSTR, LUV, OSG,

PCG, PFE, WMB
3 11 BAC, CNW, DIS, GM, HPQ, IBM, INTC, JBHT, JPM, R, VZ
4 19 AMR, AXP, BNI, CAL, CVX, ED, EXPD, FDX, GE, JNJ, KO,

MMM, MRK, T, UNP, UPS, UTX, XOM, YRCW
5 9 AEP, AIG, ALEX, BA, FE, FPL, NI, PEG, SO

Table 3. Maping of the 5-bins clusters to the sectoral DJA subindexes

DJA subindex Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Industry 8 2 8 10 2

Transportation 2 5 3 8 1
Utilities 1 7 0 1 6

To prove how strong is the cohesion between the individuals classified in the
same cluster, for each cluster we computed the pairwise distance between the
individuals, using the Euclidean distance [7]. Based on the pairwise distances,
we depicted a dendrogram containing all stocks (figure 5) and 5 dendrograms
for each cluster in the above-presented clusterization (figure 6). From figure 5
we can clearly note that the following stocks go together in clusters and these
cluster kernels are learned by the GTC clusterization: {BNI, UNP, MMM, UPS,
KO}, {AA, DD, CAT, CSX, MCD, WMT}, {D, EXC, DUK} and {AEP, FE,
PEG, AIG, ALEX}. From figure 6 we can infer which are the stocks that are
less related with the cluster, situated at the boundary of the cluster and prone
to be classified in another class by another clusterization method: stock PG in
cluster 1, stocks CNP and OSG in cluster 2, stocks HPQ and INTC in cluster 3;
clusters 4 and 5 are almost homogeneous, the inside distances between all stocks
being almost the same. We can note a strong adhesion inside clusters 4 and 5
and the cluster 2 is the one with the individuals highly spread out on the space.

We applied the procedure presented above on each year from 2000 and 2007.
Table 4 shows the synthesized results, indicated the optimal number of clusters
and the corresponding log likelihood value. We can note that in general, we
obtain more clusters than the number of sub-indexes, which clearly show and
sustain the conclusions we draw out from the cluster analysis for year 2000: the
DJA sub-indexes contains heterogeneous stocks.

We note that the only year that plays distinct is year 2003, which is charac-
terized by a strong rebound of the stock market after the dot com crisis.

Regarding the distribution of the stocks on the sectors, we note that the
utilities sub-index is the most homogeneous one, and usually the stocks in
the electricity moved together. IT-industry stocks (IBM, HPQ, VZ, INTC) with
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Fig. 5. Dendrogram with all stocks showing the adhesion between all individuals in
the population

Table 4. Number of clusters obtained for each year using the hybrid GTC algorithm

Year No. of clusters Log likelihood
2000 5 10779.22
2001 5 14632.35
2002 5 12763.99
2003 3 19978.61
2004 5 15974.88
2005 4 14582.66
2006 5 12092.22
2007 5 11087.16

the exception of MSFT usually go together on the same cluster and MSFT, being
very volatile represents the exception. Also, the financial sector (AIG, C, JPM,
BAC, GE) is heterogeneous, being impossible to get these stocks connected on
the same cluster on the long term.

5 Related Work

Hybrid Gene Trajectory Clustering was developed by [1] with the intention to
cluster multi-dimensional gene data. Although the method is highly computa-
tional intensive, it was successfully applied on bio-informatics [2].

In the computational financial analysis, learning the stock markets sector is
one challenge. Growing Neural Gas was applied to produce a tree linking together
the FTSE stocks that exhibit a similar behavior [8]. Gavrilov et al. [7] tries to
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(a) cluster 1 (b) cluster 2

(c) cluster 3 (d) cluster 4

(e) cluster 5

Fig. 6. Dendrograms for the clusters, showing the adhesion between the individuals
inside cluster

identify which distance measure is the best to characterize the similarity between
stock movements.

More, each stock market has its own indexes which are said to characterize
the market. But, investing on global indexes without a further in-depth analysis
might be hazardous because the index structure is usually composed of many
stocks that exhibit contracting behaviors. Thus, investment houses tries to build
proprietary indexes and to increase their performance. These indexes perform a
clustering of the stocks, but this clustering is subjective and the investor has to
trust or not the owner of the index.

6 Conclusion

In this paper we applied the hybrid gene trajectory clustering algorithm [1,2]
to characterize the division of the NYSE stocks in the Dow Jones Composite
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Average index. For each stock in the DJA index, we took daily closing prices
from 2000 to 2007 and on each year we applied the clusterizaton method. Our
target was to identify those stocks that go together on the medium term and to
see if there is any sectoral linkage between them.

We concluded that the hybrid GTC algorithm succeeds to perform a stable
division of the stocks and interesting financial relations can be learned out of
the clustering.

Acknowledgements. This work is supported by the Romanian Authority for
Scientific Research under project IDEI 573.
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Abstract. Prediction of financial distress of companies is analyzed with several 
machine learning approaches. We used Diane, a large database containing 
financial records from small and medium size French companies, from the year 
of 2002 up to 2007. It is shown that inclusion of historical data, up to 3 years 
priori to the analysis, increases the prediction accuracy and that Support Vector 
Machines are the most accurate predictor. 

1   Introduction 

One of the most important threats for business is the credit risk associated with 
counterparts. The rate of bankruptcies have increased in recent years and its becoming 
harder to estimate as companies become more complex and develop sophisticated 
schemes to hide their real situation. Due to the recent financial crisis and regulatory 
concerns, credit risk assessment is a very active area both for academic and business 
community. The ability to discriminate between faithful customers from potential bad 
ones is thus crucial for commercial banks and retailers. 

The problem of bankruptcy prediction can be addressed as follows: given a set of 
financial ratios describing the situation of a company over a given period, predict the 
probability that this company may become bankrupt in a near future, normally during 
the following year. 

Prediction of financial distress of companies with financial ratios has been 
addressed by several models. Despite all its limitations, Linear Discriminant Analysis 
is still largely used as a standard tool for bankruptcy prediction [1,2]. In particular, 
versions of the Logistic model [3] are widely used by credit ranking agencies. 

In previous works we have shown that some recent machine learning approaches, 
like Genetic Algorithms and Support Vector Machines, are able to achieve superior 
accuracy in early detection of bankruptcy [4, 5]. For a review on the application of 
machine learning algorithms to financial distress prediction of companies see [6-8]. 

For this study we use a large database of French companies. This new database is 
very detailed containing information on a wide set of financial ratios spanning over a 
period of several years. It contains up to three thousands distressed companies and 
about sixty thousands healthy ones. We used this dataset to compare the efficiency of 
the Logistic model with other machine learning algorithms, namely: Support Vector 
Machines, Neural Networks and AddaboostM1. 
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In order to make predictions more accurate we tested the models with data from 
three previous years priori to failure. It is shown that inclusion of these historical 
records can boost precision and robustness of the classifiers, particularly in early 
detection. 

This paper is organized as follows: Section 2 describes the dataset, Section 3 
presents the models used, Section 4 contains the results obtained and in Section 5 the 
conclusions are presented.  

2   The Dataset 

We used a sample obtained from Diane, a database containing financial statements of 
French companies. The initial sample consisted of financial ratios of about 60 000 
industrial French companies, for the years of 2002 to 2006, with at least 10 
employees. From these companies, about 3000 were declared bankrupted in 2007 or 
presented a restructuring plan (“Plan de Redressement”) to the court for approval by 
the creditors. We decided not to distinguish these two categories as both signals 
companies in financial distress.  

The dataset includes information about 30 financial ratios defined by COFACE of 
the companies covering a wide range of industrial sectors. 

2.1   Preprocessing and Feature Selection 

Our database contains many cases with missing values, especially for defaults 
companies. For this reason we sorted the default cases by the number of missing 
values and selected the examples with 10 missing values at most. A final set of 600 
default examples was obtained. In order to obtain a balanced dataset we selected 
randomly 600 non-default examples resulting in a set of 1200 examples. 

The remaining missing data was treated as follows. For the ratios of the years 2003 
and 2006 each missing value was replaced by the value of the closest available year; 
for 2004 and 2005, if values of the next and previous years were available, each 
missing value was replaced by their mean, otherwise it was replaced by the remaining 
value. In some cases there was no data available for a ratio in any of the years. In this 
very few cases the missing data was replaced by the median value of the ratio in each 
year. Finally, all ratios were logarithmized and then standardized to zero mean and 
unity variance. 

The 30 financial ratios produced by COFACE are described in Table 1. These 
ratios allow a very comprehensive financial analysis of the firms including the 
financial strength, liquidity, solvability, productivity of labor and capital, margins, net 
profitability and return on investment. Although, in the context of linear models, some 
of these variables have small discriminatory capabilities for default prediction, the 
non-linear approaches here used may extract relevant information contained in these 
ratios to improve the classification accuracy without compromising generalization.  

Due to the large number of attributes available, we used several ranking algorithms 
to select the most relevant. We used the following methods: SVM Attribute 
evaluation, Chisquared, Consistency Subset, GainRatio. Before running these 
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algorithms we evaluated the correlation matrix and found that the majority of 
attributes are only slightly correlated. For instance, Principal Component Analysis 
will choose 23 components out of 30. 

In SVMA [13] attributes are ranked by the square of the weight assigned by the 
SVM. Attribute selection is handled by ranking attributes for each class separately 
using a one-vs-all method and then "dealing" from the top of each pile to give a final 
ranking.  

In Chisquared algorithm the worth of an attribute in calculated by computing the 
chi-squared statistic with respect to the class. Consistency Subset [9] evaluates  
the worth of a subset of attributes by the level of consistency in the class values  
when the training instances are projected onto the subset of attributes. GainRatio 
evaluates the worth of an attribute A by measuring the information gain ratio with 
respect to the class. 

2.2   Historical Data 

A company is a dynamic entity, subjected to fluctuation of the market, economy 
cycles and unavoidable contingencies related to its business activity. Therefore, 
yearly variations of important financial ratios reflecting the balance sheet, sometimes 
quite relevant, are common particularly for small companies. Yearly variations of 
over 50% in some ratios are not atypical. 

In order to accommodate these fluctuations, we decided to use an extended record 
from years preceding the default. However care must be taken in choosing the 
relevant information. If many years are used, we increase the complexity of the 
problem and may obscure the present situation of the company by averaging over a 
remote past. On the other hand if few years are used we may not properly characterize 
the company background. In this study we considered data from 3 years priori to the 
bankruptcy event.  

This adds complexity to the analysis as the number of inputs is increased three 
fold - from 30 to 90 ratios. Furthermore, we found that more relevant than the ratios 
themselves, are the variations that occurs over the period range of the analysis. 

We consider the following parameters: ratios of the current year, 
0
iR , ratios from 

previous year, 
1
iR , and fluctuations of the ratios over the period considered,

2
iR . They 

are defined as: 

0
1

1

2

max( ) min( )

i i

i i

i i
i

R R

R R

R R
R

R

−

=

=

−
=

 

where R is the ratio average over the period considered. The variables selected by the 
feature ranking algorithms are presented in Table 1. Note that many of selected 
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attributes are the ratios variations over the period, in this case three years. Features 
selected by different algorithms differ considerably meaning that important 
correlations can exist in the ratios.  

 
Table 1. Ratios used with historical data set. Selection procedure: [SVMA - Top 20 (I), Top 15 
(II), Top 10 (III), Top 5 (IV)], [Cfs Subset Evaluation - Greedy (V), Genetic (VI)], 
[Chisquared: Top 20 (VII)], [Consistency Subset: Greedy (VIII), Genetic (IX)] and 
[GainRatio: Top 20 (X)]. The labels means: 0 – current year, 1 – previous year, 2 – variation 
over three previous years. 

# Designation I II III IV V VI VII VIII IX X 

1 Number of employees 0 0 0 0 0 0  0 0  

2 Financial Debt / Capital 
Employed %           

3 Capital Employed / Fixed 
Assets 2 2 2        

4 Depreciation of Tangible 
Assets (%) 0 0  0 0      

5 Working capital / current 
assets      0  2 1,2  

6 Current ratio 0     2  0   

7 Liquidity ratio 1    0,2 0 0 0,2 0,2  

8 Stock Turnover days      2   0  

9 Collection period        

10 Credit Period      2     

11 Turnover per Employee 0,2 0,2 0,2 0,2 0,2 0,2 2 2  2 

12 Interest / Turnover 0 0       0  

13 Debt Period (days) 2 2 2      2  

14 Financial Debt / Equity (%)     0 0 0   0 

15 Financial Debt / Cashflow 0 0 0  0,2 0,2 0,2   0,2 

16 Cashflow / Turnover (%) 0,1 0,1 0 0 0,2 0,2 0,2 2  0,2 

17 Working Capital / Turnover 
(days) 0,1 0,1 1   2   0  

18 Net Current 
Assets/Turnover (days) 0 0         
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19 Working Capital Needs / 
Turnover (%) 2          

20 Export (%)      2   1  

21 Value added per employee     2 0,2  1 0  

22 Total Assets / Turnover     2 2  2   

23 Operating Profit Margin (%)      0,2 0,2  0,2 0,2 

24 Net Profit Margin (%)      0,2 0,2   0,2 

25 Added Value Margin (%)        0   

26 Part of Employees (%)     0 0,1 0  1 0 

27 Return on Capital Employed 
(%) 2    0 0,2 0,2  1,2 0,1,2

28 Return on Total Assets (%) 0 0 0 0 0,2 0 0,2 0  0,2 

29 EBIT Margin (%) 0,2  2 0,2 

30 EBITDA Margin (%) 0 0 0,2   0,2 
 

3   Models Used and Results 

We analyze the data with four machine learning algorithms: Logistic, Neural 
Networks with a Multilayer Perceptron (MLP), Support Vector Machines (SVM) [10, 
11] and AdaBoost M1.  

For MLP, we used a neural network trained with backpropagation and one hidden 
layer with a number of neurons defined by: ( _ 1) / 2number ratios + . The 

learning rate was set to 0.3 and the momentum to 0.2.  
For the C-SVM algorithm we used the LibSVM [12] library with a radial basis 

function as kernel with the cost parameter C = 1 and a shrinking heuristic. 
For AdaBoost M1 algorithm we used a Decision Stump as weak learner and set the 

number of iterations to 100. No resampling was used. 
First we compare the efficiency of the classifiers using data from a single year. 

Table 2 presents the results obtained when all ratios are used. We used 10-fold cross 
validation in all classifiers. 

Support Vector Machines achieved the highest accuracy, 92.42% and the lowest 
error types. For 2005, two years before bankruptcy, the Adaboost retrieved the best 
results. It is remarkable such a high accuracy taking into account the fluctuations on 
ratios occurring from one year to the other. The highest error is type II, as expected. 
Neural Networks (MLP) were the worst classifier due to the large dimensionality of 
the training data exposing it to the corresponding risk of overfitting. 
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Table 2. Accuracy and error types I and II for different models in 2007 using data from the 
previous year (2006) and from 2005. All 30 variables were used. 

 
Classifier Accuracy Type I Type II 
Logistic 91.25 6.33 11.17 

MLP 91.17 6.33 11.33 

C-SVM 92.42 5.16 10.00 

20
06

 

AdaboostM1 89.75 8.16 12.33 

Classifier Accuracy Type I Type II

Logistic 79.92 19.50 20.67 

MLP 75.83 24.50 23.83 

C-SVM 80.00 21.17 18.83 

20
05

 

AdaboostM1 78.17 20.50 23.17 

 
 

Most default prediction models use a small set of financial ratios, between 5 and 
10, usually from a single year, to quantifying the profitability, cashflow and liabilities 
of the company. Since we have a large pool of data, we tested the models with several 
sets of attributes. The first, containing the top 5 attributes, selected by SVMA, the 
second the top 10, the third the top 15, the fourth the top 20 and finally the fifth with 
all the 90 attributes. 

The results are presented in Table 3. The best accuracy (94%) was obtained again 
with SVM using 20 variables, which means a reduction of about 30% in type I error 
and 20% in type II error. This improvement is justified by the fact that more data is 
used. With the 5 top ratios we achieved a performance similar to the previous dataset 
with all ratios included. 

The Adaboost algorithm is the least sensitive to overfiting and therefore is 
relatively immune to the curse of dimensionality when using the full set of attributes. 
In practice it is unwise to use the full set of attributes and the accuracy has to be 
sacrificed to simplicity. For the top 20 ratios, selected by SVMA, the Logistic model 
achieved again an accuracy very close to SVM.  

The importance of using a large set of ratios is clearly evident on prediction two 
years before bankruptcy (Table 4). In this case, the accuracy of SVM increased 
substantially from 76.42% to 81.42%. 

 
Table 3. Accuracy in predicting failures during 2007 using data from 2006, 2005 and 2004 
 

 # variables 

Classifier 5 10 15 20 ALL 
Logistic 91.17 93.33 93.42 93.58 92.25 

MLP 91.33 93.25 93.08 93.17 92.50 

C-SVM 91.67 93.33 93.42 94.00 93.17 

AdaboostM1 90.50 93.33 93.00 92.25 91.58 
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Table 4. Accuracy in predicting failures during 2007 using data from 2005, 2004 and 2003 
 

 # variables 

Classifier 5 10 15 20 ALL 
Logistic 75.83 77.58 79.25 79.33 79.00 

MLP 75.83 75.00 76.17 75.33 77.42 

C-SVM 76.42 76.58 78.83 78.41 81.42 

AdaboostM1 77.08 77.83 79.92 80.33 81.33 

4   Conclusions 

In this work it is shown that bankruptcy of small and medium size companies can be 
accurately predicted if a detailed training dataset is available. Of all the models tested 
Support Vector Machines achieved the best performance, but all approaches show 
comparable results. 

We show that inclusion of information from previous years before default, 
especially fluctuations of relevant ratios, like debt to cash-flow, is crucial to achieve a 
good precision. Furthermore, we proved that the use of larger sets of inputs in the 
classifier can reduced both error types by up to 30%. 

In future work we will consider inclusion of more years and the use of more 
efficient feature selection algorithms. 
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Abstract. The paper presents some models and algorithms for the nonlinear 
optimization problem of multi-objects movement scheduling to synchronize 
their movement as well as properties of presented algorithms. Similarities and 
differences between defined problems and the classical tasks scheduling 
problem on parallel processors are shown. Two algorithms for synchronous 
movement scheduling are proposed and their properties are considered. One of 
the algorithm is based on dynamic programming approach and the second one 
uses some approximation techniques. Theoretical and experimental analysis of 
complexity and effectiveness of the algorithms as well as their practical 
usefulness are discussed. 

1   Introduction 

Scheduling of object movement is an essential element of numerous systems: for 
routing in computer networks, for movement planning of mobile robots [3], for tasks 
processed inside distributed or parallel computing system [2], [6], etc. A special type 
of movement is such that objects must be moved simultaneously [11] and a special 
type of system with this requirement is a system for movement planning and 
simulation of military objects (units) in combat simulators [7]. Movement scheduling 
has an influence on accuracy, adequateness, effectiveness and other characteristics of 
these systems. Afterwards, the problem is to model and optimize such movements  
of detachments as to achieve intended goals of commands (such as: achievement of 
destinations on restricted time, avoiding losses during redeployment etc.) [9]. One  
of the techniques of providing the simulated opponent is to use a computer system 
that generates and controls multiple simulation entities using software. Such a system 
is known as a semi-automated force (SAF or SAFOR) or a computer generated force 
(CGF) [8]. Regardless of the kind of military actions, military objects are moved 
according to a group pattern. From the point of view of mission realization, 
preservation of group pattern during military actions is very important. For example, 
each object being moved in a group (e.g. during attack, during redeployment) must 
keep specific distances between each other inside the group [7]. Therefore, the paper 
presents a few problems of movement scheduling for many objects to synchronize 
their movement and algorithms for solving them with theoretical and experimental 
analysis. 
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2   Scheduling Models of Synchronous Movement 

2.1   Notations and Definitions 

Let us assume that we have a directed graph G that defines structure of the terrain 
(divided into squares, hexagons, etc.) [8], [9], ,G GG V A= , V= |VG|,  VG – set of 

graph nodes (as centre of terrain squares, crossroads), AG – set of graph arcs,  
AG⊂VG×VG,  A=|AG|. On each arc we have a defined value , 'n nd  of function d, which 

describes the terrain distance between the graph nodes n and n’. K objects (columns, 
trucks, tasks) move from source nodes vector s=(s1, s2,…,sK) to destination nodes 
vector t=(t1, t2,…,tK) of G. For further discussion we accepted the following notations: 

 ( )0 1( , )  =  ( ) ,  ( ),  . . . ,  ( ),  . . . ,  ( )kRr
k k k k k kI s t = I i k s i k i k i k t= =  (1)

  

 ( )0 1( ) ( ), ( ),..., ( ),..., ( ) ( )kRr
k k k kT I T k k k k Iτ τ τ τ τ= = =  (2)

  

 ( )0 1 1 2 1( ), ( ) ( ), ( ) ( ), ( )
( ) , ,  . . . ,  R Rk kk k k i k i k i k i k i k i k

V I V v v v −= =  (3)

   
where Ik - vector of nodes describing the path for the k-th object, 

( )1

{1,..., }
( ), ( )

k

m m
G

m R
i k i k A−

∈
∀ ∈ ; ( )ri k  - the r-th node on the path for the k-th object; sk, tk – 

source and destination nodes for the k-th object; Tk - vector of time instances of 
achieving the nodes belonging to the path for the k-th  object; ( )r kτ  - time instance of 

achieving node ( )ri k  by the head of the k-th object, 1

1, 0, 1
 ( ) ( ) 0r r

k K r Rk

k kτ τ+

= = −
∀ ∀ ≥ ≥  and 

0

1,
 ( ) 0

k K
kτ

=
∀ = ; ( ) ( )kR

kk Iτ τ=  - time of achieving destination node by the k-th object;  

Vk - vector of velocities 1( ), ( )r ri k i k
v +  of the k-th object on the arc ( )1( ), ( )r ri k i k+  of its 

path; Rk  - number of arcs belonging to the path of the k-th object. For the set Π(s,t) 
describing the set of vectors I(s,t) of paths from s=(s1, s2,…,sK) to t=(t1, t2,…,tK) we 
have defined time *τ as the earliest time of achieving the destination node by the most 
delayed object: 

 
1 2

*

( , ) ( , ,..., ) ( , ) {1,..., }
min  max ( )

K
k

I s t I I I s t k K
Iτ τ

= ∈Π ∈
=  (4) 

Let k* denotes index of object for which the moment of achieving destination node for 
its path is the latest among paths for other objects, i.e. 

** *

{1,..., }
( ) max ( )k kR R

k K
k k k kτ τ

∈
= ⇔ =  . Let { }1 2( ),  ( ),...,  ( ),...,  ( )

kk p PIP i k i k i k i k=  denotes  

a set of nodes (checkpoints) at which we must align the head of the k-th object in 
relation to the heads of other objects, where ( )pi k - the p-th element of IPk satisfying: 

1, {1,..., }
 ( ) ( )

p Pk k

r
p

r R
i k i k

= ∈
∀ ∃ =  and ( ) {1,..., } ( ) ( )r

p k pr k r R i k i k= ∈ ⇔ = . The form of IPk and 

( )pr k  indicate that the path for the k-th object must cross by nodes belonging to IPk. 
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Let, by analogy ( )1 2( ),  ( ),...,  ( ),...,  ( )
kk p PTP k k k kτ τ τ τ=  denotes ordered set of time 

instances of achievement particular alignment nodes from set IPk by the k-th object 
head, ( )p kτ  denotes moment of achieving the p-th alignment node by the k-th object, 

 
1

1

( ), ( )0

{0,..., ( ) 1} ( ), ( )

( ) ( )  
r r

r rp

i k i k
p

r r k i k i k

d
k k

v
τ τ

+

+∈ −

= + ∑  (5) 

Additionally, we made the assumption that P1 = P2 = ... = PK = N, i.e. for all objects  
exist the same number of alignment points (nodes). Let us define for each p=1,..,N  
the following characteristics:  

 max

{1,..., }
max ( )p p

k K
kτ τ

∈
=  ,        

1

1
( )

K
avg
p p

k

k
K

τ τ
=

= ∑  (6), (7) 

2.2   Formulation of Optimization Problems for Movement Synchronization 

One of the formulations of optimization problem for movement synchronization of K 
objects can be defined as follows: for fixed paths Ik of each k-th object to determine 
such 1( ), ( )

,  0, 1,   1,r r ki k i k
v r R k K+ = − =  that 

 ( )max

1 1

( ) min
N K

p p
p k

kτ τ
= =

− →∑∑  (8) 

with constraints: 
 1

max

( ), ( )
( ),         0, 1,   1,r r ki k i k

v v k r R k K+ ≤ = − =  (9)   

 1( ), ( )
0,                  0, 1,   1,r r ki k i k

v r R k K+ > = − =  (10) 

where max ( )v k  describes maximal velocity of the k-th object resulting from its 

technical properties. Taking into consideration (5) and (6) we can write (8) as follows: 

1 1

1 1

( ), ( ) ( ), ( )0 0

{1,..., }
1 1 {0,..., 1} {0,..., 1}( ), ( ) ( ), ( )

    ( )    ( )

max ( )  ( )  min
r r r r

r r r rj k

pp

N K
i j i j i k i k

j K
p k r R r Ri j i j i k i k

r r kr r j

d d
j k

v v
τ τ

+ +

+ +
∈= = ∈ − ∈ −

≤≤

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟+ − + →⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

∑∑ ∑ ∑  (11) 

Path Ik for the k-th object may be disjoint or not and must cross at fixed alignment 
points or we have to dynamically determine these points (e.g. during movement 
simulation/realization). In the first case we have NP-hard optimization problem and 
we can solve it using an approximation algorithm for finding disjoint paths [10]. In 
the second case we can use a two-stage approach: (*) finding the best paths for K 
objects iteratively using methods for finding the m-th (1st, 2nd, 3rd, etc.) best path for 
each of the K objects [4] and visiting specified nodes [5]; (**) synchronizing 
movement of K objects by solving problem (8)-(10) and using algorithms described in 
section 3 [13]. We can consider one of extensions of problem (8)-(10): adding 
constraint as follows 

 
1

1

( ), ( )0 max

{0,..., 1} ( ), ( )

( )  ,    1,
r r

r rk

i k i k

r R i k i k

d
k T k K

v
τ

+

+∈ −

+ ≤ =∑    (12) 
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we will find such a movement schedule that achieving the moment of destination 
node by the latest object is no greater than max *T τ≥ . 

To solve the problem (8)-(10) with the additional constraint (12), in generality, we 
define this problem in its changed form: for fixed paths Ik of each k-th object to 
determine such xk,p, k=1,…,K, p=1,…., N  that: 

 
, ,

{1,..., }
1 1 1 1

max ( ) ( ) min
p pN K

p j i p k i
j K

p k i i

j x k xτ τ
∈= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ − + →⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑∑ ∑ ∑  (13) 

with constraints: 

 ,
1

( )
N

k p
p

x FT k
=

≤∑ ,        k=1,...,K (14) 

 , 0k px ≥ ,   k=1,...,K ,   p=1,...,N (15) 

where xk,p describes time instance which is added to ( )p kτ  for the k-th object in its  

p-th alignment point (node). It can be observed that '
,

1

( ) ( )
p

p k i p
i

k x kτ τ
=

+ =∑ . Therefore, 

if we denote 'max ' max '( ) ( )p p pk kτ τ τΔ = − , where 'max
pτ is defined like in (6), then function 

(13) has an equivalent form of 'max

1 1

( ) min
N K

p
p k

kτ
= =

Δ →∑∑  and we obtain (8). Free time 

FT(k) for the k-th object we define as: max( ) ( )kRFT k T kτ= − . 

We can observe that problem (8)-(10) is similar to a problem of task scheduling on 
parallel processors [2], [6]. There are the following similarities: (a) scheduling the 
problem before critical lines to minimize the sum of maximal delays in alignment 
points (nodes); the p-th critical line is created by nodes (1), (2),..., ( )p p pi i i K ; (b) we 

have parts of the path (arcs) as tasks; (c) we have moved objects as processors (K); (d) 
tasks are indivisible and dependent (the dependence is defined by each of the arc 

( )1

{1,..., }
( ), ( )

k

m m
Gm R

i k i k A−

∈
∀ ∈  belonging to the path for each of the object). Differences: 

(a) tasks (arcs of the path) are assigned to processors (objects) (we have no influence 
on this assignment) and we decide only on the delays of operation of processors (to 
increase realization time of tasks). 

3   Scheduling Algorithms for Movement Synchronization 

Two movement scheduling algorithms are presented: the first one (A.1) for solving 
the problem (8)-(10) and the second one (A.2) for solving the problem (13)-(15). Let 
us denote by ' ( )p kτ  modified (by algorithms) moment of achieving the p-th alignment 

point by the k-th object and ' '( ) ( ) ( )p p pk k kτ τ τΔ = − . 
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3.1   Dynamic Programming Algorithm 

Algorithm A.1 

For each p∈{1,...,N} recurrently compute the modified moments 
of achieving alignment nodes for K objects:  

 ( )' '
1

{1,..., }
( ) max ( ) ( ) ,    for 1p p p

j K
k j j k Kτ τ τ−∈

= Δ + ≤ ≤  (16) 

and in addition ' 0
0 0( ) ( ) ( )k k kτ τ τ= = , 1 k K≤ ≤ . 

It is important that A.1 algorithm solves the problem (8)-(10) optimally (properties of 
the algorithm presented in [13]). Notice that '

{1,..., }
( ) 0p

k K
kτ

∈
∀ Δ ≥ . It results from (16) 

and from the assumption that 1

1, 0, 1
 ( ) ( ) 0r r

k K r Rk

k kτ τ+

= = −
∀ ∀ ≥ ≥ . Having 

'

{1,..., } {1,..., }
( )p

p N k K
kτ

∈ ∈
∀ ∀  and ' ( )p kτΔ  we can easily compute: 

' '
( ){1,..., } {0,..., }

 ( ) : ( ) ( )
k

r r
q rk K r R

k k kτ τ τ
∈ ∈

∀ ∀ = + Δ , { }( ) max {1,..., } : ( )pq r p N r k r= ∈ ≤  and 

1

1

( ), ( )'
' 1 '( ), ( ){1,..., } {0,..., }

  :=
( ) ( )

r r

r r

k

i k i k

r ri k i kk K r R

d
v

k kτ τ
+

+ +∈ ∈
∀ ∀

−
. The complexity of the algorithm A.1 is equal 

to ( )2K NΘ  but we can obtain complexity ( )KNΘ  because for each p∈{1,…,N} 
' ' '(1) (2) ... ( )p p p Kτ τ τ= = = .  

3.2   Cost-Profit Approximation Algorithm 

We can present the heuristic (greedy) algorithm A.2 which solves the problem  
(13)-(15) (it is equivalent to the problem (8)-(10) with (12)). We define the notations 
used inside the algorithm: card(x) – strength of set x; ( )pa k  - time instance which is 

added to ( )p kτ , { }{ }max( ) : ( ) 0,...,s pP k p ks N τ+ = ∈ Δ > , 

{ }{ }max( ) : ( ) ( ) 0,...,s p pP k p k a ks N τ≥ = ∈ Δ − ≥ , { }{ }max( ) : ( ) ( ) 0,...,s p pP k p k a ks N τ< = ∈ Δ − < . 

Functions Z(⋅) and L(⋅) describe „profit” and “cost” of decreasing max ( )p kτΔ  with value 

( )
ksa k , ( )

kk ss P k+∈ :  

( ) max

( )

( )( ( )) ( ) ( )
kk k

sk

ss s p
p P k

P kZ a k a k card kτ
<

≥

∈

= ⋅ + Δ∑  (17) 

 ( ) max

( )

( ) ( )( ( )) 1
kk

sk

p ss
p P k

k a kL a k K τ
<∈

Δ −= ⋅− ∑   (18) 

Value , ,: ( )k p k p px x a k= +  (in step 10) is equal to the sum of ( )pa k  values that are 

determined for all iterations of A.2 and for every k and p. The idea of algorithm A.2 

consists of decreasing the value of OBJ= 'max

1 1

( )
N K

p
p k

kτ
= =

Δ∑∑  by decreasing the value of 

'max ( )p kτΔ  for any k and p.  
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Algorithm A.2 

Given sets: Ik, Tk, IPk, TPk  for each k=1,…,K  and values ObjOrder, 
Strategy; 
Initialize:

{1,..., } {1,..., }
( ) : 0pk K p N

a k
∈ ∈

∀ ∀ = ;
,{1,..., } {1,..., }

: 0k pk K p N
x

∈ ∈
∀ ∀ = ; counter:=N; 

* *

{1,..., }
( ) : ( ) ( )k kR R

k K
FT k k kτ τ

∈
∀ = − ; 'max max

{1,..., } {1,..., }
( ) : ( )p p pk K p N
k kτ τ τ

∈ ∈
∀ ∀ Δ = − ;  

1. WHILE ( ) ( )
{1,..., }

( ) 0 >0
k K

FT k
∈

∃ > ∧ counter DO 

2.       counter:=0; 
3.   To determine KO  vector using ObjOrder; 
3a.  FOR k=KO[1],…,KO[K] DO 
4.  IF ( ) 0FT k >  THEN 

5. Use current Strategy to find ks  and ( )
ksa k ; 

6.   IF ( ) 0
ksa k >  THEN 

7.   'max 'max

{ ,..., }
( ) : ( ) ( )

k
k

p p sp s N
k k a kτ τ

∈
∀ Δ = Δ − ; 

8.   'max 'max 'max

{1,..., }( )
 ( ) : ( ) ( )

sk

p p pj Kp P k
j j kτ τ τ

< ∈∈
∀ ∀ Δ = Δ + Δ ; 

9.   ( ) : ( ) ( )
ksFT k FT k a k= − ;  

10.   
, ,: ( )

k k kk s k s sx x a k= + ; 

11.   counter:=counter+1; ( ) : 0;
ksa k =  

12.  END IF; 
13. END IF; 
14.  END WHILE; 
15. END WHILE. 
 

To set an examination order vector KO of K objects in A.2 algorithm we use some 
object order ObjOrder∈{0,…,3} strategy (step 3 of the algorithm): ObjOrder=0 – set 
elements of KO iteratively, from k=1 to k=K; ObjOrder=1 – set elements of KO 
randomly, with uniform distribution on the set {1,…,K}; ObjOrder=2 – set elements 
of KO iteratively, starting from such a k which corresponds to the first greatest, 
second greatest, …, the K-th greatest values of vector FT; ObjOrder=3 – set elements 
of KO iteratively, starting from such a k which corresponds to the first smallest, 
second smallest,…, the K-th smallest values of vector FT. 

To find values of 1 ( )ks P k+∈  and { }( 'max( ) 0,  min ( ), ( )
k ks sa k k FT kτ ⎤∈ Δ ⎦  we use some 

Strategy∈{0,…,4} (step 5 of the algorithm): Strategy=0 – find such a value sk and 
maximal value ( )

ksa k  for which condition ( ( )) ( ( ))
k ks sZ a k L a k>  is satisfied; 

Strategy=1 – find such a value sk and value ( )
ksa k  for which value 

( ( )) ( ( ))
k ks sZ a k L a k−  is maximal and positive; Strategy=2 – find N times such a value 

sk and randomly ( )
ksa k  for which value ( ( )) ( ( ))

k ks sZ a k L a k−  is maximal and positive; 

Strategy=3 – find N times randomly such values sk and ( )
ksa k  for which value 
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( ( )) ( ( ))
k ks sZ a k L a k−  is maximal and positive;   Strategy=4 – like for Strategy=3 but 

we draw values sk and ( )
ksa k  only one time. 

For example, when ObjOrder=0 and Strategy=0, the OBJ will be decreased when we 

select such a maximum value of { }( 'max( ) 0,  min ( ), ( )
k ks sa k k FT kτ ⎤∈ Δ ⎦ for any 1 ( )ks P k+∈  

that ( ( )) ( ( ))
k ks sZ a k L a k> . Let us take into account the third row of Table 2 (for k=2). It 

is profitable to set a1=2=min{max{2,4,3,1}, 2, 2} because when we decrease values of 
max (2)pτΔ  for p∈ 1 (2)P≥ ={1, 2, 3} then our “profit” (decreasing the value of OBJ) is equal: 

( )
1

max
1 1 1

(2)

( (2)) (2) (2) 2 3 1 7(2) p
p P

Z a a card P τ
<

≥

∈

= ⋅ + Δ = ⋅ + =∑ . “Cost” is equal 

( )
1

max
1 1

(2)

( (2)) 2 1(2) (2)3 1 p
p P

L a aτ
<∈

= ⋅ = ⋅Δ −− ∑  (increasing value of OBJ). Afterwards, in 

the steps 7÷9 we decrease the value of 'max ( )p kτΔ  and FT(k) with ( )
ksa k  for all kp s≥ . In 

the case of max ( ) ( ) 0
kp sk a kτΔ − <  in step 7, then we must increase this value like in step 8. 

The algorithm tries to decrease the value of OBJ until the free time FT(k) for all k will be 
equal to zero or when ( ) 0

ksa k >  (for which condition ( ( )) ( ( ))
k ks sZ a k L a k>  is 

satisfied) does not exist for any k and p (variable counter=0). Let 

{ }min max max

{1,.., }
( ) min ( ) ,    if  ( ) 0p p p p

p N
k k kτ τ τ τ τ

∈
Δ = − − >  and min ( ) 1kτΔ =  - otherwise. 

Iteration number LWHILE  of the WHILE loop can be estimated as follows: 

min{1,..., }

( )
max

( )WHILE
k K

FT k
L

kτ∈

⎡ ⎤
< ⎢ ⎥Δ⎢ ⎥

. It is easy to observe that the complexity of separate steps of 

the algorithm is as follows: step 5 – O(N2), step 7 – O(N), step 8 – O(KN), steps 9÷11 – 
O(1). Steps 4÷14 are realized in the FOR loop K times, hence complexity of the A.2 

algorithm is equal ( )( )2 2
WHILEO L K N KN+ . 

It is possible to improve value of objective function (8) and computational time in 
A.2 algorithm using some preprocessing step (algorithm A.2.0). In A.2.0 algorithm we 
try to decrease value of objective function (8) by decreasing 'max

{1,..., }
( )pp N
kτ

∈
∀ Δ  values 

(for each k-th object), to obtain all nonnegative values of 'max ( )p kτΔ  (like in A.2 

algorithm). Notice that method of value ( )
ksa k  selection in the 4 step of the algorithm 

guarantees, that value of cost function ( ( )) 0
ksL a k =  (see (18)) because of 

( )sP k< = ∅ . After running A.2.0 algorithm, we start A.2 algorithm taking into 

initialization step values ,
{1,..., } {1,..., }

k p
k K p N

x
∈ ∈

∀ ∀ , 
{1,..., }

( )
k K

FT k
∈

∀  and 

'max

{1,..., } {1,..., }
( )pk K p N
kτ

∈ ∈
∀ ∀ Δ  obtained from A.2.0 algorithm. Computational complexity of 

A.2.0 algorithm can be estimated as follows: external loop FOR realizes K times, 
number of iteration LWHILE of WHILE loop for fixed k is bounded by value LWHILE (like 
in A.2 algorithm), step 4 has complexity O(N), and steps 6÷8 – O(N). Hence, total 
complexity of the A.2.0 algorithm is equal ( )WHILEO KL N . 
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Algorithm A.2.0 

Given sets: Ik, Tk, IPk, TPk  for each k=1,…,K ; 
Initialize:

{1,..., } {1,..., }
( ) : 0p

k K p N
a k

∈ ∈
∀ ∀ = ;

,{1,..., } {1,..., }
: 0k pk K p N

x
∈ ∈

∀ ∀ = ; Exit:=false; 

* *

{1,..., }
( ) : ( ) ( )k kR R

k K
FT k k kτ τ

∈
∀ = − ; 'max max

{1,..., } {1,..., }
( ) : ( )p p pk K p N
k kτ τ τ

∈ ∈
∀ ∀ Δ = − ;  

1.  FOR k=1,…,K DO 
2. WHILE Exit=false DO 
3.    IF FT(k)>0  

4. Find such a minimal value 1 ( )ks P k+∈  and maximal 

value { }'max

{ ,..., }
( ) 0,  min max ( ), ( )

k
k

s p
p s N

a k k FT kτ
∈

⎛ ⎤∈ Δ⎜ ⎥⎝ ⎦
, for which 

condition 'max

{ ,..., }
( ) ( ) 0

k
k

p s
p s N

k a kτ
∈

∀ Δ − ≥  is satisfied; 

5.   IF ( ) 0
ksa k >  THEN 

6.   'max 'max

{ ,..., }
( ) : ( ) ( )

k
k

p p s
p s N

k k a kτ τ
∈

∀ Δ = Δ − ; 

7.   ( ) : ( ) ( )
ksFT k FT k a k= − ;  

8.   
, ,: ( )

k k kk s k s sx x a k= + ; 

9.  ELSE 
10.   Exit=true; 
11.  END IF; 
12.      ELSE 
13.         Exit=true; 
14.      END IF; 
15.  END WHILE; 
16.  END FOR; 

4   An Experimental Analysis of Algorithms 

Presented in Fig.1 are examples of using A.1 and A.2 algorithms. It can be observed 
(Table 1) that the value of the criterion function (8) before using A.2 algorithm is 
equal to 20 (sum of values in the table excluding the last column) and after using the 
A.2 algorithm (Table 4) is equal to 14. Table 2 presents initial values of functions 

'max ( )p kτΔ  and FT(k) before running algorithm A.2 (it has been assumed max *T τ= ). 

Table 3 contains final values of these functions, after running the A.2 algorithm. 
Values of ,k px  determined by algorithm are equal zero excluding two values: 3,4 1x = , 

2,1 2x = . Taking into account values of ,k px  and formula '
,

1

( ) ( )
p

p p k i
i

k k xτ τ
=

= +∑ we can 

obtain modified moments of achieving alignment nodes by all objects (Table 4). 
Taking into account the explanation presented in the section 3.1, values of ' ( )p kτ  and 

geometric distances 
1( ), ( )r ri k i k

d +  between nodes 1( ), ( )r ri k i k+  we can calculate modified 

velocities 1

'

( ), ( )r ri k i k
v +  as follows: 1

1

( ), ( )'
' 1 '( ), ( ){1,..., } {0,..., 1}

  :=
( ) ( )

r r

r r

k

i k i k

r ri k i kk K r R

d
v

k kτ τ
+

+ +∈ ∈ −
∀ ∀

−
. 
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Fig. 1. (a) Vector of paths for K=3 objects with achieved times of each N=4 alignment nodes 
for each object; (b) Results of realization of A.1 (regular line) and A.2 (dashed line) algorithms 

Table 1. Values of functions ( )p kτ and ( )kR kτ for example from Fig.1a 

 p  
k 1 2 3 4 ( )kR kτ  

3 2 13 16 17 19 
2 5 9 13 16 18 
1 7 12 14 15 20 

Table 2. Initial values of functions 'max ( )p kτΔ and FT(k) (before running algorithm A.2) 

 p  
k 1 2 3 4 FT(k) 
3 5 0 0 0 1 
2 2 4 3 1 2 
1 0 1 2 2 0 

Table 3. Final values of functions 'max ( )p kτΔ  and FT(k) (after running algorithm A.2) 

 p  
k 1 2 3 4 FT(k) 
3 5 0 0 0 0 
2 0 2 1 0 0 
1 0 1 2 3 0 
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Table 4. Modified moments ' ( )p kτ  of achieving checkpoints by all objects 

 p 
k 1 2 3 4 
3 2 13 16 17+1 
2 5+2 9+2 13+2 16+2 
1 7 12 14 15 

 
(a) (b)

 
(c) (d) 

 
 

Fig. 2. Average computation time in logarithmic scale [msec] for A.2 algorithm, with 
(Preprocessing=true, using A.2.0 algorithm) or without preprocessing (Preprocessing=false), using 
different pairs ObjOrder-Strategy. ObjOrder=-1 and Strategy=-1 deal with solving nonlinear 
optimization problem (13)-(15) using GAMS/CONOPT solver: (a) Preprocessing=true, 
ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{1,…,50}; (b) Preprocessing=true, ObjOrder∈{0,1}, 
Strategy∈{0,…,4}, N∈{51,…,100}; (c) Preprocessing=false, ObjOrder∈{0,1}, Strategy∈{0,…,4}, 
N∈{1,…,50}; (d) Preprocessing=false, ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{51,…,100}. 

 
At the Fig.2 average computation time (computer with Intel Pentium IV 3GHz 

processor) in logarithmic scale [msec] for A.2 algorithm, with preprocessing (A.2.0 
before A.2 algorithm) and without it using different pairs ObjOrder-Strategy 
(ObjOrder∈{0,1} because for ObjOrder∈{2,3} similar results have been obtained) is 
presented. The size of the problem (13)-(15) has been set as follows: values of 
K∈{1,…,100} and values of N∈{1,…,100} (values of K are divided into group with 
range 10, values of N are grouped into two sets: for 1 50N≤ ≤  and for 
50 100N< ≤ ). Over 200 000 randomly generated input data for the problem  
(13)-(15) has been examined. To compare obtained results from A.2 algorithm, the 
problem (13)-(15) has been also solved using GAMS/CONOPT solver 
(ObjOrder−Strategy=-1− -1).  

It can be observed (comparing Fig.2a and Fig.2c or Fig.2b and Fig.2d) that using 
preprocessing step (running algorithm A.2.0 before A.2) we can accelerate 
 



 Approximation Scheduling Algorithms for Solving Multi-objects Movement 587 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Fig. 3. Average percentage improvement of objective function (13) value for A.2 algorithm, with 
(Preprocessing=true, using A.2.0 algorithm) or without preprocessing (Preprocessing=false), using 
different pairs ObjOrder-Strategy. ObjOrder=-1 and Strategy=-1 deal with solving nonlinear 
optimization problem (13)-(15) using GAMS/CONOPT solver: (a) Preprocessing=true, 
ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{1,…,50}; (b) Preprocessing=true, ObjOrder∈{0,1}, 
Strategy∈{0,…,4}, N∈{51,…,100}; (c) Preprocessing=false, ObjOrder∈{0,1}, Strategy∈{0,…,4}, 
N∈{1,…,50}; (d) Preprocessing=false, ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{51,…,100}. 

 
computation time between a few and twenty times faster than without preprocessing 
step. For all pairs ObjOrder−Strategy we have obtained faster computation time than 
for using GAMS/CONOPT solver. We have obtained the best computation time for 
ObjOrder−Strategy: 0−0, 1−0 (also for 2−0 and 3−0). 

At the Fig.3 average percentage improvement of objective function (13) value for 
A.2 algorithm, with or without preprocessing (A.2.0 algorithm) using different pairs 
ObjOrder-Strategy is presented (ObjOrder∈{0,1} because for ObjOrder∈{2,3} 
similar results have been obtained). Value PI of percentage improvement of objective 

function value is calculated as follows: 0 1

0

100%
OBJ OBJ

PI
OBJ

−= ⋅ , where OBJ0, OBJ1 

– values of objective function (13) before and after running A.2 algorithm, 
respectively. It can be observed that for K>20 almost for all pairs ObjOrder-Strategy 
in A.2 algorithm percentage improvement of objective function value is better than for 
using GAMS/CONOPT solver. This difference is growing when value of K is 
growing. We have obtained the best results using preprocessing step (Fig.3a and 
Fig.3b) and following pairs of ObjOrder−Strategy: 0−1, 1−1 (also for 2−1 and 3−1). 
Percentage improvement of objective function (13) value for the best pairs of 
ObjOrder−Strategy is equal 65% to 80%. 
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5   Summary 

The approaches presented in the paper give possibilities to schedule synchronous 
movement of many objects and they are used in some simulation-based operational 
training support system [1] on the planning stage of action [12]. It can be shown that 
they are very fast (in comparison with GAMS/CONOPT solver) and it is very 
important from the point of view of simulator reaction time on user interaction. 
During movement simulation (movement schedule realization) it is important to 
movement control and reaction to deviations from determined schedule [11]. These 
problems are essentials especially in CGF or SAF systems [8]. It is possible to 
consider many problems for synchronous movement based on given approaches: 
multicriteria scheduling, disjoint path scheduling, using not only the shortest paths but 
also the k-th shortest paths (faster to compute) [4]. Since some of the algorithms being 
discussed are heuristic (A.2) it seems to be essential to provide necessary and 
sufficient conditions for obtaining optimal solutions. Presented suggestions may 
contribute to further works and they are partially considered in [13]. 

Acknowledgements 

This work was partially supported by MUT grant PBW GD-604 and by project 
number MNiSW OR00005506 titled “Simulation of military actions in heterogeneous 
environment of multiresolution and distributed simulation”. 

References 

1. Antkiewicz, R., Najgebauer, A., Tarapata, Z., Rulka, J., Kulas, W., Pierzchala, D., 
Wantoch-Rekowski, R.: The Automation of Combat Decision Processes in the Simulation 
Based Operational Training Support System. In: Proceedings of the IEEE Symposium on 
Computational Intelligence for Security and Defense Applications (CISDA 2007), 
Honolulu, Hawaii, USA, 01-05.04 (2007) ISBN 1-4244-0698-6 

2. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and 
Manufacturing Processes. Springer, Heidelberg (2001) 

3. Buchli, J. (ed.): Mobile Robotics Moving Intelligence. Pro Literatur Verlag, Germany (2006) 
4. Eppstein, D.: Finding the K shortest Paths. SIAM J.Computing 28(2), 652–673 (1999) 
5. Ibaraki, T.: Algorithms for obtaining shortest paths visiting specified nodes. SIAM 

Review 15(2), Part 1, 309–317 (1973) 
6. Leung, J.Y.-T. (ed.): Handbook of Scheduling: Algorithms, Models and Performance 

Analysis. Chapman & Hall/CRC, Boca Raton (2004) 
7. Logan, B.: Route planning with ordered constraints. In: Proceedings of the 16th Workshop 

of the UK Planning and Scheduling Special Interest Group, Durham, UK, pp. 133–144 
(December 1997) 

8. Petty, M.D.: Computer generated forces in Distributed Interactive Simulation. In: 
Proceedings of the Conference on Distributed Interactive Simulation Systems for 
Simulation and Training in the Aerospace Environment, Orlando, USA, April 19-20, pp. 
251–280 (1995) 



 Approximation Scheduling Algorithms for Solving Multi-objects Movement 589 

9. Rajput, S., Karr, C.: Unit Route Planning, Technical Report IST-TR-94-42, Institute for 
Simulation and Training, Orlando, USA (1994) 

10. Schrijver, A., Seymour, P.: Disjoint paths in a planar graph – a general theorem. SIAM 
Journal of Discrete Mathematics 5, 112–116 (1992) 

11. Tarapata, Z.: Automatization of decision processes in conflict situations: modelling, 
simulation and optimization. In: Arreguin, J.M.R. (ed.) Automation and Robotics, pp.  
297–328. I-Tech Education and Publishing, Vienna (2008) 

12. Tarapata, Z.: Modeling, simulation and optimization of selected decision processes in 
conflict situations- a case study. Polish Journal of Environmental Studies 17(3B), 467–474 
(2008) 

13. Tarapata, Z.: Selected scheduling problems for synchronization of multi-objects 
movement. Bulletin of Military University of Technology, 4 (652) LVII, 25–37 (2008) 



M. Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS 5495, pp. 590–599, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Automatic Segmentation of Bone Tissue in X-Ray 
Hand Images  

Ayhan Yuksel and Tamer Olmez 

Department of Electronics and Communication Engineering, Istanbul Technical University, 
34469 Istanbul, Turkey 

{yukselay,olmezt}@itu.edu.tr 

Abstract. Automatic segmentation of X-ray hand images is an important 
process. In studies such as skeletal bone age assessment, bone densitometry and 
analyzing of bone fractures, it is a necessary extremely difficult and 
complicated task. In this study, hand X-ray images were segmented by using  
C-means classifier. Extraction of bone tissue was realized in three steps: i) 
preprocessing, ii) feature extraction and iii) automatic segmentation. In 
preprocessing scheme, inhomogeneous intensity distribution is eliminated and 
some structural pre-information about hand was obtained in order to use in 
feature extraction block. In feature extraction process, edges between soft and 
bone tissues were extracted by proposed enhancement process. In automatic 
segmentation process, the image was segmented using C-mean classifier by 
taking care of local information. In the study, hand images of ten different 
people were segmented with high performances above 95%. 

Keywords: Hand radiographs, image segmentation, classifiers. 

1   Introduction 

X-ray imaging is a highly available and low cost imaging method [1]. Although it is a 
popular imaging system, computer assisted analyzing of X-ray images have some 
difficulties which originate from nature of X-rays, X-ray machine, X-ray film or 
scanning methods. According to Ogiela et al [2], some specific problems in the analysis 
of 2D hand X-ray images are listed: i) Some of the details become blurred because of 
the overlapping bones. As a result, some of the bones may disappear. Therefore, the 
segmentation algorithm must estimate the form of the bone and its relation with the 
other elements on the image. ii) There can be some extra bones or bone decrements 
which are not described as a priori by anatomical maps in some patients. iii) Fractures 
and displacements caused by injuries or some pathological conditions can be displayed 
on the image. In addition to these problems, X-ray beams do not touch to the examined 
material at equal strength due to the X-ray beam source location. As a result, non 
uniform intensity distribution occurs on the resulted X-ray image. 

X-ray bone images are used in the areas such as bone age assessment [3-7], bone 
mass assessment [8,9] and examination of bone fractures [10]. Extraction of bone 



 Automatic Segmentation of Bone Tissue in X-Ray Hand Images 591 

tissue from other tissues and background (segmentation) is one of the main steps in 
such applications.  Segmentation of medical images is a challenging problem and a 
necessary first step in many image analysis and classification processes [10]. There 
are three approaches in the segmentation step: Manual segmentation, semi-automatic 
segmentation and fully automatic segmentation. In manual segmentation, selection of 
different anatomical structures is realized by an operator. Hence, they lead to operator 
dependent and subjective results [11]. In semi-automatic segmentation, some 
parameters and initial conditions of the method are set in supervision of an expert 
user. Semi-automatic segmentation and manual methods generally have better 
performances due to expert knowledge. However, non-automatic segmentation 
methods are difficult and time consuming [12]. 

In fully automatic segmentation systems, the image is segmented by developed 
algorithms in a computer and there is no need for expert knowledge. In the literature, 
there are many studies for segmenting the X-ray images. However, a fully automatic 
segmentation method that segments all X-ray images has not been met yet. Most of 
the studies were applied to limited number of images, not to general [4,6,11] Also, a 
number of automatic segmentation methods are not applicable for all bones in the 
hand X-ray image [3,5,8,9,13]. In addition, some studies needs user intervention in 
some part of the algorithm [13,14]. An automatic segmentation is the first step in 
automatic bone age assessment studies [4-7]. Likewise, an automatic segmentation 
step is a need in bone density assessment [8,9] and bone fracture analysis [10].  

In this study, an automatic segmentation method for X-ray hand images was 
presented. Here, X-ray images were segmented using C-means algorithm by 
incorporating some structural pre-information.  

2   Method 

In this study, a new method for segmentation of bones in X-Ray hand images was 
proposed. Segmentation procedure was studied in three steps. In the first step, the 
intensity non-uniformity of X-ray image was removed. Then, some structural 
information about image was obtained in order to use for improving feature extraction 
block.  

In the second step, the features which emphasize the bone boundaries were 
analyzed. Here, two feature images were generated. The difference operation between 
the two feature images emphasizes the bone edges. Also a feature improvement 
method was applied in this step.  

In the third step, an unsupervised neural network was used for segmenting bone 
tissues in the decision process. In this step, feature image was given to neural network 
by parceling small windows in order to take care of local feature variations.  
Segmented image contains only bone edges. Finally, by using morphological image 
processing techniques bone tissue was extracted. 
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Fig. 1. Main steps of automatic hand bone segmentation 

2.1   Pre-processing 

Pre-processing step consists of removing non-uniform intensity distribution, creating 
a hand mask and determining the locations of the fingertips and the wrist region of 
hand. 

X-ray images have non-uniform intensity distribution because X-ray beams do not 
reach to the examined material at equal strength due to the X-ray beam source 
location. In order to eliminate this non-uniformity, a model for generation and 
distribution of X-ray beams was created. Then, a correction strategy which determines 
parameters of the X-ray source and corrects intensity distribution of the image 
retrospectively was developed. This method had been proposed and applied in [15]. 
Result of intensity distribution procedure is given in Fig. 2.  

Employing some pre-information about hand image to be segmented provides 
better segmentation results with less error. In order to do this, location of hand was 
determined. Note that, intensity correction procedure makes hand extracting method 
easier with a simple automatic thresholding method [15]. 

Other pre-information about hand is the location information of the fingertips and 
the wrist region. Previously created hand mask was used for this step. Fingertips were 

 

 
 
Fig. 2. Result of intensity distribution procedure. 3-D representation of the original image (a) 
and the corrected image (b). 

(a) (b) 
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found by analyzing binary hand mask image. The task was realized by looking for 
peaks in the boundary of hand mask. Wrist region was determined by creating a hand 
silhouette from X-ray image. To do this, X-ray image is masked by the hand mask 
and extracted hand region is filtered with a CWT filter with a scaling factor of 0.5. 
Obtained hand silhouette gives its maximum gray level value at the position where 
wrist bones stands because their thicknesses cause brighter regions in X-ray images.  

2.2   Feature Extraction 

An X-ray image consists of three different regions; background, soft tissue and bone 
tissue. Also, two types of boundaries can be thought; background- soft tissue 
boundary and soft tissue-bone tissue boundary.  The boundaries between two regions 
form edges which give higher variance values than other areas.  

The goal of the feature extraction step is to expose the features which emphasize 
the bone edges. Generating a variance map is an easy method for focusing on sudden 
feature differences or edges. However, when the variance of the image is calculated 
directly, other soft tissue-background edges are revealed near edges of bone tissue. 
Therefore, two variance maps  are calculated: i) variance map for emphasizing bone 
tissue -soft tissue edges, ii) variance map for emphasizing soft tissue- background 
edges.  

For the first variance map, an averaged square image is created by the equation (1). 
In this equation, energy value of a pixel is calculated by averaging square values of 
pixels in N-neighborhood window, where N was selected 1 in the study.  This 
operation makes edges between bone tissue and soft tissue more strong than other 
edges.  

∑ ∑
−= −=
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=
N
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N

E 2
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)12(

1  (1) 

Value of a pixel in variance map is calculated by equation (2). Here, ),( yxEμ  is 

average gray level value of pixels which are inside the N- neighborhood of pixel at 
position (x,y) . Similar to energy map, neighborhood degree N was selected 1 for this 
study. 
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Created variance map has high values at bone edges and the boundaries between soft 
tissue-background. In order to eliminate the unwanted boundaries between soft tissue-
background and obtain a result image which have only bone edges, another feature 
image which is dominated by soft tissue-background borders is created. For this 
purpose, a logarithmic image was created and variance map of the image was 
obtained. Boundary of soft tissue-background is dominant in created logarithmic 
variance image. Calculations of logarithmic image and variance map of this image are 
given in equations 3 and 4.  
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Where ),( yxLμ  is average gray level value of pixels which are inside the N-

neighborhood of pixel at position (x,y). N is the neighborhood degree which was 
selected 1 for the study. 

Initially, two images, created by equations 2 and 4, were normalized in order to 
have the same average gray level value. Next, difference image, φ  was obtained by 

subtracting ),( yxLμ feature from ),( yxEμ feature as given in equation (5). This 

procedure makes bone edges dominant while eliminating soft tissue-background 
borders in the image. Variance features of energy image, logarithmic image and 
φ difference image are depicted in Fig. 3. 

LE 22 σσφ −=  

 

(5) 

 
 

Fig. 3. Obtained feature images: (a) Variance map of energy image, (b) variance map of 
logarithmic image, (c) difference image 

(a) (b)

(c)
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2.2.1   Feature Improving 

Difference of variance maps, φ , contains bone edges with higher values and gives 

good results when used as a feature for segmentation of bones but segmentation with 
this feature generally fails at some specific regions where variance values are not 
enough high like fingertips and wrist region. Improving the features at those specific 
locations will increase the segmentation performance. 

For improving the features, φ  was multiplied with a mask which has bell shaped 

curves with peaks at the pre-determined locations of fingertips and wrist region. 3D 
representation of multiplication mask is seen in Figure 4-a. Here, there are five curves 
at fingertips and one curve at the wrist region. Widths and peak values of each curve 
were predetermined by taking anatomical features into consideration. Improvement of 
φ  is also depicted in Figure 4-b with 3-D coordinates where –z coordinate stands for 

the feature value at related position. 

 
 
Fig. 4. Improving of features: (a) 3-D representation of multiplication mask (b) feature values 
in 3-D after improvement step 

2.3   Segmentation 

A segmentation method that analyses feature image with sub windows was used in the 
study. Sub windows were then segmented by neural network and local segmentation 
results from all sub windows were obtained. Then a method was developed for 
combining local segmentation methods and generating a segmentation result for 
whole image. Finally, segmentation result was processed by a series of structural 
image processing methods in order to get final segmentation result. Segmentation 
process can be examined by three steps: i) segmentation in sub windows, ii) obtaining 
global segmentation result from local segmentation method, iii) converting 
segmentation result into final segmented bone tissue by structural image processing 
methods. 

Because the feature values of the bone tissue in the feature image varies among 
whole hand region, a segmentation method which analyses all of input image at a time 
will fail. So, there is a need for a method which is able to observe local feature 
variations in the image. For this purpose, segmentation process was realized by 

(a) (b) 
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examining the feature image inside small sized, randomly located sub windows.  
Square sub window size was set at about width of a finger. Sub window locations 
were selected randomly during segmentation process. This approach will generate 
more reliable results because it provides a lot of decisions for any pixel with a lot of 
point of views. Sub windows are shown in Figure 5. In order to show more 
comprehensible image, only fifty sub windows are shown. 

Sub windows were segmented by using C-means classifier with two nodes. The 
nodes were labeled as edge (high valued) and non-edge (low valued) according to 
their position in one dimensional feature space. Distribution of feature values inside 
the sub window determines node position. Nodes of classifier are attracted to class 
centers automatically. 

 

 
 

Fig. 5. Randomly selected fifty sub windows 

 
After the training step of the classifier has been completed for the selected sub 

window, segmentation process starts. In segmentation process, each pixel in sub 
window is given to classifier as a one dimensional feature vector. Label of this pixel 
was defined by the label of nearest (according to Euclidian distance in feature space) 
node of the classifier.  

Every pixel in the hand will be covered by a sub window due to the high number 
(1000) of sub windows. Since there should be many sub windows which cover the 
same pixel, different labels may be obtained for that pixel at different sub windows. 
Therefore, In order to store the segmentation results, two label counters was assigned 
for each pixel in the image. When it is covered by a sub window, only one of the 
counters of a pixel is incremented by one according to the result of the neural 
network. This process is iterated until determined number of sub window is selected 
and segmented. After sub window segmentation step has been completed, global 
segmentation result is generated by examining label counters for each pixel in the 
image. Label of any pixel counter with highest value will be assigned to it. 

In the previous step, only bone edges were found. However, the extraction of the 
whole bone tissue is needed. To do this, bone tissue was obtained by using bone edge 
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image found in previous step. By applying a simple region growing algorithm, it is 
possible to extract all bones.  

Firstly, a dilation operation is applied in order to remove all small spaces. For 
filling interiors of bone edges and obtaining final segmented bone tissue, a region 
growing algorithm which grows outside the bone tissue is applied. This process finds 
outside of the bone tissue. Inverted image of region growing result will give the final 
bone tissue image. 

3   Computer Simulation Results 

In order to examine the validity of the proposed method, X-Ray hand images of ten 
different people were segmented and quantitative performance values of segmentation 
process were investigated by applying a manually created test set which was created 
by selecting total 300 points from inside and outside of the bone tissue. Then, 
segmentation performance for each image was evaluated by the ratio of true decision 
over test size.  Hand X-Ray images used in the study were obtained from X-Ray 
database of Image Processing and Informatics Laboratory of South California 
University [16]. 

Proposed segmentation result was coded in Matlab ® Release 14 and executed 
with a 1.73 GHz Intel Centrino Notebook. Segmentation of an image with sizes about 
1000x1200 pixels takes about three minutes (Preprocessing 1 minute, feature 
extraction 0.5 minute and segmentation 1.5 minute, approximately ). 

In Table 1, Performance results for segmentation of ten images are given. Original 
and segmentation results for two of the images are shown in Figure 6. 

 

 
Table 1. Segmentation performance for selected images 

 
Image Name  Performance(%) 

3229 99.7 
3842 100 
4335 100 
4482 98 
4494 96 
4524 99.3 
5104 99.7 
5209 100 
5268 99 
5365 99.7 

Images names are the original image names. More 
information about images can be obtained from the database 
[16]. 
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Fig. 6. Original X-Ray hand images (c,d) Segmentation results of (a) and (b) respectively 

3   Discussion 

In this work, a method for segmenting of bone tissue from X-Ray hand images was 
developed. Features of bone tissue vary over whole hand image. Because of this, 
methods that segment the bone tissue by looking general image often fail. Better and 
more reliable results were obtained with segmentation of the image by searching local 
feature variations and generating global segmentation results by interpreting local 
segmentation results as a kind of statistical data. 

In the study, using some structural information about hand improved the 
segmentation performance. It was observed that, without adding structural 
information, segmentation process had given poor performance value. So, using 
structural information of hand with extracted features will give better results. 

Segmentation of bones automatically is an extremely challenging task. Steps of 
segmentation process takes nearly three minutes for an image with sizes 1000x1200. 
The method gave similar results for different people’s images which is the evidence 
for generality of method. 

(a) (b) 

(c) (d)
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In the future work, segmentation of bones from different organs will be studied. 
Also, in this work, bones are segmented as a whole tissue. A method for segmenting 
of the image bone by bone will be searched. 
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Abstract. Image metamorphosis, commonly known as morphing, is a powerful 
tool for visual effects that consists of the fluid transformation of one digital 
image into another. There are many techniques for image metamorphosis, but in 
all of them is a person who supplies the correspondence between the features in 
the source image and target image. In this paper we use a method to find the faces 
in the image and the Active Shape Models to find the features in the face images 
and perform the metamorphosis of face images in frontal view automatically. 

Keywords: Automatic Image Metamorphosis, Active Shape Models, Facial 
Features. 

1   Introduction 

Image metamorphosis is a powerful tool for visual effects that consists of the fluid 
transformation of one digital image into another. This process, commonly known as 
morphing [1], has received much attention in recent years. This technique is used for 
visual effects in films and television [2,3], and it is also used for recognition of faces 
and objects [4].  

Image metamorphosis is performed by coupling image warping with color 
interpolation. Image warping applies 2D geometric transformations to images to retain 
geometric alignment between their features, while color interpolation blends their colors. 

The quality of a morphing sequence depends on the solution of three problems: 
feature specification, warp generation and transition control. Feature specification is 
performed by a person who chooses the correspondence between pairs of feature 
primitives. In actual morphing algorithms, meshes [3, 5, 6], line segments [7, 8, 9], or 
points [10, 11, 12] are used to determine feature positions in the images. Each primitive 
specifies an image feature, or landmark. Feature correspondence is then used to 
compute mapping functions that define the spatial relationship between all points in 
both images. These mapping functions are known as warp functions and are used to 
interpolate the positions of the features across the morph sequence. Once both images 
have been warped into alignment for intermediate feature positions, ordinary color 
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interpolation (cross-dissolve) is performed to generate image morphing.  Transition 
control determines the rate of warping and color blending across the morph sequence.  

Feature specification is the most tedious aspect of morphing, since it requires a 
person to determine the landmarks in the images. A way to determine the landmarks 
automatically, without the participation of a human, would be desirable. In this work, 
we use a method for to find a face in an image and after that to use the Active Shape 
Models for to find the facial features and in this form perform the spatial relationship 
between all points in both images, without the intervention of a human expert. We 
initially chose work with images of faces in frontal view with uniform illumination and 
without glasses to simplify the problem. 

2   Active Shape Models 

The Active Shape Models (ASM) was originally proposed by Cootes [13]. The ASM 
are statistical models which iteratively move toward structures in images similar to 
those on which they were trained. The aim is to build a model that describes shapes and 
typical variations of an object. To make the model able of capturing typical variations 
we collect different images of that object, and aim that the object is appearing in 
different ways reflecting its possible variations. This set of images is named the training 
set. In this work, we used the Stegmann’s trained set that comprises 37 different frontal 
human image faces, all without glasses and with a neutral expression [14].  To collect 
information about the shape variations needed to build the model, we represent each 
shape with a set of landmarks points.  In this work we use a model of 58 points that 
represents the eyes, eyebrows, nose, mouth and jaw, see Figure 1.  

 
 

 
 

Fig. 1. The face model 

 
Each image in the training set is labeled by a set of points; each labeled point 

represents a particular part of the face or its boundary. Each point will thus have a 
certain distribution in the image space 

3   Point Distribution Models 

The Point Distribution Models are generated from examples of shapes, where each 
shape is represented by a set of labeled points. A given point corresponds to a particular 
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location on each shape or object to be modeled [15]. The examples shapes are all 
aligned into a standard co-ordinate frame, and a principal component analysis is applied 
to the co-ordinates of the points. This produces the mean position for each of the points 
and description of the main ways in which the points tend to move together. The model 
can be used to generate new shapes using the equation  

 

Pbxx +=                                                              (1) 
 

Where  x = (x0, y0,  … , xn-1, yn-1)
T , (xk, yk) is the kth model point. x  represents the mean 

shape,  P is a 2n x t matrix of t unit eigenvectors and b = (b1, …, bt)
T is a set of shape 

parameters bi. 
If the shape parameters bi are chosen such that the square of the Mahalanobis 

distance 2
mD  is limited, then the shape generated by (1) will be similar to those given in 

the training set. 
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λk is the variance of parameter bk in the original training set and 0.32
max =D . 

By choosing a set of shape parameters b for a Point Distribution Model, we define 
the shape of a model object in an object centred co-ordinate frame. We can then create 
an instance, X, of the model in the image frame by defining the position, orientation and 
scale: 

 

csM XxX += ])[,( θ                                                (3) 
 

Where T
ccccc YXYX ),,,,( K=X , M(s,θ)[] performs a rotation by θ and scaling 

by s, and (Xc,Yc) is the position of the centre of the model in the image frame. 

4   Modelling Grey Level Appearance 

We wish to use our models for locating facial features in new face images. For this 
purpose, not only shape, but also grey-level appearance is important. We account for 
this by examining the statistics of the grey levels in regions around each of the labelled 
model points [16]. Since a given point corresponds to a particular part of the object, the 
grey-level patterns about that point in images of different examples will often be 
similar. We need to associate an orientation with each point of our shape model in order 
to align the region correctly, in this case normal to the boundary. For every point i in 
each image j, we can extract a profile gij’, of length np pixels, centred at the point. We 
choose to sample the derivative of the grey levels along the profile in the image and 
normalise. If the profile runs from pstart to pend and is of length np pixels, the kth element 
of the derivative profile is 
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where yk is the kth point along the profile: 
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and Ij(yk) is the grey level in image j at that point. 
We then normalise this profile, 
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The normalised derivative profile tends to be more invariant to changes in the image 
caused by variations in lighting than a simple grey-level profile, 
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We can then calculate an np x np covariance matrix, Sgi, giving us a statistical 
description of the expected profiles about the point. Having generated a flexible model 
and a description of the grey levels about each model point we would like to find new 
examples of the modelled face in images. 

5   Calculating a Suggested Movement for Each Model Point 

Given an initial estimate of the positions of a set of model points which we are 
attempting to fit to a face image we need to estimate a set of adjustments which will 
move each point toward a better position.  At a particular model point we extract a 
derivative profile g, from the current image of some length  l (l > np), centered at the 
point and aligned normal to the boundary. We then run the profile model along this 
sampled profile and find the point at which the model best matches. Given a sampled 
derivative profile the fit of the model at a point d pixels along it is calculated as follows  

 

))(())(()( 1 ghSgh g −−= − dddf T
prof                              (8) 

 

Where h(d) is a sub-interval of g of length np pixels centred at d, normalised using (6). 
This is the Mahalanobis distance of the sample from the mean grey model, the value of 
fprof decreases as the fit improves. The point of best fit is thus the point at  fprof (d) is 
minimum [16]. 

6   Estimates the Initial Position of Model Points 

The initial position of the model points is estimated using the method for faces 
detection showed in [17]. This method is based in two stages, each one based in one 
heuristic. The first stage is based in the next heuristic. 

In a face with uniform lighting, the average intensity of the eyes is lower than the 
intensity of the part of the nose that is between the eyes. 
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In this stage we find regions that correspond to the eyes regions of possible faces in the 
image. To apply the heuristic to an image of a possible face first it is necessary to resize 
the image to 9x9 pixels. The region of the eyes in a 9x9 image corresponds to rows 2, 3 
and 4. Then the eyes region has a size of 9x3 (See Fig. 2). The equation to compute the 
ENdif  (Eyes-Nose differential) from the eyes region, which we will call I is: 

( ) 4/2,82,72,32,22,5 IIIIIENdif +++−=                                (9) 

 
 

 
 

Fig. 2. Face region of size 9x9 pixels; and the eyes region 
 

It is necessary to perform the search on the whole image to locate all the possible regions 
that can contain a face. The size of the regions depends on the size of the face to look for. 
It is necessary to determine the value of the ENdif of each region using (9). The regions 
that have an ENdif > thENdif (Eye-Nose differential acceptation threshold, calculated 
from one set of faces) are the regions that will be selected for the second stage. The 
regions selected by the first stage correspond to the eyes region of the possible faces; 
these regions are extended to the size of the face region. To determine if the possible face 
is really a face we apply a second discriminator, which is based on a heuristic: 

 

The histograms of the image in grayscale of a face with uniform lighting always 
have a specific shape 

 

We know that a face has eyes, nose, mouth, eyebrows and it is covered by skin, and 
some elements of the face are darker than others. The relationship between the elements 
of the face results in a histogram with a specific shape it is showed in the Figure 3.  

 

       
                                        (a)                                              (b)           
 

Fig. 3. Examples of the histograms from two face images. The shapes of histograms (a) and (b) 
are similar, one is wider than the other one and the values are different, this due to the lighting 
conditions and the different sizes in the images. 

 
The discriminator uses a curve model to compare it with the histogram of the 

possible face. Due to the variability of the size and lighting conditions of the possible 
faces, their histograms can vary in magnitude and in number of elements. So it is 
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necessary to normalize the histogram of the possible face and after that to compare with 
a Pearson IV curve obtained from our training set of faces as show in the figure 4.  

 

 

 
(a)                                        (b)                                          (c) 

 
Fig. 4. (a) Original histogram of the face image in Fig. 3b. (b) The new histogram normalized (c) 
Pearson IV distribution curve and the average normalized histogram from our set of faces. 

 
In this stage we reduced the number of regions of possible faces found in the first 

stage. Finally we use a mask of seven segments (Figure 5) for finding the face in the 
remaining regions of the second stage using the horizontal edge image. This 
discriminator first segments the image using the Sobel method for edge-finding in 
horizontal direction; after that, dilation is performed to enhance the edges. The resulting 
image will contain only the eyes, the eyebrows, the mouth and the nose; we use a the 
mask to evaluate the presence or absence of these elements, it is showed in the figure 5. 
One example of the whole process is presented in the Figure 6, for details see [17]. 

 

 

                        
(a)                              (b)                                  (c) 

 
Fig. 5. (a) The mask of seven segments, (b) The horizontal edge image, (c) The mask used like 
discriminator 

 

 

   
a) Possible faces: 294                 (b)Possible faces: 29               (c) Faces detected: 1 
 

Fig. 6. Process for to detect a face. (a) After the first stage. (b) After the second stage. (c) Final 
result. 
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7   Results 

In the Figure 7 is showed the process to find the face feature in the face image. In (a) is 
showed the result of the face detection algorithm and in the Figures (b) to (f) is showed 
the result of the active shape models process. 

 

 

  
                   (a)                                       (b)                                           (c) 
 

Fig. 7. (a) Position of the face in the image, (b) The initial position of the model, (c) Model after 
10 iterations 

8   Warp Generation 

Once the model has been adjusted to the images, the next step is to perform image 
deformation, or warping, by mapping each feature in the source image to its 
corresponding feature in the target image. In this work we use the inverse distance 
weighted interpolation method. 

8.1   Inverse Distance Weighted Interpolation Method 

In the inverse distance weighted interpolation method [18], for each data point pi, a 
local approximation fi(p):ℜ2→ℜ with fi(pi) = yi, i=1,..,n is determined. The 
interpolation function is a weighted average of these local approximations, with 
weights dependent on the distance from the observed point to the given points, 
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Where fi(pi) = yi, i=1,..,n. wi:ℜ2→ℜ is the weight function: 
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The exponent μ controls the smoothness of the interpolation.  
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9   Transition Control 

To obtain the transition between the source image and the target image we use linear 
interpolation of their attributes. If IS and IT are the source and target images we generate 
the sequence of images Iλ , λ∈[0,1], such that 

TS III ⋅+⋅−= λλλ )1(                                       (13) 

This method is called cross-dissolve. 
In the Figure 8 is showed the model adjusted to four different face images using the 

method. And in Figure 9 is showed the morphing process of the images in Figure 8. 

 

  
         (a)                             (b)                             (c)                                 (d) 
 

Fig. 8. Model adjusted to different face images 

 

  
(i) 

 

  
(ii) 

 
Fig. 9. (i) Morphing between the Figures 8a and 8b,   (ii) Morphing between the Fig. 8c and 8d 
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Abstract. Distributed data mining (DDM) is an important research
area. The task of distributed data mining is to extract and integrate
knowledge from different sources. Solving such tasks requires a special
approach and tools, different from those applied to learning from data
located in a single database. One of the approaches suitable for the DDM
is to select relevant local patterns from the distributed databases. Such
patterns often called prototypes, are subsequently merged to create a
compact representation of the distributed data repositories. Next, the
global classifier, called combiner, can be learned from such a compact
representation. The paper proposes and reviews several strategies for
constructing combiner classifiers to be used in solving the DDM tasks.
Suggested strategies are evaluated experimentally. The evaluation pro-
cess is based on several well-known benchmark data sets.

1 Introduction

One of basic approaches to the distributed data mining (DDM) is applying the
technique known as the meta-learning. This technique assumes combining the
global classifier from independent local classifier, where each one classifier is
learned from the separated data set [11].

The other approach to learning from distributed data sets is based on moving
all of the data to a central site, merging the data and building a single global
model. However, moving all data into a centralized location may not be feasible
due to, for example, the restricted communication bandwidth among sites or high
expenses involved. Selecting out of the distributed databases only the relevant
data can eliminate or reduce the above restrictions and speed up the global
knowledge extraction process. Selection of the relevant data is the process often
referred to as the data reduction with an objective to find patterns, also called
prototypes or references vectors, or regularities within certain attributes (see,
for example [10]). Thus, the goal of data reduction approaches is to reduce
the number of instances in each of the distributed data subsets, without loss
of the extractable information, to enable either pooling the data together and
using some mono-database mining tools or effectively applying meta-learning
techniques.
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The process of learning from the distributed data can be further complicated
by differences of structures and features within the considered distributed data
sets. In case of the heterogeneous datasets each site can store values of the
different sets of features with possibly some common features among the sites.
Extracting knowledge from the distributed and heterogeneous data sets is a
challenge for the distributed learning. Differences between feature sets can be
dealt with through the data reduction process. The aim of the distributed data
reduction is to select prototypes at each local site. In such case prototypes are
selected by simultaneously reducing data set in the two dimensions through
selecting reference instances and removing irrelevant attributes. If thus reduced
data sets are still heterogeneous then some special techniques for combining the
global classifier would be required.

The main contribution of the paper is investigating several strategies for con-
structing combiner classifiers intended to be used in solving the DDM tasks,
assuming that the data reduction process carried out independently at separate
sites has produced a set of the heterogeneous datasets. Several strategies for
learning combiner classifiers in such a situation are reviewed and experimentally
evaluated. Among the compared strategies are the extended bagging, boosting
and majority voting approaches.

The paper is organized as follows. Section 2 contains overview of several se-
lected techniques for combining global classifiers. Section 3 includes general as-
sumptions for the discussed approach, gives a brief description of the classic
combiner strategies and proposes how to extend them to be used in case of the
DDM with a heterogeneous datasets. Section 4 contains results of the compu-
tational experiment carried out with a view to validate the discussed strategies.
Finally, the last section contains conclusions and suggestions for future research.

2 Related Work

The main aim of combining classifiers is to improve predictive performance and
overcome some disadvantages of the base classification algorithm. Combining
multiple classifiers can be also useful when it is impossible or impractical to mine
the whole dataset. In such case the dataset can be partitioned and classifiers
can be learned from the separated data sets. The final prediction model can
be constructed through combining thus obtained local classifiers. Combining
classifiers (prediction models) is a fairly general method for distributed learning,
where data are physically distributed. In such case different models of data from
different sites are combined.

Among widely used approaches developed for aggregating multiple models are
statistical methods, like bootstrap, bagging, stacking and boosting [4], [12]. In
general, the bootstrap and bagging approaches generate multiple models from
different data sets and then average the output of the models. The stacking
approach combines the outputs of multiple models that are learned from inde-
pendent data sets. The boosting strategy creates multiple learners that are based
on the weighted training set. The approach assumes that a weak classifier can
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be learned from each of the considered weighted training sets and then weak
classifiers are combined into a final classifier. Others methods for constructing
combiner classifiers include voting pools of classifiers [3], committees of classi-
fiers and their combinations [14]. In particular, the committees can consist of
models of the same types or different types. Committees may also differ in in-
stance distribution and subsets of attributes used for learning [14]. Boosting and
bootstrap techniques can also be used to construct committees of classifiers. The
above approaches to aggregating multiple models have been initially introduced
with a view of increasing the accuracy of data mining algorithms. Subsequently
their applications have been also extended to combining models in distributed
data mining (see, for example [9] and [14]).

The related notion of the so called meta-learning provides mechanisms for
combining and integrating a number of classifiers learned at separated loca-
tions finally producing a meta-classifier. Meta-learning also improves predictive
performance by combining different learning models, thus sharing a lot of sim-
ilarities with the above approaches. However all above approaches to combin-
ing classifiers are mostly suitable for mining homogenous distributed data. Sev-
eral systems, like for example JAM, PADMA, Kensington, Papyrus and BODHI
([2],[6],[7],[11],[13]), have been developed for the distributed data mining from
the homogenous and the heterogenous data sets. Although several examples of
such systems have been recently described effective methods for learning from
heterogenous data sets, including these obtained by data reduction, are still an
active field of research (see, for example [7]).

3 Strategies for Combining Classifiers

3.1 Distributed Data Reduction

The classic problem of learning from data is, as a rule, based on the assump-
tion that a dataset D (with N examples) is centralized. Each example consists
of a set of attribute values. The set of attributes (or features) A, common to
all examples, has the total number of attributes equal to n . However, in the
distributed learning a dataset D is distributed among data sources D1, . . . , DK ,
with N1, . . . , NK examples, which are stored in separate sites, where K is a num-
ber of sites and where the following properties hold:

∑K
i=1 Ni = N and where all

attributes are presented at each location (i.e. ∀ijAi = Aj , where i, j = 1, . . . , K).
When data reduction is carried out subsets D1, . . . , DK are replaced by the

reduced data sets S1, . . . , SK of local patterns. When data reduction is carried
out in both dimensions, i.e. by example (or instance) selection and attribute
(or feature) selection simultaneously, reduced data sets are likely to become
heterogenous. In such case A1, . . . , AK are sets of attributes which values are
stored at sites 1, . . . , K respectively. However, it is possible that some attributes
can be shared across more then one reduced data set Si, where i = 1, . . . , K.

Ideally, from the point of view of the DDM, data reduction process should
result in obtaining, at a single central site, a set of the compact datasets that
retain extractable features and knowledge from each of the distributed data
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sources. Such set of the compact datasets can be used to induce a global classifier
possibly applying the preferred combiner strategy. In the other words, results
from the local level mining, i.e. local models, are merged and a global classifier,
called also a meta-classifier, can be combined.

3.2 Combiner Strategies Studied

To induce the combiner (or meta-) classifier under the assumption that at the
global level a set of the compact datasets is available, one can follow several
strategies. In the reported research the following strategies to induce meta-
classifiers have been considered: the bagging combiner strategy, the AdaBoost
combiner strategy, the simple voting strategy and the hybrid feature voting
strategy.

The bagging combiner strategy is based on the bagging approach as described
in [12]. The bootstrap sample is obtained by uniformly sampling instances from
the given reduced dataset Si with replacement. From each sample set a classifier
is induced. This procedure is carried out independently for each reduced data set
S1, . . . , SK , and next the global classifier is generated by aggregating classifiers
representing each sample set.

Formally, let K be the number of the distributed data sets, T - the number
of the bootstrap samples. Then the combiner classifier is generated by aggregat-
ing the T + K classifiers. The final classification of a new object x is obtained
by the uniform voting scheme on hij , where hij is a classifier learned on j trial
and where j = 1, . . . , T , i = 1, . . . , K. This means that a new object x is assigned
to the most often predicted class. Thus the voting decision for a new object x is
computed as:

h(x) = argmax
c∈C

T∑
j=1

K∑
i=1

(hij(x) = c), (1)

where c is the class label, C is a set of decision classes and hij(x) is the class label
predicted for object x by ij-th classifier, respectively. The detailed pseudo-code
of the above algorithm is shown below as the Algorithm 1.

Algorithm 1. Bagging combiner strategy

Input : Si, with Ni examples and correct labels, where i = 1, . . . , K, and integer T

specifying the number of bootstrap iterations
Output : h classifier
1. For each separated reduced data set Si repeat points 2-4
2. For j = 1, . . . , T repeat points 3-4
3. Take sample S′

i from Si

4. Generate a classifier hij using S′
i as the training set

5. Run x on the input hij

6. The classification of vector x is built by voting scheme based on condition (1)

The AdaBoost combiner strategy is based on the AdaBoost approach [12]. In
this case each classifier’s vote is a function of its accuracy. Weak classifiers are
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constructed based on the reduced datasets to produce the set of heterogeneous
weak classifiers. The boosted classifier h is combined from all weak classifiers
hij , where hij is the weak classifier induced on the j-th boosting trial (j =
1, . . . , T ) and based on the i-th reduced data set (i = 1, . . . , K). In particular, the
combination decision is taken through summing up votes of the weak classifiers
hij . The vote of each hij is worth log(1/βij) units, where βij = εij/(1 − εij) is
a correct classification factor calculated from the error εij of the weak classifier
hij . Thus the voting decision for a new object x is computed as:

h(x) = argmax
c∈C

T∑
j=1

K∑
i=1

((log
1

βij
) · hij(x) = c) (2)

and a detailed pseudo-code of the above strategy is shown as the Algorithm 2.

Algorithm 2. AdaBoost combiner strategy

Input : Si, with Ni examples and correct labels, where i = 1, . . . , K, and integer T

specifying the number of boosting trials
Output : h classifier
1. For each separated reduced data set Si repeat points 2-9
2. Initialize the distribution w1(k) = 1

Ni
(k = 1, . . . , Ni) for each example from Si

3. For j = 1, . . . , T repeat points 4-9
4. Select a training data set S′

i from Si based on the current distribution
5. Generate a classifier hij using S′

i as the training set
6. Calculate the error of the classifier hij

7. If εij > 1
2

then goto 10.
8. Set βij

9. Update the distribution wj(k) and normalize wj(k)
10. Run x on the input hij

11. The classification of vector x is built by voting scheme based on condition (2)

A simple voting strategy proposed by the authors aims at obtaining the global
classifier from the global set of prototypes. The global set of prototypes is cre-
ated by integrating local level solutions. Since local level solutions represent
heterogeneous sets of prototypes it has been decided to use the unanimous vot-
ing mechanism to support integration process. Hence, only features that were
selected by the data reduction algorithms from all distributed sites are retained
and the global classifier is formed. Formally, each local solution has been induced
from the set of prototypes, which, at each local level, are homogenous and based
on the locally selected common subset of attributes Ai ⊇ A, where i = 1, . . . , K.
Then, at the global level all prototypes from different sites are further reduced in
the feature dimension to obtain prototypes with features belonging to the sub-
set of attributes A′, where A′ =

⋃K
i=1 Ai. Thus the decision for new object x is

computed by a classifier induced from the global set of prototypes S′ =
⋃K

i=1 Si,
where each example is a vector of attribute values with attributes belonging to



614 I. Czarnowski and P. Jȩdrzejowicz

the set of attributes A′. The detailed pseudo-code of the above strategy is shown
as the Algorithm 3.

Algorithm 3. Voting strategy

Input : Ai, Si and where i = 1, . . . , K

Output : h classifier
1. Create a global set of attributes A′ =

⋃K
i=1 Ai

2. Based on A′ update each Si by deleting values of attributes not in A′

3. Create the global set of prototypes S′ =
⋃K

i=1 Si, where each example is described
by the set of attributes A′

4. Generate a classifier h using S′ as the training set
5. Run x on the input h

Finally, the hybrid feature voting strategy, proposed by the authors, derives the
global classifier from the global set of prototypes. After integrating local level
solutions features are selected independently by two feature selection techniques
i.e. by the forward and backward sequential selection (FSS and BSS) [8]. In the
process of feature evaluation the ten cross validation approach has been used.
The learning and the validation sets have been obtained by randomly splitting
the global set of prototypes. In each of the 10-C-V runs the feature selection pro-
cess is carried out. The final set of features is obtained through the unanimous
voting mechanism. Thus, only features that have been selected in each out of all
of the 10-C-V runs are retained and the global classifier is induced. The detailed
pseudo-code of the above strategy is shown as the Algorithm 4.

Algorithm 4. Hybrid feature voting strategy

Input : Ai, Si and where i = 1, . . . , K

Output : h classifier
1. Create a global set of attributes A′ =

⋃K
i=1 Ai

2. Based on A′ update each Si by deleting values of attributes not in A′

3. Create the global set of prototypes S′ =
⋃K

i=1 Si, where each example is described
by the set of attributes A′

4. For ten cross validation iteration repeat points 5-6
5. Divide S′ into the learning and the validating set
6. Run wrapper approaches and create appropriate features sets AF SS

i and ABSS
i ,

where i is a iteration number of cross validation fold
7. Create a final set of attributes A′′ =

⋃10
i=1(A

F SS
i ∪ ABSS

i )
8. Generate a classifier h using S′ as the training set and where prototypes are de-
scribed by the set of attributes A′′

9. Run x on the input h

Further strategies can be obtained by modification or extension of the above
described ones.
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4 Computational Experiment Results

The aim of the experimental study was to evaluate to what extent the above
described combiner strategies could contribute towards increasing classification
accuracy of the global classifier induced from the set of prototypes selected at
each of the autonomous distributed sites. Classification accuracies of global clas-
sifiers obtained using the proposed approaches have been compared with: re-
sults obtained by pooling together all instances from the distributed databases
(without data reduction) into the centralized database, and results obtained by
pooling together all instances selected from distributed databases through the
reduction of the example space only.

To obtain the reduced data sets, at each local sites, the agent-based popu-
lation evolution algorithm has been used. Its detailed description is available
in [5]. Generalization accuracy has been used as the performance criterion. The
classifier used in all cases has been the C 4.5 algorithm [12].

The experiment involved three datasets - customer (24000 instances, 36 at-
tributes, 2 classes), adult (30162, 14, 2) and waveform (30000, 21, 2). For the
first two datasets the best known reported classification accuracies are respec-
tively 75.53% and 84.46% [1], [15]. The reported computational experiment was
based on the ten cross validation approach. At first, the available datasets have
been randomly divided into the training and test sets in approximately 9/10
and 1/10 proportions. The second step involved the random partition of the
previously generated training sets into the training subsets each representing
a different dataset placed in the separate location. Next, each of the obtained
datasets has been reduced. The reduced subsets have been then used to compute
the global classifier using the proposed combiner strategies. The above scheme
was repeated ten times, using a different dataset partition as the test set for
each trial.

The experiment has been repeated four times for the four different partitions
of the training set into a multi-database. The original data set was randomly
partitioned into 2, 3, 4 and 5 datasets. The respective experiment results are
shown in Table 1 and have been averaged over ten cross validation runs. The
results cover seven independent cases. In the first case only reference instance
selection at the local level has been carried out, and next, the global classifier
has been computed based on the homogenous set of prototypes. In the next cases
full data reduction at the local level has been carried out and the global classifier
has been computed using one of the selected combiner strategies.

For combiner strategy based on bagging, the parameter T (number of boot-
straps) was set to 3 and 5. Choosing these small values of T of was inspired
by good results obtained by Quinlan for the C 4.5 classifier with bagging [12].
In case of the AdaBoost - based strategy the value of T (number of boosting
rounds) has been arbitrary set to 10.

Generally, it should be noted that data reduction in two dimensions (selection
of reference instances and features) assures better results in comparison to data
reduction only in one dimension i.e. instance dimension, and that the above con-
clusion holds true independently from the combiner strategy used at the global
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Table 1. Average classification accuracy (%) and its standard deviation obtained by
the C 4.5 algorithm

number of distributed data sources
Problem 2 3 4 5

A: Selection of reference instances at the local level only
customer 68.45±0.98 70.40±0.76 74.67±2.12 75.21±0.7
adult 86.20 ±0.67 87.20±0.45 86.81±0.51 87.10±0.32
waveform 75.52±0.72 77.61±0.87 78.32±0.45 80.67±0.7

B: Combiner strategy based on the Bagging approach
(number of bootstraps equals 3)

customer 69.67±1.34 72.13±1.12 77.36±0.97 76.13±2.03
adult 88.34±1.67 88.86±1.3 89.15±2.5 89.17±1.45
waveform 74.12±1.29 75.2±2.68 77.4±2.05 78.34±2.13

C: Combiner strategy based on the Bagging approach
(number of bootstraps equals 5)

customer 69.99±1.56 72.38±1.3 77.65±1.25 77.07±1.98
adult 87.78±2.7 88.34±2.1 89.67±1.98 88.57±3.12
waveform 75.23±2.14 74.67±1.67 77.87±3.23 79.23±2.54

D: Combiner strategy based on the AdaBoost approach
(number of boosting repetitions equals 10)

customer 70.05±1.43 74.78±1.01 76.23±1.23 77.41±0.74
adult 89.64±1.98 89.28±1.21 90.23±1.58 91.78±1.1
waveform 77.12±1.7 78.4±1.3 77.23±2.1 79.51±1.65

E: Combiner strategy based on the simple feature voting
customer 69.10 ±0.63 73.43 ±0.72 75.35 ±0.53 77.20 ±0.49
adult 88.90 ±0.41 87.45 ±0.31 91.13 ±0.23 91.58 ±0.41
waveform 80.12 ±1.03 82.46 ±0.98 85.04±0.73 83.84±0.64

F: Combiner strategy based on the hybrid feature voting
customer 71.02±1.2 74.53±0.97 76.85±1.09 78.15±0.81
adult 88.24±0.67 89.47±0.76 91.87±0.55 92.48±0.51
waveform 80.67±0.75 82.15±0.96 83.45±0.43 82.04±1.3
G: The AddBoost algorithm applied after the combiner strategy like in case F
customer 72.13±0.32 74.84±0.7 77.21±1.01 78.32±0.94
adult 88.67±0.54 90.02±0.57 92.6±0.87 91.34±0.7
waveform 82.45±0.72 83.62±0.9 84.43±0.63 85±0.62

level. It has been also confirmed, that learning classifiers from distributed data
and performing data reduction at the local level, produces reasonable to very
good results in comparison with the case in which all instances from distributed
datasets are pooled together.

For example, pooling all instances from distributed datasets assures classifi-
cation accuracy of 73.32%(+/-1.42), 82.43%(+/-1.03) and 71.01%(+/-0.8) for
customer, adult and vaweform datasets, respectively. On the other hand, the
global classifier based on instance selection only assures classification accuracy of
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75.21%, 87.1% and 80.67%. These results can still be considerably improved us-
ing the hybrid feature voting strategy assuring classification accuracy of 78.15%,
92.48% and 82.04%, respectively for the investigated datasets.

To reinforce our conclusions the experiment results, shown in Table 1, have
been used to perform the one-way analysis of variance (ANOVA), where the
following null hypothesi was formulated: Choice of the combiner strategy does
not influence the classifier performance. One-way ANOVA has been performed
for the investigated datasets and it was established, at the 5% significance level,
that our hypothesi should be rejected in all cases.

Comparison of the computational experiment results obtained using the pro-
posed strategies shows that the hybrid feature voting strategy at the global level
and the AdaBoost - based strategy produce good classifiers and a comparable
accuracy of classification. Merging the two as in case G in Table 1, that is ap-
plying the AdaBoost algorithm after the hybrid feature voting strategy should
further improve the classification accuracy.

5 Conclusions

This paper investigates and compares four basic strategies and their combi-
nations used for constructing the combiner classifier at the global level of the
distributed learning. The discussed strategies have been formally defined and
experimentally evaluated using several benchmark datasets. Computation ex-
periment results confirmed that the quality of results depends on the strategy
used for constructing the combiner classifier. The scope of the reported experi-
ment does not allow to conclude that some of the investigated strategies would
always outperform the others. However hybrid feature voting at the global level,
possibly combined with the AdaBoost algorithm should be seriously considered
as a potential winner strategy for solving the distributed data mining problems.

Future work will focus on evaluating other combiner classifier strategies in
terms of classification accuracy and computation costs and on carrying more
extensive experiments with a view to obtain statistically validated conclusions.
Moreover, the experiment was carried using the C 4.5 learning algorithm as the
classification tool. The future work is needed to extend computational experi-
ments to other learning algorithms.
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Abstract. Modern process and condition monitoring systems produce a
huge amount of data which is hard to analyze manually. Previous analyz-
ing techniques disregard time information and concentrate only for the
indentification of normal and abnormal operational states. We present
a new method for visualizing operational states and overall order of the
transitions between them. This method is implemented to a visualization
tool which helps the user to see the overall development of operational
states allowing to find causes for abnormal behaviour. In the end visual-
ization tool is tested in practice with real time series data collected from
gear unit.

1 Introduction

Industrial processes and systems of a condition management produce nowadays
a huge amount of time series data. The data are often monitored in industrial
applications by defining separate limits for attribute values. This type of moni-
toring is easy to implement and understand, but it is unable to show if more than
one attributes behave abnormally without breaking their limits. Altogether, a
process state is characterized and controlled individually, without overall utiliza-
tion of the measurements.

Clustering has been used before for finding states of industrial process and
abnormal behaviour from multivariate data [18][17]. However, this method loses
time information between the states. We can examine in which states obser-
vations represent, but we can not examine in which order they occurred. This
information can be meaningful if we are interested in causes that expose abnor-
mal behaviour. This can only be seen by examining states that have occurred
before the abnormal states.

This paper presents a new concept for visualizing time series data with cluster
prototypes where information about the transitions between states is added.
Implementation of this method is presented and it is tested with time series
data collected from a gear unit. For this case, we present shortly the whole
knowledge mining process [2] and the role of techniques presented here on that.
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2 Related Work

Methods for identifying operational states from industrial data have been pre-
sented in several publications. Wang [20] presents adaptive resonance theory
(ART) which is an unsupervised learning algorithm and the Bayesian automatic
classification system (AutoClass) for indentifying operational states. Also self-
orgazing maps are used for identifying states in processes like Heikkinen et al.
[9] have done. Alhoniemi et al. [1] used SOM for monitoring and modelling in-
dustrial processes.

Different clustering algorithms produce different results and it can be difficult
to compare them [11]. Visualization of clusters offers a user-friendly method for
comparing and presenting their dissimilarities. Data and cluster visualization are
overlapping approaches to the analysis of large data sets because some data visu-
alization techniques might present clusters at the same time like Self-organizing
maps [14] and parallel coordinates [12]. A problem in self-orgazing maps is that
the clustering algorithm is embedded to the method and that prevents selecting
the best clustering algorithm for each data set.

Huang and Lin [11] have developed a visualization technique for validating
clusters. They use Fastmap for visualizing high dimensional data in 2D and
a k-prototypes algorithm for clustering. Also Hoffman and Grinstein [10] have
presented many visualization techniques in their survey, but the problem is that
they are not meant to visualize time series data, i.e. temporal information is lost
when whole data is concerned.

3 The Approach

This method is originally developed for visualizing time series data collected from
the sensors attached to a gear unit. The primary use of collected data is to detect
faults before they cause a serious damage to the gear unit. In this case goal is to
form states that present either normal or abnormal behaviour of a gear unit. This
knowledge can be used afterwards for finding patterns which may precede to a
malfunction and this way predict faults even sooner. For example, the system
may run smoothly if two normal states take turns occasionally, but when these
states take turns rapidly it could expose faults. This kind of behaviour can not
be seen by examining only values of single attributes.

The used data has to be in a chronological order and complete. Observations
that have missing values can be removed or they can be estimated based on other
values of same attribute. In future the clustering algorithm can be replaced with
a version which allows missing values.

The system where the data is collected does not have delays between depended
attribute values. If two attributes are depended to each other and there is time
delay between their changes blur clusters so that it is hard to find basic features
for each cluster. This kind of problem might come out in industrial processes
like the waste water treatment process that Sànchez et al. [17] have studied.
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3.1 Clustering

A base element of the new visualization method is the gear unit state identifica-
tion with data clustering. For this prototype construction, the K-means method
is chosen. The K-means clustering method is an iterative process that divides a
given data set into K disjoint groups [16], [7]. It is one of the most widely used
clustering principles, and the best-known partitioning-based clustering method
that utilize prototypes for cluster presentation. Due to its straightforward im-
plementation, gaussian assumptions, and computational efficiency, K-means is
popular principle for many problems. It also has smaller memory requirements
than, for instance, hierarchical methods. The K-means algorithm converges to
a partition for which the cluster prototypes minimizes the clustering error with
respect to the sum of the within-cluster squared errors.

minJ (c, {mk}K
k=1)c∈Nn,mk∈Rp =

n∑
i=1

‖xi − m(c)i
‖2
2 (1)

subject to (c)i ∈ {1, . . . , K} for all i = 1, . . . , n,

where c is a code vector, which represents the cluster assignments of the objects,
and m(c)i

is the mean of the cluster, where the data point xi is assigned to.
A general iterative relocation algorithm for solving the problem of K-means

is given by the following algorithm:

Input: The number of clusters K, n × p data set X.
Output: Allocation of each data point to one of K clusters.
Step 1. (Initialization) Compute the initial K cluster centers.
Step 2. (Recomputation) (Re)compute memberships of the data points to the

current cluster centers.
Step 3. (Update) Update the cluster centers for the assignments of the data

points.
Step 4. (Stopping rule) Repeat from Step 2 until no data point changes cluster.

One should note that the K-means is very sensitive to the initial partition
and towards outliers. Since this work presents initial experiments with a new
clustering-based visualization method, K-means is a sufficient method.

Another typical option for the clustering step in a state identification problem
are provided by the hierarchical clustering methods [6]. The problem with the
hierarchical clustering is the O(n2) costs due to the use of the n × n distance
matrix. Another problem are the missing data values since the gear unit data
can contain them. The similarities computed in different sub-spaces are not easy
to compare. Sometimes the comparison may be impossible. For instance, let us
consider the distance computation for the following three 3-dimensional data
vectors

x1 = (1 0 NaN)T , x2 = (NaN 1 1)T , x3 = (1 NaN 1)T .
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Straightforward comparison of the between-object distances is difficult, since
all the points lie in the different sub-spaces. Hence, the use of prototype-based
methods enables us to represent the recognized states with explicit prototype
vectors and, on the other hand, provides more straightforward solutions for
missing data treatment.

3.2 Dimensionality Reduction

”Curse of dimensionality” is often a problem in data mining applications. Real
life data have often many variables or attributes which makes visualization diffi-
cult. A human being can realize one, two or three dimensional space easily, but
when there are more dimensions than this visualization is not straightforward.
This is one reason why dimensionality reduction techniques are developed.

The easiest way to reduce dimensions is just to reduce variables. We can select
only the most interesting variables based on domain-knowledge and visualize
them. This technique inevitably losts some information and that is why we have
to use advanced ones.

Principal component analysis (PCA) and multi dimensional scaling (MDS) are
used often for dimension reduction [8]. Also linear discriminant analysis (LDA)
[4] can be used for this. They all present original n-dimensional data where are
n-axes with fewer axes so that differences in the original data are showing as
much as possible.

Principal component analysis aims at finding such linear combinations of a
data set that preserve the maximum amount of information assuming that the
information is measured by variance. Hence, it is natural to use it for explorative
data mining. A reduced dimension is obtained when the original high dimensional
data is projected from the original �p space into the lower dimensional �q space
(p � q) that is determined by the principal components.

4 Method Description

The overall process of this method is presented in picture 1.
At first time series data is clustered with some prototype based clustering

algorithm. Clustering is used for dividing observations into classes so that obser-
vations in the same cluster are similar to each other and observations in different
clusters are dissimilar [13]. All the used algorithms in this prototype version are
very general and in the future these can be replaced with the application specific
algorithms.

Protoype based methods produce mainly spherical clusters. This is a big differ-
ence when we compare them for example to density based clustering algorithms
like DBSCAN which can produce arbitrary cluster shapes [5]. Arbitrary shape
clusters are not the best presentation for operational states because obervations
that belong to the same cluster can be very dissimilar. In spherical clusters most
of the observations are similar to each other.

When we use prototype based clustering, each cluster has a prototype which
presents for example mean or median observation of all other observations in
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Fig. 1. Steps for visualizing time series data with prototype based clustering

one cluster. In this way we get an explicit presentation for each cluster in n-
dimensional space. Also prototypes can be examined for finding the most com-
mon values of each attribute in every cluster.

In this case we selected the K-means algorithm for clustering because it is
simple and scalable for data where are numerous attributes and many observa-
tions. K-means has also been used for same kind of data before [17]. However
the K-means algorithm needs K-value as a parameter which depends always on
the clustered data. This means that we can not know optimal K in advance and
that is why we have to run the algorithm with different values and try to find
best result. Another K-means problem is that it converges to a local minimum
and we can not be sure if that is the best clustering result for the selected K
value. We reduced the effect of this problem by running the algorithm several
times with random initial partitions.

In a stable system it is possible that there are not any natural clusters and
then visualizing time series can not offer any meaningful results. In systems which
are unstable due changing environment or changes in system itself visualizing of
time series can offer reasonable information about the process.

4.1 Cluster Prototypes

N-dimensional data is first clustered with K-means. The idea is that found clus-
ters are representing specific states of monitored system and each prototype of
cluster is a presentation of observations which belong to specific cluster. In this
way we get a simple computational presentation for each cluster which can be
used later in this work.

Cluster prototypes are n-dimensional like the clustered data itself. If n is
greater than three visualizing prototypes is not simple. There is need to use
some kind of dimension reduction technique and in this case we selected often
used PCA. PCA can be used by itself for detecting anomalies like Liu et al. [15]
have done. This brings additional information to our method but the main the
point of PCA is in this case dimensionality reduction.
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Principal components were formed from the original n-dimensional data. With
these components the prototypes were represented in the same plane with origi-
nal observations. From the position of these two dimensional prototypes can be
seen how similar different prototypes are. If two prototypes are close to each
other it means that they may have more similar features than those prototypes
which are far from each other. It is also possible that the two projected proto-
types are close to each other in plane but in high dimensional space they are
not. This can not be seen after PCA, but different cluster prototypes can point
this out.

4.2 Transitions between States

When examining only the projected states the time and order information is
totally lost. This is why there has to be added some kind of information for
showing the order where states occur.

Clustering gives a label to every observation. When these labels are ordered
with respect to original observations order they form a timeline which present
the whole measuring period. From this timeline can be count transitions between
states.

Picture 2 shows a presentation of timeline where white colour presents obser-
vations with missing data and other four colours present occurrence of clusters.

Fig. 2. Example of cluster occurence in timeline

Counted transitions can be present with a line between prototypes of clusters
in a two dimensional picture. In this way we get a transition net which shows
roughly dissimilarities of clusters and their order of occurrence.

4.3 Implementation

The presented method was implemented with Matlab and Java programming
language. Matlab was used for clustering, PCA and calculating statistical values
and Java program was used for creating user interface where results were visu-
alized. We used both open source and self-developed components for creating
user the interface. The graphs were created with JFreeChart library and time
line component was designed and implemented by self. The user interface for
visualizing is shown in picture 3.

On the left there are cluster labels, colour of clusters, observations in clusters
and their percentages. The user can change cluster names, their colour and give
short descriptions.

The transition net is shown in the middle. Observations of each cluster are
shown with different colour and prototypes of clusters are shown with a cross.



Visualizing Time Series State Changes with Prototype Based Clustering 625

Fig. 3. Developed user interface for visualizing cluster prototypes and their transitions

Fig. 4. Window used for comparing differences between clusters
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The transitions between cluster prototypes are shown with gray lines. Over the
lines there are numbers that show how common each transition is. The numbers
of transitions are placed so that they show arrivals to the nearest prototype.

On the bottom there is the timeline of clusters. The user can select time
intervals from the timeline. The selected time interval will be shown under the
timeline with black line. If the user finds interesting intervals they can be saved
by clicking ”Add time interval”-button. Saved intervals show up in lower left
corner.

When the time interval is selected only the observations which are occurred
and their transitions in that time are showed in the graph above timeline. The
user can also define how common transitions are shown by selecting ”Edge
threshold” value. In this way transitions that are occurred more than that value
are shown only.

The absolute differences between the clusters can not be seen in transition
graph. This is why we selected the boxplot presentation for showing those dif-
ferences. This is shown in picture 4.

All the attributes are listed on the left side of the window. The user can select
one attribute at time and its differences are shown on the right. Whiskers of
each box present minimum and maximum values of each cluster, the line inside
the box presents median and box itself presents lower and upper quartiles.

5 Case: Visualizing Data from Gear Unit

The presented method was tested with data collected from sensors of gear unit.
The attached sensors measure vibration, amount of particles in lubrication oil,
temperature and rotation speed of the gear unit.

We selected data for examination so that the domain specialist was able to
point out abnormal behaviour. In this way could compare the gained results to
earlier ones.

The sensor data was first normalized to range [0, 1] and then clustered with
different values of K. K = 5 was the first amount of clusters where the abnormal
behaviour was shown in a separate cluster. This can be seen in figure 4, where
cluster 5 presents the malfunction and other clusters present the normal states.

The rest of the clusters were examined by gear specialists and we noticed that
they were presenting normal states of the running gear unit. Transitions between
states occur mostly between clusters that are near to each other. This indicates
that the gear changes its state slowly, sliding from one state to another.

Some of the transitions have occurred between clusters that are not close to
each other. These transitions can be seen as an abnormal behaviour. We could
not find explanation for these transitions but they may be indicators of rapid
changes in external conditions.

We can also see that the malfunction occurred rapidly because there is only
one transition from a normal state to the abnormal state. This was confirmed
afterwards when manufacturer of gear units examined this gear and found that
cause of the malfunction could not be seen with the attached sensors. That is
why it was impossible to find causes for malfunction with presented method.



Visualizing Time Series State Changes with Prototype Based Clustering 627

6 Conclusions

We presented a new method for visualizing multivariate time series data with
the transition network. The method can be used for visualizing processes and
systems that produce time dependent data from their behaviour. This data can
be used for forming operational states of a process or system. When we add
transitions between these states we can examine also their causalities. This can
offer valuable information when we try to find causes for abnormal behaviour
and after this prepare for it or even prevent it.

The method works fine if there are under ten clusters. With a large amount of
clusters transition network is hard to examine because the amount of transitions
also increases. This problem can be avoided if user could select only small part
of transitions like the transitions between selected clusters.

In the presented method the user has to select the right number of clusters. We
used iterative method for finding the correct K value but this requires too much
manual work. In future the right value for K can be found by using advanced
heuristics.

In the presented implementation PCA was made only once and the result was
shown to the user. If there are many different anomalies in data it is possible that
some of them are not shown separately because some anomalies have stronger
influence on PCA than the others. One way to avoid this is that PCA is done after
the user has selected a certain time interval. Also the user could select certain
clusters and after that PCA is done only to observations in these clusters. In
this way it would be possible to see dissimilarities between clusters.

All the algorithms behind this method can be replaced with advanced ones.
For example randon initial prototypes can be replaced with robust initial pro-
totypes [3] and clustering algorithm can be replaced with the one which accepts
missing values of variables. Robust methods can also be used with PCA [19]. By
using robust algorithms we can reduce the effects of outliers in data.

In this case we could not find causes for the abnormal behaviour which was
our original objective, but we found a promising method which can be used for
this purpose in the future.
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References

1. Alhoniemi, E., Hollmén, J., Simula, O., Vesanto, J.: Process monitoring and mod-
eling using the self-organizing map. Integr. Comput.-Aided Eng. 6(1), 3–14 (1999)
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