
Integrated and Tool-Supported Teaching

of Testing, Debugging, and Verification

Wolfgang Ahrendt, Richard Bubel, and Reiner Hähnle

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

{ahrendt,bubel,reiner}@chalmers.se

Abstract. The course “Testing, Debugging, and Verification” is a non-
traditional formal methods course that connects formal approaches to
real-world development techniques in a novel way. A general theme in
the course is that formalisation of specifications is the basis for debugging
and test generation tools that go beyond what is possible with merely
informal methods, and ultimately provides the opportunity of formal
verification. Thereby, the course aims at integrating formal and informal
methods as much as possible. The course is supposed to be accessible to
participants without extensive mathematical training. We report about
the design, implementation, and experiences with the course.

1 Introduction

The motivation and background for this paper is the design and implementa-
tion of a course called Testing, Debugging, and Verification (henceforth, called
TDV) held at the Department of Computer Science and Engineering, Chalmers
University of Technology.1 This course is designed for third year students, i.e.,
the late Bachelor level. Consequently, it is not meant to provide a deep spe-
cialisation, like traditional introductions into formal methods, but it aims to
inform systematically about a wide range of software validation methods that
range from testing via debugging to formal verification. The course consists of
thirteen lectures each of which takes 2×45mins, six exercise units, and three lab
assignments. The students are credited 7.5 ETCS points.

In the TDV course, we aimed at integrating formal and informal methods
as much as possible. We also attempted to make the course accessible to par-
ticipants without extensive mathematical training. These are useful properties
for many contemporary Bachelor programs. For this reason, we believe that the
course concept as well as the lessons we learned from constructing and holding
this course in its particular setting can be of general interest.

In the following section we explain the general teaching background and set-
ting against which we developed the course, and we state the teaching goals and
outcomes. In Section 3 we explain the conceptual choices we made to achieve the
course goals. In Section 4 we describe the realisation of the course concepts, with
1 Course Code TDA566, http://www.cse.chalmers.se/edu/course/TDA566/

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 125–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cse.chalmers.se/edu/course/TDA566/

126 W. Ahrendt, R. Bubel, and R. Hähnle

an emphasis on the required technical and tool contributions. We also explain
how the technical choices contribute to realizing the course goals. In Section 5
we summarise experiences, discuss alternative approaches, future development,
and limitations.

2 Background and Goals

Engineering Tradition. Chalmers is a Technical University with a very strong
Engineering tradition. The majority of Sweden’s engineers have graduated from
Chalmers. Since 2006, the education follows a 3-year Bachelor/2-year Masters
system. The Bachelor programme is officially called the “base part of civil engi-
neering education”. Bachelor graduates from Chalmers are guaranteed a place
in a suitable Masters programme and by default Masters graduates are also is-
sued an engineering degree. As a consequence, there is still a strong flavour of a
traditional engineering education.

Few Theoretical Prerequisites. For a course in formal methods this background
has some important consequences: first, the Bachelor programmes are designed to
provide broad knowledge in engineering. All programmes contain project-based
courses that introduce into general engineering concepts. There is no Computer
Science programme at the Bachelor level with strong theoretical foundations as
can be found at many continental European universities. Mathematical courses
concentrate on calculus, algebra, and statistics. There is a solid introduction into
programming, including design and algorithms, but there is no room for courses
dedicated to theoretical computer science, logic, or formal systems.

Hands-On Approach. A second consequence of the educational tradition at
Chalmers is that most courses contain a “lab” component that may take up
20–50% of the time a student spends on a course. This practical part typically
consists of 2–5 mini-projects done in teams where the students need to apply in
practice what they have learned. In principle, it is a good thing to immediately
reinforce by practice what has been learned, but it poses some challenges on the
course design:

– the theoretical contents conveyed in the lectures must actually be relevant
to solve the practical tasks, otherwise, the former may be dismissed as irrel-
evant;

– grading of the practical components must be reasonably economical (wrt.
time spent), otherwise the course does not scale with the number of students;

– students have an increased expectation level with respect to practical appli-
cability of course contents.

Transition to Masters Level. While the Bachelor education at Chalmers is rela-
tively broad and practically geared, the picture changes at the Masters level: the
Masters programmes are rather specialised and offer many advanced courses that

Integrated Teaching of Testing, Debugging, and Verification 127

lead close to the frontiers of current research, and usually given by researchers
which are active in the respective area.

All Masters programmes at Chalmers are held in English and more than one
third of the Masters students in Computer Science-related programmes are non-
Swedish. The influx of foreign students with widely differing backgrounds as well
as the considerably more theoretical character of some advanced Masters courses
can cause tension. To make the transition smoother the TDV course has been
designated to be among the courses that provide a bridge between the Bachelor
and Masters level. It can be taken both by 3rd year Bachelor students and 1st
year Masters students, however, it is not obligatory for either.

Course Goals. Given the background described above we derived a number of
goals that we wanted to achieve with the concept and the design of the TDV
course:

Integration. Formal methods, that is, formal approaches for describing and
analysing software systems should not come across as a more or less radical
alternative to traditional software design techniques, but as an integrated
aspect of software quality management. “Formal” and “informal” techniques
are not be juxtaposed but, rather, formalisation is presented as a natural
consequence of a systematic analysis and the desire to automate manual
processes.

Diversity. Contemporary Software Engineering has a whole spectrum of val-
idation and analysis methods to offer, some of which are informal though
systematic (e.g., testing, debugging) and others make use of some kind of
formal notation (e.g., automated test case generation (ATCG), formal spec-
ification, formal verification). Some methods are supposed to detect errors
(testing, test generation), some to eliminate errors (debugging), and some to
ensure that no errors w.r.t. a given specification are left (formal verification).
This kind of diversity is essential to ensure efficient software construction
with a high quality outcome. No method alone (e.g., only testing or only
verification) is sufficient.

Applicability. Formal methods can be applied to real programs and problems,
not only to toy languages. They can help to understand a program better
(e.g., through visualisation of a symbolic execution tree or by verification
of invariants), to detect problems (e.g., caused by insufficient specifications)
or to save time during development (e.g., with automated test case gener-
ation). We show all these methods in action with actually executable Java

programs. We choose Java, because all students are familiar with it.
Formalisation = Tool Support. Formalisation of software and its properties

is not an end in itself, but it is a prerequisite for new and more far-reaching
software analysis and design tools. Everyone uses compilers, and it is also
very popular to illustrate software designs with diagrams. This is fine, but
with a rigorous, formal description of the intended behaviour of a program,
one can do much more.

128 W. Ahrendt, R. Bubel, and R. Hähnle

Tools are essential. Without tools the potential of formalisation cannot be
fully realised. Without tool support, formal specifications even of small pro-
grams inevitably are incomplete or wrong. Hand-written verification argu-
ments are error-prone. In contrast to mathematical proofs, arguments about
the correctness of programs must be formal and mechanised. Already with
very lightweight usage of formalisation tools can save a lot of time (e.g.,
minimisation of test cases).

General Interest. We believe that the above list of desirable properties of an
FM course is not unique to our situation at Chalmers: The Bachelor/Masters
system led to a thinning-out of theory courses in many places. Likewise, one can
observe an increased demand for “applicable” contents on the side of students.
At the same time, academic programmes are opening up more and more for
life-long education efforts, often in connection with industry. We see, therefore,
the general need for “hands-on” formal methods courses that are accessible to
experienced software designers who possess limited mathematical training. We
are convinced that such a course must firmly place formalisation within the
existing biosphere of available tools and methods. In addition, the prospect of
saving time by using advanced tools that are enabled through formalisation, is
a major motivation for increased rigour.

3 Concepts

In this section we explain the concepts that we chose to realise the course goals.
The main message conveyed to students is that the course provides an overview
of a broad range of software validation methods. To meet our diversity goal
(see Section 2) we decided to address four essential activities that arise during
software construction: testing, specification, debugging, and verification. These
are covered in five teaching units as summarised in Table 1. Within each topic we
selected a number of representative techniques. Obviously, it is not possible to be
exhaustive, and other choices would have been possible. Alternatives are further
discussed in Section 5. Additionally, we made two general design decisions:

1. Each teaching unit must involve practical exercises with at least one tool.
2. We do not introduce a formal, mathematical semantics of the specification

languages we use (mainly JML [15] and, to some extent, first-order logic).
Rather we teach them like a programming language: a systematic conceptual
introduction backed up by examples. This decision is not only motivated by a
lack of time, but also by our intention (See Section 2) to present formalisation
as an immediately useful and readily applicable activity.2

In the following, we explain the approach that we took with respect to each
of the activities testing, specification, debugging, and verification and how we
achieve the goals laid down above. The close interdependencies between the
various course topics are depicted in Figure 1.
2 A similar approach has been recently taken by Ben-Ari’s excellent introduction to

model checking [5].

Integrated Teaching of Testing, Debugging, and Verification 129

Table 1. Main characteristics of TDV teaching units

Teaching Unit Content Formal Tools

Testing Systematic testing, specification,
assertions, black/white box,
path/code coverage

no JUnit

Debugging Bug tracking, execution control,
failure input minimisation,
logging, slicing

no DDinput,
Eclipse,
log4j

Formal
Specification

Design-by-contract, formalisation,
first-order logic, JML

yes jml (type
checker)

Automated
Test Case
Generation

Model-based TC generation,
Symbolic execution,
Code-based TC generation

yes jmlunit,
KeY VSD,
KeY VBT

Formal
Verification

Hoare triple, weakest precondition,
formal verification, loop invariant

yes KeY-Hoare

Testing. Testing is indispensable, even when formal techniques are in place,
because of incomplete specifications or unavailable source code. Our take on
testing includes two passes: in the first round, an overview over classic test-
ing concepts is provided. Test cases and oracles are written and derived from
the code and specification by hand, then executed automatically with JUnit

(http://www.junit.org). After having introduced formal specification with
JML we revisit testing and show that even a relatively simple model-based test
generation tool such as jmlunit increases the degree of automation. Thereafter,
we go one step further and introduce the fundamental technique of symbolic
execution which is the basis of code-based test generation. We show that for-
malisation leads to automation (in model-based test generation) and that the
dynamic analysis technique symbolic execution, which is practically and the-
oretically more difficult than static analysis, increases coverage and helps to
understand programs.

Specification. The value of explicitly specifying requirements and properties of
software is often underestimated by students. Therefore, we decided to make
specification a permeating topic of the course that resurfaces as an essential
prerequisite for nearly everything (see Figure 1). In the first pass on testing we
stress that testing becomes arbitrary without a notion of what is being tested for.
Informal specifications lead to test oracles that are crafted by hand. Later, spec-
ifications in JML partially automate test case and oracle generation. Obviously,
specification is a prerequisite for formal verification, but also a source for useful
initial states and the exclusion of unfeasible paths in debugging. For structuring

http://www.junit.org

130 W. Ahrendt, R. Bubel, and R. Hähnle

Debugging
classic visual

Fo
rm

al

+

Inform
al

F
orm

al
V
erification

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification

Symbolic
Execution

Fig. 1. Dependencies among TDV topics

specifications we follow the design-by-contract paradigm [18], starting with the
observation that even in traditional Java development one implicitly programs
with contracts.

During the course we gradually increase the rigour of contracts. This motivates
the move from natural language to a dedicated specification language. The choice
of JML is driven by the the fact that it is based on Java expressions, which
makes the discussion of introductory examples very intuitive. Extending on such
examples leads to the on-demand introduction of JML features that go beyond
Java such as pre-state values and quantification.

Debugging. Given that debugging accounts for a substantial amount of devel-
oper’s time it is surprising that Zeller’s book [21] is the only systematic intro-
duction to debugging on the market. Even in a comprehensive standard text on
software engineering such as [20], only half a page of nearly 1000 pages is de-
voted to debugging. Debugging is also neglected by formal approaches. The most
comprehensive textbook on Software Engineering based on a formal approach
[6] does not mention debugging at all.

In the course, we present selected topics from [21]. We show that even a
simple tool such as a minimisation algorithm for bug-inducing input can result
in vast time savings. We also found that many students are unfamiliar with
logging frameworks and modern interactive debuggers, so we include those as
well. We stress the importance of bugs as a source for regression tests. We show

Integrated Teaching of Testing, Debugging, and Verification 131

that tracing back an infected program state to the location of the bug that
caused it can be systematised based on the fundamental notion of program
slices. Altogether, we try to convey that the unavoidable activity of debugging
is not a “black art”, but a systematic craft that can be learned. It is also linked
to testing as well as specification.

Verification. Throughout the course we stress that verification is a broad spec-
trum of informal as well as formal program analysis methods of which formal
verification is the most rigorous. Informal verification methods include code re-
views and metrics. More automation is provided by various static checking tools
such as ESC/Java2 [9]. As informal verification is covered in other courses and
we wanted the students to learn at least one important theoretical concept, we
decided to concentrate on formal verification. By far the most popular approach
to formal verification is Hoare logic which is what we align to as well. When we
planned the course, we were very surprised that there was not a single verification
tool on the market that can be used for teaching Hoare logic. All lecture notes
on Hoare logic that we found were based on hand-written proofs. Not surpris-
ingly, therefore, many exercises in lecture notes exhibited errors when we tried
to machine-check them. As the TDV course is about verification, and not about
first-order theorem proving, we wanted a tool with an oracle that can dispose
of first-order verification conditions. In the end we created such a tool ourselves
based on the Java verification system KeY. The KeY-Hoare tool is described in
[7] and Section 4.4 below.

4 Realisation and Implementation

We describe in this section the realisation of the course concepts focusing in
particular on the necessary technical and tool contributions.

4.1 Specification and the Java Modelling Language

Right from the beginning of the course, we put much emphasis on specification.
At first, we teach how to write informal, but precise method specifications in
natural language. A central goal of this exercise is to introduce concepts such
as pre- and postconditions to document method behaviour. Also, we emphasise
that programmers must be fully aware of the specification of code they use, and
of the specification they implement. A central example is the consistency re-
quirement on equals() and hashcode() as formulated in the inherited contract
of Object. We demonstrate the common error to redefine equals() without
redefining hashcode(). This usually violates the inherited contract and leads to
unexpected results in the interaction with Java collections.

As an example of a formal specification language we introduce the Java Mod-

elling Language (JML) [15,16]. JML is a so-called “one-tiered specification
language” [13] whose expressions are a superset of Java’s expressions and easy
to master for programmers. JML specifications are attached to the implemen-
tations as structured comments in the source code. For the objectives of the

132 W. Ahrendt, R. Bubel, and R. Hähnle

course, this technical integration supports the message of specification and im-
plementation as being integrated activities.

Another reason for choosing JML as formal specification language is its sizable
community among practitioners and readily available open source tool support
such as ESC/Java2 [9] or the Common JML tools

3. Out of those, we mostly
use the jml syntax and type checker, without which most specifications written
by students or even teachers are likely to not follow all restrictions imposed by
the language. In particular, visibility rules are checked, as well as “purity” (side
effect-freeness) of methods used in specifications. A further advantage of JML

is the on-line availability of specifications for many standard library classes,
following the pattern of Javadoc pages. (Library classes are, however, often too
complex to serve as introductory examples.)

The close relation of Java and JML allows to introduce the latter entirely
example-driven. Starting from monolithic natural language specifications as
found in typical specification documents of APIs, we identify corresponding
pre-/postcondition pairs. First examples are chosen such that informal pre- and
postconditions can be turned into boolean Java expressions, thereby manifest-
ing JML specifications already. When later examples exceed the expressiveness
of Java, further JML features are introduced on demand such as access to
pre-state values, or quantification. Finally, unsatisfactory attempts to express
(i) unchanged program locations and (ii) consistency conditions on fields mo-
tivate the introduction of the concepts of (i) assignable clauses and (ii) class
invariants that allow to express these requirements much more neatly.

4.2 Verification-Based Testing

In the TDV course we give a brief introduction on conventional testing the-
ory and introduce common notions such as black-/white-box testing, coverage
criteria, etc. (see Table 1). In accompanying demonstrations and exercises the
students are encouraged to write their own unit tests by hand using the JUnit

4

framework.
Once formal specifications have been introduced, we revisit testing under the

aspect of automated test case generation (ATCG).
We start with a black-box testing approach to ATCG, namely, model-based

test generation. Model-based testing typically tries to logically cover specifica-
tions and select boundary cases by analysing the specification for e.g. implicit
disjunctions. The generated test suite is supposed to contain at least one bound-
ary test for each logical disjunct. Besides teaching the students a basic algorithm
to generate such test cases, we let them experiment with the model-based test
generation tool jmlunit [8] from the Common JML tools suite.

Finally, we present code-based test generation as a white-box approach to
ATCG. In code-based test generation the control-flow of the code under test is
analysed to generate test suites, normally achieving a higher branch and state-
ment coverage than with model-based testing approaches. We focus on a recent
3 http://www.eecs.ucf.edu/~leavens/JML/download.shtml (GPL)
4 http://www.junit.org (CPL)

http://www.eecs.ucf.edu/~leavens/JML/download.shtml
http://www.junit.org

Integrated Teaching of Testing, Debugging, and Verification 133

variant of code-based test generation that uses symbolic program execution as
the underlying method to analyse the code under test [10,12].

Symbolic execution is a general dynamic analysis technique where program
execution is performed with symbolic values rather than with concrete values
for input data, and program outputs are expressed as logical or mathematical
expressions involving those symbols [14]. Consequently, when statements are
executed that cause the control-flow to branch, all possible continuations have to
be considered. Thus a symbolic program run does not result in a single execution
path (trace), but in an execution tree covering every possible concrete execution
trace.

Formal specifications are used to prune infeasible branches of the symbolic
execution tree. After some Java code has been symbolically executed up to
some depth one attempts to generate a test case for each feasible branch of the
resulting symbolic execution tree. It is possible to show that this ensures feasible
branch coverage provided that the code under test is symbolically executed to
sufficient depth.

In the course we use our own fully automatic verification-based test generation
tool called KeY VBT5 described in detail in [11,12] .

4.3 Debugging

To remedy the lack of systematic teaching of debugging observed in Section 3
we present a number of approaches to debugging in TDV. The students learn
how to

log events systematically: instead of distributing print statements all over the
code to narrow down code fragments that contain a bug, they are taught to
log events using the log4j6 framework developed by the Apache Software
Foundation. It allows to log events driven by orthogonal criteria such as
emitting component and event type/severity.

use debuggers to comprehend code and to locate erroneous program code: the
students are taught stepwise execution of programs, breakpoints and variable
inspection hands-on using the Eclipse debugger.

use delta debugging to automatically minimise the input revealing a certain
error. The delta debugging algorithm [22,21] is taught together with usage
of the DDinput7 framework.

All these techniques belong to the informal spectrum of the software engineering
field and do not require any formal methods. The educational objective is here
to teach useful systematic debugging techniques and to let the students actively
explore reach and limits of those tools.

5 http://www.key-project.org/download/testgen.html (GPL)
6 http://logging.apache.org/log4j/1.2/index.html (Apache License)
7 http://www.phbouillon.de/index.php?class=Calimero_Webpage\&id=23680

http://www.key-project.org/download/testgen.html
http://logging.apache.org/log4j/1.2/index.html
http://www.phbouillon.de/index.php?class=Calimero_Webpage\&id=23680

134 W. Ahrendt, R. Bubel, and R. Hähnle

Later in the course we connect debugging more tightly to the formal world.
While we explain white-box automated test case generation we introduce a pro-
totype of a visual symbolic-state debugger [3,19] integrating debugging, visuali-
sation, and automatic test case generation (see Figures 2 and 3).

In contrast to a standard debugger, the visual debugger is based on symbolic
execution. As described in Section 4.2 the idea of symbolic execution is to run
a program not on concrete, but on symbolic input values. The set of the initial
states to be considered can be restricted by adding constraints on the symbolic
values in form of JML preconditions. The benefits of a visual symbolic debugger
are three-fold:

1. A standard debugger executing a program on concrete input can only inspect
a single run of a program at a time. The visual debugger in contrast inspects
all possible runs of a program for any possible input simultaneously. This
is feasible, as the symbolic execution engine generates a symbolic execution
tree (Figure 2) rather than a single path.

2. Using symbolic values allows to start debugging at any given position in the
source code. It is in particular not necessary to execute complex initialisation
code establishing the initial state from where to start the actual debugging.

3. The symbolic execution tree represents a memory-efficient data structure
of the complete symbolic execution history. As debugging can be started
immediately at any source code position, it is possible to keep the length
of the execution history small without losing information. Hence, the visual
debugger is also an omniscient debugger [17] enabling the developer to jump
back and forth through the execution history as well as to inspect and to
compare different states without having to rerun the program. Omniscient
debuggers based on standard debugging technology are limited by excessive
memory consumption requirements for storing the program execution history
which tends to be very long in the absence of symbolic initial states.

Further features of the visual debugger include stepwise symbolic program exe-
cution, breakpoints and watchpoints. Like standard debuggers stepwise symbolic
execution permits to control the granularity of execution steps, letting the user
decide to step into or over statements and methods. Watchpoints are floating
breakpoints interrupting symbolic execution at nodes that satisfy a user-specified
condition.

Besides the execution tree view (see Figure 2), the visual debugger provides
also a visualisation of the symbolic state for any execution tree node. The sym-
bolic state is visualised as a symbolic UML object diagram (see Figure 3). The
user can browse through all possible configurations of the symbolic state.

Finally, the visual debugger integrates the automatic test case generation
tool described in Section 4.2. This integration allows a convenient generation of
regression tests. Whenever a test case fails, then the corresponding path in the
symbolic execution tree is highlighted.

Integrated Teaching of Testing, Debugging, and Verification 135

Fig. 2. Execution tree view of a prototypical Visual Debugger exemplified by a removal
method for elements in a linked list. The currently executed statement is highlighted
both in the editor and in the symbolic execution tree.

136 W. Ahrendt, R. Bubel, and R. Hähnle

(a) Symbolic state before removal of list element list 1

(b) Symbolic state after removal of list element list 1 (list 1 is no longer reach-
able from the list head list 0)

Fig. 3. Object diagram view of a prototypical Visual Debugger

Integrated Teaching of Testing, Debugging, and Verification 137

4.4 The KeY-Hoare Tool

As detailed in Section 3 the final teaching unit focuses on the most rigorous
approach to software validation, namely, formal verification of programs.

For many students this is actually the first time that they are introduced
to the idea that programs can be proved correct. This is both a chance and a
risk at the same time. If done well, one has the rare opportunity to meet open,
unprejudiced minds. But if not done with care, formal verification ends up being
stowed away as a useless academic pastime.

The authors have experienced more than once that even active researchers in
other fields of computer science are unaware of the progress achieved in formal
verification during the last 15 years, but still hanging on the impression of the
area from the early eighties. Instead we claim that:

Formal methods are applicable in the real world.

Formal methods are part of the software development tool chain.

These are the (not so) subliminal messages we want to pass on to the stu-
dents. Consequently, a hands-on part where students verify their own programs is
crucial.

In the lectures we present formal verification as the natural next step com-
ing at an acceptable cost after a partial formal specification is already in place.
At this point in the course students have had already seen (in the lecture) and
written (exercises and lab courses) a number of small programs annotated in a
formal specification language. In particular, they have experienced the advan-
tages of formal specifications as a prerequisite for

– automated test case generation: in contrast to hand-written unit test cases
the resulting tests are guaranteed to satisfy formal criteria such as branch
coverage, coverage of logical conditions, etc.

– systematic debugging using a symbolic debugger with extended functionality
not achievable with standard debuggers.

In this context, presenting a Hoare-style calculus as a mere pen-and-paper ver-
sion is unconvincing and obscures the message to be transported. Instead it is
important to provide access to an easily usable (in particular, easily installable
and documented) verification tool that provides a reasonable level of automation.
We would even go as far as to say that formal verification without mechanisation
and automation is pointless.

We had the following requirements on the tool that would be used in the
lectures:

1. The calculus implemented by the tool should be a Hoare- or Dijkstra-like
calculus. This eases the orientation for interested students who want to read
additional material in advanced textbooks.

2. The supported programming language should be
– simple, because teaching a calculus for a programming language like

Java is obviously not feasible in an introductory course such as TDV;

138 W. Ahrendt, R. Bubel, and R. Hähnle

– imperative, because most students are more familiar with imperative
languages and imperative languages are the most commonly used.

3. The generation of verification conditions, respectively, weakest precondition
computation should be transparent and presented in detail to the students,
while first-order reasoning on program-free expressions should be treated as
black-box.

4. Reasonable automation: writing a correct specification, in particular, find-
ing the right loop invariants, is already hard for students. If a valid proof
obligation cannot be proven automatically, it is frustrating and not very con-
vincing. Of course, we cannot overcome theoretical limitations, but for the
kind of programs given to the students, the prover must be able to close vir-
tually all occurring valid first-order verification conditions. In other words,
if a proof obligation cannot be shown, then this should indicate that the
program is erroneous, or the specification wrong or too weak. For complex
programs it is already hard to find out whether the error is in the specifica-
tion or in the program.

We were surprised that no tool existed which satisfied our requirements. Tools
tailored towards program verification were designed for complex target languages
like Java going beyond the scope of the lecture, others required extensive in-
troduction into the underlying proof assistant or completely lacked automation.
Finally, we decided to adapt our own program verification tool KeY [4]. We de-
cided against using unaltered KeY in the specific context of the TDV course,
because it is targeted towards full Java and uses a sequent calculus in dynamic
logic which we thought is not “mainstream” enough.

The developed variant of KeY, called KeY-Hoare8 [7], is implemented on top
of the standard KeY-tool. It has a simple imperative programming language
with arrays as target language. The specification language is a standard sorted
first-order logic with arithmetic. The latter’s concrete syntax is almost identical
to JML with which the students are already familiar. The implemented Hoare-
style calculus [7] has some other characteristics which make it suitable for an
introductory course:

– The calculus is based on symbolic execution following the control flow of
the program. Approaching verification condition generation from the view-
point of a (symbolic) interpreter eases the topic considerably for the students
providing a bridge between new ideas and existing knowledge.

– The calculus is computational and resembles in this aspect Dijkstra’s weak-
est precondition calculus. The only non-deterministic verification condition
generation rule is the loop invariant rule where user interaction is needed.

– First-order reasoning can be treated as black-box. As we built on top of
the standard KeY-tool, we could reuse its state-of-art first-order prover with
support for linear and non-linear arithmetic. For the kind of problems en-
countered by students in exercises and lab courses the prover works in almost
every case fully automatic, i.e., typically a goal that cannot be closed indi-
cates an invalid proof obligation.

8 http://www.key-project.org/download/hoare (GPL)

http://www.key-project.org/download/hoare

Integrated Teaching of Testing, Debugging, and Verification 139

The prover provides a user-friendly, self-explaining point-and-click GUI. It
can be installed using Java webstart technology with one click on all standard
architectures (Linux, Windows, MacOS).

Finally, using a tool to teach formal program verification helps also the teacher
as it avoids common mistakes found in typical lecture notes where given spec-
ifications (in particular, loop invariants) are too weak to be actually proven.
Tool support saves also time spend on supervision as students need less supervi-
sion than for pen-and-paper proofs. Mechanisation is also important in grading,
because soundness of the verification tool ensures that completed proofs are cor-
rect. KeY-Hoare produces proof certificates that can be loaded, inspected, and
verified by the teacher to avoid fraud.

5 Experiences and Discussion

History. The TDV course has been taught in its present form two times, starting
in Fall of 2007. The course goes back to a course called Program Verification that
was supposed to be a lightweight introduction to formal verification techniques
(without tool support). The course had attracted relatively few students and
used to be on the borderline of being economically feasible. In an attempt to
make it more attractive to a broader audience, we expanded significantly on
the testing topic, and included debugging for the first time, thereby redesigning
it radically using the concepts outlined in this paper. As this happened only
during Summer 2007, the course information given to students still referred to
the old structure, and interest was not very high (18 registrations). We were
encouraged, however, by the fact that not a single student dropped out. In 2008,
the course was announced with the new title and content. We also took great
care to explain the intended goals and concept. Nevertheless, we were surprised
that registration jumped up to ca. 80 participants. This shows that the title and
content description of a course, as well as the available information, can have
considerable impact on registration figures.

Course Evaluation. It is fair to say that the two rounds which the course had so
far got very positive reactions from the students. This is documented by course
evaluation protocols and a web questionnaire. In particular, the students valued
highly the relevance of the overall course, and highlighted the impact of the
hand-in assignments for their learning. In 2008, 90% of all students who started
the course tried to complete it successfully (i.e., participated in all compulsory
exercises and sat the exam). As the course is not compulsory in any programme,
this points to a relatively high degree of motivation that students take from this
course.

Limitations. We do not want to conceal limitations of the current course concept.
Trying to find the right balance, it constitutes in its current form a compromise
between available time, range and depth of topics. Regarding the available time,
we cover already relatively many topics and it is not possible to treat some of

140 W. Ahrendt, R. Bubel, and R. Hähnle

them in the depth we would like to. On the other hand, we had already to cut
down on the number of topics we would like to treat as, for example, code reviews
or software certification. One important topic that needs to be still addressed is
to integrate the taught techniques into a software development process.

The hands-on approach using mainly JML and Java means that we do not
deal with abstraction which is obviously a very important topic. Partly, this
stems from our conviction that currently available formalised abstraction tech-
niques are not suitable for our goals: refinement-driven approaches such as B [1]
are simply too heavyweight for what we have in mind; model-driven approaches
based on UML, on the other hand, are too far removed from popular implemen-
tation languages.

Given the variety of topics, we could not live up to the ambition to let the
students practise the acquired knowledge in all the topics covered by the course.
Even if we have weekly exercises covering all the material, the three extensive
hand-in assignments cover only the topics testing, specification and verifica-
tion, not the topics debugging or test generation. Naturally, the students per-
formed better in those parts of the exam which related to either of the hand-in
assignments.

In future courses we plan to address some of the mentioned limitations. We
consider an integration of formal methods into a viable development process as
elementary. Therefore we will define an agile software process that makes use of
formal techniques: agile processes have explicit test generation and debugging
phases in each increment. Their cyclic nature can potentially benefit a lot from
automation. The challenge is to integrate formal specification in the right way.
As a follow-up to the TDV course one could then run a project course based on
an agile process with formal techniques.

Despite stressing automation throughout the course, grading of practical ex-
ercises should use more automation. We did not yet fully realise the potential of
formalisation there.

Relation to Dedicated Formal Methods and Logic Courses. The TDV course cov-
ers a variation of topics, among them some lightweight formal methods. Towards
the latter, we take an extremely pragmatic stance. Perhaps our most contro-
versial design decision is to dispense with any form of rigorous mathematical
semantics. There are several potential problems with this: seduction to cut-and-
paste without real understanding, fostering misconceptions caused by ambiguity,
frustration for theoretically interested students who want to know the “nuts and
bolts”. We believe that the advantages (accessibility for mathematically un-
trained people, applicability of learnt methods) outweigh the problems, given
the course is designed for the (late) Bachelor level.

Still, students should be given the opportunity to acquire more in depth knowl-
edge and understanding in logical methods for computer science, in software veri-
fication, and furthermore in hardware verification. At Chalmers, these three areas
are covered by the Masters-level courses “Logic in Computer Science”, “Software
Engineering using Formal Methods” (SEFM), and “Hardware Description and

Integrated Teaching of Testing, Debugging, and Verification 141

Verification” [2]. The SEFM course9 is also given by the authors of this paper,
and covers software model checking (with Spin/Promela, based on [5]) as well
as deductive software verification (of Java with KeY).

Research-Driven Course Development. The authors of this paper constitute the
senior staff of the research group “Software Engineering using Formal Methods”
at the Department of Computer Science and Engineering, Chalmers University.
The group is carrying out research in formal modeling and verification of software
as well as verification-based testing and debugging. Together with groups at the
universities of Karlsruhe and Koblenz, we have developed the KeY approach and
system for Java source code verification. This research and the corresponding
tool development were the basis for developing both the TDV course and the
SEFM course. The close relation to research does not contradict the fact that
TDV targets an audience of Bachelor students with little theoretical prerequi-
sites. On the contrary, this is a good match, as the objective of our research is
precisely the increased accessibility of formal methods to software developers.
We believe that the students profit from this overall objective. In the opposite
direction, our research profits very much from these courses. The usage of cut-
ting edge research tools such as code-based ATCG, formal verification tools, or
the symbolic visual debugger, in the course context increases the pressure on
usability. The concrete feedback from students and course assistants drives the
further design and development of these tools.

Adaptation. While the basic development of the course as outlined in this paper
would not have been possible without relying on the research in the group, we
claim that the resulting course can be run in any other context. We actively
support adaptation of this course (or individual modules of it) and provide the
complete sources for slides, examples, and assignments to interested teachers.
The course has been adapted (or is planned to) at several European univer-
sities, including Technical University of Madrid, University of Innsbruck, and
University of Freiburg.

Of these, we would like to mention in particular the adaptation of the KeY-
Hoare tool done by Joanna Chimiak-Opoka at University of Innsbruck/Austria.
She gave ample feedback and contributed a well-organised collection of additional
examples. Her comments and suggestions lead to the integration of several orig-
inally not considered features of KeY-Hoare, for example worst-case execution
time analysis of programs. This strengthen our opinion that adaptation works
in two directions and is not a one-way street.

Acknowledgements

We want to express our gratitude to the people without whom a course such
as TDV would not have been possible. We thank Fredrik Lindblad for his com-
mitment in co-teaching the TDV course, Christian Engel for implementing the
9 Course Code TDA292, http://www.cse.chalmers.se/edu/course/TDA292/

http://www.cse.chalmers.se/edu/course/TDA292/

142 W. Ahrendt, R. Bubel, and R. Hähnle

KeY VBT tool and Marcus Baum as well as Marcel Rothe for implementing the
visual debugger. Special thanks go to Joanna Chimiak-Opoka for using KeY-
Hoare in her lecture as well as providing examples and continuous feedback that
was an invaluable help and motivation to improve the KeY-Hoare tool. A teach-
ing grant from the Chalmers Masters programme in Software Engineering and
Technology is gratefully acknowledged. Finally, we thank all our students for
their active participation making the course a pleasure to teach. We thank also
the anonymous reviewers for their valuable comments.

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Axelsson, E., Björk, M., Sheeran, M.: Teaching hardware description and verifi-
cation. In: International Conference on Microelectronics Systems Education, Ana-
heim, CA, USA, pp. 119–120. IEEE Computer Society, Los Alamitos (2005)

3. Baum, M.: Debugging by visualizing of symbolic execution. Master’s thesis, De-
partment of Computer Science, Institute for Theoretical Computer Science (June
2007)

4. Beckert, B., Hähnle, R., Schmitt, P.: Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

5. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, Heidelberg (2008)
6. Bjørner, D.: Software Engineering, vol. 3. Springer, Heidelberg (2006)
7. Bubel, R., Hähnle, R.: A Hoare-style calculus with explicit state updates. In: In-

stenes, Z. (ed.) Proc. Formal Methods in Computer Science Education (FORMED).
ENTCS, pp. 49–60. Elsevier, Amsterdam (2008)

8. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002)

9. Cok, D.R., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

10. de Halleux, J., Tillmann, N.: Parameterized unit testing with Pex. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 171–181. Springer, Heidelberg
(2008)

11. Engel, C.: Verification based test case generation. Master’s thesis, Department of
Computer Science, University of Karlsruhe (August 2006)

12. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

13. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: Languages and Tools for Formal Specification. Springer, New York (1993)

14. King, J.C.: A program verifier. PhD thesis, Carnegie-Mellon University (1969)
15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral

interface specification language for Java. Technical Report 98-06y, Iowa State Uni-
versity, Department of Computer Science (2003) (revised, June 2004)

Integrated Teaching of Testing, Debugging, and Verification 143

16. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual (February 2007); Draft revision 1.200

17. Lewis, B.: Debugging backwards in time. In: Ronsse, M. (ed.) Proc. Fifth Int.
Workshop on Automated and Algorithmic Debugging, AADEBUG (September
2003)

18. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)
19. Rothe, M.: Assisting the understanding of program behavior by using symbolic

execution. Master’s thesis, Department of Computer Science and Engineering (July
2008)

20. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2006)
21. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann, San Francisco (2005)
22. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE

Transactions on Software Engineering 28 (2002)

	Integrated and Tool-Supported Teaching of Testing, Debugging, and Verification
	Introduction
	Background and Goals
	Concepts
	Realisation and Implementation
	Specification and the Java Modelling Language
	Verification-Based Testing
	Debugging
	The KeY-Hoare Tool

	Experiences and Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

