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Abstract. This paper advocates teaching formal methods based on
rewriting logic and the Maude tool for the purpose of widening access
to formal methods. On the one hand, Maude’s elegant, intuitive, and ex-
pressive programming/modeling language, its high-performance analysis
methods, and some of its academic and industrial applications should
make it appealing to a wide range of computer science students. On the
other hand, teaching rewriting logic allows us to naturally incorporate
substantial formal methods theory, such as equational logic and induc-
tive theorem proving, TRS theory, and model checking. This paper also
gives an overview of the content of – and the student feedback to – an
introductory formal methods course based on rewriting logic that has
been given at the University of Oslo since 2002.

1 Introduction

The slogan of TFM’09 is widening the access to formal methods. Key challenges
that must be addressed by formal methods courses aiming at introducing formal
methods to students with limited awareness and/or interest in formal methods
include:

1. The need for formal methods must be well motivated to possibly skeptical
students.

2. Applying formal methods should be reasonably easy, fun, and elegant.
3. The selected formalisms must appear to be relevant, both w.r.t. the student’s

future specialization – where we hope (s)he will apply formal methods – and
elsewhere outside academia. No matter how nice a formalism and a tool are,
if they are not used outside academia, the students will not be motivated to
use the tool.

4. At the same time, the course should provide a serious introduction to sub-
stantial aspects of formal methods theory, and should exhibit some of the
success stories of formal methods.

This paper advocates the use of rewriting logic [1, 2] and its associated high-
performance tool Maude [3] as a basis for introductory courses in formal methods
that interest students while giving a good introduction to formal methods.

Rewriting logic extends equational logic and term rewriting to model dy-
namic systems. In rewriting logic, the static parts of the system are modeled as
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an algebraic equational specification, and dynamic state changes are modeled
as rewrite rules on the equivalence classes of terms induced by the equational
theory. There is by now ample evidence that, despite the simplicity of the for-
malism, rewriting logic is quite expressive and general, and can be used to model
a wide range of distributed systems. In particular, it provides a nice and simple
model for concurrent objects [4]. Maude [3] is a freely available high-performance
state-of-the-art formal tool based on rewriting logic. Maude supports the simu-
lation/rewriting, reachability analysis, and linear temporal logic model checking
of rewrite theories.

The challenges (1) to (4) above are (or can be) addressed by a rewriting-logic-
based course as follows:

1. There is a wide range of critical distributed systems where formal analysis
has proved indispensable. The model checking effort of Lowe to find an attack
on the NSPK cryptographic protocol after 17 years is but one example that
should appeal to students.

2. The functional programming style of Maude is fairly elegant – as I try to
convey in Section 4 – and is typically enjoyed by students who like pro-
gramming. Likewise, the object-oriented and rule-based way of modeling
distributed systems has been shown to be intuitive and easily understand-
able also for people without formal methods background [5].

3. Since rewriting logic is fairly expressive and can be applied to a wide range of
distributed systems, it should be relevant to students who will pursue other
fields than formal methods. Furthermore, Maude is increasingly being used
outside academia, with some “sexy” applications, such as its use at Microsoft
to find previously unknown security flaws in web browsers [6], the use in the
Japanese car industry to find bugs in embedded automotive software, etc.

4. At the same time, a rewriting-logic-based course naturally includes a fair
amount of formal theory, including formal proofs and deduction systems,
classic term rewrite system theory, algebra, and (linear temporal logic) model
checking, often mentioned as one of the success stories of formal methods.

To test the hypothesis about the suitability of widening access to formal methods
through rewriting logic and Maude, I have developed an introductory course at
the Department of Informatics, University of Oslo, that has been given since
2002. University of Oslo should be a suitable candidate for this experiment, since
formal methods typically do not attract many students, and since many students
at the department are somewhat weak and uninterested in mathematics. This
paper gives an overview of the contents of our course, and on our experiences
and student feedback on this course since 2002.

The course consists of two parts: (i) equational specifications and their anal-
ysis, and (ii) rewrite specifications and their analysis. The first part introduces
classic (order-sorted) equational logic and term rewrite system (TRS) theory. In
particular, we study: the definition of the usual data types (lists, sets, binary
trees, . . . ) in Maude; classic TRS theory including proving termination of and
confluence of an equational specification; equational logic; inductive theorems;
and some small examples such as quick-sort and merge-sort. Part (ii) introduces:
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rewriting logic and its proof theory; modeling distributed concurrent objects in
rewriting logic; modeling a wide range of communication forms; temporal logic;
reachability analysis and LTL model checking in Maude; and a set of larger ex-
amples, such as the two-phase commit protocol for distributed databases, the
TCP, alternating bit, and sliding windows communication protocols, and the
NSPK cryptographic protocol.

By giving a range of larger examples, I have tried to convey the difficulty
of designing distributed systems, and how such systems can be modeled. Most
importantly, the NSPK crypto-protocol case study serves as a very nice motivat-
ing example for formal model checking in today’s iBanking society: a three-line
protocol which is so hard to understand and get right that its flaws went undis-
covered for 17 years, and whose critical flaw was discovered by formal model
checking techniques similar to those presented in the course.

As further explained in Section 6, our experiences are mostly positive. The
course consistently gets very positive student evaluation, but has one substantial
weakness. Furthermore, although the course does not attract as many students as
we would have liked, the course does attract significantly more students than our
previous formal methods course, and is mostly taken by students who major in
other fields, such as computer networks, computational linguistics, mathematical
logic, and so on.

Section 2 gives some background on rewriting logic and Maude. Section 4 gives
an overview of our course, and gives some samples of the Maude specifications
to allow the reader to form a first impression about the suitability of basing
a formal methods course on Maude. The paper also discusses experiences and
student feedback on the course (Section 6), course material (Section 5), and
related courses (Section 7). Section 9 gives some concluding remarks.

2 Rewriting Logic and Maude

Rewriting logic [1,2] is a logic of change that was developed by José Meseguer in
the early 1990-ies. A rewriting logic specification is a rewrite theory (Σ, E, R),
where (Σ, E) is an algebraic equational specification – that may be unsorted,
many-sorted, order-sorted, or a membership equational logic [7] specification –
with Σ an algebraic signature and E a set of equations (and possibly membership
axioms), and where R is a set of labeled conditional rewrite rules of the form

l : [t]E −→ [t′]E if cond,

with l a label and t and t′ Σ-terms. Such rules specify the system’s local transition
patterns. The state space and functions of a system are thus specified by an
equational specification, whereas the dynamic state changes are modeled by
rewrite rules. Despite its simplicity, rewriting logic has been shown to be an
expressive model of concurrency in which many other models of concurrency
and communication can be naturally represented [1, 8].

Maude [3] is a mature high-performance language and tool supporting the
specification and analysis of rewrite theories. Maude assumes that the equations
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are terminating and confluent. Maude executes rewrite rules by reducing the
state to its equational normal form before applying a rewrite rule. We briefly
summarize the syntax of Maude. Operators are introduced with the op keyword.
They can have user-definable syntax, with underbars ‘_’ marking the argument
positions, and are declared with the sorts of their arguments and the sort of their
result. Some operators can have equational attributes, such as assoc, comm, and
id, stating, for example, that the operator is associative and commutative and
has a certain identity element. Such attributes are then used by the Maude en-
gine to match terms modulo the declared axioms. There are three kinds of logical
statements, namely, equations—introduced with the keywords eq, or, for condi-
tional equations, ceq—memberships—declaring that a term has a certain sort
and introduced with the keywords mb and cmb—and rewrite rules—introduced
with the keywords rl and crl. The mathematical variables in such statements
are declared with the keywords var and vars.

Full Maude [3] is a prototype extension of Maude – implemented in Maude
– that provides convenient syntax for object-oriented specification. In object-
oriented Full Maude modules one can declare classes and subclasses. A class
declaration

class C | att1 : s1, ... , attn : sn .

declares an object class C with attributes att1 to attn of sorts s1 to sn. An object
of class C in a given state is represented as a term

< O : C | att1 : val1, ..., attn : valn >

where O is the object’s name, and where val1 to valn are the current values
of the attributes att1 to attn. In an object-oriented system, the state, which
is usually called a configuration, is a term of the built-in sort Configuration.
It has typically the structure of a multiset made up of objects and messages.
Multiset union for configurations is denoted by a juxtaposition operator (empty
syntax) that is declared associative and commutative and having the none mul-
tiset as its identity element, so that order and parentheses do not matter, and so
that rewriting is multiset rewriting supported directly in Maude. The dynamic
behavior of concurrent object systems is axiomatized by specifying each of its
concurrent transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > m’(O’) .

defines a family of transitions in which a message m, with parameters O and
w, is read and consumed by an object O of class C. The transitions have the
effect of altering the attribute a1 of the object O and of sending a new message.
“Irrelevant” attributes (such as a3, and the right-hand side occurrence of a2)
need not be mentioned in a rule.

As mentioned, rewrite theories are executable under fairly mild conditions.
Maude supports a wide range of analysis strategies for rewrite theories, including
simulation, reachability analysis, and linear temporal logic model checking.
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Maude’s rewrite command simulates one behavior of the system, possibly up
to a certain number of rewrite steps. It is written with syntax

rew [[n]] t .

where t is the initial state, and n is the (optional) bound of the number of rewrite
steps to execute.

Maude’s search command uses explicit-state breadth-first search to search for
states that are reachable from a given initial state t, and that match a search
pattern, and satisfy a search condition. The command which searches for one
state satisfying the search criteria has syntax

search [1] t =>* pattern such that cond .

Maude caches the visited states, so that the search command terminates if the
state space reachable from t is finite, or if the desired number of (un)desired
states are reachable from the initial state.

Maude’s linear temporal logic model checker [9] analyzes whether each behav-
ior from an initial state satisfies a temporal logic formula. State propositions are
terms of sort Prop, and their semantics should be given by (possibly conditional)
equations of the form

statePattern |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states t where t |= prop evaluates to true. A temporal logic formula is
constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
O (“next”), and U (“until”). The model checking command has syntax

red modelCheck(t, formula) .

for t the initial state and formula the temporal logic formula. The model checking
terminates if the state space reachable from t is finite.

Rewriting logic is an active area of research, in which more than a thousand
research papers have been published. Some of the applications of rewriting logic
and Maude include: defining the formal semantics for a wide range of program-
ming and modeling languages [10]; work at Microsoft that discovered previously
unknown address and status bar spoofing attacks in web browsers [6]; develop-
ing analysis tools for programming languages, such as the JavaFAN [11] tool
for efficiently analyzing multi-threaded Java programs; analysis of advanced se-
curity, communication, and wireless sensor network protocols (see e.g. [12, 13,
5, 14, 15, 16]); modeling of cell biology to simulate and analyze biological re-
actions [17, 18]; finding several bugs in embedded software used by major car
makers; implementing the latest version of the NRL PA crypto-protocol analysis
tool [19]; implementing extensions of rewriting logic, such as Real-Time Maude
tool [20, 21] for real-time systems and the PMaude tool for probabilistic sys-
tems [22]. The paper [23] provides an early bibliography and roadmap of the use
of Maude around the world.
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3 Prerequisites and Course Duration

Our course is aimed at third-year students at the Department of Informatics at
the University of Oslo. The course basically starts “from scratch”, as it is not
assumed that students have significant mathematical background; they may for
example never have seen a proof system before. It is also not assumed that the
students have any experience with functional or logic programming.

The course consists of 14 lectures, each lasting between two and three 45-
minute “hours”.

4 Course Overview and Sampler

This section gives an overview of the course content, and some samples to get a
first impression of the course. The course is divided into two roughly equal-sized
parts: modeling and analyzing, respectively, the static and the dynamic parts
of the systems. The static part corresponds to “classical” term rewrite system
(TRS) theory and specification of data types in Maude.

4.1 The Static Part

Defining Data Types in Maude. In Maude, data types are defined by an alge-
braic equational specification, where a signature declares a set of sorts and func-
tion symbols (or operators); the operators are divided into constructors (ctor)
that define the carrier of the sort, and defined functions. The first such spec-
ification given in the course is the following module, that defines the natural
numbers, together with an addition function, in a Peano style:

fmod NAT-ADD is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + M = M .

eq s(M) + N = s(M + N) .

endfm

The underscore in the function declaration gives the place of the arguments in
a “mix-fix” notation. It should be noted that, for convenience and efficiency,
common data types, such as integers, floating-point numbers, Booleans, strings,
etc., are built-in in Maude.

As mentioned in Section 2, the equational specification may be order-sorted
(that is, include subsort declarations), and operators can be declared to be asso-
ciative (assoc), commutative (comm), and/or to have an identity element (id).
Matching is then performed modulo such axioms. Using these features, lists of
integers can be defined as follows, where the sort NeList defines non-empty lists:
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sorts List NeList .

subsorts Int < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [assoc id: nil ctor] .

op __ : NeList NeList -> NeList [assoc id: nil ctor] .

List concatenation is defined by the juxtaposition operator (__). Since Int is a
subsort of List, the number 6 is also a list. Therefore, 6 32 is a two-element
list, and (6 32) 17 is a list. Since __ is declared to be associative, (6 32) 17
and 6 (32 17) are the same list, and can be written 6 32 17. Since list con-
catenation is declared to have nil as the identity element, any list is either of
the form nil or n l (or l n), for n an integer and l a List.

The definition of the usual list functions seems to be more elegant than in
most languages:

op length : List -> Nat .

ops first last : NeList -> Int .

op rest : NeList -> List .

op reverse : List -> List .

vars I J K : Int . vars L L’ : List . vars NEL NEL’ : NeList .

eq length(nil) = 0 . eq reverse(nil) = nil .

eq length(I L) = 1 + length(L) . eq reverse(L I) = I reverse(L).

eq first(I L) = I . eq rest(I L) = L .

eq last(L I) = I .

Using this representation of lists, the well known merge-sort function can be
specified fairly elegantly in Maude:

op mergeSort : List -> List .

op merge : List List -> List [comm] .

eq mergeSort(nil) = nil .

eq mergeSort(I) = I .

ceq mergeSort(NEL NEL’) = merge(mergeSort(NEL), mergeSort(NEL’))

if length(NEL) == length(NEL’) or length(NEL) == s length(NEL’) .

eq merge(nil, L) = L .

ceq merge(I L, J L’) = I merge(L, J L’) if I <= J .

In the same way, we have defined the usual data types, such as binary trees, and
multisets. Indeed, any computable data type can be defined as a confluent and
terminating equational theory [24].

Confluence and Termination. Maude’s rewrite engine executes equational
specifications by reducing a term to its normal form. Maude therefore assumes
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that a specification is confluent and terminating, modulo associativity and com-
mutativity of the function symbols so declared. This gives us the motivation to
study these properties, which in my introductory course are studied only for un-
sorted systems without associativity, commutativity, and conditional equations.
After defining formally what it means to perform a simplification step, conflu-
ence is studied in the usual way, assuming termination, and using the critical
pair’s lemma to check local confluence.

The course deals a fair amount with theoretical and practical aspects of prov-
ing termination. We study both “weight function” mappings of ground terms
onto well-founded domains, and the elegant theory of Dershowitz’ simplification
orderings [25, 26] that lead to the multiset and lexicographic path orderings as
well as other termination orderings. Although these techniques apply to term
rewrite systems, it is the hope and motivation that the students are able to
adapt their understanding of termination to also analyze termination of impera-
tive programs such as the Euclidean algorithm for finding the greatest common
divisor of two natural numbers m and n:

int gcd(int m, int n) { // m,n > 0

int x := m; int y := n;

int r := x % y;

while (r>0) {

x := y;

y := r;

r := x % y;

}

return y;

}

Equational Logic. The course introduces equational logic (again, in its sim-
plest, unsorted case). For many of our students, this is the first time they see a
formal deduction system. The usual undecidability and decidability results are
given. Finally, we study inductive theorems and induction on data types, and
prove basic inductive theorems on toy problems, such as that reversing a binary
tree twice yields the original tree.

Although the described course does not use it, Maude has an associated in-
ductive theorem prover that can assist in the proof of inductive theorems [27].

4.2 Modeling and Analyzing Dynamic Systems in Maude

Part II of the course deals with the formal modeling of dynamic systems as
rewriting logic theories, and their formal analysis in the Maude tool. Since two
of the main goals of the course is to (i) give the students some intuition about the
difficulty of designing distributed systems, and (ii) teach the students to formally
model designs of such systems, we focus on modeling and analyzing a range of
examples from different domains: transport protocols, transaction protocols for
distributed database systems, and cryptographic protocols.



28 P.C. Ölveczky

Rewriting Logic. We introduce rewriting logic and its proof theory; in partic-
ular, this proof system allows us to reason about what actions can be performed
concurrently. We show that if the state has a multiset structure, then each ele-
ment in the multiset could be involved in one rewrite “action” in a concurrent
rewrite step; that is, distributed objects can performs actions concurrently.

We illustrate such modeling with simple examples, such as modeling the life
(the age and marital status) of a collection of persons, various kinds of games, etc.
For example, (the scores of) a never-ending soccer game is modeled by the fol-
lowing module, where a typical state could be the term "PSV" - "Ajax" 3 : 2:

mod GAME is protecting NAT + STRING .

sort Game .

op _-_ _:_ : String String Nat Nat -> Game [ctor] .

vars HOME AWAY : String . vars M N : Nat .

rl [home-goal] :

HOME - AWAY M : N => HOME - AWAY M + 1 : N .

rl [away-goal] :

HOME - AWAY M : N => HOME - AWAY M : N + 1 .

endm

Formal Analysis in Maude. Since, in contrast to equational theories, the
rewrite rules need not be confluent or terminating, the Maude tool offers different
formal analyses. We cover rewriting for simulation and search for reachability
analysis. For example, in the soccer game, the following search command checks
whether it is possible to reach a state in which the away team leads by at least
three goals1:

Maude> search [1] "Ajax" - "PSV" 0 : 0

=>*

"Ajax" - "PSV" M:Nat : N:Nat such that N:Nat >= M:Nat + 3 .

Concurrent Objects. We then introduce concurrent objects by the simple
example of modeling the lives of a collection of persons, where the class Person
is declared as follows:

class Person | age : Nat, status : Status .

sort Status .

op single : -> Status [ctor] .

ops engaged married separated : Oid -> Status [ctor] .

1 Variables declared on the fly have the form var:sort.
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The following conditional rewrite rule, involving two objects, models the engage-
ment of two single persons who are both older than 15:

vars N N’ : Nat . vars X X’ : String .

crl [engagement] : < X : Person | age : N, status : single >

< X’ : Person | age : N’, status : single >

=>

< X : Person | status : engaged(X’) >

< X’ : Person | status : engaged(X) >

if N > 15 /\ N’ > 15 .

A married person can initiate a separation, for example by sending a message
to his/her spouse. The following declares a separate message, and shows the
rules for sending, respectively receiving, such a message2:

msg separate : Oid -> Msg .

rl [sendSep] : < X : Person | status : married(X’) >

=>

< X : Person | status : separated(X’) >

separate(X’) .

rl [recvSep] : separate(X)

< X : Person | status : married(X’) >

=>

< X : Person | status : separated(X’) > .

The course also presents an object-oriented version of the mandatory dining
philosophers example.

Communication Protocols. After defining ways of modeling a wide range
of communication models (unordered/ordered transmission; reliable/unreliable;
unicast/multicast/broadcast, . . . ), we specify a set of transport protocols, such
as TCP-like sequence number based protocols, the alternating bit protocol, and
(as a student homework) different versions of the sliding window protocol. Maude
search is used to analyze the protocols. From an educational perspective, the slid-
ing window protocol is a very good example for illustrating that model checking
distributed systems takes a long time in a highly nondeterministic setting where
any message may get lost (or duplicated).

The Two-Phase Commit Protocol for Distributed Databases. We model
and analyze the two-phase commit protocol for transactions in distributed database
systems with replicated data, as the protocol is described in the textbook [28].
Again, we analyze our model by searching for final states of protocol runs, and
automatically find the well known facts that the multi-database is consistent
after a run if and only if messages cannot get lost.
2 As we show in the course, separation is not this simple.
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The NSPK Cryptographic Protocol. The Needham-Schroeder public key
(NSPK) authentication protocol is a frequently used and cited protocol from
1978. NSPK is, for example, cited in Handbook of Applied Cryptography [29]
from 1996, without any error in the protocol being mentioned. In crypto-protocol
notation, NSPK is described as follows:

Message 1. A → B : A.B.{Na.A}PK(B)

Message 2. B → A : B.A.{Na.Nb}PK(A)

Message 3. A → B : A.B.{Nb}PK(B)

We define an object-oriented Full Maude model of the protocol for multiple
agents and protocol runs. An agent which can initiate a run of the protocol is
modeled as an object of the following class Initiator:

class Initiator | initSessions : InitSessions, nonceCtr : Nat .

The initiator needs to know the nonce it sent to the responder in Message 1, so
that it can check whether this is the same nonce that it receives in Message 2.
In our setting, where an initiator may be simultaneously involved in many runs
of the protocol with different responders, the initiator must store information
about the nonces of all these runs. In the attribute initSessions an initiator
A stores such information in a multiset of elements of the following three kinds:

– notInitiated(B) indicates that A can/will initiate contact with B but has
not yet done so;

– initiated(B, N) indicates that A has sent Message 1 to B with nonce N
and is waiting for Message 2 from B; and

– trustedConnection(B) indicates that A has established (what she thinks
is) an authenticated connection with B.

The data type representing this kind of information is defined as follows:

sorts Sessions InitSessions . subsort Sessions < InitSessions .

op emptySession : -> Sessions [ctor] .

op __ : InitSessions InitSessions -> InitSessions

[ctor assoc comm id: emptySession] .

op __ : Sessions Sessions -> Sessions [ctor assoc comm id: emptySession] .

op notInitiated : Oid -> InitSessions [ctor] .

op initiated : Oid Nonce -> InitSessions [ctor] .

op trustedConnection : Oid -> Sessions [ctor] .

The dynamics of the protocol is described by four rewrite rules, two for the
initiator and two for the responder. The rules for the initiator are described
next.

The first rule models the sending of Message 1. The agent A has
notInitiated(B) in its initSessions attribute, which indicates that it is inter-
ested in establishing an authenticated connection with B. The initiator generates
a fresh nonce nonce(A, N), encrypts this nonce together with its identifier with
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the public key of B (encrypt ... with pubKey(B)), and adds its own and B’s
name (msg ... from A to B) to this message and sends it out into the con-
figuration. Agent A must remember that it has initiated contact with B with
nonce nonce(A, N) and must also increase its nonce counter. All this happens
in the following rule:

vars A B : Oid . vars M N : Nat . vars NONCE NONCE’ : Nonce .

var IS : InitSessions .

rl [start-send-1] :

< A : Initiator | initSessions : notInitiated(B) IS, nonceCtr : N >

=>

< A : Initiator | initSessions : initiated(B, nonce(A, N)) IS,

nonceCtr : N + 1 >

msg (encrypt (nonce(A, N) ; A) with pubKey(B)) from A to B .

The next rule models the reception of Message 2 from, and the sending of Mes-
sage 3 to, an agent B who sent a pair of nonces encrypted with A’s public key. If
the first nonce (NONCE) in the message received (and decrypted) by A is the same
as the nonce stored in A’s initSessions attribute for B, the agent A figures out
that it has established an authenticated connection with B, and sends Message
3 (B’s nonce (NONCE’) encrypted with B’s public key) to B:

rl [read-2-send-3] :

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

< A : Initiator | initSessions : initiated(B, NONCE) IS >

=>

< A : Initiator | initSessions : trustedConnection(B) IS >

msg (encrypt NONCE’ with pubKey(B)) from A to B .

The Dolev-Yao intruder is modeled as a class Intruder with 14 simple rewrite
rules. For example, the following rule models the case when the intruder inter-
cepts a message that it cannot decrypt. In that case, the intruder just stores
the message content in its encrMsgsSeen attribute, and stores the new names it
learns in its agentsSeen attribute:

vars I O O’ : Oid . var OS : OidSet . var MSGC : MsgContent .

var ENCRMSGS : EncryptedMsgContentSet .

crl [intercept-but-not-understand] :

(msg (encrypt MSGC with pubKey(O)) from O’ to O)

< I : Intruder | agentsSeen : OS, encrMsgsSeen : ENCRMSGS >

=>

< I : Intruder | agentsSeen : OS ; O ; O’,

encrMsgsSeen :(encrypt MSGC with pubKey(O)) ENCRMSGS >

if O =/= I .
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Another rule can then spontaneously send any fake message among the messages
the intruder has seen out into the configuration, using any agent A it has seen3

as sender:

crl [send-encrypted] :

< I : Intruder | encrMsgsSeen : (encrypt MSGC with pubKey(B)) ENCRMSGS,

agentsSeen : A ; OS >

=>

< I : Intruder | >

(msg (encrypt MSGC with pubKey(B)) from A to B)

if A =/= B .

The following search command finds the well known attack on NSPK. In the
initial state, "Scrooge" does not want to have a contact with the "Bank". In the
search command we check whether from such a state, it is possible to reach a state
where the "Bank" thinks it has an authenticated connection with "Scrooge":

Maude> (search [1]

< "Scrooge" : Initiator |

initSessions : notInitiated("Beagle Boys"), ... >

< "Bank" : Responder | respSessions : emptySession, nonceCtr : 1 >

< "Beagle Boys" : Intruder |

initSessions : notInitiated("Bank"), ... >

=>*

C:Configuration

< "Bank" : Responder | respSessions : trustedConnection("Scrooge")

RS:RespSessions > .)

Maude does find a behavior leading to the bad state, and can exhibit this
behavior as explained in [30].

This example is excellent for motivating the students, for illustrating the diffi-
culties of designing distributed systems, and for showing the usefulness of formal
model checking. The protocol is described in three lines of specification. Yet, due
to concurrent runs, it is so hard to understand that it took 17 years to find the
error, which was found using exactly the same kind of analysis we are doing:
exhaustive model checking of a formal model of the protocol [31].

Temporal Properties and LTL Model Checking. Finally, we explain differ-
ent classes of requirements, and show how invariants can be validated by Maude’s
search command. More complex temporal system properties can be formalized
in linear temporal logic (LTL), and Maude’s LTL model checker can be used
to analyze whether a system satisfies its requirements. However, to avoid intro-
ducing yet another logic to my students, I typically postpone teaching temporal
logic to the follow-up course.

3 Both encrMsgsSeen and agentsSeen are declared to hold multisets. Therefore, the
rule can nondeterministically select any of the agents and any of the messages the
intruder has stored.
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5 Teaching Material

Fairly mature lecture notes (340 pages) for my course are available on the web at
http://peterol.at.ifi.uio.no/inf3230-lecturenotes.html. These lecture
notes start from scratch and contain many examples and exercises, and should
be accessible for people without any formal methods experience. These notes
are also suggested reading for the introductory formal methods course CS 476 at
the University of Illinois at Urbana-Champaign (UIUC), and seem to have been
read by a fair amount of people at UIUC. These notes are also one of the main
sources that are recommended to people who want to get a gentle introduction
to Maude.

The Maude book [3] is a very useful reference material on the Maude system
and on rewriting logic, but, in my view, requires some previous knowledge about
term rewriting or similar formal methods. Although no course book exists for the
course CS 476 at UIUC, the slides for that much more advanced introductory
course are quite comprehensive and can almost be studied as a course book.

6 Evaluation and Impact

This section briefly summarizes anonymous student feedback, my own impression
of the students’ experiences, and some of the impact this course has had in Oslo.

6.1 Student Feedback

The comments and evaluations from university’s anonymous web-based feedback
system have been overwhelmingly positive. Unfortunately, most comments are
non-constructive comments of the form “Very interesting and exciting”. Some
write that that it is good that “theory and practice are well interleaved,” and
other thought programming in Maude was fun. One person told me that he
did not really understand the sliding window protocol in the network course,
but understood it very well in this course, where implementation details are
abstracted away to focus on the essence of the protocol.

The negative feedback overwhelmingly concerns Full Maude, the prototype
extension of Maude that is used to model and analyze object-oriented Maude
specifications. Unfortunately, Full Maude’s slight lack of robustness and, in par-
ticular, its cryptic, non-existing, and/or misplaced error messages make it a
frustrating experience for some students to get larger specifications, such as the
sliding window protocol, right.

As for the difficulty of the course, 5% of my students in 2003 found the course
“difficult,” 55% found the course “somewhat difficult,” and the remaining 40%
found it “neither easy nor difficult.”

Despite the very positive student feedback each year, the course still does not
attract as many students as I would like. The reason may lie in the way the
students have to select courses, and in the freedom they have to select courses
outside their specialization. Typically, 20 to 30 students take the exam each year.

http://peterol.at.ifi.uio.no/inf3230-lecturenotes.html


34 P.C. Ölveczky

6.2 Impact in Oslo

I am not very much aware of what former students of the course are doing. Two
cases that are worth mentioning are:

1. A former student and teaching assistant in my course started a company
five years ago, selling a product/service that is implemented in Maude. The
company is still doing well, and has also employed another former student
and TA of mine to program in Maude.

2. Inspired by the use of Maude to find the attack on NSPK, a former student
went on to do a Ph.D. in crypto-analysis using Maude, including defining his
own protocol analyzer on top of Maude. The person is currently analyzing
critical infrastructure in the Norwegian banking sector.

In addition, it is worth remarking that Maude is now frequently used in neighbor-
ing research groups at the department. For example, Maude is used to implement
proof search strategies in the logics group, the Creol object-oriented language [32]
developed at the department is interpreted in Maude, and a student in the lin-
guistics research group (!) has analyzed an IETF-developed multicast protocol
using Maude [14].

7 Related Courses

I am only aware of one other “introductory” formal methods course based on
rewriting logic. It is given at UIUC by José Meseguer, who developed rewriting
logic. That course is significantly more theoretically challenging and comprehen-
sive than the one in Oslo. In addition to treating the theory of rewriting logic
and its analysis methods in depth, it also focuses on the verification of sequen-
tial imperative programs. There is less focus on larger examples, although the
NSPK case study is covered. Another difference is that the UIUC course does
not have a course book (but an extensive set of slides). Indeed, my lecture notes
are recommended supplementary reading in the UIUC course.

Classic term rewriting theory has been taught many places for years. One
difference between many of those and the the first part of the Oslo course is our
focus on defining functions in an executable language such as Maude.

Likewise, analyzing dynamic systems using process algebras, model checkers
like Spin, various kinds of transition systems, has been much taught. One of the
differences of using Maude is the modeling convenience and expressiveness of
the Maude formalism, and the ability to perform both simulation, reachability
analysis, and LTL model checking. Another attractive feature of Maude is its very
simple and intuitive functional programming style language, which is typically
appealing to students, and which makes it far easier to model a system system
that, say, in Promela/Spin. Another difference is our focus on case studies from
different domains.
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8 Follow-Up Courses

Due to the large amount of interesting research being performed using rewriting
logic and Maude, there are plenty of appealing subjects to choose from for an
advanced follow-up course based on rewriting logic. The follow-up course at the
University of Oslo teaches the following topics:

– A student project formalizes and analyzes a published communication pro-
tocol which is claimed to be correct, but where a simple Maude search finds
an unexpected deadlock.

– Linear temporal logic and its model checking in Maude.
– Meta-programming in Maude.
– Specification and analysis of real-time systems using Real-Time Maude [20].
– Other analysis methods, including narrowing analyses and the use of Maude’s

inductive theorem prover (ITP) [27].
– Modeling cell biology and and analyzing biological cell reactions [17, 18].
– Study the work in [6] on finding the attacks in web browsers.

Other topics of general interest include:

– Grigore Roşu at UIUC teaches a course on how a wide range of programming
languages can be given a rewriting logic semantics and can be analyzed using
Maude.

– Probabilistic rewrite theories [33] and their analysis using PMaude [22].
– Theory on the algebraic denotational semantics of equational and rewrite

theories.

This is but a small sample of topics that could be covered by an advanced course.

9 Concluding Remarks

This paper has advocated the use of rewriting logic and its associated high-
quality tool Maude as a basis for teaching formal methods with the aim of widen-
ing the access to formal methods. The reasons for believing that a Maude-based
formal methods course may interest people who would not normally consider
studying formal methods include:

– The logic and programming language are simple and intuitive: they consist of
an algebraic signature, equations, and rewrite rules. That’s all. Furthermore,
the object-oriented rules are very intuitive and easy to understand also for
people without formal methods or Maude knowledge (see, e.g., [5]).

– The functional and fairly elegant programming possible in Maude, that this
paper tried to convey with the merge-sort example, should be appealing to
people who like to program.

– It is fairly easy – in particular compared to traditional formal languages for
concurrency – to model a wide range of distributed systems in Maude.



36 P.C. Ölveczky

– The NSPK security protocol analysis provides compelling motivation for the
use of formal model checking. Furthermore, it is easy to specify NSPK in
Maude, and to find the attack using search in Maude.

– No matter its elegance or nice features, no language will motivate students if
it is perceived to be a purely academic language not used in industry. Maude
has some “sexy” industrial applications, most notably the work at Microsoft
that uncovered previous unknown security flaws in web browsers.

From a formal methods teaching perspective, a fair amount of formal methods
theory, including classic TRS theory, proof systems and inductive proofs, as
well as different forms of model checking – one of the success stories of formal
methods – can naturally be integrated and motivated by the use of Maude for
system modeling and analysis.

This paper has also presented an introductory Maude-based formal methods
course given at the University of Oslo since 2002. This course, also aimed at – and
taken by – students who will not necessarily pursue formal methods further, has
consistently received positive student feedback, and comes with a fairly mature
course book that is freely available and should be suitable starting point for
studying formal methods.

Although I believe that the expressive and intuitive formalism of Maude
makes it better suited than other model checking systems, such as SMV [34]
and Spin [35], for teaching modeling and analysis of complex distributed systems
with advanced data types and communication features, much more work com-
paring Maude-based formal methods teaching with other approaches is needed
before significant conclusions can be drawn.

Acknowledgments. I am grateful to Olaf Owe for supporting the development
of the described course at the University of Oslo, and to the anonymous reviewers
for helpful comments on an earlier version of this paper.
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