

Lecture Notes in Computer Science 5846
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jeremy Gibbons José Nuno Oliveira (Eds.)

Teaching
Formal Methods

Second International Conference, TFM 2009
Eindhoven, The Netherlands, November 2-6, 2009
Proceedings

13

Volume Editors

Jeremy Gibbons
Oxford University
Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD, UK
E-mail: jeremy.gibbons@comlab.ox.ac.uk

José Nuno Oliveira
Universidade do Minho
Departamento de Informática
Campus de Gualtar
4710-057 Braga, Portugal
E-mail: jno@di.uminho.pt

Library of Congress Control Number: 2009935818

CR Subject Classification (1998): D.2.4, D.3.1, F.4.3, D.4.5, F.3.1, I.2.2, G.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04911-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04911-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12774869 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of TFM 2009, the Second International
FME Conference on Teaching Formal Methods, organized by the Subgroup of
Education of the Formal Methods Europe (FME) association. The conference
took place as part of the first Formal Methods Week (FMWeek), held in Eind-
hoven, The Netherlands, in November 2009.

TFM 2009 was a one-day forum in which to explore the successes and fail-
ures of formal method (FM) education, and to promote cooperative projects to
further education and training in FMs. The organizers gathered lecturers, teach-
ers, and industrial partners to discuss their experience, present their pedagogical
methodologies, and explore best practices.

Interest in FM teaching is growing. TFM 2009 followed in a series of events
on teaching FMs which includes two BCS-FACS TFM workshops (Oxford in
2003, and London in 2006), the TFM 2004 conference (Ghent, 2004, with pro-
ceedings published as Springer LNCS Volume 3294), the FM-Ed 2006 workshop
(Hamilton, co-located with FM 2006), FORMED (Budapest, at ETAPS2008),
and FMET 2008 (Kitakyushu, co-located with ICFEM 2008).

FMs have an important role to play in the development of complex com-
puting systems—a role acknowledged in industrial standards such as IEC61508
and ISO/IEC15408, and in the increasing use of precise modelling notations,
semantic markup languages, and model-driven techniques. There is a growing
need for software engineers who can work effectively with simple, mathematical
abstractions, and with practical notions of inference and proof.

Original contributions were solicited providing insight, opinions, and sugges-
tions for courses of action regarding the teaching of FMs, including but not
limited to the following aspects: experiences of teaching FMs, both successful
and unsuccessful; educational resources including the use of books, case studies
and the Internet; the education of weak and mathphobic students; the integra-
tion, or otherwise, of FMs into the curriculum, including contributions to the
definition of a Formal Methods Body of Knowledge (FMBoK); the advantages
of FM-trained graduates in the workplace; changing attitudes towards FMs in
students, academic staff, and practitioners; the necessary mathematical back-
ground.

There were 19 submissions, each being reviewed by at least four Programme
Committee members. Ten papers were accepted, some of which were subject to
a round of shepherding before completion. Two of the accepted papers addressed
the conference theme of ‘widening access to FMs’ in terms of reaching students
with limited enthusiasm for FMs as an end in themselves: Catano and Rueda
describe two courses taught in Colombia—one on JML and one on B—that
venture into the ‘unconquered territory’ of conventional software companies, and
Ölveczky discusses an approach based on rewriting logic using the Maude tool.

VI Preface

Two more papers address ‘widening access’ in a different dimension, extending
that access beyond traditional university education: Ferreira et al. describe the
MathIS project that aims to reinvigorate high school mathematics teaching, and
Ishikawa et al. present some of their experiences with the TopSE programme of
education for professional software engineers in Japan.

The next two papers describe synergistic combinations of similar FMs: Tarkan
and Sazawal on using Alloy as a tool in the teaching of Z, and Poll on the com-
bination of the JML specification language and the ESC/Java verification tool.
Two more papers describe teaching approaches based on the integration of com-
plementary FMs: Hallerstede and Leuschel on integrating model-checking with
formal proof, and Ahrendt et al. on integrating formal and informal approaches
to verification. Finally, the last two papers illustrate the typical evolution of
an education programme in FMs: from graduate-level courses in new fields, as
discussed by Kofroň et al., in which the state of the art is rapidly evolving and
the only materials available are primary sources, through a decade or two of
development, to more mainstream undergraduate courses in more mature fields,
in which secondary sources such as the textbook described by Aceto et al. may
be used.

The programme commenced with an invited talk by Jeff Kramer on abstrac-
tion and modelling, arguing that these two crucial skills for software engineers are
complementary partners. The conference closed with a panel discussion on the
idea of building a Guide to the Formal Methods Body of Knowledge (FMBoK),
inspired by similar efforts for software engineering (SWEBoK) and for project
management (PMBoK); such a resource would provide guidance to teachers,
managers, and developers on what should be expected from a comprehensive,
balanced programme of education in FMs.

During the electronic Programme Committee meeting, there was a spirited
discussion about the intent and extent of events of this kind; we feel this dis-
cussion is worth summarizing here. We are convinced that the papers included
in this volume will be useful to those teaching FMs: reporting on experiences;
describing approaches that worked, and those that didn’t; identifying common
issues, to increase our understanding of which aspects are generic and which
specific to a particular context; and generally providing inspiration for others.
Nevertheless, it will be clear to readers that the papers do not present detailed
qualitative or quantitative data collected during robust, repeatable, scientific ex-
periments; the authors, the Programme Committee, and the intended audience
may be leading researchers in FMs, but they are by and large mere practition-
ers in pedagogy. Formal assessments of the efficacy of particular approaches to
teaching FMs would be valuable in informing our teaching, but they are very
difficult to conduct—we leave this as a challenge for future events.

The conference was managed, and these proceedings were prepared, using
the EasyChair conference management system (http://www.easychair.org/),
whose valuable service we are happy to acknowledge.

Preface VII

We are very grateful to the members of the Programme Committee and their
additional referees for their care and diligence in reviewing the submitted papers.
We are also grateful to Tijn Borghuis and Erik de Vink, FMWeek coordinators,
for their help and support, and to the sponsoring institutions.

August 2009 Jeremy Gibbons
José Oliveira

Organization

TFM 2009 was organized by the Subgroup of Education of the Formal Methods
Europe (FME) association, in close collaboration with the organization of the
Formal Methods Week (FMWeek).

Programme Committee

Izzat Alsmadi North Dakota State University, USA
Dines Bjørner IIMM Institute, Denmark
Eerke Boiten University of Kent, UK
Raymond Boute Ghent University, Belgium
Andrew Butterfield Trinity College Dublin, Ireland
Jim Davies University of Oxford, UK
David Duce Oxford Brookes University, UK
John Fitzgerald University of Newcastle upon Tyne, UK
Jeremy Gibbons University of Oxford, UK
Randolph Johnson National Security Agency, USA
Mı́cheál Mac an Airchinnigh Trinity College Dublin, Ireland
Dino Mandrioli Politecnico di Milano, Italy
José Oliveira University of Minho, Portugal
Kees Pronk Delft University of Technology,

The Netherlands
Bernhard Schätz Technische Universität München, Germany
Wolfgang Schreiner Johannes Kepler University Linz, Austria
Simão Sousa University of Beira Interior, Portugal
Kenji Taguchi National Institute of Informatics, Japan
Jeannette Wing Carnegie-Mellon University, USA

Referees

Besides the members of the Programme Committee, the following external ref-
erees contributed to the paper reviewing process:

André Brito Passos
Clare Martin
Cyrille Artho

David Pereira
Fuyuki Ishikawa
Henrique Costa

Ian Bayley
Radu Calinescu

Sponsoring Institutions

Formal Methods Europe Association (FME)
Software Improvement Group (SIG), Amsterdam, The Netherlands

Table of Contents

Abstraction and Modelling: A Complementary Partnership 1
Jeffrey Kramer

Teaching Formal Methods for the Unconquered Territory 2
Nestor Catano and Camilo Rueda

Teaching Formal Methods Based on Rewriting Logic and Maude 20
Peter Csaba Ölveczky

Which Mathematics for the Information Society? . 39
João F. Ferreira, Alexandra Mendes, Roland Backhouse, and
Lúıs S. Barbosa

What Top-Level Software Engineers Tackle after Learning Formal
Methods: Experiences from the Top SE Project . 57

Fuyuki Ishikawa, Kenji Taguchi, Nobukazu Yoshioka, and
Shinichi Honiden

Chief Chefs of Z to Alloy: Using a Kitchen Example to Teach Alloy
with Z . 72

Sureyya Tarkan and Vibha Sazawal

Teaching Program Specification and Verification Using JML and
ESC/Java2 . 92

Erik Poll

How to Explain Mistakes . 105
Stefan Hallerstede and Michael Leuschel

Integrated and Tool-Supported Teaching of Testing, Debugging, and
Verification . 125

Wolfgang Ahrendt, Richard Bubel, and Reiner Hähnle

On Teaching Formal Methods: Behavior Models and Code Analysis 144
Jan Kofroň, Pavel Paŕızek, and Ondřej Šerý

Teaching Concurrency: Theory in Practice . 158
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen, and Jǐŕı Srba

Author Index . 177

Abstraction and Modelling: A Complementary
Partnership

Jeffrey Kramer

Department of Computing
Imperial College London

Huxley Building
180 Queen’s Gate

London SW7 2AZ, U.K.
j.kramer@imperial.ac.uk

Abstract. Why is it that some software engineers are able to produce
clear, elegant designs and programs, while others cannot? Is it purely a
matter of intelligence? What is the problem? One hypothesis is that the
answer lies in abstraction: the ability to exhibit abstraction skills and per-
form abstract thinking and reasoning. Abstraction is a cognitive means
by which engineers, mathematicians and others deal with complexity. It
covers both aspects of removing detail as well as the identification of gen-
eralisations or common features, and has been identified as a crucial skill
for software engineering professionals. Is it possible to improve the skills
and abilities of those less able through further education and training?
Are there any means by which we can measure the abstraction skills of
an individual?

In this talk, we explore these questions, and argue that abstraction and
modelling are complementary partners: that abstraction is the key skill
for modelling and that modelling provides a sound means for practising
and improving abstraction skills.

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Teaching Formal Methods for the Unconquered
Territory

Nestor Catano1 and Camilo Rueda2

1 University of Madeira,
Department of Mathematics and Engineering Funchal, Portugal

ncatano@uma.pt
2 Pontificia Universidad Javeriana,

Department of Computer Science Cali, Colombia
crueda@cic.puj.edu.co

Abstract. We summarise our experiences in teaching two formal meth-
ods courses at Pontificia Universidad Javeriana. The first course is a
JML-based software engineering course. The second course is a model-
driven software engineering course realised in the B method for software
development. We explain how formal methods are promoted in Pontifi-
cia Universidad Javeriana, how we motivate students to embrace formal
methods techniques, and how they are promoted through the presenta-
tion of motivating examples.

1 Introduction

In this paper we summarise our experiences in teaching formal methods to under-
graduate students of Pontificia Universidad Javeriana. We strive to help students
to build skills on formal methods, and to master formal tools they might use in
their future IT software engineering jobs in the “unconquered territory”, e.g.,
traditional software engineering companies that are reluctant to adopt formal
methods as part of their software development practices. The first author has
been lecturing a JML [7] (short for Java Modeling Language) software engineer-
ing course during the past 3 years, and the second author a model-based formal
software development course during the past 5 years. Prior to these courses,
students must attend a standard software engineering course, as well as discrete
mathematics related courses. That is, our students have enough software engi-
neering and mathematical background to appreciate the benefits of using formal
methods tools and techniques during software development. Formal methods of-
fer a practical alternative to constructing correct software, and can be implanted
along the several steps of the software development cycle, from requirements cap-
ture, by employing formal specification language notations such as B [1] or Z
[16,17], through the design and coding of systems [14]. But, formal methods will
only be widely popular in software companies if formal methods tools exist that
provide support for software engineering practices, and software engineers are
properly trained in related techniques in universities and education centres.

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 2–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Teaching Formal Methods for the Unconquered Territory 3

We explain here two approaches undertaken to the teaching of formal meth-
ods in Pontificia Universidad Javeriana. (i.) Model-driven software engineering
is realised in the B method for software development [1]. That is, from a B
model of a system, obtained from the software requirements of an application,
a code-level model in B is attained while applying successive refinement steps.
Mathematical techniques are used along the way so as to guarantee the correct-
ness of the refinement process. The code-level model is a concrete model of the
more abstract initial model of the system. Section 5 presents the model-driven
B-based course taught at Pontificia Universidad Javeriana, Cali. The course is
illustrated with the formal software development of the control system structure
of the recently inaugurated Cali mass transportation system (MIO). (ii.) Section
4 presents the structure of our JML-based formal software development course.
The JML-based course places between the rather heavy, fully mathematically
based, formal software development course in B, and the rather mathematically
informal previous software engineering course, introduced in Section 3. The for-
mal methods courses in JML and B are two complementary courses that give
students two different insights of the use of formal methods in software develop-
ment. In the following, Section 2 gives an overview on JML and B based formal
methods techniques and tools.

2 Preliminaries on Formal Methods

2.1 The Java Modeling Language (JML)

JML is a specification language for Java that provides support for B. Meyer’s
design-by-contract principles [11]. The idea behind the design-by-contract
methodology is that a contract between a class and its clients exists. The client
must guarantee certain conditions, called pre-conditions, to be able to call a
method of the class. In return, the class must guarantee certain conditions,
called post-conditions, that will hold after the method is called.

JML specifications use Java syntax, and are embedded in Java code within
special marked comments /*@ ... @*/ or after //@. A simple JML specification
for a Java class consists of pre- and post-conditions added to its methods, and
class invariants restricting the possible states of class instances. Specifications
for method pre- and post-conditions are embedded as comments immediately be-
fore method declarations. JML predicates are first-order logic predicates formed
of side-effect free Java boolean expressions and several specification-only JML
constructs. Because of this side-effect restriction, Java operators like ++ and --
are not allowed in JML specifications. JML provides notations for forward and
backward logical implications, ==> and <==, for non-equivalence <=!=>, and for
logical or and logical and, || and &&. The JML notations for the standard uni-
versal and existential quantifiers are (\forall T x; E) and (\exists T x; E),
where T x; declares a variable x of type T, and E is the expression that must
hold for every (some) value of type T. The predicates (\forall T x; P; Q) and
(\exists T x; P; Q) are equivalent to (\forall T x; P ==> Q) and (\exists
T x; P && Q) respectively.

4 N. Catano and C. Rueda

JML supports the use of several mathematical types such as sets, sequences,
functions and relations, in specifications. JML specifications are inherited by
subclasses – subclass objects must satisfy super-class invariants, and subclass
methods must obey the specifications of all super-class methods that they over-
ride. This ensures behavioural sub-typing. That is, a subclass object can always
be used (correctly) where a super-class object is expected. In the following, we
briefly review JML specification constructs, and the JML common tools. The
reader is invited to consult [9] for a full introduction to JML.

2.2 The JML Common Tools

The JML common tools [7,6] is a suite of tools providing support to run-time
assertion checking of JML-specified Java programs. The suite includes jmlc,
jmlunit and jmlrac. The jmlc tool compiles JML-specified Java programs into
a Java byte-code that includes instructions for checking JML specifications at
run-time. The jmlunit tool generates JUnit [10] unit tests code from JML spec-
ifications and uses JML specifications processed by jmlc to determine whether
the code being tested is correct or not. Test drivers are run by using the jmlrac
tool, a modified version of the java command that refers to appropriate run-time
assertion checking libraries.

The JML common tools make possible the automation of regression test-
ing from the precise, and correct JML characterisation of a software system.
The quality and the coverage of the testing carried out by JML depend on the
quality of the JML specifications. The run-time assertion checking with JML is
sound, i.e., no false reports are generated. The checking is however incomplete
cause users can write informal descriptions in JML specifications, e.g., (* x is
positive *). The completeness of the checking performed by JML depends on
the quality of the specifications and the test data provided.

2.3 Refinement Calculus and the B Method

In the refinement calculus strategy for software development, the process of going
from a system specification to its implementation in a machine goes through a
series of stages. Each stage adds more details to the description of a system.
Each stage can thus be seen as a model of the system at a particular level of
abstraction. Models at each level serve different purposes. At higher levels models
are used to state and verify key system properties. At lower levels models are
used to simulate the system behaviour. It is crucial that models at each stage
are coherent with the system specification, i.e., that the simulation obeys the
specification properties. A model Mi+1 at stage i+1 is said to be a refinement of a
model Mi at stage i when the states computed by Mi and Mi+1 at each given step
obey a so-called “gluing invariant” stating properties for the joint behaviour of
both models. A refinement step generates proof obligations that must be formally
verified in order to assert that a model Mi+1 is indeed a refinement of a model
Mi. These are necessary and sufficient conditions to guarantee that, although at
different levels of abstraction, both are models of the same system. Correctness
of the whole development process is thus ensured ([4]).

Teaching Formal Methods for the Unconquered Territory 5

In the B method ([1], [15]) models are so-called machines composed of a static
part defining observations (variables, constants, parameters, etc) of the system
and their invariant properties, and a dynamic part defining operations changing
the state of the system. Each operation must maintain the invariant property.
In B, the language for stating properties (essentially predicate logic plus set
theory) and the language for specifying dynamic behaviour (i.e. programs) are
seamlessly integrated.

A significant feature of the B system modelling approach is the avai-
lability of automatic verification tools such as B-tools (http://www.b-core.-
com/btool.html), Atelier-B (http://www.atelierb.eu/index en.html) o r Rodin
(http://www.event-b.org/platform.html), and model-checking simulators such
as ProB (http://users.ecs.soton.ac.uk/mal/systems/prob.html).

2.4 Event B Models

We introduce a derivative of the B method called event B [3]. Event B models
are complete developments of discrete transition systems. They are composed
of machines and contexts. These correspond, roughly, to a B method machine
whose static part (except variables and their invariants) is transferred to a differ-
ent module (the context). B method operations are replaced in event B machines
by events. In B method machines, operations are invoked, either by a user or by
another machine, whereas in event B, an event occurs when some condition (its
guard) holds. Three basic relations are used to structure a model. A machine
sees a context and can refine another machine. A context can extend another
context. Events have two forms, as shown in table 1.

Table 1. Events

any x
where

G2(x, v)
then

A2(x, v)
end

when
G1(v)

then
A1(v)

end

The “when” form of event executes the action A1 when the current value of
the system variables v satisfies the guard G1. The “any” form of event executes
action A2 when there exists some value of x satisfying the guard G2. Proofs obli-
gations require invariants to hold after executing the actions. A simple example,
modelling a parking lot, is shown in table 2. Variable C keeps track of the cars in
the parking lot. Set CARS defines a type. Constant n is the maximum capacity
of the parking lot. Events model entrance and exit from the parking.

6 N. Catano and C. Rueda

Table 2. A parking lot model

machine
Parking

sees
ctx
variables
C

invariants
C ⊆ CARS ∧ card(C) ≤ n

events
arrives =

any car
where

car ∈ CARS ∧ car �∈ C ∧ card(C) < n
then

C := C ∪ {car}
end
leaves =

any car where car ∈ C
then

C := C\{car}
end

end

context
ctx

sets
CARS

constants
n

axioms
n ∈ N ∧ n > 0

end

3 The Software Engineering Programme at Pontificia
Universidad Javeriana

Engineering in computer science at Pontificia Universidad Javeriana (called sys-
tems engineering for historical reasons) is a 5 year program, structured per
semesters, comprising a 2 years’ common trunk in physics and mathematics,
shared by all other engineering programs, including 2 courses in discrete math-
ematics and logic. This is followed by a 3 years’ program in computer science,
with about a 30% course charge in economics and humanities. The discrete
mathematics, as well as all the basic computer related courses comply with
the ACM/IEEE undergraduate computer science curriculum (http://sites.-
computer.org/ccse/). There are two basic courses in software engineering:

1. Software processes dealing with fundamental design principles, API design,
tool design, software life cycle and capability models.

2. Software engineering and management, dealing with software requirements
specifications (SRS), project management, validation and verification, and
software evolution.

These courses are scheduled for sixth and seventh semester undergraduate stu-
dents respectively. A formal software development course is given in the sixth

Teaching Formal Methods for the Unconquered Territory 7

semester, at the same time as the software processes course. Additionally, there
is a case-based software engineering workshop scheduled for eighth semester stu-
dents. Topics for this workshop vary, yet it has often been the case that the
workshop has been dedicated to software verification with JML.

Formal model courses are not part of the core in the ACM/IEEE curriculum.
We decided to include formal model courses in Pontificia Universidad Javeriana
engineering program mostly for two reasons: (i.) a survey among recruiting ex-
ecutives of companies in Cali revealed they consider the ability to clearly reason
about a software design as a key (usually lacking) competence in young pro-
fessionals, and (ii.) the economic development plan of Cali pointed at software
production as a key strategy and increasing software quality as the most pressing
need in this realm.

Pontificia Universidad Javeriana computer science department keeps a close
relations with ParqueSoft, the biggest Colombian technological cluster, with
more than 200 software companies and 800 software developers (http://www.-
parquesoft.com). ParqueSoft software companies are typically launched by stu-
dents from the three biggest universities in Cali. ParqueSoft’s total sales are
about US $47 million a year. About half of these companies have achieved stan-
dard quality assurance certifications. Most computer science students at Pon-
tificia Universidad Javeriana conduct internships in these and other companies
based in Cali during their third year of studies. Pontificia Universidad Javeriana
Computer Science department encourages students to initiate software start-ups
at ParqueSoft through an entrepreneurship joint educational program. Students
in this program substitute their engineering degree final thesis report with a
technical report on their proposed software venture.

4 The JML-Based Software Engineering Course

This course covers conceptual underpinnings of formal software development and
software verification with JML [7,6]. We evolve our course through several soft-
ware development examples that illustrate our methodology. We employ The
JML common tools, and the Prototype Verification System (PVS) [13] to vali-
date the developments (see Section 2). We start this course with an overview of
first order logic and proof systems. Then, program correctness using Dijkstra’s
weakest pre-condition calculus is introduced, followed by the design-by-contract,
and software verification using the JML common tools. In the end of the course,
the PVS specification and verification system is presented with the aid of the
electronic phone book example that comes with the PVS standard documenta-
tion. The course outline follows.

1. An Introduction to Formal Methods (3 hours)
2. First Order Logic (6 hours)

(a) Syntax and Semantics
(b) Expressiveness, Models and Tautologies

3. The Java Modelling Language (JML) (24 hours)

8 N. Catano and C. Rueda

Use Cases

Informal
Functional

Requirements

System
Invariant

Semi-Formal
Functional

Requirements

Class
Invariants

Class
Structure

and
Relations

Interfaces,
Abstract Classes,
Concrete Classes

in Java

Data
Structures

JML Method
Functional

Specifications

JML model/ghost
Specifications

JML Class
Invariants

JML
Common

Tools

Analysis Design Implementation Verification and
Validation

JML Specifications

Yes / Not

Fig. 1. JML-based Software Engineering

(a) Program Correctness and Weakest Pre-condition Calculus
(b) Design-by-Contract
(c) JML and The Design-by-Contract
(d) JML’s Advanced Features
(e) The JML Common Tools
(f) Formal Development Examples

4. Proof Systems (3 hours)
(a) Decidability, Soundness, Completeness

5. The PVS Specification and Verification System (15 hours)
(a) The Logic of PVS
(b) An Electronic Phone Book Example in PVS
(c) Types, Declarations, Induction, Recursion
(d) Encoding Abstract State Machines in PVS
(e) JML-Checked Java Implementation of a PVS Specification of B-Trees

The JML-based software development methodology introduced in the course is
based on Meyer’s object oriented methodology presented in [12] (see Chapter 28),
while using the JML common tools for validating the developments. The method-
ology is illustrated in Figure 1. The software development cycle consists of four
steps, namely, analysis, design, implementation, and verification. In the same spirit
of the methodology introduced by Meyer, we do not restrict any step of the soft-
ware development cycle to occur before or after any other step (as opposed to the

Teaching Formal Methods for the Unconquered Territory 9

Waterfall model introduced in 1970’s), so that the arrows in Figure 1 convey infor-
mation on usage rather than on precedence in time. JML specifications (lower part
of the figure) are written in parallel to the Java application itself (upper part of the
figure). The informal functional requirements (functional requirements written in
English) of the step of analysis originate three documents that will later serve to
write the JML specifications describing the application, namely, the semi-formal
functional requirements, the invariant of each class, and the invariant of the whole
system. The semi-formal functional requirements, though written in English, are
expressed in a more mathematical style, suitable to be then ported into JML spec-
ifications. Class invariants and the system invariant are naturally expressed as
JML invariants. And the semi-formal functional requirements are expressed as
JML method pre- and post-conditions. At the same time, JML invariants and the
JML method specifications reflect the class structure of the Java code.

Additionally, in order to have a higher level of abstraction in specifications,
JML allows one to declare so-called model variables. These are variables that
exist only at the level of the specifications. Model variables can be related to con-
crete variables (i.e., variables declared in Java code) by the use of represents
and depends clauses, specifying how the value of a model variable can be calcu-
lated from the values of the concrete variables. JML model variables allow one
to describe in full detail the data structures used in a Java program, and how
these structures evolve through class inheritance.

4.1 Formal Software Development of Ax-LIMS with JML

In the following, we explain the JML-based software development methodology
described in Figure 1 by presenting key aspects in the development of Ax-LIMS
[8], a project management Java plug-in wrapping up in Java most services and
features provided by LIMS (Laboratory Information Management System), a
project management application, developed in PHP, specially designed for the
planning, organisation and resource management of biotechnology projects (see
Figure 2). Biotechnology projects manage laboratory processes and tasks. A pro-
cess manages laboratory experiments. Tasks are administrative tasks that need
to be carried out between the project start and completion dates. Information
about projects is stored in a PostGreSQL database. Although LIMS business
logic is written in PHP, a REST (Representation State Transfer) API interface
exists that supports communication between Ax-LIMS and LIMS. Ax-LIMS
implementation relies on the project and process features provided by LIMS.
The Ax-LIMS example is adapted from a formal software development project
involving ParqueSoft (http://www.parquesoft.com), the International Centre
for Tropical Agriculture (CIAT, http://www.ciat.cgiar.org/), and Pontificia
Universidad Javeriana faculty.

Students in our course are asked to formally develop the project manager
plug-in that directly connects to LIMS. Students are given a software require-
ments document, describing the functional requirements of the Ax-LIMS plug-in,
as well as a set of use cases describing the interaction of the user with the plug-in.

10 N. Catano and C. Rueda

Project Manager
Plug-in

Processes and
Task Logic

GUI

Business Logic

API

D.B
.

Ax-LIMS Java Framework LIMS PHP Framework

GUI

REST

Fig. 2. Architecture of Ax-LIMS

We call these requirements informal software requirements, since they are written
in plain English. Students are asked to turn this informal requirements document
into a semi-formal document, that is, one that expresses informal functional
requirements in terms of pre-conditions, post-conditions and invariants, suitable
to later be ported into JML formal specifications. Modelling these invariants in
JML guarantees that any class method implementing any functionality of the
Ax-LIMS manager plug-in must adhere to Ax-LIMS’ software requirements. This
is checked with the JML common tools.

Additionally, students are asked to derive a class structure for the plug-in from
the use cases and the informal functional requirements. A typical class structure
might include classes Project, Task, and State. The Project class might de-
clare a field tasks of type List1 for managing project tasks. The State might
define all possible states for projects and tasks. In classes Task and Project,
fields psd, pcd, asd and acd, representing planned start date, planned comple-
tion date, actual start date and actual completion date are declared.

From this basic implementation, semi-formal requirements such as “The
planned start date for a task is earlier than its planned completion date”, and
“If a task has an actual completion date, then it also has an actual start date”
can be specified in JML as two invariants in class Task (see below). The method
compareTo in the Java standard class Date returns a positive number whenever
the first date is bigger than the second one, a negative number when the second
one is bigger than the first one, otherwise returns 0.

//@ invariant pcd.compareTo(psd) > 0;
//@ invariant acd != null ==> asd != null;

1 Field tasks ought to be declared of type ArrayList<Task> indeed, but the Java
version under which the latest version of JML runs does not allow parametric types.

Teaching Formal Methods for the Unconquered Territory 11

Finally, students are taught to write and evolve Java code that adheres to the
JML invariant properties obtained from the functional requirements. Students
are shown how to iteratively specify invariants in JML, write Java code that
respects these specifications, check the code against the JML specifications us-
ing the JML common tools, and evolve the specifications or the code (or both)
accordingly. Once code that complies with all the class invariants is written, no
error is issued by the JML common tools. Checking that written code complies
with JML-specified invariants is automatically done by JML. It eliminates stu-
dents’ responsibility of keeping track of how properties a program must respect
are affected by changes in the program code.

4.2 Experience with the Course

We want to emphasise here the importance of thinking of invariant properties
when developing software. Thinking about invariants prior to writing code is
a practice to which students do not easily adhere. Having a previous formal
specification of the application and systematically using a tool, i.e., the JML
common tools, for checking the correctness of the code as it is written forces
students to think about how the written code affects the consistency and the
correctness of the whole program.

It is our experience that invariants are the key notion in formal software devel-
opment that makes a difference with respect to traditional (non formal methods
based) software engineering courses; whereas students attending traditional soft-
ware engineering courses are not used to think of invariants properties leading
their software developments. In general, students feel intimidated by the idea of
coming up with an invariant. Often, they design code that can make their pro-
grams be in an inconsistent state. We endeavour to help students to surmount
this fear so as to write their programs in a more mathematically correct way.
We strongly believe JML already helps students in this sense, from furnishing a
friendly Java-like syntax, to making it possible to use first-order logic predicates
in JML specifications naturally.

5 Model-Driven Software Engineering in B

This course illustrates the advantages of using formal techniques for modelling
systems and developing software. The course puts forward the idea of using these
techniques as guiding principles and methodologies for thinking a system model
from scratch in a disciplined way. The event B approach is developed in the first
part of the course and the B method in the second (see Sections 2.4 and 2.3).
Both are based on the analysis of a collection of case studies.

The course follows what Abrial calls “the parachute strategy”, in which sys-
tems are first considered from a very abstract and simple point of view, with
broad fundamental observations. This view usually comprises few simple invari-
ant properties that students can easily grasp, e.g., defining what can reasonably
be expected from the operation of such a system. Liveness properties are also

12 N. Catano and C. Rueda

introduced at this level. Once the system is completely understood at this level,
students are required to develop small variants and to prove all obligations. The
second step is to consider a refinement by adding a viewpoint observation in
such a way that the new model keeps a palpable behavioural relation with its
abstraction. Students are then encouraged to find by themselves precise relation-
ships between abstract and concrete variables that guarantee coherent behaviour
between both models.

As more experience is gained in the modelling framework, development of
more complete systems comprising several refinements is attempted. In these
refinements, the way how invariant properties can be used as a tool for tuning
events is stressed. Systems that are very familiar to students, such as a soccer
match, are used at this stage for them to be able to develop an intuitive, yet
precise, idea of the use of refinement conditions. In the final stage of the course,
a model of a more real-life system is constructed, alternating designs discussed
in class with refinements supplied by students in their homework.

Although a broad review of first order logic and set theory is given at the
beginning of the course, our strategy is to introduce event B modelling language
constructs, such as relations, functions, sets and their operations as they are
needed to express some specific property of the system at hand. Even the review
of logic is done in a very “instrumental” way, stressing its use in modelling.
Students are never required to do by-hand formal proofs of any logic formula,
but they are constantly encouraged to argue about its validity. The idea behind
this is to help students build a more “friendly” attitude towards mathematical
formalisms, by showing them how a machine can do the tedious job of proving
a formula in their place.

Our course uses the Rodin platform intensively (http://wiki.event-b.-
org/index.php/Rodin Platform). This platform comprises an intuitive graph-
ical interface based on Eclipse (http://www.eclipse.org) in which users can
edit, prove and animate an event B model. In the beginning of the course, stu-
dents are required to edit and type-check models in Rodin, though, instead
of proving them, the animator plug-in is used to understand the model be-
haviour. In any case, initial models are chosen so that Rodin can automatically
prove them. As familiarity with the tool increases, the models considered have a
few proof obligations that Rodin cannot prove automatically. At this point, the
“Mathematical Language” chapter of the Rodin manual [2] is presented. This
provides a intuitive, yet rigorous, introduction to propositional and predicate
logic from the vantage point of carrying out automatic proofs in those systems.
Students can then understand Rodin proof strategies, and also relate this knowl-
edge to how they can better guide Rodin’s interactive prover. From this point
on, students are required to fully prove their developments with Rodin.

A second part of the course uses event B to construct programs. This is done
in event B by considering an abstract system that just specifies preconditions
(context part and invariants) having an event computing in one step the result
of the program (i.e. specifying its post-condition). Refinements of this initial
model proceed just as for system models. The last refinement is such that each

Teaching Formal Methods for the Unconquered Territory 13

event could easily be coded in some imperative programming language. Rules
to automatically translate this last refinement into code can be easily devised
but, unfortunately, as of this writing they have not been integrated into Rodin
so that students must do this by hand.

The final part of the course deals with software systems. These, in principle,
could be modelled in event B just as any other system. In our view, however, the
lack of constructs to relate machines in different ways makes its use problematic
in a pedagogical sense. The point is that students are, in other courses and
in their initial job experiences, used to build software out of software pieces
already available. In some versions of the course, we decided to use the B model
explicit module integration constructs (e.g. using available machines within a
system being developed). B machine constructs are introduced as needed for
the model at hand. Specification of systems such as (a simplification of) the
project management plug-in (see 4.1) are typical projects students consider for
the Software Processes course.

5.1 Experience with the Course

As said before, the course is scheduled in the sixth semester, when students have
already taken courses in programming, object oriented design and database mod-
els. They thus come with a background about how software is built that is very
different from what they find in the event B course. This causes a sceptical atti-
tude from the beginning that makes it difficult to keep alive the necessary mo-
tivation. We use two strategies to tackle this problem. First, systems considered
at the beginning of the course pertain to situations that are familiar to students,
yet not trivial. Second, in the software development part, students are required
to constantly assess advantages and disadvantages of the same problem modelled
with B and with the traditional methodologies used in other courses. Neverthe-
less, we have found that for this purpose a transition going from traditional ways
of thinking systems to JML and then to event B greatly diminishes the initial
scepticism and, at the same time, helps students to place each methodology in
the right context of application.

A second issue is the use of mathematical formalisms. Students are evermore
demanding to see clear relationships between their future professional activity
and the mathematics they are being taught. In the first offerings of this course,
mathematical formalisms were given a central role from the outset and thus all
logic and mathematics needed to express event B proof obligations and con-
structs was presented at the beginning of the course. This only aggravated the
motivational problem. Current versions of the course, as stated above, devel-
ops mathematical constructs along the course, always with a clear view of what
precisely they are intended for in the problem at hand. Moreover, students are
required to express in their own words those fundamental properties of a system,
prior to their formalisation using the mathematical language of event B.

Using two slightly different models and their corresponding tools in the course
poses problems. In principle, the whole course could be based on the B method,
using the Atelier B (http://www.atelierb.eu/index-en.php) tool. However,

14 N. Catano and C. Rueda

students have many problems with the interactive prover of Atelier B because
of its black-box feel, with a command line approach that makes it hard to have
a glimpse of exactly what hypotheses are being tried, what are available and
therefore what strategies could better guide the proof. Work is underway by
Atelier B maintainers to devise a more intuitive interactive prover, so this might
change in the future.

5.2 Formal Software Development of MIO in B

The MIO mass transportation system was recently inaugurated in Cali. The
system comprises a series of articulated buses following the main corridor routes
of Cali, complemented with feeding buses connecting Cali with its outskirts.
Besides serving as a palliative of the chaotic current transport service of Cali, the
MIO system has renewed local people’s sense of belonging to Cali. Our students
thus feel excited about formally modelling the MIO and somehow contributing
to the progress of Cali.

The MIO system is partially modelled in class by us; the rest is left to stu-
dents as home-work. The MIO transport system is composed of articulated buses
travelling along dedicated lanes of city avenues. Bus stations are constructions
where users enter by validating a magnetic card in a reader. A turnstile unblocks
when the card is validated so that the card owner can pass through. When a
bus arrives, sliding doors in the station open in synchronisation with the bus
doors, and passengers can enter or exit. Sensors at station doors identify when a
bus door is opening. The station doors remain open during some fixed number
of seconds. At any time, only one bus can be parked in a station. Users top-up
their magnetic cards at machines in the stations.

There are two further motivations for introducing and modelling the MIO
system in our course. Firstly, the system is already part of students daily lives
so that they know very well how it works, and, secondly, a convincing complete

Table 3. Static part abstraction &refinement 1(left), refinement 2 (right)

constants
std door in station
axioms

std ∈ DOOR �� ST

variables
binst bus in station
opd open station doors
authb buses authorised to depart
invariant

binst ∈ BUS �� ST
opd ⊆ dom(std)
std[opd] ⊆ ran(binst)
authb ⊆ dom(binst)
binst[authb] ∩ std[opd] = ∅

variables
authp persons authorised to enter
perst persons inside a station
perb persons in a bus
invariant

perst ∈ PERSON �→ ST
perb ∈ PERSON �→ BUS
dom(perst) ∩ dom(perb) = ∅

authp ⊆ PERSON
dom(perst) ⊆ authp
dom(perb) ⊆ authp

Teaching Formal Methods for the Unconquered Territory 15

Table 4. Refinement 2: some events

depart =
any b
where

b ∈ authb
then

binst := binst \ {b �→ binst(b)}
authb := authb \ {b}
end

open door =
any d
where
d ∈ DOOR ∧ d /∈ opd
std(d) ∈ ran(binst)
∧ binst−1(std(d)) /∈ authb

then
opd := opd ∪ {d}
end

close door =
any d
where
d ∈ opd
then
authb := authb ∪ {binst−1(std(d))}
opd := opd \ {d}
end

enter =
any p, s
where

p ∈ authp ∧ p /∈ dom(perst)
∧ p /∈ dom(perb) ∧ s ∈ ST
∧ s /∈ ran(perst)

then
perst := perst ∪ {p �→ s}

end

authorise =
any p
where

p ∈ PERSON ∧ p /∈ authp
then

authp := authp ∪ {p}
end

get in bus =
any p
where

p ∈ dom(perst)
std−1(perst(p)) ∈ opd

then
perbus := perbus ∪ {p �→ binst−1(perst(p))}
perst := perst \ {p �→ perst(p)}

end

exit from bus =
any p
where

p ∈ dom(perb)
perb(p) ∈ dom(binest)
std−1(perst(p)) ∈ opd

then
perbus := perbus \ {p �→ perb(p)}
perst := perst ∪ {p �→ binest(perb(p))}

end

simplified model can be constructed that illustrates most of the features of the
event B modelling technique. The whole model comprises an abstract machine,
five contexts and seven refinement machines. A summary of all these is shown
in table 5.

To give a broad idea of the development path of the system we discuss next the
second refinement in table 5. The abstract model and the first refinement define
the observations in the left of table 3. The second refinement includes those in

16 N. Catano and C. Rueda

Table 5. Components of the MIO system

Component Observations Feature learnt
Abstraction what bus is parked in what station Modelling with partial functions
Refinement 1 station doors, set of parked Linking refinement variables

buses allowed to leave to abstract ones
card holders in a station, Maintaining invariant on two

Refinement 2 card holders authorised to linked functional variables,
enter a station dealing with relational inverse
Entrance control (abstract): Modelling equipment, tune events

Refinement 3 card reader light, turnstile from invariants, model with
relational range/domain restriction

Equipment controller: Interplay between physical
Refinement 4 card reader, controller, and controller events,

message channels when/how to introduce software
refinement 5 passing through physical turnstile Modelling message synchronisation
Refinement 6 Controller software: Representing data structures

Modelling a message channel as refinements
Refinement 7 sensors at station doors Modelling weak and strong

synchronisation patterns

the right. Refinement 2 is rather “orthogonal” with respect to refinement 1. The
idea is to show students how new observation viewpoints lead to new events
and, possibly, to stronger conditions in old events. The refinement models by set
inclusion the fact that only authorised card holders can be in a station at a given
time. It also gives the opportunity to discuss possible future enhancements to
the current operation of the MIO system by keeping track, for example, of bus
occupancy.

Students are encouraged to discuss what fundamental aspects of the operation
of the system they experience each day should be present at this level and what
could be deferred for further refinements. This discussion is always directed
towards ways to express their contributions as part of the invariant, rather than
thinking about possible new events. Property dom(perst) ⊆ authp, for instance,
expressing the fact that only authorised card holders can be inside a station, was
proposed by the majority of the students as pertaining to this level.

Some events of refinement 2 are shown in table 4. Events are rather simple.
The message that is constantly given to students is that the construction of
refinements should always be guided by the invariant. Students must always
express the need of an event guard they propose in terms of an invariant property
that must be maintained, such as, for example, the first guard of the “enter”
event. Skill in using event B language constructs like the relational inverse is
motivated by giving simple data structure-like intuitions for it. Students easily
come up with, for example, the guard in the third line of the “open door” event
stating that, in order to open a station door, the bus currently parked at the
station where the given door is, cannot have already been authorised to leave.
These types of event guards, aiming at avoiding “ping-pong” loops between two

Teaching Formal Methods for the Unconquered Territory 17

events are discovered by the students in a “critics game”. Students are divided in
groups of designers and critics. Credit is given to the former for coming up with
correct events and to the latter for finding loopholes, particularly with respect
to invariant properties. Later in the design such synchronisation patterns, in
particular when material equipment is involved, are analysed in light of the
“design patterns” proposed by Abrial in one of his event B examples.

6 Conclusion and Future Work

We believe formal methods tools have attained a level of maturity today that we
should move into their use in practical settings, e.g., making the word “formal”
in “formal software development” the rule and not the exception. People in
academia have a say on this. We can contribute to making this happen by helping
students to build skills in formal software development, initiating students in the
use of formal methods tools, and guiding them in the process of discovering the
close embracing relation between software models and mathematical formalisms.
That is, we can contribute to this by helping students to build skills to be put
in practice in the “unconquered territory”. This is an ambitious, yet feasible
purpose.

Pontificia Universidad Javeriana has committed to the purpose of making for-
mal methods and formal methods tools more popular in software development
and in software industry. Firstly, Pontificia Universidad Javeriana computer sci-
ence department keeps a close relation with ParqueSoft, the biggest Colombian
technological centre. This relation encompasses the running and submission of
R&D projects to Colciencias (the Colombian national science foundation), and
projects are under their way to be submitted to international funding. Pontifi-
cia Universidad Javeriana further organises a student entrepreneurship program
with ParqueSoft. Undergraduate students in the seventh semester can join a
software venture formation program under the leadership of ParqueSoft. There
they get hands-on experience in software development and marketing by inte-
grating software development groups in young companies. In the last semester
they propose software development ideas backed by more realistic knowledge of
market needs. ParqueSoft can then choose to launch start-ups based on some of
the most innovative ideas presented.

Secondly, the teaching of formal methods is key part of the software engineer-
ing undergraduate courses in the computer science department. As an example
of formal methods courses taught in the science department, we have presented
in this paper a JML-based formal development course, and a model driven course
in B. The JML course allows students to have a first contact with formal specifi-
cation of programs. Program correctness is introduced gradually. In our course,
students enjoy evolving JML specifications and Java code, and checking the code
for flaws. Our explanation for this positive attitude is that students regard the
whole process of specification and verification as a different sort of programming.
That is, that given a specification, a correct program must be constructed that
respects the specification. The essence of “assigning programs to meanings”.

18 N. Catano and C. Rueda

It has been our experience in our formal methods courses that invariant is
a key central notion in formal development courses, either in the form of class
invariants as in JML, or as a refinement gluing invariant in the B method for
software development, that leads software developments. This is students’ first
face-off with invariants. We acknowledge students often win this battle.

In these experiences, we have found important to develop in students a stand-
point of complementarity with regard to methodologies and techniques in soft-
ware modelling and construction. We are careful not to present formal methods
as “better” methodologies that should replace other strategies in all situations.
On the contrary, we encourage students to think on ways the knowledge gained
in formal method courses may help improving their approach in traditional soft-
ware engineering methods.

The authors are currently lecturing together a “formal modelling of systems
using discrete mathematics” formal methods course for a recently opened mas-
ter in engineering offered by Pontificia Universidad Javeriana computer science
department. This year is our first year of lecturing this course. The course is
organised half about the JML part, and half part on software development in B.
It has been our intention not only to provide students with two complementary
approaches to software construction, but also to communicate the idea that the
part in B is a continuation of the part in JML. That is, we want to find common
ways to relate the teaching of formal methods in JML and formal methods in B.

In [5] F. Bouquet et al. present the JML2B tool that checks JML specifications
for inconsistencies by porting the specifications into B machines. All the available
B tools can then be used for checking the B code. The translation from JML to
B machine goes straightforward. JML invariants are expressed as B invariants
universally quantified over all the instances of the class. Method preconditions
translation includes conditions on the types of the method parameters. JML
assignable classes, restricting which variable may be changed by a method call,
are translated into the “any” form of events (see Section 2.4 for an introduction
to events). We envision defining a formal methods teaching methodology that
considers going from informal software requirements to JML specifications and
Java code, straight down to B machines in near future.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R.: Rodin deliverable D7, Event-B mathematical Language. In: Informa-
tion Society Technologies, ch. V (2005)

3. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundam. Inf. 77(1-2), 1–28 (2007)

4. Abrial, J.R., Hallerstede, S.: Refinement, decomposition and instantiation of dis-
crete models: Application to Event-B. Fundamentae Informatica 77(1,2), 1–24
(2007)

5. Bouquet, F., Dadeau, F., Julien, J.: JML2B: Checking JML specifications with B
machines. In: The 7th International B Conference, pp. 285–288 (2007)

Teaching Formal Methods for the Unconquered Territory 19

6. Breunesse, C., Catano, N., Huisman, M., Jacobs, B.: Formal methods for Smart
Cards: An experience report. Science of Computer Programming 55(1–3), 53–80
(2005)

7. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

8. Catano, N., Barraza, F., Garćıa, D., Ortega, P., Rueda, C.: A case study in JML-
assisted software development. In: Proceedings of the Eleventh Brazilian Sympo-
sium on Formal Methods (SBMF 2008). ENTCS, July 2009, vol. 240, pp. 5–21
(2009)

9. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML reference manual (2008),
http://www.eecs.ucf.edu/~leavens/-JML/jmlrefman/jmlrefman_toc.html

10. Link, J.: Unit Testing in Java. Morgan Kaufmann, San Francisco (2003)
11. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
12. Meyer, B.: Object Oriented Software Construction. Prentice Hall PTR, Englewood

Cliffs (1997)
13. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language

Reference. Computer Science Laboratory, SRI (November 2006)
14. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. MIT Press, Cam-

bridge (2001)
15. Schneider, S.: The B-Method: An Introduction. Palgrave, Oxford (2001)
16. Spivey, J.M.: An introduction to Z and formal specifications. Software Engineering

Journal 4(1), 40–50 (1989)
17. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Interna-

tional Series in Computer Science. Prentice-Hall, Inc., Englewood Cliffs (1996)

http://www.eecs.ucf.edu/~leavens/-JML/jmlrefman/jmlrefman_toc.html

Teaching Formal Methods Based on
Rewriting Logic and Maude

Peter Csaba Ölveczky

Department of Informatics, University of Oslo

Abstract. This paper advocates teaching formal methods based on
rewriting logic and the Maude tool for the purpose of widening access
to formal methods. On the one hand, Maude’s elegant, intuitive, and ex-
pressive programming/modeling language, its high-performance analysis
methods, and some of its academic and industrial applications should
make it appealing to a wide range of computer science students. On the
other hand, teaching rewriting logic allows us to naturally incorporate
substantial formal methods theory, such as equational logic and induc-
tive theorem proving, TRS theory, and model checking. This paper also
gives an overview of the content of – and the student feedback to – an
introductory formal methods course based on rewriting logic that has
been given at the University of Oslo since 2002.

1 Introduction

The slogan of TFM’09 is widening the access to formal methods. Key challenges
that must be addressed by formal methods courses aiming at introducing formal
methods to students with limited awareness and/or interest in formal methods
include:

1. The need for formal methods must be well motivated to possibly skeptical
students.

2. Applying formal methods should be reasonably easy, fun, and elegant.
3. The selected formalisms must appear to be relevant, both w.r.t. the student’s

future specialization – where we hope (s)he will apply formal methods – and
elsewhere outside academia. No matter how nice a formalism and a tool are,
if they are not used outside academia, the students will not be motivated to
use the tool.

4. At the same time, the course should provide a serious introduction to sub-
stantial aspects of formal methods theory, and should exhibit some of the
success stories of formal methods.

This paper advocates the use of rewriting logic [1, 2] and its associated high-
performance tool Maude [3] as a basis for introductory courses in formal methods
that interest students while giving a good introduction to formal methods.

Rewriting logic extends equational logic and term rewriting to model dy-
namic systems. In rewriting logic, the static parts of the system are modeled as

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 20–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Teaching Formal Methods Based on Rewriting Logic and Maude 21

an algebraic equational specification, and dynamic state changes are modeled
as rewrite rules on the equivalence classes of terms induced by the equational
theory. There is by now ample evidence that, despite the simplicity of the for-
malism, rewriting logic is quite expressive and general, and can be used to model
a wide range of distributed systems. In particular, it provides a nice and simple
model for concurrent objects [4]. Maude [3] is a freely available high-performance
state-of-the-art formal tool based on rewriting logic. Maude supports the simu-
lation/rewriting, reachability analysis, and linear temporal logic model checking
of rewrite theories.

The challenges (1) to (4) above are (or can be) addressed by a rewriting-logic-
based course as follows:

1. There is a wide range of critical distributed systems where formal analysis
has proved indispensable. The model checking effort of Lowe to find an attack
on the NSPK cryptographic protocol after 17 years is but one example that
should appeal to students.

2. The functional programming style of Maude is fairly elegant – as I try to
convey in Section 4 – and is typically enjoyed by students who like pro-
gramming. Likewise, the object-oriented and rule-based way of modeling
distributed systems has been shown to be intuitive and easily understand-
able also for people without formal methods background [5].

3. Since rewriting logic is fairly expressive and can be applied to a wide range of
distributed systems, it should be relevant to students who will pursue other
fields than formal methods. Furthermore, Maude is increasingly being used
outside academia, with some “sexy” applications, such as its use at Microsoft
to find previously unknown security flaws in web browsers [6], the use in the
Japanese car industry to find bugs in embedded automotive software, etc.

4. At the same time, a rewriting-logic-based course naturally includes a fair
amount of formal theory, including formal proofs and deduction systems,
classic term rewrite system theory, algebra, and (linear temporal logic) model
checking, often mentioned as one of the success stories of formal methods.

To test the hypothesis about the suitability of widening access to formal methods
through rewriting logic and Maude, I have developed an introductory course at
the Department of Informatics, University of Oslo, that has been given since
2002. University of Oslo should be a suitable candidate for this experiment, since
formal methods typically do not attract many students, and since many students
at the department are somewhat weak and uninterested in mathematics. This
paper gives an overview of the contents of our course, and on our experiences
and student feedback on this course since 2002.

The course consists of two parts: (i) equational specifications and their anal-
ysis, and (ii) rewrite specifications and their analysis. The first part introduces
classic (order-sorted) equational logic and term rewrite system (TRS) theory. In
particular, we study: the definition of the usual data types (lists, sets, binary
trees, . . .) in Maude; classic TRS theory including proving termination of and
confluence of an equational specification; equational logic; inductive theorems;
and some small examples such as quick-sort and merge-sort. Part (ii) introduces:

22 P.C. Ölveczky

rewriting logic and its proof theory; modeling distributed concurrent objects in
rewriting logic; modeling a wide range of communication forms; temporal logic;
reachability analysis and LTL model checking in Maude; and a set of larger ex-
amples, such as the two-phase commit protocol for distributed databases, the
TCP, alternating bit, and sliding windows communication protocols, and the
NSPK cryptographic protocol.

By giving a range of larger examples, I have tried to convey the difficulty
of designing distributed systems, and how such systems can be modeled. Most
importantly, the NSPK crypto-protocol case study serves as a very nice motivat-
ing example for formal model checking in today’s iBanking society: a three-line
protocol which is so hard to understand and get right that its flaws went undis-
covered for 17 years, and whose critical flaw was discovered by formal model
checking techniques similar to those presented in the course.

As further explained in Section 6, our experiences are mostly positive. The
course consistently gets very positive student evaluation, but has one substantial
weakness. Furthermore, although the course does not attract as many students as
we would have liked, the course does attract significantly more students than our
previous formal methods course, and is mostly taken by students who major in
other fields, such as computer networks, computational linguistics, mathematical
logic, and so on.

Section 2 gives some background on rewriting logic and Maude. Section 4 gives
an overview of our course, and gives some samples of the Maude specifications
to allow the reader to form a first impression about the suitability of basing
a formal methods course on Maude. The paper also discusses experiences and
student feedback on the course (Section 6), course material (Section 5), and
related courses (Section 7). Section 9 gives some concluding remarks.

2 Rewriting Logic and Maude

Rewriting logic [1,2] is a logic of change that was developed by José Meseguer in
the early 1990-ies. A rewriting logic specification is a rewrite theory (Σ, E, R),
where (Σ, E) is an algebraic equational specification – that may be unsorted,
many-sorted, order-sorted, or a membership equational logic [7] specification –
with Σ an algebraic signature and E a set of equations (and possibly membership
axioms), and where R is a set of labeled conditional rewrite rules of the form

l : [t]E −→ [t′]E if cond,

with l a label and t and t′ Σ-terms. Such rules specify the system’s local transition
patterns. The state space and functions of a system are thus specified by an
equational specification, whereas the dynamic state changes are modeled by
rewrite rules. Despite its simplicity, rewriting logic has been shown to be an
expressive model of concurrency in which many other models of concurrency
and communication can be naturally represented [1,8].

Maude [3] is a mature high-performance language and tool supporting the
specification and analysis of rewrite theories. Maude assumes that the equations

Teaching Formal Methods Based on Rewriting Logic and Maude 23

are terminating and confluent. Maude executes rewrite rules by reducing the
state to its equational normal form before applying a rewrite rule. We briefly
summarize the syntax of Maude. Operators are introduced with the op keyword.
They can have user-definable syntax, with underbars ‘_’ marking the argument
positions, and are declared with the sorts of their arguments and the sort of their
result. Some operators can have equational attributes, such as assoc, comm, and
id, stating, for example, that the operator is associative and commutative and
has a certain identity element. Such attributes are then used by the Maude en-
gine to match terms modulo the declared axioms. There are three kinds of logical
statements, namely, equations—introduced with the keywords eq, or, for condi-
tional equations, ceq—memberships—declaring that a term has a certain sort
and introduced with the keywords mb and cmb—and rewrite rules—introduced
with the keywords rl and crl. The mathematical variables in such statements
are declared with the keywords var and vars.

Full Maude [3] is a prototype extension of Maude – implemented in Maude
– that provides convenient syntax for object-oriented specification. In object-
oriented Full Maude modules one can declare classes and subclasses. A class
declaration

class C | att1 : s1, ... , attn : sn .

declares an object class C with attributes att1 to attn of sorts s1 to sn. An object
of class C in a given state is represented as a term

< O : C | att1 : val1, ..., attn : valn >

where O is the object’s name, and where val1 to valn are the current values
of the attributes att1 to attn. In an object-oriented system, the state, which
is usually called a configuration, is a term of the built-in sort Configuration.
It has typically the structure of a multiset made up of objects and messages.
Multiset union for configurations is denoted by a juxtaposition operator (empty
syntax) that is declared associative and commutative and having the none mul-
tiset as its identity element, so that order and parentheses do not matter, and so
that rewriting is multiset rewriting supported directly in Maude. The dynamic
behavior of concurrent object systems is axiomatized by specifying each of its
concurrent transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > m’(O’) .

defines a family of transitions in which a message m, with parameters O and
w, is read and consumed by an object O of class C. The transitions have the
effect of altering the attribute a1 of the object O and of sending a new message.
“Irrelevant” attributes (such as a3, and the right-hand side occurrence of a2)
need not be mentioned in a rule.

As mentioned, rewrite theories are executable under fairly mild conditions.
Maude supports a wide range of analysis strategies for rewrite theories, including
simulation, reachability analysis, and linear temporal logic model checking.

24 P.C. Ölveczky

Maude’s rewrite command simulates one behavior of the system, possibly up
to a certain number of rewrite steps. It is written with syntax

rew [[n]] t .

where t is the initial state, and n is the (optional) bound of the number of rewrite
steps to execute.

Maude’s search command uses explicit-state breadth-first search to search for
states that are reachable from a given initial state t, and that match a search
pattern, and satisfy a search condition. The command which searches for one
state satisfying the search criteria has syntax

search [1] t =>* pattern such that cond .

Maude caches the visited states, so that the search command terminates if the
state space reachable from t is finite, or if the desired number of (un)desired
states are reachable from the initial state.

Maude’s linear temporal logic model checker [9] analyzes whether each behav-
ior from an initial state satisfies a temporal logic formula. State propositions are
terms of sort Prop, and their semantics should be given by (possibly conditional)
equations of the form

statePattern |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states t where t |= prop evaluates to true. A temporal logic formula is
constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
O (“next”), and U (“until”). The model checking command has syntax

red modelCheck(t, formula) .

for t the initial state and formula the temporal logic formula. The model checking
terminates if the state space reachable from t is finite.

Rewriting logic is an active area of research, in which more than a thousand
research papers have been published. Some of the applications of rewriting logic
and Maude include: defining the formal semantics for a wide range of program-
ming and modeling languages [10]; work at Microsoft that discovered previously
unknown address and status bar spoofing attacks in web browsers [6]; develop-
ing analysis tools for programming languages, such as the JavaFAN [11] tool
for efficiently analyzing multi-threaded Java programs; analysis of advanced se-
curity, communication, and wireless sensor network protocols (see e.g. [12, 13,
5, 14, 15, 16]); modeling of cell biology to simulate and analyze biological re-
actions [17, 18]; finding several bugs in embedded software used by major car
makers; implementing the latest version of the NRL PA crypto-protocol analysis
tool [19]; implementing extensions of rewriting logic, such as Real-Time Maude
tool [20, 21] for real-time systems and the PMaude tool for probabilistic sys-
tems [22]. The paper [23] provides an early bibliography and roadmap of the use
of Maude around the world.

Teaching Formal Methods Based on Rewriting Logic and Maude 25

3 Prerequisites and Course Duration

Our course is aimed at third-year students at the Department of Informatics at
the University of Oslo. The course basically starts “from scratch”, as it is not
assumed that students have significant mathematical background; they may for
example never have seen a proof system before. It is also not assumed that the
students have any experience with functional or logic programming.

The course consists of 14 lectures, each lasting between two and three 45-
minute “hours”.

4 Course Overview and Sampler

This section gives an overview of the course content, and some samples to get a
first impression of the course. The course is divided into two roughly equal-sized
parts: modeling and analyzing, respectively, the static and the dynamic parts
of the systems. The static part corresponds to “classical” term rewrite system
(TRS) theory and specification of data types in Maude.

4.1 The Static Part

Defining Data Types in Maude. In Maude, data types are defined by an alge-
braic equational specification, where a signature declares a set of sorts and func-
tion symbols (or operators); the operators are divided into constructors (ctor)
that define the carrier of the sort, and defined functions. The first such spec-
ification given in the course is the following module, that defines the natural
numbers, together with an addition function, in a Peano style:

fmod NAT-ADD is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + M = M .

eq s(M) + N = s(M + N) .

endfm

The underscore in the function declaration gives the place of the arguments in
a “mix-fix” notation. It should be noted that, for convenience and efficiency,
common data types, such as integers, floating-point numbers, Booleans, strings,
etc., are built-in in Maude.

As mentioned in Section 2, the equational specification may be order-sorted
(that is, include subsort declarations), and operators can be declared to be asso-
ciative (assoc), commutative (comm), and/or to have an identity element (id).
Matching is then performed modulo such axioms. Using these features, lists of
integers can be defined as follows, where the sort NeList defines non-empty lists:

26 P.C. Ölveczky

sorts List NeList .

subsorts Int < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [assoc id: nil ctor] .

op __ : NeList NeList -> NeList [assoc id: nil ctor] .

List concatenation is defined by the juxtaposition operator (__). Since Int is a
subsort of List, the number 6 is also a list. Therefore, 6 32 is a two-element
list, and (6 32) 17 is a list. Since __ is declared to be associative, (6 32) 17
and 6 (32 17) are the same list, and can be written 6 32 17. Since list con-
catenation is declared to have nil as the identity element, any list is either of
the form nil or n l (or l n), for n an integer and l a List.

The definition of the usual list functions seems to be more elegant than in
most languages:

op length : List -> Nat .

ops first last : NeList -> Int .

op rest : NeList -> List .

op reverse : List -> List .

vars I J K : Int . vars L L’ : List . vars NEL NEL’ : NeList .

eq length(nil) = 0 . eq reverse(nil) = nil .

eq length(I L) = 1 + length(L) . eq reverse(L I) = I reverse(L).

eq first(I L) = I . eq rest(I L) = L .

eq last(L I) = I .

Using this representation of lists, the well known merge-sort function can be
specified fairly elegantly in Maude:

op mergeSort : List -> List .

op merge : List List -> List [comm] .

eq mergeSort(nil) = nil .

eq mergeSort(I) = I .

ceq mergeSort(NEL NEL’) = merge(mergeSort(NEL), mergeSort(NEL’))

if length(NEL) == length(NEL’) or length(NEL) == s length(NEL’) .

eq merge(nil, L) = L .

ceq merge(I L, J L’) = I merge(L, J L’) if I <= J .

In the same way, we have defined the usual data types, such as binary trees, and
multisets. Indeed, any computable data type can be defined as a confluent and
terminating equational theory [24].

Confluence and Termination. Maude’s rewrite engine executes equational
specifications by reducing a term to its normal form. Maude therefore assumes

Teaching Formal Methods Based on Rewriting Logic and Maude 27

that a specification is confluent and terminating, modulo associativity and com-
mutativity of the function symbols so declared. This gives us the motivation to
study these properties, which in my introductory course are studied only for un-
sorted systems without associativity, commutativity, and conditional equations.
After defining formally what it means to perform a simplification step, conflu-
ence is studied in the usual way, assuming termination, and using the critical
pair’s lemma to check local confluence.

The course deals a fair amount with theoretical and practical aspects of prov-
ing termination. We study both “weight function” mappings of ground terms
onto well-founded domains, and the elegant theory of Dershowitz’ simplification
orderings [25, 26] that lead to the multiset and lexicographic path orderings as
well as other termination orderings. Although these techniques apply to term
rewrite systems, it is the hope and motivation that the students are able to
adapt their understanding of termination to also analyze termination of impera-
tive programs such as the Euclidean algorithm for finding the greatest common
divisor of two natural numbers m and n:

int gcd(int m, int n) { // m,n > 0

int x := m; int y := n;

int r := x % y;

while (r>0) {

x := y;

y := r;

r := x % y;

}

return y;

}

Equational Logic. The course introduces equational logic (again, in its sim-
plest, unsorted case). For many of our students, this is the first time they see a
formal deduction system. The usual undecidability and decidability results are
given. Finally, we study inductive theorems and induction on data types, and
prove basic inductive theorems on toy problems, such as that reversing a binary
tree twice yields the original tree.

Although the described course does not use it, Maude has an associated in-
ductive theorem prover that can assist in the proof of inductive theorems [27].

4.2 Modeling and Analyzing Dynamic Systems in Maude

Part II of the course deals with the formal modeling of dynamic systems as
rewriting logic theories, and their formal analysis in the Maude tool. Since two
of the main goals of the course is to (i) give the students some intuition about the
difficulty of designing distributed systems, and (ii) teach the students to formally
model designs of such systems, we focus on modeling and analyzing a range of
examples from different domains: transport protocols, transaction protocols for
distributed database systems, and cryptographic protocols.

28 P.C. Ölveczky

Rewriting Logic. We introduce rewriting logic and its proof theory; in partic-
ular, this proof system allows us to reason about what actions can be performed
concurrently. We show that if the state has a multiset structure, then each ele-
ment in the multiset could be involved in one rewrite “action” in a concurrent
rewrite step; that is, distributed objects can performs actions concurrently.

We illustrate such modeling with simple examples, such as modeling the life
(the age and marital status) of a collection of persons, various kinds of games, etc.
For example, (the scores of) a never-ending soccer game is modeled by the fol-
lowing module, where a typical state could be the term "PSV" - "Ajax" 3 : 2:

mod GAME is protecting NAT + STRING .

sort Game .

op _-_ _:_ : String String Nat Nat -> Game [ctor] .

vars HOME AWAY : String . vars M N : Nat .

rl [home-goal] :

HOME - AWAY M : N => HOME - AWAY M + 1 : N .

rl [away-goal] :

HOME - AWAY M : N => HOME - AWAY M : N + 1 .

endm

Formal Analysis in Maude. Since, in contrast to equational theories, the
rewrite rules need not be confluent or terminating, the Maude tool offers different
formal analyses. We cover rewriting for simulation and search for reachability
analysis. For example, in the soccer game, the following search command checks
whether it is possible to reach a state in which the away team leads by at least
three goals1:

Maude> search [1] "Ajax" - "PSV" 0 : 0

=>*

"Ajax" - "PSV" M:Nat : N:Nat such that N:Nat >= M:Nat + 3 .

Concurrent Objects. We then introduce concurrent objects by the simple
example of modeling the lives of a collection of persons, where the class Person
is declared as follows:

class Person | age : Nat, status : Status .

sort Status .

op single : -> Status [ctor] .

ops engaged married separated : Oid -> Status [ctor] .

1 Variables declared on the fly have the form var:sort.

Teaching Formal Methods Based on Rewriting Logic and Maude 29

The following conditional rewrite rule, involving two objects, models the engage-
ment of two single persons who are both older than 15:

vars N N’ : Nat . vars X X’ : String .

crl [engagement] : < X : Person | age : N, status : single >

< X’ : Person | age : N’, status : single >

=>

< X : Person | status : engaged(X’) >

< X’ : Person | status : engaged(X) >

if N > 15 /\ N’ > 15 .

A married person can initiate a separation, for example by sending a message
to his/her spouse. The following declares a separate message, and shows the
rules for sending, respectively receiving, such a message2:

msg separate : Oid -> Msg .

rl [sendSep] : < X : Person | status : married(X’) >

=>

< X : Person | status : separated(X’) >

separate(X’) .

rl [recvSep] : separate(X)

< X : Person | status : married(X’) >

=>

< X : Person | status : separated(X’) > .

The course also presents an object-oriented version of the mandatory dining
philosophers example.

Communication Protocols. After defining ways of modeling a wide range
of communication models (unordered/ordered transmission; reliable/unreliable;
unicast/multicast/broadcast, . . .), we specify a set of transport protocols, such
as TCP-like sequence number based protocols, the alternating bit protocol, and
(as a student homework) different versions of the sliding window protocol. Maude
search is used to analyze the protocols. From an educational perspective, the slid-
ing window protocol is a very good example for illustrating that model checking
distributed systems takes a long time in a highly nondeterministic setting where
any message may get lost (or duplicated).

The Two-Phase Commit Protocol for Distributed Databases. We model
and analyze the two-phase commit protocol for transactions in distributed database
systems with replicated data, as the protocol is described in the textbook [28].
Again, we analyze our model by searching for final states of protocol runs, and
automatically find the well known facts that the multi-database is consistent
after a run if and only if messages cannot get lost.
2 As we show in the course, separation is not this simple.

30 P.C. Ölveczky

The NSPK Cryptographic Protocol. The Needham-Schroeder public key
(NSPK) authentication protocol is a frequently used and cited protocol from
1978. NSPK is, for example, cited in Handbook of Applied Cryptography [29]
from 1996, without any error in the protocol being mentioned. In crypto-protocol
notation, NSPK is described as follows:

Message 1. A → B : A.B.{Na.A}PK(B)
Message 2. B → A : B.A.{Na.Nb}PK(A)
Message 3. A → B : A.B.{Nb}PK(B)

We define an object-oriented Full Maude model of the protocol for multiple
agents and protocol runs. An agent which can initiate a run of the protocol is
modeled as an object of the following class Initiator:

class Initiator | initSessions : InitSessions, nonceCtr : Nat .

The initiator needs to know the nonce it sent to the responder in Message 1, so
that it can check whether this is the same nonce that it receives in Message 2.
In our setting, where an initiator may be simultaneously involved in many runs
of the protocol with different responders, the initiator must store information
about the nonces of all these runs. In the attribute initSessions an initiator
A stores such information in a multiset of elements of the following three kinds:

– notInitiated(B) indicates that A can/will initiate contact with B but has
not yet done so;

– initiated(B, N) indicates that A has sent Message 1 to B with nonce N
and is waiting for Message 2 from B; and

– trustedConnection(B) indicates that A has established (what she thinks
is) an authenticated connection with B.

The data type representing this kind of information is defined as follows:

sorts Sessions InitSessions . subsort Sessions < InitSessions .

op emptySession : -> Sessions [ctor] .

op __ : InitSessions InitSessions -> InitSessions

[ctor assoc comm id: emptySession] .

op __ : Sessions Sessions -> Sessions [ctor assoc comm id: emptySession] .

op notInitiated : Oid -> InitSessions [ctor] .

op initiated : Oid Nonce -> InitSessions [ctor] .

op trustedConnection : Oid -> Sessions [ctor] .

The dynamics of the protocol is described by four rewrite rules, two for the
initiator and two for the responder. The rules for the initiator are described
next.

The first rule models the sending of Message 1. The agent A has
notInitiated(B) in its initSessions attribute, which indicates that it is inter-
ested in establishing an authenticated connection with B. The initiator generates
a fresh nonce nonce(A, N), encrypts this nonce together with its identifier with

Teaching Formal Methods Based on Rewriting Logic and Maude 31

the public key of B (encrypt ... with pubKey(B)), and adds its own and B’s
name (msg ... from A to B) to this message and sends it out into the con-
figuration. Agent A must remember that it has initiated contact with B with
nonce nonce(A, N) and must also increase its nonce counter. All this happens
in the following rule:

vars A B : Oid . vars M N : Nat . vars NONCE NONCE’ : Nonce .

var IS : InitSessions .

rl [start-send-1] :

< A : Initiator | initSessions : notInitiated(B) IS, nonceCtr : N >

=>

< A : Initiator | initSessions : initiated(B, nonce(A, N)) IS,

nonceCtr : N + 1 >

msg (encrypt (nonce(A, N) ; A) with pubKey(B)) from A to B .

The next rule models the reception of Message 2 from, and the sending of Mes-
sage 3 to, an agent B who sent a pair of nonces encrypted with A’s public key. If
the first nonce (NONCE) in the message received (and decrypted) by A is the same
as the nonce stored in A’s initSessions attribute for B, the agent A figures out
that it has established an authenticated connection with B, and sends Message
3 (B’s nonce (NONCE’) encrypted with B’s public key) to B:

rl [read-2-send-3] :

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

< A : Initiator | initSessions : initiated(B, NONCE) IS >

=>

< A : Initiator | initSessions : trustedConnection(B) IS >

msg (encrypt NONCE’ with pubKey(B)) from A to B .

The Dolev-Yao intruder is modeled as a class Intruder with 14 simple rewrite
rules. For example, the following rule models the case when the intruder inter-
cepts a message that it cannot decrypt. In that case, the intruder just stores
the message content in its encrMsgsSeen attribute, and stores the new names it
learns in its agentsSeen attribute:

vars I O O’ : Oid . var OS : OidSet . var MSGC : MsgContent .

var ENCRMSGS : EncryptedMsgContentSet .

crl [intercept-but-not-understand] :

(msg (encrypt MSGC with pubKey(O)) from O’ to O)

< I : Intruder | agentsSeen : OS, encrMsgsSeen : ENCRMSGS >

=>

< I : Intruder | agentsSeen : OS ; O ; O’,

encrMsgsSeen :(encrypt MSGC with pubKey(O)) ENCRMSGS >

if O =/= I .

32 P.C. Ölveczky

Another rule can then spontaneously send any fake message among the messages
the intruder has seen out into the configuration, using any agent A it has seen3

as sender:

crl [send-encrypted] :

< I : Intruder | encrMsgsSeen : (encrypt MSGC with pubKey(B)) ENCRMSGS,

agentsSeen : A ; OS >

=>

< I : Intruder | >

(msg (encrypt MSGC with pubKey(B)) from A to B)

if A =/= B .

The following search command finds the well known attack on NSPK. In the
initial state, "Scrooge" does not want to have a contact with the "Bank". In the
search command we check whether from such a state, it is possible to reach a state
where the "Bank" thinks it has an authenticated connection with "Scrooge":

Maude> (search [1]

< "Scrooge" : Initiator |

initSessions : notInitiated("Beagle Boys"), ... >

< "Bank" : Responder | respSessions : emptySession, nonceCtr : 1 >

< "Beagle Boys" : Intruder |

initSessions : notInitiated("Bank"), ... >

=>*

C:Configuration

< "Bank" : Responder | respSessions : trustedConnection("Scrooge")

RS:RespSessions > .)

Maude does find a behavior leading to the bad state, and can exhibit this
behavior as explained in [30].

This example is excellent for motivating the students, for illustrating the diffi-
culties of designing distributed systems, and for showing the usefulness of formal
model checking. The protocol is described in three lines of specification. Yet, due
to concurrent runs, it is so hard to understand that it took 17 years to find the
error, which was found using exactly the same kind of analysis we are doing:
exhaustive model checking of a formal model of the protocol [31].

Temporal Properties and LTL Model Checking. Finally, we explain differ-
ent classes of requirements, and show how invariants can be validated by Maude’s
search command. More complex temporal system properties can be formalized
in linear temporal logic (LTL), and Maude’s LTL model checker can be used
to analyze whether a system satisfies its requirements. However, to avoid intro-
ducing yet another logic to my students, I typically postpone teaching temporal
logic to the follow-up course.

3 Both encrMsgsSeen and agentsSeen are declared to hold multisets. Therefore, the
rule can nondeterministically select any of the agents and any of the messages the
intruder has stored.

Teaching Formal Methods Based on Rewriting Logic and Maude 33

5 Teaching Material

Fairly mature lecture notes (340 pages) for my course are available on the web at
http://peterol.at.ifi.uio.no/inf3230-lecturenotes.html. These lecture
notes start from scratch and contain many examples and exercises, and should
be accessible for people without any formal methods experience. These notes
are also suggested reading for the introductory formal methods course CS 476 at
the University of Illinois at Urbana-Champaign (UIUC), and seem to have been
read by a fair amount of people at UIUC. These notes are also one of the main
sources that are recommended to people who want to get a gentle introduction
to Maude.

The Maude book [3] is a very useful reference material on the Maude system
and on rewriting logic, but, in my view, requires some previous knowledge about
term rewriting or similar formal methods. Although no course book exists for the
course CS 476 at UIUC, the slides for that much more advanced introductory
course are quite comprehensive and can almost be studied as a course book.

6 Evaluation and Impact

This section briefly summarizes anonymous student feedback, my own impression
of the students’ experiences, and some of the impact this course has had in Oslo.

6.1 Student Feedback

The comments and evaluations from university’s anonymous web-based feedback
system have been overwhelmingly positive. Unfortunately, most comments are
non-constructive comments of the form “Very interesting and exciting”. Some
write that that it is good that “theory and practice are well interleaved,” and
other thought programming in Maude was fun. One person told me that he
did not really understand the sliding window protocol in the network course,
but understood it very well in this course, where implementation details are
abstracted away to focus on the essence of the protocol.

The negative feedback overwhelmingly concerns Full Maude, the prototype
extension of Maude that is used to model and analyze object-oriented Maude
specifications. Unfortunately, Full Maude’s slight lack of robustness and, in par-
ticular, its cryptic, non-existing, and/or misplaced error messages make it a
frustrating experience for some students to get larger specifications, such as the
sliding window protocol, right.

As for the difficulty of the course, 5% of my students in 2003 found the course
“difficult,” 55% found the course “somewhat difficult,” and the remaining 40%
found it “neither easy nor difficult.”

Despite the very positive student feedback each year, the course still does not
attract as many students as I would like. The reason may lie in the way the
students have to select courses, and in the freedom they have to select courses
outside their specialization. Typically, 20 to 30 students take the exam each year.

http://peterol.at.ifi.uio.no/inf3230-lecturenotes.html

34 P.C. Ölveczky

6.2 Impact in Oslo

I am not very much aware of what former students of the course are doing. Two
cases that are worth mentioning are:

1. A former student and teaching assistant in my course started a company
five years ago, selling a product/service that is implemented in Maude. The
company is still doing well, and has also employed another former student
and TA of mine to program in Maude.

2. Inspired by the use of Maude to find the attack on NSPK, a former student
went on to do a Ph.D. in crypto-analysis using Maude, including defining his
own protocol analyzer on top of Maude. The person is currently analyzing
critical infrastructure in the Norwegian banking sector.

In addition, it is worth remarking that Maude is now frequently used in neighbor-
ing research groups at the department. For example, Maude is used to implement
proof search strategies in the logics group, the Creol object-oriented language [32]
developed at the department is interpreted in Maude, and a student in the lin-
guistics research group (!) has analyzed an IETF-developed multicast protocol
using Maude [14].

7 Related Courses

I am only aware of one other “introductory” formal methods course based on
rewriting logic. It is given at UIUC by José Meseguer, who developed rewriting
logic. That course is significantly more theoretically challenging and comprehen-
sive than the one in Oslo. In addition to treating the theory of rewriting logic
and its analysis methods in depth, it also focuses on the verification of sequen-
tial imperative programs. There is less focus on larger examples, although the
NSPK case study is covered. Another difference is that the UIUC course does
not have a course book (but an extensive set of slides). Indeed, my lecture notes
are recommended supplementary reading in the UIUC course.

Classic term rewriting theory has been taught many places for years. One
difference between many of those and the the first part of the Oslo course is our
focus on defining functions in an executable language such as Maude.

Likewise, analyzing dynamic systems using process algebras, model checkers
like Spin, various kinds of transition systems, has been much taught. One of the
differences of using Maude is the modeling convenience and expressiveness of
the Maude formalism, and the ability to perform both simulation, reachability
analysis, and LTL model checking. Another attractive feature of Maude is its very
simple and intuitive functional programming style language, which is typically
appealing to students, and which makes it far easier to model a system system
that, say, in Promela/Spin. Another difference is our focus on case studies from
different domains.

Teaching Formal Methods Based on Rewriting Logic and Maude 35

8 Follow-Up Courses

Due to the large amount of interesting research being performed using rewriting
logic and Maude, there are plenty of appealing subjects to choose from for an
advanced follow-up course based on rewriting logic. The follow-up course at the
University of Oslo teaches the following topics:

– A student project formalizes and analyzes a published communication pro-
tocol which is claimed to be correct, but where a simple Maude search finds
an unexpected deadlock.

– Linear temporal logic and its model checking in Maude.
– Meta-programming in Maude.
– Specification and analysis of real-time systems using Real-Time Maude [20].
– Other analysis methods, including narrowing analyses and the use of Maude’s

inductive theorem prover (ITP) [27].
– Modeling cell biology and and analyzing biological cell reactions [17, 18].
– Study the work in [6] on finding the attacks in web browsers.

Other topics of general interest include:

– Grigore Roşu at UIUC teaches a course on how a wide range of programming
languages can be given a rewriting logic semantics and can be analyzed using
Maude.

– Probabilistic rewrite theories [33] and their analysis using PMaude [22].
– Theory on the algebraic denotational semantics of equational and rewrite

theories.

This is but a small sample of topics that could be covered by an advanced course.

9 Concluding Remarks

This paper has advocated the use of rewriting logic and its associated high-
quality tool Maude as a basis for teaching formal methods with the aim of widen-
ing the access to formal methods. The reasons for believing that a Maude-based
formal methods course may interest people who would not normally consider
studying formal methods include:

– The logic and programming language are simple and intuitive: they consist of
an algebraic signature, equations, and rewrite rules. That’s all. Furthermore,
the object-oriented rules are very intuitive and easy to understand also for
people without formal methods or Maude knowledge (see, e.g., [5]).

– The functional and fairly elegant programming possible in Maude, that this
paper tried to convey with the merge-sort example, should be appealing to
people who like to program.

– It is fairly easy – in particular compared to traditional formal languages for
concurrency – to model a wide range of distributed systems in Maude.

36 P.C. Ölveczky

– The NSPK security protocol analysis provides compelling motivation for the
use of formal model checking. Furthermore, it is easy to specify NSPK in
Maude, and to find the attack using search in Maude.

– No matter its elegance or nice features, no language will motivate students if
it is perceived to be a purely academic language not used in industry. Maude
has some “sexy” industrial applications, most notably the work at Microsoft
that uncovered previous unknown security flaws in web browsers.

From a formal methods teaching perspective, a fair amount of formal methods
theory, including classic TRS theory, proof systems and inductive proofs, as
well as different forms of model checking – one of the success stories of formal
methods – can naturally be integrated and motivated by the use of Maude for
system modeling and analysis.

This paper has also presented an introductory Maude-based formal methods
course given at the University of Oslo since 2002. This course, also aimed at – and
taken by – students who will not necessarily pursue formal methods further, has
consistently received positive student feedback, and comes with a fairly mature
course book that is freely available and should be suitable starting point for
studying formal methods.

Although I believe that the expressive and intuitive formalism of Maude
makes it better suited than other model checking systems, such as SMV [34]
and Spin [35], for teaching modeling and analysis of complex distributed systems
with advanced data types and communication features, much more work com-
paring Maude-based formal methods teaching with other approaches is needed
before significant conclusions can be drawn.

Acknowledgments. I am grateful to Olaf Owe for supporting the development
of the described course at the University of Oslo, and to the anonymous reviewers
for helpful comments on an earlier version of this paper.

References

1. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360, 386–414 (2006)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

4. Meseguer, J.: A logical theory of concurrent objects and its realization in the Maude
language. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Research Directions in
Concurrent Object-Oriented Programming, pp. 314–390. MIT Press, Cambridge
(1993)

5. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29, 253–293 (2006)

Teaching Formal Methods Based on Rewriting Logic and Maude 37

6. Chen, S., Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.M.: A systematic approach
to uncover security flaws in GUI logic. In: IEEE Symposium on Security and Pri-
vacy, pp. 71–85. IEEE Computer Society, Los Alamitos (2007)

7. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

8. Meseguer, J.: Rewriting logic as a semantic framework for concurrency: a progress
report. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
331–372. Springer, Heidelberg (1996)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual, Version 2.3 (2007), http://maude.cs.uiuc.edu

10. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373, 213–237 (2007)

11. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

12. Denker, G., Meseguer, J., Talcott, C.: Protocol Specification and Analysis in
Maude. In: Heintze, N., Wing, J. (eds.) Workshop on Formal Methods and Se-
curity Protocols, Indianapolis, Indiana, June 25 (1998)

13. Denker, G., Garćıa-Luna-Aceves, J.J., Meseguer, J., Ölveczky, P.C., Raju, Y.,
Smith, B., Talcott, C.: Specification and analysis of a reliable broadcasting
protocol in Maude. In: Hajek, B., Sreenivas, R.S. (eds.) 37th Annual Allerton
Conference on Communication, Control, and Computation. University of Illinois,
Urbana-Champaign (1999)

14. Lien, E.: Formal modelling and analysis of the NORM multicast protocol using
Real-Time Maude. Master’s thesis, Department of Linguistics, University of Oslo
(2004)

15. Goodloe, A., Gunter, C.A., Stehr, M.O.: Formal prototyping in early stages of
protocol design. In: WITS 2005. ACM Press, New York (2005)

16. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410, 254–280 (2009)

17. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway logic: Exe-
cutable models of biological networks. Electronic Notes in Theoretical Computer
Science 71 (2002)

18. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway
logic: Symbolic analysis of biological signaling. In: Pacific Symposium on Biocom-
puting, Hawaii, pp. 400–412 (2002)

19. Escobar, S., Meadows, C., Meseguer, J.: State space reduction in the Maude-
NRL Protocol Analyzer. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 548–562. Springer, Heidelberg (2008)

20. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20, 161–196 (2007)

21. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008)

22. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language for
probabilistic object systems. Electronic Notes in Theoretical Computer Science 153,
213–239 (2006)

23. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: Roadmap and bibliography. Theo-
retical Computer Science 285 (2002)

http://maude.cs.uiuc.edu

38 P.C. Ölveczky

24. Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specifi-
cartions: Two characterization theorems. SIAM Journal on Computing 12, 366–387
(1983)

25. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17, 279–301 (1982)

26. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3,
69–116 (1987)

27. Clavel, M.: The ITP tool home page, http://maude.sip.ucm.es/itp/
28. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 5th edn. Addison

Wesley, Reading (2007)
29. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1996), http://www.cacr.math.uwaterloo.ca/hac
30. Ölveczky, P.C.: Formal modeling and analysis of distributed systems in Maude.

Course book for INF3230, Dept. of Informatics, University of Oslo (2009)
31. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.

Information Processing Letters 56, 131–133 (1995)
32. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed

concurrent objects. Software and Systems Modeling 6, 35–58 (2007)
33. Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model of proba-

bilistic distributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.)
FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)

34. Clarke, E., Grumberg, O., Long, D.: Verification tools for finite-state concurrent
systems. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803. Springer, Heidelberg (1994)

35. Holzmann, G.J.: The model checker SPIN. IEEE Trans. on Software Engineer-
ing 23, 279–295 (1997)

http://maude.sip.ucm.es/itp/
http://www.cacr.math.uwaterloo.ca/hac

Which Mathematics for the Information Society?

João F. Ferreira1, Alexandra Mendes1, Roland Backhouse1,
and Luı́s S. Barbosa2

1 School of Computer Science, University of Nottingham, Nottingham, England
{joao@joaoff.com, afm@cs.nott.ac.uk, rcb@cs.nott.ac.uk}

2 CCTC & Dep. Informatics, Minho University, Braga, Portugal
lsb@di.uminho.pt

Abstract. MathIS is a new project that aims to reinvigorate secondary-school
mathematics by exploiting insights of the dynamics of algorithmic problem solv-
ing. This paper describes the main ideas that underpin the project. In summary,
we propose a central role for formal logic, the development of a calculational
style of reasoning, the emphasis on the algorithmic nature of mathematics, and
the promotion of self-discovery by the students. These ideas are discussed and
the case is made, through a number of examples that show the teaching style that
we want to introduce, for their relevance in shaping mathematics training for the
years to come. In our opinion, the education of software engineers that work ef-
fectively with formal methods and mathematical abstractions should start before
university and would benefit from the ideas discussed here.

We are all shaped by the tools we use,
in particular the formalisms we use shape our thinking habits,

for better or for worse, and that means we have to be very careful in
the choice of what we learn and teach, for unlearning is really not possible.

— E. W. DIJKSTRA in [15]

1 Introduction

Modern IT-driven societies demand highly skilled professionals who can successfully
design complex systems at ever-increasing levels of reliability and security. Such a de-
mand requires from these professionals a high degree of mathematical fluency, that is,
the ability to resort to the mathematical language and method to build models of prob-
lems, and reason effectively within them.

However, there is little hope that such demands be met by current standards in school
mathematics education. Students are not being adequately trained in formal reasoning
and proof, and, as a result, they have difficulties in employing mathematics to solve new
problems.

This paper describes our ideas on how to reinvigorate mathematics education. In
summary, we propose a central role for formal logic, the development of a calculational
style of reasoning, the emphasis on the algorithmic nature of mathematics, and the
promotion of self-discovery by the students. This work is being done in the context

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 39–56, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 J.F. Ferreira et al.

of the MathIS project1, whose goal is to exploit the dynamics of algorithmic problem
solving and calculational reasoning in both mathematics education and the practice of
software engineering.

We start in section 2 by providing some background on the existing problems of the
current standards in mathematics education and by explaining in detail how we think
they can be improved.

We exemplify our ideas in section 3, where we present extracts of educational ma-
terial that illustrate how we would rewrite and teach mathematics. The first example
is a recreational problem, inspired by chess, that shows the effectiveness of a calcula-
tional formal logic. We often use recreational examples, since they can make serious
concepts more palatable to students. The second example is on integer division. Ele-
mentary number theory is inherently algorithmic and we believe that exploiting this
attribute can improve the way we teach it. We conclude the section by explaining how
we think the material should be introduced. Our approach is based on teaching scenar-
ios, which are detailed guidelines on how to solve specific problems. These scenarios
are primarily written for teachers and they are designed to promote self-discovery by
the students.

The paper is concluded by a discussion on future work, assessment, and tool support.

2 Mathematics as the Art of Effective Reasoning

The triangle

proofs

����������

�����������

problems structures

provides a perspective on the dynamics of mathematics as the interplay of its three
vertices. Mathematics starts from problems which are modelled, abstracted, and gener-
alised into precise (and hopefully, simple) structures upon which it becomes possible
to reason formally about them, characterise possible solutions, and establish their prop-
erties. Reasoning, i.e., proofs, raise new problems which, again, can be abstracted and
generalised... The adjective formal not only qualifies mathematical proofs as rigorous,
but also suggests an underlying discipline for their production and communication.

Such a discipline is often absent, or disguised, or simply left implicit, in classical
mathematical texts and sometimes even regarded with suspicion. However, the presence
of a discipline would have tremendous benefit because it enables students to acquire
mental tools which empower their reasoning skills and make them more rigorous and
productive.

Also, the notion of proof is almost swept under the carpet in most school manu-
als and in teaching practice. Teachers usually associate proofs with intricate, heavily
semantic arguments, often presented in a non-systematic, pseudo-intuitive way, which

1 MathIS is a 3-year project that has started in January 2009. More details are available from the
project portal at www.di.uminho.pt/mathis

Which Mathematics for the Information Society? 41

they (rightly) suppose an average student is not able to grasp, let alone to master, repro-
duce or adapt to new contexts. If proofs, as usually taught, are inadequate, a mathemat-
ical discipline relegating proofs to a minority of highly crafted students is misleading
and useless. Actually, not only proving skills, i.e. the ability of formally explaining
and justifying an argument, lie at the very heart of what mathematics is about, but also
in modern IT societies, proofs (of functional correctness, of security compliance, etc.)
have achieved the status of a core business. This is why training software engineers
in formal development methods has become so important as to justify holding interna-
tional conferences on the subject. We believe, however, the issue goes far deeper into
the educational system and should also be addressed at such levels.

But how can the contributions of computing science improve current standards in
mathematical education? As a contribution to a wider debate, we would like to single
out in this paper three main topics: the emphasis on the central role of formal logic, the
development of a calculational style of reasoning, and the emphasis on the algorithmic
character common to a great number of mathematical problems. In a sense, they form
the vertices of another triangle mirroring the one depicted above:

algorithms formal logic

calculational proofs

��������������

���������������

(1)

A central role for formal logic. The emphasis on the central role of formal logic, not
only in foundations, but also in applied mathematics and as part of a number of standard
engineering curricula, is perhaps the main consequence to mathematics of computing
science development. An indicator of this move is the almost universal presence of
a course on formal logic in every computing science or mathematics undergraduate
curriculum.

Proficiency in mathematics, however, would benefit from an earlier introduction and
explicit use of logic in high school. Note this is usually not the case in most European
countries; the justification for such an omission is that logic is implicit in mathematics
and therefore does not need to be taught as an independent issue. Such an argument
was used in Portugal to eliminate logic from the high-school curriculum in the nineties.
The damage it caused is still to be assessed, but it is certainly not alien to the appalling
indicators and statistics in what concerns the country’s overall ranking in mathematics
education [27].

We believe that logic should be introduced using simple problems that emphasize for-
malization and calculation (this belief is also supported in [13]). Recreational problems
like the ones we show in section 3.2, for example, are easy to understand and usually
grab students’ attention. Also, logic puzzles, where the goal is to solve simultaneous
equations on booleans, can be introduced by analogy with simultaneous equations on
numbers. High-school students already learn how to solve simultaneous equations on
numbers; going from the reals to the simpler boolean domain, where each variable is
either true or false, should be no problem. In fact, experiences done in Finland con-
firm that it is feasible and advantageous to introduce formal logic at secondary-school
level [2,4,3]. It is important to note, however, that in these experiments there was no

42 J.F. Ferreira et al.

introduction of new mathematics; this means that the use of problems which are out-
side the curriculum, as the ones shown in sections 3.2 and 3.3, still has to be assessed.

A calculational reasoning style. Two decades of research on correct-by-construction
program design have created a new discipline of algorithmic problem solving and shed
light on the underlying mathematical structures, modelling, and reasoning principles.
Starting with the pioneering work of Dijkstra and Gries [17,20], and in particular,
through the development of the so-called algebra of programming [12,7], a calcula-
tional style [5,29,16] emerged, emphasising the use of systematic mathematical calcu-
lation in the design of algorithms. This was not new, but routinely done in algebra and
analysis, albeit subconsciously and not always in a systematic fashion. The realization
that such a style is equally applicable to logical arguments [17,20] and that it can greatly
improve on traditional verbose proofs in natural language has led to a systematization
that can, in return, also improve exposition in the more classical branches of mathemat-
ics. In particular, lengthy and verbose proofs (full of dot-dot notation, case analyses,
and natural language explanations for “obvious” steps) are replaced by easy-to-follow
calculations presented in a standard layout which replaces classical implication-first
logic by variable-free algebraic reasoning [29,19].

The systematization of a calculational style of reasoning, proceeding in a formal,
essentially syntactic way, can greatly improve on the way proofs are presented. In par-
ticular it may help to overcome the typical justification for omitting proofs in school
mathematics: that they are difficult to follow for all but exceptional students. Moreover,
in school mathematics, there are many examples which show how the formalization of
topics arising in different contexts results in formulae with the same flavour, which can
be manipulated thereafter by the same rules of the predicate calculus, without reference
to a ‘domain specific’ interpretation of such formulae in their original area of discourse.
This is the essence of formal manipulation, and yields proofs that are shorter, explicit,
independent of hidden assumptions, easy to re-construct, check and generalise.

That such a syntax-driven approach is extremely effective in practice cannot be un-
derstated. For example, it was the formal manipulation of Maxwell’s equations that
led to conjecturing the existence of electromagnetic waves, confirmed experimentally
shortly afterwards. As noted by Dijkstra, presenting calculation, i.e. the manipulation of
uninterpreted formulae, as an alternative to traditional, informal mathematical reason-
ing, accomplishes Leibniz’s dream of reducing reasoning to some kind of calculation:
Traditional mathematics did not provide the most hospitable environment for its real-
ization; this, therefore, had to take place in a separate discipline, which is now known
as Computing Science [14]. Several authors [21,28] point out that in mathematics, for-
mal calculation is both a convenience that people, contrary to popular opinion, naturally
adopt, and an asset for discovery and development. The only obstacle that keeps it from
universal and systematic use throughout science (and thereby feeds prejudice) is the
calculationally deficient notation that still prevails in many disciplines.

Making explicit the algorithmic content of mathematics. Another contribution of
computing science to mathematical education is in the systematic identification of the
algorithmic content of a large part of mathematics. Recall that, algorithmic problems
are the ones where the solution involves, possibly implicitly, the design of an algorithm,
i.e., a sequence of instructions that can be mechanically executed to solve it.

Which Mathematics for the Information Society? 43

Algorithms have been studied since the beginning of civilization. However, the ad-
vent of the digital age has revolutionized the nature, the pace and the importance of al-
gorithm development. The unprecedented demands on precision and concision that this
entails have brought about massive improvements in our problem-solving skills [6].
Their potential for reshaping mathematical teaching, introducing powerful behaviour
abstractions (such as invariants or contracts), problem decomposition techniques or
goal-directed derivations, is just beginning to loom.

We can say that our work fits with what is now usually called “computational think-
ing” [32]; we, too, want to transfer skills created and developed within computing sci-
ence and we want to illustrate the value of computational thinking to everyone interested
in problem solving. In particular, we believe that mathematics education can be rein-
vigorated by exploring the algorithmic nature of much of its contents. Research in com-
putational thinking is being led by the Center of Computational Thinking at Carnegie
Mellon where their major activity is conducting PROBEs or PROBlem-oriented Ex-
plorations. These PROBEs are experiments that apply novel computing concepts to
problems to show the value of computational thinking.

In the next section, we show two examples that can be used to introduce algorithmic
skills. First, in subsection 3.3, we show how the emphasis on a calculational approach
can also lead to a constructive and precise derivation of the integer division algorithm.
In subsection 3.4, we present an algorithmic problem whose goal-oriented solution is
based on problem decomposition and invariants.

3 An Educational Programme

How can such an ‘inheritance’ of computing science development be carried back to
high-school mathematics and effectively improve current teaching standards?

As mentioned in the introduction, the authors are currently involved in planning and
implementing a pilot educational programme, targeting high-school students, to address
this question.

Our first observation is that the simple reasoning style introduced in the first year
of high-school algebra is calculational. A deeper analysis of the structure of these cal-
culations (formerly taught by examples) establishes a basis for consolidation and for
extension to other, more advanced mathematical subjects. On the other hand, exploring
the dynamics of algorithmic problem solving, working from concrete problems through
goal-directed constructions, will strengthen their logical skills and ability to reason in
an efficient way. We believe that exploring the vertices of triangle (1) has a potential
to make students proficient in structuring formal arguments and aware of the central
role of proofs in the mathematical practice. This programme will help to validate such
hypothesis.

3.1 The Programme

The main component of this programme is the development of specific educational
material supporting the use of a calculational approach and algorithmic problem solving
strategies in the practice of mathematics. This material, in the form of example-driven

44 J.F. Ferreira et al.

teaching scenarios whose structure is detailed in subsection 3.4, is designed for use
with teams of up to 20 volunteer high school students in the context of extra-curricular
“Maths’ Clubs”.

These clubs are aimed at students between 15 and 17 years old and do not require
any extra-curricular prerequisite knowledge. Since the students participation is on a
voluntary basis, we expect them to be above-average students. The clubs are run by
volunteer secondary-school teachers, but members of the MathIS project will attend
them frequently. We expect to have a close collaboration with the teachers so that we
can refine the teaching scenarios and assess if the material being taught is suitable.
The first club experience will start in October 2009 at a secondary school in Braga,
Portugal. Note that the project aims at conducting a pilot experience to provide some
empirical evidence relevant to our claims. Whether general recommendations on the
implementation of the standard secondary school mathematics curriculum will emerge
from this experiment, although desirable, is still not clear at this preliminary stage.

Our focus is placed on two domains which are both understood as strategic by the
secondary school teachers collaborating with the project (mainly the first one) and
attractive to students (mainly the second):

– the refactoring of specific areas of the high-school mathematics curriculum, to build
an alternative to their usual presentation in the classroom,

– recreational mathematics, in the form of logic puzzles and combinatorial games,
which, lying outside standard mathematics curricula, are an attractive source of
non trivial examples for the envisaged techniques.

In both cases the emphasis is placed on the judicious use of formal logic in mathemat-
ical reasoning and the intertwined development of calculational proofs and algorithms,
making the, often hidden, algorithmic content explicit. Both domains are illustrated in
detail in the next two sub-sections. Finally, sub-section 3.4 discusses the structure of a
teaching scenario by means of a concrete example.

3.2 Recreational Mathematics

Les hommes ne sont jamais plus ingénieux que dans l’invention des jeux.
(Men are never more ingenious than in inventing games.)

—GOTTFRIED W. LEIBNIZ to De Montmort
(29 July 1715)

Recreational mathematics is a type of mathematics that usually appeals to students and
inspires them to study further. Recreational problems are often based on real-life situa-
tions, and thus, are easily understood and do not generally require an advanced knowl-
edge of mathematics to be solved. Here we present an example inspired by chess and a
logic puzzle, whose solutions can be easily obtained by calculation.

Problem (chess moves). In chess, a bishop moves along the diagonal. That is, starting
from a position (i, j), a bishop can move a (positive or negative) distance k to the po-
sition (i+k , j+k) or to the position (i+k , j−k). (This is provided, of course, that the
bishop stays within the boundary of the board. See figure 1; the bishop is in position
(2, 2).)

Which Mathematics for the Information Society? 45

Fig. 1. Examples of chess moves: bishop and knight

Show that a move from the position (i, j) to the position (i+k , j+k) does not change
the colour of the square. Hint: The definition

black.(i, j) ≡ even.i ≡ even.j

can be useful.

A calculational solution. The goal is to prove the following two equalities:

black.(i, j) ≡ black.(i+k , j+k) (2)

black.(i, j) ≡ black.(i+k , j−k) (3)

A calculational and annotated proof of (2) is as follows:

black.(i+k , j+k)

= { definition of black }

even.(i+k)≡ even.(j+k)

= { even distributes over addition, i.e.,

[even.(a+b) ≡ even.a ≡ even.b] }

even.i≡ even.k≡ even.j≡ even.k

= { associativity and symmetry of ≡ }

even.i≡ even.j≡ even.k≡ even.k

= { associativity and reflexivity of ≡ }

46 J.F. Ferreira et al.

even.i≡ even.j

= { definition of black }

black.(i, j) .

The proof of (3) is similar and left to the reader. Note that the solution constitutes a
unified interface for reasoning about how the colour of the squares change regardless
of the chess piece. For example, we can use the same proof structure to prove that the
move of a knight always changes the colour of the square (see figure 1; in this case,
the key property is that the numbers 1 and 2 have different parities). Furthermore, the
teacher can easily create new exercises just by choosing different moves.

Standard solutions to parity problems are usually done within the familiar domain of
numbers. In this particular example, a standard solution would claim that the parities
of i+k+j+k and i+j are the same. However, reasoning within the boolean domain
can be more effective: the algebraic manipulations may be less familiar than ordinary
arithmetic, but they are easier because the domain is much simpler. Another way of
familiarizing the students with calculational logic is via logic puzzles. The next example
shows a puzzle, where the goal is to solve simultaneous equations on booleans.

Logic Puzzle: Portia’s Casket. In Shakespeare’s Merchant of Venice, Portia had three
caskets: gold, silver, and lead. Inside one of these caskets Portia had put her portrait and
on each was an inscription. Portia explained to her suitor that each inscription could
be either true or false but on the basis of the inscriptions he was to choose the casket
containing the portrait. If he succeeded he could marry her. The exercise presented here
is a simpler version (just two caskets, instead of three).

Suppose there are two caskets, gold and silver, into one of which Portia placed her
portrait. The inscriptions are:

Gold: Exactly one of these inscriptions is true.
Silver: This inscription is true if the portrait is in here.

Which casket contains the portrait? What can you deduce about the inscriptions?

A calculational solution. Let G stand for “the portrait is in the gold casket”, let S stand
for “the portrait is in the silver casket”, g stand for “the inscription in the gold casket is
true” and s for “the inscription in the silver casket is true”. Then, we are given:

(g≡ (g≡ ¬s)) ∧ (s≡ s⇐S) ∧ (G ≡¬S) .

We can simplify this expression as follows:

(g ≡ (g≡¬s)) ∧ (s≡ s⇐S) ∧ (G≡¬S)

= { definition of if }

(g ≡ (g≡¬s)) ∧ (s≡ (s≡ s ∨ S)) ∧ (G ≡¬S)

= { associativity and reflexivity }

¬s ∧ (s ∨ S) ∧ (G ≡¬S)

Which Mathematics for the Information Society? 47

= { negation }

(s≡ false) ∧ (s ∨ S) ∧ (G≡¬S)

= { substitution of equals for equals }

(s≡ false) ∧ (false ∨ S) ∧ (G≡¬S)

= { false is the unit of disjunction }

(s≡ false) ∧ S ∧ (G≡¬S)

= { reflexivity }

(s≡ false) ∧ (S≡ true) ∧ (G≡¬S)

= { substitution of equals for equals }

(s≡ false) ∧ (S≡ true) ∧ (G≡ false)

= { negation rule and reflexivity }

¬s ∧ S ∧ ¬G .

The conclusion is that the inscription in the silver casket is false and the portrait is in
the silver casket. We can’t conclude anything about the inscription in the gold casket.

Note that the calculation above could be made shorter by combining several steps in
one. However, we have presented it as we usually present it to our students.

3.3 Refactoring School Mathematics

The elementary theory of numbers should be one of the very best
subjects for early mathematical instruction. It demands very little previous

knowledge, its subject matter is tangible and familiar; the processes of
reasoning which it employs are simple, general and few; and it is unique

among the mathematical sciences in its appeal to natural human curiosity.
—G. H. HARDY in the sixth Josiah Willard Gibbs Lecture

(New York, 1928)

We now present an example taken from elementary number theory, an area in which
many important concepts are of algorithmic nature [9] [10]. In particular, we show how
the specification of integer division as a Galois connection can lead to effective proofs
and how to use it as a specification of the division algorithm.

Integer Division as a Galois Connection. The integer division of P by Q, here denoted
by P÷Q, is usually introduced as the integer x such that

P = x×Q + r ∧ 0≤ r < |Q| .

This formulation is usually accompanied by many examples that convey the concept of
division, dividend, and remainder. However, we believe that the students do not learn
how to reason effectively about division. Properties like the following

〈∀a, b, c:: (a÷b)÷c = a÷(c×b)〉 (4)

48 J.F. Ferreira et al.

are rarely discussed, and even when they are, their justification is typically informal
and imprecise. Note, however, that this sort of property is often given as a rule of thumb
in connection to exercises. Properly understanding them becomes relevant to build the
correct underlying mathematical intuitions. Therefore, we propose the introduction of
the integer division of P by Q as the Galois connection:

〈∀k:: k×Q≤ P ≡ k≤ P÷Q〉 . (5)

We can use this definition to effectively prove properties of integer division. For in-
stance, replacing k by P÷Q, we establish the property:

(P÷Q)×Q≤ P .

We can also conclude that 0≤ P is equivalent to 0≤ P÷Q, by replacing k by 0. Also,
using indirect equality, definition (5) can be used to prove property (4) in just three
steps:

k≤ (a÷b)÷c

= { definition (5) }

k×c≤ a÷b

= { definition (5) and associativity }

k×(c×b)≤ a

= { definition (5) }

k≤ a÷(c×b) .

Moreover, definition (5) is a suitable specification for an algorithm that computes P÷Q.
Note that the goal of such an algorithm is to compute a solution to the equation

x:: 〈∀k:: k×Q≤ P ≡ k≤ x〉 .

(The notation “x:: E” means that E is an equation on x.) If a solution to this equation
exists, then it is unique (because the relation ≤ is reflexive and anti-symmetric). Fur-
thermore, an important property of the solution x is that it is the largest integer that
satisfies

x×Q≤ P . (6)

As a consequence, it also satisfies

¬((x+1)×Q≤ P) . (7)

Properties (6) and (7) are the only ingredients we need to specify the division algorithm:

S

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

Which Mathematics for the Information Society? 49

We now apply a common technique in algorithm development: we take the first conjunct
as the invariant, since it is easy to initialise (x := 0), and we take the negation of the
second conjunct as the loop guard. The first version of the algorithm becomes:

{ 0≤ P }

x := 0 ;

{ Invariant: x×Q≤ P }

do (x+1)×Q≤ P → x := A

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

The precondition 0≤ P is necessary to make the invariant initially valid. Now, calculat-
ing the assignment to x, so that the invariant is preserved, is the same as calculating A

in a way that the following requirement is satisfied:

A×Q≤ P ⇐ x×Q≤ P ∧ (x+1)×Q≤ P .

Clearly, we can choose A to be x+1 and we get the next version of the algorithm:

{ 0≤ P }

x := 0 ;

{ Invariant: x×Q≤ P }

do (x+1)×Q≤ P → x := x+1

od

{ x×Q≤ P ∧ ¬((x+1)×Q≤ P) } .

For brevity, we do not show the full derivation. Instead, we would like to stress that
the derivation of the division algorithm is an educational example that can be used to
teach algorithmic techniques such as loop formation, using the invariant to calculate
assignments, and proving progress.

Another technique that can be taught is the introduction of extra variables and com-
putations to produce more efficient versions. In this example, the algorithm above can
be further optimized by introducing the computation of the remainder.

Also, the calculational approach allows us to be more constructive because the re-
quirements emerge from the calculations. As an example, we do not need to assume
that the divisor Q is positive; it emerges as a necessary condition in the proof that the
bound-function is bounded below.

Recall that a bound function is a natural-number-valued function of the program
variables that measures the size of the problem to be solved. A guarantee that the value
of such a bound function is always decreased at each iteration is a guarantee that the
number of times the loop body is executed is at most the initial value of the bound
function. In this example, a possible bound function is P−x, and the proof that it is
bounded below is as follows:

50 J.F. Ferreira et al.

0 ≤ P−x

= { cancellation }

x ≤ P

= { we know from the invariant that x×Q≤ P;

assuming that 0 < Q, we have x≤ x×Q;

because ≤ is transitive, we also have x≤ P }

true .

Note that the assumption 0 < Q, highlighted in bold in the calculation, emerges natu-
rally from the shape of the invariant. As a result, the next version of the algorithm would
include 0 < Q as a precondition to guarantee that the algorithm terminates.

3.4 Teaching Scenarios

What is teaching?
In my opinion, teaching is giving opportunity

to the students to discover things by themselves.
— GEORGE PÓLYA in TEACHING US A LESSON

(MAA Video Classics, Number 1)

The success of teaching depends on the amount of discovery that is left for the students:
if the teacher discloses all the information needed to solve a problem, students act only
as spectators and become discouraged; if the teacher leaves all the work to the students,
they may find the problem too difficult and become discouraged too. It is thus important
to find a balance between these two extremes.

We propose the introduction of educational material in the form of teaching sce-
narios, which are fully worked out solutions to algorithmic problems together with
“method sheets”— detailed guidelines on the principles captured by the problem, how
the problem is tackled, and how it is solved. Although they can be used directly by the
student, they are primarily written for the teacher and they are designed to maintain
a balance between the two extremes mentioned above. In other words, they are de-
signed to promote self-discovery. In general, each scenario is divided into the following
sections:

– Brief description and goals. This section provides a summary of the scenario,
allowing the teacher to determine if it is adequate for the students.

– Problem statement. This section states the problem (or problems) discussed in the
scenario.

– Students should know. This section lists pre-requisites that should be met by the
students. The teacher can use it to determine if the scenario is adequate for the
students.

– Resolution. This section presents a possible solution for the problem in the style
advocated here.

Which Mathematics for the Information Society? 51

– Notes for the teacher. In this section, the solution presented above is decomposed
into its main parts and each part is discussed in detail. To maintain the balance men-
tioned in the first paragraph, we also recommend how the teacher should present
the material, including questions that the teacher should or should not ask and im-
portant concepts that should be introduced.

– Extensions and exercises. This section can be used for homework or project as-
signments. All the exercises are accompanied by their solutions.

– Further reading. Recommended reading for the teacher and the students. It may
include discussions and comparisons between conventional solutions and the one
presented in the scenario.

The concept of teaching scenarios is also used in the project “Computer Science Un-
plugged” [11], whose goal is to teach principles of computing science through games
and puzzles. They provide a series of activity worksheets that can be used in the class-
room. These worksheets are similar to the scenarios we are developing, but the goals
are slightly different: whilst they want to convey general principles and ideas of com-
puting, we want to focus on calculational and algorithmic principles that can be used to
reinvigorate mathematics. Also, their project is aimed at primary-aged children and our
pilot programme is aimed at pre-university level students.

We now present some extracts from a scenario that generalizes the problem “The
Chameleons of Camelot”, found in [23, p. 140] (a more recent and acessible reference
is [33]). Its goal is to help students recognizing, modelling, and solving algorithmic
problems. The solution is goal-oriented and explores an invariant of the underlying
non-deterministic algorithm. It is also an example of problem decomposition and it
can be used to convey the notions of loop, guard, postcondition, and non-determinism.
To obtain the full version, please visit the website http://joaoff.com/aps/
scenarios .

The Chameleons of Camelot. On the island of Camelot there are three different types
of chameleons: grey chameleons, brown chameleons, and crimson chameleons. When-
ever two chameleons of different colours meet, they both change colour to the third
colour.

For which numbers of grey, brown, and crimson chameleons is it possible to arrange
a succession of meetings that results in all the chameleons displaying the same colour?

For example, if the number of the three different types of chameleons is 4, 7, and 19

(irrespective of the colour), we can arrange a succession of meetings that results in all
the chameleons displaying the same colour. An example is:

(4 , 7 , 19)→(6 , 6 , 18)→(0 , 0 , 30) .

On the other hand, if the number of chameleons is 1, 2, and 3, it is impossible to make
them all display the same colour.

(Note that this problem is more general than in conventional presentations, since we
are interested in characterizing the initial numbers of chameleons for which there is a
solution, rather than working with particular values.)

http://joaoff.com/aps/scenarios
http://joaoff.com/aps/scenarios

52 J.F. Ferreira et al.

Notes for the teacher. As said before, teaching scenarios are primarily written for the
teacher and are designed to promote self-discovery. The following extract illustrates the
general tone of the section Notes for the teacher; in particular, it suggests a formaliza-
tion of the goal and how to decompose the problem:

– Determine the postcondition and decompose the problem. Now that we
have modelled the underlying algorithm, we have to express our goal. The
answer comes directly from the problem statement: “For which numbers of
grey, brown, and crimson chameleons is it possible to arrange a succession
of meetings that results in all the chameleons displaying the same colour?”.
So we need to express formally that all the chameleons display the same
colour. One alternative is2:

g = b = 0 ∨ b = c = 0 ∨ c = g = 0 . (8)

An informal description can be useful (e.g. “Provided that there is at least
one chameleon, the first disjunct means that there are only crimson
chameleons, the second means that there are only green chameleons, and
the third means that there are only brown chameleons. Their disjunction
means that at least one of these statements is true.”). At this stage, the
teacher should note that instead of working directly with the final goal (8),
we can think of how to get to intermediate states that simplify the prob-
lem. The teacher should lead the students to the observation that if any two
types of chameleons are equally numbered, we can arrange a meeting be-
tween all the chameleons of these two types. We suggest the teacher start
with some concrete examples until the students get there (e.g. (0 , 0 , 3) ,
(171 , 10 , 10), and (5 , 3 , 5)). Formally, we can express these states as:

g = b ∨ b = c ∨ c = g . (9)

If the algorithm reaches a state that satisfies this expression, it remains to
arrange a meeting between all the chameleons of two equally numbered
classes.
(. . .)

The two following extracts show how to determine an invariant and how to use it to
solve the problem:

– Determine appropriate invariants. Now that we have formalized our al-
gorithm and goal, there is not much left to do other than to investigate how
(9) behaves under the three loop assignments3. A standard technique is to
work from the postcondition, using the assignment axiom:

{ Q[v := e] } v := e { Q } ,

2 Variables g, b, and c have been introduced early in the scenario as the number of green, brown,
and crimson chameleons, respectively.

3 The introduction of the loop assignments is not shown here. Please see the full scenario for
details.

Which Mathematics for the Information Society? 53

where v := e represents an assignment and Q is the postcondition. Tak-
ing the first disjunct of (9), we calculate how it behaves under the three
assignments. We start with the first assignment:

(g = b)[g , b , c := g − 1 , b − 1 , c + 2]

= { substitution }

g − 1 = b − 1

= { cancellation }

g = b ;
Now, the second assignment:

(g = b)[g , b , c := g − 1 , b + 2 , c − 1]

= { substitution }

g − 1 = b + 2

= { cancellation }

g = b + 3 ;
Finally, the third assignment:

(g = b)[g , b , c := g + 2 , b − 1 , c − 1]

= { substitution }

g + 2 = b − 1

= { cancellation }

g + 3 = b .

The teacher should ask the students if they see any pattern in the calcula-
tions. The discussion should lead to the fact that the number of grey and
brown chameleons after any meeting is either the same, or it differs by 3.

A concise way of expressing this fact is by using congruences:

g ∼= b (mod 3) .

Using the same reasoning for the other two disjuncts, we conclude that an
invariant of the loop is

g ∼= b (mod 3) ∨ g ∼= c (mod 3) ∨ b ∼= c (mod 3) .

– Discuss initial values. There is one final step that needs to be done: we have
to guarantee that the invariant found in the previous section is satisfied ini-
tially. If the invariant is valid initially, it will remain valid after each iteration,
and it is possible to attain a state satisfying (9). (It is important that the stu-
dents understand what an invariant is and how it is being used here to solve
the problem.) In conclusion, any initial values g, b and c that satisfy the
invariant allow a succession of meetings that results in all the chameleons
displaying the same colour. We suggest the teacher to go through the initial
examples once again to see which ones satisfy the invariant.

54 J.F. Ferreira et al.

The section also includes questions that we recommend the teacher to ask, together with
a justification for its importance:

– What is our goal? What do we want to prove? How do we express it for-
mally?

Every time we are working in a goal-oriented fashion, this question should
be asked explicitly. The teacher may need to help the students formalizing
the states where there are chameleons of only one colour; if that is the case,
we suggest they help with the first disjunct and let the students do the other
two.

To emphasize the self-discovery nature of the scenarios, we also include obtrusive ques-
tions that the teacher should not ask:

– Can you see that if two different types of chameleons are equally num-
bered, the problem is easy to solve?

The teacher should start by asking the students which states make the prob-
lem easy to solve. With the help of some examples, we believe that most
students will get to the fact that if two different types of chameleons are
equally numbered, the problem is easy to solve.

Self-discovery is also promoted by the sections Extensions and exercises and Further
reading, which are both designed to encourage further work by the students.

4 Conclusions and Future Work

Our own experience in teaching formal methods at the university tells us (and employers
of our students confirm so) that good thinking habits rooted in sound principles add to
overall effectiveness and aptness to face adversity and unexpected challenges. If explicit
examples need to be found on the advantages of a sound mathematical basis in software
engineering, the 2004 collapse of the Portuguese school teacher allocation system [24]
serves as a typical illustration: the problem was later solved [1] by a small software
house which claims to use formal methods in their normal practice. This situation drove
the country’s attention to the need for better trained software engineers.

Our claims in this paper are that there is a need to act at lower levels of the educa-
tional system and that a number of issues arising from computing science research may
have a decisive impact on reinvigorating mathematics education to meet the challenges
of modern IT-driven societies. Stressing the algorithmic content of mathematics, for
example, already led us to novel results in number theory [9] [10].

It is important to note that there is more educational material than the examples
shown in this paper. We have recently used algorithmic techniques to rewrite some
material on elementary number theory [10] and we are currently developing a package
of teaching-scenarios to use in our pilot experience. In fact, we believe that the project
can only succeed if there is an abundance of material and guides ready for the teachers
to use. In our opinion, providing resources and assistance to the teachers is the best way
to overcome the challenge of convincing them to use the approach we propose.

Which Mathematics for the Information Society? 55

One problem we foresee is the difficulty in assessing the impact of our project. The
use of test and control groups, randomized trials, and assessment based on lectures
to students in Math’s Clubs have serious flaws. (Some of the difficulties involved in
the assessment are pointed out by Herbert Wilf in his essay [31].) Nevertheless, the
novel results mentioned above and preliminary results on the didactical suitability of
the calculation format obtained within the group (see [18]) encourage us to continue our
efforts. Also, the success claimed by related work like [2] and [26], makes us believe
that we can have a positive impact. The possibility of adopting qualitative research
procedures, based on case-studies and collaborative action-research projects [22], to
assess the proposed methodologies is under consideration if a suitable cooperation with
education researchers is achieved.

A topic we have omitted in this paper but which is central to the MATHIS project con-
cerns the development of tool support. Actually, this capitalizes on recent developments
and increased flexibility in human-computer interaction technology, which we believe
is mature enough to provide an infra-structure for the envisaged methodological shift.
A collection of tools to enable on-screen calculation with mathematical formulae in a
blackboard-like style, resorting to tablet PCs and e-learning platforms, is under devel-
opment [25]. A direct inspiration for such tools is Math∫pad [8,30], a general-purpose
structure editor for on-screen algebraic calculation.

Acknowledgements. Long-term collaboration with J. N. Oliveira on calculational ap-
proaches to mathematics is deeply acknowledged. We are also grateful to the anony-
mous referees for their valuable comments. This research was supported by FCT (the
Portuguese Foundation for Science and Technology), in the context of the MATHIS
Project under contract PTDC/EIA/73252/2006. The work of João F. Ferreira and
Alexandra Mendes was further supported by FCT grantsSFRH/BD/24269/2005 and
SFRH/BD/29553/2006, respectively.

References

1. ATX. Algoritmo de Colocação de professores (in Portuguese). ATX Software press release
(November 2004)

2. Back, R.-J., Mannila, L., Peltomaki, M., Sibelius, P.: Structured derivations: A logic based
approach to teaching mathematics. In: FORMED 2008: Formal Methods in Computer Sci-
ence Education, Budapest (2008)

3. Back, R.-J., von Wright, J.: Mathematics with a little bit of logic: Structured derivations in
high-school mathematics

4. Back, R.-J., von Wright, J.: Doing high school mathematics carefully. Technical report (1997)
5. Backhouse, R.C.: Mathematics and programming. A revolution in the art of effective rea-

soning. Inaugural Lecture, School of Computer Science and IT, University of Nottingham
(2001)

6. Backhouse, R.C.: Program Construction. John Wiley and Sons, Inc., Chichester (2003)
7. Backhouse, R.C., Hoogendijk, P.F.: Elements of a relational theory of datatypes. In: Möller,

B., Schuman, S., Partsch, H. (eds.) Formal Program Development. LNCS, vol. 755, pp. 7–42.
Springer, Heidelberg (1993)

8. Backhouse, R.C., Verhoeven, R.: Mathspad: A system for on-line preparation of mathemati-
cal documents. Software - Concepts and Tools 18, 80–89 (1997)

56 J.F. Ferreira et al.

9. Backhouse, R., Ferreira, J.F.: Recounting the rationals: Twice! In: Audebaud, P., Paulin-
Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 79–91. Springer, Heidelberg (2008)

10. Backhouse, R., Ferreira, J.F.: On Euclid’s algorithm and elementary number theory
(2009) (submitted for publication), http://joaoff.com/publications/2009/
euclid-alg/

11. Bell, T., Witten, I.H., Fellows, M.: Computer Science Unplugged: An enrichment and exten-
sion programme for primary-aged children (December 2006), http://csunplugged.
org/index.php/en/books

12. Bird, R., Moor, O.: The Algebra of Programming. Series in Computer Science. Prentice-Hall
International, Englewood Cliffs (1997)

13. Boute, R.: Using Domain-Independent Problems for Introducing Formal Methods. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 316–331. Springer,
Heidelberg (2006)

14. Dijkstra, E.W.: A new science, from birth to maturity. note EWD1024 (1988)
15. Dijkstra, E.W.: On the cruelty of really teaching computing science. note EWD1036 (1988)
16. Dijkstra, E.W.: On the economy of doing mathematics. note EWD1130 (1992)
17. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, Heidel-

berg (1990)
18. Ferreira, J.F., Mendes, A.: Student’s feedback on teaching mathematics through the calcula-

tional method. In: 39th ASEE/IEEE Frontiers in Education Conference. IEEE, Los Alamitos
(2009)

19. Gries, D., Feijen, W.H.J., van Gasteren, A.J.M., Misra, J.: Beauty is our Business. Springer,
Heidelberg (1990)

20. Gries, D., Schneider, F.: A Logical Approach to Discrete Mathematics. Springer, Heidelberg
(1993)

21. Gries, D.: Improving the curriculum through the teaching of calculation and discrimination.
Communications of the ACM 34(3), 45–55 (1991)

22. Guba, E., Lincoln, Y.: Competing paradigms in qualitative research. In: Denzin, N., Lincoln,
Y. (eds.) Handbook of qualitative research, pp. 105–117. Sage, London (1994)

23. Honsberger, R.: In Polya’s Footsteps: Miscellaneous Problems and Essays (Dolciani Mathe-
matical Expositions). The Mathematical Association of America (October 1997)

24. ME. Declaração sobre o processo de colocação de professores para o ano lectivo 2004-05 (in
Portuguese). Government press release (September 2004)

25. Mendes, A.: Work in progress: Structure editing of handwritten mathematics. In: 38th
ASEE/IEEE Frontiers in Education Conference. IEEE, Los Alamitos (2008)

26. Michalewicz, Z., Michalewicz, M.: Puzzle-based Learning: Introduction to Critical Think-
ing, Mathematics, and Problem Solving, 1st edn. Hybrid Publishers (2008)

27. OCDE Report. Education at a clance: OCDE indicators 2006. OCDE Publishing, Paris
(2006)

28. DIMACS Symposium. Teaching logic and reasoning in an illogical world. Technical report,
Rutgers University (1996)

29. van Gasteren, A.J.M.: On the Shape of Mathematical Arguments. LNCS, vol. 445. Springer,
Heidelberg (1990)

30. Verhoeven, R., Backhouse, R.C.: Towards tool support for program verification and construc-
tion. In: Wing, J.W.J., Davies, J. (eds.) FM 1999 - Int. Formal Methods Symposium. LNCS,
vol. 1709, pp. 1128–1146. Springer, Heidelberg (1999)

31. Wilf, H.S.: Can there be research in mathematical education? http://www.math.
upenn.edu/˜wilf/website/PSUTalk.pdf

32. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
33. Winkler, P.: Puzzled: Understanding relationships among numbers. Commun. ACM 52(5),

112 (2009)

http://joaoff.com/publications/2009/euclid-alg/
http://joaoff.com/publications/2009/euclid-alg/
http://csunplugged.org/index.php/en/books
http://csunplugged.org/index.php/en/books
http://www.math.upenn.edu/~wilf/website/PSUTalk.pdf
http://www.math.upenn.edu/~wilf/website/PSUTalk.pdf

What Top-Level Software Engineers Tackle after
Learning Formal Methods: Experiences from the

Top SE Project

Fuyuki Ishikawa1, Kenji Taguchi1, Nobukazu Yoshioka1,
and Shinichi Honiden1,2

1 GRACE Center,
National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
2 Graduate School of Information Science and Technology,

The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Abstract. In order to make practical use of formal methods, it is not
sufficient for engineers to obtain general, fundamental knowledge of the
methods and tools. Actually, it is also necessary for them to carefully
consider their own contexts and determine adequate approaches to their
own problems. Specifically, engineers need to choose adequate methods
and tools, determine their usage strategies, and even customize or ex-
tend them for their effective and efficient use. Regarding the point, this
paper reports and discusses experiences on education of formal meth-
ods in the Top SE program targeting software engineers in the industry.
The program involves education of a variety of scientific methods and
tools with group exercises on practical problems, allowing students to
compare different approaches while understanding common principles.
In addition, the program involves graduation studies where each student
identifies and tackles their own problems. Statistics on problem settings
in the graduation studies provide interesting insights into what top-level
engineers tackles after learning formal methods.

1 Introduction

Formal methods are attracting increasing attentions from the software industry,
as software is getting more and more complex while efficiency and reliability of
software development is getting more and more significant. On the other hand,
there has been a gap between knowledge and techniques that software engineers
in the industry generally have and those required for use of formal methods. It
is thus essential to provide a place where engineers in the industry can learn
formal methods, expecting their practical application.

When engineers apply formal methods to problems in practical system devel-
opment, they need to tackle the difficulty in determining adequate approaches to
their own problems, carefully considering their own contexts. Specifically, they
need to choose adequate methods and tools, determine their usage strategies, and

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 57–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

58 F. Ishikawa et al.

even customize or extend them for their effective and efficient use. Therefore,
education of general, fundamental knowledge and techniques of formal methods
and tools is not sufficient by itself.

Regarding this point, the Top SE program in Japan has provided a unique
place to produce “superarchitects” who can promote practical use of advanced,
scientific methods and tools, including formal methods, for tackling problems
in software engineering [1,2]. The Top SE program primarily targets engineers
in the industry and provides education on a variety of methods and tools by
combining lecturers from the academia and the industry. Considering the points
discussed above, the program provides more than education of general, funda-
mental knowledge and techniques on methods and tools, in the following two
forms of activities.

Lecture Courses. In the Top SE project, lecture courses are organized to in-
volve different methods and tools so that students can compare different
approaches while understanding common principles. Each course involves
group exercises where students jointly tackle practical problems while ex-
changing ideas on different approaches to the problems. The problems are
jointly developed by lecturers from the academia and the industry.

Graduation Studies. The Top SE program also includes graduation studies
where students identify and tackle their own problems using scientific ap-
proaches they have learned. The studies are finally evaluated in terms of
validity of problem setting, validity of approach (method/tool) selection,
and problem-solving ability (e.g., adequate abstraction).

The Top SE project successfully completed its setup phase of five years with gov-
ernment sponsorship, through which 61 students have graduated and 21 lecture
courses have been developed. In April 2009, it started a renewed phase based on
the established education system, and welcomed 31 new students, out of which
29 are engineers from the industry.

This paper reports and discusses the experiences on formal methods education
based on the principles described above in the Top SE project. Besides design
of lecture courses, this paper focuses on the graduation studies. The statistics
on graduation studies will clarify what kinds of issues the students (actually
top-level engineers in the industry) find significant and also solvable to some
extent by themselves. It will give interesting suggestions regarding roles of the
academia and the industry for promotion of widespread, practical use of formal
methods.

The remainder of the paper is organized as follows. Section 2 describes the
principles and current status of the Top SE program. Section 3 describes lecture
course designs on formal methods in the program. Section 4 reports actual topics
of graduation studies on formal methods tackled by the students. Section 5
gives and discusses statistics obtained in the experiences, and Section 6 finally
concludes the paper.

Experiences from the Top SE Project 59

2 Top SE Program

2.1 Principles

In the software engineering area, there has been a gap between what are taught
in the academia and what are required by the industry [3]. The Top SE program
in Japan is organized to bridge the industry-academia gap by providing a place
where the academic and the industry jointly deliver knowledge and techniques for
practical use of advanced scientific methods and tools [1,2]. Figure 1 illustrates
the principles of the Top SE program, which involves digital home appliances as
one of the target practical areas.

Analysis

Practicing techniques using
actual devicesIncorporating practical

techniques into course
materials

Design

Implemen-
tation Evaluation

Devices for practice

Education focusing on practiceEducation focusing on practice

Advanced software engineers

・practical techniques for applying existing software science

technologies to practical problems

・practical techniques to make use of new software science ideas

Advanced software engineers

・practical techniques for applying existing software science

technologies to practical problems

・practical techniques to make use of new software science ideas

Education

Area: Digital home appliances = Home appliances + Network + CollaborationArea: Digital home appliances = Home appliances + Network + Collaboration

Improving software technologyEnhancing the home appliances area
a strong point of Japan

Practical problems
(after 3-5 years)
Practical problems
(after 3-5 years)

Results of software
science
Results of software
science

IndustryIndustry

UniversitiesUniversities

Fig. 1. Approach to Educate SuperArchitects, with the Example of Digital Home
Appliances

Below summarizes principles of the Top SE program.

Target Topics. Topics cover software engineering, especially focusing upper
stream processes where scientific methods and tools work effectively and
efficiently. As essential goals in software engineering, efficiency, reliability,
and changeability are investigated. In addition, security is also focused on
as it is now an essential aspect in a variety of systems. Either hardware
technologies or social matters are not considered as primary topics.

Target Students. As the original motivation is to deliver scientific approaches
to the industry, the primary target students are software engineers from the
industry. They know issues in software development well but do not know so
much about use of scientific methods and tools. Especially, engineers around
their 30’s are targeted as they have identified issues in software engineering
and are leading next-generation development processes. The program also

60 F. Ishikawa et al.

accepts graduation students of universities, who know scientific aspects well
and are eager to learn their application in practical software development.
For education of university students, the Top SE program also provides lec-
ture courses at universities, which puts more focuses on delivering practical
aspects to graduate students. This is out of the scope of this paper.

Produced Graduates. The project defines “superarchitects” to produce, who
have knowledge and techniques of the following.
– Abstraction of practical problems into (semi) formal models, e.g., UML,

automata, formal specifications, and goal-oriented requirements models.
– Application of tools to concrete problems, e.g., digital, networked home

appliances.
– Adaptability to new technology and tools, e.g., identifying essential dif-

ferences and common principles in similar but different approaches.
– Ability to promote the technologies and tools, e.g., instructing develop-

ment teams.
Lecturers and Lecture Courses. Figure 2.1 illustrates the approach of the

Top SE program to lecture course organization. Lecturers from the academia
and the industry are grouped and develop lecture course materials, which in-
volve results of software science from the academia combined with practical
problem (exercise) settings from the industry. Lecture courses are organized
to involve different methods and tools so that students can compare differ-
ent approaches while understanding common principles. In addition, each
course involves group exercises where students jointly tackle practical prob-
lems while exchanging ideas on different approaches to the problems even if
using the same method and tool.

Graduation Studies. The students finally tackle graduation studies, for a few
months, where they identify and tackle their own problems using scientific
approaches they have learned. Students often determine to choose and apply
some methods and tools for their own problem areas, e.g., workflow man-
agement system. Some students develop extension of existing methods and
tools so that the methods and tools are used more effectively and efficiently
for a certain class of problems, e.g., development of a model generator from
a specific format. Graduation studies are evaluated in terms of validity of
problem setting, validity of approach (method/tool) selection, and problem-
solving ability (e.g., adequate abstraction).

Detailed description and discussion on the principles of the Top SE project are
found in [1].

2.2 Current Status

The Top SE project had been fully sponsored by the Japanese government in its
setup phase of 5 years until March 2009. During the phase, it accepted students
three times (in 2005, 2006, and 2007) and provided them an education program
of one year and half (for free). The number of the students and the number
of the lecture courses were gradually increased. The third-term students (from

Experiences from the Top SE Project 61

ＮＩＩ Top SE ProgramＮＩＩ Top SE Program

Top-level researchers
Universities and research institutes

from various countries

• Participate in

course development

• Provide practical

problems

• Provide the most advanced

tools and research results

• Feedback to research

Inter-University Research InstitutesInter-University Research Institutes

Development Team

Companies
• Researchers
• Practitioners

Development WG 1: Organized by researchers from
universities, research institutes, and companies

• Spread course

materials

・

・

Development WG n: Organized by researchers from
universities, research institutes, and companies

Universities

Fig. 2. Approach to Organize and Develop Lecture Courses

September 2007 to March 2009) enjoyed the educational system developed so
far, which is planned to be maintained and refined continuously.

Below describes the status of the Top SE project at the end of the setup phase
(March 2009).

Students. In March 2009, 30 students graduated. 4 of them were graduate
students (of universities) and the others were software engineers from the
industry. 61 students graduated in total in the setup phase.

Lectures. 21 lecture courses, classified in 6 series plus introductory courses,
were finally developed and provided for the third-term students as shown in
Table 1. Each lecture course involved 12 classes, each of which was held for
one hour and a half. Classes were held in the evening (16:30-18:00, 18:15-
19:45) on weekdays. Lecture courses were developed and operated by 25
lecturers, 15 from the academia (universities or research institutes) and 10
from the industry (companies). Each student must get through at least 8
courses with credit for graduation.

In addition, postgraduate support has been established on the basis of a partner-
ship with a graduate university. A graduate of the Top SE program can proceed
to doctoral course with advanced standing as well as continuous support of the
supervisor of the graduation study. In April 2009, 7 of the graduates entered the
doctoral course of the partner graduate university.

After successful completion of the setup phase fully sponsored by the govern-
ment, the renewed Top SE project started in April 2009. In response to feedbacks
obtained in the setup phase, the educational system was renewed, e.g., the start
time of the lectures was moved to later in the evening. Although it became a

62 F. Ishikawa et al.

Table 1. Lecture Courses in the Top SE Program

Series Course

Foundations Fundamental Theories
Practice of Software Engineering

Architecture Component-based Development
Software Patterns
Aspect-Oriented Development

Formal Specification Formal Specifications (Foundations)
Formal Specifications (Applications)
Formal Specifications (Security)

Model Checking Verification of Design Models (Foundations)
Verification of Design Models (Applications)
Verification of Performance Models
Modeling and Verification of Concurrent Systems

Requirements Analysis Goal-Oriented Requirements Analysis
Requirements Elicitation and Identification
Security Requirements Analysis
Early Requirements Analysis

Implementation Techniques Testing
Program Analysis
Verification of Implementation Models

Management Software Metrics
Software Development Management

fare-paying education with some scholarship, 31 students joined and started to
study (almost the same number as that of the third-term students).

This paper discusses formal methods education in the Top SE program, on
the basis of experiences in the setup phase. Section 3 describes design of lec-
ture courses. Specifically, among the courses enumerated in Table 1, the Formal
Specification series and the Model-based Verification series are discussed as they
primarily deal with formal methods. In addition, part of the Implementation
Techniques series is discussed, which includes formal methods targeting source
codes. Section 4 describes graduation studies on formal methods. Section 5 dis-
cusses detailed statistics on lecture courses and graduation studies.

3 Lecture Courses on FM

3.1 Model Checking Series

The Model Checking series focuses on mathematical modeling of software be-
haviors and their efficient verification with automated tools. According to the
principles described in 2.1, The series consists of four lecture courses as illus-
trated in Figure 3.

MC1: Verification of Design Models (Foundations). This course delivers
fundamental knowledge and techniques for use of model checking methods.

Experiences from the Top SE Project 63

SPIN

Obtaining Fundamental Knowledge and Techniques
MC1:

Foundations

LTSA

Discussing Application Processes
while Comparing Different ToolsMC2:

Applications
SPIN SMV

Difficulties in
Complex Behaviors

Dealing with Complex Logic

Dealing with Real-time Dealing with Concurrency

CSP
(FDR, JCSP)

MC4:
Concurrency

UPPAAL

MC3:
Performance

Obtaining Fundamental Knowledge and Techniques
and Discussing Application Processes on Timed Models

Discussing Difficulties in Verification
and Implementation with Concurrency

Fig. 3. Model Checking Series

SPIN [4] is used as one of the most sophisticated tools. Besides basic no-
tations in Promela and usage of SPIN, the course explicitly focuses on the
verification process, including construction of models from the design, iden-
tification of property descriptions, and validation of the verification activity
itself. This process is organized systematically, involving UML modeling and
tool-independent model design. For group exercise on a practical problem,
coordination of networked home appliances is investigated with incorpora-
tion of actual devices. The problem setting is based on emerging practical
situation to be tackled actively by Japanese companies.

MC2: Verification of Design Models (Applications). This course delivers
advanced knowledge and techniques for application of model checking meth-
ods. SPIN [4], LTSA [5] and SMV/NuSMV [6] are used to tackle the same
problem so that students can discuss what are common and what are different
in those tools. The course also puts more focus on the problems of adequate
abstraction considering the verification purpose as well as careful modeling
of external environments that can lead to unexpected behaviors. For group
exercise, each group defines a problem such as cellular phone control, and in-
vestigates it by discussing which tool(s) to use.

MC3: Verification of Performance Models. This course delivers knowledge
and techniques for use of model checking methods for real-time systems, con-
sidering the performance aspect. UPPAAL [7] is used as one of the most so-
phisticated tools. The course also discusses guidelines and pitfalls in modeling
timing aspects. As a practical problem, an audio-control protocol with bus
collision is investigated where timing of voltage changes is essential for correct
communication.

64 F. Ishikawa et al.

MC4: Modeling and Verification of Concurrent Systems. This course de-
livers knowledge and techniques for using formal models for verification and
implementation of concurrent systems. CSP is used as a formalism to model
concurrency, with a tool for verification of equivalence and refinement rela-
tionships, FDR2 [8], as well as a tool for deriving implementation, JCSP [9].
As difficulties in concurrent systems are so common, students define their own
practical problem settings for the group exercise in this course, such as cellular
phone protocols and voting protocols.

3.2 Formal Specification Series

The Formal Specification series focuses on mathematical modeling of system
states and their changes through operation invocations. According to the prin-
ciples described in 2.1, the series consists of three lecture courses as illustrated
in Figure 4.

VDM-SL
(VDM-SL Toolbox)

B
(B4Free, Click'n'Prove)

VDM++
(VDM++ Toolbox)

B
(B4Free, Click'n'Prove)

Event-B
(RODIN)

Promela
(SPIN)

Z
(Z/EVES)

Lightweight Approach
Specification Animation

Construction by Correctness
Theorem Proving

Object-Oriented Modeling
Testing Frameworks

Stepwise Refinement into
Implementation

Emerging Approach
Stepwise Refinement

Classical Approach
Theorem Proving

State Transitions
Temporal Logic

Obtaining Fundamental Knowledge and Techniques
while Contrasting Two Extreme Approaches

Discussing Application Processes
while Contrasting Two Extreme Approaches

FS1:
Foundations

FS2:
Applications

FS3:
Security

Discussing Application to Security Issues
while Comparing Different Approaches

Fig. 4. Formal Specification Series

FS1: Formal Specification (Foundations). This course delivers fundamen-
tal knowledge and techniques for use of formal specification. Two different
methods are discussed to deliver common principles and different decisions:
B-Method aiming at correct derivation of implementation based on theorem
proving and VDM aiming at lightweight validation based on specification
animation and testing. As tools, B4Free and Click’n’Prove [10] are used for
B-Method and VDM-SL Toolbox [11] for VDM. As a practical problem, a
standard routing protocol for ad-hoc networks is investigated, which is an
emerging problem with clear specifications in natural languages. Here B-
Method is used to gradually introduce complexity by modeling distribution
of data among nodes through stepwise refinement, while VDM is used to
model behaviors of each node.

Experiences from the Top SE Project 65

FS2: Formal Specification (Applications). This course delivers advanced
knowledge and techniques for application of formal specification. B-Method
and VDM are used similarly to FS1, but more focus is put on different
levels of abstraction well as stepwise refinement through them. As tools,
B4Free and Click’n’Prove are used for B-Method and VDM++ Toolbox [11]
for VDM. As a practical problem, other aspects of the routing protocol for
ad-hoc networks is investigated.

FS3: Formal Specification (Security). This course delivers knowledge and
techniques for using formal specifications in development of secure systems.
Three different methods and tools are discussed with the same practical
problem of access control in a hospital. The first is Event-B [12] with the
RODIN tool, where event-based modeling and stepwise refinement are in-
vestigated. The second is the Z/EVES tool [13], where theorem proving is
investigated. The last is SPIN [4], where state transition-based modeling and
temporal properties are investigated.

3.3 Implementation Techniques Series

The Implementation Techniques series complement focuses on verification tasks
during and after implementation. Regarding formal methods, it complement with
the above two series by providing lecture courses on methods and tools targeting
source codes.

IM1: Program Analysis. This course delivers fundamental knowledge and
techniques for analysis of programs. JML [14] is used and discussed from
the view points of a means for Design by Contract, a means for unit testing,
and a means for static verification of source codes. As practical problems,
an access control system at a hospital and an on-line shopping system are
investigated.

IM2: Verification of Implementation Models. This coursedelivers advanced
knowledge and techniques for application of model checking to verification of
source codes. Java PathFinder [15] is used and discussed. As a practical prob-
lem, network protocols are investigated. More detailed description and discus-
sion on the course is found in [16].

4 Graduation Studies on FM

As described in 2.1, students identify and tackle their own problems in their
graduation studies. Many students have chosen topics on formal methods. This
paper classifies the topics as follows.

Case Study. In this type of study, problems are identified in development of
some target systems, such as workflow management system and web appli-
cation. Solutions are defined by choosing adequate formal methods/tools as
well as defining application strategies. Below describes a few examples of
this type of graduation studies.

66 F. Ishikawa et al.

– One of the studies used VDM for formal modeling and validation in
an experimental project involving a team at the company with which
the student works. It evaluated additional costs (man-hours) as well
as specification items additionally identified through the modeling and
validation, which would lead to much more cost if found in later phases.

– Another study used SPIN and NuSMV, respectively, for verification of
access control policies on shared file operations, and detected situations
where a high-level policy of confidentiality or availability is broken (not
correctly implemented) by low-level policies.

Domain-Specific Finer-Grained Support. In this type of study, problems
are identified in application of formal methods/tools to development of sys-
tems in some domains, such as workflow management system and web appli-
cation. Solutions are defined by developing domain-specific methods/tools
that provide finer-grained support for application of general formal meth-
ods/tools. Below describes a few examples of this type of graduation studies.
– One of the studies investigated translation rules from BPMN [17], a stan-

dard notation of business processes, to the notation of timed automata
in UPPAAL. After adding timing constraints to a BPMN process, UP-
PAAL automata are obtained according to the translation rules. The
study had a case study based on a simplified version of examples in the
BPMN specification, where introduction of timing constraints makes it
difficult to achieve consistency.

– Another study investigated generation of models from configurations in
Web applications, namely, configuration files in Struts and JSP files [18].

Bridging Gaps between Different Methods/Tools. In this type of study,
problems are identified in bridging between a task where formal methods/tools
are used and another task where other (formal or not formal) methods/tools
are used. Solutions are defined by developing methods/tools for combining for-
mal methods/tools with other (formal or not formal) methods/tools. Below
describes a few examples of this type of graduation studies.
– One of the studies investigated a method and tool that supports deriv-

ing specifications in VDM from requirements obtained by using KAOS
[19,20].

– Another study investigated a method that derives properties to be veri-
fied by model checking from goal-oriented requirements models [21].

Extension of Methods/Tools. In this type of study, problems are identified
in capabilities of existing formal methods/tools themselves regarding their
own purposes (e.g., verification). Solutions are defined by developing exten-
sion of formal methods/tools. Below describes a few examples of this type
of graduation studies.
– One of the studies defined refinement relationships in VDM++ as well as

proof obligations so that specific kinds of refinement relationships, which
have been recently dealt with in Event-B, can be explicitly modeled in
VDM.

– Another study developed an Eclipse plug-in for SPIN, including an editor
with auto completion, a wizard to specify LTL formula and invocation
of the model checker.

Experiences from the Top SE Project 67

5 Statistics and Discussion

In the following, attendance and completion at lecture courses on formal methods
is first discussed. Problem settings in the graduation studies on formal methods
are then discussed.

5.1 Attendance and Completion at Lecture Courses on FM

Table 5.1 shows how many students successfully got through each course with
credit. It means the number of students who registered to the course, attended
the classes, and completed reports on personal exercises and group exercises. In
the table, the number of students who attended each course is also shown be-
tween parentheses (students who registered but not completed or who audited).
Here only 30 students who graduated in March 2009 are counted, as previous
graduates did not have the full lineup of 21 lecture courses described in Table 1.

Table 2. Completion and Attendance at Lecture Courses on Formal Methods

Series Course Students: completed (attended)
Model Checking MC1 17 (21)

MC2 12 (15)
MC3 5 (10)
MC4 8 (10)

Formal Specification FS1 20 (27)
FS2 14 (20)
FS3 4 (5)

Implementation Techniques IM1 6 (14)
IM2 5 (6)

(Students in total: 30)

It would be difficult to discuss valid meanings of the figures, because there
may be different kinds of reasons why students did not attend courses and why
they did not complete. For example, it is often the case that a student wants to
attend a course, but it is held on the day of the week when he/she has to stay
at his/her company. In such a case, students often just download the slides and
other materials and try to study by themselves (asking the lecturers questions if
necessary). Another aspect is that MC4 and FS3 were held later in the program
and most of the students had completed sufficient number of courses and wanted
to focus on their graduation studies.

Anyway, it seems that most of the students were interested in MC1 and FS1,
that is, introductory courses on formal methods.

5.2 Selection of FM in Graduate Studies

28 studies were related to formal methods, out of 61 studies. Here 2 studies
are not counted that mentioned some formal methods while discussing whole

68 F. Ishikawa et al.

pictures of development processes or educational programs to be used in the
students’ companies. The result shows that about half of the graduation studies
used formal methods. In addition, 5 students determined to continue investiga-
tion of formal methods by getting into doctoral course of the partner graduate
university. These results suggest formal methods are somewhat popular among
educated top-level engineers in Japan.

5.3 Tool Selection in Graduate Studies on FM

Table 5.3 shows the number of graduation studies, on formal methods, that use
each tool.

Table 3. Tools in Graduate Studies on Formal Methods

Series Tool Number of Studies
Model Checking SPIN 8

UPPAAL 2
CSP (FDR/JCSP) 3
Tool-Independent 1

Formal Specification VDM 5
Event-B 3

Implementation Techniques JML (ESC/Java2) 1
Java PathFinder 1

Combination SPIN and SMV/NuSMV 1
SPIN and Java PathFinder 1
VDM and SPIN 1
VDM and Event-B 1

(28 Studies on FM, out of 61)

The one classified as “Tool-Independent” is investigation of the application pro-
cess of model checking. It defined roles of involved engineers and inputs/outputs
exchanged between them, considering expertise required to use model checking.

Model checking was quite popular in the graduate studies. Especially, SPIN
was used by many studies. It would be because students were much more familiar
with SPIN as they had used it primarily (in the lecture course MC1).

On the other hand, VDM was also popular, which would be somewhat unique
in Japan. It would be because VDM Toolbox is maintained by a Japanese com-
pany and Japanese interface has been provided. It would be also because of the
well-known application case of VDM for an IC card system, which is used exten-
sively in Japanese people’s life [22]. Students who chose VDM tended to claim
that they would not be able to introduce formal methods heavier than VDM,
the lightweight one, to their colleagues and companies.

5.4 Topics in Graduation Studies on FM

Table 5.4 shows the number of graduation studies, on formal methods, that
belong to each classification described in Section 4.

Experiences from the Top SE Project 69

Table 4. Topics in Graduate Studies on Formal Methods

Classification Number of Studies
Case Study 6
Domain-Specific Finer-Grained Support 11
Bridging Gaps between Different Methods/Tools 7
Extension of Methods/Tools 4

(28 Studies on FM, out of 61)

Among the studies on formal methods, Domain-Specific Support was investi-
gated most actively. Motivations discussed in the studies suggest two points of
the following.

– When students discusses with themselves how they can solve their problems
in software development in their domains, by using formal methods, they
often find other problems appear in applying formal methods.

– When students discusses with themselves how they can solve the problems
found in applying formal methods, they often reach some initial ideas to
provide methods/tools to support application of formal methods to their
own domains. Although the studies are done in a few months and the initial
ideas are somewhat naive, students have been able to present a core part of
the ideas as well as simple case studies to show their effectiveness.

In other words, for widespread use of formal methods, domain-specific methods
and tools providing finer-grained support are inevitable. Top-level engineers in
the industry have sufficient abilities and motivations to provide them when they
are given opportunities to do so.

Bridging Gaps between Different Methods/Tools suggests similar points. Meth-
ods and tools are inevitable that manage input to formal methods and/or output
from formal methods, e.g., connecting requirements and model checking, connect-
ing UML and formal specification, and so on.

On the other hand, it seems difficult for general engineers to extend existing
methods and tools in terms of their own purposes, e.g., improving efficiency of
model checkers. Actually, two of this kind of studies were simple, dealing with
syntax issues (auto-completion and syntax sugars) while one essential extension
was investigated by a research-oriented graduate student. The other one is inves-
tigation of the application process of model checking discussed in the previous
section, which is more meaningful when deployed in the industry.

6 Conclusion

The Top SE project has been established to deliver scientific approaches in soft-
ware engineering, including formal methods, to engineers in the industry. It
provides lecture courses developed jointly by lecturers from the academia and
from the industry, as well as opportunities of graduation studies where students
identify and tackle their own problems.

70 F. Ishikawa et al.

This paper has reported and discussed experiences on formal methods edu-
cation in the Top SE project. Students, mostly engineers in the industry, were
eager to learn formal methods, both model checking and formal specification,
which are used effectively and efficiently in early phases of development.

For practical use of formal methods, it is not sufficient for engineers to ob-
tain general, fundamental knowledge of the methods and tools. It is also neces-
sary for them to carefully consider their own contexts and determine adequate
approaches to their own problems. Specifically, engineers need to choose ade-
quate methods and tools, determine their usage strategies, and even customize or
extend them for their effective and efficient use.

The Top SE project has provided educational experiences to polish this kind
of abilities of engineers, through group exercises and graduation studies. Espe-
cially, experiences in graduation studies are unique, where engineers identify and
tackle problems by themselves. This paper has discussed what the experiences
have pointed out regarding engineers’ points of view on formal methods. They
consider formal methods as what are somewhat incomplete by themselves and
what SHOULD be and CAN be complemented by providing domain-specific
methods/tools as well as methods/tools bridging gaps between different meth-
ods/tools.

The Top SE program has established its education system that accepts about
30 students per year. After discussion given in this paper, we believe the approach
of the program will promote practical use of formal methods, where not only
the academia but also the industry develop practical support for effective and
efficient use of formal methods.

Acknowledgments

The Top SE program is fully sponsored by the Special Coordination Fund for
Promoting Science and Technology, for fostering talent in emerging research
fields by MEXT, the Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan. We would like to thank all the lecturers and students who have
worked very hard in the Top SE program, providing the unique, interesting
experiences discussed in this paper.

References

1. Honiden, S., Tahara, Y., Yoshioka, N., Taguchi, K., Washizaki, H.: Top SE: Ed-
ucating Superarchitects Who Can Apply Software Engineering Tools to Practical
Development in Japan. In: The 29th International Conference on Software Engi-
neering, pp. 708–718 (2007)

2. Top SE project (NII), http://www.topse.jp/
3. Beckman, K., Coulter, N., Khajenoori, S., Mead, N.R.: Collaborations: Closing the

industry-academia gap. IEEE Software 14(6), 49–57 (1997)
4. SPIN - formal verification, http://spinroot.com/
5. LTSA - Labelled Transition System Analyser, http://www.doc.ic.ac.uk/ltsa/

http://www.topse.jp/
http://spinroot.com/
http://www.doc.ic.ac.uk/ltsa/

Experiences from the Top SE Project 71

6. The SMV System, http://www.cs.cmu.edu/~modelcheck/smv.html
7. UPPAAL, http://www.uppaal.com/
8. Formal Systems (Europe) Ltd., http://www.fsel.com/
9. Communicating Sequential Processes for Java (JCSP),

http://www.cs.kent.ac.uk/projects/ofa/jcsp/

10. B Method - Presentation of B Method, B Language, and formal methods,
http://www.bmethod.com/

11. VDM information web site, http://www.vdmtools.jp/
12. Rodin - rigorous open development environment for complex systems,

http://rodin.cs.ncl.ac.uk/

13. Saaltink, M.: The Z/EVES System. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

14. The Java Modeling Language (JML), http://www.cs.ucf.edu/~leavens/JML/
15. Java PathFinder, http://javapathfinder.sourceforge.net/ (last Access, April

2008)
16. Artho, C., Taguchi, K., Tahara, Y., Honiden, S., Tanabe, Y.: Teaching software

model checking. In: Formal Methods in Computer Science Education, FORMED
2008 (2008)

17. BPMN information home, http://www.bpmn.org/
18. Kubo, A., Washizaki, H., Fukazawa, Y.: Automatic extraction and verification of

page transitions in a web application. In: The 14th Asia-Pacific Software Engineer-
ing Conference, ASPEC 2007 (2007)

19. Goal-Driven Requirements Engineering: The KAOS Approach,
http://www.info.ucl.ac.be/~avl/ReqEng.html

20. Nakagawa, H., Taguchi, K., Honiden, S.: Formal specification generator for KAOS:
Model transformation approach to generate formal specifications from KAOS re-
quirements models. In: The 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2007), pp. 531–532 (2007)

21. Ogawa, H., Kumeno, F., Honiden, S.: Model checking process with goal oriented
requirements analysis. In: The 15th Asia-Pacific Software Engineering Conference
(ASPEC 2008), pp. 377–384 (2008)

22. Kurita, T., Chiba, M., Nakatsugawa, Y.: Application of a Formal Specification
Language in the Development of the “Mobile FeliCa” IC Chip Firmware for Em-
bedding in Mobile Phone. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 425–429. Springer, Heidelberg (2008)

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.uppaal.com/
http://www.fsel.com/
http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.bmethod.com/
http://www.vdmtools.jp/
http://rodin.cs.ncl.ac.uk/
http://www.cs.ucf.edu/~leavens/JML/
http://javapathfinder.sourceforge.net/
http://www.bpmn.org/
http://www.info.ucl.ac.be/~avl/ReqEng.html

Chief Chefs of Z to Alloy: Using a Kitchen
Example to Teach Alloy with Z

Sureyya Tarkan and Vibha Sazawal�

University of Maryland, Department of Computer Science,
College Park, Maryland, 20742, USA

{sureyya,vibha}@cs.umd.edu

http://www.cs.umd.edu/users/sureyya/

Abstract. Z is a well-defined and well-known specification language.
Unfortunately, it takes significant expertise to use existing tools (such as
theorem provers) to automatically check properties of Z specifications.
Because Alloy is substantially similar to Z and the Alloy Analyzer offers a
relatively simple method of model checking, we believe that Alloy should
be largely employed in classes that teach Z. To this end, we present an
online tutorial especially designed to help students transition from Z to
Alloy. The tutorial includes both the classic Birthday Book example and
a large real-world scenario based on a Kitchen Environment. Our expe-
riences with novices studying the tutorial suggest that the tutorial helps
students learn both Z and Alloy. In addition, novices can answer ques-
tions correctly about the approximately 500-line Kitchen Environment
model after only a few hours of study.

Keywords: Formal Methods, Formal Specification, Z, Model Checking,
Alloy.

1 Introduction

When teaching Formal Methods, it is important to choose a widely understood
notation as the mathematics inherent in concepts should be unambiguous. Z [22]
is a well-defined and well-known specification language which emphasizes the
mathematical parts of formal definitions. A number of successful textbooks have
been written using Z [9,27] suggesting that educators prefer this specification
language over others available to them.

Although teaching the necessary mathematics to define software systems for-
mally is helpful in software engineering education, mathematics alone is not
enough. Verification and model checking tools are becoming increasingly pop-
ular [14]. Specifications are large and cannot be verified by manual inspection
alone; thus, automatic checking of specification properties is essential. Educators
are also expected to incorporate this change in their curriculum. Many software
tools are introduced to facilitate this process but it is clear that model checking

� Special thanks to John C. Knight for his help on this paper.

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 72–91, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.umd.edu/users/sureyya/

Chief Chefs of Z to Alloy 73

is one of the winners [13]. Students who know mathematical notation may now
need to learn a separate notation to write and check their models. Given the
problem of lack of interest already present in Formal Methods classes [7,16,19],
it is unreasonable to expect students to be highly motivated to learn various
notations and be able to apply all of them later on.

As Z is one of the most popular formal notations, students should learn a
technique that enables them to master tool usage besides mathematical knowl-
edge. However, this should be accomplished without the burden of learning a
new language. We believe that Alloy, in fact, provides such a functionality and
is substantially similar to Z as noted by Jackson [8]:

“The language, Alloy, is deeply rooted in Z. Like Z, it describes all struc-
tures (in space and time) with a minimal toolkit of mathematical nota-
tions, but its toolkit is even smaller and simpler than Z’s.”

The advantages of using Alloy in class can be summarized as follows: (i) very
roughly, Alloy can be viewed as a subset of Z [2], (ii) Alloy and Z are both based
on logic and set theory, (iii) Alloy, unlike many theorem provers for Z, performs
fully automatic analysis without any guidance from an experienced user (as
students are obviously novices), (iv) Alloy Analyzer [1] is consistently maintained
by a group of researchers at MIT, (v) unlike some other model checkers, Alloy
is free and can be used in the classroom, (vi) Alloy users share materials on the
website forums in an online community format.

One would expect that Alloy would have been employed often in classes that
teach Z. However, we see that there is a lack of examples and educational material
for the transition from Z to Alloy. In particular, educators develop examples
and material for either Z or Alloy yet there is insufficient courseware for Z to
Alloy. Moreover, the examples that have the two versions (e.g. the Hotel locking
example found in Jackson [8]) do not adequately address the relationship and
differences between these languages. We suggest that this gap should be filled in
with interesting examples and well-documented lesson plans.

However, there are a number of challenges in making Z to Alloy comprehensi-
ble for students. We think that employing educational theories in the preparation
of these materials plays an important role. For example, the Montessori method
of directing students’ interests with the increasing complexity of the material
[15] is helpful. Moreover, it is essential to point out both the similarities and dif-
ferences between the languages. Accordingly, developing user-friendly interfaces
for educational documents is also crucial to support navigation through content,
for example, from reviewing discrete math and logic background, to showing
formal notations, and finally, to using a tool.

As the previous paragraphs emphasize, to populate the educational materials
for Z to Alloy, we suggest the use of a running example that is easy for students to
understand and yet self-explanatory and comprehensive to illustrate the required
processes involved in the transition. We argue that it would not be difficult
for students to learn Alloy particularly if we employ our Kitchen Environment
project [23]. Our contributions in this paper are twofold:

74 S. Tarkan and V. Sazawal

1. First of all, we present our online tutorial to teach Z to Alloy with the
Kitchen Environment real-world example. In order to do that, we implement
a conversion technique that simplifies this process.

2. Finally, we share our experiences with novice students using the tutorial.

The rest of the paper is organized as follows. First, we survey previous work in
the area. Second, we show our full tutorial implementation. Third, we explain our
case studies with novice students. Then, we discuss the results and implications
of our design. Finally, we conclude with future work.

2 Related Work

The related work can be investigated from three different perspectives. First,
we talk about the interactive application of Formal Methods. Next, we look at
educational materials similar to ours. Finally, we mention how content-wise we
employ previous work in our tutorial.

Dean [5] talks about the development of an interactive case e-study. Formal
Methods materials usually reside on conventional paper and there are some
difficulties in converting them to interactive electronic versions. Therefore, Dean
has developed a hyperlink structure, which is a mixture of HTML files and PDF
documents. One advantage is that there is no need to save paper so the material
can easily be broken up into manageable sections that are interrelated. The
downside is it becomes essential to match the dimensions of the computer screen.
In addition, the most important aspect of the design is navigation through the
document. We mostly agree with these comments but we do not make use of
PDF in our implementation since the level of expected interactivity is high in
our case and PDF format cannot completely fit our needs. We have used images
due to the heavy mathematical content, however, there are packages like TT H
[24] that can convert LATEX files easily into HTML.

Similarly, Pandora [4] is a tool developed for teaching first order natural deduc-
tion. It contains a friendly e-tutor component that provides hints, explanations,
warnings, and counterexamples for corresponding student actions. This context
sensitive e-tutorial has help and various other facilities for saving, loading, and
printing proofs by exporting them to LATEX. Pandora has been extensively used
in class by students for their coursework and exams. When the e-tutorial is
started, four tutorials of propositional exercises are available. The first consists
of a fixed set of exercises and is useful in laboratory sessions. For the others,
there are three levels for “easy,” “medium,” and “hard” each with five exercises
that get randomly selected at run time by the e-tutor. Our tutorial, on the other
hand, is not developed for the purpose of teaching natural deduction. Moreover,
our interactive tutorial implementation is not part of such a tool, although it
can easily be incorporated into one as it runs from the web.

Rosa [20] suggests the use of Piaget’s theory [17] in Formal Methods educa-
tion. More specifically, the paper proposes a shift of focus from the development
of calculation skills to the encouragement of active participation in discrete math
education. To do that, new epistemological frameworks are necessary. One such

Chief Chefs of Z to Alloy 75

framework is provided by the genetic epistemology theory of Piaget [18], which
claims that acquiring knowledge is governed by the laws of human biological
development. The paper presents an application of this theory to students, who
design algorithms for solving problems. Finally, it argues that supporting in-
structional material is essential. In accordance, we borrow similar ideas from
the pedagogical work of deBry [6] inspired by Kolb’s learning theory [10]. We
particularly make use of the iterative process involved in the learning of humans
via employing an immediate feedback mechanism integrated into our tutorial.

Apart from such a framework, Rudall [21] develops a module from Z to SPIN.
The module is divided into two parts, whose first part deals with formal spec-
ification whilst the second part deals with formal verification. The main focus
of the formal specification is the Z language. The topics covered are schemas,
relations, functions, and sequences; however, not every detail, e.g. the refinement
and proof, of Z notation is shown. In the second part of the module, at first,
temporal logic is introduced so that the Promela [25] modeling language and
the SPIN [26] model checker can be taught. Promela is used to model complex
process interactions and SPIN is used to verify these models in the lab sessions.
The paper indicates that the examples and theory are worked through on the
board in class mainly with student interaction but for practice, students are ex-
pected to follow the tutorials using software tools in the labs on their own. It
is believed that to occupy the interest of students, a broad base course is more
useful than a narrow focus. Although the author clearly identifies the reason for
the selection of Z, she admits that the Promela language is chosen subjectively.
We depart from this study in the following ways. We make use of the Alloy
modeling language and tool as it is very similar to the Z notation. Furthermore,
we embed the in-class interaction within the tutorial.

Many studies reflect on the fact that real-life examples make learning of For-
mal Methods more interesting for the students [3,11,12,19]. Brakman [3] uses a
project about a Bluetooth communication protocol to increase the “fun-factor,”
and henceforth, the attendance rates of the classes. Similarly, to motivate stu-
dents with hands-on experience, Larsen [11] assigns students interesting class
projects to work on. Moreover, Lightfoot [12] proposes an interesting group com-
petition based on the vote-recording software of the Eurovision Song Contest.
Finally, Reed [19] stresses that the use of small, simple, and practical examples
(Fibonacci numbers, integer division, invariants, the Needham-Shroeder pro-
tocol) is helpful for novice programmers in the early stages. Inspired by the
successes of these prior studies, in our tutorial, we make use of first a simple
well-known example, the Birthday Book [22], and later a comprehensive but
everyday-life example that we developed, the Kitchen Environment.

3 Z to Alloy Tutorial

In this section, we describe the details of our online interactive tutorial, which
is publicly available at our website [28].

76 S. Tarkan and V. Sazawal

3.1 Tutorial Content

The content is prepared to teach the concept of “model checking formal specifi-
cations” to novice students. It is organized as follows:

– Introduction. This section covers the motivation for what formal methods
are, what they are used for, and some examples that illustrate disastrous cases
when they are not properly applied in practice.

– Birthday Book. This simple example is presented in detail with two sep-
arate implementations (one for the formal Z specification and the other for the
Alloy model) to give the mathematical and logic background as well as to explain
the details of Z and Alloy languages.

– Alloy Analyzer. The tool is reviewed to show what its capabilities are.
– Kitchen Environment. This comprehensive example is developed using

a conversion technique from the Z specification to the Alloy model. This model
is pretty long compared to the specifications that are covered in textbooks and
therefore successfully relates the concept to real software specifications used in
industry.

– Quiz. A quiz is given to assess the student’s understanding of the material.
The questions ask the student to complete and fix an Address Book model [8].
This is similar to the Birthday Book with a difference that it saves people’s
addresses.

We explain the Birthday Book and Kitchen Environment examples in more
detail in the sections that follow.

The Birthday Book. Our Z specification of the Birthday Book is adapted from
Spivey [22] and our Alloy model is directly taken from the Alloy distribution of
the sample models [1]. The Birthday Book records people’s birthdays (a name
and a date for each person), and places a reminder when the appropriate day
comes. It can be populated and depopulated, and there is a search option.

The Birthday Book specification includes the type declarations, the data ob-
jects, the state space, the initial state, and the operations – add, delete, find,
and remind – as schemas. Within this specification, we review concepts from set
theory and more specifically, the operators and symbols that are commonly used
in the Z notation.

The corresponding Alloy model is then used to automatically check the sub-
sequent assertions:

1. Adding a birth date to the book indeed works.
2. Deletion is an undo of addition.

To explain the Alloy model, we introduce the Alloy notation, i.e. modules, sig-
natures, atoms, relations, relational product operators, multiplicity markings,
predicates, assertions, and checks, as well as how to interpret the output.

The Kitchen Environment. This example is adapted from Tarkan [23]. The
task is to simulate the actions of a kitchen chef to direct other cook(s) in the
preparation of a dish (given the recipe). The primitive object types are cook,

Chief Chefs of Z to Alloy 77

ingredient, kitchen item, and measurement and the built-in functions are
Bake, Clean, Cut, Knead, Mix, Preheat, and Put.

The complications in the specification are identified in the following manner.
Multiple cooks can function concurrently, some kitchen items work autonomously,
multiple ingredients get composed to make others, ingredients change their states
from Raw to Baked, Cut, Kneaded, Mixed, or Processed. To this end, an event-
driven programming approach is suggested. For this purpose, we first write an
approximate Z specification and then convert it into a full Alloy model that en-
ables the student to perform automatic analysis. We do not develop a full Z spec-
ification since it is going to be modified to meet the Alloy language requirements.
Lastly, we identify the following list of assertions as crucial for our system.

1. Item is the same tool after getting Cleaned.
2. Preheat always precedes Bake.
3. Preheat is the only way to heat an item.
4. A HeatedItem should always be available for use to protect against fire.
5. A UsedIngredient never becomes available again.
6. A newly created AvailableIngredient1 is composed of only UsedIngre-

dient(s), which were available prior to the creation of this ingredient.
7. Raw ingredients are never a composition of other ingredients.
8. All AvailableIngredients that are not Raw are compositions of other

ingredients.

Given the problem statement, we show how to convert sets in the Z specification
to signatures in the Alloy model. We present the sets of cooks, kitchen items,
ingredient names, measurements, and event identifiers in the Z notation. Apart
from these, an ingredient is represented with a schema that has fields for its name,
amount, and its constituents that change over time. The subsets of ingredients
are also defined for Baked, Cut, Kneaded, Mixed, Processed, and Raw. Direction
saves all the events called so far and the arguments to these calls. We first convert
the sets for cook and kitchen item to signatures. At this point, we tell the student
what the limitations of model checking are. For instance, some sets that do not
affect the state are not declared in the Alloy model to prevent extensive memory
usage. We also explain the limited support for integers in Alloy as they are
infinite and introduce our Time signature that is represented with an integer in
Z. We introduce built-in modules such as ordering supported by Alloy. We show
them the object-oriented nature of Alloy as opposed to Z with the Baked, Cut,
Kneaded, Mixed, Processed, and Raw disjoint subsets of the ingredient type. In
this manner, we clearly point out the differences and similarities between these
approaches.

Next, we show the state specification in Fig. 1. We again first talk about the
Z schema and reflect on our decisions throughout its definition, especially the
relationship to time is stressed and how this is employed in the form of relations
within the Z version. We finally talk about the invariants and their importance
1 This ingredient cannot be raw but can only be in one of the following states: baked,

cut, kneaded, mixed, or processed.

78 S. Tarkan and V. Sazawal

Fig. 1. Kitchen schema and signature. Kitchen acts as a database in the system.
There are cooks, items, and ingredients in this world. Kitchen records available cooks,
items, and ingredients, dirty and heated items as well as used ingredients. All of these
entities depend on time. There are two important invariants of the system: an item
cannot be both available and dirty at the same time and analogously available and
used ingredients are disjoint at all times.

to our system. With this, we complete our Z schema and start converting it
into an Alloy model. We immediately comment on Alloy’s capabilities for the
multiplicity of signatures. After simply saying that the body is very similar,
we note the fact statement that is appended to the signature. We introduce
how facts can be used to specify the invariants. The final step is to call to the
student’s attention the absence of the Timer schema in the Alloy model. Because
a timer is a mechanism that keeps track of incremental properties like time and
event count, after explaining all the details related to this schema, we inform the
student that such entities will be handled with an equivalent but space-saving
“trick” in Alloy.

As we are finished with the state specification, we move to the state initial-
ization for the Z version and talk about the details in a similar fashion as the
previous one. As soon as we start writing the Alloy model, we highlight the dif-
ference between Z, which represents operations with schemas, and Alloy, which
uses a distinct notation for the dynamism, i.e. predicates. Afterwards, we proceed
to the conversion.

One of the complications in this example is the need for events that are
the cause of concurrency. We split events into the first call and the announce-
ment of completion. Therefore, we have events for Bake, Clean, Cut, Knead,
Mix, Preheat, and Put but also BakeDone, CleanDone, CutDone, KneadDone,
MixDone, PreheatDone, and PutDone. When we are done with the state space
and initialization, we convert the events defined as schemas in the Z notation
to predicates in the Alloy version. We first start with Event and EventDone
schemas that will be reused in the specific event calls and thus, contain defini-
tions common to all of them. We review all of their definitions. Moreover, as

Chief Chefs of Z to Alloy 79

Fig. 2. Bake schema and predicate. Bake expects available ingredients and an
available and heated item. At the end of the call, the ingredients are used and the tool
becomes a dirty item.

the cook operates separately from the tools, CookDone is introduced in the same
manner. The simple predicate noComposedChangeExcept is introduced before
the conversion process as it is included in many predicate bodies. We refer to
the Directions schema to explain the unavailable state of the preparer in the Z
version. We again draw attention to the differences between two versions when
we include our pre-specified predicate in others. At last, we defer, to later, the
discussion about time ordering using a factual statement.

When the general schemas are ready, we specify more concrete events. The
first one is Bake in Fig. 2. As Bake schema is introduced, we underline the
differences and similarities with its model. The first one is the some multiplicity
marking on the ingredient. We say that some important facts like these are
not imposed in the Z specification as it serves as an initial draft for our Alloy
model. However, the Alloy model is iteratively refined after analyzing the results
from the previous steps and hence, is more accurate. When we get to BakeDone
conversion, one key note is its name, which is BCKMPDone in the Alloy version.
We say that all BakeDone, CutDone, KneadDone, MixDone, and PutDone affect
the state similarly so they are combined in the implementation. Consequently,
those differences related to generalizing it are listed. More specifically, we say
that we can only assert that the type of the ingredient produced cannot be

80 S. Tarkan and V. Sazawal

Fig. 3. DoneAfterEvent fact. CookDone event only takes place after one of Bake,
Clean, CKMP, or Preheat events.

Raw. Moreover, HeatedItem is not handled here because different done events
act upon it differently. Clean event does not need further explanation as it is
very similar to Bake. However, with Cut event we see that in the conversion
we combine Cut, Knead, Mix, and Put together under CKMP as they all do same
things, too. We do not further discuss Knead, Mix, and Put schemas as they
are same with Cut. Our final schema is Preheat. We say that the input to this
schema is of type measurement and there is no need to model that in the Alloy
as it does not change the state. PreheatDone is also parallel with BCKMPDone.

Later, the schemas related to the event handler in the Z specification are rep-
resented with fact statements in the Alloy model. For this, we first recall our
deferred discussion on the fact statements that were supposed to constrain the
system. We initially write a fact statement called Traces that takes care of the
ordering of the states. We summarize that we cannot advance time by one unit at
each tick and to circumvent this, we jump from the end time of one task directly
to the start time of the next task. We review the body of the fact statement and
any new notation that is encountered for the first time. We conclude with the
remark that there is still no event handling and any event can take place at any
point in time. In that regard, we formalize a guarded implementation. This con-
cept is presented as follows. An event happens only when those events that must
precede it already have taken place and those that must succeed it are guaran-
teed to take place. Thus, instead of depending on the time increment, the system
jumps between events. As an example, we show DoneAfterEvent in Fig. 3, which
stipulates that CookDone comes after Bake, Clean, CKMP, or Preheat. Similarly,
BakeBeforeDone requires that every Bake implies there is a BCKMPDone event
that will happen and a CookDone event succeeds it. DoneAfterBCKMP states that
BCMKPDone follows Bake or CKMP but it introduces some more constraints, which
were omitted beforehand in the predicate definitions, about the relationship be-
tween the first and second events. It is pointed out that in the Z implementation,
we prepared an extra schema called Directions to record each call and Timer
schema keeps track of all the event handling but in Alloy, we use such facts to
fill in these details. CleanBeforeDone, PreheatBeforeDone, DoneAfterCP, and
CKMPBeforeDone facts are written analogously.

Finally, to convince the student that our model actually satisfies our assertions,
we carry out the final step of writing the verbal assertions above formally and
checking in the Alloy modeling language. We first show DirtyAndCle- anSame
and explain why the check command needs more time steps than any other

Chief Chefs of Z to Alloy 81

instances of sets for this assertion. We emphasize the distinction between under-
constraining and over-constraining and that if the range is not assigned prop-
erly, the Analyzer will fail to find counterexamples. We note that it is better to
be on the safe side and check with the maximum possible range without
burdening the tool too much. Subsequently, PreheatBeforeBake,HeatUnheated,
NoFire, UsedNeverAvailable,AvailableOnlyUsed,RawNonComposed,and Non-
RawComposed are developed as are the rest of the assertions.

Although the conversion seems straightforward, some complications arise and
these are addressed and documented in the tutorial. In this way, we expect the
students to be able to understand both the similarities and differences between
the two versions so that when they work on their own specifications and models,
they will have acquired the necessary background. At the end of the tutorial,
we encourage the students to think and write more assertions that makes them
feel satisfied with their expectations. Our final Alloy model is fairly long (≈ 500
lines) but we clearly state that once a rough Z specification is available, Alloy
development is not very cumbersome.

3.2 Implementation

The implementation of the online tutorial consisted of two phases.

Webpage Design. As can be seen from Fig. 4, we decided to split the tutorial
into the following sections, which are shown on the upper left-hand side as a
list box. The numbers in the parentheses below show the number of questions
in each section, which will be covered in the subsequent paragraph.

(1) Introduction
(2) Birthday Book Specification (20)
(3) Alloy Analyzer Walkthrough
(4) Birthday Book Model (26)
(5) Kitchen Environment
(6) Sets as Signatures (8)
(7) State Specification & Initialization (11)
(8) Events as Predicates (23)
(9) Handler as Facts (7)
(10) Assertions (9)
(11) Conclusion
(12) Questions (4)

The interactivity of the pages is supported as follows. Although Section 3.1
presented as if the tutorial expects the students to be passive readers of the
tutorial, this is indeed not the case in our tutorial. According to Kolb’s the-
ory, the student takes some information, which gets combined with the existent
knowledge of the student. With questions that provoke further reasoning, the
educator can immediately act upon the student’s understanding to correct the
misunderstandings. The reaction of the educator also becomes part of the stu-
dent’s prior knowledge so the educator asks more questions to steer the student’s

82 S. Tarkan and V. Sazawal

Fig. 4. The Online Interactive Tutorial. The webpage contains teaching material
as well as some questions to trigger student’s learning. The radio buttons are placed
for multiple-choice questions while See Answer buttons are used for submitting stu-
dent’s answer and seeing the expected answer. When revealed, the correct answer is
highlighted with a red border and the interactivity is disabled. The sections are listed
on the left-side panel to enable easy navigation within the document besides the con-
ventional “Prev” and “Next” buttons located at the end of each page. The sections
whose names start with a “>” symbol are interactive. When all of the questions within
a section are answered, this symbol disappears from the name of that section so that
the student knows they have completed the section. The Finish button yields the end
of the tutorial.

learning. With this theory, we decided to implement multiple-choice questions
in the tutorial. Most of these questions would ask the student to think beyond
what is given rather than passively reading the text. The students are given the
option to reveal the correct answer once they are satisfied with their answer.
Consequently, the student has the chance to correct their mistakes further on.
Apart from this interactive content, the last section, Questions, is organized as
a quiz whose questions are free-fill. Every question contains a line that must be
filled in and submitted by the student.

Finally, we embedded two surveys within the tutorial. The pre-survey asks
17 questions on the student’s background with Formal Methods and the post-
survey with 30 questions asks for feedback. These surveys are prepared using the
Likert scale from 1 (“Strongly Disagree”) to 7 (“Strongly Agree”), and include
an option for the “Don’t Know” case. There are also some open-ended questions
within these surveys.

Chief Chefs of Z to Alloy 83

Server to Database Connection. Because we wanted to make the tutorial
accessible from the Internet through students’ computers, we implemented a
server component that records client answers in a database and sends the correct
answers to the client. The students should be given an identifier and a password
by the instructor to access the tutorial. Each student is assigned a user identifier
of 5 characters, e.g. ‘usr09.’

4 Case Studies with Novice Students

In this section, we report the experiences of our novice students with the tutorial.

4.1 Task and Procedure

In a single session in our lab, the students were asked to read the tutorial and
to answer all of the multiple-choice and free-fill type questions on the tutorial.
They were also asked to fill out the two surveys. Consequently, they responded
to 104 multiple-choice, 4 free-fill, and 47 survey questions in total. Furthermore,
the online interface and its functionality were explained before the session. The
students were allowed to ask questions during the entire session and also take
a break at any time. We used a single computer and the same web browser for
all of the sessions. Each student spent between 1 to 3 hours on the tutorial and
we accepted verbal comments from the students during or after the tutorial to
receive their feedback.

4.2 Student Background

In total we had 8 students (2 females and 6 males) take our tutorial. They were
aged between 20 to 30 with an average of 25.75. All of them were Computer
Science students with one who had a minor in Mathematics. One of them was
a sophomore, two were Master’s students, and five were Ph.D. students. They
strongly agreed that they have experience with small- and medium-sized soft-
ware projects (with an average of 6.88/7 and 6.25/7, respectively). They also had
an above average (5.38/7) discrete math and logic background. They moderately
disagreed that they have strong formal methods background (mean = 3/7 ex-
cluding one student who answered they did not know the answer) and they were
neutrally interested in formal methods (with a mean of 3.6/7 excluding three
students who replied that they don’t know the answer). Four of the students
who answered the questions thought that formal methods are useful (mean is
4.75/7) and that they are difficult to learn and understand (average is 4/7). Out
of the five people who answered the question, the students were willing to make
use of formal methods in the future (mean = 5/7). Six students responded that
they have seen formal specifications written in English (average = 4.33/7). Seven
students strongly agreed that they have not had much experience with formal
methods with an average of 6.14/7.

84 S. Tarkan and V. Sazawal

On the open ended questions, the students replied that they use unit testing
(e.g. JUnit), smoke testing, nightly builds, code review, trial-and-error, debug
printing, incremental development, debuggers (e.g. gdb), running the code, writ-
ing test cases, and user studies to detect errors in their code. For their class
background, they mentioned an undergraduate level discrete math course or a
graduate level programming language or software engineering course. Four peo-
ple did not report any class background. Only one person indicated that he or
she had used SPIN as a formal software verification tool in the past.

4.3 Results

In this section, we report the results from two points of view. First, we present
the results in terms of the tutorial’s comprehensibility. Next, we report them
based on each student’s performance.

Tutorial Questions. Here, we talk about the students’ answers for the multiple-
choice questions. All of these questions would require the student to decide be-
tween two answers. At first, we would like to further split our questions into two
parts: (i) Birthday Book, and (ii) Kitchen Environment questions.

For the Birthday Book example, there were 46 questions in total. As we in-
troduced the Z specification of the Birthday Book, some initial questions were
directed to review the mathematical background of students, but later as stu-
dents gradually improved their understanding of the notation, more and more
questions became related to the specifics of the Birthday Book example. A similar
approach was taken for the Birthday Book model. We started asking questions
related to the mathematical interpretations of Alloy and as we moved further
into the details of the model with a better understanding of the student, we
elaborated on the questions. Overall, students did well in the Birthday Book ex-
ample and we were satisfied that they understood the material. Here we report
all of the eight students’ results. For the Z specification of the Birthday Book,
they answered 17 to 19 questions correctly (on average 18.25/20). The Birthday
Book model was well-received, as well. Students gave between 20 and 24 correct
answers (mean = 22.25/26) to the questions. Overall for the Birthday Book,
their correct answers ranged between 38 and 43, with a mean of 40.5/46.

The Kitchen Environment example contained a total of 58 questions. For this
part of the tutorial, we did not ask for any mathematical notation but instead we
initially asked questions about the student’s recollection of the concepts taught
in the Birthday Book. As this example was developed side-by-side with the Z
and Alloy versions, we distinguish them according to our conversion technique.
When converting sets to signatures, all eight students got 5.88/8 on average the
questions right (a minimum of 4 and a maximum of 7). However, when they
got to the State Specification & Initialization section of the tutorial, one of
the students dropped out of the session because they have not recently studied
mathematics and would need to go over the material more than once to truly
comprehend it. Therefore, seven students remained to report on this section.
Students answered 7 to 10 questions right with the mean being 9/11. By the

Chief Chefs of Z to Alloy 85

end of the section that converts events to predicates, another student decided to
stop continuing the tutorial because they were too tired that day. However, they
had been able to answer 19 of the questions and got 9 of them right. Excluding
this person, six students gave 14 to 21 correct answers on this section and their
average was 16.5/23. For the rest of the Kitchen Environment example, we only
provide the results of the six remaining students. Their correct answers on the
conversion into fact statements was between 4 and 7 with a mean of 5.67/7.
These students had 6 to 8 correct answers (with a 7.17/9 average) for the last
section that showed Alloy assertions. Excluding the students who could not finish
this example, on average, there were 45/58 correct answers (51 at most and 41
the least).

For those six students who were able to complete both of the examples suc-
cessfully, out of all the multiple-choice questions, they had a mean of 85.5/104
correct answers (93 was the maximum while 79 was the minimum number).

Assessment. The assessment was based on the 4 quiz questions. The questions
asked the student to type one line of Alloy code to complete and correct a
different model than the ones that are presented throughout the tutorial. The
first question asked the student to write the body of a predicate, the second one
asked the student to write the body of an assertion while the next one asked for
its check statement. The final question tested the student’s ability to modify the
code so that it excludes ill-formed cases.

As noted in the previous section, because of the students who stopped early,
we have only six students whose results we can present. Moreover, some students
missed this section as it was after the Conclusion section within the tutorial and
they went directly into the post-survey questions. Thus, there were some blank
answers. The questions were evaluated based on legitimate rationale rather than
exact syntax. Thus, minor syntax errors were disregarded. Based on this grading
key, our students got between 0 and 3 answers right with a mean of 2/4.

We also briefly mention that overall, on both the tutorial and the quiz, the
correct answers ranged between 80 to 96 (with a mean of 87.5/108) for those six
students who finished it.

Student Performance. Instead of reporting each student’s performance, we
classified the students based on their performance on each section into three clus-
ters as can be seen from Table 1. More specifically, we identified three students
whose performance was the best on the tutorial. Additionally, three students did
well in answering the questions but not as well as the best. Apart from these,
as previously mentioned, two students finished the tutorial with an incomplete
status.

As the standard deviations are small, it is obvious that those clustered to-
gether have performed similarly. To do a comparison between three different
student performances, good students performed slightly worse than the best stu-
dents in the Birthday Book. On the Kitchen Environment example, this trend
seemed to continue. On the Questions section, the correct answers were equal
implying that they all learned the concepts. The totals indicate that above 90

86 S. Tarkan and V. Sazawal

Table 1. The summary of the results for those students who achieved best performance,
and who did well, and those who could not complete the tutorial

Best Good Incomplete
Performance Performance Tutorial
Mean Std dev Mean Std dev Mean Std dev

Birthday Book specification 18.67 0.58 17.33 0.58 19 0
Birthday Book model 23.33 1.15 21.67 0.58 21.5 2.12
Birthday Book (total) 42 1 39 1 40.5 2.12
Sets as signatures 6.67 0.58 6 0 4.5 0.71
State specification & initialization 9.67 0.58 9 1 7 N/A
Events as predicates 18 2.65 15 1 9 N/A
Handler as facts 6.33 0.58 5 1 N/A –
Assertions 7.33 1.15 7 1 N/A –
Kitchen Environment (total) 48 2.65 42 1 12.5 –
Birthday Book &
Kitchen Environment 90 2.65 81 2 53 10.6
Questions 2 1.73 2 1 N/A N/A
Total 92 3.61 83 3 53 8.49

is the best, while above 80 is good. An interesting result comes out for the in-
complete group. They did better in the Birthday Book example than the good
students, however, because they were not able to continue, we do not know how
they would have performed in the Kitchen Environment example. We believe
that they could in fact perform better again giving us better results for our
tutorial.

4.4 Student Feedback

The post-survey asked for each student’s feedback. However, we have only records
for seven of the students because one quit before filling it out. Also, some stu-
dents answered some of the questions as they don’t know the answer and these
were not counted. All the numbers reported in this section range from 1 to 7
(the Likert scale).

First of all, we had questions related to Formal Methods, i.e. the appreciation
of their benefits, confidence in proficiency, credence to automatic verification
tools. For these, students moderately agreed and gave 4.5, 3.29, and 4.57 points
on average, respectively. Next, we asked questions about the student’s opinion
about formal specification (their comfort with the Z language and ability in
writing Z specifications) and students were neutral (with means of 4.86 and 3.14,
respectively). We also directed questions on model checking – learning of model
checking, usefulness, competency in Alloy, ease-of-use for the Alloy Analyzer.
Students moderately appreciated model checking (with means for learning as
5, usefulness as 4.57, and ease-of-use as 3.67) but they did not feel competent
enough yet (mean = 2.86).

Chief Chefs of Z to Alloy 87

Apart from these, there were questions on the Z to Alloy transition. More
specifically, we asked students about the ease of learning Alloy after Z, whether
Alloy is similar to Z, their ability to convert Z to Alloy, the straightforwardness
of the Z to Alloy conversion, their preference to write Z beforehand, and the
favorability of completely transitioning to Alloy. Students strongly agreed with
our statements on the ease of transitioning from Z to Alloy with the tutorial
(receiving 4.57, 5.29, 4.43, 4.86, 4.33, and 5.8 averages, respectively).

Finally, there were questions about the teaching material. We asked whether
it was a meaningful (5), efficient and effective (5.86), and motivating material
(5.14), whether its organization facilitated learning (4.71), whether it included
enough math and logic background (5.67), the appropriateness of each exam-
ple’s level of complexity (4.29) and mental effort (4.71), and interest (4). The
students responded that they agree with these statements as shown with the
means given in the parentheses. Moreover, some questions asked if they knew
similar examples as the Birthday Book (2), the comprehensiveness of the Kitchen
Environment example (6.14) and its presentation’s level of detail (5), and the
success of the conversion (5.14). As the averages between the parentheses state,
students agreed that Kitchen Environment example was good even though they
have not been exposed to simple examples like the Birthday Book. Finally, we
directed questions at the student’s ability to design their own specifications and
model check them (3.57), their satisfaction with the tutorial (4.71). The averages
indicate that the students gained some moderate capability at model checking
and that they were satisfied.

At the end of the post-survey, we expected them to share what they liked/
disliked and their opinions on how to improve the tutorial with a last open-ended
question. A lot of ideas were related to the web layout of the tutorial.

– “i had to do too much scrolling.”
– “Questions about figures should come after the figures themselves.”
– “1. make the listbox larger 2. put prev next below the listbox. . . ”
– “the figures for the questions were sometimes far beneath the questions
themselves.”
– “Referring to multiple models on other pages was distracting – espe-
cially since the page did not either reset the scroll bar or return to where
you were when you previously viewed that page.”

Moreover, some students stated both in their verbal comments and in the post-
survey that they wanted visualizations (pictures, diagrams, and tables).

– “I would have liked to see a better comparison of English/Z/Alloy –
maybe a few figures where they were compared and explained step by
step next to each other for full effect. . . I think a more succinct table of
some of the Alloy examples would have helped me understand better.”

Some of the students said that they needed more intermediate examples.

– “kitchen example was very complex and maybe a too big big step from
the very simple birthday book.”

88 S. Tarkan and V. Sazawal

– “The kitchen example lost me halfway through. The birthday book was
simple and made sense; the kitchen example introduced too much too
quickly. It was well written and presented, but was too difficult for me to
quickly grasp. More intermediate examples should have been presented.”

There were cases when the students thought that one tutorial was not enough
for them.

– “I felt the need of a some math and logic background. Moreover, I
don’t think it was easy to grasp all the definitions in the first go.”

Some students found the (English) language in the tutorial hard to understand.

– “The language in the tutorial is hard to understand in several places.”
– “Some of the Alloy conventions were hard to understand.”
– “I felt that the question choices often stated two sides of the same thing
– perhaps I did not quite understand the intent of the statements. While
the step-by-step conversion process was nice the grammatical structure
of some of the sentences throughout this process seemed confusing to
me.”

Although they stated that they liked the use of everyday examples, they com-
plained that just examples are not enough.

– “trying to explain the importance of formal methods using simple day-
to-day examples was quite motivating.”
– “I feel that this tutorial brought about an appreciation for model-
checking in a roundabout way; rather than coherently explaining the
process it seemed to jump immediately into examples and never really
get into a broad understanding of the topic.”

In their verbal comments, one student stated that although he/she thinks it is
certainly useful to perform model checking, it is expensive and onerous to write
for his/her own projects. Similarly, another student commented that he/she
does not intend to make use of model checking, because as researchers, they are
satisfied with software that is “good enough.” However, both of them agreed that
they clearly appreciate the necessity in critical aspects (security, concurrency,
etc.) of a big software system.

5 Discussion

In this section, we share what we learned from our studies and what could have
been improved and in what way.

Generally, speaking we are encouraged with the results. Given the weak back-
ground of the students on formal methods and their lack of interest in the formal
methods topics, the results show that the tutorial brought some appreciation for
formal specification, model checking, and verification tools. Looking at the sur-
vey responses, we are also pleased that the students thought Alloy is similar

Chief Chefs of Z to Alloy 89

to Z and that they appreciated our conversion method in compliance with our
expectations. However, because none of them had prior Z background, they were
inclined to like Alloy more than Z as it enables them to directly jump to pro-
gramming. Our Kitchen Environment example was comprehensive but compared
to the simple Birthday Book, the student performance did not show a huge drop.
This can be seen from the percentages of correct answer means for the Kitchen
Environment (77.5%) and the Birthday Book (88%). It is clear that students
were able to comprehend even such a complicated example.

What we learned from this study is that students do seem to appreciate paper
specifications but they want to be able to practice and correct their designs using
automatic tools. In that respect, they believe that Z and Alloy are similar and
can be taught together. However, there needs to be some appropriate material
in this field. The available textbooks teach Z or Alloy but not both and most of
them only use toy examples of 10 to 50 lines. We tried to approach this problem
by making use of a conversion technique to facilitate Z to Alloy transition with
a comprehensive example; however, students needed well-documented interme-
diary examples, too. Compared to most of the textbooks we encountered, our
complex example was 500 lines. The students surely felt that this was a huge
gap that needs to be filled in by the instructors. Finally, they liked the idea
of real-world examples but requested pictures to make them more appealing.
Educators should take this into account when designing their materials.

One downside of the web component was that it was offered as one large tu-
torial instead of being broken up over two or more lectures. This was the reason
for some students feeling too overwhelmed to finish it in a single session. There
were also some problems with the online version of the tutorial that students
candidly addressed in their complaints about the interface. Even with such prob-
lems, students did not criticize the content of the tutorial. This suggests that
they were satisfied that they learned something new.

Moreover, our student pool was not representative of real software develop-
ers. We mostly conducted studies with graduate students, who do not often
implement extensive software projects. Moreover, these students had not stud-
ied discrete math and logic in several years, and their interests were specialized
in other areas of the computer science. This gave rise to issues in recalling the
concepts. Since the studies were conducted at the end of the semester and dur-
ing the final exam week, we could not attract many undergraduate students to
participate. The long duration of the study and lack of compensation deterred
some students who were initially interested in the study. Some of the students
who took our tutorial did not take the questions on the quiz seriously enough nor
did they complete all sections. However, looking at the in-tutorial answers, we
are satisfied that participants did put enough effort into reading and answering
the questions as none of them had correct answer rates below 70%. In terms of
time, it took more than an hour for each student to complete the tutorial. Also,
due to time limitations, we could not run enough pilot studies to correct the
implementation errors and thus, some answers got unrecorded.

90 S. Tarkan and V. Sazawal

Finally, we allowed students to have access to the entire content throughout
the session and did not save times along with the answers. Had this been imple-
mented in our tutorial, we think we could have revealed some common patterns
in the learning of Z to Alloy that could be useful for instructors.

6 Conclusion

In this paper, we first presented our online tutorial to teach Alloy with Z using
the Kitchen Environment real-world example. In order to do that, we presented
our conversion method that is expected to simplify this process. We also shared
our experiences with novice students using our tutorial.

According to our findings, we recommend that educators who teach the Z
language also focus on the Alloy tool in their classes. In addition, it is necessary
to provide well-explained and interesting intermediate-level examples for the Z
to Alloy transition. Our tutorial provides both a concrete Z-to-Alloy transition
process and the intermediate-level Kitchen Environment example. Initial expe-
rience with novices suggests that students are able to learn Z and Alloy and
answer questions about an intermediate-sized example after only a couple hours
of study. Interested readers may access this tutorial through our website [28].

References

1. Alloy Analyzer 4, http://alloy.mit.edu/alloy4/ (2009-07-15)
2. Alloy FAQ, http://alloy.mit.edu/faq.php (2009-07-15)
3. Brakman, H., Driessen, V., Kavuma, J., Bijvank, L.N., Vermolen, S.: Support-

ing Formal Method Teaching with Real-Life Protocols. In: Formal Methods in
the Teaching Lab: Examples, Cases, Assignments and Projects Enhancing Formal
Methods Education, pp. 59–68. McMaster University, Canada (2006)

4. Broda, K., Ma, J., Sinnadurai, G., Summers, A.: Friendly e-tutor for Natural De-
duction. In: TFM: Practice and Experience. BCS-FACS, London (2006)

5. Dean, N.: Development of an Interactive Case e-Study. In: TFM: Practice and
Experience Workshop, pp. 13–20. BCS-FACS, Oxford Brookes University (2003)

6. deBry, R.: Learning exercises for the rest of the brain. J. Comput. Small Coll. 20(1),
291–296 (2004)

7. Duke, R., Miller, T., Strooper, P.: Integrating Formal Specification and Software
Verification and Validation. In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS,
vol. 3294, pp. 124–139. Springer, Heidelberg (2004)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

9. Jonathan, J.: The way of Z: Practical programming with formal methods. Cam-
bridge University Press, NY (1996)

10. Kolb, D.A.: Experiential learning: Experience as the source of learning and devel-
opment. Prentice-Hall, Englewood Cliffs (1984)

11. Larsen, P.G.: Two courses on VDM++ for Embedded Systems: Learning by Do-
ing. In: Formal Methods in the Teaching Lab: Examples, Cases, Assignments and
Projects Enhancing Formal Methods Education, Canada, pp. 21–26 (2006)

http://alloy.mit.edu/alloy4/
http://alloy.mit.edu/faq.php

Chief Chefs of Z to Alloy 91

12. Lightfoot, D.: Voici les votes! – formal specification as light entertainment: An
example of audience participation in developing a specification. In: TFM: Practice
and Experience Workshop, pp. 71–75. BCS-FACS, Oxford Brookes U. (2003)

13. Mandrioli, D.: Advertising Formal Methods and Organizing Their Teaching: Yes,
but... In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 214–224.
Springer, Heidelberg (2004)

14. Martin, J.M.: Teaching Formal Methods: An Industrial Perspective. In: TFM: Prac-
tice and Experience Workshop, pp. 35–39. BCS-FACS, Oxford Brookes U. (2003)

15. Montessori, M.: The Montessori Method, Schocken (1988)
16. Pepper, P.: Distributed Teaching of Formal Methods. In: Dean, C.N., Boute, R.T.

(eds.) TFM 2004. LNCS, vol. 3294, pp. 140–152. Springer, Heidelberg (2004)
17. Piaget, J., Mays, W., Beth, E.W.: Mathematical Epistemology and Psychology. D.

Reidel Publishing Company, Dordrecht-Netherlands (1966)
18. Piaget, J., Garcia, R.: Psychogenesis and the History of Sciences. Columbia Uni-

versity Press, New York (1980)
19. Reed, J.N., Sinclair, J.E.: Motivating Study of Formal Methods in the Classroom.

In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 32–46. Springer,
Heidelberg (2004)

20. Rosa, S.: Designing Algorithms in High School Mathematics. In: Dean, C.N., Boute,
R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 17–31. Springer, Heidelberg (2004)

21. Rudall, J.: From Z to SPIN in One Module. In: TFM: Practice and Experience
Workshop, pp. 71–75. BCS-FACS, Oxford Brookes U. (2003)

22. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall Inter-
national, UK (1992)

23. Tarkan, S.: The Formal Specification of a Kitchen Environment. Master’s scholarly
paper, University of Maryland (2009)

24. TEXto HTML translator, http://hutchinson.belmont.ma.us/tth/ (2009-07-15)
25. The Promela Language, http://en.wikipedia.org/wiki/Promela (2009-07-15)
26. The SPIN Model Checker, http://spinroot.com/ (2009-07-15)
27. Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-

Hall, Upper Saddle River (1996)
28. Z to Alloy Tutorial, http://ztoalloy.cs.umd.edu/ (2009-07-15)

http://hutchinson.belmont.ma.us/tth/
http://en.wikipedia.org/wiki/Promela
http://spinroot.com/
http://ztoalloy.cs.umd.edu/

Teaching Program Specification and Verification
Using JML and ESC/Java2

Erik Poll

Radboud University, Nijmegen, The Netherlands

Abstract. The paper summarises our experiences teaching formal pro-
gram specification and verification using the specification language JML
and the automated program verification tool ESC/Java2. This technol-
ogy has proven to be mature and simple enough to introduce students to
formal methods, even undergraduate students with no prior knowledge
of formal methods and even only very basic knowledge of (Java) pro-
gramming. However, there are some limitations on the kind of examples
that can be comfortably tackled.

1 Introduction

Over the past years we have taught formal program specification and verifica-
tion using the JML specification language for Java and the automated program
verification tool ESC/Java2 to a variety of audiences. We have taught this as a
small module as part of larger courses. The module consists of a 2 hour lecture to
introduce the basic concepts and notations, and an afternoon exercise lab. The
set-up of the practical work is that students annotate example code with JML
contracts – expressing preconditions, object invariants, and to a lesser extent
postconditions – in response to feedback from the tool.

We have given such classes to students taking a course on formal semantics and
program logics (so that they know what Hoare triples and weakest preconditions
are), but most classes have been given to students without any exposure to
formal methods apart from basic propositional logic. We have also taught the
module to Information Science1 students who only have very basic knowledge of
programming.

The outline of the rest of the paper is as follows. Section 2 discusses the
motivation and aims for the course module. Sections 3 and 4 discuss JML and
ESC/Java2, respectively. Section 5 explains the set-up of the exercise classes
and Section 6 discusses the pitfalls and limitations in letting students work with
ESC/Java2. Section 7 gives pointers to our course material and discusses some
related possibilities. Finally, sections 8 and 9 evaluate and conclude.

2 Context and Goals

Our original motivation for the module was that in an existing course on se-
mantics and logics students only experienced techniques such as Hoare-logic
1 In Dutch: Informatiekunde.

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 92–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Teaching Program Specification and Verification 93

and weakest-precondition calculus as paper-and-pencil exercises. We thought it
would useful if students experienced the possibilities of such techniques in pro-
gramming tools, not just to show the capabilities of such tools, but also to make
the connection with programming as they know it, in normal Java rather than
some toy imperative programming language.

As it became apparent that students did not really need much theoretical
background to do practical exercises using ESC/Java2, and that students found
them interesting, we reused the idea in other settings, for instance to make infor-
mation science students appreciate the importance of documenting assumptions
and constraints as part of specifications.

The aims of the course are

– to make students aware of the hidden assumptions and implicit constraints
and design decisions there are in typical programs, or indeed in specifications;

– to teach them how such assumptions and constraints can be documented in
contracts, esp. with preconditions and invariants, using JML;

– to let them experience the added value of doing this in a formal language
amenable to tool support, namely that they can run the program checker
ESC/Java2;

– for students with knowledge of program logics such as Hoare-logic and wp-
calculi: to let them experience what using such techniques in practice can be
like.

To achieve these aims, the exercises are designed to include implicit assumptions
that are so obvious that they are easy to overlook (e.g. in the example in Fig. 2)
and properties where the precision of a more formal language than English (or
Dutch) is really useful (e.g. in the example in Fig. 1).

3 JML

JML is a specification language tailored to Java. It allows specifications to be
added to Java code, as special comments after //@ or between /*@ ... @*/,
in the Design-by-Contract style of Eiffel [17]. The core constructs of JML are
preconditions, postconditions and object invariants2. JML offers a large range of
additional constructs, but these are typically best avoided by a novice user. The
initiative to develop JML was taken by Gary Leavens [14], but it has grown into
a wide collaboration, with many people contributing to the language definition
and using it as specification language in tools. Many program analysis tools for
Java support JML in one form or another. The original use of JML was for
runtime assertion checking [8], but it has also been used by program verification
tools, for instance ESC/Java(2) [11,12], JACK [6], KeY [1], Krakatoa [16], and
LOOP [4], and the Java model checker Bogor [19]. For an – already somewhat
outdated – overview of JML and JML tool support see [5]. More on ESC/Java(2)
below in Section 4.
2 Object invariants are sometimes called class invariants, but in our opinion this is

confusing terminology.

94 E. Poll

Experiences with JML. One of the main design goals of JML is that it
should be easy to understand and use for any Java programmer. Although the
more complicated constructs of the language are certainly not suitable for the
average Java programmer (their precise semantics can still lead to heated debates
between experts on the JML mailing list), for the basic JML constructs, such as
pre- and postconditions and object invariants, this is in our experience certainly
the case. After a short explanation of these notions in a lecture all students
can cope with this. Only a minimal amount of syntax needs to be learned,
namely just the keywords requires, ensures, and invariant, and the syntax
for implication ==>, bi-implication <==>, and universal quantification \forall.
(To prove the point, we will use JML syntax in the remainder of this paper
without any further introduction.)

Only the notion of object invariant requires some attention. Courses on pro-
gram verification typically include loop invariants, but not object invariants. (In
the practice of writing modern OO code, the notion of object invariant may well
be more relevant for students to know!) Intuitively, the notion of object invariant
can be explained as being implicitly included in the pre- and postconditions of
all methods, and in the postconditions of all constructors. However, one should
be aware that this is oversimplifying things, and cutting some corners! Precisely
defining the semantics of the apparently simple notion of object invariant is noto-
riously complicated in the presence of call-backs, dynamic binding, subclassing,
and aliasing. This might be an interesting topic to explore in a more advanced
course on formal methods, but is best avoided in a first introduction to the
notion of Design-by-Contract. More about potential hassle with invariants later.

During exercise classes we notice that many students need a hint before they
realise that a precondition that they keep repeating needs to be turned into an
invariant. This is in part caused by the fact that the work is tool-driven, and
ESC/Java2 will complain about missing preconditions, but not about missing
invariants. It is good to point out that for nearly every field in a class there is
an associated object invariant, even if it is just saying that some reference field
t is never null,

//@ invariant t != null;

or some integer field i that is always non-negative,

//@ invariant i >= 0;

JML includes the concept of exceptional postconditions, aka signals-clauses,
which express the postcondition that holds in case an exception (or an exception
of a certain type) is thrown. In our experience, this notion is best avoided.
It is very easy to get confused between specifying when an exception may be
thrown and when it must be thrown. Our exercises, and indeed the basic setup
of ESC/Java2, are geared to proving the absence of all runtime exceptions as
a first step (and possibly only step!) in the verification. In our experience just
proving this can expose plenty of implicit design decisions.

JML includes the possibility to express frame conditions by so-called assignable
clauses (aka modifies clauses). While frame conditions are an interesting

Teaching Program Specification and Verification 95

concept, and crucial to the verification of imperative programs, it is best omitted
for a first introduction to formal program verification. (By the way, the notions
of object invariant and frame condition are the most important notions missing
in traditional approaches to program verification, which just consider pre- and
postconditions and loop invariants.)

Finally, we noticed that some students would include some superfluous uni-
versal quantifications in object invariants. For example, the invariant about the
field i above might be written as

//@ invariant (\forall SomeClass s; s.i >= 0);

where SomeClass is the class where the invariant occurs. This is superfluous be-
cause object invariants specified for this are already implicitly quantified over
all objects of the current class. An invariant with such a universal quantification
is not only bad style, but it also causes complications in automated verification,
as the use of universal quantification is a major bottleneck for automated theo-
rem provers. More on this issue below in our discussion of the experiences with
ESC/Java2 exercises in Section 5.

4 ESC/Java(2)

ESC/Java is a program verification tool developed at Compaq (formerly DEC,
and subsequently HP) by Rustan Leino and his co-workers [11]. After the dis-
banding of that research group at Compaq, David Cok and Joe Kiniry have
led valiant efforts to keep ESC/Java alive and further improve it, resulting in
what is now called ESC/Java2 [12]. In the meantime, Rustan Leino has gone on
to develop the Spec# specification language for C# and the associated Boogie
verification tool at Microsoft research labs [3]3.

ESC stand for Extended Static Checker. The name was chosen to stress that
using the tool is intended to be similar in experience to using an automated,
push-button static analysis tool, or a type checker. The tool is geared to a
‘lightweight’ form of program verification, i.e. verifying relatively simple proper-
ties of code rather than detailed functional specifications. (Indeed, this limitation
is one of the possible pitfalls we discuss later.) Still, the tool does program veri-
fication in the classical way, using weakest precondition generation4 to produce
verification conditions that are fed to an automated theorem prover, Simplify
[10]. The users do not see the back-end theorem prover or the verification con-
ditions that are generated, but get feedback about violated invariants, violated
pre- or postconditions or unexpected runtime exceptions in specific execution
paths.

The builders of ESC/Java have been keen to point out that their tool is neither
sound nor complete, but aims to spot as many potential bugs with the minimum
of effort. While this has proven to be a successful design decision, and it is a nice

3 See http://research.microsoft.com/specsharp
4 Or strongest postcondition generation, but the user does not even see the difference.

http://research.microsoft.com/specsharp

96 E. Poll

bold statement to challenge some fundamentalist doctrine about formal methods,
the disclaimer that the tool is not sound can give the wrong impression. In our
experience, ESC/Java is a lot “more sound” than some verification tools that
do not make such explicit disclaimers. In particular, ESC/Java takes a rigorous
(albeit not completely sound) approach to ensuring that object invariants are
not broken, where it makes worst case assumptions about potential aliasing.
Note that traditional Hoare logics or weakest precondition calculi do not take
into account the notion of object invariant (or indeed aliasing), thus ducking this
major complication in program verification.

5 Simple Exercises Using JML and ESC/Java2

For practical exercises we provide students with example programs that they
have to annotate with JML and for which they possibly have to correct bugs in
the Java code. They have to add specifications, either in response to warnings by
ESC/Java2 (initially about unexpected runtime exceptions, later also about bro-
ken invariants and preconditions), or to formally express informal specifications
that are given to them.

We do these exercises in a terminal room where there is some help around to
answer questions and sometimes point students in the right direction. We have
typically had 20 to 30 students doing the exercises, with initially three people
around to help, but once the initial peak of questions and technical hassle in
getting things to work has passed two people can cope easily. Plenty of students
will manage to do the exercises on their own machine without any help.

Experiences Using ESC/Java2

It is nice to see students realising the added-value of formal specifications, in
that tools can help them to spot bugs, including some subtle bugs that are
very easy to overlook. Also, it brings home the message about the importance
of making implicit assumptions and design decisions explicit, not just for tools
to make sense of code, but also for humans to understand the code. Of course,
in standard programming courses students will be taught to document design
decisions, as informal comments in code, but then there is typically no tool
actually using these comments, so that writing the documentation is only extra
work without any immediate benefit.

Of course, the exercises are designed to illustrate that knowing which object
invariants hold is useful, if not crucial, to de-bug code. In all honesty, some parts
of our sample programs have been very carefully crafted to contain subtle bugs
that formal specifications will reveal.

There are some simple practical tips that can help the students. Splitting
large invariants with conjunctions into smaller ones will improve feedback from
the tool. Adding assert annotations to the code – to find out what holds or
does not hold at a particular program point – is a useful way to figure out why
something fails to verify.

Teaching Program Specification and Verification 97

/* Objects of this class represent euro amounts. For example, an Amount

object with euros == 1 cents == 55 represents 1.55 euro.

1) We do not want to represent 1.55 euro as an object with

euros == 0, cents == 155

Specify an invariant that rules this out.

2) We do not want to represent 1.55 euro as an object with

euros == 2, cents == -45

Specify one (or more) invariant(s) that rule this out.

*/

public class Amount{

private int cents, euros;

public Amount(int euros, int cents){

this.euros = euros;

this.cents = cents;

}

public Amount negate(){

return new Amount(-cents,-euros);

}

public Amount add(Amount a){

int new_euros = euros + a.euros;

int new_cents = cents + a.cents;

if (new_cents < -100) {

new_cents = new_cents + 100;

new_euros = new_euros - 1;

}

if (new_cents > 100) {

new_cents = new_cents - 100;

new_euros = new_euros - 1;

}

if (new_cents < 0 && new_euros > 0) {

new_cents = new_cents + 100;

new_euros = new_euros - 1;

}

if (new_cents >= 0 && new_euros <= 0) {

new_cents = new_cents - 100;

new_euros = new_euros + 1;

}

return new Amount(new_euros,new_cents);

}

}

Fig. 1. Example exercise, with a non-trivial invariant to specify

98 E. Poll

public class Taxpayer {

boolean isFemale, isMale, isMarried;

Taxpayer father, mother, spouse;

//@ invariant isMarried ==> spouse.spouse == this;

int age, tax_allowance;

//@ requires newSpouse != null;

public void marry(Taxpayer newSpouse) {

spouse = newSpouse;

isMarried = true;

}

public void divorce() {

spouse.spouse = null;

spouse = null;

isMarried = false;

}

Fig. 2. Fragment of an example exercise, with an initial attempt at capturing some of
the (many!) implicit invariants involved and preconditions needed to ensure that none
of these are broken

Something that we did not anticipate was that for some students ESC/Java2 is
their first experience of using an automated theorem prover. Simplify, the back-
end theorem prover of ESC/Java2, is quite good at propositional logic, so it is an
eye-opener for some students that they can use the tool to spot some less obvious
consequences of their specifications, for instance when they are struggling with
subtly different formulations of object invariants for the example in Figure 1.
For example, after specifying (incorrectly, by the way)

//@ invariant euros > 0 ==> cents > 0;
//@ invariant euros < 0 ==> cents < 0;

ESC/Java2 will point out errors in claims such as

somemethod(){
//@ assert !(euros <= 0 & cents => 0);
..

}

at particular program points.
A danger when using an automated program verification tool like ESC/Java2

is that students end up ‘mindlessly’ trying out specifications to stop the tool from
complaining, without really thinking about the meaning of the specifications they
write. It is useful to ask them questions to reflect on what they are doing and
why. Having them work in pairs and discuss with others helps here. It is also
useful to let students examine the code, and make them think about possible
object invariants, before letting them use the tool.

Teaching Program Specification and Verification 99

One cause for confusion for students is that they initially do not realise
that program verification is done in a modular fashion, per-method or per-
constructor. If method m() calls method n(), then when the tool verifies m() it
will only use the contract for method n(), and not look at its code. This means
that the tool will complain about programs that are – in the eyes of the student
– obviously correct, because they know the code of n().

There is a deeper reason for this modularity, namely that method n may
be overridden in a subclass. JML enforces the notion of behavioural subtyp-
ing, which says that any methods overridden in a subclass have to satisfy any
contracts written in the parent class.

The same issue of modularity can also cause some confusion with constructors
and invariants. For example, students are typically surprised that the tool com-
plains about an integer field n potentially being negative, even if all constructors
obviously initialise n to a non-negative value, and no code anywhere assigns neg-
ative values to n. In such cases the implicit invariant needs to be made explicit,
by adding

//@ invariant n >= 0;

to the code.
The same deeper reason for this applies, of course: there could be constructors

in subclasses that fail to establish the property, or methods that break it. Or,
simpler still, someone making changes to the code of the original class could
unwittingly break such representation invariants. Of course, the whole point of
explicitly documenting design decisions – such as which invariants are supposed
to hold – is to avoid such problems.

6 Limitations and Pitfalls in the Use of ESC/Java2

It would of course be nice to move to more ambitious programs for students
to specify and verify, and also programs they write themselves, rather than
programs that are given to them. However, there are some practical limitations
to be aware of:

1. Firstly, there is the limited power of the back-end automated theorem prover.
If specifications become too expressive, the verification conditions may be
too complicated for the theorem prover.

This problem typically surfaces when people try to write detailed func-
tion specifications that involve universal quantifiers. For example, attempts
to verify the full functional correctness of some sorting algorithm – one of
the standard examples in traditional course material on program verification
– are unlikely to be successful5. Here the fact that the user doesn’t get to

5 In private communication, Cormac Flanagan has reported good experiences with
letting students write an implementation of quicksort for which they have to check
a partial specification, which only states that the result array is sorted, not that it
is a permutation of the input array; this is still simple enough to avoid running into
this problem.

100 E. Poll

see the back-end theorem prover becomes something of a disadvantage. The
user notices that the tool cannot prove a specification, but cannot see where
it goes wrong or where it misses some additional information. (By the way,
exercises where there are some relatively basic properties to specify, such as
object invariants, are in our opinion more realistic than the examples involv-
ing full-blown functional specifications that traditionally feature in course
material on program verification! For larger programs functional specifica-
tion quickly becomes infeasible, but specifying more basic properties, such
as object invariants, remains feasible and interesting.)

2. A second limitation is the need for API specifications. To verify a piece of
code one will need formal specifications of any API methods it uses. There
have been some collective efforts to write JML specifications for parts of
the Java API (see http://www.jmlspecs.org), but these only cover small
parts of the API. Moreover, not only the absence of API specifications can
be a problem, but also their presence can be: if the specifications are too
expressive, one runs into the first limitation mentioned above.

3. A third limitation is a more fundamental complication for program veri-
fication of object-oriented programs, or indeed any imperative programs:
aliasing, especially the way it interacts with the meaning of object invari-
ants.

Intuitively, during the execution of a method the invariant of the current
object may temporarily be broken, as long as it is re-established at the end.
However, an additional complication is that invoking a method on one object
may break the invariant of another object. This may happen if the invariant
of the one object refers to field of the other object, or if the object have fields
that could potentially be aliased. ESC/Java2 is quite good (or, a less positive
way of phrasing it, extremely paranoid) when it come to spotting potential
trouble caused by aliasing. If two different objects have fields of compatible
types, ESC/Java2 will consider the (worst case) scenario that these objects
may be aliased, unless specifications explicitly rule this out.

This is probably the major source of confusing error messages that ESC/
Java2 may report to the unsuspecting user. There are ways to solve these
issues, but simply spotting the source of the problem can be tricky.

4. Finally, there are limitations to the Java features that ESC/Java2 can han-
dle. Most importantly, it does not support generics. The ongoing evolution
of a programming language such as Java poses a serious challenge to the
development of tool support, despite ongoing initiatives such as JML4 [7].

We have given one course where students did use ESC/Java2 on code that they
wrote themselves from scratch. In that course students wrote Java Card code,
for execution on smartcards. For Java Card applications the pitfalls mentioned
above can be avoided:

1. By instructing students to specify only very simple properties (basically,
absence of runtime exceptions), the first pitfall can be avoided.

http://www.jmlspecs.org

Teaching Program Specification and Verification 101

2. Because Java Card provides only a very limited API, and there are good
specifications for this entire API [18], the second pitfall mentioned above
can be avoided.

3. Because Java Card programs are not very object-oriented – most objects are
just arrays – problems with aliasing are relative easy to control.

4. Finally, there are no generics in Java Card.

Not surprisingly, many program verification tools for Java have focused on Java
Card as an interesting application area, e.g. [6,16,1]. The fact that smartcard
code is hard to debug – in the absence of a screen, you cannot debug by adding
println’s to the code – was a nice additional motivation for students to verify
the code. Still, writing Java Card code is something of an obscure specialism,
and installing this software on smartcards requires special skills, so this idea is
not easy to re-use by others.

7 Pointers and Related Tools

All material we use is available on-line6. Much more teaching material using
JML is available via the JML website7. There is a mailing list8 to get help from
experienced ESC/Java2 users, should that be necessary.

For years we have used the stand-alone version of ESC/Java29 which can be
run from the Windows, Linux, UNIX, or MacOS command line, and proved easy
to install. There are now also stable versions of ESC/Java2 available as Eclipse
plugin, in the form of the Mobius Program Verification Environment10, which
is also integrated with the JML4 initiative [7]. Beware that some of the earlier
attempts at Eclipse plug-ins for ESC/Java2 might not be easy to install.

A more ambitious course that aims at a thorough integration of JML (as well
as BON) into a software engineering course, has been developed by Joe Kiniry
and Daniel Zimmerman [13].

There are other program verification tools that one could use for exercise
courses, notably Spec#/Boogie [3] for C#, or KeY [1] or Krakatoa [16] for Java.
For Spec# there have been efforts to improve the handling of set comprehen-
sions such as sum, min, and max to make the Spec# program verifier capable of
verifying standard textbook examples fully automatically [15]. KeY and Kraka-
toa can expose more of their internal working, which may be useful as part of
a course on say Hoare logics, where would want to show the internal workings,
and not just use the program verifier as a black box. The KeY tool supports a
simple while-language that could be used for this purpose [2]. Teaching material
for the KeY tool is available from http://www.key-project.org/teaching.

Instead of program verification there is also the possibility to let students use a
runtime assertion checker for JML, for instance using the JMLUnit combination
6 From http://www.cs.ru.nl/~erikpoll/Teaching/JML
7 At http://www.jmlspecs.org/teaching.shtml
8 https://lists.sourceforge.net/lists/listinfo/jmlspecs-escjava
9 Available from http://kind.ucd.ie/products/opensource/ESCJava2

10 Available from http://kind.ucd.ie/products/opensource/Mobius

http://www.key-project.org/teaching
http://www.cs.ru.nl/~erikpoll/Teaching/JML
http://www.jmlspecs.org/teaching.shtml
https://lists.sourceforge.net/lists/listinfo/jmlspecs-escjava
http://kind.ucd.ie/products/opensource/ESCJava2
http://kind.ucd.ie/products/opensource/Mobius

102 E. Poll

of JML runtime assertion checking with JUnit [9]. Beware that the collection of
JML tools available of the web, including JML2, JML4, JML5, and OpenJML,
can be a bit bewildering.

8 Evaluation

This JML and ESC/Java2 module has only been a small part in larger courses
(in the order of one week in a 14 week term). Since course evaluations (via web
questionnaires) are done for a course as a whole, these do not provide a lot of
detailed information about this particular module. Still, students do regularly
mention it as the most interesting part of the course in the section for open
comments on the evaluation form. This confirms a lot of positive feedback we
get from students in class.

The experience helping out during the exercise classes does confirm that the
messages that the course tries to make come across. But apart from doing the
exercises, there is no additional exam that would allow a more impartial assess-
ment if the course meets its aims.

The main difference we noticed between information science students and
those having some background in formal methods is that the latter are much
more at ease with using propositional logic.

9 Conclusions

The good news is that program verification technology in tools such as ESC/Java2
is mature enough for any student to use – even first year undergraduates, and
even as part of courses which are not specifically about formal methods, such as
standard programming or software engineering courses. It is straightforward to
explain students what they need to know in a two hour lecture and then let them
play with the tool in a practical session for a couple of hours. It seems a missed
opportunity if not all computer science students experience using such a program
verification tool. The theory of program verification might be relegated to more
specialised (Master) courses that not all students take, but the use of verification
tools should not be.

The bad news is that the use of the tool is best limited to controlled ex-
periments, where the students work with (essentially toy) programs that are
supplied, rather than code they develop themselves, to avoid running into the
problems mentioned in Section 6. Moreover, traditional program verification
exercises, that involve detailed and complete functional specifications are best
avoided, as explained in Section 6, though these might be feasible using Spec#,
as discussed in Section 7.

An important positive aspect of using JML is that students see that formal
program specification and verification can be applied to a real programming lan-
guage, Java, rather than some toy while-language or guarded command language.
Another positive aspect of getting students to use tools is that they experience
the potential added value of writing formal specifications, namely that tools can

Teaching Program Specification and Verification 103

them help them to identify bugs and expose implicit hidden assumptions. We do
not think it is a good idea to let students write formal specifications without ever
letting them experience using a tool that shows them what the potential benefits
might be. Most importantly perhaps, most students seem to enjoy playing with
ESC/Java2.

Acknowledgements. Credit goes to the many people have contributed to the
development of ESC/Java(2) over the years. ESC/Java was designed by Rus-
tan Leino and Jim Saxe, and developed with help from Cormac Flanagan,
Rajeev Joshi, Mark Lillibridge, Todd Millstein, Greg Nelson, Raymie Stata,
and Caroline Tice. The ESC/Java2 initiative has been led by Joe Kiniry and
David Cok, and includes contributions from Patrice Chalin, Julien Charles, Der-
mot Cochran, Matthew Dwyer, Arnout van Engelen, Alexander Fuchs, Connor
Gallagher, Robin Green, Radu Grigore, George Hagen, Clément Hurlin, Perry
James, Mikoláš Janota, George Karabotsos, Hermann Lehner, Alan Morkan,
Michal Mosal, Carl Pulley, Frédéric Rioux, Will Sargent, and Aleksy Schubert.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4(1), 32–54 (2005)

2. Ahrendt, W., Bubel, R., Hähnle, R.: Integrated and tool-supported teaching of
testing, debugging, and verification. In: 2nd Int. Conference on Teaching Formal
Methods, TFM 2009 (to appear, 2009)

3. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W.,
Venter, H.: The Spec# programming system: Challenges and directions. In: Meyer,
B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer,
Heidelberg (2008)

4. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 299–312. Springer, Heidelberg
(2001)

5. Burdy, L., Cheon, Y., Cok, D.C., Ernst, M.R., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

6. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: A developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 422–439. Springer, Heidelberg (2003)

7. Chalin, P., James, P.R., Karabotsos, G.: JML4: Towards an industrial grade IVE
for Java and next generation research platform for JML. In: Shankar, N., Wood-
cock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 70–83. Springer, Heidelberg
(2008)

8. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling Lan-
guage (JML). In: Arabnia, H.R., Mun, Y. (eds.) The International Conference on
Software Engineering Research and Practice (SERP 2002), June 2002, pp. 322–328.
CSREA Press (2002)

9. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002)

104 E. Poll

10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

11. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation (PLDI 2002), pp. 234–245 (2002)

12. Kiniry, J.R., Cok, D.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

13. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuellar, J.,
Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 214–228. Springer,
Heidelberg (2008)

14. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06t, Iowa State Uni-
versity, Department of Computer Science (June 2002)

15. Leino, K.R.M., Monahan, R.: Automatic verification of textbook programs that
use comprehensions. In: ECOOP workshop on Formal Techniques for Java-like
Programs, FTfJP 2007 (2007)

16. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certification
of Java/JavaCard programs annotated in JML. J. Log. Algebr. Program. 58(1-2),
89–106 (2004)

17. Meyer, B.: Object-oriented Software Construction, 2nd edn. Prentice Hall, Engle-
wood Cliffs (1997)

18. Mostowski, W.: Fully verified Java Card API reference implementation. In: Beckert,
B. (ed.) Verify 2007: 4th International Verification Workshop, July 2007. CEUR
WS, vol. 259 (2007)

19. Robby, Rodŕıguez, E., Dwyer, M.B., Hatcliff, J.: Checking JML specifications using
an extensible software model checking framework. STTT 8(3), 280–299 (2006)

How to Explain Mistakes

Stefan Hallerstede and Michael Leuschel

University of Düsseldorf
Germany

{halstefa,leuschel}@cs.uni-duesseldorf.de

Abstract. Usually we teach formal methods relying for a large part on one kind
of reasoning technique about a formal model. For instance, we either use formal
proof or we use model-checking. It would appear that it is already hard enough to
learn one technique and having to cope with two puts just another burden on the
students. This is not our experience. Especially model-checking is easily used to
complement formal proof. It only relies on an intuitive operational understanding
of a formal model.

In this article we show how using model-checking, animation, and formal
proof together can be used to improve understanding of formal models. We
demonstrate how animation can help finding an explanation for a failing proof.
We also demonstrate where animation or model-checking may not help and where
proving may not help. For most part use of another tool pays off. Proof obliga-
tions present intentionally a static view of a system so that we focus on abstract
properties of a model and not on its behaviour. By contrast model-checking pro-
vides a more dynamic view based on an operational interpretation. Both views
are valuable aids to reasoning about a model.

1 Introduction

In Event-B [2] formal modelling serves primarily for reasoning: reasoning is an essen-
tial part of modelling because it is the key to understanding complex models. Reason-
ing about complex models should not happen accidentally but needs systematic support
within the modelling method. This thinking lies at the heart of the Event-B method.

We use refinement to manage the many details of a complex model. Refinement is
seen as a technique to introduce detail gradually at a rate that eases understanding. The
model is completed by successive refinements until we are satisfied that the model cap-
tures all important requirements and assumptions. In this article we concern ourselves
only with what is involved in coming up with an abstract model of some system. Note
that refinement can also be used to produce implementations of abstract models, for in-
stance, in terms of a sequential program [1,11]. But this is not discussed in this article.

We present a worked out example that could be used in the beginning of a course
on Event-B to help students develop a realistic picture of the use of formal methods.
The challenge is to state an example in such a way that it is easy to follow but provides
enough opportunity to make (many) mistakes. We chose to use a sized-down variant of
the access control model of [2] which we have employed for lectures at ETH Zürich
(Switzerland) and at the University of Southampton (United Kingdom). We have not

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 105–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

106 S. Hallerstede and M. Leuschel

used the description of a computer program because that is too rigid to exhibit possi-
ble misunderstandings. We have tried this using linear and binary search (together) but
these are easy to formalise. So we have worked out this example for the next winter
semester at the University of Düsseldorf. We begin by stating a problem to be solved in
terms of assumptions and requirements and show how the problem can be approached
using formal methods. The process of creating the model is shown in [6]. In this arti-
cle we focus on how to understand mistakes made during modelling and the ensuing
corrections. Whereas [6] is mostly about how proof can be used to improve a model,
in this article we focus on complementary techniques based on model-checking and
animation. These are only hinted at in [6]. In this respect this article can be regarded a
sequel to [6]. (But it can be read independently.)

Rodin [3] is an extensible tool for formal modelling in Event-B. It is designed to
support an incremental style of modelling where frequent changes are made to a model.
Rodin produces proof obligations from Event-B models that subsequently are either
proved automatically by an automatic theorem prover or manually by the user of the
tool if the automatic theorem prover fails. Rodin is implemented on top of the rich
client platform Eclipse [5]. It comes with two default screen layouts that are considered
to help making the connection between formal model, proof obligations, and proof.
The Eclipse platform supplies everything that is needed to make switching between
the two layouts easy. Figure 1 shows a simplified sketch of the two default layouts. The

(a) Modelling layout (b) Proving layout

Fig. 1. Layouts of Rodin for Modelling and Proving

modelling layout (Figure 1a) provides an area for editing models, one for showing error
messages on the bottom, and another for viewing and selecting proof obligations by
name on the right. When a proof obligation is selected, the layout is changed to the one
shown in Figure 1b. The proof obligation is shown in two areas arranged vertically, the
hypothesis on top, the goal below it. On the right hand side the proof obligation names
are displayed to permit browsing proof obligations. The tool encourages editing and
experimenting with formal models. The focus is on modelling. Technicalities of proof
obligation generation of concepts such as substitution are pushed aside. We believe,
this is important if the tool is to be used by students having first contact with formal
methods.

How to Explain Mistakes 107

PROB [7,9] is an animator for B and Event-B built using constraint-solving technol-
ogy. It incorporates optimisations such as symmetry reduction (see, e.g., [14]) and has
been successfully applied to several industrial case studies. PROB is also used at several
universities for teaching the B-Method [1,12].1 In that context, the following features
of PROB are relevant:

1. automatic animation. In particular, the tool tries to automatically find suitable val-
ues for the constants of a B-model based on constraint solving techniques,

2. consistency checking, i.e., checking whether the invariant of a B model is true in
all states reachable from the initial states (called the state space of a model),

3. visualisation of counter examples or the full statespace of a model. Several reduc-
tion techniques have been implemented to compress large statespaces for visuali-
sation [10].

4. trace refinement checking [8].

Figure 2 shows a layout for ProB animation where the user can inspect the current state
and the history of events executed, choose the next event to be executed, and follow
state changes in a graphical view of the state space.

Event1

Event2

INITIALISATIONx=2

S3

S2

S1

S4

x=2

Current
State of

the Model

Event1

Event2

Enabled
Events

INITIALISATIONAA

History

S3

S2

S1

S4

Graphical View of the State(space)

Fig. 2. Animation Layout of ProB for Event-B Models

We believe the combined use of proof, model-checking, and animation contributes
highly to a better understanding of formal models.2 They make it also easier to approach
proof obligations and proof which are particularly hard to master and relate to formal
models by novices. The figures shown are edited from the output that is provided by
ProB. We have done this to improve readability of this article. The output of ProB is
intended for viewing on a computer screen. Still, as a side effect of this exercise we
have developed some ideas for improving the output of ProB.

Overview. In Section 2 we introduce Event-B. The following sections are devoted to
solving a concrete problem in Event-B. In Section 3 the problem is stated. An abstract
model is discussed in Section 4. In Section 5 we elaborate the model by refinement.

1 For example, Besançon, Nantes in France; Southampton and Surrey in England; McMaster
University, in Canada, Uppsala University in Sweden, and of course Düsseldorf in Germany.

2 In a companion paper we also investigate the usefulness of graphical visualisation of formal
models, which makes animation sequences even easier to comprehend.

108 S. Hallerstede and M. Leuschel

2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts contain the static part of a model whereas machines contain the dy-
namic part. Contexts may contain carrier sets, constants, axioms, where carrier sets are
similar to types [4]. In this article, we simply assume that there is some context and do
not mention it explicitly. Machines are presented in Section 2.1, and proof obligations
in Section 2.2 and Section 2.3. All proof obligations in this article are presented in the
form of sequents: “premises” � “conclusion”.

Similarly to our course based on [2], we have reduced the Event-B formalism so
that a small subset of the notation suffices and formulas are easier to comprehend. In
particular, the relationship between formal model and proof obligations is much easier
to exhibit.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v = v1, . . . , vm define
the state of a machine. They are constrained by invariants I(v).3 Theorems are predi-
cates that are implied by the invariants. Possible state changes are described by means
of events E(v). Each event is composed of a guard G(t, v) and an action x := S(t, v),
where t = t1, . . . , tr are the parameters of the event and x = x1, . . . , xp are
the variables it may change4. The guard states the necessary condition under which an
event may occur, and the action describes how the state variables evolve when the event
occurs. We denote an event E(v) by

E(v) =̂ any t when

G(t, v)
then

x := S(t, v)
end

or E(v) =̂ begin

x := S(v)
end

.

The short form on the right hand side is used if the event does not have parameters and
the guard is true. A dedicated event of the latter form is used for initialisation. The
action of an event is composed of several assignments of the form

x� := B�(t, v) ,

where x� is a variable and B�(t, v) is an expression. All assignments of an action x :=
S(t, v) occur simultaneously; variables y that do not appear on the left-hand side of
an assignment of an action are not changed by the action, yielding one simultaneous
assignment

x1, . . . , xp, y1, . . . , yq := B1(t, v), . . . , Bp(t, v), y1, . . . , yq , (1)

3 Given the invariant I over the variables v, I(t1, . . . , tm) can be seen to stand for
I [t1/v1, . . . , tm/vm]. E.g., I(v) = I . We use a similar notation for other concepts, such
as events, guards and actions.

4 Note that, as x is a list of variables, S(t, v) is a corresponding list of expressions.

How to Explain Mistakes 109

where x1, . . . , xp, y1, . . . , yq are the variables v of the machine. The effect of an
action x := S(t, v) of event E(v) is denoted by the formula (1), whereas in the proper
model we only specify those variables x� that may change.

2.2 Machine Consistency

Invariants are supposed to hold whenever variable values change. Obviously, this does
not hold a priori for any combination of events and invariants I(v) = I1(v)∧. . .∧ Ii(v)
and, thus, needs to be proved. The corresponding proof obligations are called invariant
preservation (� ∈ 1 .. i):

I(v)
G(t, v)�
I� (S(t, v)) ,

(2)

for every event E(v). Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that neither an invariant nor a guard appears in
the premises of proof obligation (2), that is, the only premises are axioms and theorems
of the context. We say that a machine is consistent if all events preserve all invariants.

2.3 Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic
properties of a model [4]. A machine N can refine at most one other machine M .
We call M the abstract machine and N a concrete machine. The state of the ab-
stract machine is related to the state of the concrete machine by a gluing invariant
J(v, w) = J1(v, w) ∧ . . .∧ Jj(v, w), where v = v1, . . . , vm are the variables of the
abstract machine and w = w1, . . . , wn the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by a concrete event F (w). Let
abstract event E(v) with parameters t = t1, . . . , tr and concrete event F (w) with
parameters u = u1, . . . , us be

E(v) =̂ any t when

G(t, v)
then

v := S(t, v)
end

and F (w) =̂ any u when

H(u, w)
with

t = W (u)
then

w := T (u, w)
end .

Informally, concrete event F (w) refines abstract event E(v) if the guard of F (w) is
stronger than the guard of E(v), and the gluing invariant J(v, w) establishes a simu-
lation of the action of F (w) by the action of E(v). The term W (u) denotes witnesses
for the abstract parameters t, specified by the equation t = W (u) in event F (w),
linking abstract parameters to concrete parameters. Witnesses describe for each event

110 S. Hallerstede and M. Leuschel

separately more specific how the refinement is achieved. The corresponding proof obli-
gations for refinement are called guard strengthening (� ∈ 1 .. g):

I(v)
J(v, w)
H(u, w)�
G� (W (u), v) ,

(3)

with the abstract guard G(t, v) = G1(t, v) ∧ . . . ∧ Gg(t, v), and (again) invariant
preservation (� ∈ 1 .. j):

I(v)
J(v, w)
H(u, w)�
J� (S(W (u), v), T (u, w)) .

(4)

Aside: Observe how the witness is used to reduce the complexity of the proof obliga-
tion compared to classical B, where a double negation appears in the refinement proof
obligation [1]. Indeed, in classical B we have to prove that it is possible for the abstract
model to make a corresponding step for every concrete step, or equivalently that it is
not possible for the concrete model to make a step such that the abstract model can
not imitate it and establish the gluing invariant (hence the double negation). Here, we
require simply that for all abstract parameters having corresponding concrete parame-
ters which make the witness predicate true, that the abstract event E can be triggered
and establishes the gluing invariant. In general, Event-B contains many concepts that
have been simplified compared to classical B. As such, it is inherently better suited for
teaching formal methods.

2.4 Operational Interpretation

For the purpose of linking between Event-B to animation and model-checking it is con-
venient to give an operational interpretation to Event-B models [4]. We can observe
events occurring and the resulting state changes. No two events may occur simultane-
ously. For the progress of “execution” resulting from event occurrences there are two
possibilities:

(i) Some event guards are true: one of those events must occur.
(ii) All event guards are false: “execution” stops.

Following the informal description we can build a labelled transition system which
represents our operational interpretation. We treat events as relations on a state space.
The state space of a model is defined as the Cartesian product of the types of each of
the model’s variables. For convenience, we assume that every possible value can also be
written as a constant expression.5 A state in the state space is thus a vector of constant
expressions describing the values for the variables.

5 This is true for booleans, integers, enumerated sets and combinations thereof. It is generally
not true for carrier sets; but in that case we can assume that a carrier set is instantiated by an
enumerated set just for the purpose of animation and model checking.

How to Explain Mistakes 111

Let E(v) be an event with guard G(t, v) and action x := S(t, v), as defined above
in Section 2.1. The events induce a labelled transition relation on states in the state
space: state s is related to state s′ by event E(v) with parameter values a, denoted by
s →M

E.a s′, when G(a, s) holds and s′ corresponds to the left-hand side of formula (1),
that is to the successor state, with t = a and v = s.

The syntactic constraints on the initialisation event in Event-B are such that the out-
come of the initialisation will be independent of the initial values of the variables. This
means the initialisation has the form

begin

v := E

end

(5)

where E is a constant expression. The expression E is used to define the initial state for
a machine.

Graphically, the state space of an Event-B model looks like in Figure 3. (In general,
we would have a set of initial states in a non-deterministic initialisation represented by
a predicate P . For convenience we therefore add a special state root , where we define
root →M

initialise s if s satisfies the initialisation predicate P . The root is shown here
because it is used in the general form of initialisation.)

root
State3

State2

Initial
State Event1

State4Event1

Event2

Event3

Event3

Event2

Event 3

Fig. 3. A simple state space with four states

3 Problem Statement

In the following sections we develop a simple model of a secure building equipped with
access control. The problem statement is inspired by a similar problem used by Abrial
[2]. In [6] we have presented how the model could have been produced, especially, mak-
ing mistakes that could have been made and subsequent improvements to the model. In
this article we focus on how to comprehend mistakes made using different views on the
model, easing the formal character of modelling. In order to do this we rely heavily on
the ProB tool.

112 S. Hallerstede and M. Leuschel

The model to be developed is to satisfy the following properties:

P1 : The system consists of persons and one building.
P2 : The building consists of rooms and doors.
P3 : Each person can be at most in one room.
P4 : Each person is authorised to be in certain rooms (but not others).
P5 : Each person is authorised to use certain doors (but not others).
P6 : Each person can only be in a room where the person is authorised to be.
P7 : Each person must be able to leave the building from any room where the person

is authorised to be.
P8 : Each person can pass from one room to another if there is a door connecting the

two rooms and the person has the proper authorisation.
P9 : Authorisations can be granted and revoked.

Properties P1, P2, P8, and P9 describe environment assumptions whereas properties
P3, P4, P5, P6, and P7 describe genuine requirements. It is natural to mix them in the
description of the system. Once we start modelling, the distinction becomes important.
We have to prove that our model satisfies P3, P4, P5, P6, and P7 assuming we have P1,
P2, P8, and P9.

4 Abstract Model

Our aim is to produce a faithful formal model of the system described by the properties
P1 to P9 of Section 3. We choose to proceed in two modelling steps:

(i) the abstract machine (this section) models room authorisations;
(ii) the concrete machine (Section 5) models room and door authorisations.

To create an abstract model we need an abstract way of representing persons and
rooms. Using these two concepts we can model property P4 as a relation between
persons and rooms and property P3 as a function from persons to rooms. We declare
two carrier sets for persons and rooms, Person and Room, and a constant O, where
O ∈ Room. Constant O models the outside of the building. We choose to describe the
state by two variables for authorised rooms and locations of persons, arm and loc, with
invariants

inv1 : arm ∈ Person ↔ Room Property P4

inv2 : Person × {O} ⊆ arm

inv3 : loc ∈ Person → Room Property P3

inv4 : loc ⊆ arm Property P6

The invariant inv2 states that a person is always allowed to be outside, and as such
partly formalises P7. These four invariants form the foundation of our abstract model.
Next we present the events that model the dynamic aspects of the model.

In this and the next section we encounter mistakes in the model similar to those in
[6]. However, we are mostly interested in motivating and explaining mistakes and relat-
ing them to the formal model. Novices often have problems when presented with more
complicated formulas or proof obligations. A difficulty with formal methods, in general,

How to Explain Mistakes 113

is that formulas get complicated rather quickly. By choosing different views at the same
mistakes we can make them more approachable. For students to get the most out of this
exercise, the same software tools that we use to demonstrate formal reasoning should be
available to them. This encourages use of the tools and by experimenting with formal
models the students can gain a deeper understanding of formal models they create.

In our abstract model to satisfy inv2, inv3 and inv4 we let

initialisation

begin

act1 : arm := Person × {O}
act2 : loc := Person × {O}

end .

We model passage from one room to another by event pass,

pass

any p, r when

grd1 : p �→ r ∈ arm p is authorised to be in r

grd2 : p �→ r /∈ loc but not already in r

then

act1 : loc := loc �− {p �→ r}
end .

Event pass partially models property P8 ignoring doors for the moment. Granting and
revoking authorisations for rooms is modelled by the two events

grant revoke

any p, r when

grd1 : p ∈ Person

grd2 : r ∈ Room

then

act1 : arm := arm ∪ {p �→ r}
end

any p, r when

grd1 : p ∈ Person

grd2 : p �→ r /∈ loc

then

act1 : arm := arm \ {p �→ r}
end .

The two events do not yet model all of P9 which refers to authorisations in general,
including authorisations for doors. Events grant and revoke appear easy enough to
get right. However, a simple oversight can lead to a mistake. Event revoke violates
invariant inv2,

Person × {O} ⊆ arm Invariant inv2
p ∈ Person Guard grd1
p �→ r /∈ loc Guard grd2

�
Person × {O} ⊆ arm \ {p �→ r} Modified invariant inv2

We could find out what is wrong only by inspecting the proof obligation. This would
require carrying out some proof steps and understanding where it fails. Alternatively

114 S. Hallerstede and M. Leuschel

Fig. 4. A state trace leading to an inconsistent state

we can model-check our abstract model based on the operational interpretation. In an
instance of the model with two different rooms I and O and one person P the model-
checker yields the counter example in the form of a state trace shown in Figure 4. The
state

arm = {P �→ I, P �→ O}, loc = {P �→ I}
is reachable in three steps. Letting parameter r = O in revoke, a state violating inv2
is reached. We see that we must not remove O from the set of authorised rooms of any
person. To achieve this, we add a third guard to event revoke:

grd3 : r �= O .

The counter example provides valuable information based on what the model “does”.
We can look at event revoke to see what needs to be changed, or better, feed the finding
into the proof obligation. With the new information at hand we can see clearly that the
conclusion Person × {O} ⊆ arm \ {p �→ r} does not hold if r = O.

The model we have obtained thus far is easy to understand. Ignoring the doors in
the building, it is quite simple but already incorporates properties P3, P4, and P6. Its
simplicity permits us to judge more readily whether the model is reasonable. We can
inspect it or animate it and can expect to get a fairly complete picture of its behaviour.
We may ask: Is it possible to achieve a state where some person can move around
in the building? A simplified state-transition graph can summarise such information
comprehensively.

Figure 5 shows a slice of the model constructed by PROB for two persons and two
rooms I and O where only the ranges of loc and of arm are considered. The states have

How to Explain Mistakes 115

Fig. 5. Transitions on a simpler state space, showing ran(loc) �→ ran(arm)

been aggregated in sets according to the expression ran(loc) �→ ran(arm). We can
see how the two persons can pass between the rooms. It is not possible to tell which
person is in which room but we can see that event pass can occur and that locations
change.

5 Concrete Model

We are satisfied with the abstract model of the secure building for now and turn to
the refinement where doors are introduced into the model. A door will be represented
as a pair consisting of two rooms. In the refined model we employ two variables adr
for authorised doors and loc for the locations of persons in the building (as before).
Variable adr is a function which indicates for every person the set of doors he is allowed
to use. The intention is to keep the information contained in the abstract variable arm
implicitly in the concrete variable adr. That is, in the refined model variable arm would
be redundant. We specify

inv5 : adr ∈ Person → (Room ↔ Room) Property P5

inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}] Property P4

Any problem we can have with initialisation we can have with any other event, too;
but in an initialisation they look less interesting because nothing can happen if an ini-
tialisation is wrong. (This is not an argument for ignoring initialisation when teaching
modelling but for presenting interesting problems. And those usually do not appear in
initialisations.) However, we need to know what the initialisation is in order to analyse
other events. We reason: In the abstract model all persons can only be outside initially.
This corresponds to them not being authorised to use any doors,

initialisation

begin

act1 : adr := Person × {∅}
act2 : loc := Person × {O}

end .

116 S. Hallerstede and M. Leuschel

5.1 Moving between Rooms

Let us first look at event pass. Only a few changes are necessary to model property P8,

pass

any p, r when

grd1 : loc(p) �→ r ∈ adr(p) person p is authorised to enter room r from current location

then

act1 : loc := loc �− {p �→ r}
end .

We only have to show guard strengthening, because loc does not occur in inv5 and
inv6. The abstract guard grd1 is strengthened by the concrete guards because r ∈
ran(adr(p)) and by inv6, ran(adr(p)) ⊆ arm[{p}]. The second guard strengthening
proof obligation of event pass is:

loc ∈ Person → Room Invariant inv3
loc(p) �→ r ∈ adr(p) Concrete guard grd1�
p �→ r /∈ loc Abstract guard grd2

Using inv3 we can rephrase the goal,

p �→ r /∈ loc { inv3 }
⇔ loc(p) �= r

Neither concrete guard grd1 nor the invariants inv1 to inv6 imply this. If we animate
the abstract and the concrete machine simultaneously, we find that in the concrete ma-
chine a person can pass from some room into the same room. In the abstract machine
this is not possible as can be seen in Figure 6. We could add a guard loc(p) �= r to
the concrete model but this would make event pass express a person can pass through
a door if it connects two different rooms. However, the model should not contain doors

Fig. 6. Simultaneous animation of concrete (left) and abstract (right) machine

How to Explain Mistakes 117

that connect rooms to themselves in the first place. The invariant is too weak. We do not
specify that doors connect different rooms. In fact, our model of the building is rather
weak. We decide to model the building by the doors that connect the rooms in it. They
are modelled by a constant Door. We make the following two assumptions about doors:

axm1 : Door ∈ Room ↔ Room Each door connects two rooms.

axm2 : Door ∩ idRoom = ∅ No door connects a room to itself.

A new invariant inv7 prevents doors connecting rooms to themselves. We realise that it
captures much better property P5 than invariant inv5,

inv7 : ∀ q · adr(q) ⊆ Door . Property P5

Using inv7 and axm2, we can prove loc(p) �→ r ∈ adr(p) ⇒ loc(p) �= r allowing
to discharge the guard strengthening proof obligation above.

5.2 Leaving the Building

It may be necessary to pass though various rooms in order to leave the building. Hence,
we need to specify a property about the transitive relationship of the doors. Property P7
is more involved.

A relation x is called transitive if x ; x ⊆ x. In other words, any composition of
elements of x is in x. The transitive closure of a relation x is the least relation that
contains x and is transitive. We define the transitive closure x+ of a relation x by

∀x · x ⊆ x+ (6)

∀x · x+ ; x ⊆ x+ (7)

∀x, z · x ⊆ z ∧ z ; x ⊆ z ⇒ x+ ⊆ z . (8)

That is, x+ is the least relation z satisfying x ∪ z ; x ⊆ z.
Using the transitive closure of authorised rooms we can express that every person

can at least reach the authorised rooms from the outside,

inv8 : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} .

This invariant does not quite correspond to property P7. However, by the end of Sec-
tion 5 we will be able to prove that all invariants jointly imply property P7 which we
formalise as a theorem,

thm1 : ∀ q · (arm[{q}] \ {O}) × {O} ⊆ adr(q)+ . Property P7

We proceed like this because we expect that proving inv8 to be preserved would be
much easier than doing the same with thm1. Note, that being able to leave the building
has little to do with moving between rooms but with granting and revoking authori-
sations. We do not formalise leaving the building only ability to do so. And this can
appropriately done by means of an invariant or a theorem such as the above.

118 S. Hallerstede and M. Leuschel

5.3 Granting Door Authorisations

A new door authorisation can be granted to a person if (a) it has not been granted yet
and (b) authorisation for one of the connected rooms has been granted to the person.
We introduce constraint (a) to focus on the interesting case and constraint (b) to satisfy
invariant inv8. Thus,

grant

any p, s, r when

grd1 : {s �→ r, r �→ s} ⊆ Door \ adr(p)
grd2 : s ∈ dom(adr(p)) ∪ {O}

then

act1 : adr := adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}} 6

end

In our model a door connecting a room r to another room s is modelled by the set of
pairs {s �→ r, r �→ s}. Doors are modelled by their property of connecting two rooms
in both directions. Each door D is a symmetric relation, that is, D ⊆ D−1.

Unfortunately, we have introduced a deadlock. Figure 7 shows an example of a state
trace leading to a deadlock. The guard of event grant seems to be too strong. The

Fig. 7. State trace leading to a deadlock

problem is caused by the set of doors. It satisfies Door ∩ Door−1 = ∅. We have
not specified symmetry as a property of the set Door. Hence, there may not be any
door {s �→ r, r �→ s} contained in that set. Symmetry of the set Door needs to be
specified, too:

axm3 : Door ⊆ Door−1 Each door can be used in both directions

6 Event-B has the shorter (and more legible) notation adr(p) := adr(p) ∪ {s �→ r, r �→ s}
for this. We do not use it because we can use the formula above directly in proof obligations.
We also try as much as possible to avoid introducing more notation than necessary.

How to Explain Mistakes 119

It is another assumption we have taken into account when modelling the building. It
was not the guard of event grant that was too strong, rather the assumptions about the
building were too weak.

There is yet another problem. The guard of concrete event grant is to weak to prove
preservation of invariant inv6. (We could also look for problem with the action but this
does not appear promising given all it does is to add the door {s �→ r, r �→ s} to
the authorisations of person p.) In fact, this cannot be spotted by animation or model-
checking. The state of the system always satisfies the invariant and cannot reach an
inconsistent state. However, the invariant does not provide enough information to prove
this. We have a look at the corresponding proof obligation. For invariant inv6 we have
to prove:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
{s �→ r, r �→ s} ⊆ Door \ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2

�
ran((adr �− {p �→ adr(p) ∪ {s �→ r, r �→ s}})(q))
⊆ (arm ∪ {p �→ r})[{q}] Modified invariant inv6

for all q. For q �= p the proof is easy. For the other case q = p we prove,

ran(adr(p) ∪ {s �→ r, r �→ s}) ⊆ (arm ∪ {p �→ r})[{p}]
⇐ . . .

⇐ s ∈ ran(adr(p))

We would expect s ∈ ran(adr(p)) to hold because doors are symmetric and because by
concrete guard grd2 we have s ∈ dom(adr(p)). Although only symmetric relations
{s �→ r, r �→ s} are added to adr(p) it is recorded nowhere that adr(p) itself is
therefore a symmetric relation. We have to specify it explicitly,

inv9 : ∀ q · adr(q) ⊆ adr(q)−1 . (see axiom axm3)

We can continue the proof where we left off

s ∈ ran(adr(p)) { inv9 with “q := p” }
⇐ s ∈ dom(adr(p))

By adding invariant inv9 we have stated a property of the model that was already true. It
just was not mentioned explicitly in the model. This property could only be discovered
by proof [7].

5.4 Revoking Door Authorisations

We model revoking of door authorisations symmetrically to granting door authorisa-
tions. A door authorisation can be revoked if (a) there is an authorisation for the door,
(b) the corresponding person is not in the room that could be removed, (c) the room
is not the outside, and (d) all rooms except for the room to be removed must still be

120 S. Hallerstede and M. Leuschel

reachable from the outside after revoking the authorisation for a door leading to that
room. Condition (a) is just chosen symmetrically to grd1 of refined event revoke (for
the same reason). The other two conditions (b) and (c) are already present in the ab-
straction. The refined events grant and revoke together model property P9.

revoke

any p, s, r when

grd1 : s �→ r ∈ adr(p)
grd2 : p �→ r /∈ loc

grd3 : r �= O
grd4 : ran(adr(p)) \ {r} ⊆ (adr(p) \ {s �→ r, r �→ s})+[{O}] ∪ {O}

then

act1 : adr := adr �− {p �→ adr(p) \ {s �→ r, r �→ s}}
end

We succeed proving guard strengthening of the abstract guards grd1 to grd3 and preser-
vation of inv5, inv6, inv7, and inv9. But preservation of inv6 cannot be proved:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s �→ r ∈ adr(p) Concrete guard grd1
p �→ r /∈ loc Concrete guard grd2
r �= O Concrete guard grd3

�
ran((adr �− {p �→ adr(p) \ {s �→ r, r �→ s}})(q))
⊆ (arm \ {p �→ r})[{q}] Modified invariant inv6

for all q. For q = p we have to prove ran(adr(p) \ {s �→ r, r �→ s}) ⊆ arm[{p}] \
{r}, thus, r /∈ ran(adr(p) \ {s �→ r, r �→ s}). This does not look right. Model-
checking yields a counter example in form of a state trace; see Figure 8. (ProB permits
to search directly for a violation of invariant inv6.) We find a counter example with one
person P and three different rooms H, I, O. We can reach the state:

adr = {P �→ {O �→ H, H �→ O, O �→ I, I �→ O, I �→ H, H �→ I}}
arm = {P �→ H, P �→ I, P �→ O}
loc = {P �→ O} .

Revoking a door authorisation with parameters

p = P s = I r = H

leads to a state violating invariant inv6. In order to resolve this problem we could
remove all doors connecting to r. But this seems not acceptable: we grant door autho-
risations one by one and we should revoke them one by one. We have to look at the
problem from another angle. Figure 9 shows a continuation of the simultaneous trace
of the abstract and the concrete machine. We cannot say anymore what happens in the
abstract machine because the gluing invariant inv6 is violated. But we can still see

How to Explain Mistakes 121

Fig. 8. Simultaneous state trace leading to an invariant violation

Fig. 9. The concrete trace continued

what the concrete machine could “do” next. Concrete revoke may occur again remov-
ing a door to H. We could strengthen the guard of the concrete event requiring, say,
adr(p)[{r}] = {s}. But then we would not be able to revoke authorisations once there
are two or more doors for the same room. The problem is in the abstraction! We should
allow abstract event revoke to occur more often. It should not always remove r when
it occurs. We weaken the guard of the abstract event using a set R of at most one room

122 S. Hallerstede and M. Leuschel

Fig. 10. Simultaneous trace of corrected model

instead of r. If R = ∅, then {p} × R = ∅. So, for R = ∅ event revoke does not
change arm and for R = {r} the effect of the event corresponds to the first attempt at
abstract event revoke:

revoke

any p, R when

grd1 : p ∈ Person

grd2 : loc(p) /∈ R

grd3 : R ∈ S(Room \ {O})
then

act1 : arm := arm \ ({p} × R)
end ,

where for a set X by S(X) we denote all subsets of X with at most one element:

Y ∈ S(X) =̂ Y ⊆ X ∧ (∀x, y · x ∈ Y ∧ y ∈ Y ⇒ x = y) .

How to Explain Mistakes 123

With this the proof obligation for invariant preservation of inv6 becomes:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s �→ r ∈ adr(p) Concrete guard grd1
p �→ r /∈ loc Concrete guard grd2
r �= O Concrete guard grd3�
ran((adr �− {p �→ adr(p) \ {s �→ r, r �→ s}})(q))
⊆ (arm \ ({p} × R))[{q}] Modified invariant inv6

for all q. For q = p we have to prove,

ran(adr(p) \ {s �→ r, r �→ s}) ⊆ arm[{p}] \ R . (9)

We need to make a connection between r and R. We need a witness for R. After some
reflection we decide for

R = {r} \ ran(adr(p) \ {s �→ r, r �→ s}) . (10)

Witness (10) explains how the concrete and the abstract event are related. If there is only
one door s connecting to room r, then R = {r} and the authorisation for room r is
revoked. Otherwise, R = ∅ and the authorisation for room r is kept. The simultaneous
trace (Figure 10) now confirms the correct behaviour and the proof succeeds too.

6 Conclusion

We have shown how different techniques of formal reasoning can be used jointly to
understand and improve a formal model. In this article we have included formal proof,
model-checking, and animation. This intended to be an open list. Sometimes we have
used the result of model-checking or animation of a model to understand better prob-
lems that appeared in proof obligations. We have also seen cases where only model-
checking showed that there was a problem. In the fragment of Event-B defined in
Section 2 there is no mention of deadlock freedom, but the model-checker of ProB
checks for it based on the operational interpretation. In all cases we have used the in-
formation gained as evidence from where to investigate and explain errors. We also saw
that not all problems are found by model-checking or animation. Neither formal proof
nor model-checking are complete in this sense.

A danger of using the operational interpretation is that students only think in terms of
it, making it difficult to convey at the same time the usefulness of abstract reasoning by
formal proof. But we think this is a very limited risk and the benefits outweigh it by far.
In particular, comparing refinements by simultaneous traces helps greatly understanding
particular refinements. An improved implementation of simultaneous model-checking
and animation in PROB, using ideas of Brama [13], is under way.

Acknowledgement. This research was carried out as part of the EU research project
DEPLOY (Industrial deployment of system engineering methods providing high de-
pendability and productivity) http://www.deploy-project.eu/.

124 S. Hallerstede and M. Leuschel

References

1. Abrial, J.-R. (ed.): The B-Book: Assigning Programs to Meanings. CUP, Cambridge (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-

sity Press, Cambridge (2008) (to appear)
3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for

Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

4. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Discrete Mod-
els: Application to Event-B. Fundamentae Informatica 77(1-2) (2007)

5. Eclipse platform homepage, http://www.eclipse.org/
6. Hallerstede, S.: How to make mistakes. In: TFM B (to appear, 2009)
7. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S., Mandrioli,

D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)
8. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K., Banach, R.

(eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg (2005)
9. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.

STTT 10(2), 185–203 (2008)
10. Leuschel, M., Turner, E.: Visualizing larger states spaces in ProB. In: Treharne, H., King, S.,

Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 6–23. Springer, Heidel-
berg (2005)

11. Morgan, C.C. (ed.): Programming from Specifications, 2nd edn. Prentice Hall, Englewood
Cliffs (1994)

12. Schneider, S.: The B-Method: An Introduction. Palgrave, Oxford (2002)
13. Servat, T.: BRAMA: A new graphic animation tool for B models. In: Julliand, J.,

Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidelberg (2007)
14. Spermann, C., Leuschel, M.: ProB gets nauty: Effective symmetry reduction for B and Z

models. In: Proceedings Symposium TASE 2008, Nanjing, China, June 2008, pp. 15–22.
IEEE, Los Alamitos (2008)

http://www.eclipse.org/

Integrated and Tool-Supported Teaching
of Testing, Debugging, and Verification

Wolfgang Ahrendt, Richard Bubel, and Reiner Hähnle

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

{ahrendt,bubel,reiner}@chalmers.se

Abstract. The course “Testing, Debugging, and Verification” is a non-
traditional formal methods course that connects formal approaches to
real-world development techniques in a novel way. A general theme in
the course is that formalisation of specifications is the basis for debugging
and test generation tools that go beyond what is possible with merely
informal methods, and ultimately provides the opportunity of formal
verification. Thereby, the course aims at integrating formal and informal
methods as much as possible. The course is supposed to be accessible to
participants without extensive mathematical training. We report about
the design, implementation, and experiences with the course.

1 Introduction

The motivation and background for this paper is the design and implementa-
tion of a course called Testing, Debugging, and Verification (henceforth, called
TDV) held at the Department of Computer Science and Engineering, Chalmers
University of Technology.1 This course is designed for third year students, i.e.,
the late Bachelor level. Consequently, it is not meant to provide a deep spe-
cialisation, like traditional introductions into formal methods, but it aims to
inform systematically about a wide range of software validation methods that
range from testing via debugging to formal verification. The course consists of
thirteen lectures each of which takes 2×45mins, six exercise units, and three lab
assignments. The students are credited 7.5 ETCS points.

In the TDV course, we aimed at integrating formal and informal methods
as much as possible. We also attempted to make the course accessible to par-
ticipants without extensive mathematical training. These are useful properties
for many contemporary Bachelor programs. For this reason, we believe that the
course concept as well as the lessons we learned from constructing and holding
this course in its particular setting can be of general interest.

In the following section we explain the general teaching background and set-
ting against which we developed the course, and we state the teaching goals and
outcomes. In Section 3 we explain the conceptual choices we made to achieve the
course goals. In Section 4 we describe the realisation of the course concepts, with
1 Course Code TDA566, http://www.cse.chalmers.se/edu/course/TDA566/

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 125–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cse.chalmers.se/edu/course/TDA566/

126 W. Ahrendt, R. Bubel, and R. Hähnle

an emphasis on the required technical and tool contributions. We also explain
how the technical choices contribute to realizing the course goals. In Section 5
we summarise experiences, discuss alternative approaches, future development,
and limitations.

2 Background and Goals

Engineering Tradition. Chalmers is a Technical University with a very strong
Engineering tradition. The majority of Sweden’s engineers have graduated from
Chalmers. Since 2006, the education follows a 3-year Bachelor/2-year Masters
system. The Bachelor programme is officially called the “base part of civil engi-
neering education”. Bachelor graduates from Chalmers are guaranteed a place
in a suitable Masters programme and by default Masters graduates are also is-
sued an engineering degree. As a consequence, there is still a strong flavour of a
traditional engineering education.

Few Theoretical Prerequisites. For a course in formal methods this background
has some important consequences: first, the Bachelor programmes are designed to
provide broad knowledge in engineering. All programmes contain project-based
courses that introduce into general engineering concepts. There is no Computer
Science programme at the Bachelor level with strong theoretical foundations as
can be found at many continental European universities. Mathematical courses
concentrate on calculus, algebra, and statistics. There is a solid introduction into
programming, including design and algorithms, but there is no room for courses
dedicated to theoretical computer science, logic, or formal systems.

Hands-On Approach. A second consequence of the educational tradition at
Chalmers is that most courses contain a “lab” component that may take up
20–50% of the time a student spends on a course. This practical part typically
consists of 2–5 mini-projects done in teams where the students need to apply in
practice what they have learned. In principle, it is a good thing to immediately
reinforce by practice what has been learned, but it poses some challenges on the
course design:

– the theoretical contents conveyed in the lectures must actually be relevant
to solve the practical tasks, otherwise, the former may be dismissed as irrel-
evant;

– grading of the practical components must be reasonably economical (wrt.
time spent), otherwise the course does not scale with the number of students;

– students have an increased expectation level with respect to practical appli-
cability of course contents.

Transition to Masters Level. While the Bachelor education at Chalmers is rela-
tively broad and practically geared, the picture changes at the Masters level: the
Masters programmes are rather specialised and offer many advanced courses that

Integrated Teaching of Testing, Debugging, and Verification 127

lead close to the frontiers of current research, and usually given by researchers
which are active in the respective area.

All Masters programmes at Chalmers are held in English and more than one
third of the Masters students in Computer Science-related programmes are non-
Swedish. The influx of foreign students with widely differing backgrounds as well
as the considerably more theoretical character of some advanced Masters courses
can cause tension. To make the transition smoother the TDV course has been
designated to be among the courses that provide a bridge between the Bachelor
and Masters level. It can be taken both by 3rd year Bachelor students and 1st
year Masters students, however, it is not obligatory for either.

Course Goals. Given the background described above we derived a number of
goals that we wanted to achieve with the concept and the design of the TDV
course:

Integration. Formal methods, that is, formal approaches for describing and
analysing software systems should not come across as a more or less radical
alternative to traditional software design techniques, but as an integrated
aspect of software quality management. “Formal” and “informal” techniques
are not be juxtaposed but, rather, formalisation is presented as a natural
consequence of a systematic analysis and the desire to automate manual
processes.

Diversity. Contemporary Software Engineering has a whole spectrum of val-
idation and analysis methods to offer, some of which are informal though
systematic (e.g., testing, debugging) and others make use of some kind of
formal notation (e.g., automated test case generation (ATCG), formal spec-
ification, formal verification). Some methods are supposed to detect errors
(testing, test generation), some to eliminate errors (debugging), and some to
ensure that no errors w.r.t. a given specification are left (formal verification).
This kind of diversity is essential to ensure efficient software construction
with a high quality outcome. No method alone (e.g., only testing or only
verification) is sufficient.

Applicability. Formal methods can be applied to real programs and problems,
not only to toy languages. They can help to understand a program better
(e.g., through visualisation of a symbolic execution tree or by verification
of invariants), to detect problems (e.g., caused by insufficient specifications)
or to save time during development (e.g., with automated test case gener-
ation). We show all these methods in action with actually executable Java

programs. We choose Java, because all students are familiar with it.
Formalisation = Tool Support. Formalisation of software and its properties

is not an end in itself, but it is a prerequisite for new and more far-reaching
software analysis and design tools. Everyone uses compilers, and it is also
very popular to illustrate software designs with diagrams. This is fine, but
with a rigorous, formal description of the intended behaviour of a program,
one can do much more.

128 W. Ahrendt, R. Bubel, and R. Hähnle

Tools are essential. Without tools the potential of formalisation cannot be
fully realised. Without tool support, formal specifications even of small pro-
grams inevitably are incomplete or wrong. Hand-written verification argu-
ments are error-prone. In contrast to mathematical proofs, arguments about
the correctness of programs must be formal and mechanised. Already with
very lightweight usage of formalisation tools can save a lot of time (e.g.,
minimisation of test cases).

General Interest. We believe that the above list of desirable properties of an
FM course is not unique to our situation at Chalmers: The Bachelor/Masters
system led to a thinning-out of theory courses in many places. Likewise, one can
observe an increased demand for “applicable” contents on the side of students.
At the same time, academic programmes are opening up more and more for
life-long education efforts, often in connection with industry. We see, therefore,
the general need for “hands-on” formal methods courses that are accessible to
experienced software designers who possess limited mathematical training. We
are convinced that such a course must firmly place formalisation within the
existing biosphere of available tools and methods. In addition, the prospect of
saving time by using advanced tools that are enabled through formalisation, is
a major motivation for increased rigour.

3 Concepts

In this section we explain the concepts that we chose to realise the course goals.
The main message conveyed to students is that the course provides an overview
of a broad range of software validation methods. To meet our diversity goal
(see Section 2) we decided to address four essential activities that arise during
software construction: testing, specification, debugging, and verification. These
are covered in five teaching units as summarised in Table 1. Within each topic we
selected a number of representative techniques. Obviously, it is not possible to be
exhaustive, and other choices would have been possible. Alternatives are further
discussed in Section 5. Additionally, we made two general design decisions:

1. Each teaching unit must involve practical exercises with at least one tool.
2. We do not introduce a formal, mathematical semantics of the specification

languages we use (mainly JML [15] and, to some extent, first-order logic).
Rather we teach them like a programming language: a systematic conceptual
introduction backed up by examples. This decision is not only motivated by a
lack of time, but also by our intention (See Section 2) to present formalisation
as an immediately useful and readily applicable activity.2

In the following, we explain the approach that we took with respect to each
of the activities testing, specification, debugging, and verification and how we
achieve the goals laid down above. The close interdependencies between the
various course topics are depicted in Figure 1.
2 A similar approach has been recently taken by Ben-Ari’s excellent introduction to

model checking [5].

Integrated Teaching of Testing, Debugging, and Verification 129

Table 1. Main characteristics of TDV teaching units

Teaching Unit Content Formal Tools
Testing Systematic testing, specification,

assertions, black/white box,
path/code coverage

no JUnit

Debugging Bug tracking, execution control,
failure input minimisation,
logging, slicing

no DDinput,
Eclipse,
log4j

Formal
Specification

Design-by-contract, formalisation,
first-order logic, JML

yes jml (type
checker)

Automated
Test Case
Generation

Model-based TC generation,
Symbolic execution,
Code-based TC generation

yes jmlunit,
KeY VSD,
KeY VBT

Formal
Verification

Hoare triple, weakest precondition,
formal verification, loop invariant

yes KeY-Hoare

Testing. Testing is indispensable, even when formal techniques are in place,
because of incomplete specifications or unavailable source code. Our take on
testing includes two passes: in the first round, an overview over classic test-
ing concepts is provided. Test cases and oracles are written and derived from
the code and specification by hand, then executed automatically with JUnit

(http://www.junit.org). After having introduced formal specification with
JML we revisit testing and show that even a relatively simple model-based test
generation tool such as jmlunit increases the degree of automation. Thereafter,
we go one step further and introduce the fundamental technique of symbolic
execution which is the basis of code-based test generation. We show that for-
malisation leads to automation (in model-based test generation) and that the
dynamic analysis technique symbolic execution, which is practically and the-
oretically more difficult than static analysis, increases coverage and helps to
understand programs.

Specification. The value of explicitly specifying requirements and properties of
software is often underestimated by students. Therefore, we decided to make
specification a permeating topic of the course that resurfaces as an essential
prerequisite for nearly everything (see Figure 1). In the first pass on testing we
stress that testing becomes arbitrary without a notion of what is being tested for.
Informal specifications lead to test oracles that are crafted by hand. Later, spec-
ifications in JML partially automate test case and oracle generation. Obviously,
specification is a prerequisite for formal verification, but also a source for useful
initial states and the exclusion of unfeasible paths in debugging. For structuring

http://www.junit.org

130 W. Ahrendt, R. Bubel, and R. Hähnle

Debugging
classic visual

Fo
rm

al

+

Inform
al

F
orm

al
V
erification

classic
testing

model-based
ATCG

code-based
ATCG

Testing

Specification

Symbolic
Execution

Fig. 1. Dependencies among TDV topics

specifications we follow the design-by-contract paradigm [18], starting with the
observation that even in traditional Java development one implicitly programs
with contracts.

During the course we gradually increase the rigour of contracts. This motivates
the move from natural language to a dedicated specification language. The choice
of JML is driven by the the fact that it is based on Java expressions, which
makes the discussion of introductory examples very intuitive. Extending on such
examples leads to the on-demand introduction of JML features that go beyond
Java such as pre-state values and quantification.

Debugging. Given that debugging accounts for a substantial amount of devel-
oper’s time it is surprising that Zeller’s book [21] is the only systematic intro-
duction to debugging on the market. Even in a comprehensive standard text on
software engineering such as [20], only half a page of nearly 1000 pages is de-
voted to debugging. Debugging is also neglected by formal approaches. The most
comprehensive textbook on Software Engineering based on a formal approach
[6] does not mention debugging at all.

In the course, we present selected topics from [21]. We show that even a
simple tool such as a minimisation algorithm for bug-inducing input can result
in vast time savings. We also found that many students are unfamiliar with
logging frameworks and modern interactive debuggers, so we include those as
well. We stress the importance of bugs as a source for regression tests. We show

Integrated Teaching of Testing, Debugging, and Verification 131

that tracing back an infected program state to the location of the bug that
caused it can be systematised based on the fundamental notion of program
slices. Altogether, we try to convey that the unavoidable activity of debugging
is not a “black art”, but a systematic craft that can be learned. It is also linked
to testing as well as specification.

Verification. Throughout the course we stress that verification is a broad spec-
trum of informal as well as formal program analysis methods of which formal
verification is the most rigorous. Informal verification methods include code re-
views and metrics. More automation is provided by various static checking tools
such as ESC/Java2 [9]. As informal verification is covered in other courses and
we wanted the students to learn at least one important theoretical concept, we
decided to concentrate on formal verification. By far the most popular approach
to formal verification is Hoare logic which is what we align to as well. When we
planned the course, we were very surprised that there was not a single verification
tool on the market that can be used for teaching Hoare logic. All lecture notes
on Hoare logic that we found were based on hand-written proofs. Not surpris-
ingly, therefore, many exercises in lecture notes exhibited errors when we tried
to machine-check them. As the TDV course is about verification, and not about
first-order theorem proving, we wanted a tool with an oracle that can dispose
of first-order verification conditions. In the end we created such a tool ourselves
based on the Java verification system KeY. The KeY-Hoare tool is described in
[7] and Section 4.4 below.

4 Realisation and Implementation

We describe in this section the realisation of the course concepts focusing in
particular on the necessary technical and tool contributions.

4.1 Specification and the Java Modelling Language

Right from the beginning of the course, we put much emphasis on specification.
At first, we teach how to write informal, but precise method specifications in
natural language. A central goal of this exercise is to introduce concepts such
as pre- and postconditions to document method behaviour. Also, we emphasise
that programmers must be fully aware of the specification of code they use, and
of the specification they implement. A central example is the consistency re-
quirement on equals() and hashcode() as formulated in the inherited contract
of Object. We demonstrate the common error to redefine equals() without
redefining hashcode(). This usually violates the inherited contract and leads to
unexpected results in the interaction with Java collections.

As an example of a formal specification language we introduce the Java Mod-

elling Language (JML) [15,16]. JML is a so-called “one-tiered specification
language” [13] whose expressions are a superset of Java’s expressions and easy
to master for programmers. JML specifications are attached to the implemen-
tations as structured comments in the source code. For the objectives of the

132 W. Ahrendt, R. Bubel, and R. Hähnle

course, this technical integration supports the message of specification and im-
plementation as being integrated activities.

Another reason for choosing JML as formal specification language is its sizable
community among practitioners and readily available open source tool support
such as ESC/Java2 [9] or the Common JML tools

3. Out of those, we mostly
use the jml syntax and type checker, without which most specifications written
by students or even teachers are likely to not follow all restrictions imposed by
the language. In particular, visibility rules are checked, as well as “purity” (side
effect-freeness) of methods used in specifications. A further advantage of JML

is the on-line availability of specifications for many standard library classes,
following the pattern of Javadoc pages. (Library classes are, however, often too
complex to serve as introductory examples.)

The close relation of Java and JML allows to introduce the latter entirely
example-driven. Starting from monolithic natural language specifications as
found in typical specification documents of APIs, we identify corresponding
pre-/postcondition pairs. First examples are chosen such that informal pre- and
postconditions can be turned into boolean Java expressions, thereby manifest-
ing JML specifications already. When later examples exceed the expressiveness
of Java, further JML features are introduced on demand such as access to
pre-state values, or quantification. Finally, unsatisfactory attempts to express
(i) unchanged program locations and (ii) consistency conditions on fields mo-
tivate the introduction of the concepts of (i) assignable clauses and (ii) class
invariants that allow to express these requirements much more neatly.

4.2 Verification-Based Testing

In the TDV course we give a brief introduction on conventional testing the-
ory and introduce common notions such as black-/white-box testing, coverage
criteria, etc. (see Table 1). In accompanying demonstrations and exercises the
students are encouraged to write their own unit tests by hand using the JUnit

4

framework.
Once formal specifications have been introduced, we revisit testing under the

aspect of automated test case generation (ATCG).
We start with a black-box testing approach to ATCG, namely, model-based

test generation. Model-based testing typically tries to logically cover specifica-
tions and select boundary cases by analysing the specification for e.g. implicit
disjunctions. The generated test suite is supposed to contain at least one bound-
ary test for each logical disjunct. Besides teaching the students a basic algorithm
to generate such test cases, we let them experiment with the model-based test
generation tool jmlunit [8] from the Common JML tools suite.

Finally, we present code-based test generation as a white-box approach to
ATCG. In code-based test generation the control-flow of the code under test is
analysed to generate test suites, normally achieving a higher branch and state-
ment coverage than with model-based testing approaches. We focus on a recent
3 http://www.eecs.ucf.edu/~leavens/JML/download.shtml (GPL)
4 http://www.junit.org (CPL)

http://www.eecs.ucf.edu/~leavens/JML/download.shtml
http://www.junit.org

Integrated Teaching of Testing, Debugging, and Verification 133

variant of code-based test generation that uses symbolic program execution as
the underlying method to analyse the code under test [10,12].

Symbolic execution is a general dynamic analysis technique where program
execution is performed with symbolic values rather than with concrete values
for input data, and program outputs are expressed as logical or mathematical
expressions involving those symbols [14]. Consequently, when statements are
executed that cause the control-flow to branch, all possible continuations have to
be considered. Thus a symbolic program run does not result in a single execution
path (trace), but in an execution tree covering every possible concrete execution
trace.

Formal specifications are used to prune infeasible branches of the symbolic
execution tree. After some Java code has been symbolically executed up to
some depth one attempts to generate a test case for each feasible branch of the
resulting symbolic execution tree. It is possible to show that this ensures feasible
branch coverage provided that the code under test is symbolically executed to
sufficient depth.

In the course we use our own fully automatic verification-based test generation
tool called KeY VBT5 described in detail in [11,12] .

4.3 Debugging

To remedy the lack of systematic teaching of debugging observed in Section 3
we present a number of approaches to debugging in TDV. The students learn
how to

log events systematically: instead of distributing print statements all over the
code to narrow down code fragments that contain a bug, they are taught to
log events using the log4j6 framework developed by the Apache Software
Foundation. It allows to log events driven by orthogonal criteria such as
emitting component and event type/severity.

use debuggers to comprehend code and to locate erroneous program code: the
students are taught stepwise execution of programs, breakpoints and variable
inspection hands-on using the Eclipse debugger.

use delta debugging to automatically minimise the input revealing a certain
error. The delta debugging algorithm [22,21] is taught together with usage
of the DDinput7 framework.

All these techniques belong to the informal spectrum of the software engineering
field and do not require any formal methods. The educational objective is here
to teach useful systematic debugging techniques and to let the students actively
explore reach and limits of those tools.

5 http://www.key-project.org/download/testgen.html (GPL)
6 http://logging.apache.org/log4j/1.2/index.html (Apache License)
7 http://www.phbouillon.de/index.php?class=Calimero_Webpage\&id=23680

http://www.key-project.org/download/testgen.html
http://logging.apache.org/log4j/1.2/index.html
http://www.phbouillon.de/index.php?class=Calimero_Webpage\&id=23680

134 W. Ahrendt, R. Bubel, and R. Hähnle

Later in the course we connect debugging more tightly to the formal world.
While we explain white-box automated test case generation we introduce a pro-
totype of a visual symbolic-state debugger [3,19] integrating debugging, visuali-
sation, and automatic test case generation (see Figures 2 and 3).

In contrast to a standard debugger, the visual debugger is based on symbolic
execution. As described in Section 4.2 the idea of symbolic execution is to run
a program not on concrete, but on symbolic input values. The set of the initial
states to be considered can be restricted by adding constraints on the symbolic
values in form of JML preconditions. The benefits of a visual symbolic debugger
are three-fold:

1. A standard debugger executing a program on concrete input can only inspect
a single run of a program at a time. The visual debugger in contrast inspects
all possible runs of a program for any possible input simultaneously. This
is feasible, as the symbolic execution engine generates a symbolic execution
tree (Figure 2) rather than a single path.

2. Using symbolic values allows to start debugging at any given position in the
source code. It is in particular not necessary to execute complex initialisation
code establishing the initial state from where to start the actual debugging.

3. The symbolic execution tree represents a memory-efficient data structure
of the complete symbolic execution history. As debugging can be started
immediately at any source code position, it is possible to keep the length
of the execution history small without losing information. Hence, the visual
debugger is also an omniscient debugger [17] enabling the developer to jump
back and forth through the execution history as well as to inspect and to
compare different states without having to rerun the program. Omniscient
debuggers based on standard debugging technology are limited by excessive
memory consumption requirements for storing the program execution history
which tends to be very long in the absence of symbolic initial states.

Further features of the visual debugger include stepwise symbolic program exe-
cution, breakpoints and watchpoints. Like standard debuggers stepwise symbolic
execution permits to control the granularity of execution steps, letting the user
decide to step into or over statements and methods. Watchpoints are floating
breakpoints interrupting symbolic execution at nodes that satisfy a user-specified
condition.

Besides the execution tree view (see Figure 2), the visual debugger provides
also a visualisation of the symbolic state for any execution tree node. The sym-
bolic state is visualised as a symbolic UML object diagram (see Figure 3). The
user can browse through all possible configurations of the symbolic state.

Finally, the visual debugger integrates the automatic test case generation
tool described in Section 4.2. This integration allows a convenient generation of
regression tests. Whenever a test case fails, then the corresponding path in the
symbolic execution tree is highlighted.

Integrated Teaching of Testing, Debugging, and Verification 135

Fig. 2. Execution tree view of a prototypical Visual Debugger exemplified by a removal
method for elements in a linked list. The currently executed statement is highlighted
both in the editor and in the symbolic execution tree.

136 W. Ahrendt, R. Bubel, and R. Hähnle

(a) Symbolic state before removal of list element list 1

(b) Symbolic state after removal of list element list 1 (list 1 is no longer reach-
able from the list head list 0)

Fig. 3. Object diagram view of a prototypical Visual Debugger

Integrated Teaching of Testing, Debugging, and Verification 137

4.4 The KeY-Hoare Tool

As detailed in Section 3 the final teaching unit focuses on the most rigorous
approach to software validation, namely, formal verification of programs.

For many students this is actually the first time that they are introduced
to the idea that programs can be proved correct. This is both a chance and a
risk at the same time. If done well, one has the rare opportunity to meet open,
unprejudiced minds. But if not done with care, formal verification ends up being
stowed away as a useless academic pastime.

The authors have experienced more than once that even active researchers in
other fields of computer science are unaware of the progress achieved in formal
verification during the last 15 years, but still hanging on the impression of the
area from the early eighties. Instead we claim that:

Formal methods are applicable in the real world.

Formal methods are part of the software development tool chain.

These are the (not so) subliminal messages we want to pass on to the stu-
dents. Consequently, a hands-on part where students verify their own programs is
crucial.

In the lectures we present formal verification as the natural next step com-
ing at an acceptable cost after a partial formal specification is already in place.
At this point in the course students have had already seen (in the lecture) and
written (exercises and lab courses) a number of small programs annotated in a
formal specification language. In particular, they have experienced the advan-
tages of formal specifications as a prerequisite for

– automated test case generation: in contrast to hand-written unit test cases
the resulting tests are guaranteed to satisfy formal criteria such as branch
coverage, coverage of logical conditions, etc.

– systematic debugging using a symbolic debugger with extended functionality
not achievable with standard debuggers.

In this context, presenting a Hoare-style calculus as a mere pen-and-paper ver-
sion is unconvincing and obscures the message to be transported. Instead it is
important to provide access to an easily usable (in particular, easily installable
and documented) verification tool that provides a reasonable level of automation.
We would even go as far as to say that formal verification without mechanisation
and automation is pointless.

We had the following requirements on the tool that would be used in the
lectures:

1. The calculus implemented by the tool should be a Hoare- or Dijkstra-like
calculus. This eases the orientation for interested students who want to read
additional material in advanced textbooks.

2. The supported programming language should be
– simple, because teaching a calculus for a programming language like

Java is obviously not feasible in an introductory course such as TDV;

138 W. Ahrendt, R. Bubel, and R. Hähnle

– imperative, because most students are more familiar with imperative
languages and imperative languages are the most commonly used.

3. The generation of verification conditions, respectively, weakest precondition
computation should be transparent and presented in detail to the students,
while first-order reasoning on program-free expressions should be treated as
black-box.

4. Reasonable automation: writing a correct specification, in particular, find-
ing the right loop invariants, is already hard for students. If a valid proof
obligation cannot be proven automatically, it is frustrating and not very con-
vincing. Of course, we cannot overcome theoretical limitations, but for the
kind of programs given to the students, the prover must be able to close vir-
tually all occurring valid first-order verification conditions. In other words,
if a proof obligation cannot be shown, then this should indicate that the
program is erroneous, or the specification wrong or too weak. For complex
programs it is already hard to find out whether the error is in the specifica-
tion or in the program.

We were surprised that no tool existed which satisfied our requirements. Tools
tailored towards program verification were designed for complex target languages
like Java going beyond the scope of the lecture, others required extensive in-
troduction into the underlying proof assistant or completely lacked automation.
Finally, we decided to adapt our own program verification tool KeY [4]. We de-
cided against using unaltered KeY in the specific context of the TDV course,
because it is targeted towards full Java and uses a sequent calculus in dynamic
logic which we thought is not “mainstream” enough.

The developed variant of KeY, called KeY-Hoare8 [7], is implemented on top
of the standard KeY-tool. It has a simple imperative programming language
with arrays as target language. The specification language is a standard sorted
first-order logic with arithmetic. The latter’s concrete syntax is almost identical
to JML with which the students are already familiar. The implemented Hoare-
style calculus [7] has some other characteristics which make it suitable for an
introductory course:

– The calculus is based on symbolic execution following the control flow of
the program. Approaching verification condition generation from the view-
point of a (symbolic) interpreter eases the topic considerably for the students
providing a bridge between new ideas and existing knowledge.

– The calculus is computational and resembles in this aspect Dijkstra’s weak-
est precondition calculus. The only non-deterministic verification condition
generation rule is the loop invariant rule where user interaction is needed.

– First-order reasoning can be treated as black-box. As we built on top of
the standard KeY-tool, we could reuse its state-of-art first-order prover with
support for linear and non-linear arithmetic. For the kind of problems en-
countered by students in exercises and lab courses the prover works in almost
every case fully automatic, i.e., typically a goal that cannot be closed indi-
cates an invalid proof obligation.

8 http://www.key-project.org/download/hoare (GPL)

http://www.key-project.org/download/hoare

Integrated Teaching of Testing, Debugging, and Verification 139

The prover provides a user-friendly, self-explaining point-and-click GUI. It
can be installed using Java webstart technology with one click on all standard
architectures (Linux, Windows, MacOS).

Finally, using a tool to teach formal program verification helps also the teacher
as it avoids common mistakes found in typical lecture notes where given spec-
ifications (in particular, loop invariants) are too weak to be actually proven.
Tool support saves also time spend on supervision as students need less supervi-
sion than for pen-and-paper proofs. Mechanisation is also important in grading,
because soundness of the verification tool ensures that completed proofs are cor-
rect. KeY-Hoare produces proof certificates that can be loaded, inspected, and
verified by the teacher to avoid fraud.

5 Experiences and Discussion

History. The TDV course has been taught in its present form two times, starting
in Fall of 2007. The course goes back to a course called Program Verification that
was supposed to be a lightweight introduction to formal verification techniques
(without tool support). The course had attracted relatively few students and
used to be on the borderline of being economically feasible. In an attempt to
make it more attractive to a broader audience, we expanded significantly on
the testing topic, and included debugging for the first time, thereby redesigning
it radically using the concepts outlined in this paper. As this happened only
during Summer 2007, the course information given to students still referred to
the old structure, and interest was not very high (18 registrations). We were
encouraged, however, by the fact that not a single student dropped out. In 2008,
the course was announced with the new title and content. We also took great
care to explain the intended goals and concept. Nevertheless, we were surprised
that registration jumped up to ca. 80 participants. This shows that the title and
content description of a course, as well as the available information, can have
considerable impact on registration figures.

Course Evaluation. It is fair to say that the two rounds which the course had so
far got very positive reactions from the students. This is documented by course
evaluation protocols and a web questionnaire. In particular, the students valued
highly the relevance of the overall course, and highlighted the impact of the
hand-in assignments for their learning. In 2008, 90% of all students who started
the course tried to complete it successfully (i.e., participated in all compulsory
exercises and sat the exam). As the course is not compulsory in any programme,
this points to a relatively high degree of motivation that students take from this
course.

Limitations. We do not want to conceal limitations of the current course concept.
Trying to find the right balance, it constitutes in its current form a compromise
between available time, range and depth of topics. Regarding the available time,
we cover already relatively many topics and it is not possible to treat some of

140 W. Ahrendt, R. Bubel, and R. Hähnle

them in the depth we would like to. On the other hand, we had already to cut
down on the number of topics we would like to treat as, for example, code reviews
or software certification. One important topic that needs to be still addressed is
to integrate the taught techniques into a software development process.

The hands-on approach using mainly JML and Java means that we do not
deal with abstraction which is obviously a very important topic. Partly, this
stems from our conviction that currently available formalised abstraction tech-
niques are not suitable for our goals: refinement-driven approaches such as B [1]
are simply too heavyweight for what we have in mind; model-driven approaches
based on UML, on the other hand, are too far removed from popular implemen-
tation languages.

Given the variety of topics, we could not live up to the ambition to let the
students practise the acquired knowledge in all the topics covered by the course.
Even if we have weekly exercises covering all the material, the three extensive
hand-in assignments cover only the topics testing, specification and verifica-
tion, not the topics debugging or test generation. Naturally, the students per-
formed better in those parts of the exam which related to either of the hand-in
assignments.

In future courses we plan to address some of the mentioned limitations. We
consider an integration of formal methods into a viable development process as
elementary. Therefore we will define an agile software process that makes use of
formal techniques: agile processes have explicit test generation and debugging
phases in each increment. Their cyclic nature can potentially benefit a lot from
automation. The challenge is to integrate formal specification in the right way.
As a follow-up to the TDV course one could then run a project course based on
an agile process with formal techniques.

Despite stressing automation throughout the course, grading of practical ex-
ercises should use more automation. We did not yet fully realise the potential of
formalisation there.

Relation to Dedicated Formal Methods and Logic Courses. The TDV course cov-
ers a variation of topics, among them some lightweight formal methods. Towards
the latter, we take an extremely pragmatic stance. Perhaps our most contro-
versial design decision is to dispense with any form of rigorous mathematical
semantics. There are several potential problems with this: seduction to cut-and-
paste without real understanding, fostering misconceptions caused by ambiguity,
frustration for theoretically interested students who want to know the “nuts and
bolts”. We believe that the advantages (accessibility for mathematically un-
trained people, applicability of learnt methods) outweigh the problems, given
the course is designed for the (late) Bachelor level.

Still, students should be given the opportunity to acquire more in depth knowl-
edge and understanding in logical methods for computer science, in software veri-
fication, and furthermore in hardware verification. At Chalmers, these three areas
are covered by the Masters-level courses “Logic in Computer Science”, “Software
Engineering using Formal Methods” (SEFM), and “Hardware Description and

Integrated Teaching of Testing, Debugging, and Verification 141

Verification” [2]. The SEFM course9 is also given by the authors of this paper,
and covers software model checking (with Spin/Promela, based on [5]) as well
as deductive software verification (of Java with KeY).

Research-Driven Course Development. The authors of this paper constitute the
senior staff of the research group “Software Engineering using Formal Methods”
at the Department of Computer Science and Engineering, Chalmers University.
The group is carrying out research in formal modeling and verification of software
as well as verification-based testing and debugging. Together with groups at the
universities of Karlsruhe and Koblenz, we have developed the KeY approach and
system for Java source code verification. This research and the corresponding
tool development were the basis for developing both the TDV course and the
SEFM course. The close relation to research does not contradict the fact that
TDV targets an audience of Bachelor students with little theoretical prerequi-
sites. On the contrary, this is a good match, as the objective of our research is
precisely the increased accessibility of formal methods to software developers.
We believe that the students profit from this overall objective. In the opposite
direction, our research profits very much from these courses. The usage of cut-
ting edge research tools such as code-based ATCG, formal verification tools, or
the symbolic visual debugger, in the course context increases the pressure on
usability. The concrete feedback from students and course assistants drives the
further design and development of these tools.

Adaptation. While the basic development of the course as outlined in this paper
would not have been possible without relying on the research in the group, we
claim that the resulting course can be run in any other context. We actively
support adaptation of this course (or individual modules of it) and provide the
complete sources for slides, examples, and assignments to interested teachers.
The course has been adapted (or is planned to) at several European univer-
sities, including Technical University of Madrid, University of Innsbruck, and
University of Freiburg.

Of these, we would like to mention in particular the adaptation of the KeY-
Hoare tool done by Joanna Chimiak-Opoka at University of Innsbruck/Austria.
She gave ample feedback and contributed a well-organised collection of additional
examples. Her comments and suggestions lead to the integration of several orig-
inally not considered features of KeY-Hoare, for example worst-case execution
time analysis of programs. This strengthen our opinion that adaptation works
in two directions and is not a one-way street.

Acknowledgements

We want to express our gratitude to the people without whom a course such
as TDV would not have been possible. We thank Fredrik Lindblad for his com-
mitment in co-teaching the TDV course, Christian Engel for implementing the
9 Course Code TDA292, http://www.cse.chalmers.se/edu/course/TDA292/

http://www.cse.chalmers.se/edu/course/TDA292/

142 W. Ahrendt, R. Bubel, and R. Hähnle

KeY VBT tool and Marcus Baum as well as Marcel Rothe for implementing the
visual debugger. Special thanks go to Joanna Chimiak-Opoka for using KeY-
Hoare in her lecture as well as providing examples and continuous feedback that
was an invaluable help and motivation to improve the KeY-Hoare tool. A teach-
ing grant from the Chalmers Masters programme in Software Engineering and
Technology is gratefully acknowledged. Finally, we thank all our students for
their active participation making the course a pleasure to teach. We thank also
the anonymous reviewers for their valuable comments.

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Axelsson, E., Björk, M., Sheeran, M.: Teaching hardware description and verifi-
cation. In: International Conference on Microelectronics Systems Education, Ana-
heim, CA, USA, pp. 119–120. IEEE Computer Society, Los Alamitos (2005)

3. Baum, M.: Debugging by visualizing of symbolic execution. Master’s thesis, De-
partment of Computer Science, Institute for Theoretical Computer Science (June
2007)

4. Beckert, B., Hähnle, R., Schmitt, P.: Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

5. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, Heidelberg (2008)
6. Bjørner, D.: Software Engineering, vol. 3. Springer, Heidelberg (2006)
7. Bubel, R., Hähnle, R.: A Hoare-style calculus with explicit state updates. In: In-

stenes, Z. (ed.) Proc. Formal Methods in Computer Science Education (FORMED).
ENTCS, pp. 49–60. Elsevier, Amsterdam (2008)

8. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002)

9. Cok, D.R., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

10. de Halleux, J., Tillmann, N.: Parameterized unit testing with Pex. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 171–181. Springer, Heidelberg
(2008)

11. Engel, C.: Verification based test case generation. Master’s thesis, Department of
Computer Science, University of Karlsruhe (August 2006)

12. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

13. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: Languages and Tools for Formal Specification. Springer, New York (1993)

14. King, J.C.: A program verifier. PhD thesis, Carnegie-Mellon University (1969)
15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral

interface specification language for Java. Technical Report 98-06y, Iowa State Uni-
versity, Department of Computer Science (2003) (revised, June 2004)

Integrated Teaching of Testing, Debugging, and Verification 143

16. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual (February 2007); Draft revision 1.200

17. Lewis, B.: Debugging backwards in time. In: Ronsse, M. (ed.) Proc. Fifth Int.
Workshop on Automated and Algorithmic Debugging, AADEBUG (September
2003)

18. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)
19. Rothe, M.: Assisting the understanding of program behavior by using symbolic

execution. Master’s thesis, Department of Computer Science and Engineering (July
2008)

20. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2006)
21. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann, San Francisco (2005)
22. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE

Transactions on Software Engineering 28 (2002)

On Teaching Formal Methods: Behavior Models
and Code Analysis�

Jan Kofroň1,2, Pavel Paŕızek1, and Ondřej Šerý1

1 Charles University in Prague,
Department of Software Engineering Malostranské náměst́ı 25,

118 00 Prague 1, Czech Republic
{kofron,parizek,sery}@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz
2 Academy of Sciences of the Czech Republic,

Institute of Computer Science Pod Vodárenskou věž́ı 2,
182 07 Prague 8, Czech Republic

kofron@cs.cas.cz

http://www.cs.cas.cz

Abstract. Teaching formal methods is a challenging task for several rea-
sons. First, both the state-of-the-art knowledge and the tools are rapidly
evolving. Second, there are no comprehensive textbooks covering certain
topics, especially code analysis. In this paper, we share our experience
with teaching two courses. The first is focused on classics of modeling
and verification of software and hardware systems (LTS, LTL, equiva-
lences, etc.), while the other one involves topics related to automated
analysis of program code. We hope that other lecturers can benefit from
our experience to improve their courses.

1 Introduction

For a developer of a system with high demand on reliability (e.g., safety-critical
systems and device drivers), at least a basic insight into formal methods is essen-
tial. In particular, familiaritywith model checking and code verification techniques
and tools is an important asset. First, it is useful when actually dealing with the
tools, which often communicate in specialized formalisms (e.g., various temporal
logics). Second, it helps developers to decide whether they can benefit from a con-
crete technique or tool and also to choose among different implementations to suit
their specific needs. The latter point is especially important with the increasing
number of available code analysis tools that are ready for industrial use, at least
in specialized domains (e.g., Slam [8]). The underlying techniques have different
strengths and limitations, which is very hard to assess without a deeper insight.

Well targeted formal methods education of the future software developers is
very important, but also very intricate. In order to fully understand the top-
ics, quite deep mathematical background (e.g., in logics, algebra, and automata
� This work was partially supported by the Ministry of Education of the Czech Re-

public (grant MSM0021620838) and by the Czech Academy of Sciences project
1ET400300504.

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 144–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Teaching Formal Methods: Behavior Models and Code Analysis 145

theory) is required. This is in contrast to the current trend of a slow decrease
in the amount of mathematical theory taught in favor of software development
practice. As a result, building a formal methods course based on the limited
foundations is very challenging.

Another obstacle is lack of literature. When it comes to general modeling of
systems and model checking, Model checking by Clarke et al. [24] forms an excel-
lent basis for a course. Unfortunately, the situation is not so good in the case of
code analysis (as applied in tools like Java PathFinder [4] and Blast [2]). This
topic is relatively new and still rapidly evolving. To the best of our knowledge,
there is no comprehensive publication summarizing and comparing the different
techniques so far. This means that a course has to be based mainly on various
journal and conference publications and technical reports. These publications are
rather brief, as the page range is typically limited. They also often differ in the
level of abstraction and the underlying formalization and notation. Except for
the additional preparation overhead, it is not an issue for the lecturers; however,
such a form of study materials constitutes a major obstacle for the students.

In this paper, we share our experience with teaching formal methods in the
scope of a new master study plan, Dependable Systems (Sect. 2). Among other
courses, the plan contains two one-semester courses on formal methods that
together cover modeling systems, model checking, code verification, deductive
methods, and static analysis. The common goal of the courses (and the study
plan in general) is balancing the theoretical and practical skills of the students. In
Sections 3 and 4, the topics covered by the two courses are summarized in more
detail along with the main references to study materials and the list of tools the
students get acquainted with. We believe that other lecturers preparing similar
courses will benefit from our experience. Sect. 5 contains observations and points
to be discussed by the formal methods teaching community.

2 Our Vision and Realization

In 2008, a new study plan for master studies, Dependable Systems, emerged in
our department as a reaction to both increasing industrial demand for highly
specialized software experts and differentiation in their expected knowledge. The
motivation of the new study plan is to provide industry with graduates famil-
iar with techniques necessary to develop dependable systems (e.g., embedded,
safety-critical, and real-time systems).

On one hand, this includes rather low-level knowledge of system architectures,
operating systems, middleware, real-time systems, embedded systems, and par-
allel computing. On the other hand, the graduates get insight into software
architectures, component systems, and services. Of course, courses on formal
methods are a natural part of this study plan as well.

In general, the Dependable Systems study plan provides students with both the
theoretical foundations and the practical hands-on experience with different tools
and development techniques for more exotic platforms (e.g., embedded devices)
and development under specific conditions (e.g., real-time, limited memory).

146 J. Kofroň, P. Paŕızek, and O. Šerý

Considering formal methods, there are two specialized lectures: Behavior
Models and Verification (Sect. 3) and Program Analysis and Code Verification
(Sect. 4). The former covers modeling and model checking of software and hard-
ware systems. The latter specializes on techniques for direct code analysis. Orig-
inally, there was only the former course covering also few code model checking
topics. However, the amount of information associated with recent advances in
code model checking and success of projects like Slam[8] in practice simply did
not fit into a single course and motivated us to separate the course into the two
specialized courses.

3 Behavior Models and Verification (NSWI101)

The course Behavior Models and Verification [14] aims at providing basics of the
behavior modeling of systems and their consequent verification. The attendees
of the course, future developers, should learn about the principles of formal
specification and verification as well as work with state-of-the-art tools that are
used in industry for verification of hardware and software models nowadays. Since
this is an introductory course for master’s level students, we do not assume any
special knowledge in this area in addition to what they have learned during their
bachelor’s level studies. In particular, this includes propositional and predicate
logics, and the automata theory. After passing the course, the students should be
able to construct a formal behavior specification of a simple hardware/software
system, think of and specify properties of interest, and, eventually, verify these
properties using available tools. As to the organization, there are a lecture and
a lab every week.

3.1 Lectures

In Fig. 1, the topics covered by the lectures are depicted; the main body includes
the following:

– Basic concepts. LTS, Kripke structure, and different preorder and equiv-
alence relations

– Temporal logics. Syntax, semantics, and expressive power of LTL, CTL,
and CTL*

– Model checking algorithms. Both explicit (for LTL and CTL) and sym-
bolic (for CTL) based on OBBDs

– Partial order reduction. The Ample set algorithm

This part of the course is motivated mainly by the comprehensive book Model
checking by Clarke et al. [24]. A suitable level of abstraction is maintained
throughout the book, which makes it also a useful study material for the
attendees.

The rest of the lectures introduce timed automata and process algebras. The
overview of timed automata is motivated by [16] and presents the basic properties

On Teaching Formal Methods: Behavior Models and Code Analysis 147

Fig. 1. Topics covered by the NSWI101 course and their dependencies. The corre-
sponding lectures are held in the top-down order.

of the class of timed regular languages, emptiness check algorithm, parallel com-
position, and references the Uppaal integrated environment [12]. The lectures
on process algebras focuses on Algebra of Communicating Processes (ACP) [21]
and its content is highly inspired by the book Introduction to Process Algebra
by Fokkink [26]. As an example of a relatively recent application, the formalism
for behavior specification of software components, Behavior Protocols, is also
presented based on [15].

3.2 Lab

There are two major aims of the lab of the NSWI101 course—first, the students
should practically exercise the algorithms and techniques presented during the
lectures, and, second, the model checking tools are presented and their input
languages are discussed in detail.

The first three labs are devoted to the Spin model checker [11] and its in-
put language Promela. We use the slides from the official Spin website [38,39],
which turned out to be very good for first understanding of the basic modeling

148 J. Kofroň, P. Paŕızek, and O. Šerý

concepts. The presentation of the language is divided into two parts. After each
part, the students solve simple assignments during the lab, such as the modeling
of the producer–consumer problem. The goal of these labs is to cover almost the
entire language. The principles of model simulation and verification are also pre-
sented as well as the majority of the options (command-line switches), however,
the details on implementation of the algorithms inside Spin are mentioned just
briefly or entirely skipped. The tool is demonstrated using both command-line
and graphical user interfaces, whose options and settings are briefly explained.
For more information, the students are pointed to the complete slide sets and
the Holzmann book on Spin [30].

The subsequent three labs are devoted to exercises of the techniques and al-
gorithms presented in the lectures. This includes in particular modeling simple
systems via LTS, deciding on equivalences of temporal logics formulae, represent-
ing formulae, sets, and Kripke structures via OBDDs, and LTL and CTL model
checking algorithms. After the lectures introducing OBDDs and algorithms for
symbolic CTL model checking, a lab focusing on SMV model checker, in partic-
ular NuSMV [5], is held. The tool along with the parallel assignment language
is introduced and the students again try to model simple systems (e.g., dining
philosophers and the producer-consumer problem) to become familiar with the
tool.

The rest of the labs is again devoted to exercises related to the theory pre-
sented in the lectures. To provide an opportunity to work on homework assign-
ments, there are two to three labs left out at the end of the semester.

There are two graded homeworks; the grading forms 55% of the final grade,
while the rest, i.e., 45%, is formed by the grade a student gets from the final test.
The first homework is assigned at the end of the fourth lab. The assignment is
articulated in a very general way, such as “model a railway station” and “model
an airport”. This way turned out to be beneficial from several points of view.
First, it is easy to reveal a potential disallowed collaboration of the students—
such a general assignment is very unlikely to be “implemented” similarly in
multiple cases. Second, the students are forced to think of suitable abstractions
to be used to create the models. Third, they have to think of properties to
check—this is very important according to us, since in most papers and text
books, usually only deadlocks and in better cases also response patterns are
considered. We believe, however, that it is important to verify specific properties
that can be a matter of interest in particular cases. Nevertheless, the students
are provided with examples of entities that can be modeled, the properties that
can be checked, and ways to make their models simpler if they reach the limits of
Spin, usually in the sense of the size of their state spaces. The maximum amount
of points a student can normally get for the first homework is 40. However, if a
student creates an exceptional model, he or she can get up to 5 extra points.

At the end of the seventh lab (slightly after the middle of the semester), the
second homework is assigned. It is aimed at practicing the NuSMV tool [5]. Since
the parallel assignment language is rather low level in comparison with Promela,
we decided for a simpler assignment, in particular, modeling and verification of

On Teaching Formal Methods: Behavior Models and Code Analysis 149

properties of a well-known algorithm, e.g., the Dekker’s algorithm for mutual
exclusion [25]. Because of the lower complexity of the second assignment, the
maximum amount of points in the case of the second homework is 15.

3.3 Grading

The grade for the course is based on points. We award 0–40 and 0–15 points
for the first and second homework, respectively, and 0–45 points for the written
exam; the total number of points is therefore 100. The grading scale is defined
as follows:

– Score of 80–100 points corresponds to the excellent grade.
– Score of 71–79 points corresponds to the very good grade.
– Score of 62–70 points corresponds to the good grade.
– Score of 0–61 points corresponds to the failure, i.e., to an unsuccessful at-

tempt to complete the course.

The grading scale is defined to force students to do both homeworks and the
written exam that is devoted to theoretical background, principles, and impor-
tant algorithms; it is not possible to do just the homeworks or the exam to
complete the course.

There are soft deadlines for both homeworks—after a deadline passes, for each
day of delay, there is a penalty of 10% of the points awarded.

3.4 Experience

Originally, there was a lecture every week, while the lab was held every other
week only, i.e., there were six labs during the semester. They were entirely fo-
cused on the tools and their input languages (Spin, NuSMV, Bandera). After
two years, we realized that the students are quite able to construct models in
the sense of using a specification/modeling language and corresponding tools to
verify their properties, however, they did not capture the algorithms and un-
derlying theories well. This is mainly due to the rather demanding amount of
theory. Therefore, we decided to extend the course and have the lab every week
to practice it.

The aforementioned fact that the students were able to create models and use
the tools deserves more explanation here. Since for most of the students, this
was the very first experience with behavior modeling, which differs from ordinary
implementation, indeed, several problems occurred. According to the complexity
of the models they submitted as solutions to the homework assignment (taking
just the first Promela assignment into account), the students could be divided
into two groups. The students of the first group submitted a sort of simplistic
models which can be verified by Spin in a reasonable amount of time (in the
order of minutes on a decent machine), while the others ran into difficulties with
verification due to complexity of their models. The unfortunate conclusion of
some of them was then that Promela is not a suitable modeling language, and

150 J. Kofroň, P. Paŕızek, and O. Šerý

that behavior modeling in general does not make much sense. After getting this
kind of feedback, we have started to emphasize the goals and success stories of
modeling in general and focused more on guidelines on how the models should
be constructed, especially choosing an appropriate level of abstraction.

As to the organization of the course, after first two years, we have decided to
teach this course in English, which is not a native language of the students. There
were several motivations for doing so. First, the majority of the terms have just
an English form and there are no widely accepted translations. Second, since the
English-language skills are generally not on a proper level in our country, the
students can benefit from knowledge of the English language at conferences and
workshops in the future. Even though there was a significant drop in the number
of students attending the course after switching to English, all the students
attending the courses so far have given us a positive feedback on this issue.

4 Program Analysis and Code Verification (NSWI132)

While the course Behavior Models and Verification (Sect. 3) focuses on general
behavior modeling of software and hardware systems and checking of various
properties of the models, in the course Program Analysis and Code Verifica-
tion [34] we focus on analysis and verification of programs in mainstream lan-
guages like Java and C. The goals of the course are twofold:

1. to show the students, future software developers, that there exist tools for
formal verification and analysis of programs that can discover real bugs (er-
rors) in non-trivial programs and/or verify many interesting properties in
the programs, and to let students gain experience with usage of the tools;

2. to provide the students with basic knowledge of key approaches to program
analysis and verification, and of advantages, challenges, and limitations as-
sociated with each approach.

Our vision is that students attending the course should be able to use the ap-
propriate methods and tools during the software development process.

We do not expect any specific prior knowledge from the students—we only
assume that all students have basic knowledge of the automata theory and pred-
icate logic. Since the course aims at master’s level students, and courses on the
automata theory and logic are taught at the bachelor’s level, all students should
have the required knowledge. Moreover, we do not strictly require that students
complete the course on Behavior Models and Verification before participating in
this course.

As for organization, the course run in the winter of 2008 for the first time.
There was a lecture every week and a lab every other week. We give the students
three homework assignments as a part of the course.

4.1 Lectures

The goal of the lectures is to introduce and describe the main approaches to
verification and analysis of programs (code). We divided all the lectures (Fig. 2)

On Teaching Formal Methods: Behavior Models and Code Analysis 151

Fig. 2. Topics covered by the NSWI132 course and their dependencies. The corre-
sponding lectures are held in the top-down order.

into four blocks: Program Model Checking, Deductive Methods, Static Analysis,
and Current Trends. In the lectures forming each block, we describe theoretical
background (e.g., lattices and fixed points for static analysis) of the approach,
the basic principles and concepts of the approach (e.g., state space traversal in
case of program model checking), and main limitations and challenges associated
with use of the approach (e.g., state explosion) together with some solutions to
the challenges (e.g., POR and symmetries for state explosion).

Program Model Checking comprises lectures on both explicit-state pro-
gram model checking and CEGAR-based algorithms. The explicite-state pro-
gram model checkers are explained on the example of Java PathFinder [4].

152 J. Kofroň, P. Paŕızek, and O. Šerý

The lectures are based on a related paper [41] describing the algorithms Java

PathFinder uses for POR, efficient state caching, etc.
The CEGAR-based algorithms are explained on the examples of Slam [8],

SatAbs [7], and Blast [2]. The lectures cover predicate abstraction, abstraction
refinement loop, and lazy abstraction; they are based on the papers [18,22,37]
and nice tutorial slides on lazy abstraction [29]. Note that, before diving into the
theorem proving details in the next lectures, the theorem prover is used here as
a black-box with emphasis on the type of questions it is able to answer.

Deductive Methods and their application in program verification. In this
block, we provide an overview of the main techniques used in SAT solvers,
SMT solvers, and general theorem provers. The lectures are inspired mainly
by the books Decision Procedures: An Algorithmic Point of View by Kroening
and Strichman [31], and Automated Theorem Proving: Theory and Practice by
Newborn [32]. Additional information on SAT solvers was taken from a nice
survey [42].

In the subsequent lectures, we present application of solvers in the contract-
verification frameworks like ESC/Java2 for JML [3] and Boogie for Spec#

programs [10]. Here, the most useful information sources are the papers that
describe algorithms used in Boogie [20,19].

Static Analysis block contains methods that are based on the lattice theory
and computation of fixed points. This includes traditional data-flow analyses,
points-to and shape analysis, and also a brief introduction to a control-flow
analysis. The structure and content of this block of lectures is to a great extent
based on the lecture notes [40]. A more thorough source is the book Principles
of Program Analysis by Nielson et al. [33], however, we found it a bit too formal
for use in an overview course.

Current Trends in formal analysis and verification of programs are sum-
marized in the last block. Here, we provide an overview of the very recent
topics based on various conference papers. The topics include compositional
verification using assume-guarantee reasoning [27], symbolic execution in Java
PathFinder [36,17], and a combination of testing with predicate abstraction
[35,28,23].

4.2 Lab

The main goal of the labs is to provide the students with a hands-on experience
with selected tools for verification and analysis of programs (code).

Each lab is devoted to a specific tool—for example, Java PathFinder and
Soot framework [9]. First we explain how a tool works, how it can be configured
and executed, and how to prepare its input and interpret its output—all this on
simple demo programs and examples. Then, in the second part of a lab, we assign
some simple tasks to the students, so that they can get their own experience with
using the tools (and “playing” with them).

On Teaching Formal Methods: Behavior Models and Code Analysis 153

We present a single tool for each main technique (method) that is described
in the lectures. To be more specific, we present the following tools:

– Java PathFinder [4], an explicit-state model checker for Java programs,
– Blast model checker [2], an implementation of the CEGAR-based model

checking algorithm,
– SatAbs [7], model checker for C programs that uses CEGAR and a SAT

solver,
– PicoSAT [6], a state-of-the-art SAT solver,
– Yices [13], a state-of-the-art SMT solver,
– ESC/Java2 [3], a tool for verification of Java programs against JML speci-

fications [1], and
– Soot [9], a framework for static analysis and transformation of Java pro-

grams.

We have selected these tools due to their maturity and stability, moreover they
are widely used, and open source.

The homework assignments directly follow the labs. Our motivation behind
the homeworks is to let students try the tools on a larger example (program) than
it is possible during a lab. There are three homeworks together. The theme of
the first homework is Java PathFinder—the students are required to create a
reasonable abstract environment for an open system and also to create a custom
property. In case of the second homework, students are required to create a JML
specification for several Java classes and to verify the classes’ implementation
against the specification. Finally, the third homework consists of creating custom
analysis and transformation of Java source code on top of the Soot framework.
The time needed for each homework is between 8 and 16 hours, depending on
student’s skills.

4.3 Grading

The grade for the course is based on points. We award 0–10 points for each
homework and 0–30 points for the oral exam; the total number of points is
therefore 60. The grading scale is defined as follows:

– Score of 49–60 points corresponds to the excellent grade.
– Score of 40–48 points corresponds to the very good grade.
– Score of 31–39 points corresponds to the good grade.
– Score of 0–30 points corresponds to the failure, i.e., to an unsuccessful at-

tempt to complete the course.

We have defined such a grading scale in order to force students to do both
homeworks, which are about practical use of the tools, and oral exams that
is devoted to theoretical background, basic principles of the approaches and
important algorithms. In particular, it is not possible to do solely the homeworks
or solely the exam to complete the course.

154 J. Kofroň, P. Paŕızek, and O. Šerý

4.4 Experience

After the first year, our experience with the course is somewhat mixed. On the
one hand, the students were interested in the discussed topics and we were very
satisfied with the quality of students’ solutions to the homework assignments.

On the other hand, we found that having a lab only once per two weeks is
not enough, similarly to the other course. For the upcoming years, we plan to
have a lab every week. Some of the labs will focus on manual computation of the
key algorithms using paper and blackboard, while the others focus on practical
experience with the tools.

5 Evaluation and Discussion

The common issue of both courses is a low number of students attending the
courses. We believe that the low attendance (enrollment) of students has the
following two main causes:

– The usefulness of formal methods in industrial software development is not
obvious to the students. They probably do not see the benefit of formal
verification and analysis in comparison to testing. Moreover, formal methods
are rarely used in software companies and therefore the students are not
forced to learn about them. The students prefer to attend those courses,
which they see as useful for their employment (XML, software engineering,
web development, etc.).

– Courses on formal methods typically require significant mathematical back-
ground (logics, automata theory, formal languages, etc.) and they are also
typically more demanding than the courses on XML and web development.
Since most students prefer to choose the easier way to get the degree, they
tend to avoid mathematics as much as possible.

While we see these two causes as general, they may be specific to our university
to a certain extent.

Another problem is the lack of literature about formal methods at the level of
master’s level studies. There are many books and research papers that could be
used, however they are often aiming at PhD students and researchers. This is es-
pecially problematic in the course Program Analysis and Code Verification, since
we are not aware of any comprehensive book on code analysis and verification—
e.g., with an extent and coverage similar to [24], which we use in the course
Behavior Models and Verification.

As for the structure and syllabus of the courses, as the greatest benefit for
students, we see the possibility to get hands-on experience with the tools and see
their advantages and limitations, since they will not have such an opportunity
in industry. Nevertheless, they are not always able to assess the complexity
of models (or programs) with respect to formal analysis and verification, even
after completing the courses—this requires years of experience with the practical
application of formal methods.

On Teaching Formal Methods: Behavior Models and Code Analysis 155

6 Conclusion

In this paper, we have shared our experience with teaching formal methods in the
scope of a new study plan, Dependable Systems. We have presented the content
of two courses—“Behavior Models and Verification” and “Program Analysis and
Code Verification”. While the former one is probably similar to courses at other
universities regarding its structure and content, we believe that a reader will
benefit from our experience with the latter one. We have structured the code
analysis course in a way to provide the students with experience with more tools
rather than introducing few tools in greater depth.

Interestingly enough, the number of students attending the two courses is
rather low in comparison to practically-oriented software engineering courses.
Having a positive feedback from our students on the content and quality of the
courses, we believe that the low attendance is caused by the fact that most
students are interested in different topics.

As for the future, we plan to improve the first course by making it more
comprehensible for students via including of more examples during lectures. As
to the code analysis course, we definitely plan to stay up-to-date and update the
content according to result of recent research in the area.

References

1. Java modeling language (JML), http://www.eecs.ucf.edu/~leavens/JML/
2. Blast project, http://mtc.epfl.ch/software-tools/blast/
3. ESC/Java2, http://kind.ucd.ie/products/opensource/ESCJava2/
4. Java PathFinder, http://javapathfinder.sourceforge.net/
5. NuSMV, http://nusmv.irst.itc.it/
6. PicoSAT, http://fmv.jku.at/picosat/
7. SatAbs tool, http://www.verify.ethz.ch/satabs/
8. Slam project, http://research.microsoft.com/en-us/projects/slam/
9. Soot framework, http://www.sable.mcgill.ca/soot/

10. Spec#, http://research.microsoft.com/en-us/projects/specsharp/
11. Spin, http://spinroot.com/spin/whatispin.html
12. Uppaal integrated environment, http://www.uppaal.com/
13. Yices, http://yices.csl.sri.com/
14. Adámek, J., Kofroň, J., Plášil, F.: NSWI101: Behavior models and verification,

http://dsrg.mff.cuni.cz/teaching/nswi101/

15. Adamek, J., Plasil, F.: Component composition errors and update atomicity: static
analysis: Research articles. Journal of Software Maintenance and Evolution: Re-
search and Practice 17(5), 363–377 (2005)

16. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

17. Anand, S., Pasareanu, C.S., Visser, W.: JPF-SE: A symbolic execution extension
to Java PathFinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 134–138. Springer, Heidelberg (2007)

18. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)

http://www.eecs.ucf.edu/~leavens/JML/
http://mtc.epfl.ch/software-tools/blast/
http://kind.ucd.ie/products/opensource/ESCJava2/
http://javapathfinder.sourceforge.net/
http://nusmv.irst.itc.it/
http://fmv.jku.at/picosat/
http://www.verify.ethz.ch/satabs/
http://research.microsoft.com/en-us/projects/slam/
http://www.sable.mcgill.ca/soot/
http://research.microsoft.com/en-us/projects/specsharp/
http://spinroot.com/spin/whatispin.html
http://www.uppaal.com/
http://yices.csl.sri.com/
http://dsrg.mff.cuni.cz/teaching/nswi101/

156 J. Kofroň, P. Paŕızek, and O. Šerý

19. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

20. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop on Program Analy-
sis For Software Tools and Engineering, PASTE 2005, pp. 82–87. ACM, New York
(2005)

21. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Information
and Control 60(1-3), 109–137 (1984)

22. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R., Beyer, D.: The software
model checker blast: Applications to software engineering. Int. J. Softw. Tools
Technol. Transfer, 505–525 (2007)

23. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2008), pp. 29–38. IEEE Computer So-
ciety Press, Los Alamitos (2008)

24. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

25. Dijkstra, E.W.: Cooperating sequential processes. In: Programming Languages:
NATO Advanced Study Institute, pp. 43–112. Academic Press, London (1968)

26. Fokkink, W.: Introduction to Process Algebra. Springer-Verlag New York, Inc.,
Secaucus (2000)

27. Giannakopoulou, D., Pasareanu, C.S., Cobleigh, J.M.: Assume-guarantee verifica-
tion of source code with design-level assumptions. In: 26th International Conference
on Software Engineering (ICSE 2004), pp. 211–220. IEEE Computer Society, Los
Alamitos (2004)

28. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: SIGSOFT 2006/FSE-14: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 117–127. ACM, New York (2006)

29. Henzinger, T. A., Jhala, R., Majumdar, R.: SPIN Workshop 2005 – Blast tutorial
slides,
http://www.cs.ucla.edu/~rupak/Powerpoint/BlastTutorial/SPIN2005.ppt

30. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, Reading (2003)

31. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, Heidelberg (2008)

32. Newborn, M.: Automated Theorem Proving: Theory and Practice. Springer, Hei-
delberg (2001)

33. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus (1999)

34. Paŕızek, P., Šerý, O.: NSWI132: Program analysis and code verification,
http://dsrg.mff.cuni.cz/~parizek/teaching/proganalysis/

35. Pasareanu, C.S., Pelanek, R., Visser, W.: Predicate abstraction with under-
approximation refinement. Logical Methods in Computer Science 3(1) (2007)

36. Pasareanu, C.S., Visser, W.: Verification of java programs using symbolic execu-
tion and invariant generation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS,
vol. 2989, pp. 164–181. Springer, Heidelberg (2004)

http://www.cs.ucla.edu/~rupak/Powerpoint/BlastTutorial/SPIN2005.ppt
http://dsrg.mff.cuni.cz/~parizek/teaching/proganalysis/

On Teaching Formal Methods: Behavior Models and Code Analysis 157

37. Ranjit, T.H., Henzinger, T.A., Jhala, R., Majumdar, R.: Lazy abstraction. In:
POPL, pp. 58–70. ACM Press, New York (2002)

38. Ruys, T.C.: SPIN Workshop 2002 – SPIN beginners’ tutorial,
http://spinroot.com/spin/Doc/SpinTutorial.pdf

39. Ruys, T.C., Holzmann, G.J.: SPIN Workshop 2004 – advanced SPIN tutorial,
http://spinroot.com/spin/Doc/Spin_tutorial_2004.pdf

40. Schwartzbach, M.: Lecture notes on static analysis,
http://www.brics.dk/~mis/static.html

41. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2), 203–232 (2003)

42. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 17–36. Springer,
Heidelberg (2002)

http://spinroot.com/spin/Doc/SpinTutorial.pdf
http://spinroot.com/spin/Doc/Spin_tutorial_2004.pdf
http://www.brics.dk/~mis/static.html

Teaching Concurrency: Theory in Practice�

Luca Aceto1, Anna Ingolfsdottir1, Kim G. Larsen2, and Jǐŕı Srba2

1 School of Computer Science, Reykjavik University, Kringlan 1,
103 Reykjavik, Iceland

2 Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300,
9220 Aalborg Ø, Denmark

Abstract. Teaching courses that rely on sound mathematical principles
is nowadays a challenging task at many universities. On the one hand
there is an increased demand for educating students in these areas, on
the other hand there are more and more students being accepted with
less adequate skills in mathematics. We report here on our experiences in
teaching concurrency theory over the last twenty years or so to students
ranging from mathsphobic bachelor students to sophisticated doctoral
students. The contents of the courses, the material on which they are
based and the pedagogical philosophy underlying them are described, as
well as some of the lessons that we have learned over the years.

1 Introduction and Background

We report on our experiences in teaching concurrency theory, as well as principles
of modelling and verification for reactive systems [18]. Some of us have been
teaching such courses for about twenty years now and the underlying philosophy
in our teaching has not changed much over this time span. However, the structure
of the courses we shall discuss in what follows has naturally evolved over time to
reflect the scientific developments in our subject matter and has been adopted in
lecture series that have mostly been held at Aalborg University and Reykjav́ık
University over the last seven to eight years. Our teaching experience and the
structure, contents and pedagogical philosophy of our courses form the basis for
a textbook we published in 2007 [1]. The experiences we report in this article are
based on the teaching material accessible to a wide variety of students at various
stages of their academic development and with differing levels of mathematical
background and maturity.

1.1 Philosophy behind Our Courses

The aim of the above-mentioned semester-long courses was to introduce students
at the early stage of their M.Sc. degrees, or late in their B.Sc. degree studies,
� The work of Aceto and Ingolfsdottir has been partially supported by the projects

“The Equational Logic of Parallel Processes” (nr. 060013021) and “New Develop-
ments in Operational Semantics” (nr. 080039021) of the Icelandic Research Fund.
Srba was partially supported by Ministry of Education of the Czech Republic, project
No. MSM 0021622419.

J. Gibbons and J.N. Oliveira (Eds.): TFM 2009, LNCS 5846, pp. 158–175, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Teaching Concurrency: Theory in Practice 159

in computer science to the theory of concurrency, and to its applications in the
modelling and analysis of reactive systems. This is an area of formal methods
that is finding increasing application outside academic circles and allows the
students to appreciate how techniques and software tools based on sound theo-
retical principles are very useful in the design and analysis of non-trivial reactive
computing systems. (As we shall discuss later in Section 2, we have also taught
intensive three-week courses based on our course material as well as given lec-
tures series intended for Ph.D. students.)

In order to carry this message across to the students in the most effective way,
the courses present

– some of the prime models used in the theory of concurrency (with special
emphasis on state-transition models of computation like labelled transition
systems [24] and timed automata [2]),

– languages for describing actual systems and their specifications (with focus
on classic algebraic process calculi like Milner’s Calculus of Communicating
Systems [31] and logics like modal and temporal logics [11,20,35]), and

– their embodiment in tools for the automatic verification of computing sys-
tems.

The use of the theory and the associated software tools in the modelling and
analysis of computing systems is a rather important component in our courses
since it gives the students hands-on experience in the application of what they
have learned, and reinforces their belief that the theory they are studying is
indeed useful and worth mastering. Once we have succeeded in awakening an
interest in the theory of concurrency and its applications amongst our students,
it will be more likely that at least some of them will decide to pursue a more
in-depth study of the more advanced, and mathematically sophisticated, aspects
of our field—for instance, during their M.Sc. thesis work or at a doctoral level.

It has been very satisfying for us to witness a change of attitudes in the
students taking our courses over the years. Indeed, we have gone from a state in
which most of the students saw very little point in taking the course on which
this material is based, to one in which the relevance of the material we cover is
uncontroversial to most of them! At the time when an early version of our course
was elective at Aalborg University, and taken only by a few mathematically
inclined individuals, one of our students remarked in his course evaluation form
that ‘This course ought to be mandatory for computer science students.’ Now
the course is mandatory, it is attended by all of the M.Sc. students in computer
science at Aalborg University, and most of them happily play with the theory
and tools we introduce in the course.

How did this change in attitude come about? And why do we believe that
this is an important change? In order to answer these questions, it might be
best to describe first the general area of computer science to which our courses
and textbook aim at contributing. This description is also based on what we tell
our students at the beginning, and during, our courses to provide them with the
context within which to place the material they learn in the course and with the
initial motivation to work with the theory we set about teaching them.

160 L. Aceto et al.

1.2 The Correctness Problem and Its Importance

Computer scientists build artifacts (implemented in hardware, software or, as is
the case in the fast-growing area of embedded and interactive systems, using a
combination of both) that are supposed to offer some well defined services to
their users. Since these computing systems are deployed in very large numbers,
and often control crucial, if not safety critical, industrial processes, it is vital
that they correctly implement the specification of their intended behaviour. The
problem of ascertaining whether a computing system does indeed offer the be-
haviour described by its specification is called the correctness problem, and is
one of the most fundamental problems in computer science. The field of com-
puter science that studies languages for the description of (models of) computer
systems and their specifications, and (possibly automated) methods for estab-
lishing the correctness of systems with respect to their specifications is called
algorithmic verification.

Despite their fundamental scientific and practical importance, however, twen-
tieth century computer and communication technology has not paid sufficient
attention to issues related to correctness and dependability of systems in its
drive toward faster and cheaper products. (See the editorial [34] by David Pat-
terson, former president of the ACM, for forceful arguments to this effect.) As
a result, system crashes are commonplace, sometimes leading to very costly,
when not altogether spectacular, system failures like Intel’s Pentium-II bug in
the floating-point division unit [36] and the crash of the Ariane-5 rocket due to
a conversion of a 64-bit real number to a 16-bit integer [28].

Classic engineering disciplines have a time-honoured and effective approach
to building artifacts that meet their intended specifications: before actually con-
structing the artifacts, engineers develop models of the design to be built and
subject them to a thorough analysis. Surprisingly, such an approach has only
recently been used extensively in the development of computing systems.

1.3 The Use of Tools

The courses we have given over the years stem from our deep conviction that
each well educated twenty-first century computer scientist should be well versed
in the technology of algorithmic, model-based verification. Indeed, as recent ad-
vances in algorithmic verification and applications of model checking [12] have
shown, the tools and ideas developed within these fields can be used to analyze
designs of considerable complexity that, until a few years ago, were thought to
be intractable using formal analysis and modelling tools. (Companies such as
AT&T, Cadence, Fujitsu, HP, IBM, Intel, Microsoft, Motorola, NEC, Siemens
and Sun—to mention but a few—are using these tools increasingly on their own
designs to reduce time to market and ensure product quality.)

We believe that the availability of automatic software tools for model-based
analysis of systems is one of the two main factors behind the increasing interest
amongst students and practitioners alike in model-based verification technology.
Another is the realization that even small reactive systems—for instance, rela-
tively short concurrent algorithms—exhibit very complex behaviours due to their

Teaching Concurrency: Theory in Practice 161

interactive nature. Unlike in the setting of sequential software, it is therefore not
hard for the students to realize that systematic and formal analysis techniques
are useful, when not altogether necessary, to obtain some level of confidence in
the correctness of our designs. The tool support that is now available to explore
the behaviour of models of systems expressed as collections of interacting state
machines of some sort makes the theory presented in our courses appealing for
many students at several levels of their studies.

It is our firmly held belief that only by teaching the theory of concurrent
systems, together with its applications and associated verification tools, to our
students, we shall be able to transfer the available technology to industry, and
improve the reliability of embedded software and other reactive systems. We
hope that our textbook and the teaching resources that accompany it, as well
as the experience report provided in this article will offer a small contribution
to this pedagogical endeavour.

1.4 Historical Remarks and Acknowledgments

As already stated earlier, we have used the material covered in [1] and dis-
cussed in this article in the present form for courses given at several institutions
during the last seven to eight years. However, the story of its developments is
much older, and goes back at least to 1986. During that year, the third author
(Kim G. Larsen, then a freshly minted Ph.D. graduate from Edinburgh Uni-
versity) took up an academic position at Aalborg University. He immediately
began designing a course on the theory of concurrency—the branch of theoret-
ical computer science that he had worked on during his doctoral studies under
the supervision of Robin Milner. His aim was to use the course, and the ac-
companying set of notes and slides, to attract students to his research area by
conveying his enthusiasm for it, as well as his belief that the theory of con-
currency is important in applications. That material and the pedagogical style
he adopted have stood the ‘lecture room test’ well, and still form the basis for
the way we organize the teaching of the part on classic reactive systems in our
courses.

The development of those early courses was strongly influenced by Robin Mil-
ner’s teaching and supervision that Kim G. Larsen enjoyed during his doctoral
studies in Edinburgh, and would not have been possible without them. Even
though the other three authors were not students of Milner’s themselves, the
strong intellectual influence of his work and writings on their view of concur-
rency theory will be evident to the readers of this book. Indeed, the ‘Edinburgh
concurrency theory school’ features prominently in the academic genealogy of
each of the authors. For example, Rocco De Nicola and Matthew Hennessy had
a strong influence on the view of concurrency theory and the work of Luca
Aceto and Anna Ingolfsdottir; Jiri Srba enjoyed the liberal supervision of Mo-
gens Nielsen.

The material upon which the courses we have held at Aalborg University and
elsewhere since the late 1980s were based has undergone gradual changes be-
fore reaching the present form. Over the years, the part of the course devoted

162 L. Aceto et al.

to Milner’s Calculus of Communicating Systems and its underlying theory has
decreased, and so has the emphasis on some topics of mostly theoretical inter-
est. At the same time, the course material has grown to include models and
specification languages for real-time systems. The courses we deliver now aim at
offering a good balance between classic and real-time systems, and between the
theory and its applications.

Overall, as already stated above, the students’ appreciation of the theoretical
material covered here has been greatly increased by the availability of software
tools based on it. We thank all of the developers of the tools we use in our
teaching; their work has made our subject matter come alive for our students,
and has been instrumental in achieving whatever level of success we might have
in our teaching.

Road map of the paper. The paper is organized as follows. We begin by describing
the material we teach students in our courses as well as the types of students
we have taught over the years (Section 2). We then present the organization
of our courses and what role each component plays in the understanding of
students (Section 3). Section 4 is devoted to the role that software tools play in
our teaching. Next we introduce a possible syllabus and exam form for a one-
semester course (Section 5). The proposed course and exam skeletons have served
us well in our teaching over the years. Some concluding remarks are offered in
Section 6.

2 What Do We Teach and to Whom?

When planning a course on a topic that is closely related to one’s research in-
terests, one is greatly tempted to cover a substantial body of fairly advanced
material. Indeed, earlier editions of our courses presented rather challenging re-
sults and mathematically sophisticated techniques from books such as Milner’s
classic monograph [31]. Our teaching experience over the years, however, has
taught us that, when presenting topics from concurrency theory to today’s stu-
dents at bachelor and master level, we achieve best results by following the
golden rule that

Less is more!

This is particularly true when we address bachelor students or teach intensive
versions of our courses. In those situations, it becomes imperative to present a
tightly knit body of theoretical material, exercises and projects that are designed
in order to convey repeatedly a few main messages. Therefore, our courses do
not aim at giving broad overviews of many of the available formalisms for de-
scribing and reasoning about reactive systems. We have instead selected a basic
line of narrative that is repeated for classic reactive systems and for real-time
systems. Our story line has been developed over the years with the specific aim
to introduce in an accessible, yet suitably formal way, three notions that we use
to describe, specify and analyze reactive systems, namely

Teaching Concurrency: Theory in Practice 163

– languages for the description of reactive systems as well as their underlying
semantic models,

– behavioural relations giving the formal yardstick for arguing about correct-
ness in the single-language approach, and

– logics for expressing properties of reactive systems following the model-
checking approach to the correctness problem and their connections with
behavioural relations.

2.1 Details of the Course Material

Of course, when planning a course based on the above-mentioned narrative, we
are faced with a large array of possible choices of languages, models and logics.
Our personal choice, which is based on our own background, personal tastes and
research interests, is reflected in the topics covered in our courses and in the
textbook [1].

As mentioned above, we typically divide our courses into two closely knit
parts. The first part of the course deals with classic models for reactive systems,
while the second presents a theory of real-time systems. In both parts we focus
on the three main themes mentioned above and stress the importance of formal
models of computing devices, the different approaches that one can use to specify
their intended behaviour and the techniques and software tools that are available
for the (automatic) verification of their correctness.

In the setting of classic reactive systems, we typically present

– Milner’s Calculus of Communicating Systems (CCS) [31] and its operational
semantics in terms of the model of Labelled Transition Systems (LTSs) [24],

– the crucial concept of bisimilarity [33,31] and
– Hennessy-Milner Logic (HML) [20] and its extension with recursive defini-

tions of formulae [27].

In the second part of the course, we usually introduce a similar trinity of basic
notions that allows us to describe, specify and analyze real-time systems—that
is, systems whose behaviour depends crucially on timing constraints. There we
present

– the formalisms of timed automata [2] and Timed CCS [45,46,47] to describe
real-time systems and their semantics in terms of the model of timed labelled
transition systems,

– notions of timed and untimed bisimilarity, and
– a real-time version of Hennessy-Milner Logic [26].

After having worked through the material in our courses, our students will be
able to describe non-trivial reactive systems and their specifications using the
aforementioned models, and verify the correctness of a model of a system with
respect to given specifications either manually or by using automatic verification
tools like the Edinburgh Concurrency Workbench (CWB)1 [13], the Concurrency
1 http://www.dcs.ed.ac.uk/home/cwb/

http://www.dcs.ed.ac.uk/home/cwb/

164 L. Aceto et al.

Workbench of the New Century (CWB-NC)2 [14] and the model checker for real-
time systems Uppaal

3 [8]. These tools are integrated in the course material and
are demonstrated during the lectures.

Our, somewhat ambitious, aim is to present a model of reactive systems that
supports their design, specification and verification. Moreover, one of the mes-
sages that we reiterate throughout the course is that, since many real-life systems
are hard to analyze manually, we should like to have computer support for our
verification tasks. This means that all the models and languages that we intro-
duce in our courses need to have a formal syntax and semantics.

The level of detail and formality that we adopt in teaching courses based
on the above-mentioned material depends both on the level of mathematical
maturity of the students and on the length of the course. However, we feel that
our experience strongly indicates that the contents of our courses lends itself to
presentations at widely different levels of ‘mathematical depth’. The resulting
types of courses are all based on the following main messages that serve as
refrains in our narrative.

1. Formal models of computing systems can be developed using very expressive
and flexible, but mathematically rather simple, formalisms.

2. These models are executable and can serve at the same time both as de-
scriptions of actual implementations of systems and as their specifications.
Therefore a fundamental component of their theory and practice is a notion
of equivalence or approximation between objects in the model. Such a notion
of equivalence or approximation may be used as a formal yardstick for estab-
lishing the correctness of systems by comparing a particular implementation
of a system with its given specification.

3. Modal and temporal logics play a fundamental role in the specification of
(un)desirable properties of reactive systems and are the cornerstone of the
model-checking approach to the correctness problem.

4. All of the above ingredients are embodied in software tools for the automatic
verification of computing systems.

2.2 Focus on Students’ Understanding

In an intensive three-week course4 taken jointly by bachelor and master students
in computer science and software engineering, we cannot hope to cover much of
the material presented in [1]. We therefore focus on the very basic topics that we
believe the students must understand in order to use the available models, tech-
niques and tools in a conscious way when working on the projects we set them.
In such courses, when introducing, for instance, the theory of classic reactive sys-
tems, we eschew many of the mathematical details presented in the book and limit
2 http://www.cs.sunysb.edu/~cwb/
3 http://www.uppaal.com/
4 For the sake of completeness, we remark here that, when we teach the course in three

weeks, the students taking it are following only our course and are expected to devote
all their time to it.

http://www.cs.sunysb.edu/~cwb/
http://www.uppaal.com/

Teaching Concurrency: Theory in Practice 165

ourselves to describing the model of labelled transition systems, CCS and its oper-
ational semantics, trace equivalence, the definition of strong and weak bisimilarity
and the proof technique it supports, HML and its extension with very simple re-
cursive definitions as well as its connection with bisimilarity and with branching-
time temporal logics. Knowing the syntax and basic semantics of CCS allows the
students to describe their models in a way that can be used as input for tools such
as the CWB and the CWB-NC. Familiarity with trace equivalence and bisimilar-
ity gives the students enough knowledge to formulate and establish correctness
requirements using equivalence checking. Moreover, the basic knowledge of HML
and its recursive extension they develop is sufficient to interpret the debugging
information they receive from the tools when equivalence checking tests fail and
to formulate fairly sophisticated correctness requirements in logical terms.

At the other end of the spectrum are courses delivered to M.Sc. or Ph.D. stu-
dents who specialize in topics related to concurrency theory. Those students can
instead be taught the unified theory underlying the material presented in [1] by
complementing the applications of the theory and practical assignments with
a careful presentation of the main theorems and their proofs, as well as of the
mathematics that underlies the algorithmics of concurrency. When teaching a
course to such students, we typically cover the theory of fixed-points of endofunc-
tions over complete lattices (unless the students are already familiar with these
notions), culminating in a proof of Tarski’s fixed-point theorem [42], the view of
bisimilarity as a largest fixed-point and characteristic formula constructions for
bisimilarity [23,39].

The teaching of the semantics of recursive extensions of HML to either kind
of students is a challenging pedagogical exercise. Rather than presenting the
general theory underlying the semantics of fixed-point logics in all its glory and
details, we prefer to pay heed to the following advice, quoted in [25]:

Only wimps do the general case. Real teachers tackle examples.

Following the prime role played by examples in our teaching, we essentially teach
students how to compute the collection of states in a finite labelled transition
system that satisfy least or largest fixed-point formulae on a variety of examples.
At the same time, we make the students define recursive formulae that intuitively
express some properties of interest and have them check whether the formulae
are correct by performing the iterative computations to calculate their semantics
over well chosen labelled transition systems. This is essentially an ‘experimental’
approach to teaching students how to make sense of fixed points in the definition
of temporal properties of concurrent systems. In our experience, after having
worked through a good number of examples, and having solved and discussed
the solutions to the exercises we give them, the students are able to express
basic, but important, temporal properties such as

the system can deadlock

or

it is always the case that a message that is sent will eventually be delivered.

166 L. Aceto et al.

Note that a specification of the latter property involves the use of both largest
and least fixed-point formulae. We consider it a great success that students are
able to define such formulae and to convince themselves that they have the
expected meaning.

2.3 Explaining Formal Theories

Overall, the story line in our courses lends itself to delivery at different levels of
formality, provided we stress throughout the course the connections between the
mathematical theories we present and their practical applications and meaning.
In our experience, if the lecturers provide sufficient context for the formal ma-
terial, the students do respond by accepting the necessary mathematics within
the limits of their abilities (and during the examination we take this into ac-
count as we put more focus on the application of the mathematical framework
rather than on explaining the formal theories behind it). Having said so, teaching
formally based techniques to present-day bachelor and master students in com-
puter science does present challenges that any working university lecturer knows
very well. The material we cover does have a strong relevance for the practice
of computing, but it involves the ‘M’ word, viz. Mathematics. This means that
many students have the preconceived idea that the material we plan to teach
them is beyond their abilities. In order to make the material more palatable
to students and overcome this psychological obstacle to its acceptance by our
audience, we have developed a narrative that uses anthropomorphic examples
and, e.g., fairly recent theoretical results on process equivalences based on games
that, at least according to our own extensive but admittedly biased experience,
does help the students in understanding difficult notions like bisimilarity. Our
lecturing style and the structure of our courses will be described in slightly more
detail in Section 3. Here we limit ourselves to mentioning that, in our experi-
ence, the game characterization of bisimilarity (see, e.g., [40,43]) helps students
at all levels understand the fundamental concept of bisimilarity and its difference
from the simulation preorder and the equivalence induced by the latter. All our
students like to play games, be they computer games or board games, and they
all seem to understand the basic rules of the bisimulation game and to play the
game without too many problems. Using the game, the students can often argue
convincingly when two processes are not bisimilar, also in cases when they would
have trouble using the relational definition of bisimilarity. In fact, we have even
had students who can use the game characterization of bisimilarity, but who do
not know precisely what a relation, an equivalence relation or relation composi-
tion are. We are not sure about this lack of background says about the teaching
of discrete mathematics, but it does seem to call for providing more context in
those courses for the introduction of these fundamental mathematical concepts
and their uses in computer science.

A similar game characterization is also used for arguing about the meaning
of recursive HML formulae. This offers an alternative approach to the example-
based explanation of recursive formulae and provides a different view on under-
standing largest and least fixed-point properties.

Teaching Concurrency: Theory in Practice 167

3 How Do We Teach Concurrency Theory?

As we mentioned in the previous section, we have used much of the material pre-
sented in the textbook [1] in several one semester courses at Aalborg University
and at Reykjav́ık University, amongst others. These courses usually consist of
about thirty hours of lectures and a similar number of hours of exercise sessions,
where the students solve exercises and work on projects related to the material in
the course. As we stated earlier, we strongly believe that these practical sessions
play a very important role in making the students appreciate the importance of
the theory they are learning, and understand it in depth. The importance that
we attach to practical sessions is also reflected by the fact that we devote just as
much time to them as to the lectures themselves. Indeed, we usually devote more
time to hands-on tutorial sessions than to the lectures since two or more lecture
slots are typically devoted to work on the mini-projects we set the students.

3.1 Focus on Exercises

During the exercise sessions and the mini-projects that we usually set during each
installment of our courses, the students work in groups that typically consist of
two or three members. The groups of students are supposed to work indepen-
dently on the solutions to the exercises and to engage in peer instruction [30], at
least ‘in the small’. The teaching assistants and we discuss the solutions with the
students, ask them further ‘what if’ questions that arise from their purported
answers to the exercises, spur the students to question their proposed answers to
the exercises and use the results of the exercise sessions to find out what topics
need to be further clarified in the lecture room. We always post solutions to
selected exercises after each exercise session. This allows the students to check
whether the answers they proposed are in agreement with ours and whether they
are convinced by the model solutions we provide. Bone fide instructors can ob-
tain the material we typically use for the exercise sessions, as well as the model
solutions we distribute, by emailing us at rsbook@cs.aau.dk.

As mentioned above, apart from the standard exercise sessions, students tak-
ing our courses usually work on two group projects. For each such project, the
students receive six supervised work hours. The aim of the projects is to give the
students experience in modelling a reasonably non-trivial scenario and in analyz-
ing their models using one of the software tools for computer-aided verification
introduced during the course.

The first project usually deals with a modelling and verification task in ‘classic
concurrency theory’; the students use Milner’s CCS as a modelling language and
Hennessy-Milner logic with recursive definitions and/or CCS itself as a specifica-
tion language. They then verify their models employing either the CWB or the
CWB-NC to perform equivalence checking and/or model checking as appropri-
ate. In fact, we often ask our students to verify properties of their model using
both equivalence checking and model checking. The rationale for this choice
is that we believe that students should be familiar with both approaches to

rsbook@cs.aau.dk

168 L. Aceto et al.

verification since this trains them in selecting the approach that is best suited
for the task at hand.

Examples of projects that we have repeatedly used over the years include
modelling and analysis of

– basic communication protocols such as the classic Alternating Bit Proto-
col [7] or the CSMA (Carrier Sense Multi Access) Protocol,

– various mutual exclusion algorithms using CCS and Hennessy-Milner logic
with recursion [44],

– the solitaire game presented in [5, Chapter 6].

A useful source for many interesting student projects is the book [15], which
presents semaphore-based solutions to many concurrency problems, ranging from
classic ones (like the barbershop) to more exotic problems (like the Sushi bar).
Indeed, as cogently argued in [17], not only topics in classic concurrency control
from courses in, say, operating systems can be fruitfully used as student projects
to provide context for the material covered in concurrency-theory courses, but
model checkers and other software tools developed within the concurrency-theory
community can be employed to make the material typically taught in operating
systems course come alive for the students.

The second project usually deals with a modelling and verification task in-
volving real-time aspects, at least in part; the students use networks of timed
automata [2] as a modelling language and the query language supported by the
tool Uppaal as a specification language. They then verify their models employ-
ing Uppaal to perform model checking, synthesize schedules or strategies to win
puzzles or games as appropriate. Examples of projects that we have repeatedly
used over the years include modelling and analysis of

– the board game Rush Hour [48],
– the gossiping girls puzzle [22],
– real-time mutual exclusion algorithms like those presented in, e.g., [3], and
– more problems listed on the web page at

http://rsbook.cs.aau.dk/index.php/Projects.

Examples of recent courses may be found at the URL

http://www.cs.aau.dk/rsbook/.

There the instructor will find suggested schedules for his/her courses, more ex-
ercises, links to other useful teaching resources available on the web, further
suggestions for student projects and electronic slides that can be used for the
lectures. (As an example, we usually supplement the lectures with a series of
four to six 45 minute lectures on Binary Decision Diagrams [10] and their use in
verification based on Henrik Reif Andersen’s excellent lecture notes [4] that are
freely available on the web and on Randel Bryant’s survey paper [10].)

3.2 The Textbook We Use

Our pedagogical style in teaching concurrency theory can be gleaned by looking
at our own recent textbook on the subject [1]. This book is by no means the

http://rsbook.cs.aau.dk/index.php/Projects
http://www.cs.aau.dk/rsbook/

Teaching Concurrency: Theory in Practice 169

first one devoted to aspects of the theory of reactive systems. Some of the books
that have been published in this area over the last twenty years or so are the
references [6,16,19,21,29,31,37,38,41] to mention but a few. However, unlike all
the aforementioned books but [16,29,38], ours was explicitly written to serve as
a textbook, and offers a distinctive pedagogical approach to its subject matter
that derives from our extensive use of the material presented there in book
form in the classroom. In writing that textbook we have striven to transfer on
paper the spirit of the lectures on which that text is based. Our readers will find
that the style in which that book is written is often colloquial, and attempts to
mimic the Socratic dialogue with which we try to entice our student audience
to take active part in the lectures and associated exercise sessions. Explanations
of the material presented in the textbook are interspersed with questions to our
readers and exercises that invite the readers to check straight away whether they
understand the material as it is being presented. This is precisely how we present
the material in the classroom both during the lectures and the tutorial sessions.
We engage the students in continuous intellectual table tennis so that they are
enticed to work through the course material as it unfolds during the course
sessions, in some cases feeling that they are ‘discovering things themselves’ as
the course progresses.

As we mentioned earlier, we have developed a collection of anthropomorphic
examples that, we believe, make the introduction of key notions come alive for
many of our students. By way of example, we mention here that we introduce
the whole syntax of Milner’s CCS by telling the story of a computer scientist
who wants to maximize her chances of obtaining tenure at a research university
by gaining exclusive access to a coffee machine, which she needs to continue
producing publications after having published her first one straight out of her
thesis.

As another example of this approach, we describe the iterative algorithm
for computing the set of processes satisfying largest fixed-point formulae in
Hennessy-Milner logic with recursion by drawing a parallel with the workings
of a court of law. Each process satisfies the formula (or ‘is innocent’) unless we
can find a reason why it should not (that is, ‘unless it is proven to be guilty’).
Apart from leading to memorable scientific theatre, we think that this analogy
helps students appreciate and remember the main ideas behind the iterative al-
gorithms better. Dually, when introducing the iterative algorithm for computing
the set of processes satisfying least fixed-point formulae in Hennessy-Milner logic
with recursion, we say that the key intuition behind the algorithms is that no
process is ‘good’ (satisfies the formula) unless it is proven to be so.

These are simple, but we believe telling, examples of the efficiency of story
telling in the teaching of computer science and mathematics, as put forward by
Papadimitriou in [32]. The readers of our book [1] and of the further material
available from the book’s web site will find other examples of the use of this
pedagogical approach in our teaching and educational writings.

170 L. Aceto et al.

4 The Role of Software Tools in Our Teaching

We strongly recommend that the teaching of concurrency theory be accompa-
nied by the use of software tools for verification and validation. In our courses,
we usually employ the Edinburgh Concurrency Workbench [13] and/or the Con-
currency Workbench of the New Century [14] for the part of the course devoted
to classic reactive systems and, not surprisingly, Uppaal [8] for the lectures on
real-time systems. All these tools are freely available, and their use makes the
theoretical material covered during the lectures come alive for the students.
Using the tools, the students will be able to analyze systems of considerable
complexity, and we suggest that courses based upon our book and the teaching
philosophy described in this article be accompanied by two practical projects
involving the use of these, or similar, tools for verification and validation.

We moreover recommend that the aforementioned tools be introduced as early
as possible during the courses, preferably already at the moment when the stu-
dents hear for the first time about the language CCS, and that the use of tools be
integrated into the exercise sessions. For example, the students might be asked
about the existence of a particular transition between two CCS expressions and
then proceed with verifying their answers by using a tool. This will build their
confidence in their understanding of the theory as well as motivate them to learn
more about the principles behind these tools. On the other hand, it is important
that the students are faced also with exercises that are solved without the tool
support in order to avoid them getting the impression that tools can substitute
for theory.

In several of our recent courses, we have also used blogs as a way to entice the
students to put their thoughts about the course material and their solutions to
the exercises in writing. The rationale for this choice is that we feel that many
of our students underestimate the importance of writing down their thoughts
clearly and concisely, and of explaining them to others in writing. The use of
blogs allows students to comment on each other’s posts, thoughts and solutions.
Moreover, in so doing, they learn how to exercise restraint in their criticisms and
how to address their peers in a proper scientific debate. In order to encourage
students to make use of course blogs, we have sometimes reserved a tiny part
of the final mark of the course, say 5%, for activity on the course blog. Overall,
students have made good use of the course blogs whenever we have asked them
to do so. We think that what the students learn by using this medium justifies
our decision to award a tiny part of the final grade for the course based on
blog-based activities and assignments. Despite the lack of conclusive data, we
believe that the use of a blog or of similar software is beneficial in university
level courses.

Finally, let us remark that we encourage the students taking our courses to
experiment with ‘The Bisimulation-Game Game’5. This tool, which has been
developed by Martin Mosegaard and Claus Brabrand, allows our students to play
the bisimulation game on their laptops and to experiment with the behaviour of

5 http://www.brics.dk/bisim/

http://www.brics.dk/bisim/

Teaching Concurrency: Theory in Practice 171

processes written in Milner’s CCS using the included graphical CCS visualizer
and simulator. It would be interesting to obtain hard data measuring whether
the use of such a graphical tool increases the students’ understanding of the
bisimulation game. We leave this topic for future investigations.

5 A Possible Syllabus and Exam Form

In this section we shall present a possible syllabus of the course which integrates
two mini-projects. The assumption is that the course is given in 15 lectures, each
lecture consisting of two 45 minute blocks.

– Lecture 1: Labelled Transition Systems. Introduction to the course;
reactive systems and their modelling via labelled transition systems; CCS
informally.

– Lecture 2: CCS. Formal definition of CCS syntax; SOS rules; number of
examples; value passing CCS.

– Lecture 3: Strong Bisimilarity. Trace equivalence; motivation for behav-
ioral equivalences; definition of strong bisimilarity; game characterization;
examples and further properties of bisimilarity.

– Lecture 4: Weak Bisimilarity. Internal action τ ; definition of weak bisim-
ilarity; game characterization; properties of weak bisimilarity; a small exam-
ple of a communication protocol modelled in CCS and verified in CWB.

– Lecture 5: Hennessy-Milner Logic. Motivation; syntax and semantics
of HML; examples in CWB; correspondence between strong bisimilarity and
HML on image-finite transition systems.

– Lecture 6: Tarski’s Fixed Point Theorem. Motivation via showing
the need for introducing temporal properties into HML; complete lattices;
Tarski’s fixed point theorem and its proof; computing fixed points on finite
lattices.

– Lecture 7: Hennessy-Milner Logic with Recursion. Bisimulation as a
fixed-point; one recursively defined variable in HML; game characterization;
several recursively defined variables in HML.

– Lecture 8: First Mini-Project. Modelling and verification of Alternating
Bit Protocol in CWB.

– Lecture 9: Timed CCS. Timed labelled transition systems; syntax and
semantics of timed CCS; introduction to timed automata.

– Lecture 10: Timed Automata. Timed automata formally; networks of
timed automata; timed and untimed bisimilarity; region construction.

– Lecture 11: Timed Automata in UPPAAL. UPPAAL essentials; prac-
tical examples; algorithms behind UPPAAL; zones.

– Lecture 12: Second Mini-Project. Modelling and verification of Rush
Hour puzzle.

– Lecture 13: Binary Decision Diagrams. Boolean expressions; normal
forms; Shannon’s expansion law; ordered and reduction binary decision dia-
grams; canonicity lemma; algorithms for manipulating binary decision dia-
grams.

172 L. Aceto et al.

– Lecture 14: Applications of Binary Decision Diagrams. Constraint
solving; Boolean encoding of transition systems; bisimulation model check-
ing; tool IBEN.

– Lecture 15: Round-Up of the Course. Overview of key concepts covered
during the course; exam information.

We recommend that the lectures be accompanied by two hours of exercises, with
a possible placement before the lectures so that exercises related to Lecture 1 are
solved right before Lecture 2 and so on. We find the students’ active involvement
in the exercise sessions crucial for the success of the course. To further motivate
the students we use the technique of constructive alignment [9] so that the course
objectives, the information communicated with the students during the lectures
and exercises, as well as the exam content and form are aligned. This practically
means that in each lecture we explicitly identify two or three main points that are
essential for the understanding of the particular course topic, we exercise those
points during the exercise sessions and then examine them at the exam. In order
to be more explicit about the essential elements of the course, we mark in each
exercise session one or two problems with a star to indicate their importance.
During the exam (which is typically oral in our case, but can be easily adapted
to a written one) the students pick up one of the star exercises (or rather an
instance of the corresponding type of the exercise, unique to each student) and
are then given 20 minutes to find a solution, while at the same time another
student is being examined. At the start of the oral exam we ask the respective
student to first present the solution to the chosen exercise and we proceed with
the standard examination (presentation of one randomly selected topic) only if
the exercise was answered at a satisfactory level.

After introducing the alignment technique described above we can report on
a remarkable increase in students’ involvement in the exercise sessions as well as
in their understanding of the most essential notions covered during the course.

6 Concluding Remarks

In this article, we have reported on our experiences in teaching concurrency the-
ory over the last twenty years or so to a wide variety of students, ranging from
mathsphobic bachelor students to sophisticated doctoral students. We have de-
scribed the contents of the courses, the material on which they are based and the
pedagogical philosophy underlying them, as well as some of the lessons that we
have learned over the years. Our main message is that concurrency theory can
be taught with a, perhaps surprisingly, high degree of success to many different
types of students provided that courses present a closely knit body of theoret-
ical material, exercise and practical sessions, coupled with the introduction of
software tools that the students use in modelling and verification projects. Our
teaching experience over the years forms the basis for our textbook [1] and for
the material that is available from its associated web site.

Of course, it is not up to us to determine how successful our pedagogical
approach to teaching concurrency theory to many different types of students

Teaching Concurrency: Theory in Practice 173

is. We can say, however, that several of the students taking our courses, who
will not specialize within formal methods, appreciate the course as they often
have the opportunity of applying the methods and tools we introduce in their
projects on the practical construction of various kinds of distributed systems—
for instance, in order to better understand a particular communication network
or embedded controller. We believe that the ubiquitous nature of distributed
and embedded systems, together with the fact that most students consider the
crucial importance of their proper functioning uncontroversial, has been a crucial
factor in the change of attitudes in the students taking our courses over the
years mentioned in Section 1.1. Another factor contributing to an increase in
our students’ interest in the material we teach them in our courses is their
realization that it helps them understand better the material that is taught
in follow-up courses, such us those in concurrent programming and distributed
algorithms.

Also, several neighbouring departments—in particular, the Control Theory
Department and the research group on hardware-software co-design at Aalborg
University—have adopted the model-based approach and tool support advo-
cated by our course, both in research and in teaching at several levels (including
doctoral education).

Finally, let us mention that, to the best of our knowledge, our textbook and
the teaching approach we have described in this paper have so far been adopted
in at least 15 courses at universities in several European countries and in Israel.
(See http://rsbook.cs.aau.dk/index.php/Lectures.)

Overall, the positive feedback that we have received from the colleagues of
ours who have used our material and pedagogical approach in their teaching
and from the students following our courses gives us some hope that we may
be offering a small contribution to making students appreciate the beauty and
usefulness of concurrency theory and of algorithmic, model-based verification.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Comput. Sci. 126(2),
183–235 (1994); Fundamental Study

3. Alur, R., Taubenfeld, G.: Fast timing-based algorithms. Distributed Comput-
ing 10(1), 1–10 (1996)

4. Andersen, H.R.: An introduction to binary decision diagrams (1998), Version of
October 1997 with minor revisions April 1998, p. 36,
http://www.itu.dk/people/hra/notes-index.html

5. Arnold, A., Bégay, D., Crubillé, P.: Construction and Analysis of Transition Sys-
tems Using MEC. AMAST Series in Computing, vol. 3. World Scientific, Singapore
(1994)

6. Baeten, J.C., Weijland, P.: Process Algebra. Cambridge Tracts in Theoretical Com-
puter Science, vol. 18. Cambridge University Press, Cambridge (1990)

7. Bartlett, K., Scantlebury, R., Wilkinson, P.: A note on reliable full–duplex trans-
mission over half–duplex links. Commun. ACM 12, 260–261 (1969)

http://rsbook.cs.aau.dk/index.php/Lectures
http://www.itu.dk/people/hra/notes-index.html

174 L. Aceto et al.

8. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

9. Biggs, J.: Teaching for quality learning at University. Open University Press, Stony
Stratford (1999)

10. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

11. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

12. Clarke, E., Gruemberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

13. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-
based tool for the verification of concurrent systems. ACM Trans. Prog. Lang.
Syst. 15(1), 36–72 (1993)

14. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 394–397. Springer, Heidelberg
(1996)

15. Downey, A.B.: The Little Book of Semaphores, 2nd edn. Green Tea Press (2008),
http://www.greenteapress.com/semaphores/

16. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Berlin (2000)

17. Hamberg, R., Vaandrager, F.: Using model checkers in an introductory course on
operating systems. Operating Systems Review 42(6), 101–111 (2008)

18. Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and
models of concurrent systems (La Colle-sur-Loup, 1984). NATO Adv. Sci. Inst.
Ser. F Comput. Systems Sci., vol. 13, pp. 477–498. Springer, Berlin (1985)

19. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
20. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.

J. ACM 32(1), 137–161 (1985)
21. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, En-

glewood Cliffs (1985)
22. Hurkens, C.: Spreading gossip efficiently. Nieuw Archief voor Wiskunde 5/1(2),

208–210 (2000)
23. Ingolfsdottir, A., Godskesen, J.C., Zeeberg, M.: Fra Hennessy-Milner logik til CCS-

processer. Master’s thesis, Department of Computer Science, Aalborg University
(1987) (in Danish)

24. Keller, R.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384
(1976)

25. Krantz, S.G.: How to Teach Mathematics (a personal pespective). American Math-
ematical Society, Providence (1993)

26. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic - and back.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539.
Springer, Heidelberg (1995)

27. Larsen, K.G.: Proof systems for satisfiability in Hennessy–Milner logic with recur-
sion. Theoretical Comput. Sci. 72(2–3), 265–288 (1990)

28. Lions, J.L.: ARIANE 5 flight 501 failure: Report by the inquiry board (July 1996),
http://www.cs.aau.dk/~luca/SV/ariane.pdf

29. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley,
Chichester (1999)

http://www.greenteapress.com/semaphores/
http://www.cs.aau.dk/~luca/SV/ariane.pdf

Teaching Concurrency: Theory in Practice 175

30. Mazur, E.: Peer Instruction: A User’s Manual. Series in Educational Innovation.
Prentice-Hall International, Upper Saddle River (1997)

31. Milner, R.: Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs (1989)

32. Papadimitriou, C.H.: Mythematics: storytelling in the teaching of computer sci-
ence and mathematics. In: Dagdilelis, V., Satratzemi, M., Finkel, D., Boyle, R.D.,
Evangelidis, G. (eds.) Proceedings of the 8th Annual SIGCSE Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE 2003, Thessaloniki,
Greece, June 30–July 2, p. 1. ACM, New York (2003)

33. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

34. Patterson, D.A.: 20th century vs. 21st century C&C: The SPUR manifesto. Com-
mun. ACM 48(3), 15–16 (2005)

35. Pnueli, A.: The temporal logic of programs. In: Proceedings 18 th Annual Sympo-
sium on Foundations of Computer Science, pp. 46–57. IEEE, Los Alamitos (1977)

36. Pratt, V.R.: Anatomy of the Pentium bug. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 97–107. Springer, Heidelberg (1995)

37. Roscoe, B.: The Theory and Practice of Concurrency. Prentice-Hall International,
Englewood Cliffs (1999)

38. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. John Wiley,
Chichester (1999)

39. Steffen, B., Ingolfsdottir, A.: Characteristic formulae for processes with divergence.
Information and Computation 110(1), 149–163 (1994)

40. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

41. Stirling, C.: Modal and Temporal Properties of Processes. Springer, Heidelberg
(2001)

42. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5, 285–309 (1955)

43. Thomas, W.: On the Ehrenfeucht-Fräıssé game in theoretical computer science
(extended abstract). In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE
1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 559–568. Springer, Heidelberg
(1993)

44. Walker, D.: Automated analysis of mutual exclusion algorithms using CCS. Journal
of Formal Aspects of Computing Science 1, 273–292 (1989)

45. Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg
(1990)

46. Yi, W.: A Calculus of Real Time Systems. PhD thesis, Chalmers University of
Technology, Göteborg, Sweden (1991)

47. Yi, W.: CCS + time = an interleaving model for real time systems. In: Leach
Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 217–228. Springer, Heidelberg (1991)

48. Yoshigahara, N.: Rush Hour, Traffic Jam Puzzle,
http://www.puzzles.com/products/rushhour.htm by Puzzles.com (accessed on
July 10, 2009)

http://www.puzzles.com/products/rushhour.htm

Author Index

Aceto, Luca 158
Ahrendt, Wolfgang 125

Backhouse, Roland 39
Barbosa, Lúıs S. 39
Bubel, Richard 125

Catano, Nestor 2

Ferreira, João F. 39

Hähnle, Reiner 125
Hallerstede, Stefan 105
Honiden, Shinichi 57

Ingolfsdottir, Anna 158
Ishikawa, Fuyuki 57

Kofroň, Jan 144
Kramer, Jeffrey 1

Larsen, Kim G. 158
Leuschel, Michael 105

Mendes, Alexandra 39

Ölveczky, Peter Csaba 20

Paŕızek, Pavel 144
Poll, Erik 92

Rueda, Camilo 2

Sazawal, Vibha 72
Šerý, Ondřej 144
Srba, Jǐŕı 158

Taguchi, Kenji 57
Tarkan, Sureyya 72

Yoshioka, Nobukazu 57

	Title Page
	Preface
	Organization
	Table of Contents
	Abstraction and Modelling: A Complementary Partnership
	Teaching Formal Methods for the Unconquered Territory
	Introduction
	Preliminaries on Formal Methods
	The Java Modeling Language (JML)
	The JML Common Tools
	Refinement Calculus and the B Method
	Event B Models

	The Software Engineering Programme at Pontificia Universidad Javeriana
	The JML-Based Software Engineering Course
	Formal Software Development of Ax-LIMS with JML
	Experience with the Course

	Model-Driven Software Engineering in B
	Experience with the Course
	Formal Software Development of MIO in B

	Conclusion and Future Work
	References

	Teaching Formal Methods Based on Rewriting Logic and Maude
	Introduction
	Rewriting Logic and Maude
	Prerequisites and Course Duration
	Course Overview and Sampler
	The Static Part
	Modeling and Analyzing Dynamic Systems in Maude

	Teaching Material
	Evaluation and Impact
	Student Feedback
	Impact in Oslo

	Related Courses
	Follow-Up Courses
	Concluding Remarks
	References

	Which Mathematics for the Information Society?
	Introduction
	Mathematics as $the Art of Effective Reasoning$
	An Educational Programme
	The Programme
	RecreationalMathematics
	Refactoring School Mathematics
	Teaching Scenarios

	Conclusions and Future Work
	References

	What Top-Level Software Engineers Tackle after Learning Formal Methods: Experiences from the Top SE Project
	Introduction
	Top SE Program
	Principles
	Current Status

	Lecture Courses on FM
	Model Checking Series
	Formal Specification Series
	Implementation Techniques Series

	Graduation Studies on FM
	Statistics and Discussion
	Attendance and Completion at Lecture Courses on FM
	Selection of FM in Graduate Studies
	Tool Selection in Graduate Studies on FM
	Topics in Graduation Studies on FM

	Conclusion
	References

	Chief Chefs of Z to Alloy: Using a Kitchen Example to Teach Alloy with Z
	Introduction
	Related Work
	Z to Alloy Tutorial
	Tutorial Content
	Implementation

	Case Studies with Novice Students
	Task and Procedure
	Student Background
	Results
	Student Feedback

	Discussion
	Conclusion
	References

	Teaching Program Specification and Verification Using JML and ESC/Java2
	Introduction
	Context and Goals
	JML
	ESC/Java(2)
	Simple Exercises Using JML and ESC/Java2
	Limitations and Pitfalls in the Use of ESC/Java2
	Pointers and Related Tools
	Evaluation
	Conclusions
	References

	How to Explain Mistakes
	Introduction
	Event-B
	Machines
	Machine Consistency
	Machine Refinement
	Operational Interpretation

	Problem Statement
	Abstract Model
	Concrete Model
	Moving between Rooms
	Leaving the Building
	Granting Door Authorisations
	Revoking Door Authorisations

	Conclusion
	References

	Integrated and Tool-Supported Teaching of Testing, Debugging, and Verification
	Introduction
	Background and Goals
	Concepts
	Realisation and Implementation
	Specification and the Java Modelling Language
	Verification-Based Testing
	Debugging
	The KeY-Hoare Tool

	Experiences and Discussion
	References

	On Teaching Formal Methods: Behavior Models and Code Analysis
	Introduction
	Our Vision and Realization
	Behavior Models and Verification (NSWI101)
	Lectures
	Lab
	Grading
	Experience

	Program Analysis and Code Verification (NSWI132)
	Lectures
	Lab
	Grading
	Experience

	Evaluation and Discussion
	Conclusion
	References

	Teaching Concurrency: Theory in Practice
	Introduction and Background
	Philosophy behind Our Courses
	The Correctness Problem and Its Importance
	The Use of Tools
	Historical Remarks and Acknowledgments

	What Do We Teach and to Whom?
	Details of the Course Material
	Focus on Students’ Understanding
	Explaining Formal Theories

	How Do We Teach Concurrency Theory?
	Focus on Exercises
	The Textbook We Use

	The Role of Software Tools in Our Teaching
	A Possible Syllabus and Exam Form
	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

