
Secret Public Key Protocols Revisited

Hoon Wei Lim� and Kenneth G. Paterson��

Information Security Group
Royal Holloway, University of London Egham,

Surrey TW20 0EX, UK
{h.lim,kenny.paterson}@rhul.ac.uk

Abstract. Password-based protocols are important and popular means
of providing human-to-machine authentication. The concept of secret
public keys was proposed more than a decade ago as a means of securing
password-based authentication protocols against off-line password guess-
ing attacks, but was later found vulnerable to various attacks. In this
paper, we revisit the concept and introduce the notion of identity-based
secret public keys. Our new identity-based approach allows secret pub-
lic keys to be constructed in a very natural way using arbitrary random
strings, eliminating the structure found in, for example, RSA or ElGamal
keys. We examine identity-based secret public key protocols and give in-
formal security analyses, indicating that they are secure against off-line
password guessing and other attacks.

1 Introduction

The use of secret public keys in password-based authentication protocols was
first proposed by Gong et al. [19] in 1993. As implied by its name, a secret
public key is a standard public key which can be generated by a user or a
server, and is known only to themselves but is kept secret from a third party. A
secret public key within a password-based protocol, when encrypted with a user’s
password, should serve as an unverifiable text1. This may significantly increase
the difficulty of password guessing even if it is a poorly chosen password as an
attacker has no way to verify if he has made the correct guess. The secret public
key can then be used by the user for encrypting protocol messages. However, it
may not be easy to achieve unverifiability of text by simply performing naive
symmetric encryption on public key of standard types such as RSA or ElGamal.
This was overlooked in [19] and other variants of secret public key protocols
in [18,28], but later found to be the main culprit in various attacks on the
protocols. These include undetectable on-line password guessing attacks from
� This author was supported by the EPSRC under grant EP/D051878/1.

�� This author was supported by the European Commission under contract IST-2002-
507932 (ECRYPT).

1 Verifiable text/plaintext is a term popularised by Lomas et al. in [24]. It refers to a
message that contains information that is recognisable when decrypted, whether or
not it was predictable in advance.

B. Christianson et al. (Eds.): Security Protocols 2006, LNCS 5087, pp. 237–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 H.W. Lim and K.G. Paterson

Ding and Horster [17] and number theoretic attacks due to Patel [25]. It is
worth noting that the attacks discovered in [17] may not work against a secret
public key protocol which uses a secure public key encryption scheme such as
RSA-OAEP [6]. Nevertheless, Patel’s attacks seem to be one of the crucial factors
that caused diversion of interest away from using secret public keys in password-
based protocols. The concept of secret public keys, therefore, was thought to be
unworkable. For example, in more recent work on password-based protocols that
requires servers’ public keys2 (e.g. [11,20]), it is assumed that the public keys
are fixed and known to all users.

Contributions. The aims of this paper are twofold: (i) we revisit the notion
of secret public keys and uncover some unexplored potential benefits of using
identity-based secret public keys, through identity-based cryptography (IBC),
in password-based protocols; and (ii) we propose three-party and two-party
identity-based secret public key protocols and their respective heuristic secu-
rity analyses.

In our quest to revive the notion, we introduce some new properties for secret
public keys. In the IBC setting, we show that an identity-based secret public key
can offer more flexibility in terms of key distribution. For example, an identity-
based secret public key can be computed by a user on-the-fly without needing
his authentication server to transport the key to him. More importantly, a ran-
dom string can be used as the identifier for constructing a secret public key.
This technique can offer a clean and natural way of eliminating any predictable
structure in the secret public key. Through this, the number theoretic attacks
that plague existing secret public key protocols can easily be prevented.

Since both public and private keys in the IBC setting are kept secret, we also
propose the notion of secret signatures which seem to provide data confiden-
tiality in addition to their original cryptographic use, i.e. authentication and
non-repudiation. This appears to provide additional properties in conventional
secret public key protocols and in password-based authentication protocols in
general.

Related Work. Extensive work on password-based key exchange protocols
(which rely on user passwords only) has already been carried out. See for ex-
ample [1,2,3,5,13,14,22], which all originate from [8,9]. In order to circumvent
off-line password guessing attacks, Bellare et al. [5,7] proposed the use of a mask
generation function E(·) as an instantiation of the encryption primitive for en-
crypting a Diffie-Hellman component, rather than using a standard block (or
stream) cipher. For instance, a user with his password PW can encrypt a Diffie-
Hellman component gx by calculating gx · H(PW), where H is a hash function
mapping onto the Diffie-Hellman group and which is modelled as a random ora-
cle in security proofs. Thus the result of the encryption is a group element. This

2 We classify password-based authentication protocols into two categories: (i) those
which require the usage of the server’s (or the user’s) public key, and sometimes
together with the user’s password, as a key-encrypted key; and (ii) those which
require the user’s password only for key transport.

Secret Public Key Protocols Revisited 239

special encryption primitive, which needs to be carefully implemented, is cru-
cial in preventing any information leakage about the password when an attacker
mounts a guessing attack. To decrypt and recover gx, one can simply divide the
ciphertext by H(PW). All recent work, such as [1,2,3], utilises this encryption
primitive for their password-based key exchange protocols.

The use of algorithms from a public key encryption scheme in a secret key
setting is not new. In 1978, Hellman and Pohlig [21] introduced the Pohlig-
Hellman symmetric key cipher based on exponentiation. Two different keys are
involved in the symmetric key cipher, namely, a secret encrypting key e for the
sender and a secret decrypting key d for the receiver, where e �= d. Obviously, the
communicating parties must agree in advance to share these two symmetric keys.
In more recent work, Brincat [15] investigated how shorter RSA public/private
key pairs can be used securely in the secret key world. This is slightly different
from [21], as each user has his own secret public/private key pair in [15]. Another
related concept is that of public key privacy from Bellare et al. [4]. The notion of
indistinguishability of keys in public key privacy is an extension of the ciphertext
privacy concept: given a set of public keys and a ciphertext generated by using
one of the keys, the adversary cannot tell which public key was used to generate
the ciphertext. In this chapter, we will make use of identity-based (secret) public
keys in the secret key setting. These public keys are known only to the senders
and receivers, and thus indistinguishability of encryptions and keys somewhat
similar to [4] can be achieved. Moreover, in such a setting, a signature can be
made verifiable to only a specific recipient, hence the moniker secret signature. In
many ways, the concepts of secret public key encryption and signatures seem to
be closely related to the notion of signcryption with key privacy from Libert and
Quisquater [23]. The proposal of [23] combined Zheng’s work on signcryption [30]
and the key privacy concept of [4]. Our concept of secret signatures is also related
to, but different from, the strongest security notion for undeniable and confirmer
signatures called invisibility in [16].

Organisation. The outline of the remainder of this paper is as follows. In
Section 2, we review the first proposed secret public key protocol and highlight
its problems. Section 3 briefly describes identity-based encryption and signature
schemes that will be used in our new approach to secret public keys. In Section 4,
we explain and discuss some new properties of secret public keys in the identity-
based setting. In Section 5, we propose two variants of identity-based secret
public key protocols. We also provide informal security analyses of the protocols.
We conclude in Section 6.

2 Secret Public Key Protocols and Attacks

In this section, we revisit the first secret public key protocol proposed in the
literature [19]. We will explain what the problems are with the protocol. This
will motivate our introduction of identity-based techniques to this area.

240 H.W. Lim and K.G. Paterson

Notation. We use ˆPK and ˆSK to represent a secret public key (SPK hence-
forth) and its matching private key, respectively. These are no different from
conventional asymmetric keys except that they are both kept secret. PW de-
notes a password-derived symmetric key which is shared between a user and an
authentication server. A nonce and a random number are represented by n and
r, respectively. We use the notation Enc ˆPK(·) to indicate asymmetric encryp-
tion using a secret public key ˆPK and {·}K for symmetric encryption under a
symmetric key K. In the three-party scenarios that we will discuss in this sec-
tion, we use A and B to denote two communicating parties, while S denotes a
trusted authentication server whose role is to distribute a copy of a randomly
generated session key to both A and B. Other notations will be introduced as
they are needed.

The GLNS SPK Protocol. Gong et al. [19] envisaged that using secret public
keys in a password-based protocol may be useful in a situation where the public
keys are needed for certain protocol messages but the protocol participants do
not know in advance the public key of their authentication server. In addition,
they implicitly assumed that a secret public key could be viewed as a nonce
which, when encrypted with a password, offers unverifiability of text. Assuming
A and B share their respective passwords with the authentication server S, the
server can distribute fresh copies of public keys to A and B encrypted using their
respective passwords as symmetric keys at the beginning of each protocol run.
Each public key is only known between the server and the relevant participant.
This seems to make traditional chosen plaintext attacks more difficult, as the
encryption keys are not known to the attacker. The details of the SPK protocol
of [19] are depicted in Protocol 1.

Protocol 1. The GLNS SPK Protocol

(1). A → S : A, B

(2). S → A : A, B, nS, { ˆPKSA}PW A
, { ˆPKSB}PW B

(3). A → B : Enc ˆPKSA
(A, B, nA1, nA2, cA, {nS}PW A

), nS , rA, { ˆPKSB}PW B

(4). B → S : Enc ˆPKSA
(A, B, nA1, nA2, cA, {nS}PW A

),
Enc ˆPKSB

(B, A, nB1, nB2, cB, {nS}PW B
)

(5). S → B : {nA1, KAB ⊕ nA2}PW A
, {nB1, KAB ⊕ nB2}PW B

(6). B → A : {nA1, KAB ⊕ nA2}PW A
, {H(rA), rB}KAB

(7). A → B : {H(rB)}KAB

As shown in Protocol 1, S generates two new sets of secret public/private key
pairs (ˆPKSA, ˆSKSA), (ˆPKSB, ˆSKSB) and distributes the public components to
A in encrypted form whenever A initiates the protocol run. Here, cA and cB are
sufficiently large random numbers known as confounders. They serve no purpose
other than to confound guessing attacks based on some verifiable texts. Also, H
is assumed to be a well-designed hash function.

In [19], the authors assumed that so long as the secret public keys ˆPKSA and
ˆPKSB are randomly generated, it will be difficult for the attacker to verify if

Secret Public Key Protocols Revisited 241

his password guesses on { ˆPKSA}PW A
or { ˆPKSB}PW B

are correct. In reality,
however, this is not completely true. When using conventional public keys such as
RSA exponents or Diffie-Hellman components, the keys contain certain number
theoretic structure even though they are randomly generated. This, in turn,
may allow the attacker to verify his guessed passwords efficiently by predicting
and checking the outcome of the decryption. For example, if ˆPKSA is an RSA
public key of the form N = pq, then the attacker could expect the decryption
of { ˆPKSA}PW A

under a guess PW ′
A for A’s password to be an odd integer.

This allows the elimination of half of all passwords in a simple off-line guessing
attack. It is this observation that led to Patel’s study on various number theoretic
attacks on secret public key protocols [25]. It is also worth noting that {·}K must
not represent the action of an authenticated encryption algorithm as this would
also leak information that could be used to verify the correctness or otherwise
of password guesses.

Patel’s Attacks. As we have just seen, it can be dangerous to transmit an
RSA modulus in encrypted form in an SPK protocol. Even if the ciphertext
contains only an RSA exponent, e.g. {e}PW , there are various number theoretic
attacks that would reveal the password PW . For example, the attacker could
expect the decryption of {e}PW under a guess PW ′

A to be an odd integer; an even
result would eliminate PW ′

A as a possible password. Thus, some countermeasures
against these number theoretic attacks such as padding or randomisation of the
RSA exponent are inevitably required.

Patel [25] showed that even when moduli N are sent in clear, and e are
randomised and padded, there is still a lethal off-line guessing attack. Protocol 2
illustrates Patel’s RSA version of the SPK protocol. We only show the first 3
out of 7 protocol messages as this is sufficient to describe Patel’s attack.

Protocol 2. The RSA SPK Protocol

(1). A → S : A, B
(2). S → A : A, B, nS , {eSA}PWA , NA, {eSB}PWB , NB

(3). A → B : EnceSA(A, B, nA1, nA2, cA, {nS}PWA), nS , rA, {eSB}PWB

...
...

An attacker can impersonate S and block A’s communication with the real
authentication server to mount the following attack.

1. When the attacker E detects A is sending message (1) to S, he blocks S’s
response from reaching A. E intercepts message (2) and replaces NA with
his own N ′

A whose prime factors he knows. Also, since E does not know
PWA, he simply replaces {eSA}PWA with a random string RA.

2. A unwittingly decrypts RA with her password-derived key PWA and obtains
e′SA which A believes was generated by S. Subsequently in message (3), A
forwards Ence′

SA
(A, B, . . .) to B.

3. E intercepts message (3) and can now perform off-line password guessing
on RA. For each possible PW ′

A, E decrypts RA and retrieves a possible

242 H.W. Lim and K.G. Paterson

value for e′SA. Since E knows the prime factors of N ′
A, he has no problem

computing the decryption exponent d′SA for each value of e′SA. By decrypting
Ence′

SA
(A, B, . . .) with d′SA and checking if the plaintext is of the form

(A, B, . . .), E can test if PW ′
A is the correct password.

It was pointed out in [25] that the above attack on the RSA-based SPK protocol
is unavoidable unless all protocol participants use an agreed-upon RSA modulus,
or unless the protocol is radically modified.

Even supposing a discrete logarithm based SPK protocol was used, and the
ciphertext (which contains a secret public key) transmitted to A was then of the
form {gx}PW , where g is a generator of a subgroup of Z

∗
p of prime order q and x

is a random integer, the password can still be discovered. If a naive encryption of
elements in the subgroup is performed with a standard block (or stream) cipher,
then there is an off-line password guessing attack. The attacker simply decrypts
{gx}PW with a guessed password and observes if the resulting plaintext is an
element of the subgroup. If it was an incorrect guess, the likelihood that gx is not
an element of the subgroup is at least (p − q)/p > 1/2. This attack can only be
prevented by ensuring that decryption of {gx}PW with a guessed password PW ′

always results in an element of the subgroup. Furthermore, it is also essential
that public parameters such as g, p and q have been agreed a priori among the
users. More examples and discussion on this subject can be found in [25,27].
Notice that this kind of attack is prevented using mask generation functions of
the type discussed in Section 1.

From the above descriptions of various number theoretic attacks, it should be
evident that designing a SPK protocol can be difficult and not without some
extra costs in ensuring the predictable number theoretic structure within public
keys is eliminated. These observations are crucial for motivating our identity-
based approach. We will show that the aforementioned problems can be pre-
vented easily and naturally, using identity-based techniques.

3 Background on Identity-Based Cryptography

Identity-based cryptography (IBC) was first introduced by Shamir [26]. Recently,
there has been an increased intensity in research on IBC. This was mainly due to
the seminal discovery of a practical and secure identity-based encryption (IBE)
scheme by Boneh and Franklin [10] in 2001. Their scheme uses pairings over
elliptic curves.

Background on Pairings. Let G1 and G2 be two groups of order q for some
large prime q, where G1 is an additive group and G2 denotes a related multi-
plicative group. A pairing in the context of IBC is a function ê : G1 × G1 → G2

with the following properties.

– Bilinear : Given P, Q, R ∈ G1, we have

ê(P, Q + R) = ê(P, Q) · ê(P, R) and ê(P + Q, R) = ê(P, R) · ê(Q, R).

Secret Public Key Protocols Revisited 243

Hence, for any a, b ∈ Z
∗
q , ê(aP, bQ) = ê(abP, Q) = ê(P, abQ) = ê(aP, Q)b =

ê(P, Q)ab.
– Non-degenerate: There exists a P ∈ G1 such that ê(P, P) �= 1.
– Computable: If P, Q ∈ G1, ê(P, Q) can be efficiently computed.

For any a ∈ Z
∗
q and P ∈ G1, we write aP as the scalar multiplication of group

element P by integer a. Typically, G1 is obtained as a subgroup of the group
of points on a suitable elliptic curve over a finite field, G2 is obtained from a
related finite field, and ê obtained from the Weil or Tate pairing on the curve.

In what follows, we briefly sketch the popular Boneh and Franklin IBE scheme
and an identity-based signature (IBS) scheme with message recovery due to
Zhang et al. These will be used in our identity-based SPK protocols.

3.1 The Boneh-Franklin Identity-Based Encryption Scheme

The following four algorithms underpin Boneh and Franklin’s IBE scheme [10].

Setup: Given a security parameter k ∈ Z
+, the algorithm:

1. specifies two groups G1 and G2 of order q, and a pairing ê : G1 × G1 →
G2;

2. chooses an arbitrary generator P ∈ G1;
3. defines four cryptographic hash functions, H1 : {0, 1}∗ → G

∗
1, H2 : G

∗
1 →

{0, 1}n for some n, H3 : {0, 1}n × {0, 1}n → Z
∗
q , and H4 : {0, 1}n →

{0, 1}n; and
4. picks a master secret s ∈ Z

∗
q at random and computes the matching

public component as sP .
The system or public parameters are 〈q, G1, G2, ê, n, P, sP, H1, H2, H3, H4〉.

Extract: This algorithm is run to extract a private key sH1(ID) when given
an arbitrary identifier string ID ∈ {0, 1}∗.

Encrypt: To encrypt a message m ∈ {0, 1}n under an identifier ID, the public
key used is QID = H1(ID). The algorithm selects a random z ∈ {0, 1}n and
sets r = H3(z, m). The resulting cipertext is then set to be:

c = 〈U, V, W 〉 = 〈rP, z ⊕ H2(gr), m ⊕ H4(z)〉,
where g = ê(QID, sP) ∈ G2.

Decrypt: To decrypt a ciphertext c = 〈U, V, W 〉 encrypted using the identifier
ID, the private key used is sQID ∈ G

∗
1. If U /∈ G

∗
1, reject the ciphertext. The

plaintext m is then recovered by performing the following steps:
1. compute V ⊕ H2(ê(sQID, U)) = z;
2. compute W ⊕ H4(z) = m; and
3. set r = H3(z, m) and if U �= rP , reject the ciphertext, otherwise accept

m as the decryption of c.

It is a common assumption that the Setup and Extract algorithms are run by
a trusted authority called the Private Key Generator (PKG) within a domain.
All users within the domain are assumed to share the same system parameters.

244 H.W. Lim and K.G. Paterson

We remark that the above IBE scheme is known to be secure against adaptive
chosen ciphertext attacks (IND-ID-CCA) provided the Bilinear Diffie-Hellman
problem is hard. This means that even though an adversary has access to some
decryption keys associated to some identifiers (apart form the public key ID∗

being attacked), he would still not able to deduce any useful information about
an encrypted message using ID∗ or the decryption key corresponding to ID∗.
See [10] for further details.

3.2 The Zhang-Susilo-Mu Identity-Based Signature Scheme with
Message Recovery

Using the same notation as above, we describe an IBS scheme with message
recovery due to Zhang et al. [29].

Setup: The PKG selects k1 and k2 such that |q| = k1 + k2. It also defines
additional hash functions H0 : {0, 1}∗ → Z

∗
q , F1 : {0, 1}k2 → {0, 1}k1, and

F2 : {0, 1}k1 → {0, 1}k2.
The system parameters are now 〈q, G1, G2, ê, n, P, sP, H0, H1, F1, F2, k1, k2〉.

Extract: As above.
Sign: Given a private key sQID and a message m ∈ {0, 1}k2, the signer com-

putes:
1. v = ê(P, P)k, where k ∈ Z

∗
q ;

2. f = F1(m)‖(F2(F1(m)) ⊕ m);
3. r = (H1(v) + f) mod q; and
4. U = kP − r(sQID).

The signature σ is (r, U). The length of the signature is |r|+ |U | = |q|+ |G1|.
Verify: Given a signature σ = (r, U) signed by a user with a public key QID =

H1(ID), the verifier computes

f = r − H1(ê(U, P)ê(QID, sP)r) and m = [f]k2 ⊕ F2([f]k1).

The verifier also checks if [f]k1 = F1(m). The signature is accepted as valid
if and only if this equation holds. Here [f]k1 denotes the left-most k1 bits of
the string f , while [f]k2 denotes the right-most k2 bits of the string f .

The security of this scheme is based on the hardness of the computational Diffie-
Hellman problem. To obtain approximately similar security as a standard 1024-
bit RSA signature and a 2−80 probability of a successful forgery by an adversary,
|k1| ≤ 80 is needed if a group element of G1 is represented by 171 bits [29]. The
size of the message is limited to k2, where k2 = |q| − k1.

4 New Properties from Identity-Based Secret Public
Keys

We now present properties from identity-based SPKs by using the Boneh-Franklin
IBE and the Zhang-Susilo-Mu IBS schemes. Pre-distribution or fixing of some

Secret Public Key Protocols Revisited 245

public/system parameters is common in password-based protocols. In this section
and the next, for ease of exposition, we assume that the system parameters for the
Boneh-Franklin IBE and the Zhang-Susilo-Mu IBS schemes can be distributed by
the server to all its users during the user registration phase using an out-of-band
mechanism. This is important as failure to use an authentic set of system param-
eters would allow the attacker to inject his own chosen parameters. Also, during
the registration phase between a user and the server, the user will pick a password
pwd and send an image PW of the password to the server. Typically, one might
set PW = H0(pwd) · P , where H0 : {0, 1}∗ → Z

∗
q , G1 is a group of prime order q

used elsewhere in the protocol, and P generates G1. Note then that the server only
knows PW and not pwd. The actual password pwd still remains private to the user
only. In some cases where pwd and PW are used together, stronger authentication
can be provided in the sense that the user’s authenticity can still be guaranteed
even if the string PW stored in the server is revealed. This technique of using an
image of the actual user-selected password is common to many password-based
protocols, for example [1,5,7,9].

Here, we present and discuss some interesting properties of identity-based
SPKs (ID-SPKs henceforth) which are new as compared to conventional SPK
protocols based on RSA or Diffie-Hellman. These properties can be obtained
from using the Boneh-Franklin and Zhang-Susilo-Mu schemes, and they form the
basis and motivation for the ID-SPK protocols that we will discuss in Section 5.

4.1 ID-SPK as Secret Identifier

In the conventional IBC setting, an identifier refers to some public information
which represents a user and is known to all parties. Here, however, we work with
secret identifiers, that is, identifiers only known to the user A (or B) and the
server S. These can be obtained by binding a secret value such as a password to
an identifier. Such an ID-SPK of the form ˆPK = H1(user ‖ password‖ policy)
can be generated by both the user and the server on-the-fly. Here policy denotes
constraints that can be included in the ID-SPK such as a date, nonces, or roles.
In other words, the server does not need to distribute a fresh secret public key
to its users, in contrast to [19,28]. Here we assume the users have access to
the server’s fixed system parameters. For example, referring back to Protocol 1,
when A initiates the protocol she could, in principle, skip messages (1) & (2)
and transmit message (3) to B as follows:

(3). A → B : Enc ˆPKAS
(A, B, . . .)

where ˆPKAS = H1(A‖B‖S‖PWA‖“10102005”) denotes a public key in the IBE
scheme of [10]. Here “10102005” represents a date. A date with more granularity
(e.g. concatenated with time) or a nonce may well be needed to ensure fresh-
ness of ˆPKAS . We remark that the Boneh-Franklin IBE scheme is probabilistic
and thus the attacker cannot use a guessed password PW ′

A to verify his guess
by generating Enc ˆPKAS

(A, B, . . .) and comparing it with the actual ciphertext
produced by A, even if he knows all the plaintext components.

246 H.W. Lim and K.G. Paterson

On the server side, the server can extract the matching private key for ˆPKAS

using its master secret. Unless the attacker can break the IBE scheme or recover
the master secret, the above ciphertext is resistant to password guessing attacks.
This identity-based technique offers a form of non-interactive distribution of
secret public keys from the server to its users.

In the above example, A uses an ID-SPK encryption scheme which is adapted
from the full version of the IBE scheme of [10] with the encryption key only
known to the user and the server. Formal security definitions and proofs of
security for ID-SPK encryption schemes are beyond the scope of this paper and
will be addressed in our future work.

4.2 Random String as ID-SPK

We have explained earlier in Section 2 that a naive encyption of an RSA ex-
ponent or a group element with a standard block cipher would lead to effective
off-line password guessing attacks. Therefore, some form of padding or randomi-
sation of the keys is needed. In the IBC setting, we note that a random string
with arbitrary length without any predictable structure can also be used as an
identifier. The corresponding public key can be derived by hashing. Since now
only a random string needs to be encrypted under the user password, the pos-
sibility of using a standard block cipher for the encryption is opened up3. For
example, in Protocol 1, the server can transport random strings STA and STB

to A and B, respectively, in message (2) as follows:

(2). S → A : A, B, nS , {STA}PWA , {STB}PWB

(3). A → B : Enc ˆPKSA
(A, B, nA1, nA2, nS), nS , rA, {STB}PWB

(4). B → S : Enc ˆPKSA
(A, B, nA1, nA2, nS), Enc ˆPKSB

(B, A, nB1, nB2, nS)

Since STA and STB are just random strings, they do not contain any predictable
structure which may leak some information to the attacker as in the case of RSA
or Diffie-Hellman keys. Subsequently, users A and B can derive their ID-SPKs
ˆPKSA = H1(A‖B‖S‖STA) and ˆPKSB = H1(B‖A‖S‖STB), respectively, and

respond to the server via messages (3) and (4). If the server can decrypt B’s reply
and recover nS from both the ciphertexts produced with ˆPKSA and ˆPKSB, it
can be assured that the users have received the correct random strings. Thus, A
and B are authenticated to S. The use of random strings as identifiers is a key
property from our identity-based approach which may give the concept of SPK
protocols new life.

We remark that to prevent off-line attacks, ciphertexts obtained by encryption
under the keys ˆPKSA and ˆPKSB must not leak useful information about STA

and STB, respectively. This is not a traditional requirement of a public key
encryption scheme (it is related to the public key privacy concept in [4]). Also
note that since we use a probabilistic encryption scheme here, we have removed
the use of confounders cA and cB originally proposed in Protocol 1 in messages
3 However, it is still necessary to take care to avoid attacks based on the introduction

of redundancy, for example padding, in the block cipher encryption.

Secret Public Key Protocols Revisited 247

(3) and (4). Furthermore, users A and B no longer need to encrypt nS with
their respective passwords in their replies to S, in messages (3) and (4). This is
because users A and B can demonstrate their knowledge of respective passwords
by their ability to construct correct keys from STA and STB.

4.3 Secret Signatures

In what follows, we show some extended properties that an ID-SPK can offer
as compared to a conventional SPK. Again, referring to Protocol 1, if in the
protocol A (and B) selects and sends STA (and STB) to the server (rather than
the server sending it to the user), we can, in principle, remove messages (1) &
(2) and modify messages (3) – (5) as follows:

(3). A → B : Enc ˆPKSA1
(A, B, STA), rA

(4). B → S : Enc ˆPKSA1
(A, B, STA), rA,

Enc ˆPKSB1
(A, B, STB), rB

(5). S → B : Sig ˆSKSA2
(KAB), SigŜKSB2

(KAB)

Note that we have replaced nonces nA1, nA2, nB1 and nB2 in Protocol 1 by
random strings STA and STB. For ease of exposition, we concentrate on the
interaction between A and S. In message (3), A encrypts a random string STA

with an ID-SPK ˆPKSA1 = H1(A‖B‖S‖PWA). It is obvious that a symmet-
ric encryption of the form {A, B, . . . , STA}PWA cannot be used in message
(3) because the identities of A and B are verifiable texts. The server responds
with a signature generated with a private key associated with the public key
ˆPKSA2 = H1(S‖A‖B‖PWA‖STA). The reason for doing this will be clear when

we look at the motivation for using SigŜK(·), a signature scheme with a private
key ˆSK, in message (5). As compared to the modification of Protocol 1 given
in Section 4.2, the server cannot reply to A with an encrypted message using
an ID-SPK constructed from H1(S‖A‖B‖PWA‖STA). This is mainly because
in such an asymmetric model (where the user only knows an easy-to-remember
password and the server has access to the secret public/private key pairs), only
the server itself can extract the corresponding private key. This prompts the
requirement to use a secret signature which not only provides non-repudiation
of the signed message and message recovery, but also preserves message con-
fidentiality. This last property is needed because the server wants only A and
B to be able to verify the signatures and recover the signed messages. This, in
turn, leads us to the use of an ID-SPK signature scheme with message recov-
ery which can be adapted from [29]. So long as the verification keys used in
the scheme of [29] are kept secret between the intended parties, our concept of
secret signatures can be used. However, we remark that the IBS scheme with
message recovery must be used carefully because the scheme provides message
integrity. In other words, a simple off-line password guessing attack would be
enabled if a secret signature was created based on a private key corresponding
to ˆPKSA2 = H1(S‖A‖B‖PWA). For instance, the attacker could construct an
ID-SPK ˆPK ′

SA2 = H1(S‖A‖B‖PW ′
A) using a guessed password PW ′

A and then

248 H.W. Lim and K.G. Paterson

attempt to verify the signature. If he used the wrong password, the Verify algo-
rithm would return an error message. Because of that, the identifier from which
the verifying key is derived must contain a secret value chosen from a space much
larger than the password space. We achieve this by including STA (or STB) in
the identifier. It is also worth mentioning that a secret signature should not leak
information about the signing key, the verifying key, or the plaintext that has
been signed.

As we have explained earlier, a secret identifier can bind a user’s password
naturally to a secret public/private key pair. As such, secret signatures may
be beneficial in a password-based protocol when one or both of the following
conditions apply:

(i). Non-repudiation, confidentiality, and integrity of a signed message are
required.

(ii). An additional line of defence is desirable (e.g. assuming the server keeps
its master secret in a tamper-resistant hardware token or smartcard, the
attacker cannot impersonate the server to any of its users even if the users’
passwords are exposed).

Security definitions and proofs of security for ID-SPK signature schemes with
message recovery will be addressed in our subsequent work on secret public keys.

5 The ID-SPK Protocols

In the previous sections, we learned that to exploit the advantages of using SPKs
in a password-based protocol, the keys must not contain any predictable struc-
ture, such as that appearing in RSA or discrete logarithm-based systems. This
section presents complete three-party and two-party ID-SPK protocols which
can solve this structural issue in a clean and natural way. These protocols build
on the ideas introduced in the previous section. We assume that all the proto-
col participants have agreed on some public/system parameters for the ID-SPK
encryption and signature schemes a priori.

Before we look at the ID-SPK protocols, it may be useful to classify some
common attacks on password-based protocols.

– On-line password guessing attacks: The attacker chooses a password from
his dictionary and tries to impersonate a user. He verifies the correctness
of his guess based on responses from the server. If the impersonation fails,
the attacker tries again using a different password from his dictionary. Note
that the attacker can also impersonate the server to the user by intercepting
and modifying a message originating from the server before forwarding it
to the user (assuming the server has used the user’s password in some way
in creating the message). He can then verify his password guesses based on
responses from the user.

– Off-line password guessing attacks: The attacker records past communication
and makes a verifiable guess using a password from his dictionary. If the

Secret Public Key Protocols Revisited 249

guess fails, the attacker tries again with a different password until the correct
password is found. No on-line participation of a server (or a user) is required
and the attacks take place without the knowledge of the actual protocol
participants.

– Attacks exploiting exposed secrets: The attacker may occasionally have access
to sensitive information such as past session keys or a user’s password. This is
possible when the user’s machine or the server are compromised, or the user’s
password is revealed through a keystroke logger. It is a desirable security
property that exposure of past session keys will not lead to the exposure of
the user’s password and vice versa.

– Undetectable on-line password guessing attacks : The attacker mounts an on-
line guessing attack. However, a failed guess cannot be detected and logged
by the server (or the user). In other words, the protocol participants cannot
distinguish a genuine protocol message from a modified (malicious) message.

Security Model. We sketch here our definition of the security for a password-
based ID-SPK protocol, using an informal security model. In the model, there
is an adversary E, who is allowed to watch regular runs of the protocol between
a user, U ∈ U , where U is a set of protocol users, and a server S. E can actively
communicate with the user and the server in replay, impersonation, and man-
in-the-middle attacks. The adversary can prompt one of the parties to initiate
new sessions. In each session, E can see all the messages sent between U and S.
Furthermore, he can intercept the messages and modify or delete them. Also, E
gets to see whether S accepts the authentication or not. In addition, we allow the
adversary to establish as many “accounts” as he wishes with the server using his
own chosen passwords. He can then run arbitrarily many authentication sessions
using these accounts to obtain information for his attacks.

It is clear that if the user picks a password from his dictionary D, then the
adversary that attempts n active impersonation attacks (or on-line guessing
attacks) over n distinct sessions with the server can succeed with probability at
least n/|D| by trying a different password from D in each attempt.

Definition 1 (Informal). We say that the ID-SPK protocol is secure if all the
following conditions are satisfied.

1. No useful information about a session key is revealed to the adversary during
a successful protocol run and the exposure of past session keys does not leak
any information about the current session key.

2. The adversary cannot discover the correct user password after n active im-
personation attempts with probability significantly higher than n/|D|.

3. The protocol is resistant to off-line password guessing attacks.
4. The protocol is resistant to undetectable on-line password guessing attacks.
5. The exposure of the user’s past session keys will not lead to the exposure of

the user’s password and vice versa.

We remark that formal security model and definition, such as those used in [5],
have not been employed in this paper. This is because the main objective of the
paper is to explore new ways of using SPKs in the IBC setting.

250 H.W. Lim and K.G. Paterson

5.1 The Three-Party ID-SPK Protocol

In [18], Gong further optimised the original SPK protocol in [19] by reducing
the number of protocol messages to reduce the communication costs incurred by
the protocol. We further modify Gong’s optimised SPK protocol by building on
the example given in Section 4.3, as shown in Protocol 3.

Protocol 3. The Modified Gong SPK Protocol

(1). A → B : A, rA, Enc ˆPKA1
(A, STA)

(2). B → S : B, Enc ˆPKB1
(B, STB), A, rA, Enc ˆPKA1

(A, STA)
(3). S → B : Sig ˆSKB2

(KAB), SigŜKA2
(KAB)

(4). B → A : Sig ˆSKA2
(KAB), MACF (KAB)(B, A, rA), rB

(5). A → B : MACF (KAB)(A, B, rB)

In Protocol 3, users A and B select their respective random strings STA and
STB and encrypt them with an ID-SPK. As before, ˆPKA1 = H1(A‖B‖S‖PWA)
and ˆPKB1 = H1(B‖A‖S‖PWB). The server recovers STA and STB, and com-
putes private keys ˆSKA and ˆSKB matching the ID-SPKs ˆPKA2 and ˆPKB2

constructed from the random strings: ˆPKA2 = H1(S‖A‖B‖PWA‖STA) and
ˆPKB2 = H1(S‖B‖A‖PWB‖STB). The private keys are then used to sign a

session key. We assume that an IBS scheme with message recovery is used,
so that the intended recipients are able to recover the session key using their
knowledge of the ID-SPKs. These secret signatures also provide non-repudiation.
Even though this is rarely a requirement in protocols for authentication and
key establishment, it automatically provides the important data integrity and
data origin authentication services [12]. Note that MACF (KAB)(B, A, rA) and
MACF (KAB)(A, B, rB) in messages (4) and (5) are used by A and B, respec-
tively, to prove to each other that they are indeed sharing the same session key.
This provides key confirmation. Here, F denotes a key derivation function.

To improve the performance of Protocol 3, SigŜKA2
(KAB) and Sig ˆSKB2

(KAB)
in message (3) can be replaced with {KAB}F (STA) and {KAB}F (STB), respec-
tively.

Security Analysis. Protocol 3 shows that users A and B communicate with S
using secret identifiers IDA = A‖B‖S‖PWA and IDB = B‖A‖S‖PWB, respec-
tively. These identifiers involve the users’ passwords. Since S is the only party
who has knowledge of PWA and PWB apart from A and B, the users should
receive the same session key created by the server provided the correct private
keys are used to transport the session key. If A and B can successfully recover
KAB from their respective received secret signatures, they can be assured of the
authenticity of the server.

It is clear that requirement 1 of Definition 1 can be satisfied if the session
key is randomly generated by the server. Moreover, the session key cannot be
computed directly by the adversary E.

By observing a protocol run, E can gather information by intercepting the pro-
tocol messages, such as Enc ˆPKA1

(A, STA), Enc ˆPKB1
(B, STB), Sig ˆSKA2

(KAB)

Secret Public Key Protocols Revisited 251

and SigŜKB2
(KAB). However, since we assume that the ID-SPK encryption

scheme used in this protocol is IND-ID-CCA secure, E cannot gain any useful
information about STA and STB from Enc ˆPKA1

(A, STA) and Enc ˆPKB1
(B, STB)

without knowledge of the master secret held by the server. As for the session
key transportation in the form of secret signatures from the server to the users,
E can choose his own verification keys in an attempt to recover the session
key. However, there seems to be no efficient way for E to predict the correct
ID-SPK if the ID-SPK signature scheme used in the protocol offers appropriate
security. In particular, we assume that E cannot distinguish a secret signature
from a randomly generated string if the identifier is constructed using sufficient
randomness. We also assume that the adversary cannot forge valid secret sig-
natures, impersonating the server to users. Apart from that, it is very unlikely
that E can impersonate a legitimate user by guessing the user’s password. This
is so since the adversary’s impersonation attack would be detected immediately
by the server if the user’s chosen random string cannot be recovered successfully
from message (2). Note that the number of impersonation attempts can be kept
acceptably small by using mechanisms that can log and control the number of
failed authentication attempts. A brute force attack on message (3) or (4) to
deduce the session key can be easily thwarted by using random strings STA

and STB with entropy significantly larger than the password space of D. Also,
so long as STA and STB are fresh and randomly generated for each protocol
run, E would not be able to mount a replay attack. It is thus conjectured that
requirement 2 is satisfied.

When E uses a password PW ′
A ∈ D to mount an off-line password guessing

attack on a recorded Enc ˆPKA1
(A, STA), there is no way for the adversary to

verify the correctness of ˆPK ′
A1 = H1(A‖B‖S‖PW ′

A) if the ID-SPK encryption
is randomised and IND-ID-CCA secure. If E selects PW ′

A ∈ D and ST ′
A at

random, computes ˆPK ′
A2 = H1(S‖A‖B‖PW ′

A‖ST ′
A), and then attempts to

verify Sig ˆSKA2
(KAB), his check will almost certainly fail since the entropy of

STA is much larger than the entropy of PWA. Thus this form of off-line guessing
attack will not succeed and therefore, Protocol 3 also satisfies requirement 3.

If E has a valid account with S, he may possibly mount an insider attack by im-
personating A to S, pretending to be wanting to establish a session key KAE with
himself. In the attack, E initiates the protocol by computing Enc ˆPK′

A1
(A, ST ′

A)
with a guessed passwordPW ′

A, and hence ˆPK ′
A1 = H1(A‖B‖S‖PW ′

A). However,
once this message has reached S, the server should get an error message when de-
crypting Enc ˆPK′

A1
(A, ST ′

A) using the decryption key matching ˆPK ′
A1. Therefore

it is clear that the protocol can detect on-line guessing attacks and thus require-
ment 4 is satisfied.

On certain rare occasions, E may have access to A’s or B’s machine and thus
the past session keys shared between them are exposed. However, since E has
no knowledge of the master secret of S and the matching private component
of ˆPKA2, E still cannot determine PWA even though he can mount a brute-
force attack on ˆPKA2. On the other hand, if for some reason, E has the correct
password for A, he may attempt to find the value of STA given A’s password and

252 H.W. Lim and K.G. Paterson

the ciphertext Enc ˆPKA1
(A, STA). Since the encryption scheme is IND-ID-CCA

secure, E only has a negligible success probability to discover the correct STA.
Also, since the value of the verification key for Sig ˆSKA2

(KAB) depends on the
secret value STA, E can only recover the session key with negligible probability
and forward secrecy of the protocol is preserved. Hence, requirement 5 is also
satisfied. We conclude that Protocol 3 is a secure ID-SPK assuming that the
ID-SPK encryption and signature schemes are appropriately secure.

Nevertheless, it is worth noting that if the server’s master secret is compro-
mised, the adversary can deduce the users’ passwords without much difficulty.
For instance, for each candidate password PW ′

A, E can extract the private key
matching the identifier ID′

A = A‖B‖S‖PW ′
A and use it to attempt to decrypt

Enc ˆPKA1
(A, STA) from message (1), and check if the decryption unveils A’s

identity. Hence, it is of the utmost importance that the server’s master secret is
kept private, for example by using a strong protective mechanism such as storing
it in a tamper-resistant device.

5.2 The Two-Party ID-SPK Protocol

We now present a Diffie-Hellman type two-party ID-SPK protocol. Our protocol
is adapted from [1,5] which make use of an encrypted Diffie-Hellman ephemeral
key exchange. We apply the identity-based techniques that we introduced in
Section 4 to obtain Protocol 4, as shown below.

Protocol 4. The Diffie-Hellman ID-SPK Protocol

(1). A → S : A, Enc ˆPKA1
(aP)

(2). S → A : S, SigŜKA2
(xP)

In Protocol 4, the user randomly selects a ∈ Z
∗
q and computes aP , where

P ∈ G1 is part of the system parameters. A then encrypts the Diffie-Hellman
component with ˆPKA1 = H1(A‖S‖PWA) and sends message (1) to S. The
server extracts the matching private key ˆSKA1 with its master secret to re-
cover aP . Subsequently, S picks a random number x ∈ Z

∗
q and calculates xP .

The server then extracts another private key which is associated with ˆPKA2 =
H1(S‖A‖PWA‖aP), produces Sig ˆSKA2

(xP), and transmits it to A. After receiv-
ing message (2), the user retrieves xP with ˆPKA2. Both the user and the server
calculate a session key as KAS = F (A‖S‖PWA‖aP‖xP‖axP), where F is a key
derivation function. Note that key confirmation can be provided by adding a
third message from A to S, in which A provides a MAC computed on all the
protocol messages using the session key (derived using a different key derivation
function to F).

Security Analysis. As with Protocol 3, user A uses an ID-SPK, but in this
case to transport a Diffie-Hellman ephemeral key aP to the server. It is worth
noting that message (1) can be replayed but this is not an issue because the
purpose of the protocol is to authenticate the session key. If the adversary E

Secret Public Key Protocols Revisited 253

has captured message (1) and replays it, he will not gain any information about
the session key, unless he has access to a and to xP in message (2). Also, we
note that since only S other than A has access to PWA, S is authenticated to
A when A successfully recovers xP using ˆPKA2 = H1(S‖A‖PWA‖aP) (recall
that an ID-SPK signature scheme provides a message integrity check).

Clearly, requirement 1 of Definition 1 can be satisfied if the ephemeral Diffie-
Hellman components from A and S are randomly generated and information
used to compute the session key including a, aP, x, xP, and PWA cannot be
computed directly by E.

E has access to Enc ˆPKA1
(aP) and Sig ˆSKA2

(xP) through watching a protocol
run between A and S. However, since we assume that the ID-SPK encryption
scheme used in this protocol is IND-ID-CCA secure, E cannot obtain any use-
ful information about aP from Enc ˆPKA1

(aP) without knowledge of the master
secret held by the server. Also, we assume that the ID-SPK signature scheme
used in the protocol produces secret signatures SigŜKA2

(xP) that are indistin-
guishable from random strings. Hence it is hard for E to deduce any information
about the Diffie-Hellman component chosen by the server. Using analysis simi-
lar to that we used when discussing Protocol 3, it appears unlikely that E will
successfully impersonate A in n attempts with probability significantly higher
than n/|D| or mount a replay attack, provided aP and xP are fresh and their
entropy is significantly higher than the entropy of D. Also, the use of an incor-
rect password in generating ˆPKA1 can be easily detected by the server when the
server uses the wrong matching private key to recover aP . It is thus conjectured
that requirements 2, 3 and 4 are satisfied.

It is possible that E may have access to A’s machine and recover the past
session keys used by A. In that case, despite the fact that E knows K ′

AS , he
must be able to reverse the key derivation function F in order to deduce A’s
password. On the other hand, if for some reason A’s password is revealed to E,
E may attempt to find the value of aP given A’s password and the ciphertext
Enc ˆPKA1

(aP). Since the encryption scheme is IND-ID-CCA secure, E only has
a negligible success probability to find the correct aP . Also, since the value of
the verification key for SigŜKA2

(xP) depends on the secret value aP , E can only
recover the session key with negligible probability. This is related to the forward
secrecy of protocols discussed in [1,5]. Therefore, requirement 5 is also satisfied.
We note that in addition to having met this requirement, even if E knows aP and
xP , he has to solve the intractable CDH problem in order to calculate axP and
hence the session key. We conclude that Protocol 4 is a secure ID-SPK protocol.

As with the security of Protocol 3, it is essential to have the server’s master se-
cret adequately protected to ensure that the aforementioned security conditions
hold.

6 Conclusions

We studied the history of secret public key protocols and discussed some known
problems with these protocols. We then explored some interesting properties

254 H.W. Lim and K.G. Paterson

of identity-based cryptography which form the basis of our proposed identity-
based secret public key protocols. These properties also allow us to convert
a conventional identity-based encryption scheme and a standard identity-based
signature scheme (with message recovery) into their secret public key equivalents.

We presented three-party and two-party identity-based secret public key pro-
tocols for key exchange. Our heuristic security analyses show that the protocols
appear to be secure against off-line password guessing attacks and undetectable
on-line password guessing attacks, and provide forward secrecy. The security
definitions and proofs of the ID-SPK encryption and signature schemes, as well
as formal security analyses of the proposed ID-SPK protocols in this paper, will
be addressed in our further work on this subject.

Acknowledgements

The authors would like to thank Qiang Tang for his very helpful feedback on an
earlier draft of this paper, and Kim-Kwang Raymond Choo for pointing out a
flaw in an earlier version of Protocol 3.

References

1. Abdalla, M., Chevassut, O., Pointcheval, D.: One-time verifier-based encrypted key
exchange. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 47–64. Springer,
Heidelberg (2005)

2. Abdalla, M., Fouque, P., Pointcheval, D.: Password-based authenticated key ex-
change in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

3. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – how to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

7. Bellare, M., Rogaway, P.: The AuthA Protocol for Password-Based Authenticated
Key Exchange. Contribution to IEEE P1363 (March 2000)

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: Proceedings of the 1992 IEEE Symposium
on Security and Privacy, pp. 72–84. IEEE Computer Society Press, Los Alamitos
(1992)

9. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based
protocol secure against dictionary attacks and password file compromise. In: Pro-
ceedings of the 1st ACM Computer and Communications Security Conference, pp.
244–250. ACM Press, New York (1993)

Secret Public Key Protocols Revisited 255

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boyarsky, M.K.: Public-key cryptography and password protocols: The multi-user
case. In: Proceedings of the 6th ACM Computer and Communications Security
Conference, pp. 63–72. ACM Press, New York (1999)

12. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Berlin (2003)

13. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

14. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: Proceedings of the 10th ACM Computer and
Communications Security Conference, pp. 241–250. ACM Press, New York (2003)

15. Brincat, K.: On the use of RSA as a secret key cryptosystem. Designs, Codes, and
Cryptography 22(3), 317–329 (2001)

16. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)

17. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. ACM Op-
erating Systems Review 29(4), 77–86 (1995)

18. Gong, L.: Optimal authentication protocols resistant to password guessing attacks.
In: Proceedings of 8th IEEE Computer Security Foundations Workshop (CSFW
1995), pp. 24–29. IEEE Computer Society Press, Los Alamitos (1995)

19. Gong, L., Lomas, T.M.A., Needham, R.M., Saltzer, J.H.: Protecting poorly chosen
secrets from guessing attacks. IEEE Journal on Selected Areas in Communica-
tions 11(5), 648–656 (1993)

20. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Transactions on Information and System Security 2(3), 230–268 (1999)

21. Hellman, M.E., Pohlig, S.C.: Exponentiation Cryptographic Apparatus and
Method. U.S. Patent #4,424,414, January 3 (1984) (expired)

22. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Computer Communication Review 26(5), 5–26 (1996)

23. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

24. Lomas, T.M.A., Gong, L., Saltzer, J.H., Needham, R.M.: Reducing risks from
poorly chosen keys. ACM Operating Systems Review 23(5), 14–18 (1989)

25. Patel, S.: Number theoretic attacks on secure password schemes. In: Proceedings of
the 1997 IEEE Symposium on Security and Privacy, pp. 236–247. IEEE Computer
Society Press, Los Alamitos (1997)

26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

27. Steiner, M., Buhler, P., Eirich, T., Waidner, M.: Secure password-based cipher
suite for TLS. ACM Transactions on Information and System Security 4(2), 134–
157 (2001)

28. Tsudik, G., Herreweghen, E.V.: Some remarks on protecting weak keys and poorly
chosen secrets from guessing attacks. In: Proceedings of the 12th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS 1993), pp. 136–141. IEEE Computer
Society Press, Los Alamitos (1993)

256 H.W. Lim and K.G. Paterson

29. Zhang, F., Susilo, W., Mu, Y.: Identity-based partial message recovery signatures
(or how to shorten ID-based signatures). In: Patrick, A.S., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 45–56. Springer, Heidelberg (2005)

30. Zheng, Y.: Digital signcryption or how to achieve cost (Signature & encryption)
<< cost(Signature) + cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

	Secret Public Key Protocols Revisited
	Introduction
	Secret Public Key Protocols and Attacks
	Background on Identity-Based Cryptography
	The Boneh-Franklin Identity-Based Encryption Scheme
	The Zhang-Susilo-Mu Identity-Based Signature Scheme with Message Recovery

	New Properties from Identity-Based Secret Public Keys
	ID-SPK as Secret Identifier
	Random String as ID-SPK
	Secret Signatures

	The ID-SPK Protocols
	The Three-Party ID-SPK Protocol
	The Two-Party ID-SPK Protocol

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

