How to Speak an Authentication Secret Securely
from an Eavesdropper

Lawrence O’Gorman, Lynne Brotman, and Michael Sammon

Avaya Labs, Basking Ridge NJ 07920, USA

{logorman,lynne,mjps}@avaya.com

Abstract. When authenticating over the telephone or mobile headphone,
the user cannot always assure that no eavesdropper hears the password or
authentication secret. We describe an eavesdropper-resistant, challenge-
response authentication scheme for spoken authentication where an
attacker can hear the user’s voiced responses. This scheme entails the user
to memorize a small number of plaintext-ciphertext pairs. At authentica-
tion, these are challenged in random order and interspersed with camou-
flage elements. It is shown that the response can be made to appear random
so that no information on the memorized secret can be learned by eaves-
droppers. We describe the method along with parameter value tradeoffs
of security strength, authentication time, and memory effort. This scheme
was designed for user authentication of wireless headsets used for hands-
free communication by healthcare staff at a hospital.

1 Introduction

When we type a password into a computer or a PIN into a bank machine,
the characters are usually masked on the screen (e.g., “F***¥*7) to prevent
onlookers from seeing the secret code. When speaking a password or PIN into
a telephone or other voice communication device, there is nothing comparable
to keep the password secret. There are two alternatives for the user. One is to
speak softly and to hope no eavesdropper hears. Another is to use a telephone
keypad and to make sure that no onlooker sees which keys are pressed. Neither
solution is very satisfactory. The former depends on the user finding a place
out of earshot from others. The latter precludes hands-free communications and
fails to offer a solution for present and future communications devices that use
only voice communications. The objective of this work is to offer a means for
user-authentication by voice in which an eavesdropper who can hear the user
responses cannot gain information to impersonate the true user.

We propose a method called SPIN, for “spoken PIN”. This authentication
protocol involves the user first memorizing simple plaintext-ciphertext pairs,
e.g., red=3, green=2, blue=9. A plaintext sequence is sent — spoken — by the au-
thentication server to the user. We assume the user receives this sequence by an
earphone or in some way that eavesdroppers cannot hear it. The user responds
with the ciphertext element associated with each plaintext element. We assume

B. Christianson et al. (Eds.): Security Protocols 2006, LNCS 5087, pp. 215 2009.
© Springer-Verlag Berlin Heidelberg 2009

216 L. O’Gorman, L. Brotman, and M. Sammon

there may be eavesdroppers hearing this response. We show that by random-
izing the sequence of authentication elements and by interspersing camouflage
elements in the sequence, that an eavesdropper can obtain no information to
learn the cipher over one or many responses.

In Section 2, we describe some alternative authentication methods where the
user response can be seen or heard by eavesdroppers and the procedure can still
be secure. In Section 3, we detail the SPIN method and provide equations and
plots to choose among parameter value tradeoffs. We also make some security
and convenience comparisons between SPIN and PINs, passwords, and one-time
passwords. We describe our healthcare application of SPIN in Section 4 and
discuss SPIN and some alternatives in Section 5.

2 Background

There is a common solution to any authentication problem where eavesdroppers
may hear or see the user’s response. This is not to repeat that response. Or, more
specifically, the correct authentication response will change randomly each time
it is given. This is different than a traditional, static password. One reason the
changing authentication response protocol is less common than the static pass-
word protocol is that, for a changing response the user usually requires some sort
of aid, such as an electronic token, to correctly respond with a different response
for each authentication instance. One-time passwords, time-synchronous PINs,
and challenge-response pass codes are all examples of this.

When one speaks of spoken authentication, one might picture a secret ren-
dezvous between spies where they identify themselves by a pre-arranged dialogue
such as,

Spy 1 — “I hear Cyprus is lovely this time of year.”
Spy 2 — “The leeward beaches are best in the afternoon sun.”

As much as a dialogue such as this might help the two spies identify each other,
it can only be used once because an eavesdropper who has heard the dialogue
can impersonate either spy subsequently. This is akin to a one-time password
scheme of which there are computer authentication examples such as SKEY,
which is a chained list of hashes that the user carries and uses one each time
until the list is depleted [1, 2]. Because each password is used once, it would be
tedious for most users to memorize the list, so instead it is carried with the user,
either in paper form or on a portable electronic device.

Time-synchronous pass codes work in the following way [3]. A user has an elec-
tronic token that generates a different number periodically, say every minute.
The server to which the user is authenticating generates the same number se-
quence synchronously to the token. Therefore, when the user wants to authenti-
cate, she sends the current pass code to the server for confirmation that it is the
current number. Even if an eavesdropper sees the number, this will not be useful
in subsequent authentication attempts because the sequence changes randomly.

How to Speak an Authentication Secret Securely from an Eavesdropper 217

A challenge-response pass code is similar to the time-synchronous one in that
a user must also carry an electronic device. In this case, the user first requests
to authenticate to the server. The server sends a random number challenge. The
user enters the random number into the device, which performs cryptographic
calculations to generate a response pass code that is sent back to the server.

The Query-Directed Password (QDP) scheme [4, 5] is a challenge-response
scheme using multiple-choice, personal questions, such as, “What was the color
of the car on which you learned to drive? 1) black, 2) white, 3) blue, 4) red, 5)
green, 6) gray.” If the user responds with the number of the multiple-choice an-
swer for each question, and if the questions and/or the numbers associated with
answers are randomized between authentication instances, then an eavesdropper
will hear a different sequence of numerical responses each instance. Implemented
correctly, responses will appear to an eavesdropper as random numbers. QDP
uses a number of personal questions, or challenge questions, that are more var-
ied and secure than the common “mother’s maiden name” challenge [6-8]. The
user does not have to memorize anything because answers to the personal ques-
tions will already be known (if chosen well). However, there are some drawbacks
to this approach. One is a time-security tradeoff. It takes time to read each
question including multiple choices. Furthermore, more questions and/or more
answer choices are required for higher levels of security (4-5 questions of 6 multi-
ple choices each were used in our testing). We compare this QDP approach with
the proposed method of this paper in Section 3.5.

Our voiced-password problem would seem perfectly suited for a speaker verifi-
cation solution. However, for our application, which involved health care workers
speaking over a headset in an often noisy hospital environment, the recognition
rate (or verification rate) is not reliable enough at this time.

There is an analogous user authentication procedure that also involves a one-
sided eavesdropper. This is a graphical password scheme that can defend against
a Trojan keyboard logger (e.g., [9]). A keyboard logger program that has been
secretly installed on a victim’s computer can record all keystrokes for an attacker
to learn passwords. A graphical password scheme can defend against this in the
following way. Pictures are displayed on the screen with identifying numbers,
but these numbers change each authentication session. The user is asked to enter
the numbers associated with the pictures she has memorized for authentication.
Analogously to an eavesdropper hearing a spoken authentication response for
our application, this logger can capture the authentication numbers that are
entered, but because the numbers change each time, no useful authentication
information is gained.

Passwords, challenge questions, and biometrics involve human factors such
as memory and physiology, as well as security considerations. This combination
— often a tradeoff — between human factors and security is also important to
security protocols where the human is involved. Security protocols involving
humans have been used since the Egyptian, Greek, and Roman empires (and
before) [10]. New human security protocols are being proposed and analyzed with
current-day knowledge of computer security [11]. SPIN is a user-authentication

218 L. O’Gorman, L. Brotman, and M. Sammon

scheme that falls into this category of human security protocols because a human
performs her half of the protocol without aid of a computing device.

3 SPIN-Spoken PIN

The SPIN method is described first by example in Section 3.2. Although the
method itself is straightforward, it is not so obvious how to optimize the security-
time-memorization tradeoffs. Section 3.3 describes parameters of the method and
we examine the tradeoffs in Section 3.4 with respect to these parameters. We
begin with some definitions.

3.1 Definitions

The solution presented here to securely speak an authentication secret involves
the use of a substitution cipher, a challenge-response protocol, and camouflage
elements. We define these terms here.

A substitution cipher is a secret code where a sender substitutes characters of
plaintext in a message by characters of ciphertext, and sends this coded message
to the receiver. The receiver who knows the cipher inverts the substitutions
to recover the plaintext. A simple substitution cipher might substitute each
character by the character one above in the alphabet (the simplest form of
Caesar cipher [10]). The secret describes the substitution rule(s) and only the
sender and authorized receiver(s) should share this knowledge.

A challenge-response protocol used in user-authentication is an exchange be-
tween an authentication server and the authenticating user whereby the server
sends a message to the user that changes each time, and the user returns a
response that depends upon the challenge. A primary advantage of challenge-
response protocols for user-authentication is that an attacker cannot simply
replay the response, because it is different for each challenge. In this paper, we
refer to the exchange between server and user as a challenge-response sequence,
because there is not just one challenge and one response, but a sequence of these
that make up a single authentication session.

An element is one component of a sequence. This element can be a character,
word, or number. In this paper, challenge elements are colors, and response
elements are numbers, but either could equally well be letters, words, animal
names, names of planets, etc. An authentication pair consists of a single challenge
element and its corresponding response element. An authentication element is
a general term for either a challenge element or a response element, in other
words it is just one of the elements that is used for authentication. In contrast, a
camouflage element is one that is not used for authentication. It is interspersed
with authentication elements to reduce the chance that an eavesdropper will
learn the substitution rules after hearing one or more authentication sequences.
In the next section we use the convention of bold font for authentication elements
to distinguish these from camouflage elements in regular font.

We describe two major attackers. One is the eavesdropper who we will call
Ewve. She can hear user responses. We assume we have no control on Eve, so she

How to Speak an Authentication Secret Securely from an Eavesdropper 219

can hear an unlimited number of responses to try to gain authentication. The
other attacker is Brutus, who can steal the headset in some brute force manner,
then hear authentication challenges and try an exhaustive guessing approach.
In addition, Brutus can learn from listening to repeated challenges, if given the
chance to do so, to mount a more sophisticated attack. We have some control
on Brutus because we know when he answers erroneously. Since each element
is challenged and responded to individually, we have the ability to respond to
erroneous elements by, for instance, freezing the account. So, Brutus’s freedom
to attack is much more limited than Eve’s. These two attackers can collude.

The description of the two attackers above also defines the threat model that
we examine in this paper. The SPIN threat model is alike that of passwords and
PINs in most ways. Like these traditional authentication methods, a user’s SPIN
code must be memorized and kept secret from attackers. If lost, an attacker can
gain access to the user’s account. If forgotten, the user cannot authenticate.
SPIN is different than passwords and PINs in one major way: there is no threat
if the SPIN response is learned by attackers. Just like passwords and PINs, a
more comprehensive SPIN threat model also includes issues such as security of
the channel (in this case the wireless channel), protection of the secret at the
server, etc. But, it is the threat from Eve and Brutus that we examine in depth
here.

Finally, we define the term security strength as being the total number of
attempts an attacker must make to be sure to find the authentication response:
the more attempts required, the greater the security strength. For this paper,
the security strength is generally the number of permutations an authentication
challenge can take. (Note that a brute force guesser will likely guess the answer
in half the number of permutations on average.)

3.2 Description by Design Progression and Example

The SPIN method is a straightforward substitution cipher into which we inter-
sperse camouflage elements. We describe it in this section by a progression of
methods, starting with the most straightforward and adding modifications to
address shortcomings, finally leading to the proposed method. In the following
section, we generalize the method.

Method a — First, consider a simple substitution cipher where colors are
replaced by numbers. For instance,

Substitution rules: 3 — Red, 2 — Green, 9 — Blue, 6 — Yellow.
An authentication session using the rules above might look like,

Challenge from server: Blue, Red, Yellow, Green
Response from user: 9, 3, 6, 2
Decipher by server: 9=Blue, 3=Red, 6=Yellow, 2=Green

Since the challenge changes each time, Eve cannot merely hear “9, 3, 6, 2”
and replay it to successfully authenticate. So, we have made one step toward the
goal of speaking a password without an eavesdropper being able to decipher and
repeat it.

220 L. O’Gorman, L. Brotman, and M. Sammon

However, there is a problem with this simple cipher method. If Eve hears a
few responses, even though the elements will be in different order, she will soon
learn that the cipher code only uses elements whose numbers are {2, 3, 6, 9}.
Therefore the number of different permutations that these digits might take, is
reduced from 10 x 9 x 8 x 7 = 5040 for any 4 different digits randomly ordered,
to 4 x 3 x 2 x 1 =24 for these 4 specific digits.

Method b — To strengthen the security, the server can randomly intersperse
camouflage elements in the challenge sequence. Using the same substitution rules
as above, an example of an authentication session is,

Challenge from server: 1, 8, Blue, 4, Red, Yellow, 0, 7, Green, 5
Response from user: 1, 8,9,4,3,6,0,7,2,5
Decipher by server: 9=Blue, 3=Red, 6=Yellow, 2=Green

The user performs the substitutions only for the colors and simply repeats the
camouflage elements. The server needs only to check that the substitutions are
correct and that the camouflage elements have been repeated. The camouflage
is present only to prevent Eve from learning the authentication elements in the
response. Since, as can be seen in the example, there are 10 different digits in
the response, Eve will always hear some different ordering of 10 digits and will
not learn anything about the cipher.

Although Eve does not gain information from these permutations of digits
0-9, Brutus can gain information from hearing the challenge sequence. After
hearing an entire sequence, Brutus knows that the color substitution values are
all the numbers that were not present in the challenge. So, this again reduces
the permutations from 10 x 9 x 8 x 7=5040 to 4 x 3 x 2 x 1 = 24.

Method c — Instead of inserting camouflage elements that are dependent
upon the authentication elements, such that all digits from 0-9 are present ex-
actly once in a sequence, let’s try choosing camouflage elements randomly. The
larger the number of camouflage elements we choose, the greater is the chance
that one or more will overlap with the values of the authentication elements.
When this happens, Brutus, who hears a challenge, will not be able to know all
the color substitutions just by hearing the numbers not present in the challenge.
In the following example, we’ve added 6 random camouflage elements,

Challenge from server: 1, 8, Blue, 9, Red, Yellow, 1, 7, Green, 3
Response from user: 1, 8, 9,9, 3,6, 1,7, 2,3
Decipher by server: 9=Blue, 3=Red, 6=Yellow, 2=Green

The color substitution values for blue and red happen to appear in the camou-
flage elements. Therefore, Brutus who depends on learning authentication ele-
ments by numbers that are not present in the sequence, will not learn that 9 and
3 are color substitution values. If we increase the number of this type of camou-
flage elements (to infinity), we increase the assurance that all color substitution
values will be present so the attacker’s information decreases (to zero).
However, by adding camouflage elements independent of authentication ele-
ments, we can succumb to an attack at the eavesdropper’s end. If Eve listens

How to Speak an Authentication Secret Securely from an Eavesdropper 221

to a few response sequences, she can learn that authentication elements, which
are always there, occur with higher frequency than camouflage elements, which
don’t have to be there. We call this a histogram attack. Once Eve has heard
enough responses to learn the authentication elements, this again degrades to
an attacker needing only 4 x 3 x 2 x 1 = 24 guesses.

Method d — Since Methods b and ¢ defend against Eve or Brutus separately,
perhaps we can combine these approaches to yield method resistant to each.
Start with authentication elements randomly ordered. Randomly insert camou-
flage elements chosen dependently as described in Method b. Then, randomly
insert more camouflage elements independently as described in Method c. In
the following, we’ve added 3 independently chosen camouflage elements to the 6
dependently chosen camouflage elements already there and the 4 authentication
elements,

Challenge from server: 1, 8, Blue, 4, 9, Red, Yellow, 0, 1, 7, Green, 3, 5
Response from user: 1, 8,9,4,9,3,6,0,1,7,2,3,5
Decipher by server: 9=Blue, 3=Red, 6=Yellow, 2=Green

Eve obtains no information from hearing the response sequence because she still
hears a permutation of 0-9, but now there are added digits chosen independently
of authentication elements, so this gives no additional information.

Now, Brutus who listens to the challenge will hear every digit except 2 and
6. So he knows that two color substitution values must be these digits, but has
no information on the other two. If we increased the number of independently
chosen camouflage elements, we would eventually include all color values (with
some probability) such as to defend against Brutus (with some probability).

Method e — Instead of trying to hide the authentication elements in a prob-
abilistic fashion as in Method d, we can do this deterministically by slightly
modifying the way the challenge sequence is given. Instead of a challenge ele-
ment being “number” or “color”, each is, “number or color”. When the color is
not an authentication element, the user just ignores it and repeats the number.
When the color is an authentication element, the user ignores the number and
responds instead with the authentication number corresponding to the color.
Following is an example of this combination,

Challenge from server: 1 or Purple, 8 or Black, 3 or Blue, 4 or Pink,
2 or Red, 6 or Yellow, 0 or Orange,
7 or Gray, 9 or Green, 5 or White
Response from user: 1, 8,9,4,3,6,0,7,2,5
Decipher by server: 9=Blue, 3=Red, 6=Yellow, 2=Green

From this example, there are two types of challenge elements. One type is the
camouflage element (e.g., “1 or Purple”) that contains a number and color, and
neither the number nor color can be an authentication element. There is no
correspondence between these camouflage colors and numbers, their pairings are
random. The second type of challenge element is the authentication element
(e.g., “3 or Blue”). This contains a number and an authentication color. The

222 L. O’Gorman, L. Brotman, and M. Sammon

number must be one of the authentication number responses, but there is no
correspondence between an authentication number and color in a single element;
indeed as can be seen in the example, “6 or Yellow”, the number and color can
be the correct authentication pair. No color or number can repeat in a challenge
sequence.

Now, Brutus who listens to the challenge will hear all the possible digits
and all the possible colors. So, he will not be able to ascertain which digits
are authentication elements by their absence in the challenge sequence (as in
Method c). Furthermore, Eve will always hear a randomly ordered sequence of
every possible response repeated once, and once only. Therefore, she will not
gain any information over an unlimited number of responses.

So, at the expense of a little more time to speak a more wordy challenge
sequence, we have defended equally against both Brutus and Eve for a single
authentication challenge-response. There is one small addition we make to this
protocol. We said that the numbers spoken for authentication elements in the
challenge sequence are random orderings of authentication numbers. This is true
for any ordering except for the one where authentication numbers and colors all
happen to correspond exactly, for which we make an exception. For the example
above, this is a challenge sequence containing any ordering of all the pairings,
“9 or Blue”, “3 or Red”, “6 or Yellow”, “2 or Green”. Although this random
pairing has the same probability as any other, we do not use it as a precaution
against the “naive” attacker who just repeats all the challenge numbers and
would then succeed to authenticate for this single case.

From this section, we have found two methods that offer security against
both Eve and Brutus. Method d offers a probabilistic measure of security at
the expense of additional camouflage elements. Method 3 offers a deterministic
measure of security at the expense of more complexity in the protocol. In the
next section, we generalize the approach and in Section 3.4 examine tradeoffs in
security, time to authenticate, and memorization effort.

3.3 Formal Description

In general, the SPIN code can be described by the following parameters,

SPIN (m,a,cp,cr, L) (1)
m = number of memorized substitution pairs
a = number of authentication elements in a code
cp = number of dependent camouflage elements in a code
¢y = number of independent camouflage elements in a code

L = number of levels, or values, that elements can take.

From Method b, the minimum number of elements in an authentication sequence
1S Nanin = a+cp. Because the ¢p elements are chosen to be all the element values
that are not authentication element values, then cp = L —a, so nypin = L. From

How to Speak an Authentication Secret Securely from an Eavesdropper 223

Method d, we insert independent camouflage elements to the sequence, so the
total number of elements in a sequence is,

Total number of elements: n =a+cp +cf = L +cy. (2)
From Section 3.2, the best- and worst-case security strengths are,
Best case security: S = L(L —1)(L —2)...(L—a+1) = (})a! (3)

a

Worst case security: S = al. (4)

For Method e, there are no independent camouflage elements. So, ¢; = 0 in
equation (2) and the total number of elements in a sequence is, n = a + ¢p =
L. Because this method defends equally against Eve and Brutus, the security
strength is the same for both and is the best-case security strength, equation
(3), minus 1 due to the exception of excluding the case where challenge numbers
and colors correspond, as mentioned above.

Method d is less straightforward than Method e because of the independent
camouflage elements and the fact that security strength is affected by these
elements probabilistically. The best-case security strength for Method d occurs
for the case when all authentication elements are located at the beginning of
the authentication challenge. In this case, Brutus obtains no information from
the camouflage elements, because he has to make his guesses before learning the
information he gains from hearing them. An example of a best-case challenge is,
“Blue, Red, Yellow, Green, 0,4, 7, 1, 8, 5”.

The worst-case security strength occurs for the case when all authentication
elements are located at the end of the authentication challenge. In this case, Bru-
tus has obtained as much information as there is from the camouflage elements
before having to guess the authentication elements. An example of a worst-case
challenge is, “0, 4, 7, 1, 8, 5, Blue, Red, Yellow, Green”.

When we add ¢y elements, we can raise the worst-case security strength closer
toward best-case. This is because some c; elements might have the same values
as authentication elements, thus preventing Brutus from learning about authen-
tication element values through their absence. However, because the c¢; elements
are chosen independently of authentication element values, we can only say prob-
abilistically whether there will be repeating elements. Obviously, the more the ¢y
elements there are, the greater the chance of repeating authentication elements.
To understand the effect of adding ¢y elements, we need to determine the num-
ber of elements, ¢y, necessary to obtain a probability P that k& or more of the a
authentication elements (k < a) is repeated in the ¢; elements.

The probability that £ = a authentication elements are present in ¢; randomly
chosen elements can be derived as follows:

P(k:a:]‘VCI):1_((L—1)/L)CI
P(k:a:2701) = 1_2((L_1)/L)r1 +((L—2)/L)CI

224 L. O’Gorman, L. Brotman, and M. Sammon

This can be described by the forward difference operator, D(f(z)) = f(x+1) —

f(x)?
P(k,cr) = D (L — k)/L)*'

In general, the probability is,

k

P(k,er) = S (D) (5) (L~ K +4) /L) (5)

i=0

Besides the probability that all authentication elements are repeated in the
independent camouflage elements, we will also ask the probability that all or one
less than all authentication elements are repeated in the independent camouflage
elements. This is,

Plk=aork=a—1,¢5)=Plk=a,ci)+a(P(k=a—-1,¢;) — P(k=a,cy)).
(6)

3.4 Security-Time-Memorization Tradeoffs

In practice, we want to optimize with respect to three parameter values. We
desire high security strength, short authentication sequence (or session) length,
and a small number of authentication pairs that a user has to memorize.

First, we simplify our choices by setting m = a. This implies that all the user’s
memorized elements are used in each authentication session. Although this does
not have to be the case and there are security advantages of memorizing more
pairs than are used each session, we do not explore this here, choosing instead
to minimize the memorization effort of the user.

Secondly, for Method d, we make a choice for the probability value that affects
the number of independent camouflage elements in Method d. We choose this
to be, P(k, cr) = 66.6%. This choice is somewhat arbitrary, but we feel it to be
practical at least for our own application described in Section 4. In words, this
means that we are calculating the number of independent camouflage elements
in which there is a two-thirds probability that a certain portion of authentica-
tion elements are repeated in these. We make another choice that this “certain
portion” we calculate for will be all authentication elements, a, or all or one less
than all authentication elements, a or a — 1.

With equations (2-6), we can plot the security-time-memorization tradeoffs
for Methods d and e. Figure 1 is for Method d for 66% probability that all or
one less than all authentication elements will be in the independent camouflage
elements. Figure 2 is for Method e.

We can obtain an idea of how these methods compare by examining a couple
examples. For a requirement of S = 1000 and m = 5, we need about n = 20
for Method d in Figure 1, but only about n = 6 for Method e in Figure 2. For
a requirement of S = 100 and m = 4, we need about n = 15 for Method d in
Figure 1, but only about n = 5 for Method e in Figure 2.

Although we don’t plot Method d for the 66% probability case that all authen-
tication elements are in the ¢; camouflage elements, we can obtain a comparison

How to Speak an Authentication Secret Securely from an Eavesdropper 225

10000

1000 /
/‘

// —m—m=2

s 100] } o—m=3
/o —A—m=4

/ —o—m=5

10 / e
1
0 5 10 15 20 25 30

=]

Fig. 1. Plot for Method d for 66% probability that all or all minus one authentication
elements will be in the cI camouflage elements. Plot shows tradeoff among number of
authentication elements the user must memorize, m, the security strength, S, and the
length of the authentication sequence, n. The points are calculated for L = {4, 6,8, 10}
onm=2and m=3,L=1{5,6,810} onm =4, and L ={6,8,10} on m =5 (all from
low to high n).

from the equations. For a requirement of m = 4 and S = 1000, Method d can
attain this with n = 24. In Figure 2, Method e requires a far shorter sequence,
n = 7. For a requirement of S = 10,000 and m = 5, we need about n = 30 for
Method d, but only about n =9 for Method e.

In these examples, the required sequence length was greater than 3 times
for Method d than Method e. Although Method e is has a wordier challenge
sequence, it takes only about 50% more time per challenge-response element for
Method e than for Method d. Therefore, based on length of sequence (or time
to authenticate) alone, Method d takes about twice as long, therefore is less
desirable from this respect than Method e.

3.5 Comparing SPIN to PINs, Passwords, One-Time Passwords,
and Challenge Questions

From Section 3.1, the security strength of a randomly-generated authentication
response is the number of different possibilities it may take. For a PIN with 4
digits, the security strength is 10%. For a Method e SPIN code we can achieve
S = 10* with 5 authentication elements and a sequence length of 8, or with 4
authentication elements, we can achieve less security of 5040 with a sequence
length of 10. In this example and in general, SPIN requires more memorization

226 L. O’Gorman, L. Brotman, and M. Sammon

10000000

1000000 -

100000 -

—6—m=8
—e—m=7
—A—m=6
—A—m=5
—8—m=4

10000 -

s //
1000 A

100

AR

—m—m=3

n
IS
o
©
>
N

Fig. 2. Plot for Method e. Plot shows tradeoff among number of authentication el-
ements the user must memorize, m, the security strength, S, and the length of the
authentication sequence, n = L.

effort or a longer time to authenticate, or both, to achieve a similar level of
security.

A password achieves much stronger security than a comparable-length PIN
because there are many more choices of characters. For an 8-character password
made up of any combination of upper and lower-case characters and digits, secu-
rity strength is 628. One might initially suspect that we can gain such efficiency
with SPIN as well by having many more levels (i.e., more colors in our examples
above) such as to increase the security strength. It is true this will increase the
security strength, but there is a huge cost, as seen in equation (2), n = L + ¢;.
The total authentication sequence length must be equal to or larger than the
number of levels of authentication elements. Even if only lower-case characters
were considered, a 26-element authentication sequence would require too lengthy
a response from the user.

As mentioned in Section 2, a one-time password from a list or token that the
user carries will meet the needs of resisting an eavesdropper. Since a one-time
password can contain any combination of characters and digits, it can have strong
security per number of characters spoken. Therefore, this is a good alternative
to SPIN — except for cases where we don’t want to burden the user to carry a
token or where we desire hands-free authentication.

QDP or challenge questions [4, 5], where the user responds with yes/no or
multiple choice answers, can meet our specification for secure voiced authenti-
cation. The advantage is that these questions can be designed to be more easily
remembered by the user. The disadvantage is the time required to achieve a

How to Speak an Authentication Secret Securely from an Eavesdropper 227

reasonable level of security. For QDP, if 5 questions are asked with 6 multiple
choices each, this takes about 5 x 15 = 75 seconds and yields a security strength
of 6° = 7776. A comparable Method e SPIN code is for m = 5, n = 8, S = 6720.
At 3 seconds per challenge-response element, this takes about 24 seconds, less
than one third the time of QDP.

It is clear that SPIN fares less well against password, PIN, and one-time
password for each comparison in this section of security strength, sequence length
and memory effort. However, because none of the traditional schemes meets the
requirement of hands-free, spoken authentication, these disadvantages are the
price to achieve this. The main tradeoff between SPIN and QDP is memory
effort versus time to authenticate.

4 Use of SPIN in a Health—Care Application

The SPIN code was initially developed to meet a need of MACCS (Mobile Access
to Converged Communications Service), a system initially targeted for use by
healthcare workers. This is a wireless, voice-interactive, hands-free communica-
tions system. Each user has a wireless headset for issuing voice commands to the
system and communicating with other users. To protect users’ and patients’ pri-
vate information that is communicated on MACCS, the users must authenticate
themselves to the system. A static password or PIN is not acceptable because it
can be overheard by eavesdroppers, and a one-time password requiring a token
or list is unacceptable because it is not hands-free. QDP (as described in Section
2) was the initial authentication scheme used in MACCS, however the 3-4 ques-
tions took over 1 minute per authentication session. To reduce authentication
time, SPIN was provided as an alternative to QDP.

Initial response to the use of SPIN was mixed. As compared to the QDP
method, users were happy to authenticate more quickly. However, they were not
happy to memorize another security code. We will report on our experiments
and their results in a later paper.

5 Summary and Discussion

In this paper, we have described two variants of a method for speaking a pass-
word securely, potentially in front of eavesdroppers. The method involves the
user memorizing color-number pairs. A challenge is sent to the user involving
camouflage numbers and authentication colors. The user repeats the camouflage
numbers and substitutes colors for the corresponding, memorized numbers. We
have described a protocol whereby this authentication scheme can be secure from
eavesdroppers and brute force attackers. There seems to be little or no treatment
in past literature on this topic. However, while working and testing QDP and
SPIN, other spoken authentication methods have arisen. We have not performed
user testing with these, so we merely mention these alternatives as potential for
future work.

228 L. O’Gorman, L. Brotman, and M. Sammon

One method decreases the time (number of elements) by requiring the user to
perform some elementary mathematics. The user memorizes m digits. A chal-
lenge consists of m randomly chosen digits. The user responds with the addition
of each challenge digit to a memorized digit, modulo-10. This eliminates the need
for camouflage elements because the response that Eve hears will be random.

Another method reduces the memory effort. Instead of using random color-
number pairs, more memorable pairing schemes can be used. Colors can be listed
by the user’s order of preference, or country names can be used by the user’s
order of preference for vacations, etc.

The QDP method can been enhanced to perform a variant of the method just
mentioned. For instance, a full QDP question might be, “Where was the family
car parked in relationship to your childhood home? 1) left side, 2) right side,
3) front, 4) back, 5) under, 6) not close.” We can paraphrase the question once
the user has learned the numerical answer (by answering it several times), for
instance saying just, “Car parked”, to which the user can immediately respond
with a number. This is a substitution code like SPIN, but it has an advantage
that it can be naturally learned.

There are undoubtedly other methods that can be proposed. All will have secu-
rity and usability issues and tradeoffs. Since it is likely that no single method will
be best for all spoken password applications, several methods may be practical.

Acknowledgments. The authors wish to thank Colin Mallows for his invalu-
able help in working the probabilities of the methods and his insights into their
comparative security merits, and Sachin Garg and Navjot Singh for their security
analysis and suggestions.

References

1. Haller, N.: The S/KEY One-Time Password System. In: Proc. ISOC Symp. Net-
work and Distributed System Security, San Diego, CA (February 1994)

2. Haller, N., Metz, C., Nesser, P., Straw, M.: A one-time password system. Internet
RFC 2289 (1998)

3. Weiss, K.P.: Method and apparatus for positively identifying an individual. U.S.
Patent 4720860, January 19 (1988)

4. O’Gorman, L., Bagga, A., Bentley, J.: Call center customer verification by query-
directed passwords. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 54-67.
Springer, Heidelberg (2004)

5. O’Gorman, L., Bagga, A., Bentley, J.: Query-directed passwords. Computers and
Security 24(7), 546-560 (2005)

6. Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting secret keys with personal
entropy. J. of Future Generation Computer Systems 16(4), 311-318 (2000)

7. Frykholm, N., Juels, A.: Error-tolerant password recovery. In: Samarati, P. (ed.)
Eighth ACM Conference on Computer and Communications Security, pp. 1-8.
ACM Press, New York (2001)

8. Just, M.: Designing and evaluating challenge-question systems. IEEE Security and
Privacy 2(5) (September/October 2004)

10.
11.

How to Speak an Authentication Secret Securely from an Eavesdropper 229

Dhamija, P., Dhamija, R., Perrig, A.: Déja Vu: A user study using images for
authentication. In: 9th USENIX Security Symposium (2000)

Kahn, D.: The Codebreakers, The Story of Secret Writing, Scribner, NY (1996)
Bond, M., Danezis, G.: The dining Freemasons (security protocols for secret soci-
eties). In: 13th Int. Workshop on Security Protocols, Cambridge, England, April
20-22 (2005)

	How to Speak an Authentication Secret Securely from an Eavesdropper
	Introduction
	Background
	SPIN–Spoken PIN
	Definitions
	Description by Design Progression and Example
	Formal Description
	Security-Time-Memorization Tradeoffs
	Comparing SPIN to PINs, Passwords, One-Time Passwords, and Challenge Questions

	Use of SPIN in a Health–Care Application
	Summary and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

