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Validity of Scales
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�e concepts of quality of measurements made by rat-
ing scales and multi-scale questionnaires are validity and
reliability. Corresponding concepts for quantitative data
(interval and ratio data) are accuracy and precision. A
rating scale is valid if it measures what it is intended to
measure in the speci�c study.�e validity of self-estimated
subjective phenomena is relative and cannot be assessed
absolutely.�e validity of a scale is study speci�c, andmust
be considered each time the scale or the 7questionnaire is
chosen for a new study.�erefore there are various con-
cepts of validity, each addressing a speci�c type of quality
assessment.�emain concepts are criterion, construct, and
content validity, but a large number of sub concepts are
used.�e meaning of these concepts is not univocal and
depends on applications and research paradigms.Criterion
validity refers to the conformity of a scale to a true state or a
gold standard, and depending on the purpose of the study
sub concepts like clinical, predictive and concurrent validity
will be used.
Construct validity refers to the consistency between

scales having the same theoretical de�nition in the absence
of a true state or a gold standard. Sub concepts like con-
vergent, descriptive, discriminant, divergent, factorial, trans-
lation validity and parallel reliability have been used in
studies. Biologic validity refers to the closeness of scale
assessments to the hypothesized expectation when com-
paring with other measures in a speci�c population. Dis-
criminative rating scales are used to distinguish between
individuals or groups, when no external criterion is avail-
able, then discriminant validity is to be assessed. Parallel
reliability refers to the interchangeability of scales.

�e concept content validity refers to the completeness
of the scale or multi-scale questionnaire in the coverage
of important areas. Sub concepts like face, ecological, deci-
sion, consensual, sampling validity, comprehensiveness and
feasibility have been used.

Assessments on rating scales generate ordinal data hav-
ing rank-invariant properties only, which means that the
responses indicate a rank order and not a mathematical
value. �e results of statistical treatments of data must
not being changed when relabeling the ordered responses.
Appropriate statistical methods for evaluation of criterion
and construct validity o�en refer to the order consistency
or to the relationship between the scales of comparison.

�e scatter plot of  paired assessments of perceived
back pain on a visual analogue scale (VAS) and on a verbal
descriptive scale (VDS-) having �ve ordered categorical
responses is shown the Fig. .
As evident from the plot there is a large overlapping

between the assessments. �e probability of discordance
in paired observations (X,Y),

P [(Xℓ < Xk) ∩ (Yℓ > Yk)] + P [(Xℓ > Xk) ∩ (Yℓ < Yk)] ,

is estimated by the empirical measure of disorder D. In
this case D equals ., which means that % of all pos-
sible combinations of di�erent pairs are disordered. �e
expected pattern of complete order consistency, the rank-
transformable pattern of agreement (RTPA), is constructed
by pairing o� the two sets of distributions of data against
each other.�emeasure of disorder expresses the observed
dispersion of pairs from this order consistent distribu-
tion of inter-changeability between the scales.�e cut-o�
response values for inter-scale calibration are also pro-
vided, and it is obvious that there is no linear correspon-
dence between VAS and discrete scale assessments (see
Fig. ).

�ere are other measures that could be applied to eval-
uation of various kinds of validity of scales. Dependent on
the purpose the Spearman rank-order correlations coe�-
cient,�e Goodman-Kruskal’s gamma, the Kendall’s tau-b
(see 7Kendall’s Tau), the Somers delta or the Stuart’s tau-c
could be suitable. Spearman rank order correlation coef-
�cient is a commonly used non-parametric measure of
association. However, a strong association does not nec-
essarily mean a high level of order consistency, and does
not indicate that two scales are interchangeable.

�e Pearson correlation coe�cient, the t-test and the
7Analysis of Variance are also common in validity studies.
A serious drawback is that thesemethods assume normally
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Validity of Scales. Fig.  The distribution of paired assessments of back pain on a visual analogue pain scale and a five point verbal
descriptive pain scale
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Validity of Scales. Fig.  The rank-transformable pattern of agreement, RTPA, uniquely defined by the two sets of frequency
distributions of data in Fig. 

distributed quantitative data, and such requirements are
not met by data from rating scales. When applying sta-
tistical methods on data that do not have the assumed
properties then the results run the risk of being invalid and
unreliable.
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A variable is a characteristic that can take several values of
a set of possible data uponwhich ameasure or a quality can
be applied.�us, a variable varies in value among subjects
in a sample or population. Each subject of the observed set
has a particular value for a variable.
Examples of variables are gender (with values

being female and male), nationality (American, French,
German, . . .), level of education (Ph.D., Master, Bachelor,
Baccalaureate, . . .), number of children in a family (, , ,
. . .), and annual income in Euros.
Variables can be classi�ed in many ways and terminol-

ogy varies between di�erent �elds. For example, we may
classify variables as (a) qualitative or quantitative, (b) inde-
pendent or dependent, (c) univariate (one dimensional)
or multivariate (multidimensional), (d) latent (hidden) or
observed, (e) endogenous or exogenous, (f) explanatory,
intermediate, or response, and (g) monitoring or moderat-
ing. Classi�cation is further complicated because mixtures
of di�erent types occur quite commonly. Depending on
the nature of measurement there are also di�erent scales
for measuring the variable: nominal, ordinal, interval, and
ratiomeasurements.�e scale ofmeasurement determines
the amount of information contained in a set of data and
shows the most appropriate statistical methods for analyz-
ing that data.Wewill focus only on the distinction between
qualitative and quantitative variables.

Qualitative Variables
Qualitative variables contain values that express a qual-
ity in a descriptive way, such as sex, nationality, or level
of education. Qualitative variables, also called categorical
variables, are divided into nominal and ordinal ones.

● Nominal variables imply the fact that the labels are
unordered. Indeed, there is no criterion that allows
determining a label (a value) to be greater than or
smaller than other labels.�us the gender and nation-
ality are nominal variables. Accordingly, the marital

status, name, and country of residence are also nominal
variables, which are measured on a nominal scale.

● Ordinal variables represent labels that can be ordered
according to some logical criterion. Hence, the level of
education is an ordinal variable as are opinions con-
cerning a subject (excellent, good, poor. . .). �e set
of labels that satis�es a hierarchical criterion and is
measured on an ordinal scale is an ordinal variable.

Mathematical operations are not allowed in qualitative
variables, but for ordinal variables, counting and compar-
ison are permitted. Qualitative nominal and ordinal vari-
ables can be numerically encoded. Indeed, for instance, it
can be supposed that the variable “gender” takes the value 
for female and  for male. Also, if the variable considered
is an opinion, the value  can be used to represent excel-
lent,  for good, and  for poor. However, these numbers
have no meaning as such and cannot be the object of any
mathematical operations.

Quantitative Variables
Quantitative variables are expressed through measurable
values, that is, in terms of numbers.�ey can be measured
on an interval or ratio scale and can be classi�ed as either
discrete or continuous.

● Discrete variables take only a countable and usually
�nite number of real values that are the result of a
counting process.�ese variables typically take integer
values. For instance, discrete variables are the num-
ber of children in a family, the number of students
attending a class, and the number of employees in a
company.

● Continuous variables take an in�nite number of real
values arising from a measuring process. In prac-
tice the number of values that continuous variables
can take depends on the precision of the measuring
instruments. For instance, the height or the weight is
expressed in decimal points when they are measured.

In practice, it is sometimes di�cult to distinguish dis-
crete and continuous variables because of the way they
are actually measured. Quantitative variables can be used
to performmore admissible mathematical operations.�e
use of quantitative variables is widespread because it con-
tributes to obtaining important results as more statistical
methods for analyzing can be applied.
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�e term “variance” was coined by Ronald Fisher in 
in his famous paper on population genetics,�e Correla-
tion Between Relatives on the Supposition of Mendelian
Inheritance, published by Royal Society of Edinburgh: “It
is… desirable in analyzing the causes of variability to deal
with the square of the standard deviation as the measure
of variability. We shall term this quantity the Variance…”
(p. ). Interestingly, according to O. Kempthorne, this
paper was initially rejected by the Royal Society of London,
“probably the reason was that it constituted such a great
advance on the thought in the area that the reviewers were
unable to make a reasonable assessment.”

�e variance of a random variable (or a data set) is a
measure of variable (data) dispersion or spread around the
mean (expected value).

De�nition Let X be a random variable with second
moment E(X) and let µ = E(X) be its mean.�e variance
of X is de�ned by (see, e.g., Feller , p. )

Var(X) = E [(X − µ)] = E(X) − µ. ()

�e variance of a random variable is also frequently
denoted by V(X), σ X or simply σ , when the context is

clear. �e positive square root of variance is called the
standard deviation.

From (), the variance of X can be interpreted as the
“mean of the squares of deviations from themean” (Kendall
, p. ). Since the deviations are squared, it is clear that
variance cannot be negative. Variance is a measure of dis-
persion “since if the values of a random variable X tend to
be far from theirmean, the variance ofX will be larger than
the variance of a comparable randomvariableY whose val-
ues tend to be near their mean” (Mood et al. , p. ).
It is obvious that a constant has variance , since there is
no spread. Because the deviations are squared, the variance
is expressed in the original units squared (inches, euro)
which are di�cult to interpret.
To compute the variance of a random variable, it is

required to know the probability distribution of X. If X is
a discrete random variable, then

Var(X) =∑
i
(xi − µ)P(X = xi) =∑

i
xiP(X = xi) − µ.

()
When X is a continuous random variable with probability
density function f (x), then

Var(X) = ∫
+∞

−∞
(x − µ)f (x)dx = ∫

+∞

−∞
xf (x)dx − µ.

()

Example  If X has a Uniform distribution on [a, b], with
pdf /(b − a), then

E(X) = 
b − a ∫

b

a
xdx = b − a

(b − a)
= a + b


,

and

E(X) = 
b − a ∫

b

a
xdx = b − a

(b − a)
= a

 + ab + b


.

Hence the variance is equal to

Var(X) = E(X) − µ = (b − a)


.

�e following table provides expressions for variance
for some standard univariate discrete and continuous
probability distributions.

�e Cauchy distribution possesses neither mean nor
variance.

Next, we list some important properties of variance.

. �e variance of a constant is ; in other words, if all
observations in the data set are identical, the variance
takes its minimum possible value, which is zero.

. If b is a constant then



Variance V 

V

Distribution Notation Variance

Bernoulli Be(p) pq

Binomial Bin(n,p) npq

Geometric Ge(p) q/p

Poisson Po(λ) λ

Uniform U(a,b) (b − a)/

Exponential Exp(λ) /λ

Normal N(µ, σ) σ

Standard Normal N(, ) 

Student t(ν) ν(ν − ) for ν > 

F F(ν, ν)
ν

(ν + ν − )
ν(ν − )(ν − )

for ν > 

Chi-square Chi(ν) ν

Var(X + b) = Var X,

which means that adding a constant to a random vari-
able does not change the variance.

. If a and b are constants, then

Var(aX + b) = aVar X

. If two variables X and Y are independent, then

Var(X + Y) = Var X + Var Y
Var(X − Y) = Var X + Var Y

. �e previous property can be generalized, i.e., the vari-
ance of the sum of independent random variables is
equal to the sumof variances of these randomvariables

Var (
n

∑
i=
Xi) =

n

∑
i=
Var(Xi).

�is result is called Bienaymé equality (see Loève ,
p. , or Roussas p. ).

. If two random variables X and Y are independent and
a and b are constants, then

Var(aX + bY) = aVar X + bVar Y .

In practice, the variance of a population, σ , is usually not
known, and therefore it can only be estimated using the
information contained in a sample of observations drawn
from that population. If x, x, . . . , xn is a random sample
of size n selected from a population with mean µ, then the

sample variance is usually denoted by s and is de�ned by

S = ∑
(xi − x)

n − 
, ()

where x is the sample mean.�e sample variance depicts
the dispersion of sample observations around the sam-
ple mean. �e squared deviations in () are divided by
n − , not by n, in order to obtain the unbiased estima-
tor of the population variance, E(s) = σ . �e factor
/(n − ) increases sample variance enough to make it
unbiased.�is factor is known as Bessel’s correction (a�er
Friedrich Bessel). Although the sample variance de�ned as
in () is an unbiased estimator of population variance, the
same does not relate to its square root, standard deviation;
the sample standard deviation is a biased estimate of the
population standard deviation.

Example  �e �rst column of the following table con-
tains �rst �vemeasurements of the speed of light in suitable
units ( km/s) from the classical experiments performed
by Michelson in  (data obtained from the Ernest N.
Dorsey’s  paper “�e Velocity of Light”).

xi xi − x (xi − x) x 
i

. −. . ,.

. −. . ,.

. . . ,.

. . . ,.

. . . ,.

Σ . . . ,.

Since the sample mean is equal to x =



∑
i=
xi


= .


=

. using the formula given in () results in the vari-
ance value

S = ∑
(xi − x)

n − 
= .


= ..

In the past, instead of the “de�nitional” formula (), the
following (so-called shorthand) formula was commonly
used, but it has become obsolete with the wide access of
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statistical so�ware, spreadsheets, and Internet java applets:

S =
∑xi −

(∑xi)


n
n − 

=
, .− , .






= ..
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Variation for Categorical
Variables
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By de�nition, a categorical variable has a measurement
scale that consists of a set of categories, either nominal
(i.e., categories without any natural ordering) or ordinal
(i.e., categories that are ordered). For a categorical vari-
able with n categories and the probability distribution

Pn = (p, . . . , pn) where pi ≥  for i= , . . . ,n and
n

∑
i= 
pi = ,

some measurement of variation (dispersion) is sometimes
of interest. Any such measure will necessarily depend on
whether the variable (or set of categories or data) is nomi-
nal or ordinal.

Nominal Case
In the nominal case, variation is generally considered
to increase strictly as the probabilities (or proportions)
pi(i = , . . . ,n) become increasingly equal, with the
variation being maximum for the uniform distribution
Pn = (/n, . . . , /n) and minimum for the degenerate dis-
tribution Pn = (, . . . , , , , . . . , ) and for any given n.
In terms ofmajorization theory (Marshall and Olkin ,
Ch. ), this requires that a nominal variation measure be
strictly Schur-concave. Another typically imposed require-
ment is that the measure should be normed to the [,] -
interval for ease of interpretation.

�e best known measures meeting those two require-
ments are the index of qualitative variation (IQV), the
normed entropy (H∗), and the normed form of the varia-
tion ratio (VR∗) de�ned as follows (e.g., Weisberg ):

IQV = ( n
n − 

)( −
n

∑
i=
p i ) , ()
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H∗ =
−
n

∑
i=
pi log pi

logn
, ()

VR∗ = ( n
n − 

) ( −max{p, . . . , pn}). ()

Note that the logarithmic terms in () can be to any
base since such terms appear both in the numerator and
denominator.�ose three measures range in value from 
(when Pn = Pn) to  (when Pn = Pn) where

Pn = (, . . . , , , , . . . , ), Pn = (/n, . . . , /n), ()

and for any given n.�emeasures in () and () can be seen
to be strictly Schur-concave, while VR∗ in () is Schur-
concave but not strictly so (see Marshall and Olkin ,
Ch. ). Also, while IQV and H∗ are continuous func-
tions of all the probability components p, . . . , pn, VR∗ is
a function of only the modal probability.
Although IQV and H∗ in ()–() have a number of

nice properties, they both lack an important one: they
both overstate the true extent of variation. To illustrate this
fact, consider P = (., .) for which each element
is the arithmetic mean of the corresponding elements of
P = (, ) and P = (., .) so that one would
reasonably expect that the variation for this P should
be ., i.e., the mean of the variations for P and
P (i.e.,  and , respectively). However, one �nds the
IQV(., .)= . and H∗(., .)= .. In order
for a variation measure to take on reasonable numerical
values, and thereby avoid invalid and misleading results
and conclusions, Kvälseth () proposed the following
coe�cient of nominal variation (CNV) as a simple trans-
formation of IQV :

CNV =  −
√
 − IQV . ()

Besides having the same types of properties as IQV , this
CNV takes on values that appear to be entirely rea-
sonable throughout the [, ] – interval. For instance,
CNV(., .) = . as is only reasonable.
Note also that theCNV in () can be expressed in terms

of metric distances as follows. In terms of the Euclidean

distance d(X,Y) = [
n

∑
i=

(xi − yi)]
/
between the two

points X = (x, . . . , xn) and Y = (y, . . . , yn), CNV can
be expressed as

CNV =  −
d (Pn,Pn)
d (Pn,Pn)

, ()

for any distribution Pn, with Pn and Pn de�ned in ().�at
is, CNV is the relative extent to which the Euclidean dis-
tance d (Pn,Pn) is less than its maximum possible value.

Or, CNV is the relative (metric) proximity of Pn to Pn.
�us, the expression in () providesCNV with a reasonable
interpretation and a solid basis.
In terms of the standard deviation s of p, . . . , pn (using

the usual divisor n − ), it is readily seen that CNV
is given by

CNV =  − s
√
n. ()

Similarly, in terms of the pair-wise di�erences between
the pi’s,

CNV =  −
⎛
⎝

n −  ∑∑≤i<j≤n

∣pi − pj∣
⎞
⎠

/
. ()

A parameterized family of such di�erence-based variation
measures may also be formulated (Kvälseth ), but no
other family member appears to be superior to CNV .

Ordinal Case
In the ordinal case, and when the order information is
accounted for, it is considered that variation is zero for the
degenerate distribution Pn and maximal for the polarized
distribution P()n de�ned as

Pn = (, . . . , , , , . . . , ), P()n = (., , . . . , , .),
()

(see, e.g., Leik ;Weisberg ).When the n categories
are ordered, it makes sense to use cumulative probabilities

Fi =
i

∑
j=
pj for i = , . . . ,n with Fn = .�us, for any given

Pn = (p, . . . , pn), and for the particular distributions in
(), the following cumulative distributions can be de�ned:

F(n) = (F, . . . ,Fn−, ), F(n) = (, . . . , , , , . . . , ),

F()(n) = (., . . . , ., ). ()

Ameasure of variation for ordinal categorical datamay
then be based on cumulative probabilities.

�e �rst such proposed measure appears to be Leik’s
() ordinal variation measure (LOV), which can be
expressed as

LOV =  −

n−

∑
i=

∣Fi − ∣

n − 
, ()

which ranges in value from  to , equals  for F()(n) and

 for F()(n) in (). An alternative measure is the coe�cient
of ordinal variation (COV) by Kvälseth (a,b) de�ned,
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and somewhat analogous to CNV in (), as

COV =  −
√
 − ∆∗, ∆∗ = 

n − 

n

∑
i=

n

∑
j=

∣i − j∣pipj

= 
n − 

n−
∑
i=
Fi( − Fi) ()

whereCOV ∈ [, ], COV (F(n)) = , andCOV (F()(n)) = .
�e COV can also be expressed as

COV =  −

⎛
⎜⎜⎜⎜
⎝

n−

∑
i=

∣Fi − ∣

n − 

⎞
⎟⎟⎟⎟
⎠

/

. ()

It would appear from () and () that LOV and COV
are both members of the same family. In fact, expressed
in terms of an α – order arithmetic mean, both measures
belong to the family of ordinal variation measures

OVα =  −

⎛
⎜⎜⎜⎜
⎝

n−

∑
i=

∣Fi − ∣α

n − 

⎞
⎟⎟⎟⎟
⎠

/α

, −∞ < α <∞ ()

where LOV = OV, and COV = OV. Furthermore, in
terms of the Minkowski metric distance of order α ≥ 

(i.e., dα(X,Y) = (
n

∑
i=

∣xi − yi∣α)
/α
),

OVα =  −
dα (F(n),F

()
(n))

dα (F(n),F
()
(n))

, α ≥  ()

with F(n),F
()
(n), and F

()
(n) de�ned in (). Clearly, dα

(F(n)F
()
(n)) ≤ dα (F(n),F

()
(n)) since ∣Fi − .∣ ≤ . for all i.

�us, OVα ∈ [, ],OVα (F(n)) = , and OVα (F()(n)) = .
�e expressions in () – (), especially (), provide inter-
pretations and bases for LOV and COV , with LOV and
COV being based, respectively, on city-block (Hamming)
distances (α = ) and Euclidean distances (α = ) (see also
Blair and Lacy ).

Statistical Inferences
For a generic variation measure V , consider now (a) that
V(Pn) is the sample value based on the distribution Pn =
(p, . . . , pn) of sample probabilities ni/N for i = , . . . ,n
with sample size N =

n

∑
i=
ni and (b) that V(Πn) is the

population value based on the corresponding population
distributionΠn = (π, . . . , πn). Itmay then be of interest to
construct a con�dence interval or test an hypothesis about

V(Πn).�is can be done using the delta method (Agresti
, Ch. ). Accordingly, under multinomial sampling
withN reasonably large, V(Pn) is approximately normally
distributed with mean V(Πn) and estimated variance

σ̂ V = 
N

⎡⎢⎢⎢⎣

n

∑
i=
pi ϕ̂ Vi − (

n

∑
i=
pi ϕ̂Vi)

⎤⎥⎥⎥⎦
, ()

where

ϕ̂Vi =
∂V(Πn)

∂πi
∣
πi=pi

, i = , . . . ,n ()

i.e., ϕ̂Vi is the partial derivative of V(Πn) with respect to
πi, which is then replaced with pi, for i = , . . . ,n.
In the case of CNV in (), it follows from () (with

V = CNV) that

ϕ̂CNVi =
−n

(n − )( − CNV)
pi, i = , . . . ,n,

so that; from (),

σ̂ CNV = ( 
N

)( n
(n − )( − CNV)

)
 ⎡⎢⎢⎢⎣

n

∑
i=
p i − (

n

∑
i=
p i )

⎤⎥⎥⎥⎦
.

()

For the case of COV in (), and withV = COV , it is found
from () that

ϕ̂COVi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩


(n − )( − COV)

⎡⎢⎢⎢⎢⎣
n − i − 

n−
∑
j=
Fj
⎤⎥⎥⎥⎥⎦
, i = , . . . ,n − 

 , i = n

()

which can then be used to compute σ̂ COV from ().
As a numerical example, consider the respective

multinomial frequencies ni = , , ,  so that, with
N = , P(., ., ., .). From () and (), IQV =
. and CNV = .. From (), with CNV =
., σ̂ CNV = .. �erefore, an approximate %
con�dence interval for the population measure CNV(Π)
becomes . ± .

√
. or (., .). If the four

categories are ordinal so that Fi = ., ., .,  for
i = , . . . , , it follows from () and () thatCOV = .
and ϕ̂COVi = ., ., .,  for i = , . . . ,  so
that, from (), with V = COV , σ̂ COV = ..�erefore,
an approximate % con�dence interval for COV(Π)
becomes . ± .

√
., or (., .).
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Vector Autoregressive Models

Helmut Lütkepohl
Professor of Econometrics
European University Institute, Firenze, Italy

Vector autoregressive (VAR) processes are popular in
economics and other sciences because they are �exi-
ble and simple models for multivariate time series data.
In econometrics they became standard tools when Sims
() questioned theway classical simultaneous equations
models were speci�ed and identi�ed and advocated VAR
models as alternatives. A textbook treatment of thesemod-
els with details on the issues mentioned in the following
introductory exposition is available in Lütkepohl ().

The Model Setup
�e basic form of a VAR process is

yt = Ddt + Ayt− +⋯ + Apyt−p + ut ,

where yt = (yt , . . . , yKt)′ (the prime denotes the trans-
pose) is a vector of K observed time series variables, dt is
a vector of deterministic terms such as a constant, a linear
trend and/or seasonal 7dummy variables, D is the asso-
ciated parameter matrix, the Ai’s are (K × K) parameter
matrices attached to the lagged values of yt , p is the lag

order or VAR order and ut is an error process which is
assumed to be white noise with zero mean, that is, E(ut) =
, the covariance matrix, E (utu′t) = Σu, is time invariant
and the ut ’s are serially uncorrelated or independent.
VAR models are useful tools for forecasting. If the

ut ’s are independent white noise, the minimum mean
squared error (MSE) h-step forecast of yt+h at time t is the
conditional expectation given ys, s ≤ t,

yt+h∣t = E(yt+h∣yt , yt−, . . . )
= Ddt+h + Ayt+h−∣t +⋯ + Apyt+h−p∣t ,

where yt+j∣t = yt+j for j ≤ .Using this formula, the forecasts
can be computed recursively for h = , , . . . .�e forecasts
are unbiased, that is, the forecast error yt+h − yt+h∣t has
mean zero and the forecast error covariance is equal to the
MSE matrix.�e -step ahead forecast errors are the ut ’s.
VAR models can also be used for analyzing the rela-

tion between the variables involved. For example, Granger
() de�ned a concept of causality which speci�es that a
variable yt is causal for a variable yt if the information in
yt is helpful for improving the forecasts of yt . If the two
variables are jointly generated by a VAR process, it turns
out that yt is not Granger-causal for yt if a simple set of
zero restrictions for the coe�cients of the VAR process are
satis�ed. Hence, Granger-causality is easy to check in VAR
processes.
Impulse responses o�er another possibility for analyz-

ing the relation between the variables of a VAR process by
tracing the responses of the variables to impulses hitting
the system. If the VAR process is stable and stationary, it
has a moving average representation of the form

yt = D∗dt +
∞
∑
j=
Φjut−j,

where the Φj’s are (K × K) coe�cient matrices which can
be computed from the VAR coe�cient matrices Ai with
Φ = IK , the (K × K) identity matrix.�is representation
can be used for tracing the e�ect of a speci�c forecast error
through the system. For example, if ut = (, , . . . , )′, the
coe�cients of the �rst columns of the Φj matrices repre-
sent the marginal reactions of the yt ’s. Unfortunately, these
so-called forecast error impulse responses are o�en not of
interest for economists because they may not re�ect prop-
erly what actually happens in a system of variables. Given
that the components ofut are typically instantaneously cor-
related, such shocks or impulses are not likely to appear in
isolation. Impulses or shocks of interest for economists are
usually instantaneously uncorrelated. �ey are obtained
from the forecast errors, the ut ’s, by some transformation,
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for example, εt = But may be a vector of shocks of inter-
est if the (K × K) matrix B is such that εt ∼ (, Σε) has a
diagonal covariancematrix Σε .�e correspondingmoving
average representation in terms of the εt ’s becomes

yt = D∗dt +
∞
∑
j=
Θjεt−j,

where Θj = ΦjB−.
�ere aremanyBmatrices with the property thatBut is

a random vector with diagonal covariance matrix. Hence,
there are many shocks εt of potential interest. Finding
thosewhich are interesting froman economic point of view
is the subject of structural VAR analysis.

Estimation and Model Specification
In practice the process which has generated the time series
under investigation is usually unknown. In that case, if
VAR models are regarded as suitable, the lag order has
to be speci�ed and the parameters have to be estimated.
For a given VAR order p, estimation can be conveniently
done by equationwise ordinary 7least squares (OLS). For
a sample of size T, y, . . . , yT , and assuming that in addi-
tion presample values y−p+, . . . , y are also available, the
OLS estimator of the parameters B = [D,A, . . . ,Ap] can
be written as

B̂ = (
T

∑
t=
ytZ′t−)(

T

∑
t=
Zt−Z′t−)

−
,

where Z′t− = (d′t , y′t−, . . . , y′t−p). Under standard assump-
tions the estimator is consistent and asymptotically nor-
mally distributed. In fact, if the residuals and, hence, the
yt ’s are normally distributed, that is, ut ∼ i.i.d.N (, Σu),
the OLS estimator is equal to the maximum likelihood
(ML) estimator with the usual asymptotic optimality prop-
erties. If the dimension K of the process is large, then the
number of parameters is also large and estimation preci-
sion may be low if a sample of typical size in macroeco-
nomic studies is available for estimation. In that case itmay
be useful to exclude redundant lags of some of the variables
from some of the equations and �t so-called subset VAR
models. In general, if zero or other restrictions are imposed
on the parameter matrices, other estimation methods may
be more e�cient.
VAR order selection is usually done by sequential

tests or model selection criteria (see 7Model Selection).
7Akaike’s information criterion (AIC) is, for instance, a
popular model selection criterion (Akaike, ). It has the
form

AIC(m) = log det(Σ̂m) + mK/T,

where Σ̂m = T−∑Tt= ûtû′t is the residual covariancematrix
of a VAR(m) model estimated by OLS.�e criterion con-
sists of the determinant of the residual covariance matrix
which tends to decline with increasing VAR order whereas
the penalty term mK/T, which involves the number of
parameters, grows withm.�e VAR order is chosen which
optimally balances both terms. In other words, models of
orders m = , . . . , pmax are estimated and the order p is
chosen such that it minimizes the value of AIC.
Once a model is estimated it should be checked that

it represents the data features adequately. For this pur-
pose a rich toolkit is available. For example, descriptive
tools such as plotting the residuals and residual autocorre-
lations may help to detect model de�ciencies. In addition,
more formal methods such as tests for residual autocor-
relation, conditional heteroskedasticity, nonnormality and
structural stability or tests for parameter redundancy may
be applied.

Extensions
If some of the time series variables to be modeled with
a VAR have stochastic trends, that is, they behave simi-
larly to a 7random walk, then another model setup may
be more useful for analyzing especially the trending prop-
erties of the variables. Stochastic trends in some of the
variables are generated by models with unit roots in the
VAR operator, that is, det(IK − Az − ⋯ − Apzp) =  for
z = . Variables with such trends are nonstationary and not
stable.�ey are o�en called integrated.�ey can be made
stationary by di�erencing. Moreover, they are called coin-
tegrated if stationary linear combinations exist or, in other
words, if some variables are driven by the same stochastic
trend. Cointegration relations are o�en of particular inter-
est in economic studies. In that case, reparameterizing the
standard VAR model such that the cointegration relations
appear directly may be useful. �e so-called vector error
correction model (VECM) of the form

∆yt = Ddt + Πyt− + Γ∆yt− +⋯ + Γp−∆yt−p+ + ut

is a simple example of such a reparametrization, where ∆
denotes the di�erencing operator de�ned such that ∆yt =
yt−yt−, Π = −(IK−A−⋯−Ap) and Γi = −(Ai++⋯+Ap)
for i = , . . . , p − . �is parametrization is obtained by
subtracting yt− from both sides of the standard VAR rep-
resentation and rearranging terms. Its advantage is that
Π can be decomposed such that the cointegration rela-
tions are directly present in themodel.More precisely, if all
variables are stationary a�er di�erencing once, and there
are K − r common trends, then the matrix Π has rank r
and can be decomposed as Π = αβ′, where α and β are
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(K × r) matrices of rank r and β contains the cointegra-
tion relations. A detailed statistical analysis of this model is
presented in Johansen () (see also Part II of Lütkepohl
()).

�ere are also other extensions of the basic VARmodel
which are o�en useful and have been discussed extensively
in the associated literature. For instance, in the standard
model all observed variables are treated as endogenous,
that is, they are jointly generated. �is setup o�en leads
to heavily parameterized models, imprecise estimates and
poor forecasts. Depending on the context, it may be pos-
sible to classify some of the variables as exogenous and
consider partial models which condition on some of the
variables.�e latter variables remain unmodeled.
One may also question the focus on �nite order VAR

models and allow for an in�nite order.�is can be done
by either augmenting a �nite order VAR by a �nite order
MA term or by accounting explicitly for the fact that the
�nite order VAR approximates some more general model.
Details on these and other extensions are provided, e.g., by
Hannan and Deistler () and Lütkepohl ().
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