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Introduction and Definition
Target estimation is a computer intensive procedure intro-
duced by Cabrera and Fernholz () that has proved to
be e�ective in reducing the bias as well as the L and L
errors of statistics in parametric settings.
For a statistical functional T, let the statistic T(Fn)

estimate the parameter T(Fθ), where Fn is the empirical
d.f. corresponding to the sampleX, . . . ,Xn of i.i.d. random
variables. Suppose that all the Xi’s have common d.f. Fθ
where θ ∈ Θ, an open subset of real numbers. If the expec-
tation of T(Fn), g(θ) = Eθ(T(Fn)), exists for all θ ∈ Θ
and is one-to-one and di�erentiable, then the functional T̃
induced by T from the relation

g−(T) = T̃

will be called the target functional of T.�e statistic T̃(Fn)
will be called the target estimator.

Remarks
a. Note that the target estimate of θ corresponds to choos-
ing the value θ̃ = T̃(F̂n), which solves the equation

g(θ̃) = Eθ̃(T(Fn)) = T(F̂n)

where F̂n is the observed value of Fn.�at is, we set the
expectation of a statistic equal to its observed value and
we solve for θ. Also, note that g depends on the sample
size n which will remain �xed.

b. It is a direct consequence of the de�nition that if T is a
statistical functional with g(θ) = aθ +b for a ≠ , then
the corresponding target estimator will be unbiased.
�e variance of T̃ will satisfy

Var(T̃) = (/a)Var(T)

and the variance of the target estimator will be reduced
if and only if a > .

Properties of Target Estimators
For general estimators, Cabrera and Fernholz () give
some results regarding bias and variance reduction a�er
targeting.�ese results can be summarized as follows:
If g(θ) > θ and g is increasing, then:

. If  < g′(θ) < b then ∣BT̃(θ)∣ < ∣BT(θ)∣,
. If  < ∣g′(θ)∣ then MSE(T̃) < Var(T) and

E∣T̃ − θ∣ < E∣T − θ∣ + ∣Med(T) − E(T)∣,

where BT(θ) and BT̃ denote the bias of T and T̃ respec-
tively, Med(T) is the median of T, and MSE is the mean
square error.

von Mises Expansions of Target
Functionals
�e von Mises expansions for the target functional T̃ can
be obtained using the Hadamard or Fréchet derivatives of
the functionalT.�ese expansions are useful to analyze the
bias of T̃ as well as the asymptotics and robustness proper-
ties of T̃. For T(Fn) the �rst order von Mises expansion
is: T(Fn) = θ + 

n ∑
n
 φ(Xi) + Rem. �en, under some

regularity conditions, the remainder satis�es
√
nRem =

oP() , and the statistic T(Fn) is asymptotically normal
(see Fernholz ).Moreover, when φ is properly normal-
ized, the expectation of T(Fn) gives: g(θ) = θ + Eθ(Rem)

so that T = T̃+ET̃(Rem), and the bias of the target estima-
tor is BT̃(θ) = Eθ(Rem −ET̃(Rem)), which under certain
conditions satis�es,

∣BT̃(θ)∣ = ∣Eθ(Rem − ET̃(Rem))∣ < ∣Eθ(Rem)∣ = ∣Bθ(T)∣.

Using the von Mises expansions of T , it can be shown
that the 7asymptotic normality of T̃ is inherited from the
asymptotic normality of T , with some gain in asymptotic
e�ciency when ∣g′(θ)∣ > . �e robustness aspects of
target functionals are also analyzed using the von Mises
approach and the in�uence functions of T̃ and T are
related by:

IFT̃(x) = (/g′(θ))IFT(x).
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�is shows that the gross-error sensitivity of the target
functional is lower when ∣g′(θ)∣ > . See Fernholz ()
and Cabrera and Fernholz ().

Target Estimation in Multidimensional
Settings
Multivariate target estimation was treated in Cabrera and
Fernholz () where p-dimensional statistical function-
als T = (T, . . . ,Tp) estimate a p-dimensional parameter
vector θ = (θ, . . . , θp). In this case the expectation func-
tion g(θ), as de�ned in section “7Introduction and De�-
nition”, is p-dimensional, and for the simple case where g is
an a�ne function of the parameter vector, the bias can be
removed entirely and, under certain conditions, the vari-
ability of the bias corrected functional is reduced in the
sense of smaller trace and smaller determinant. Examples
ofmultivariate targeting for location-scale equivariant esti-
mators and the location-scale exponential model are given
in Cabrera and Fernholz ().
In practice, we seldom have linearity of the p-

dimensional expectation function g. Quite o�en, the
p-dimensional estimator T is de�ned implicitly and the
corresponding target estimator must be found by solv-
ing multidimensional implicit equations in θ, of the form
g(θ) = T(Fn)where T(Fn) has been observed and g(θ) =
Eθ(T(Fn)) is multidimensional.�is amounts to invert-
ing the function g which, if unknown, must �rst be esti-
mated.�emethod of stochastic approximation introduced
by Robbins and Munro () and modi�ed by Cabrera
and Hu () was successfully used to �nd the target esti-
mates in many situations. For details and description of
thismethods seeCabrera andFernholz () andCabrera
et al. ().

Applications and Examples
Target estimation has been successfully used for bias and
variance reduction in many cases. �e following are just
some of the more important cases developed:

. Ellipse estimation.�e case of ellipse estimation when
only an arc of data points is available is of particu-
lar importance in computer vision since many real life
problems encounter this di�culty. A study regarding
the least squares estimators of �ve parameters identi-
fying an ellipse can be found in Cabrera and Fernholz
() where a comparison of the target estimators
with both the bootstrap (see7BootstrapMethods) and
the jackknife estimators (see 7Jackknife) shows the
advantages of the target estimation method in terms
of reducing bias and lowering the variability of the
estimators.

. AutoregressiveModels. Simulations were performed for
autoregressive models AR() of the form Xt+  = θXt

+єt , where the error term єt is Gaussian.�emaximum
likelihood estimator (MLE) of the parameter θ was
compared to the corresponding target estimator for
di�erent sample sizes and di�erent values of θ.�ese
simulations showed a substantial reduction in the bias
of the target estimator as compared to the bias of the
MLE for every case considered, and they also showed
that the MSE of the target estimator was reduced in
most of the cases. See Cabrera and Fernholz ().

. Errors-in-variables Models. General errors-in-variables
models of the form Y = a+bU+є when the observable
variables are X = U + δ, where є and δ are independent
Gaussian errors. In all the simulations performed for
di�erent sample sizes and di�erent values of b the bias
of the target estimator was substantially reduced when
compared to the bias of the MLE, and in all cases the
MSE of the target estimatorwas smaller than that of the
MLE. See Cabrera and Fernholz ().

. Logistic Regression Models. A treatment of logistic
regression models (see 7Logistic Regression) of one
and two parameters was given in Cabrera et al. ()
where it is shown that the transformed MLE, i.e., the
target estimator, has lower bias andMSE that the origi-
nal MLE. It was also shown that another bene�t of tar-
geting is that it corrects the asymmetry of the statistic
thus producing target statistics with more symmetric
distributions.

Final Remarks
. Comparison to the Bootstrap. Target estimation has
been compared to other methods of reducing bias and
variability such as the jackknife and the bootstrap.�is
comparison is treated in Cabrera and Fernholz (,
), where for di�erent situations it was shown that
targeting can provide considerable improvement over
both the jackknife and the bootstrap in lowering the
bias and the MSE.

. Median Target. When the sampling distribution of the
statistic is skewed or has heavy tails, the mean of
the statistic may not be the proper measure of loca-
tion to be considered, or may not even be de�ned.
In such cases the mean target de�ned above may not
be the proper approach. However, in these situations
we can consider the median of the statistic as a func-
tion of θ by taking g(θ) = medθT(Fn) and de�ning
the median target estimate in an analogous way. �e
resulting median target estimate will always bemedian
unbiased when the g function is monotone; this is a
drastic di�erence with the mean target situation where
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some additional regularity conditions for g are needed.
Results in this direction can be found in Cabrera and
Watson () and Cabrera et al. (), but many
open questions aboutmedian target estimates and their
variability are still awaiting their answers.
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Telephone sampling is a set of techniques used to generate
samples in telephone survey data collection. Telephone
surveys have lower cost and time of data collection than

face-to-face survey methods. (Telephone surveys are also
conducted for other types of units, such as business estab-
lishments.�is discussion is limited to telephone house-
hold surveys.). Cost and timeliness advantages outweigh
potential loss in accuracy due to failure to cover house-
holds without telephones. However, since households
without telephones vary in character over time and across
countries and key subgroups, researchers must decide in
any particular application whether non-coverage bias is a
potentially serious source of error before choosing to use a
telephone survey.
Telephone sampling methods use traditional sampling

techniques or modi�cations of those techniques designed
to address the nature of the materials available for sample
selection.�e materials, or frames, are of two basic types:
lists of telephone household numbers and lists of groups of
potential telephone household numbers.
Telephone household number lists come from com-

mercial or government sources. Some cover virtually all,
or a high percentage of all, telephone households in a
target population, such as those obtained from a govern-
ment agency providing telephone service. Alternatively,
list frame numbers may be from published telephone
directories that include a majority but not all telephone
households. Telephone directories do not cover recent sub-
scribers or subscribers who do not want to have a number
appear in the directory, and substantial telephone house-
hold non-coverage arising from out-of-date or absent
entries has led alternative frames with more complete
coverage.
Telephone sampling for list frames uses traditional ele-

ment sampling techniques such as systematic selection and
strati�ed random sampling. �e lists and samples con-
tain numbers that are not telephone household numbers,
which requires screening during data collection to elimi-
nate non-household numbers. Some telephone households
have more than one telephone number in the list, which in
turn have higher chances of selection. Weights are used to
compensate for the duplicate numbers. If persons within
households are to be sub-selected, within household selec-
tion methods choose one or more sample persons within a
household, yielding additional adjustment weights.
Alternative frames or sets of materials provide more

complete, if not virtually complete, coverage than direc-
tory list frames. �e alternative frames are used to com-
plete through random generation of some portion of a
telephone number telephone numbers where only an area
code and local pre�x combination are available, and are
o�en referred to as random digit dialing (RDD; see Groves
and Kahn ). �e frame consists of all area code and
local area pre�xes for a country or region obtained from
government or commercial sources. �ese combinations
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are not complete telephone numbers, but randomly gen-
erated ‘su�xes’ added to a selected combination yield
a valid and complete telephone number. �e combina-
tion plus random digits cover, in principle, all telephone
households provided all combinations in the region are
available.
Simple RDD telephone number generation is typically

very ine�cient due to a large percentage of randomly gen-
erated numbers (sometimes in excess of  percent) that
are not telephone households, increasing costs through
screening to �nd telephone households among randomly
generated numbers. Specialized techniques reduce the per-
centage of non-household numbers obtained, and improve
e�ciency. For example, Mitofsky–Waksberg RDD sam-
pling (Waksberg ) is a two-stage sampling technique
devised to randomly generate numbers that have a much
lower percentage of non-telephone households, below 
percent in early applications in the United States. Prac-
tical de�ciencies led to variations to improve e�ciency
of the two-stage methods (see, for example, Pottho�
).
List-assisted methods seek e�ciency gains as well, but

start from a directory frame to extend coverage to all
telephone households (Tucker et al. ). Many have a
slight loss of coverage, though, compared to RDD meth-
ods. Numbers selected from a directory are selected and
digits in the number altered to cover numbers that are not
in the directory. Plus-one dialing, for example, replaces
the last digit of a directory number with a number one
larger –  instead of , for instance, replaces the last digit
of a phone number ending in . While in principle this
method should cover all telephone numbers, in practice
the coverage is incomplete, anddi�cult to determine.Vari-
ations include changing the last digit or the last two digits
randomly (Sudman ).
Commercial sources compile lists of all directory num-

bers in a country, metropolitan area, or region that are
used to generate telephone numbers with higher levels of
coverage. Phone numbers can be divided into sets of 
consecutive numbers de�ned by all but the last two dig-
its of a telephone number. For example, directory entry
 de�nes  consecutive numbers 
to . Commercial sources use directory entries
to �nd all  “banks” where at least one directory num-
ber is present. Telephone numbers are selected at random
from all numbers occurring in the set of  ‘banks’ that
contain one or more directory numbers. �ese methods
provide today higher e�ciency than even the two-stage
RDD methods (Casady and Lepkowski ).
Finally, dual frame sampling designs have been used to

select samples separately from directory and RDD frames

and combine the results in estimation (Lepkowski ).
�ese methods are also currently being used to include
telephone households that have only mobile or cell tele-
phones and are not covered by list assisted sampling
frames.
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�e exponential distribution, de�ned on the positive half-
line R+ with scale parameter λ > , has distribution
function and density

Fλ(x) =  − e−λx, fλ(x) = λe−λx, x ≥ .

It plays a very prominent role in probability theory
and statistics, especially as a model for random times
until some event, like emission of radioactive particles
(Rutherford et al. ), or an earthquake (Gardner and
Knopo� ), or failure of equipment (Pham ), or
occurrence of abnormally high levels of a random process
(Cramér and Leadbetter ), like unusually high prices
(Shiryaev ), etc.

�e characteristic “memoryless” property of the expo-
nential distribution says that, ifX is an exponential random
variable, then

P{X > y + x∣X > y} = P{X > x}, or
 − Fλ(x + y) = [ − Fλ(x)][ − Fλ(y)], ()

which means that the chances to wait for longer than some
time x do not change, if you have been waiting already
for some time y: X “does not remember” if waiting has
occurred already or not. Connected to this is another char-
acteristic property of the exponential distribution, which
states that its failure rate is constant:

fλ(x)
 − Fλ(x)

= λ. ()

Given a sample X, . . . ,Xn, denote by Fn and vn the
empirical distribution function and the empirical process,
respectively:

Fn(x) =

n

n

∑
i=

I{Xi ≤ x}, vn(x) =
√
n[Fn(x) − Fλ(x)],

where I{A} denotes the indicator function of the event A.
As is well known, a�er time transformation t = Fλ(x), the
process vn ○ F−λ (t) = vn (F−λ (t)) converges in distribu-
tion to a standard Brownian bridge u(t), t ∈ [, ]. Since
in the majority of problems the value of the parameter λ is

unknown, inference can not be based on vn but must use
the parametric (or estimated) empirical process v̂n,

v̂n(x) = vn(x, λ̂n) =
√
n[Fn(x) − Fλ̂n

(x)],

where λ̂n is an estimator of λ, based on the sample.
In any testing procedure one can use either of two types

of statistics from v̂n, or a combination of the two: linear,
or asymptotically linear, statistics and nonlinear omnibus
statistics. Asymptotically linear statistics of the form

ln(X, . . . ,Xn;Fλ̂n
) = ∫

∞


g(x)dv̂n(x) + oP() ()

typically lead to asymptotically optimal tests against spe-
ci�c “local” (or contiguous) alternatives, but have very
poor power against the hugemajority of other alternatives.
In contrast, nonlinear statistics like

sup
x

∣v̂n(x)∣ or ∫

∞


v̂n(x)dFλ̂n

(x),

which may not have best power against any given alterna-
tive, have reasonable power against more or less all alter-
natives.�ese are used in goodness of �t testing problems.
It is for these omnibus tests that the asymptotic behav-

ior of the empirical process v̂n is somewhat unpleasant:
a�er time transformation t = Fλ̂(x) it does not converge
to a standard Brownian bridge, but to a di�erent Gaus-
sian process with more complicated distribution. While
it is true that the distribution of each omnibus statistic
can in principle be calculated and tables prepared, this
would involve a considerable amount of computational
work. Below we show versions of 7empirical processes
that are distribution free and, moreover, the distribution
of many statistics from these processes are already known.

Asymptotically Linear Statistics
�ere are several asymptotically linear statistics, which are
widely used for testing exponentiality. Papers (Deshpande
) and (Bandyopadhyay and Basu ) are based on
testing whether  − Fλ(bx) = [ − Fλ(x)]b, and the test
statistic is

Dn =


n(n − )∑i≠j
I{Xj > bXi}.

A statistic known as the Gini index (or coe�cient),

Gn =
∑i≠j ∣Xi − Xj∣

n(n − )X
, with X =


n

n

∑
i=

Xi,

was originally designed as a measure of spread and is com-
monly used as a measure of inequality, e.g., see Deaton
(). In Gail and Gastwirth (), and later Nikitin and
Tchirina (), it was considered and recommended as a
test of exponentiality.
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�e so-calledMoran statistic was introduced inMoran
() as the score statistic for testing exponentiality against
the alternative of a Gamma distribution and has the form

Mn =

n

n

∑
i=
log

Xi

X
.

One more test of exponentiality, known as the Cox-
Oakes statistic, was suggested in Cox and Oakes () as
the score test statistic against the alternative of a 7Weibull
distribution:

Cn =

n

n

∑
i=

( −
Xi

X
) log

Xi

X
.

One can show that all four statistics are asymptot-
ically linear, e.g., see Haywood and Khmaladze (),
and hence are asymptotically Gaussian. Somewhat surpris-
ingly, although the kernels g of representation () in all four
statistics look di�erent, their correlation is extremely high,
which means that all four statistics lead to the same test in
practice; see Haywood and Khmaladze ().

Distribution Free Versions of Empirical
Processes
As we noted above, unlike the empirical process vn, the
time transformed parametric empirical process v̂n ○ F−λ
does not converge to a standard Brownian bridge u. How-
ever, a beautiful observation, see Barlow and Campo (;
Barlow and Proschan ), leads to another version of
empirical process, which does. It is based on the “total
time on test” (or TTT) notion of Epstein and Sobel ().
Consider

ηn(x) =
∫

x
 [ − Fn(y)]dy

∫
∞

 [ − Fn(y)]dy
,

where ∫
∞


[ − Fn(y)]dy = X, x ≥ .

If one interprets random variable Xi as a survival time (or
time until failure) of the ith item on test, then ηn(x)mea-
sures the time all items spent on test before the moment x,
relative to the total time spent on test by all n items until
they all failed.�e process

ξn(x) =
√
n[Fn(x) − ηn(x)]

will converge in distribution to a Brownian bridge in
time Fλ , and hence the time transformed empirical pro-
cess ξn ○ F−λ converges in distribution to a standard
Brownian bridge. To explain why this is true, cf. (Gill ;
Khmaladze ), note that the process

Bn(x) =
√
n [Fn(x) − ∫

x



 − Fn(y)
 − F(y)

dF(y)]

is a martingale (see 7Martingales) with respect to the nat-
ural �ltration {Fx} generated by Fn, for any i.i.d. observa-
tions. Using (), in the case of the exponential distribution
it reduces to

Bn(x, λ) =
√
n [Fn(x) − λ∫

x


 − Fn(y)dy].

If we estimate the parameter λ through the equation
Bn(∞, λ) = , we get the usual estimator λ̂n = / ∫

∞

 [ −
Fn(y)]dy = /Xn and Bn(x, λ̂n) = ξn(x). �e process
Bn (F−λ (t), λ) converges in distribution to standard Brow-
nian motion on [, ] and hence ξn ○F−λ converges to “tied
up” Brownian motion, i.e., a standard Brownian bridge.
Another version of empirical process was investigated

in Haywood and Khmaladze (). It has the form

wn(x) =
√
n[Fn(x) − K(x,Fn)],

where

K(x,Fn) =
λ̂
n ∑i:Xi≤x

(Xi −
λ̂

Xi )

+ λ̂ ( +
λ̂

x) x[ − Fn(x)] − x

λ̂

n ∑
i:Xi>x

Xi .

Asymptotically, the process wn is also a martingale, but
with respect to the “enriched” �ltration {F̂x}, where each
σ-�eld is generated by the past of Fn and also the estima-
tor λ̂n; F̂x = σ{Fn(y), y ≤ x,Xn}. �e idea behind this
process follows from the general suggestion in Khmaladze
(), but the form of compensator K(x,Fn) for the expo-
nential distribution is computationally particularly sim-
ple. Haywood and Khmaladze () demonstrated quick
convergence of the time transformed process wn ○ F−λ to
a standard Brownian motion (see 7Brownian Motion and
Di�usions).
Althoughnot proved formally, the relationship between

processes ξn andwn is clear: the latter is asymptotically the
innovationmartingale for the former and therefore the two
stay in one-to-one correspondence.�e limit distribution
of many statistics based on both ξn ○ F−λ and wn ○ F−λ are
well known.
Koul () considered an empirical version of the

memoryless property () of the exponential distribution
and studied the empirical process

αn(x, y) = −
√
n{ − Fn(x + y) − [ − Fn(x)][ − Fn(y)]}.

�e asymptotic form of Koul’s process is

αn(x, y) = vn(x + y) − [ − Fλ(x)]vn(y)
− [ − Fλ(y)]vn(x) + op()
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and therefore, a�er the usual time transformation, it
converges in distribution to β,

β(t, s) = u(ts) − tu(s) − su(t),

which is again a distribution free process in t and s.
A particular form of this process,

αn(x) = −
√
n{ − Fn(bx) − [ − Fn(x)]b}

with b =  was studied in Angus () and Nikitin ().
Note that the limit distributions of omnibus statistics from
these αn processes are not easy to obtain.

P-P Plots
It is easy and quick to calculate random variables Ûi =

 − Fλ̂n
(Xi) = e−λ̂nXi and plot their 7order statistics Û(i:n)

against expected values i/(n+), i = , . . . ,n, of the uniform
order statistics. Under exponentiality the graph should be
approximately linear, as Ûi, i = , . . . ,n are almost inde-
pendent and almost uniformly distributed on [, ]: they
would exactly have these properties if λ was known and
used instead, but with λ̂n they are not. Visual inspection
of the graph is a useful preliminary tool. However, the
normalized di�erences

√
n [Û(i:n) −

i
n + 

]

as a process in t = i/(n + ), has the same drawback as the
time transformed parametric empirical process v̂n ○ F−λ :
distributions of many statistics from it are not known and
would require extra computational e�ort.

Uniform Spacings
If  = V(:n−) < V(:n−) < ⋅ ⋅ ⋅ < V(n−:n−) < V(n:n−) = 
denote the uniform order statistics from a sample of size
n − , the di�erences ∆V(i−:n−) = V(i:n−) − V(i−:n−),
form uniform spacings. Random variables

Xi

∑
n
j= Xj

=
Xi

nX
, i = , . . . ,n,

have the same distribution as ∆V(i−:n−), i = , . . . ,n, if
and only if X, . . . ,Xn are i.i.d. exponential random vari-
ables.�is characteristic property was systematically used
in testing problems pertaining to uniform spacings, (Pyke
).
Although the normalized spacings n∆V(i−:n−) form

a distribution free statistic, they are dependent, and the
empirical process based on them does not converge to
a Brownian bridge. It can be shown that this empirical
process is asymptotically equivalent to the process v̂n ○F−λ .
Other approaches for testing exponentiality include

tests based on functionals from the empirical charac-
teristic function and Laplace transform, studied, e.g., in

Baringhaus and Henze (), Epps and Pulley () and
Henze (), and on the empirical likelihood principle,
e.g., Einmahl and McKeague (). Surveys on tests for
exponentiality, including numerical studies of their relative
power against �xed alternatives, can be found in Ascher
() and Henze and Meintanis ().
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Testing Variance Components in
Mixed Linear Models
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Introduction
Consider the mixed model

Y = Xβ + Zγ + ε, ()

where Y is an n×  observable random vector, X is an n×p
known matrix, β is a p ×  vector of unknown parameters,
Z is another known n × m matrix, γ is an m ×  unob-
servable random vector such that γ ∼ Nm(, θI), θ ≥ ,
and ε is another unobservable n ×  random vector such
that ε ∼ Nn(, θ I), θ > . It is also assumed that γ and
ε are independent and that n > rank(X,Z) > rank(X).
�erefore, we have

Y ∼ Nn(Xβ, θI + θZZ′). ()

Model () can be generalized to more than two variance
components and has proven useful to practitioners in a
variety of �elds such as genetics, biology, psychology, and
agriculture, where it is usually of interest to test the null
hypothesis θ =  against the alternative θ > , or
equivalently,
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H : ρ = , vs H : ρ > , ()

where ρ = θ/θ.

Wald Test
Wald () proposed an exact procedure to construct
con�dence intervals for ρ, which can be used to test the
hypotheses in ().�is test is based on the usual ANOVA
F-statistic and uses the readily available F tables to deter-
mine the critical region and that is why it has been widely
used in applications.�eWald test was shown by Spjotvoll
() to be optimal against large alternatives. Further,
unless the design is strongly unbalanced and the alterna-
tive is fairly small, El-Bassiouni and Seely () showed
that the Wald test has reasonable e�ciency relative to the
corresponding MP tests.
Seely and El-Bassiouni () obtained the Wald test

via reduction sums of squares.�is circumvents the neces-
sity of transforming to independent variables and/or mod-
ifyingWald’smethod as discussed by Spjotvoll ().�ey
also give necessary and su�cient conditions under which
the Wald test can be used in mixed models as well as a
uniqueness property that allows one to immediately deter-
mine whether or not a proposed variance component test
in a mixed model is the Wald test.

Likelihood Ratio (LR) Tests
Likelihood (LR) tests were developed by Hartley and Rao
() who showed that such tests are consistent and unbi-
ased and recommended that the LR tests be carried out by
comparing the observed values of the test statistics with
the (approximate) cuto�points obtained from the standard
χ tables. However, such cuto� points can yield sizes quite
di�erent from the nominal sizes (Garbade ). Since the
computationof themaximumlikelihoodestimates requires
thenumerical solutionofaconstrainednonlinearoptimiza-
tion problem, the LR tests have not been used much in
practice. Nevertheless, Harville () gives some results
to facilitate the computation of LR tests. It should also
be noted that even for balanced models, when a UMPU
(uniformlymost powerful unbiased) F-test is available, the
LR approach does not necessarily yield the UMPU F-test
(Herbach ). Using the likelihood induced by maxi-
mal location-invariant statistics leads to the restricted LR
(RLR) tests. For balancedmodels, these RLR tests are for all
practical purposes equivalent to the F-tests (El-Bassiouni
, ).
For a discussion of LR and RLR tests and their com-

parison with the Wald and LMPI (locally most powerful
invariant) tests, the reader is referred to Li et al. () and
the references therein.

Uniformly Most Powerful Unbiased
(UMPU) Tests
Optimal tests for certain functions of the parameters of
the covariance matrix were developed by El-Bassiouni and
Seely (), where the theory in Chap.  of Lehmann
() for determining UMPU tests in exponential fami-
lies is applied to a zero mean multivariate normal family
that admits a complete su�cient statistic.�e special case
when the matrices in the covariance structure commute
was emphasized. It appears that while completeness buys
similarity, it is the additional assumption of commutativ-
ity that buys simple test procedures.�e case of a nonzero
mean family was also discussed as were some results on the
completeness of families of product measures.
In balanced models, Mathew and Sinha () showed

that the usual ANOVA F-test is UMPU and UMPIU (uni-
formly most powerful invariant unbiased), but in unbal-
anced models, no such UMP test exists (Spjotvoll ).

Similar and Location-Invariant Tests
In the context of unbalanced mixed models, if one has a
speci�c alternative ρ∗ >  in mind, a most powerful test
among similar location-invariant tests, which is also MPI
(most powerful among location- and scale-invariant tests),
was developed by Spjotvoll ().
As ρ∗ →∞, Spjotvoll () showed that the MPI test

reduces to the exact F-test of Wald (). On the other
hand, to guard against small alternatives (ρ∗ → ), the
LMPI test was considered by Westfall (, ) who
compared theWald andLMPI tests in classi�cation designs
and concluded that the LMPI test is better in large designs
whereas the Wald test may be preferable in small designs.
Further, Westfall () found that theWald test is inferior
to the LMPI test whenever there is a small proportion of
relatively large group sizes.�e 7harmonic mean method
was used by �omas and Hultquist () to construct
con�dence intervals for ρ in unbalanced random one-way
models.�emethod was generalized to unbalancedmixed
models by Harville and Fenech (). A modi�ed har-
monic mean procedure that compares favorably with the
Wald and LMPI tests was proposed by El-Bassiouni and
Seely () for testing the hypotheses in ().
For ρℓ < ρ < ρu, Lin andHarville () combined the

two MPI tests against ρℓ and ρu to obtain a two-sided test
of H : ρ = ρ vs H : ρ ≠ ρ and showed that their NP
(Neyman–Pearson) test, although computationally inten-
sive, can be better than the Wald test in some designs.
Motivated by this idea, El-Bassiouni and Halawa ()
proposed a test that combines the LMPI test (ρℓ → ) and
the Wald test (ρu → ∞) to obtain a test of H : ρ =  vs
H : ρ > .�e combined test statistic is easily computed
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and its null distribution may be approximated by a central
F distribution with the degrees of freedom of the numera-
tor adjusted in accordance with the degree of imbalance of
the design. It is also shown to be amember of the complete
class of tests of El-Bassiouni and Seely (). Numeri-
cal methods were used to show that the approximation is
accurate over a wide range of conditions and that the e�-
ciency of the combined test, relative to the power envelope,
is satisfactorily high overall.

�e combined test was also adapted to the case where
n = rank(X,Z) (El-Bassiouni and Charif ). Such
models with zero degrees of freedom for error occur in
many applications including plant and animal breeding
and time-varying regression coe�cients.
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Tests for Discriminating Separate
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Introduction
�e Neyman–Pearson theory of hypothesis testing applies
if the models belong to the same family of distributions.
Alternatively, special procedures are needed if the models
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belong to families that are separate or non-nested, in the
sense that an arbitrary member of one family cannot be
obtained as a limit of members of the other.
Let y = (y, . . . , yn) be independent observations from

some unknown distribution. Suppose that there are null
and alternative hypothesesHf andHg specifying paramet-
ric densities f (y, α) and g(y, β) for the random vector y.
Hence α and β are unknown vector parameters and it is
assumed that the families are separate.

�e asymptotic tests developed by Cox (, )
were based on a modi�cation of the Neyman–Pearson
maximum likelihood ratio. If Hf is the null hypothesis
and Hg the alternative hypothesis, the test statistics con-
sidered was

Tfg = Tfg(α̂, β̂) − Eα̂{Tfg(α, βα)}

where for a random sample of size n, α̂ and β̂ denote the
maximum likelihood estimators of α and β respectively,
Tfg(α, β) = f (α) − g(β) is the log likelihood ratio, βα

is the probability limit, as n → ∞, of β̂ under Hf and
the subscript αmeans that expectations, etc. are calculated
under Hf .
Cox showed that, asymptotically, under the alternative

hypothesis Tfg has a negative mean and that under the null
hypothesis Tfg is normally distributed with mean zero and
variance

Vα(Tfg) = Vα{ITfg(α, βα)} − C−α I−Cα

where Cα = ∂Eα{Tfg(α, βα)}/∂α, and Iα the information
matrix of α. When Hg is the null hypothesis and Hf is
the alternative hypothesis analogous results are obtained
for a statistics Tg f .�erefore T∗fg = Tfg{Vα(Tfg)}

−/ and

T∗g f = Tg f {Vβ(Tg f )}
−/ underHf andHg respectively can

be considered as approximately standard normal variables
and two-tailed tests can be performed. �e outcomes of
application of both tests are shown in the Table .
As an alternative to his test, Cox () suggested combin-
ing the twomodels in a general model of which they would
be both special cases.�e density could be proportional to
the exponential mixture

{f (y, α)}λ
{g(y, β)}−λ

and inferences made about λ. It should be notice that these
mixtures can be generalized for testing more than two
models. In particular, the exponential mixture is the base
of the tests developed in econometrics.
Cox also suggested a Bayesian approach and gives a

general expression when losses are associated and a large
sample approximation.

�e posterior odds for Hf versus Hg is

πf ∫ f (y; α)πf (α)dα
πg∫ g(y; β)πg(β)dβ

=
πf

πg
Bfg(y)

where πf and πg are the prior probabilities of Hf and Hg

respectively, πf (α) and πg(β) are the prior probabilities
for the parameters conditionally on Hf and Hg . Bfg(y) is
the Bayes Factor and represents the weight of evidence in
the data for Hf over Hg .
One di�culty with this approach lies in the fact that

the prior knowledge expressed by πf and πf (α) must be
coherent with that of πg and πg(β). If the parameter spaces
have di�erent dimensions and there is no simple relation
between the parameters, the problem is not simple. When
prior information is weak and improper prior is used there
are also di�culties and paradox with the use of Bayes
factors which is unspeci�ed.

Alternative Approaches
Alternative approaches present in Cox () were further
developed under Cox supervision in unpublished Ph.D.
thesis at Imperial College : O.A.Y. Jackson in  and
B. de B. Pereira in  obtained further results on the
modi�ed likelihood ratio, A.C. Atkinson in  devel-
oped the exponential compound model approach, J. K.
Lindsey in  used a direct relative likelihood approach.
Later in  A. C. Atkinson supervised L. R. Pericchi
on the Bayesian approach. Published references from this
work can be traced in Pereira (a, b). Further con-
tributions of Cox in this area are Cox (), Cox and
Brandwood (), Atkinson and Cox (), Chambers
and Cox ().
Further alternative approaches such as: linear mix-

tures, relative likelihoods, tests based on information
and divergence measures,7moment generating functions,
multiple combinations, methods based on invariant statis-
tics and method of moments and bootstrap are reviewed
in Pereira (, ).
A huge amount of research on separate families of

hypothesis was developed since the fundamental work
of Cox (, ). In the s econometricians, using
the exponential compound model took a great interest
in the subject. Bayesian statisticians in the s devel-
oped alternative Bayes factors (see Araújo and Pereira
). For reviews and references seeMcAller et al. (),
Gourieroux and Monfort (), McAller (), Pereira
(b, a, , ), and Pesaran and Weeks ().
A test based on descriptive statistics for the mean and

the variance of the log-likelihood ratio has been proposed
by Vuong () but this has not been compared with Cox
test that has been shown to be consistent (Pereira a)
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Tests for Discriminating Separate or Non-Nested Models. Table  Possible results of Cox test

Tfg

Tgf Significant negative Not significant Significant positive

Significant negative Reject both Accept Hf Reject both

Not significant Accept Hg Accept both Possible acceptance Hg

Significant positive Reject both Possible acceptance Hf Reject both

and the only that can be extend to multivariate problems
(Araújo et al. ; Timm and Al-Subaihi ) and that
approaches the normal asymptotic result faster (Pereira
).
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Introduction
Homogeneity of variance (homoscedasticity) is an impor-
tant assumption shared by many parametric statistical
methods. �is assumption requires that the variance
within each population be equal for all populations (two
or more, depending on the method). For example, this
assumption is used in the two-sample t-test and ANOVA.
If the variances are not homogeneous, they are said to be
heterogeneous. If this is the case, we say that the underly-
ing populations, or random variables, are heteroscedastic
(sometimes spelled as heteroskedastic).
In this entry we will initially discuss the case when we

compare variances of two populations, and subsequently
will extend to k populations.

Comparison of Two Population Variances
�e standard F-test is used to test whether two populations
have the same variance. �e test statistic for testing the
hypothesis if σ  = σ  where σ  and σ  are the variances
of two populations, is

F =
s 
s 
, ()

where s  and s  are the sample variances for two inde-
pendent random samples of n and n observations from
normally distributed populations with variances σ  and
σ  , respectively. If the null hypothesis is true (i.e., H :
σ  = σ  ), the test statistic has the F-distribution with
(n − ) degrees of freedom for the numerator and (n − )
degrees of freedom for the denominator. �e F-test is
extremely sensitive to non-normality and should not be

used unless there is strong evidence that the data do not
depart from normality.
In practical applications, the F ratio in () is usually

calculated so that the larger sample variance is in the
numerator, that is, s  > s  . �us, F statistic is always
greater than one and only the upper critical values of the
F-distribution are used. At the signi�cance level α, the
test rejects the hypothesis that the variances are equal if
F > F(α ;n−;n−), where F(α ;n−;n−) is the upper critical
value of the F distributionwith (n−) and (n−) degrees
of freedom.

Tests for Equality of Variances of k
Populations
�e Bartlett’s test (Bartlett ) is used to test if k-groups
(populations) have equal variances. Hypotheses are stated
as follows:

H : σ  = σ  = . . . = σ k

H : σ i ≠ σ j for at least one pair (i, j).

To test for equality of variance against the alternative that
variances are not equal for at least two groups, the test
statistic is de�ned as

χ =

(N − k) ln

⎛
⎜
⎜
⎜
⎜
⎝

k

∑

i=
(ni − )s i

N − k

⎞
⎟
⎟
⎟
⎟
⎠

−
k

∑

i=
(ni − ) ln (s i )

 + 
 (k − )

[(
k

∑

i=


ni − 

) −


N − k
]

()

where k is the number of samples (groups), ni is the size of
the ith sample with sample variance s i , and N is the sum
of all samples sizes.

�e test statistic follows a 7chi-square distribution
with(k − ) degrees of freedom and the standard chi-
squared test with (k − ) degrees of freedom is applied.

�e Bartlett’s test rejects the null hypothesis that the
variances are equal if χ > χ(α ,k−), where χ(α ,k−) is
the upper critical value of the chi-square distribution with
(k − ) degrees of freedom and a signi�cance level of α.

�e test is very sensitive to departures from normality
and/or to di�erences in group sizes and is not recom-
mended for routine use. However, if there is strong evi-
dence that the underlying distribution is normal (or nearly
normal), the Bartlett’s test has good performance.

�e Levene’s test (Levene ) is another test used to
test if k groups have equal variances, as an alternative to
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the Bartlett’s test. It is less sensitive to departures from
normality and/or to di�erences in group sizes and is con-
sidered to be the standard test for homogeneity of vari-
ances.�e idea of this test is to transform the original val-
ues of the dependent variable Y and obtain a new variable
known as the “dispersion variable.” A standard 7analysis
of variance based on these transformed values will test the
assumption of homogeneity of variances.

�e test has two options. Given a variable Y with sam-
ple of size N divided into k-subgroups, Yij will be the jth
individual score belonging to the ith subgroup. �e �rst
option of the test is to de�ne the transformed variable as
the absolute deviation of the individual’s score from the
mean of the subgroup to which the individual belongs,
that is, as Zij = ∣Yij − Y i.∣ where Y i. is the mean of the ith
subgroup.�e transformed variable is known as the dis-
persion variable, since it “measures” how far the individual
is displaced from its subgroup mean.

�e Levene’s test statistic is de�ned as

FL
=

(N − k)
k

∑

i=
ni(Zi. − Z)

(k − )
k

∑

i=

ni
∑

j=
(Zij − Zi.)


()

where ni is the sample size of the ith subgroup, Zij =

∣Yij − Y i.∣ is the dispersion variable, Zi. are the subgroup
means of Zij and Z is the overall mean of Zij.

�e test statistic follows the F-distribution with (k− )
and (N − k) degrees of freedom and the standard F-test is
applied.

�e Levene’s test will reject the hypothesis that the vari-
ances are equal if FL

> Fα
(k−,N−k) where F

α
(k−,N−k) is the

upper critical value of the F distribution with (k − ) and
(N − k) degrees of freedom at the signi�cance level α.

�e second option is to de�ne the dispersion variable
as the square of the absolute deviation from the subgroup
mean, that is, as Zij = ∣Yij − Y i.∣

.

�e Brown–Forsythe test (Brown and Forsythe ) is a
modi�cation of the Levene’s test, based on the same logic,
except that the dispersion variable Zij is de�ned as the
absolute deviation from the subgroup median rather than
the subgroup mean, that is, Zij = ∣Yij −Mi.∣, where Mi. is
the median of the ith subgroup. Such a de�nition, based
on medians instead of means, provides good robustness
against many types of non-normal data while retaining
good power, and is therefore recommended in practical
applications.

�e O’Brien test (O’Brien ) is a modi�cation of the
Levene’sZ ij test. In theO’Brien test, the dispersion variable
Z ij is modi�ed in a way to include an additional scalarW
(weight) to account for the suspected kurtosis of the under-
lying distribution.�e dispersion variable in the O’Brien
test is de�ned as

Z B
ij =

(W + ni − )niZ ij −W (ni − ) s i
(ni − ) (ni − )

()

where Z ij is the square of the absolute deviation from the
subgroup mean and ni is the size of the ith subgroup with
its sample variance s i .W is a constant with values between
 and  and is used to adjust the transformation.�e most
commonly usedweight isW = ., as suggested byO’Brien
().

�e previously discussed tests are the tests that are
mostly used in empirical research and easily available
in most statistical so�ware packages. However, there are
also other homogeneity of variance tests, both parametric
and nonparametric. Among them are Hartley’s Fmax test,
David’s multiple test, and Cochran’s G test (also known as
Cochran’s C test).�e Bartlett–Kendall test (like Bartlett’s
test) uses log transformation of the variance to approxi-
mate the normal distribution. An example of a nonpara-
metric test is the Sidney–Tukey test that uses ranks and the
chi-square approximation. A good discussion on the topic
can be found in Zhang ().
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Introduction: Tests for Continuous
Distributions
Suppose a random sample x, x,⋯, xn is given and we
wish to test H: the parent population is the (continuous)
distribution F(x; θ), where θ is a vector of parameters.
�e empirical distribution function (EDF) of the sample
is de�ned by

Fn(x) = n(x)/n,

where n(x) is the number of xi which are less than or equal
to x.�e goodness-of-�t tests to be discussed are EDF tests,
that is, based on the discrepancy

Y(x) = Fn(x) − F(x; θ)

�e most well known are the Kolmogorov-Smirnov
family:

D+n = sup Y(x)

D−n = sup{−Y(x)}

Dn = sup∣Y(x)∣

and the Cramér-von Mises family:

W
n = n∫

∞

−∞
Y(x)dF(x; θ)

Un = n∫
∞

−∞
{Y(x) − ∫

∞

−∞
Y(x)dF(x; θ)}


dF(x; θ)

and

An = n∫
∞

−∞
Y(x)ψ(x)dF(x; θ)

where ψ(x) = [F(x; θ)( − F(x; θ))]−

Statistic W
n is the original Cramér-von Mises statis-

tic, originally called nω. Statistic Un was introduced by
Watson () for testing distributions around a circle; it
has the merit that its value does not depend on the ori-
gin used for measuring the observations. Statistic An is the
Anderson-Darling () statistic: it emphasises the tails of
the tested distribution.
Statistic Dn was introduced by Kolmogorov ().

Distribution theory for theKolmogorov–Smirnov family is
known for the case when parameters are known; but when
parameters are unknown and must be estimated from the

sample, even asymptotic theory is not available and signif-
icance points must be obtained by Monte Carlo. Tables of
signi�cance points for testing a number of distributions are
in Stephens ().

�e statistics D+n and D−n have good power when the
sample EDF lies mostly on one side of the tested distri-
bution, but the Dn statistic, in general, is less powerful
as an omnibus test than the Cramér-von Mises statistics.
More information on this statistic is given by Lopes ()
in an article in this Encyclopedia and here it will not be
considered further.

The Probability Integral Transformation
In practice, it is easier to work with the EDF of the trans-
formed set z(i) = F(x(i); θ), i = ,⋯,n; where x() ≤

x() ≤ . . . ≤ x(n) is the ordered sample.�is transforma-
tion is called the probability integral transformation (PIT).
If θ is known, the z(i) are ordered uniform variates. If θ is
not known, an e�cient estimate (for example, the MLE)
should be used for the transformation.�e EDF statistics
are easier to calculate from the z-values, as follows.
Let Fn(z) be the empirical distribution function of the

z-values, and de�ne

yn(z) =
√
n{Fn(z) − z}.

�e Cramér-von Mises statistics now become, in terms of
yn(z):

W
n = ∫




{yn(z)}dz, ()

Un = ∫



{yn(z) − y}dz, ()

An = ∫



{yn(z)}w(z)dz, ()

where

y = ∫



yn(z)dz and w(z) = /(z − z).

�e computing formulas are

W
n =∑{z(i) − (i − )/n} + /(n) ()

Un =W
− n(z − .) ()

and

An = −n − (/n)∑(i − ) {ln(z(i)) + ln( − z(n+−i))}.
()

�e distributions of these statistics, when estimated
parameters are location or scale, will depend on the tested
distribution, but not on the true values of the parame-
ters. However, when an unknown parameter is a shape
parameter, the distribution will depend on the shape.
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Asymptotic theory of these statistics was �rst given by
Anderson and Darling (), and Darling (); see also
Anderson (), an entry in this Encyclopedia. Stephens
() used the theory to give signi�cance points for tests
of normality and exponentiality; points for other distribu-
tions are in Stephens () and in Lockhart and Stephens
(, ).
In general,W andA have been shown to be powerful

in testing many distributions; A has comparable power to
the Shapiro-Wilk statistic for testing normality.

Tests for Discrete Distributions
EDF tests may be adapted for testing discrete distribu-
tions, by comparing the cumulated histogram of observed
numbers in the cells with the cumulated histogram of the
expected numbers. Choulakian et al. () have given dis-
tribution theory for the Cramér-von Mises family when
parameters are known, and Lockhart et al. () have dis-
cussed the case when parameters must be estimated from
the sample; see Stephens (), an entry in this Encyclo-
pedia. �ese statistics are generally more powerful than
Pearson’s χ statistic.

About the Author
For biography see the entry 7Cramér-Von Mises Statistics
for Discrete Distributions.
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Testing for Interdependence
Testing independence between two of more components
of a random vector is an important problem in statis-
tics. For sake of simplicity, suppose that the law of each
component is continuous. In the bivariate case, for test-
ing independence between random variables X and X,
most of the tests proposed initially were based on some
dependence measure ρ, taking usually value  under the
null hypothesis of independence. Once a random sam-
ple (X,X), . . . , (Xn,Xn) is collected, that is, the pairs
(Xi,Xi), i = , . . . ,n, are independent observations of
(X,X), an estimator ρ̂n of ρ is obtained and it is com-
pared with the value of ρ under the null hypothesis. In
general, ρ̂n must be a “good” estimator of ρ in the sense
that as n → ∞, n/ (ρ̂n − ρ) ↝ N (, σ ), where “↝”
denotes convergence in law, and σ is the limiting variance
of n/ ρ̂n.�emost known example is the one based on the
Pearson correlation coe�cient, de�ned by

ρ =
Cov(X,Y)

√
Var(X,Y)Var(X,Y)

=
E(XY) − E(X)E(Y)

√
{E(X) − E(X)} {E(Y) − E(Y)}

,

provided E(X) and E(Y) are �nite. In that case,

ρ̂n = rn =
∑

n
i=(Xi − X̄)(Xi − X̄)

√
∑

n
i=(Xi − X̄)

√
∑

n
i=(Xi − X̄)

.
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Under the null hypothesis of independence, ρ =  and
n/rn ↝ N(, ), as n → ∞. If in addition the joint dis-
tribution of (X,X) is Gaussian, then rn√

(−rn)/(n−)
has a

Student distribution with n −  degrees of freedom.
Manyother popular empiricalmeasures of dependence

are based on ranks. Recall that the ranks Rij, i = , . . . ,n,
j = , , are de�ned as follows: Ri is the rank of Xi

amongst X, . . . ,Xn, while Ri is the rank of Xi amongst
X, . . . ,Xn, and so on, where the smallest observation has
rank . In particular, these measures do not depend on the
margins, only on the so-called copula (see7Copulas).�at
notion will be de�ned later.�e most known rank-based
measures of dependence are7Kendall’s tau and Spearman’s
rho. Kendall’s tau is de�ned by

τn =


n(n − )
(Cn −Dn),

where Cn is the number of concordant pairs of ranks, and
Dn is the number of discordant pairs, the pairs (Ri,Ri)

and (Rj,Rj) being concordant if (Ri−Rj)(Ri−Rj) > 
and discordant otherwise. Recall that τn is an estimation of
τ = P{(X − Y)(X − Y) > } − , where (Y,Y) is an
independent copy of (X,X). Under the null hypothesis
of independence, τ =  and it can be shown that n/τn ↝
N(, /), as n→∞.
Spearman’s rho, denoted by ρS

n, is simply de�ned as the
correlation between the ranks (R,R), . . . , (Rn,Rn).
�en ρS

n is an estimator of ρS, the correlation between
U = F(X) and U = F(X), where Fj is the distribu-
tion function of Xj, j = , . Under the null hypothesis of
independence, ρS

=  and n/ρS
n ↝ N(, ), as n→∞.

All tests based on a single measure of dependence usu-
ally have the same weakness:�ey are not consistent for
testing independence in the sense that under some alterna-
tives, the power of the test does not tend to  as the sample
size tends to in�nity. One such example of alternative is
the following: Let X be uniformly distributed over (, ),
denoted by X ∼ Unif(, ) and set X = T(X), where T
is the tent map, i.e., T(u) = min(u,  − u).�en X ∼

Unif(, ) and X and X are strongly dependent. How-
ever, for any of the three measures of dependence ρ stated
previously, the value of ρ is , the same value as for inde-
pendence, and it can be shown than n/ ρ̂n ↝ N(, σ ),
for some σ >  depending on ρ. As a result, the power
of the associated test of level % tends to Φ (−. σ

σ ),
where σ  is the asymptotic variance under the null hypoth-
esis of independence and Φ is the distribution function of
the standardGaussian. For example, in the case of the Pear-
son correlation, σ  =  and σ  = /, so the power tends to
., as n→∞.

To overcome the inconsistency problem, it was sug-
gested in Blum et al. () to use statistics based on
the empirical distribution function. More precisely, in the
bivariate case, one can compare the joint empirical distri-
bution function Hn, given by

Hn(x, x) =

n

n

∑
i=

I(Xi ≤ x,Xi ≤ x)

with the product of its margins, i.e., Fn(x) = Hn(x,∞)

and Fn(x) = Hn(∞, x). It can then be shown that
Hn(x, x) = n/{Hn(x, x) − Fn(x)Fn(x)} ↝

H(x, x), where the convergence is in the Skorohod space
D ([−∞,+∞]


) and H(x, x) = B{F(x),F(x)},

where F and F are the margins of the joint distribution
function H of (X,X), and B is a continuous centered
Gaussian process with covariance function

Γ(u,u, v, v) =Cov{B(u,u),B(v, v)}

={min(u, v) − uv}

×{min(u, v) − uv}.

Recall that by Sklar (), when the marginal distri-
butions are continuous, there exists a unique distribution
function C with uniform margins, called a copula, so that

H(x, x) = P(X ≤ x,X ≤ x)
= C{F(x),F(x)}, x, x ∈ R.

�us X and X are independent if and only if the copula is
the independence copula C⊥ de�ned by

C⊥(u,u) = uu, u,u ∈ [, ].

�at relationship lead Deheuvels () to proposed
tests of interdependence based on the empirical copulaCn,
where

Cn(u,u) =

n

n

∑
i=

I(Ri

n
≤ u,

Ri

n
≤ u) , u,u ∈ [, ].

�e empirical copula seems to have been studied �rst by
Rüschendorf ().
To tackle the d-dimensional case, d > , where the

covariance of the limiting process H under independence
is much more intricate than when d = , Blum et al. ()
proposed a decomposition of Hn based on Möbius for-
mula, leading to processes Hn,A, for all A ⊂ {, . . . ,d}, so
that each processHn,A is asymptotically independent of the
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others and where the covariance is similar to one obtained
in the bivariate case. More precisely, the covariance of the
continuous centered limiting processesHA is given by

Cov{HA(x),HA(y)} =∏
j∈A

[min{Fj(xj),Fj(yj)}

− Fj(xj)Fj(yj)], x, y ∈ Rd.

�at decomposition then appeared in Deheuvels ()
for copulas, but the author came short of propos-
ing tests of independence. �at decomposition was
then rediscovered by Ghoudi et al. (), who where
also able to test independence between non-observable
error terms in regression models, using the residu-
als. With the notable exception of the regression case,
testing independence using residuals or more gener-
ally pseudo-observations can be quite di�cult. See,
e.g., Ghoudi and Rémillard (). Building on the
previous work, Genest and Rémillard () applied
the Möbius decomposition method to empirical copu-
las to test interdependence and serial dependence. �at
lead them to de�ne the so-called “dependogram.” �e
work of Genest and Rémillard () has been extended
recently by Beran et al. () and Kojadinovic and
Holmes () for testing independence between ran-
dom vectors. In addition to test statistics constructed
from empirical distribution functions, some researchers
considered empirical 7characteristic functions. See, e.g.,
Feuerverger (), Bilodeau and Lafaye de Micheaux
(), and more recently Székely and Rizzo ().
Because independence can be characterized in terms of
characteristic functions, the associated tests are consistent
in general.
Finally it is worth mentioning Genest and Rémillard

(), Genest et al. () and Genest et al. ()
where power comparisons were made for tests of inter-
dependence, the last two for Cramér-von Mises type test
statistics.

Testing for Serial Independence
�e treatment of serial dependence in (stationary) time
series is almost the same as in the previous case, fewmodi-
�cations being necessary for taking into account their par-
ticular nature. In fact, ifY, . . . ,Yn represent the time series
values for n consecutive periods, then in the bivariate case,
one just have to de�ne Xi = Yi and Xi = Yi+ℓ , for some
lag ℓ ≥ .�en the correlation is called autocorrelation of
lag ℓ, etc.�e so-called correlogram of order k, introduced
by Wold in his  Ph.D. thesis, is the graph of the auto-
correlations for lags ℓ = , . . . , k. Under the null hypothesis
of serial independence, n/rn(), . . . ,n/rn(k) converge
jointly to independent standard Gaussian variables. One

can also adapt the rank-based measures to time series
context. More precisely, if R, . . . ,Rn are the ranks of
Y, . . . ,Yn, then one can measure dependence between
the pairs (Ri,Ri+ℓ), i = , . . . ,n − ℓ. For more details on
rank-based measures of dependence and their properties,
see e.g., Hallin et al. () and Ferguson et al. ().
As before, the tests based on autocorrelations or rank-
based measures are not consistent in general, so Skaug and
Tjøstheim () proposed to adapt the empirical distri-
bution function methodology to time series context. More
precisely, they considered the joint distribution function

H̃n(x, x) =


n − 

n−

∑
i=

I(Yi ≤ x,Yi+ℓ ≤ x)

which was compared to F̃n(x)F̃n(x), where F̃n(x) =

H̃n(x,∞). It is remarkable that the limiting distribution of
n/{H̃n(x, x) − F̃n(x)F̃n(x)} is the same as the limit-
ing distribution ofHn, de�ned in the previous section.�at
property was extended by Genest and Rémillard () to
themultivariate case, using the associated empirical copula
and Möbius decomposition. Other work using 7empirical
processes in a serial context includes Genest et al. ()
and Kojadinovic and Yan ().
Finally, one important problem in time series is check-

ing the serial independence of the non-observable inno-
vations, which is o�en considered as a test of adequacy for
the underlyingmodel. Unfortunately, inmost applications,
replacing the innovations by residuals changes completely
the limiting distribution. See, e.g., Ghoudi and Rémillard
(). However, using an idea of Brock et al. (),
Genest et al. () were able to propose tests of indepen-
dence so that their limiting distributionwas not a�ected by
using residuals instead of innovations. However the type of
models covered by theirmethodology is limited to additive
models, so it does not include GARCHmodels.
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A central goal of science, and indeed of a great number of
human activities, is to make use of current information in
order to obtain useful forecasts of what may happen in the
future. If the future is completely independent of the cur-
rently available information then this information is of no
help. However if there is dependence then we would like
to use it to make forecasts which are as accurate as possible
in some speci�ed sense.�is is one of the key goals of time
series analysis (although there are others as we shall see).
A time series is a set of observations {xt}, each one

associated with a particular time t and usually displayed
in a time series plot, i.e., a graph of xt as a function of
t. An example is the following graph of the natural log-
arithm of the daily closing value in US dollars of the
Dow-Jones Industrial Average, plotted for successive trad-
ing days from August st,  until August th, .
In general the set of times T at which observations are

recorded may be a discrete set, as is the case when obser-
vations are made at uniformly spaced times (e.g., daily
rainfall, annual income etc.) or it may be a continuous
interval. For reasons of space we shall restrict attention
here to observations at uniformly spaced times, in which
case we can label the times , , . . . . In order to account for
randomness, we suppose that for each t the observation xt
is just one of many possible values of a random variable
Xt that we might have observed at time t.�e term time
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series is frequently used to denote both the sequence of ran-
dom variables {X,X, . . .} and the particular sequence of
observed values {x, x, . . .}.
To illustrate the general problem of forecasting in con-

crete terms, suppose we have a sequence of jointly dis-
tributed random variables {X,X, . . .}. Such a sequence
is known as a time series indexed by the positive integers.
Suppose also that our ’information’ at time n consists of
the observed values of X, . . . ,Xn. Our problem then is
to predict Xn+h, the value of the random sequence at the
future time n + h using some suitably chosen function
X̂n+h of (X, . . . ,Xn). In order to assess the performance
of our forecast we need somemeasure of the error of X̂n+h.
An especially convenient measure, if EXn < ∞ for all n,
is the expected squared error, namely E(Xn+h − X̂n+h)

.
�en a rather simple calculation shows that the best fore-
cast, i.e., the function of (X, . . . ,Xn) which minimizes
the expected squared error is the conditional expectation,
E(Xn+h∣X, . . . ,Xn). Unfortunately the calculation of this
conditional expectation requires knowledge of the con-
ditional distribution of Xn+h given (X, . . . ,Xn) which is
generally unknown and also di�cult to estimate fromdata.
(If {X,X, . . .} is an independent sequence then the con-
ditional expectation is independent of {Xj, j ≤ n}, showing
that the current information at time n is of no help in
predicting Xn+h in this case. Time series is therefore pri-
marily concerned with dependent random variables and
the analysis and utilization of this dependence.) A simpler
approach to forecastingXn+h is to look for the linear combi-
nation, X̂n+h = a + aXn +⋯+ anX which minimizes the
expected squared error E(Xn+h − X̂n+h)

.�is is a much
simpler problem, the solution of which depends only on
the expected values EXi and EXiXj, i, j = , , . . . Moreover
if the joint distribution of (X,X, . . . ,Xk) is multivariate
normal for every positive integer k then this best linear
forecast is the same as the best forecast.
Forecasting is just one of the many objectives of time

series analysis. �ese depend on the particular �eld of
application. For example, from observed values x, x, . . .
of the random variables X,X, . . . we may wish to under-
stand the mechanism generating the data or perhaps to
extract a deterministic ‘signal’ in the data which is masked
by the presence of random noise. We may simply wish to
�nd a compact representation of the available observations
or to �nd a mathematical model which appears to repre-
sent the observations well and to use it to simulate further
realizations of the series.
For these applications we need to �nd a mathemati-

cal model which gives a good representation of the data.
Typically we select the best-�tting member of a speci-
�ed family of models by estimating parameters from the

observed data and then testing the goodness of �t of the
model to the data. Once we are satis�ed that the selected
model is satisfactory we use it to address the questions of
interest. Complete speci�cation of a model for the time
series {X,X, . . .} would consist of a speci�cation of the
joint distribution of (X, . . . ,Xk) for every positive integer
k. However if we are concerned with issues (such as best
linear prediction) which depend only on of �rst and sec-
ond order moments of the time series, then a model which
speci�es only �rst and second-order moments will su�ce.
Much of time series analysis is concerned with sta-

tionary time series. It is clear that if we wish to make
predictions, we must assume that something does not vary
with time. In extrapolating deterministic functions it is
common practice to assume that either the function itself
or one of its derivatives is constant. �e assumption of
a constant �rst derivative leads to linear extrapolation as
a means of prediction. In time series we need to predict
a series that is typically not deterministic but which con-
tains a random component.�e concept of stationarity is
used to extend the notion of constancy in time to incor-
porate randomness. Strict stationarity of the series {Xn}

means that (X, . . . ,Xk) has the same joint distribution as
(Xh+, . . . ,Xh+k) for all positive integers h and k.Weak sta-
tionarity means that EXj and E(Xj+hXj) exist and are both
independent of j.�us stationarity requires the probabilis-
tic properties (or, in the case of weak stationarity, the �rst
and second moment properties) of the series to be invari-
ant to shi�s along the time axis. Information concerning
the properties of stationary processes and estimation of
their parameters can be found in the many books deal-
ing with time series analysis. Without the assumption of
stationarity the formulation of appropriate models and
estimation of their parameters becomes much more dif-
�cult, although in recent years progress has been made in
this direction.

�e practical importance of stationary processes lies
in the fact that many empirically observed series, which
themselves cannot be well �tted by a stationary time series
model, can be simply transformed into a new series which
can. If a stationarymodel is �tted to the transformed series,
it can be used to generate forecasts of the transformed
series which can then be transformed back to generate cor-
responding forecasts for the original series. For example if
we denote by Xn the natural logarithm of the closing value
of the Dow-Jones Index on day n and consider the di�er-
enced series Yn := Xn − Xn− (known as the log return
for day n) then Yn can be rather well represented as a
stationary time series. �e realization of the series {Yn}

corresponding to the realization of {Xn} in Fig.  is shown
in Fig. .



Time Series T 

T

0

8.900

9.000

9.100

9.200

9.300

9.400
Natural logarithm of Dow-Jones Industrial Index

800400 1200
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Time Series. Fig.  The daily log returns for the Dow-Jones Industrial Average for successive trading days from August st, 
until August th, 

�e dependence between observations of a stationary
time series {Xn} is frequently measured by the autocovari-
ance function,

γ(h) := E[(Xt+h − µ)(Xt − µ)],

where µ := EXt , or the autocorrelation function,

ρ(h) := γ(h)/γ(),

which speci�es the correlation between any two obser-
vations separated by a time interval of length h. �ese

quantities can be estimated by the sample autocovariance
function,

γ̂(h)) = n−
n−h

∑
j=

(xj+h − x)(xj − x),

and sample autocorrelation function,

ρ̂(h) = γ̂(h)/γ̂(),

respectively, where x denotes the samplemean, n−∑n
j= xj.
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Time Series. Fig.  The sample autocorrelation function of the log returns in Fig.  (left) and the absolute values of the log returns
(right)

�e graph on the le� of Fig.  shows the sample auto-
correlation function of the di�erenced series in Fig.  with
% signi�cance bounds for testing the deviation of each
sample autocorrelation value from zero. As there is no
autocorrelation signi�cantly di�erent from zero from lags
 through , it appears that the di�erenced series is uncor-
related.�e best linear forecast of any future di�erence is
therefore equal to the estimated mean of the di�erences
(which is actually .).�e best linear forecast of the
natural logarithm of the Dow-Jones Industrial Average h
trading days a�er August th,  is therefore the value
on August th (.) plus .h.

�e autocorrelations in this example however do not
tell the whole story. If the series of di�erences, instead of
being merely uncorrelated with mean ., had been
independent, then the mean value would have been the
best rather than just the best linear forecast of future dif-
ferences. However the graph on the right of Fig. , the
sample autocorrelation function of the absolute values of
the di�erences is clearly signi�cantly di�erent from zero
at a number of lags. Since this implies that the abso-
lute di�erences are not independent, it implies also that
the di�erences themselves are not independent.�is phe-
nomenon of dependence with negligible correlation is a
striking feature of many �nancial time series and has led to
the development of a variety of intriguing models such as
ARCH andGARCHmodels to account for this and related
phenomena.
Probably the most widely used models for stationary

time series have been the so-called ARMA (or autore-
gressive moving average) models. �e series {Xn,n =

,±,±, . . .} is said to be an ARMA(p, q) process if it is
a stationary solution of the linear di�erence equations,

Xn − ϕXn− −⋯ − ϕpXn−p = Z + θ +⋯θqZt−q,

where ϕ, . . . , ϕp, θ, . . . , θq are real valued coe�cients,
ϕp ≠ , θq ≠ , and {Zn} is a sequence of independent
(or sometimes just uncorrelated) random variables, each
with mean  and variance σ . Depending on the values
of p and q and the coe�cients ϕj and θ j, an enormous
range of sample autocorrelation functions can be repli-
cated by members of the ARMA family. �ere is a vast
literature dealing with problems of 7model selection, esti-
mation and forecasting for these processes. A standard
technique (developed andpopularized byBox and Jenkins)
for dealing with observed time series which appear to
be non-stationary is to apply di�erencing until the data
appears to be representable by a stationarymodel and then
to �t an ARMA model to the resulting series. �e origi-
nal data is then said to be represented by an ARIMA (or
integrated ARMA) model.
In the last thirty years there has been an explo-

sion of interest in more elaborate non-linear models to
account for phenomena which cannot be accounted for in
the classical linear framework provided by ARMA mod-
els. �ese include threshold, bilinear, ARCH, GARCH,
Markov switching models and many others too numerous
to be discussed here in any detail. Details can be found in
some of the following references.
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Statistics as a scienti�c subject of decision making under
uncertainty is critical to the evaluation of health indica-
tors that are of paramount importance to public health.
Health issues, in most cases, are nondeterministic, which
leaves their study to use the most suitable probabilistic
approaches. Statistical research in health can be conducted
in the following areas:

(a) 7Meta-analysis: Meta-analysis mathematically com-
bine the results of numerous studies in order to
improve the reliability of the results. Studies chosen
for inclusion in a meta-analysis must be su�ciently
similar in a number of characteristics in order to
accurately combine their results; for instance, issues
surrounding meta-analyses of individual patient data
could be analyzed, and missing data can be dealt with
at the patient level.

(b) Statistical Epidemiology: �is aspect is broad and
includes the following: (i) Clustered observational
studies in which sample clusters of people are utilized
for health research. �is is becoming increasingly
common, especially with patients in various health
practices, people within health districts, and children
within schools. �e hierarchical nature of the data
then takes on a multi-level structure that needs to be
accounted for in the analysis. (ii) Ecological studies
are carried out at an aggregate level, for example, the
ward or district level, and can be used to investigate
the relationship between socio-economic risk factors
and ill-health. (iii) Longitudinal studies are useful
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because following people over time is costly and time
consuming and may have problems of missing data
and consistency of measurement over time. Research
of interest in this area could include amatched cohort
study of coping and depression in parents of children
newly diagnosed with terminal diseases.

(c) Survival Analysis:�is is the analysis of time-to-event
data, and is relevant to many clinical studies where
the outcome of interest relates to the time taken for
some event to occur, for instance, time to �rst seizure
or time to death following 7randomization.

�e most important aspect of survival analysis is the mea-
sures of health indicator, especially the study of death
rate for emerging and re-emerging diseases. Deliberation
is continuing on how best to estimate the death rate of
an emerging contagious disease, which is of paramount
importance to global public health. �e  outbreak
of in�uenza caused by a novel in�uenza A (HN) virus
has given the World Health Organization (WHO) con-
cern on how best to estimate the death rate arising from
HN throughout the world. As a matter of fact, the case
of estimating the global death rate arising from the out-
break of severe acute respiratory syndrome (SARS) in 
also generated much public controversy (Altman ()).
�eWHO’s convectional formula for computation of death
rate is simply the ratio of the number of known deaths to
the total number of con�rmed cases (Mathers and Loncar
()), however, this formula is likely to underestimate
the true death rate because the outcomes of many cases
were still unknown or uncertain at the time these �gures
might have being compiled. In other words, the WHO
approach has a problem of “selection” bias because the
conditional probability of death among cases of known
outcomes need not be equal to the unconditional proba-
bility of death. Another notable model of estimating the
death rate of an emerging disease is the cohort approach. In
this model cases from the same day constitute a cohort and
the binomial analysis is restricted to the cases from a com-
plete cohort, that is, cases with a known outcome at the end
of the study period.�e restrictions in this model lead to
loss of a substantial volume of data and require some data
that may not be accessible to researchers.�e generalized
mixed e�ect model of estimating death rate discussed by
Chan and Tong () is less biased and converges quickly
to the death rate computed from the complete data, but
the model speci�ed leads to a singular precision matrix
for the unknown parameters. In addition, the choice of
the singular value decomposition presented may restrain
this approach for practical use. Chang and Tong concluded
that further research was needed on how to carry out the

estimation of the conditional mean death rate with the
constraint that the estimated death rate should be greater
than or equal to zero. Shangodoyin () pro�ers another
method by using a novel time series model to estimate the
mean death rate of an emerging or re-emerging disease
with bilinear induced parameters; from the applied point
of view, both the Tong and Chan () and Shangodoyin
() models could be used by experts in monitoring and
evaluating the death rate of a disease over time. For a gen-
eral linear model (see 7General Linear Model) the mean
death rate could be speci�ed as:

µt =
a
∑
a
pjCt−j

where a, a ≥  are lower and upper bounds of time to
death.�emodel is bilinear for estimating themean deaths
at time t as:

µt = αµt− + βµt−et− +
u

∑

pjCt−j + et .

By making all the necessary mathematical assumptions,
the overall death rate for one-step time to death is given
by

ṗ =

n

∑


µ̇Ct−

n

∑


Ct−

where Ct−j is the number of con�rmed cases at time t −

j, µ̇t =

t

∑


Dt

t
; ∀t = , , . . . and Dt is the number of deaths

at time t. Readers should refer to the paper by Shangodoyin
() for details of the derivations.
In conclusion, statistical models play signi�cant roles

in the evaluation and monitoring of death rates from both
emerging and re-emerging disease; and the use of most
suitable time series models will provide the best insight to
the future mortality rate for the given disease.
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Introduction
A regression model is used to study the relationship of a
dependent variable with one or several independent vari-
ables.�e standard regression model is represented by the
following equation:

Y = β + βX + βX +⋯ + βkXk + ε,

where Y is the dependent variable, X, . . . ,Xk are the inde-
pendent variables, β, β, . . . , βk are the regression coe�-
cients, and ε is the error term. When time series data are
used in the model, it becomes time series regression, and
the model is o�en written as

Yt = β + βX,t + βX,t +⋯ + βkXk,t + εt ,

or equivalently

Yt = X′tβ + εt , ()

where X′t = [,X,t , . . . ,Xk,t] and β = [β, β, . . . , βk]
′.

�e standard regression assumptions on the error vari-
able are that the εt are i.i.d. N (, σ ε ) . Under these stan-
dard assumptions, it is well known that the ordinary least
squares (OLS) estimator β̂ of β is a minimum variance

unbiased estimator, distributed as multivariate normal,
N (β, σ ε I) .WhenX′t is stochastic inModel (), conditional
on X′t , the results about the OLS estimator β̂ of β also
hold as long as εs and X′t are independent for all s and t.
However, the standard assumptions associated with these
models are o�en violated when time series data are used.

Regression with Autocorrelated Errors
When X′t is a vector of a constant  and k lagged values
of Yt , i.e., X′t = [,Yt−, . . . ,Yt−k], and εt is white noise,
the model in () states that the variable Yt is regressed
on its own past k lagged values and hence is known as
autoregressive model of order k, i.e., AR(k)model

Yt = β + βYt− +⋯ + βkYt−k + εt . ()

�e OLS estimator β̂ of β is still a minimum variance unbi-
ased estimator. However, this result no longer holds when
the εt are autocorrelated. In fact, when this is the case,
the estimator is not even consistent and the usual tests of
signi�cance are invalid.�is is an important caveat. When
time series are used in a model, it is the norm rather than
the exception that the error terms are autocorrelated. Even
in univariate time series analysis when the underlying pro-
cess is known to be an AR model as in (), the error terms
εt could still be autocorrelated unless the correct order of k
is chosen.�us, a residual analysis is an important step in
regression analysis when time series variables are involved
in the study.

�ere are many methods that can be used to test for
autocorrelation of the error term. For example, one can use
the test based on the Durbin–Watson statistic,

d =

n

∑
t=

(ε̂t − ε̂t−)

n

∑
t=

ε̂t
≈ ( − ρ̂), ()

where ε̂t is residual series from theOLS procedure. Clearly,
d lies between  and . A value close to  indicates no �rst-
order autocorrelation, a value much less than  and close
to  indicates a positive �rst-order autocorrelation and a
value much greater than  and close to  indicates a neg-
ative �rst-order autocorrelation. To help make decision,
in terms of the null hypothesis of no �rst-order auto-
correlation against the alternative hypothesis of positive
�rst-order autocorrelation, the critical values of Durbin-
Watson, dL and dU can be constructed, which are functions
of the number independent variables, the number of obser-
vations, and the signi�cance level.�e null hypothesis is

www.stats.gov.za/isi2009
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rejected if  < d < dL, is not rejected if dU < d < , and
inconclusive if dL < d < dU . For the null hypothesis of no
�rst-order autocorrelation against the alternative hypoth-
esis of negative �rst-order autocorrelation, the same table
can be used since it is simply the mirror image of the for-
mer case when we look at the case from the endpoint of 
instead of the endpoint of .�us, the null hypothesis is
rejected if  − dL < d < , is not rejected if  < d <  − dU ,
and inconclusive if  − dU < d <  − dL.
More generally, to study the autocorrelation structure

of the error term, we can perform the residual analysis with
time series model identi�cation statistics like the sample
autocorrelation function (ACF) and sample partial auto-
correlation function (PACF).�rough these identi�cation
statistics, one can detect not only whether the residuals
are autocorrelated but also identify its possible underlying
model. A �nal analysis can then be performed on a model
with autocorrelated errors as follows:

Yt = X′tβ + εt ()

for t = , , . . . ,n, where

εt = φεt− +⋯ + φpεt−p + at ()

and the at are i.i.d. N(, σ ).
Let

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y

⋮

Yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X′

⋮

X′n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and ξ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε

⋮

εn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�e matrix form of the model in () is

Y = Xβ + ξ ()

where ξ follows a multivariate normal distribution (see
7Multivariate Normal Distributions) N(,Σ) When φ,
. . . ,φp, and σ  are known in (), Σ can be easily calculated.
�e diagonal element of Σ is the variance of εt , the jth o�-
diagonal element corresponds to the jth autocovariance of
εt , and they can be easily computed from (). Given Σ, the
generalized least squares (GLS) estimator

β̂ = (X′Σ−X)
−X′Σ−Y ()

is known to be a minimum variance unbiased estimator.
Normally, we will not know the variance-covariance

matrix Σ of ξ because even if εt follows an AR(p)
model given in (), the σ  and AR parameters φj are usu-

ally unknown. As a remedy, the following iterative GLS is
o�en used:

() Calculate OLS residuals ε̂t from OLS �tting of Model
().

() Estimate φj and σ  for the AR(p)model in () based
on theOLS residuals, ε̂t , using any time series estima-
tion method. For example, a simple conditional OLS
estimation can be used.

() Compute Σ from the model () using the values of φj

and σ  obtained in step ().
() Compute GLS estimator, β̂ = (X′Σ−X)

−X′Σ−Y,
using the Σ obtained in step (). Compute the resid-
uals ε̂t from the GLS model �tting in step (), and
repeat the above steps () through () until some
convergence criterion (such as the maximum abso-
lute value change in the estimates between itera-
tions becoming less than some speci�ed quantity) is
reached.

More generally, the error structure can be modi�ed to
include an ARMAmodel.�e above GLS iterative estima-
tion can still be used except that a nonlinear least squares
estimation instead of OLS is needed to estimate the param-
eters in the error model. Alternatively, by substituting the
error model in the regression equation (), we can also
use the nonlinear estimation or maximum likelihood esti-
mation to jointly estimate the regression and error model
parameters β and φ′j s, which is available in standard so�-
ware.
It should be pointed out that although the error term,

εt , can be autocorrelated in the regression model, it should
be stationary. A nonstationary error structure could pro-
duce a spurious regression where a signi�cant regression
can be achieved for totally unrelated series.

Regression with Heteroscedasticity
One of the main assumptions of the standard regression
model in Eq.  or the regression model with autocorre-
lated errors in Eq.  is that the variance, σ ε , is constant.
Inmany applications, this assumptionmay not be realistic.
For example, in �nancial investment, it is generally agreed
that stock markets’ volatility is rarely constant.
Such a model having a non-constant error variance

is called a heteroscedasticity model. �ere are many
approaches which can be used to deal with heterocedastic-
ity. For example, theweighted regression is o�en used if the
error variances at di�erent times are known or if the vari-
ance of the error term varies proportionally to the value of
an independent variable. In time series regression we o�en
have the situation where the variance of the error term is
related to themagnitude of the past errors.�is leads to the
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conditional heteroscedasticity model, introduced by Engle
(), where in terms of Eq.  we assume that

εt = σtet , ()

the et are i.i.d. random variable withmean  and variance ,
and

σ t = θ + θε t− + θε t− +⋯ + θsε t−s. ()

Given all the information up to time (t−) the conditional
variance of the εt becomes

Vart−(εt)= Et− (εt ) = E (εt ∣εt−, εt−, . . .) = σ t

= θ + θε t− + θε t− +⋯ + θsε t−s.
()

which is related to the squares of past errors, and it changes
over time. A large error through εt−j gives rise to the vari-
ancewhich tends to be followed by another large error.�is
is a common phenomenon of volatility clustering in many
�nancial time series.
From the forecasting results, we see that Eq.  is simply

the optimal forecast of εt from the followingAR(s)model:

εt = θ + θε t− + θε t− +⋯ + θsε t−s + at , ()

where the at is aN (, σ a)white noise process.�us, Engle
() called the model of the error term εt with the vari-
ance speci�cation given in () and () or equivalently in
() as autoregressive conditional heteroscedasticitymodel
of order s (ARCH(s)).
Bollerslev () extends the ARCH(s) model to the

GARCH(r, s) model (generalized autoregressive condi-
tional heteroscedasticity model of order (r, s)) so that the
conditional variance of the error process is related not only
to the squares of past errors but also to the past conditional
variances.�us, we have the following more general case

εt = σtet , ()

where the et are i.i.d. random variable with mean  and
variance ,

σ t = θ + ϕσ t− +⋯ + ϕrσ t−r + θεt− +⋯ + θsεt−s, ()

and the roots of ( − ϕB − ⋯ − ϕrBr
) =  are outside the

unit circle. To guarantee σ t >  we assume that θ >  and
ϕi and θ j are nonnegative.
More generally, the regression model with autocor-

related error can be combined with the conditional het-
eroscedasticity model, i.e.,

Yt = X′tβ + εt , ()

where

εt = ϕεt− +⋯ + ϕpεt−p + at , ()
at = σtet , ()
σ t = θ + ϕσ t− +⋯ + ϕrσ t−r + θat−

+⋯ + θsat−s, ()

and the et are i.i.d.N(, ). To test for the heteroscedasticity
in this model, we follow:

() Calculate OLS residuals ε̂t from the OLS �tting of
().

() Fit an AR(p) model () to the ε̂t .
() Obtain the residuals ât from the AR �tting in ().
() Form the series ât , compute its sample ACF, PACF,

and check whether these ACF and PACF follow any
pattern. A pattern of these ACF and PACF not only
indicates ARCH or GARCH errors, it also forms a
good basis for their order speci�cation.

For more detailed discussions and examples, we refer
readers to Wei ().
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Total survey error refers to the totality of error that can
arise in the design, collection, processing and analysis of
survey data. �e concept dates back to the early ’s
although it has been revised and re�ned by amany authors
over the years. Deming (), in one of the earliest works,
describes “ factors that a�ect the usefulness of surveys.”
�ese factors include sampling errors as well as nonsam-
pling errors; i.e., the other factors that will cause an esti-
mate to di�er from the population parameter it is intended
to estimate. Prior to Deming’s work, not much attention
was being paid to nonsampling errors and, in fact, text-
books on survey sampling made little mention of them.
Indeed, classical sampling theory (Neyman ) assumes
survey data are error free except for sampling error. �e
term “total survey error” originated with an edited volume
of the same name (Andersen et al. ()).
A number of authors have provided a listing of the gen-

eral sources of nonsampling error. For example, Biemer
and Lyberg () list �ve sources: speci�cation, frame,
nonresponse, measurement and data processing (includ-
ing post-survey adjustment). A speci�cation error arises
when the concept implied by the survey question and
the concept that should be measured in the survey dif-
fer. Frame error arises in the process for constructing,
maintaining, and using the sampling frame(s) for select-
ing the survey sample. It includes the inclusion of non-
population members, exclusions of population members,
and frame duplications. Nonresponse error encompasses
both unit and item nonresponse. Unit nonresponse occurs
when a sampled unit does not respond to any part of
a 7questionnaire. Item nonresponse error occurs when
the questionnaire is only partially completed because
an interview was prematurely terminated or some items
that should have been answered were skipped or le�
blank. Measurement error includes errors arising from
respondents, interviewers, survey questions and factors
which a�ect survey responses. Finally, data processing error
includes errors in editing, data entry, coding, computation
of weights, and tabulation of the survey data.

�e total survey error in a survey estimator, θ̂, for a
population parameter, θ, can be summarized by the mean
squared error of the estimator de�ned as

MSE(θ)= E(θ̂ − θ)

= B(θ̂) + Var(θ̂)
()

where B(θ̂) = E(θ̂ − θ) is the bias in the estimator
and Var(θ̂) = E(θ̂ − θ) is the variance of the estimator.
For estimating the population mean, biases arise from sys-
tematic errors in the survey process; i.e., errors that are
either predominately positive or predominately negative.
As an example, sensitive items such as drug use tend to
be underreported in surveys causing a negative bias in the
estimated proportion of drug users. Nonresponse can also
create a bias by systematically excluding from the survey
data, individuals who di�er on the survey characteristics
from respondents.

�e variance component of the MSE arises as a result
of sampling error as well as variable nonsampling errors.
Variable nonsampling error can be described roughly as
the error remaining a�er accounting for the systematic
errors. Variable errors tend to �uctuate randomly from
unit to unit and have little or no e�ect on bias. As an
example, interviewer estimates of housing values or neigh-
borhood income levels may vary randomly from their true
values.
To illustrate the e�ects of systematic and variable error,

consider a7simple random sample of size n to estimate the
mean, µ, of a large population. An elementarymodel for an
observation, yi, for characteristic y on sample unit i is

yi = µi + εi ()

where µi is the true value of the characteristic (i.e., the
value that would have been observed without error), and
εi is the error in the observation. Here εi represents
the cumulative e�ect of all systematic and variable error
sources for the ith unit. If the net error is , i.e., if E(εi) =

, then there is no bias in the estimator y = n−
n

∑

i=
yi.

In that case, the errors are variable; i.e., no systematic
errors. When systematic errors arise in the observations,
E(εi) = β ≠  where β is the bias in y. Under this model,
MSE(y) can be written as

MSE(y) = β +
σ µ + σ ε

n
()

where σ µ = Var(µi) and σ ε = Var(εi). In this expression,
β is the nonsampling bias, n−σ µ is the sampling variance
and n−σ ε is the nonsampling variance.
It is o�en useful to decompose both the nonsampling

bias and variance components further by terms represent-
ing for the various sources of error in the survey process.
As an example, suppose the major sources of bias include
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the sampling frame, nonresponse and measurement bias.
�en bias squared component can be expanded to include
bias components for these sources as follows:

β = BFR + BNR + BMEAS ()

where BFR denotes frame bias, BNR, nonresponse bias and
BMEAS, measurement bias. �e variance component can
also be expanded to include terms for all themajor contrib-
utors of variable error such as sampling error, interviewers,
respondents and other variable errors. Now the MSE can
be rewritten as

MSE(y) = (BFR + BNR + BMEAS + BDP)


+
σ µ + σ int + σ res + σ e

n
()

where σ int is the interviewer variance component, σ res is
the respondent variance component, and σ e is the variance
associated with all other sources. �us, σ ε in () can be
decomposed as σ ε = σ µ + σ int + σres + σ e .�is form of the
MSE assumes uncorrelated errors; however, the MSE can
be also expanded to include correlations among the error
from the same or di�erence error sources (see, for exam-
ple, Biemer ()).�e estimation of the components of
the MSE can be quite challenging (see Mulry and Spencer
, for an application of the total survey error concept
to the  Decennial Census). Biemer () provides a
simpli�ed estimator of the total MSE when multiple error
sources are considered.
Finally, a critical part of the total survey error con-

cept is error reduction and control. It is seldom possible
to conduct every stage of the survey process at maximum

accuracy since that would likely entail exceeding the sur-
vey budget and schedule by a considerable margin. Even
under the best circumstances, some errors will necessarily
remain in the data so that other, more serious errors can
be avoided or reduced. For example, training interviewers
adequately may require eliminating or limiting some qual-
ity control activities during data processing; but that might
increase the data processing error. E�orts to reduce nonre-
sponse bias may require substantial reductions during the
survey pretesting phase to stay within budget. How should
these resource allocation decisions be made? Making wise
trade-o�s requires an understanding of the sources of non-
sampling error, their relative importance to data quality,
and how they can be controlled. One answer is optimal
survey design.
Optimal survey design aims to minimize the MSE

(expressed in terms of the major error sources in the sur-
vey) subject to constraints on the survey process imposed
by the budget, timeliness and other design considera-
tions. Provide a design that is truly optimal (i.e., the best
possible) may be an unattainable goal though it can be
approximated. Doing so requires knowledge of the major
error sources, their relative magnitudes and the most e�-
cient and e�ective methods for nonsampling error reduc-
tion. Careful planning is then required to allocate survey
resources to the various stages of the survey process so that
themajor sources of error are controlled to optimal, or near
optimal levels.
To illustrate, Figure  depicts three possible resource

allocation strategies satisfying the same budget constraint.
Allocation A sacri�ces sampling precision (i.e., sample
size) for the sake of nonsampling error minimization by
allocating more resources to editing, interviewer train-
ing, nonresponse reduction and questionnaire pretesting.

Editing
Interviewer training
Nonresponse reduction
Pretesting

Sample size

Allocation A

Budget

Allocation B Allocation C

Total Survey Error. Fig.  Three potential cost allocations for the same fixed budget, each with very different implications for total
survey error
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Allocation C reduces these nonsampling error control
strategies in order to boost the sample size thereby achiev-
ing greater sampling precision. Allocation B is a compro-
mise between these two designs. Many other allocation
schemes are possible.�e challenge for the survey designer
is to choose a single allocation strategy that provides the
optimal balance between sampling error reduction and
nonsampling error control while staying within budget.
�is is made even more di�cult if there is insu�cient
information on the magnitudes of the total error compo-
nents and scant knowledge regarding nonsampling error
control strategies that are most e�ective at reducing the
components of total survey error.
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�e development of consistent measures of tourism has
challenged tourism statisticians and economists since the
s (Smith ). �e challenges arise, in part, from
the nature of tourism as an economic activity. Although
tourism is o�en referred to as an industry, it is funda-
mentally di�erent than conventional industries; it is these
di�erences that complicate the measurement of tourism
(the de�nition of “tourism” and the nature of a “tourism
industry” are discussed below). Further, the development
of tourism statistics consistent among nations has required
extensive negotiations among national statistical agencies
as well as other international organizations to reach a
consensus on the de�nition of tourism and associated
concepts.

�ese concepts have been operationalized throughnew
analytical tools, particularly the Tourism Satellite Account
(UNWTO ). International agreement on core de�ni-
tions andmeasurement techniques has now been achieved
in principle. �e tasks facing tourism statisticians are to
re�ne, apply, and extend the concepts and tools that have
been developed.
Fundamental to tourism statistics is, of course, the

de�nition of “tourism.” �e World Tourism Organiza-
tion de�nes tourism as the set of activities engaged in
by persons temporarily away from their usual environ-
ment for a period of not more than one year, and for a
broad range of leisure, business, religious, health, and per-
sonal reasons, excluding the pursuit of remuneration from
within the place visited or long-term change of residence
(UNWTO ). �us, tourism fundamentally is some-
thing people do in certain circumstances (particularly
travel outside their usual environment), not a commodity
businesses produce.
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�ere are several related concepts that are important
for tourism policy, planning, marketing, and measure-
ment purposes. One of these is tourism commodity – a
good or service that would be produced only in a sub-
stantially reduced volume in the absence of tourism (such
as passenger air services). A tourism industry is an indus-
try characterized by the production of a tourism com-
modity (such as an airline o�ering scheduled passenger
service). �us, while tourism, per se, is not an industry,
there are tourism industries such as accommodation, pas-
senger transportation, food service, and recreation and
entertainment.
Core tourism statistics include measures of the num-

ber of visitor arrivals in a destination (annually, seasonally,
and/or monthly), their spending levels (o�en by category
of commodity purchased), numbers of businesses serv-
ing visitors (by tourism industry), numbers of tourism
employees, tourism’s contribution to GDP, and govern-
ment revenues attributable to tourism. Many specialized
statistics related to persons engaged in tourism trips are
also collected such as mode(s) of travel on a trip, mode(s)
of accommodation used on a trip, activities engaged in
during a trip, information sources used in planning a trip,
routes taken, speci�c destinations visited, levels of satisfac-
tion with services consumer, and so on.
Statistics related to activities not directly associated

with individual behavior on speci�c trips are normally
not considered to be tourism statistics, even though such
information may be important for other purposes.�us,
government spending on infrastructure or tourism mar-
keting, and investment in real estate or equipment (hotels,
casinos, aircra�) are not considered to be within the scope
of tourism statistics because they related to forms of pro-
duction, and are more properly viewed as data relating to
construction, manufacturing, marketing, real estate, and
other forms of economic activity.
Sources of tourism statistics are numerous and diverse.

�ey include surveys of border-crossing counts, visitors
(during a trip or a�erwards), business surveys, general
social surveys (especially those covering household expen-
ditures), and administrative records such as attraction
ticket sales or hotel reservation records.
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Trend Estimation
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Trend estimation deals with the characterization of the
underlying, or long–run, evolution of a time series. Despite
being a very pervasive theme in time series analysis since
its inception, it still raises a lot of controversies.�e dif-
�culties, or better, the challenges, lie in the identi�cation
of the sources of the trend dynamics, and in the de�nition
of the time horizon which de�nes the long run.�e preva-
lent view in the literature considers the trend as a genuinely
latent component, i.e., as the component of the evolu-
tion of a series that is persistent and cannot be ascribed
to observable factors. As a matter of fact, the univariate
approaches reviewed here assume that the trend is either
a deterministic or random function of time.
A variety of approaches is available, which can be clas-

si�ed as nonparametric (kernel methods, local polynomial
regression, band-pass �lters, and wavelet multiresolution
analysis), semiparametric (splines and Gaussian random
�elds) and parametric, when the trend is modeled as a
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stochastic process.�ey will be discussed with respect to
the additive decomposition of a time series y(t):

y(t) = µ(t) + є(t), t = , . . . ,n, ()

where µ(t) is the trend component, and є(t) is the noise, or
irregular, component.We assume throughout that є(t) = 
is a zero mean stationary process, whereas µ(t) can be
a random or deterministic function of time. �e above
decomposition bears di�erent meanings in di�erent �elds.
In experimental sciences є(t) is usually interpreted as a
pure measurement error, so that a signal is observed with
superimposed random noise. However, in behavioral sci-
ences such has economics, quite o�en є(t) is interpreted
as a stationary stochastic cycle or as the transitory compo-
nent of y(t).�e underlying idea is that trends and cycles
can be ascribed to di�erent economic mechanisms. More-
over, according to some approaches µ(t) is an underlying
deterministic function of time, whereas for other it is a ran-
dom function (e.g., a randomwalk, or a Gaussian process),
although this distinction becomesmore blurred in the case
of splines. For some methods, like band pass �ltering, the
underlying true value µ(t) is de�ned by the analyst via
the choice of a cuto� frequency which determines the time
horizon for the trend.

�e simplest and historically oldest approach to trend
estimation adopted a global polynomial model for µt :
µ(t) = ∑

p
j= βjtj.�e statistical treatment, based on least

squares, is provided in Anderson (). It turns out that
global polynomials are amenable to mathematical treat-
ment, but are not very �exible: they can provide bad local
approximations and behave ratherweirdly at the beginning
and at the end of the sample period, which is inconvenient
for forecasting purposes. More up to date methodolo-
gies make the representationmore �exible either assuming
that certain features, like the coe�cients or the deriva-
tives, evolve over time, or that a low order polynomial
representation is adequate only as a local approximation.
Local polynomial regression (LPR) is a nonparametric

approach that assumes that µ(t) is a smooth but unknown
deterministic function of time, which can be approximated
in a neighborhood of time t by a polynomial of degree p of
the time distance with time t.�e polynomial is �tted by
locally weighted least squares, and the weighting function
is known as the kernel. LPR generates linear signal extrac-
tion �lters (also known as moving average �lters) whose
properties depend on three key ingredients: the order of
the approximating polynomial, the size of the neighbor-
hood, also known as the bandwidth, and the choice of the
kernel function. �e simplest example is the arithmetic
moving average mt = 

h+ ∑
h
j=−h yt+j, which is the LPR

estimator of a local linear trend (p = ) in discrete time
using a bandwidth of h +  consecutive observations and
the uniform kernel.
Trend �lters that arise from �tting a locally weighted

polynomial to a time series have a well established
tradition in time series analysis and signal extrac-
tion; see Kendall et al. () and Loader (). For
instance, the Maculay’s moving average �lters and the
Henderson () �lters are integral part of the X- sea-
sonal adjustment procedure adopted by the US Census
Bureau.
�e methodology further encompasses the Nayadara-
Watson kernel smoother.
An important class of nonparametric �lters arises

from the frequency domain notion of a band-pass �l-
ter, that is popular in engineering. An ideal low-pass
�lter retains only the low frequency �uctuations in the
series and reduces the amplitude of �uctuations with fre-
quencies higher than a cuto� frequency ωc. Such a �lter
is available analytically, but unfeasible, since it requires
a doubly in�nite sequence of observations; however, it
can be approximated using various strategies (see Per-
cival and Walden ). Wavelet multiresolution analy-
sis provides a systematic way of performing band-pass
�ltering.
An alternative way of overcoming the limitations of

the global polynomial model is to add polynomial pieces
at given points, called knots, so that the polynomial sec-
tions are joined together ensuring that certain continuity
properties are ful�lled. Given the set of points t < . . . <
ti < . . . tk, a polynomial spline function of degree p with k
knots t, . . . , tk is a polynomial of degree p in each of the
k +  intervals [ti, ti+), with p −  continuous derivatives,
whereas the p−-st derivative has jumps at the knots. It can
be represented as follows:

µ(t) = β+β(t−t)+⋯+βp(t−t)p+
k

∑
i=

ηi(t−ti)
p
+, ()

where the set of functions

(t − ti)
p
+ = {

(t − ti)p, t − ti ≥ ,
, t − ti < 

de�nes what is usually called the truncated power basis of
degree p.
According to () the spline is a linear combination of

polynomial pieces; at each knot a new polynomial piece,
starting o� at zero, is added so that the derivatives at that
point are continuous up to the order p−.�emost popular
special case arises for p =  (cubic spline); the addi-
tional natural boundary conditions, which constrain the
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spline to be linear outside the boundary knots, is imposed.
See Green and Silverman () and Ruppert et al.
().
An important class of semiparametric and parametric

time series models are encompassed by ().�e piecewise
nature of the spline “re�ects the occurrence of structural
change” (Poirier ).�e knot ti is the timing of a struc-
tural break. �e change is “smooth,” since certain conti-
nuity conditions are ensured. �e coe�cients ηi, which
regulate the size of the break, may be considered as �xed
or random. In the latter case µ(t) is a stochastic process,
ηi is interpreted as a random shock that drives the evolu-
tion of µ(t), whereas the truncated power function (t−ti)

p
+

describes its impulse response function, that is the impact
on the future values of the trend.
If the ηi’s are considered as random, the spline model

can be formulated as a 7linear mixed model, which is a
traditional regression model extended so as to incorpo-
rate random e�ects. Denoting y = [ y(t), . . . , y(tn)]′, η =

[η, . . . , ηn]
′, є = [є(t), . . . , є(tn)]′, µ = Xβ + Zη,

y = µ + є = Xβ + Zη + є, ()

where the t-th row of X is [, (t − ), . . . , (t − )p], and Z is
a known matrix whose i-th column contains the impulse
response signature of the shock ηi, (t − ti)

p
+.

�e trend is usually �tted by penalized least squares
(PLS), which chooses µ so as to minimize

(y − µ)′(y − µ) + λ∫ [
dp−µ(t)
dtp−

]



dt, ()

where λ ≥  is the smoothness parameter.
PLS is among the most popular criteria for design-

ing �lters that has a long and well established tradi-
tion in actuarial sciences and economics (see Whit-
taker , Leser , and, more recently, Hodrick and
Prescott ). UnderGaussian independentmeasurement
noise minimizing the PLS criterion amounts to �nding
the conditional mode of µ given y, �is is a solution to
the smoothing problem. If µ(t) is random, the minimum
mean square estimator of the signal is E(µ(t)∣y). If the
model () is Gaussian, these inferences are linear in the
observations.�e computations are carried out e�ciently
by the Kalman �lter and the associated smoother (see
Wecker and Ansley ).

�e linear mixed model representation () encom-
passes other approaches, according to which the compo-
nent Zη is a Gaussian random process (Rasmussen and
Williams ), or a (possibly nonstationary) time series
process with a Markovian representation, such as in the
structural time series approach see Harvey (), and in

the canonical decomposition of time series (see Hillmer
and Tiao ). �e Markovian nature of the opens the
way to the statistical treatment by the state space method-
ology and signal extraction is carried out e�ciently by
the Kalman �lter and smoother. Popular predictors, such
as exponential smoothing and Holt and Winters, arise as
special cases (see Harvey ). �e representation the-
ory for the estimator of the trend component, Wiener-
Kolmogorov �lter, is established in Whittle ().

�e analysis of economic time series has contributed
to trend estimation in several ways.�e �rst contribution
is the attempt to relate the trend to a particular economic
mechanism. �e issue at stake is whether µ(t) is bet-
ter characterized as a deterministic or stochastic trends.
�is problem was addressed in a very in�uential paper by
Nelson and Plosser (), who adopted the (augmented)
Dickey Fuller test for testing the hypothesis that the series
is integrated of order , I(), implying that y(t)− y(t − ) is
a stationary process versus the alternative that it is trend-
stationary, e.g.,m(t) = β + βt. Using a set of annual U.S.
macroeconomic time series they are unable to reject the
null for most series and discuss the implications for eco-
nomic interpretation.�e trend in economic aggregate is
the cumulative e�ect of supply shocks, i.e., shocks to tech-
nology that occur randomly and propagate through the
economic systemvia a persistent transmissionmechanism.
A fundamental contribution is the notion of cointegra-

tion (Engle and Granger ), according to which two or
more series are cointegrated if they are themselves nonsta-
tionary (e.g., integrated of order ), but a linear combina-
tion of them is stationary. Cointegration results from the
presence of a long run equilibrium relationship among the
series, so that the same random trends drive the nonsta-
tionary dynamics of the series; also, part of the short run
dynamics are also due to the adjustment to the equilibrium.
A third contribution, related to trend estimation, is the

notion of spurious cycles that may result from inappropri-
ate detrending of a nonstationary time series. �is e�ect
is known as the Slutzky–Yule e�ect, and concerned with
the fact that an ad hoc �lter to a purely random series can
introduce arti�cial cycles.
Finally, large dimensional dynamic factor models

have become increasingly popular in empirical macroeco-
nomics.�e essential idea is that the precision bywhich the
common components are estimated can be increased by
bringing in more information from related series: suppose
for simplicity that yi(t) = θ iµ(t) + єi(t), where the i-th
series, i = , . . . ,N, depends on the same stationary com-
mon factor, which is responsible for the observed comove-
ments of economic time series, plus an idiosyncratic
component, which includes measurement error and local
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shocks. Generally,multivariatemethods providemore reli-
able measurements provided that a set of related series can
be viewed as repeated measures of the same underlying
latent variable. Stock and Watson () and Forni et al.
() discuss the conditions on µt and єit under which
dynamic or static principal components yield consistent
estimates of the underlying factor µt as both N and the
number of time series observations tend to in�nity.
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In the linear regressionmodel, y = Xβ+Yβ+u = Zβ+u,
there are real-life situations when some of the regressors,
denoted by Y in the model, are correlated with the dis-
turbance term.�e vector and matrices y,X, and Y are
N × ,N ×K, andN × (G− ) data matrices from a sample
of size N. u is the N ×  vector of disturbances, assumed
to have mean zero and variance-covariance matrix σ I. In
this model, X is assumed to be statistically independent of
the disturbance term and the analysis is done conditional
on X.
In such situations where correlation between error and

regressor exists, ordinary least squares (OLS) estimates of
regression coe�cients become not only biased but also
inconsistent (as sample size increases inde�nitely). One
of the earlier e�orts to correct for this inconsistency is a
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two step procedure called two-stage least squares in the
econometric literature. �e procedure �rst regresses the
“disturbance-correlated” variables, Y, on a selected set of
�rst-stage regressors (X) and obtains the calculated regres-
sion values PX(Y) = X(X′X)

−X′Y, the projection of Y
on the column space of X. For the second stage of the pro-
cedure, y is then regressed on X and PX(Y) to obtain the
SLS estimate bSLS. Typically X = (X,X) where X is
N×K, and is independent of u, andX has full column rank
equal to at leastK+G− . Intuitively, the �rst-stage regres-
sion serves to “purge”Y of its component that is correlated
with u and this leads to consistency in the regression at the
second stage where Y is replaced by PX(Y).
SLS was developed in the econometric literature in

dealing with the estimation of the linear regression model
(see7Linear RegressionModels) as part of a simultaneous
equations system. In this context, the joint probability dis-
tribution of y and Y is speci�ed and X is determined from
the model.
SLS appeared in an earlier form as an intermediate

step in the iteration towards the calculation of the limited-
information-maximum-likelihood (LIML) estimator in
simultaneous equation models.�e SLS estimator in the
linear regression model also can be interpreted as an
instrumental variable (IV) estimator, using the instrument
matrixWSLS = PXZ for Z; that is,

bIV = (W′
SLSZ)

−W′
SLSy = (Z′PXZ)−Z′PXy = bSLS.

�e SLS estimator also can be interpreted as a generalized
least squares (GLS) estimator in the derived linear model
X′y = X′Zβ + X′u.
When Z has a large dimension, modi�ed two-stage

least squares has been suggested as an alternative approach.
�is is also a two-step regression procedure where the �rst
stage of SLS ismodi�ed by regressingY onH, aN×h sub-
matrix spanning a column subspace ofX.H is chosen to be
of full column rank and rank [(I − P)H] ≥ G − , where
P is the projection matrix on the column space of X. One
suggested manner of constructingH is to start with X and
then add at leastG− of the remaining columns ofX or the
�rst K principal components of (I − P)X. In this case,
the modi�ed SLS is exactly equivalent to the IV estimator
using (X,PHY) as the instrument matrix.
Ordinary least squares also can be interpreted as an

IV estimator with Z as the instrument for itself. Another
variation of an IV estimator that has been suggested is
�eil’s k-class estimator.�is uses as its instrument matrix
a linear combination of the instrument matrices for OLS
and SLS and k is chosen by the investigator and can be

stochastic or non-stochastic.�us, withW(k) = kWSLS +

( − k)W(OLS) = kPXZ + ( − k)Z, the k-class estimator is

b(k) = (W′
(k)Z)

−W′
(k)y = β + (W′

(k)Z)
−W′

(k)u,

Assuming that plim(k) is �nite, a necessary and su�-
cient condition for consistency of the k-class estimator is
plim( − k) =  – that is, the contribution of the OLS
instrument matrix dies out in the limit.

�e limited information maximum likelihood (LIML)
estimator is closely related to the SLS and other estima-
tors introduced here and is a member of the k-class of
estimators.�ink of the linear regression equation intro-
duced above as part of a complete simultaneous-equations
model for the joint stochastic behavior of y,Y, and other
dependent variables showing up in other equations of the
model.�e LIML estimator of β maximizes the likelihood
of (y,Y) subject to any identi�ability restrictions, and is
called limited in the sense that it ignores the dependent
variables that do not show up in the regression equation.
�e constrained maximization process in LIML reduces
to minimizing the following variance ratio with respect to
β∗ = (, β′)′

ν = (β∗′Aβ∗)/(β∗′Sβ∗) =  + (β∗′Wβ∗)/(β∗′Sβ∗),

where Y = (y,Y); S = Y ′(I − PX)Y ; W = Y ′(PX − P);
and A = S +W = Y ′(I − P)Y .

�isminimization problem yields the solution bLIML as
a characteristic vector ofAwith respect to S corresponding
to the smallest root h of det(A − νS) = , and

h = (b∗LIML
′Ab∗LIML) / (b

∗
LIML

′Sb∗LIML) .

Note that (β∗′Wβ∗) is the marginal regression sum of
squares due to X given X in the regression of Yβ∗ on
X, while β∗′Sβ∗/(N − K) provides an unbiased estima-
tor of the error variance in the regression equation.�us
LIMLminimizes the marginal contribution of X given X
relative to an estimate of the error variance. SLS simply
minimizes this marginal contribution in absolute terms.

�e LIML estimator b∗LIML needs to be normalized to
have a unit value in its �rst element, to be comparable with
the other estimators we have discussed so far. With such a
normalization, the LIML estimator of β and β turns out
to be a k-class estimator as well, where the value of k is h,
the smallest root of det(A − νS) = . Note that h =  + f ,
where f is the smallest root of det(W−νS) = .�us, LIML
is an IV estimator also, whose instrument matrix is a lin-
ear combination of theOLS and SLS instrumentmatrices,
with k stochastic and k at least equal to unity.



 T Two-Stage Least Squares

Two-stage least squares and the other estimators dis-
cussed above have been analyzed for statistical proper-
ties in small samples, under the standard large-sample
asymptotics, and in alternative nonstandard asymptotic
settings such as error variances going to zero, number of
instruments going to in�nity at the same rate as sample
size, and so-called weak instrument asymptotics.
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